WorldWideScience

Sample records for granular media filtration

  1. Particle filtration in consolidated granular systems

    International Nuclear Information System (INIS)

    Schwartz, L.M.; Wilkinson, D.J.; Bolsterli, M.; Hammond, P.

    1993-01-01

    Grain-packing algorithms are used to model the mechanical trapping of dilute suspensions of particles by consolidated granular media. We study the distribution of filtrate particles, the formation of a damage zone (internal filter cake), and the transport properties of the host--filter-cake composite. At the early stages of filtration, our simulations suggest simple relationships between the structure of the internal filter cake and the characteristics of the underlying host matrix. These relationships are then used to describe the dynamics of the filtration process. Depending on the grain size and porosity of the host matrix, calculated filtration rates may either be greater than (spurt loss) or less than (due to internal clogging) those predicted by standard surface-filtration models

  2. Transport and abatement of fluorescent silica nanoparticle (SiO{sub 2} NP) in granular filtration: effect of porous media and ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao, E-mail: chaozeng@email.arizona.edu; Shadman, Farhang; Sierra-Alvarez, Reyes [University of Arizona, Department of Chemical and Environmental Engineering (United States)

    2017-03-15

    The extensive production and application of engineered silica nanoparticles (SiO{sub 2} NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO{sub 2} NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO{sub 2} NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO{sub 2} filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO{sub 2} NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO{sub 2} NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO{sub 2} NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO{sub 2} NP filtration.

  3. Transport and abatement of fluorescent silica nanoparticle (SiO_2 NP) in granular filtration: effect of porous media and ionic strength

    International Nuclear Information System (INIS)

    Zeng, Chao; Shadman, Farhang; Sierra-Alvarez, Reyes

    2017-01-01

    The extensive production and application of engineered silica nanoparticles (SiO_2 NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO_2 NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO_2 NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO_2 filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO_2 NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO_2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO_2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO_2 NP filtration.

  4. Transport and abatement of fluorescent silica nanoparticle (SiO2 NP) in granular filtration: effect of porous media and ionic strength

    Science.gov (United States)

    Zeng, Chao; Shadman, Farhang; Sierra-Alvarez, Reyes

    2017-03-01

    The extensive production and application of engineered silica nanoparticles (SiO2 NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO2 NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO2 NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO2 filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO2 NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO2 NP filtration.

  5. Filtration in Porous Media

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    There is a considerable and ongoing effort aimed at understanding the transport and the deposition of suspended particles in porous media, especially non-Fickian transport and non-exponential deposition of particles. In this work, the influential parameters in filtration models are studied...... to understand their effects on the non-Fickian transport and the non-exponential deposition. The filtration models are validated by the comparisons between the modelling results and the experimental data.The elliptic equation with distributed filtration coefficients may be applied to model non-Fickian transport...... and hyperexponential deposition. The filtration model accounting for the migration of surface associated particles may be applied for non-monotonic deposition....

  6. Granular filtration for airborne particles : correlation between experiments and models

    Energy Technology Data Exchange (ETDEWEB)

    Golshahi, L.; Tan, Z. [Calgary Univ., AB (Canada). Schulich School of Engineering, Mechanical and Manufacturing Dept.; Abedi, J. [Calgary Univ., AB (Canada). Schulich School of Engineering, Chemical and Petroleum Engineering Dept.

    2009-10-15

    A new design for a packed bed granular filter was presented. The cylindrical packed bed was designed to filter particles in the range of approximately 10 nm to 15 {mu}m in diameter in different kinetic conditions and configurations. The aim of the study was to develop a precise empirical model to predict the filtration efficiency of the packed beds. A collision-type atomizer was used to generate polydisperse sodium chloride aerosol particles. The effect of flow rates was studied using a thermal mass flow meter. A regression analysis technique was used to determine the correlation between single granule and total packed bed efficiency for the entire granular filter. The experimental data were then compared with results obtained from the theoretical analysis. The least square method was used to correlate experimental data and to develop generalized equations for single granule efficiency. The study showed that the granular filter media has a high filtration efficiency for both micron and submicron particles. It was concluded that the effect of media thickness was more significant at higher flow rates than at lower flow rates. 10 refs., 3 figs.

  7. Why granular media are thermal after all

    Science.gov (United States)

    Liu, Mario; Jiang, Yimin

    2017-06-01

    Two approaches exist to account for granular behavior. The thermal one considers the total entropy, which includes microscopic degrees of freedom such as phonons; the athermal one (as with the Edward entropy) takes grains as elementary. Granular solid hydrodynamics (GSH) belongs to the first, DEM, granular kinetic theory and athermal statistical mechanics (ASM) to the second. A careful discussion of their conceptual differences is given here. Three noteworthy insights or results are: (1) While DEM and granular kinetic theory are well justified to take grains as elementary, any athermal entropic consideration is bound to run into trouble. (2) Many general principles are taken as invalid in granular media. Yet within the thermal approach, energy conservation and fluctuation-dissipation theorem remain valid, granular temperatures equilibrate, and phase space is well explored in a grain at rest. Hence these are abnormalities of the athermal approximation, not of granular media as such. (3) GSH is a wide-ranged continuum mechanical description of granular dynamics.

  8. Aerofractures in Confined Granular Media

    Science.gov (United States)

    Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.

    2015-04-01

    We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image

  9. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  10. Osmosis, filtration and fracture of porous media

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    Filtration was produced in a small scale physical model of a granular porous medium of cylindrical shape.The same volume flow was obtained either applying a difference in hydrostatic pressure or in osmotic pressure.In the first case a process of sustained erosion ending in an hydraulic short circuit was observed,while in the second case the material remained stable.This paradoxical strength behaviour is explained using some results from differential geometry,classical field theory and thermo-kinetic theory.The fracture process of a continuous matrix in a porous medium under the combined effect of filtration and external mechanical loads in then considered.The obtained results can be applied to the textural and compressive strength of wet concrete

  11. Strain localisation in granular media

    OpenAIRE

    Desrues , Jacques

    1984-01-01

    This study is devoted to strain localisation in Granular materials. Both experimental and theoretical results have been obtained.The first part of the thesis is a review of the methods and theories about rupture in sols mechanics and more generally, in solid mechanics. The classical framework of Shear Band analysis is presented, and the main results available for different classes of materials are discussed.The second part describes an experimental study of strain localisation in sand specime...

  12. Statistical mechanics of dense granular media

    International Nuclear Information System (INIS)

    Coniglio, A; Fierro, A; Nicodemi, M; Ciamarra, M Pica; Tarzia, M

    2005-01-01

    We discuss some recent results on the statistical mechanics approach to dense granular media. In particular, by analytical mean field investigation we derive the phase diagram of monodisperse and bidisperse granular assemblies. We show that 'jamming' corresponds to a phase transition from a 'fluid' to a 'glassy' phase, observed when crystallization is avoided. The nature of such a 'glassy' phase turns out to be the same as found in mean field models for glass formers. This gives quantitative evidence for the idea of a unified description of the 'jamming' transition in granular media and thermal systems, such as glasses. We also discuss mixing/segregation transitions in binary mixtures and their connections to phase separation and 'geometric' effects

  13. Surface instabilities in shock loaded granular media

    Science.gov (United States)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to

  14. Seismic wave propagation in granular media

    Science.gov (United States)

    Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion

    2016-10-01

    Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in

  15. Evaluating the effects of granular and membrane filtrations on chlorine demand in drinking water.

    Science.gov (United States)

    Jegatheesan, Veeriah; Kim, Seung Hyun; Joo, C K; Gao, Baoyu

    2009-01-01

    In this study, chlorine decay experiments were conducted for the raw water from Nakdong River that is treated by Chilseo Water Treatment Plant (CWTP) situated in Haman, Korea as well as the effluents from sand and granular activated carbon (GAC) filters of CWTP and fitted using a chlorine decay model. The model estimated the fast and slow reacting nitrogenous as well as organic/inorganic compounds that were present in the water. It was found that the chlorine demand due to fast and slow reacting (FRA and SRA) organic/inorganic substances was not reduced significantly by sand as well as GAC filters. However, the treated effluents from those filters contained FRA and SRA that are less reactive and had small reaction rate constants. For the effluents from microfiltration, ultrafiltration, and nanofiltration the chlorine demand because FRA and SRA were further reduced but the reaction rate constants were larger compared to those of sand and GAC filter effluents. This has implications in the formation of disinfection by products (DBPs). If DBPs are assumed to form due to the interactions between chlorine and SRA, then it is possible that the DBP formation potential in the effluents from membrane filtrations could be higher than that in the effluents from granular media filters.

  16. Propulsion via flexible flapping in granular media

    Science.gov (United States)

    Peng, Zhiwei; Ding, Yang; Pietrzyk, Kyle; Elfring, Gwynn; Pak, On Shun

    2017-11-01

    Biological locomotion in nature is often achieved by the interaction between a flexible body and its surrounding medium. The interaction of a flexible body with granular media is less understood compared with viscous fluids partially due to its complex rheological properties. In this work, we explore the effect of flexibility on granular propulsion by considering a simple mechanical model in which a rigid rod is connected to a torsional spring that is under a displacement actuation using a granular resistive force theory. Through a combined numerical and asymptotic investigation, we characterize the propulsive dynamics of such a flexible flapper in relation to the actuation amplitude and spring stiffness, and we compare these dynamics with those observed in a viscous fluid. In addition, we demonstrate that the maximum possible propulsive force can be obtained in the steady propulsion limit with a finite spring stiffness and large actuation amplitude. These results may apply to the development of synthetic locomotive systems that exploit flexibility to move through complex terrestrial media. Funding for Z.P. and Y.D. was partially provided by NSFC 394 Grant No. 11672029 and NSAF-NSFC Grant No. U1530401.

  17. Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration

    NARCIS (Netherlands)

    Orlandini, E.

    1999-01-01

    This research aimed to idendfy and understand mechanisms that underlie the beneficial effect of ozonation on removal of pesdcides and other micropoUutants by Granular Activated Carbon (GAC) filtradon. This allows optimization of the combination of these two processes, termed Biological Activated

  18. Solitary Wave Interactions in Granular Media

    Institute of Scientific and Technical Information of China (English)

    WEN Zhen-Ying; WANG Shun-Jin; ZHANG Xiu-Ming; LI Lei

    2007-01-01

    We numerically study the interactions of solitary waves in granular media, by considering a chain of beads, which repel upon contact via the Hertz-type potential, V ∝δn, with 5/2 ≤n≤3 and δ≥0,δbeing the bead-bead overlap. There are two collision types of solitary waves, overtaking collision and head-on collision, in the chain of beads. Our quantitative results show that after collision the large solitary wave gains energy and the small one loses energy for overtaking type while the large one loses energy, and the small one gains energy for head-on type. The scattering effects decrease with n for overtaking collision whereas increase with n for head-on collision.

  19. Pneumatic fractures in Confined Granular Media

    Science.gov (United States)

    Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik; Turkaya, Semih

    2016-04-01

    We will present our ongoing study of the patterns formed when air flows into a dry, non-cohesive porous medium confined in a horizontal Hele-Shaw cell. This is an optically transparent system consisting of two glass plates separated by 0.5 to 1 mm, containing a packing of dry 80 micron beads in between. The cell is rectangular and has an air-permeable boundary (blocking beads) at one short edge, while the other three edges are completely sealed. The granular medium is loosely packed against the semi-permeable boundary and fills about 80 % of the cell volume. This leaves an empty region at the sealed side, where an inlet allows us to set and maintain the air at a constant overpressure (0.1 - 2 bar). For the air trapped inside the cell to relax its overpressure it has to move through the deformable granular medium. Depending on the applied overpressure and initial density of the medium, we observe a range of different behaviors such as seepage through the pore-network with or without an initial compaction of the solid, formation of low density bubbles with rearrangement of particles, granular fingering/fracturing, and erosion inside formed channels/fractures. The experiments are recorded with a high-speed camera at a framerate of 1000 images/s and a resolution of 1024x1024 pixels. We use various image processing techniques to characterize the evolution of the air invasion patterns and the deformations in the surrounding material. The experiments are similar to deformation processes in porous media which are driven by pore fluid overpressure, such as mud volcanoes and hydraulic or pneumatic (gas-induced) fracturing, and the motivation is to increase the understanding of such processes by optical observations. In addition, this setup is an experimental version of the numerical models analyzed by Niebling et al. [1,2], and is useful for comparison with their results. In a directly related project [3], acoustic emissions from the cell plate are recorded during

  20. Pneumatic fractures in confined granular media.

    Science.gov (United States)

    Eriksen, Fredrik K; Toussaint, Renaud; Turquet, Antoine L; Måløy, Knut J; Flekkøy, Eirik G

    2017-06-01

    We perform experiments where air is injected at a constant overpressure P_{in}, ranging from 5 to 250 kPa, into a dry granular medium confined within a horizontal linear Hele-Shaw cell. The setup allows us to explore compacted configurations by preventing decompaction at the outer boundary, i.e., the cell outlet has a semipermeable filter such that beads are stopped while air can pass. We study the emerging patterns and dynamic growth of channels in the granular media due to fluid flow, by analyzing images captured with a high speed camera (1000 images/s). We identify four qualitatively different flow regimes, depending on the imposed overpressure, ranging from no channel formation for P_{in} below 10 kPa, to large thick channels formed by erosion and fingers merging for high P_{in} around 200 kPa. The flow regimes where channels form are characterized by typical finger thickness, final depth into the medium, and growth dynamics. The shape of the finger tips during growth is studied by looking at the finger width w as function of distance d from the tip. The tip profile is found to follow w(d)∝d^{β}, where β=0.68 is a typical value for all experiments, also over time. This indicates a singularity in the curvature d^{2}d/dw^{2}∼κ∼d^{1-2β}, but not of the slope dw/dd∼d^{β-1}, i.e., more rounded tips rather than pointy cusps, as they would be for the case β>1. For increasing P_{in}, the channels generally grow faster and deeper into the medium. We show that the channel length along the flow direction has a linear growth with time initially, followed by a power-law decay of growth velocity with time as the channel approaches its final length. A closer look reveals that the initial growth velocity v_{0} is found to scale with injection pressure as v_{0}∝P_{in}^{3/2}, while at a critical time t_{c} there is a cross-over to the behavior v(t)∝t^{-α}, where α is close to 2.5 for all experiments. Finally, we explore the fractal dimension of the fully

  1. Anisotropy in cohesive, frictional granular media

    International Nuclear Information System (INIS)

    Luding, Stefan

    2005-01-01

    The modelling of cohesive, frictional granular materials with a discrete particle molecular dynamics is reviewed. From the structure of the quasi-static granular solid, the fabric, stress, and stiffness tensors are determined, including both normal and tangential forces. The influence of the material properties on the flow behaviour is also reported, including relations between the microscopic attractive force and the macroscopic cohesion as well as the dependence of the macroscopic friction on the microscopic contact friction coefficient. Related to the dynamics, the anisotropy of both structure and stress are exponentially approaching the maximum

  2. Tracing Thermal Creep Through Granular Media

    Science.gov (United States)

    Steinpilz, Tobias; Teiser, Jens; Koester, Marc; Schywek, Mathias; Wurm, Gerhard

    2017-08-01

    A temperature gradient within a granular medium at low ambient pressure drives a gas flow through the medium by thermal creep. We measured the resulting air flow for a sample of glass beads with particle diameters between 290 μ m and 420 μ m for random close packing. Ambient pressure was varied between 1 Pa and 1000 Pa. The gas flow was quantified by means of tracer particles during parabolic flights. The flow varies systematically with pressure between 0.2 cm/s and 6 cm/s. The measured flow velocities are in quantitative agreement to model calculations that treat the granular medium as a collection of linear capillaries.

  3. Properties of surface waves in granular media under gravity

    International Nuclear Information System (INIS)

    Zheng He-Peng

    2014-01-01

    Acoustical waves propagating along the free surface of granular media under gravity are investigated in the framework of elasticity theory. The influence of stress on a surface wave is analyzed. The results have shown that two types of surface waves, namely sagittal and transverse modes exist depending on initial stress states, which may have some influence on the dispersion relations of surface waves, but the influence is not great. Considering that the present experimental accuracy is far from distinguishing this detail, the validity of elasticity theory on the surface waves propagating in granular media can still be maintained. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Groundwater Arsenic Adsorption on Granular TiO2: Integrating Atomic Structure, Filtration, and Health Impact.

    Science.gov (United States)

    Hu, Shan; Shi, Qiantao; Jing, Chuanyong

    2015-08-18

    A pressing challenge in arsenic (As) adsorptive filtration is to decipher how the As atomic surface structure obtained in the laboratory can be used to accurately predict the field filtration cycle. The motivation of this study was therefore to integrate molecular level As adsorption mechanisms and capacities to predict effluent As from granular TiO2 columns in the field as well as its health impacts. Approximately 2,955 bed volumes of groundwater with an average of 542 μg/L As were filtered before the effluent As concentration exceeded 10 μg/L, corresponding to an adsorption capacity of 1.53 mg As/g TiO2. After regeneration, the TiO2 column could treat 2,563 bed volumes of groundwater, resulting in an As load of 1.36 mg/g TiO2. Column filtration and EXAFS results showed that among coexisting ions present in groundwater, only Ca(2+), Si(OH)4, and HCO3(-) would interfere with As adsorption. The compound effects of coexisting ions and molecular level structural information were incorporated in the PHREEQC program to satisfactorily predict the As breakthrough curves. The total urinary As concentration from four volunteers of local residences, ranging from 972 to 2,080 μg/L before groundwater treatment, decreased to the range 31.7-73.3 μg/L at the end of the experimental cycle (15-33 days).

  5. The impact of metallic filter media on HEPA filtration

    International Nuclear Information System (INIS)

    Chadwick, Chris; Kaufman, Seth

    2006-01-01

    Traditional HEPA filter systems have limitations that often prevent them from solving many of the filtration problems in the nuclear industry; particularly in applications where long service or storage life, high levels of radioactivity, dangerous decomposition products, chemical aggression, organic solvents, elevated operating temperatures, fire resistance and resistance to moisture are issues. This paper addresses several of these matters of concern by considering the use of metallic filter media to solve HEPA filtration problems ranging from the long term storage of transuranic waste at the WIPP site, spent and damaged fuel assemblies, in glove box ventilation and tank venting to the venting of fumes at elevated temperatures from incinerators, vitrification processes and conversion and sintering furnaces as well as downstream of iodine absorbers in gas cooled reactors in the UK. The paper reviews the basic technology, development, performance characteristics and filtration efficiency, flow versus differential pressure, cleanability and costs of sintered metal fiber in comparison with traditional resin bonded glass fiber filter media and sintered metal powder filter media. Examples of typical filter element and system configurations and applications will be presented The paper will also address the economic case for installing self cleaning pre-filtration, using metallic media, to recover the small volumes of dust that would otherwise blind large volumes of final disposable HEPA filters, thus presenting a route to reduce ultimate disposal volumes and secondary waste streams. (authors)

  6. Simulation of impaction filtration of aerosol droplets in porous media

    NARCIS (Netherlands)

    Ghazaryan, L.; Lopez Penha, D.J.; Geurts, Bernardus J.; Stolz, S.; Stolz, Steffen; Winkelmann, Christoph; Pereira, J.C.F; Sequeira, A.; Pereira, J.M.C.

    2010-01-01

    We report on the development of a method to simulate from first principles the particle filtration efficiency of filters that are composed of structured porous media. We assume that the ratio of particle density to the fluid density is high. We concentrate on the motion of the particles in a laminar

  7. Filtration characteristics of porous silicon carbide media

    International Nuclear Information System (INIS)

    Ahn, Byung Gil; Seo, Yong Chil; Yim, Sung Paal; Kim, Joon Hyung

    1991-01-01

    The characteristics of a filter such as clean filter pressure drop, filtering performance and filter drag variation with dust loading have been studied with fabricated SiC filter specimens in the laboratory and commercial ceramic filters. Several theoretical equations have been modified and applied to investigate such characteristics. To estimate the pressure drop of clean gas flow through a cylindrical porous filter, Forchheimer equation, which contains the terms of permeability and turbulent factor at a high velocity of gas, has been modified and tested with experimental data. The filtering efficiency was found to be above 99.9% and the penetration of dust decreased exponentially with dust loading. The pressure drop during filtration was measured and showed to increase exponentially with dust loading in the beginning because particles were intercepted and a cake layer was formed by structural properties of a filter. And then it increased in proportion as the cake layer thickened. The effect of dust deposition on the pressure drop could be explained theoretically using several characteristic parameters relevant to dust size, structure of filters and cake layer formation

  8. Lizard locomotion in heterogeneous granular media

    Science.gov (United States)

    Schiebel, Perrin; Goldman, Daniel

    2014-03-01

    Locomotion strategies in heterogeneous granular environments (common substrates in deserts), are relatively unexplored. The zebra-tailed lizard (C. draconoides) is a useful model organism for such studies owing to its exceptional ability to navigate a variety of desert habitats at impressive speed (up to 50 body-lengths per second) using both quadrapedal and bidepal gaits. In laboratory experiments, we challenge the lizards to run across a field of boulders (2.54 cm diameter glass spheres or 3.8 cm 3D printed spheres) placed in a lattice pattern and embedded in a loosely packed granular medium of 0.3 mm diameter glass particles. Locomotion kinematics of the lizard are recorded using high speed cameras, with and without the scatterers. The data reveals that unlike the lizard's typical quadrupedal locomotion using a diagonal gait, when scatterers are present the lizard is most successful when using a bipedal gait, with a raised center of mass (CoM). We propose that the kinematics of bipedal running in conjunction with the lizard's long toes and compliant hind foot are the keys to this lizard's successful locomotion in the presence of such obstacles. NSF PoLS

  9. Simulation of impaction filtration of aerosol droplets in porous media

    OpenAIRE

    Ghazaryan, L.; Lopez Penha, D.J.; Geurts, Bernardus J.; Stolz, S.; Stolz, Steffen; Winkelmann, Christoph; Pereira, J.C.F; Sequeira, A.; Pereira, J.M.C.

    2010-01-01

    We report on the development of a method to simulate from first principles the particle filtration efficiency of filters that are composed of structured porous media. We assume that the ratio of particle density to the fluid density is high. We concentrate on the motion of the particles in a laminar flow and quantify the role of inertial effects on the filtration of an ensemble of particles. We adopt the Euler-Lagrange approach, distinguishing a flow field in which the motion of a large numbe...

  10. Capturing gas in soft granular media

    Science.gov (United States)

    MacMinn, Chris; Lee, Jeremy; Xu, Feng; Lee, Sungyon

    2017-11-01

    Bubble migration through soft granular materials involves a strong coupling between the bubble dynamics and the deformation of the material. This process is relevant to a variety of natural and industrial systems, from fluidized-bed reactors to the migration and venting of biogenic gas in sediments. Here, we study this process experimentally by injecting air into a quasi-2D, liquid-saturated packing of soft particles and measuring the morphology of the bubbles as they invade and then rise due to buoyancy. By systematically varying the confining stress, we show that the competition between buoyancy, capillarity, and elasticity leads to complex bubble-migration dynamics that transition from fluidization to pathway opening to pore invasion, with a strong and surprising impact on the amount of air trapped in the system. The authors are grateful for support from the Royal Society (IE150885), the John Fell Oxford University Press Research Fund, and the Maurice Lubbock Memorial Fund.

  11. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals activated carbon (PAC) to deep-bed filtration as a direct

  12. Real-time monitoring of arsenic filtration by granular ferric hydroxide

    International Nuclear Information System (INIS)

    Fleming, D.E.B.; Eddy, I.S.; Gherase, M.R.; Gibbons, M.K.; Gagnon, G.A.

    2008-01-01

    Full text: Contamination of drinking water by arsenic is a serious public health issue in many parts of the world. One recent approach to this problem has been to filter out arsenic by use of granular ferric hydroxide (GFH), an adsorbent developed specifically for the selective removal of arsenic from water. Previous studies have documented the efficiency and high treatment capacity of this approach. We present a novel X-ray fluorescence method to monitor the accumulation of arsenic within a specially designed GFH column, as both a function of time (or water volume) and location along the column. Using a miniature X-ray tube and silicon PiN diode detector, X-ray fluorescence is used to detect characteristic X-rays of arsenic excited from within the GFH. Trials were performed using a water flow rate of approximately 1.5 litres per hour, with an added arsenic concentration of approximately 1000 μg per litre. In this paper, trial results are presented and potential applications described. Characteristic arsenic Kα X-ray peak area as a function of time, as measured at various locations along a granular ferric hydroxide (GFH) water filtration column

  13. Characteristics of thermally assisted magnetic recording in granular perpendicular media

    International Nuclear Information System (INIS)

    Shiino, Hirotaka; Kawana, Mayumi; Miyashita, Eiichi; Hayashi, Naoto; Watanabe, Sadayuki

    2009-01-01

    The effect of thermally assisted magnetic recording using granular perpendicular media with a single-pole-trimmed head has been investigated. A read/write experiment using a spin stand in which the media were heated by laser irradiation demonstrated that the track average amplitude strongly depends on both the position of the write head relative to the center of the laser spot in the down-track direction and on the laser power. Although the signal-to-noise ratio increased with the coercivity of the media, the increment was small; this is thought to be caused by an increase in the switching field distribution of the media with temperature. Our results suggest that the magnetic constant of the media must be optimized with respect to the temperature of writing in order for high-density thermally assisted magnetic recording to be realized

  14. Novel Particulate Air-Filtration Media: Market Survey

    Science.gov (United States)

    2013-02-01

    larger and more efficient filter designs similar to those being considered for future integrated respirator/helmet systems. To avoid eliminating ...including nonwoven, woven, and electret and combinations of media. Some of the manufacturers identified themselves as specializing in biofiltration or...Three Millipore products were identified. The 0.2 µm hydrophobic Aervent PTFE membrane62 is used for the sterile filtration of gases . Aerex

  15. Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals

    Science.gov (United States)

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Yu, Gang; Winglee, Judith; Wiesner, Mark R.

    2017-04-01

    A simple and convenient method was used to prepare novel granular carbon nanotubes (CNTs) for enhanced adsorption of pharmaceuticals. By heating CNTs powder at 450 degree centigrade in air, followed by filtration, the obtained granular adsorbent exhibited high surface area and pore volume since the heating process produced some oxygen-containing functional groups on CNT surface, making CNTs more dispersible in the formation of granular cake. The porous granular CNTs not only had more available surfaces for adsorption but also were more easily separated from solution than pristine CNTs (p-CNTs) powder. This adsorbent exhibited relatively fast adsorption for carbamazepine (CBZ), tetracycline (TC) and diclofe- nac sodium (DS), and the maximum adsorption capacity on the granular CNTs was 369.5 μmol/g for CBZ, 284.2 μmol/g for TC and 203.1 μmol/g for DS according to the Langmuir fitting, increasing by 42.4%, 37.8% and 38.0% in comparison with the pristine CNTs powder. Moreover, the spent granular CNTs were successfully regenerated at 400 degree centigrade in air without decreasing the adsorption capacity in five regeneration cycles. The adsorbed CBZ and DS were completely degraded, while the adsorbed TC was partially oxidized and the residual was favorable for the subsequent adsorption. This research develops an easy method to prepare and regenerate granular CNT adsorbent for the enhanced removal of organic pollutants from water or wastewater.

  16. Asymptotics of the filtration problem for suspension in porous media

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2015-01-01

    Full Text Available The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.

  17. Biotin- and Glycoprotein-Coated Microspheres as Surrogates for Studying Filtration Removal of Cryptosporidium parvum in a Granular Limestone Aquifer Medium.

    Science.gov (United States)

    Stevenson, M E; Blaschke, A P; Toze, S; Sidhu, J P S; Ahmed, W; van Driezum, I H; Sommer, R; Kirschner, A K T; Cervero-Aragó, S; Farnleitner, A H; Pang, L

    2015-07-01

    Members of the genus Cryptosporidium are waterborne protozoa of great health concern. Many studies have attempted to find appropriate surrogates for assessing Cryptosporidium filtration removal in porous media. In this study, we evaluated the filtration of Cryptosporidium parvum in granular limestone medium by the use of biotin- and glycoprotein-coated carboxylated polystyrene microspheres (CPMs) as surrogates. Column experiments were carried out with core material taken from a managed aquifer recharge site in Adelaide, Australia. For the experiments with injection of a single type of particle, we observed the total removal of the oocysts and glycoprotein-coated CPMs, a 4.6- to 6.3-log10 reduction of biotin-coated CPMs, and a 2.6-log10 reduction of unmodified CPMs. When two different types of particles were simultaneously injected, glycoprotein-coated CPMs showed a 5.3-log10 reduction, while the uncoated CPMs displayed a 3.7-log10 reduction, probably due to particle-particle interactions. Our results confirm that glycoprotein-coated CPMs are the most accurate surrogates for C. parvum; biotin-coated CPMs are slightly more conservative, while unmodified CPMs are markedly overly conservative for predicting C. parvum removal in granular limestone medium. The total removal of C. parvum observed in our study suggests that granular limestone medium is very effective for the filtration removal of C. parvum and could potentially be used for the pretreatment of drinking water and aquifer storage recovery of recycled water. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Robophysical study of jumping dynamics on granular media

    Science.gov (United States)

    Aguilar, Jeffrey; Goldman, Daniel I.

    2016-03-01

    Characterizing forces on deformable objects intruding into sand and soil requires understanding the solid- and fluid-like responses of such substrates and their effect on the state of the object. The most detailed studies of intrusion in dry granular media have revealed that interactions of fixed-shape objects during free impact (for example, cannonballs) and forced slow penetration can be described by hydrostatic- and hydrodynamic-like forces. Here we investigate a new class of granular interactions: rapid intrusions by objects that change shape (self-deform) through passive and active means. Systematic studies of a simple spring-mass robot jumping on dry granular media reveal that jumping performance is explained by an interplay of nonlinear frictional and hydrodynamic drag as well as induced added mass (unaccounted by traditional intrusion models) characterized by a rapidly solidified region of grains accelerated by the foot. A model incorporating these dynamics reveals that added mass degrades the performance of certain self-deformations owing to a shift in optimal timing during push-off. Our systematic robophysical experiment reveals both new soft-matter physics and principles for robotic self-deformation and control, which together provide principles of movement in deformable terrestrial environments.

  19. Experimental and Modeling Study on Detachment of Silver Nanoparticles in Saturated Granular Media

    Science.gov (United States)

    Kim, I.; Jeon, C. H.; Lawler, D. F.

    2017-12-01

    The detachment of citrate-capped silver nanoparticles (AgNPs) previously captured in a column packed with 350-μm glass beads was investigated either by increasing the hydrodynamic force (filtration velocity) or by reducing electrosteric attraction. Overall, the physical enforcement showed negligible (0.4 0.7%) release of attached AgNPs while the chemically-driven force resulted in the noticeable release up to 25.5% of attached AgNPs. Among the chemical parameters tested in this study, Na ionic strength reduction clearly demonstrated the reversible deposition in the secondary energy minimum of classical DLVO theory, yielding the most significant release of the attached AgNPs. The immediate and transient AgNP release after the ionic strength reduction further corroborated the weak deposition. However, an insignificant release was observed with Ca ionic strength reduction due to the strong Ca-citrate complexation and the subsequent deposition in the primary energy minimum; calculations indicated that the depth of the secondary energy minimum was only 1/10 that of the Na ion case. The natural organic matter (NOM) coating on both AgNPs and granular media resulted in approximately 6.1% greater AgNP release compared to the case without NOM coating, indicating additional weak deposition due to the reduced steric attraction between AgNPs and granular media. A modified filtration model in agreement with the experimental data provided the estimated detachment coefficient as a transient AgNP releasing capacity independent of the amount of attached AgNPs. The marginal difference between the detachment coefficients from Na ionic strength reduction and NOM coating indicates the release potential by NOM coating was possibly underestimated in the experimental study due to a lesser amount of the initially attached AgNPs. The findings provide insights into chemical factors on possible reentrainment behavior of the engineered nanoparticles in soil and groundwater contamination.

  20. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality.

    Science.gov (United States)

    da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela

    2012-01-01

    This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.

  1. Technological effect of vibroprocessing by flows of organic granular media

    Science.gov (United States)

    Lebedev, V. A.; Shishkina, A. P.; Davydova, I. V.; Morozova, A. V.

    2018-03-01

    The analysis of approaches to modeling of vibrational processing by granulated media is carried out. The vibroprocessing model which provides effective finishing of the surfaces of the parts due to the stone fruit organic media granules is developed. The model is based on the granule flow energy impact on the surface being treated. As the main characteristic of the organic media processing, a specific volumetric metal scrap is used, the physical meaning of which is the increase rate in the thickness of the material removed from the surface at a given velocity and pressure of the medium. It is shown that the metal scrap depends on the medium flow velocity, the height of the loading column of the granular medium, and the conditions for the formation of a medium stationary circulation motion. Based on the analysis of the results of experimental studies of the influence of amplitude-frequency characteristics on the removal of metal in the process of vibroprocessing with abrasive granules, the dependence of the specific volume metal removal is proposed for organic media processing, taking into account the threshold amplitude and frequency of oscillations of the working chamber, at which the effect of surface treatment is observed. The established set of relationships describing the effective conditions for vibroprocessing with stone organic media was obtained using experimental data, which allows us to assume that the model obtained is valid.

  2. Impact of granular filtration on ultrafiltration membrane performance as pre-treatment to seawater desalination in presence of algal blooms

    Directory of Open Access Journals (Sweden)

    Nour-Eddine Sabiri

    2018-04-01

    Full Text Available To mitigate fouling of the ultrafiltration (UF membrane and improve permeate quality, we coupled granular filters (GF with UF membrane as a pre-treatment for reconstituted seawater in the presence of algal bloom. Mono and bilayer granular filtrations were led at a mean velocity of 10 m h−1 over a 7-hour period. Both GF gave the same algal cell retention rate (∼63% after 7 hours of filtration. Turbidity reduction rate was 50% for the monolayer filter and 75% for the bilayer filter. Resulting organic matter removal rate was 10% for the monolayer filter and 35% for the bilayer filter. Dissolved organic carbon removal was low (20% with the bilayer filter and non-existent with the monolayer filter. GF-coupled UF reduced humic acids in the permeate (20% compared with UF alone. Peak pressure of 3 bars was reached at the end of 30 minutes of UF in both direct UF or UF after monolayer GF. The filtrate from the bilayer GF enables UF over a longer period (7 hours.

  3. Turbidity removal: Gravel and charcoal as roughing filtration media

    Directory of Open Access Journals (Sweden)

    Josiah A. Adeyemo

    2010-10-01

    Full Text Available Roughing filtration is an important pre-treatment process for wastewater, because it efficiently separates fine solid particles over prolonged periods, without the addition of chemicals. For this study, a pilot plant was designed at Delmas Coal Mine in the Mpumalanga province of South Africa. The design and sizing of the pilot plant was guided by Wegelin’s design criteria. Gravel was used as a control medium because it is one of the most commonly used roughing filter media and because it was used in developing the criteria. We compared the performance of gravel as a filter medium to that of another locally available material, charcoal, for the removal of turbidity in wastewater. The pilot plant was monitored continuously for 90 days from commissioning until the end of the project. The overall performance of the roughing filter in turbidity removal, using gravel or charcoal, was considered efficient for the pre-treatment of waste water. Charcoal performed slightly better than gravel as a filter medium for the removal of turbidity, possibly because charcoal has a slightly higher specific surface area and porosity than gravel, which could enhance sedimentation and other filtration processes, such as adsorption, respectively.

  4. Elastic Nonlinear Response in Granular Media Under Resonance Conditions

    Science.gov (United States)

    Jia, X.; Johnson, P. A.

    2004-12-01

    We are studying the elastic linear and nonlinear behavior of granular media using dynamic wave methods. In the work presented here, our goal is to quantify the elastic nonlinear response by applying wave resonance. Resonance studies are desirable because they provide the means to easily study amplitude dependencies of elastic nonlinear behavior and thus to characterize the physical nature of the elastic nonlinearity. This work has implications for a variety of topics, in particular, the in situ nonlinear response of surface sediments. For this work we constructed an experimental cell in which high sensitivity dynamic resonance studies were conducted using granular media under controlled effective pressure. We limit our studies here to bulk modes but have the capability to employ shear waves as well. The granular media are composed of glass beads held under pressure by a piston, while applying resonance waves from transducers as both the excitation and the material probe. The container is closed with two fitted pistons and a normal load is applied to the granular sample across the top piston. Force and displacement are measured directly. Resonant frequency sweeps with frequencies corresponding to the fundamental bulk mode are applied to the longitudinal source transducer. The pore pressure in the system is 1 atm. The glass beads used in our experiments are of diameter 0.5 mm, randomly deposited in a duralumin cylinder of diameter 30 mm and height of 15 mm. This corresponds to a granular skeleton acoustic wave velocity of v ª 750m/s under 50 N of force [0.07 Mpa]. The loaded system gives fundamental mode resonances in the audio frequency band at half a wavelength where resonance frequency is effective-pressure dependent. The volume fraction of glass beads thus obtained is found to be 0.63 ± 0.01. Plane-wave generating and detecting transducers of diameter 30 mm are placed on axis at the top and bottom of the cylindrical container in direct contact with the glass

  5. Fuel micro-mechanics: homogenization, cracking, granular media

    International Nuclear Information System (INIS)

    Monerie, Yann

    2010-01-01

    This work summarizes about fifteen years of research in the field of micro-mechanics of materials. Emphasis is placed on the most recent work carried out in the context of nuclear safety. Micro-mechanics finds a natural place there, aiming to predict the behavior of heterogeneous materials with an evolving microstructure. The applications concerned mainly involve the nuclear fuel and its tubular cladding. The uranium dioxide fuel is modeled, according to the scales under consideration, as a porous ceramic or a granular medium. The strongly irradiated Zircaloy claddings are identified with a composite medium with a metal matrix and a gradient of properties. The analysis of these classes of material is rich in problems of a more fundamental nature. Three main themes are discussed: 1/ Homogenization, 2/ cracking, rupture and fragmentation, 3/ discrete media and fluid-grain couplings. Homogenization: The analytical scale change methods proposed aim to estimate or limit the linear and equivalent nonlinear behaviors of isotropic porous media and anisotropic composites with a metal matrix. The porous media under consideration are saturated or drained, with a compressible or incompressible matrix, and have one or two scales of spherical or ellipsoid pores, or cracks. The composites studied have a macroscopic anisotropy related to that of the matrix, and to the shape and spatial distribution of the inclusions. Thermoelastic, elastoplastic, and viscoplastic behaviors and ductile damage of these media are examined using different techniques: extensions of classic approaches, linear in particular, variational approaches and approaches using elliptical potentials with thermally activated elementary mechanisms. The models developed are validated on numerical finite element simulations, and their functional relevance is illustrated in comparison to experimental data obtained from the literature. The significant results obtained include a plasticity criterion for Gurson matrix

  6. The effect of an acoustic field on the filtration efficiency of aerosols by a granular bed

    International Nuclear Information System (INIS)

    Tavossi, H.

    1985-06-01

    A theoretical and an experimental study were developed in order to evaluate the parameters controlling the aerosol collection efficiency of a granular bed, i.e. all the chief collection mechanisms and the effect of acoustic waves on this efficiency. The action of acoustic waves of appropriate intensity and frequency increased the efficiency of the granular bed significantly for all aerosol sizes including those corresponding to the minimum efficiency. The theoretical prediction was verified by an experimental apparatus using a granular bed of glass of 2 mm diameter. Furthermore, our experimental results demonstrated the existence of a threshold in the acoustic intensity above which the collection efficiency of the granular bed increased rapidly. We also demonstrated a semi-empirical law relating acoustic capture efficiency of a spherical collector to frequency and acoustic intensity [fr

  7. NMR studies of granular media and two-phase flow in porous media

    Science.gov (United States)

    Yang, Xiaoyu

    This dissertation describes two experimental studies of a vibrofluidized granular medium and a preliminary study of two-phase fluid flow in a porous medium using Nuclear Magnetic Resonance (NMR). The first study of granular medium is to test a scaling law of the rise in center of mass in a three-dimensional vibrofluidized granular system. Our granular system consisted of mustard seeds vibrated vertically at 40 Hz from 0g to 14g. We used Magnetic Resonance Imaging (MRI) to measure density profile in vibrated direction. We observed that the rise in center of mass scaled as nu 0alpha/Nlbeta with alpha = 1.0 +/- 0.2 and beta = 0.5 +/- 0.1, where nu 0 is the vibration velocity and Nl is the number of layers of grains in the container. A simple theory was proposed to explain the scaling exponents. In the second study we measured both density and velocity information in the same setup of the first study. Pulsed Field Gradient (PFG)-NMR combined with MRI was used to do this measurement. The granular system was fully fluidized at 14.85g 50 Hz with Nl ≤ 4. The velocity distributions at horizontal and vertical direction at different height were measured. The distributions were nearly-Gaussian far from sample bottom and non-Gaussian near sample bottom. Granular temperature profiles were calculated from the velocity distributions. The density and temperature profile were fit to a hydrodynamic theory. The theory agreed with experiments very well. A temperature inversion near top was also observed and explained by additional transport coefficient from granular hydrodynamics. The third study was the preliminary density measurement of invading phase profile in a two-phase flow in porous media. The purpose of this study was to test an invasion percolation with gradient (IPG) theory in two-phase flow of porous media. Two phases are dodecane and water doped with CuSO4. The porous medium was packed glass beads. The front tail width sigma and front width of invading phase were

  8. Studies of elasticity, sound propagation and attenuation of acoustic modes in granular media: final report

    Energy Technology Data Exchange (ETDEWEB)

    Makse, Hernan A. [City College of New York, NY (United States). Levich Inst., Dept. of Physcis; Johnson, David L. [Schlumberger-Doll Research, Cambridge, MA (United States)

    2014-09-03

    This is the final report describing the results of DOE Grant # DE-FG02-03ER15458 with original termination date of April 31, 2013, which has been extended to April 31, 2014. The goal of this project is to develop a theoretical and experimental understanding of sound propagation, elasticity and dissipation in granular materials. The topic is relevant for the efficient production of hydrocarbon and for identifying and characterizing the underground formation for storage of either CO2 or nuclear waste material. Furthermore, understanding the basic properties of acoustic propagation in granular media is of importance not only to the energy industry, but also to the pharmaceutical, chemical and agricultural industries. We employ a set of experimental, theoretical and computational tools to develop a study of acoustics and dissipation in granular media. These include the concept effective mass of granular media, normal modes analysis, statistical mechanics frameworks and numerical simulations based on Discrete Element Methods. Effective mass measurements allow us to study the mechanisms of the elastic response and attenuation of acoustic modes in granular media. We perform experiments and simulations under varying conditions, including humidity and vacuum, and different interparticle force-laws to develop a fundamental understanding of the mechanisms of damping and acoustic propagation in granular media. A theoretical statistical approach studies the necessary phase space of configurations in pressure, volume fraction to classify granular materials.

  9. Transport of Fluorescently Labeled Hydroxyapatite Nanoparticles in Saturated Granular Media at Environmentally Relevant Concentrations of Surfactants

    Science.gov (United States)

    Little is known about the mobility of engineered nanoparticles (ENPs) in granular media at environmentally relevant concentration of surfactant, which represents a critical knowledge gap in employing ENPs for in-situ remediation of contaminated groundwater. In this study, transpo...

  10. Modelação da perda de carga na filtração direta ascendente em meio granular de areia grossa e pedregulho Modeling of the head loss in up flow coarse sand and gravel direct filtration

    Directory of Open Access Journals (Sweden)

    Alexandre Botari

    2009-06-01

    Full Text Available Compreender e quantificar os mecanismos relacionados à perda de carga e à remoção de partículas em um meio filtrante granular é de importância fundamental para o estudo do processo da filtração. Este trabalho apresenta o desenvolvimento dos modelos de perda de carga na filtração em meios porosos e a proposição da modelação matemática semiempírica da perda de carga para meios filtrantes limpos e do desenvolvimento do perfil de perda de carga ao longo do tempo de filtração a partir da equação de Ergun. Objetivou-se a determinação dos valores das constantes da equação de Ergun para meio granular de areia grossa e pedregulho. Alguns exemplos de aplicação dessa modelação matemática são também apresentados e discutidos pelos autores com base em dados experimentais obtidos em uma estação piloto de dupla filtração.To understand and to quantify the head loss due to the particles removal in a porous medium has primary importance to filtration process study. This paper presents the development of the models of head loss used in the filtration in porous media and proposes a mathematical semi-empiric model for head loss in clean beds and head loss increasing profile during the filtration run length, by means of the Ergun equation. The goal was the determination of Ergun’s equation coefficients for granular material constituted of coarse sand and gravel. Examples of application of these mathematical modeling are also presented and discussed by the authors based on experimental data obtained in a double filtration pilot plant.

  11. An innovative treatment concept for future drinking water production : Fluidized ion exchange – ultrafiltration – nanofiltration – granular activated carbon filtration

    NARCIS (Netherlands)

    Li, S.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Van Dijk, J.C.

    2009-01-01

    A new treatment concept for drinking water production from surface water has been investigated on a pilot scale. The treatment concept consists of fluidized ion exchange (FIEX), ultrafiltration (UF), nanofiltration (NF), and granular activated carbon filtration (GAC). The FIEX process removed

  12. Radon removal from different types of groundwater applying granular activated carbon filtration

    International Nuclear Information System (INIS)

    Turtiainen, T.; Salonen, L.; Myllymaeki, P.

    2000-01-01

    Granular activated carbon (CAC) filters were installed in 12 private homes or vacation homes for removing unacceptably high concentrations of radon from household water. Radon removal efficiency was nearly 100% in most locations, although different water types were encountered. Other radionuclides such as uranium, radium, lead and polonium were removed less efficiently. Treated water quality remained good and no significant external radiation dose was caused to the residents. (author)

  13. Removal of iron and manganese using granular activated carbon and zeolite in artificial barrier of riverbank filtration

    Science.gov (United States)

    Ismail, Abustan; Harmuni, Halim; Mohd, Remy Rozainy M. A. Z.

    2017-04-01

    Iron and Manganese was examined from riverbank filtration (RBF) and river water in Sungai Kerian, Lubok Buntar, Serdang Kedah. Water from the RBF was influenced by geochemical and hydro chemical processes in the aquifer that made concentrations of iron (Fe), and manganese (Mn) high, and exceeded the standard values set by the Malaysia Ministry of Health. Therefore, in order to overcome the problem, the artificial barrier was proposed to improve the performance of the RBF. In this study, the capability and performance of granular activated carbon, zeolite and sand were investigated in this research. The effects of dosage, shaking speed, pH and contact time on removal of iron and manganese were studied to determine the best performance. For the removal of iron using granular activated carbon (GAC) and zeolite, the optimum contact time was at 2 hours with 200rpm shaking speed with 5g and 10g at pH 5 with percentage removal of iron was 87.81% and 83.20% respectively. The removal of manganese and zeolite arose sharply in 75 minutes with 90.21% removal, with 100rpm shaking speed. The GAC gave the best performance with 99.39% removal of manganese. The highest removal of manganese was achieved when the adsorbent dosage increased to 10g with shaking speed of 200rpm.

  14. Dynamics of electrostatically driven granular media: Effects of humidity

    International Nuclear Information System (INIS)

    Howell, D. W.; Aronson, Igor S.; Crabtree, G. W.

    2001-01-01

    We performed experimental studies of the effect of humidity on the dynamics of electrostatically driven granular materials. Both conducting and dielectric particles undergo a phase transition from an immobile state (granular solid) to a fluidized state (granular gas) with increasing applied field. Spontaneous precipitation of solid clusters from the gas phase occurs as the external driving is decreased. The clustering dynamics in conducting particles is primarily controlled by screening of the electric field but is aided by cohesion due to humidity. It is shown that humidity effects dominate the clustering process with dielectric particles

  15. Micro origins for macro behavior in granular media

    NARCIS (Netherlands)

    Zhao, J.; Jiang, M.; Soga, K.; Luding, Stefan

    2016-01-01

    We report the latest advances in understanding, characterization and modeling of key micro mechanisms and origins underpinning the interesting and complex macroscopic behavior of granular matter. Included in this Topical Collection are novel theories, innovative experimental tools and new numerical

  16. Mechanical Behavior of Granular/Particulate Media Reinforced with Fibers

    National Research Council Canada - National Science Library

    Michalowski, Radoslw

    1999-01-01

    ... out. This investigation was built on the results of a previous study. Fiber-reinforced granular material was considered as a composite, and a mathematical homogenization scheme was used to arrive at its macroscopic properties...

  17. Measurement of Biocolloid Collision Efficiencies for Granular Activated Carbon by Use of a Two-Layer Filtration Model

    Science.gov (United States)

    Paramonova, Ekaterina; Zerfoss, Erica L.; Logan, Bruce E.

    2006-01-01

    Point-of-use filters containing granular activated carbon (GAC) are an effective method for removing certain chemicals from water, but their ability to remove bacteria and viruses has been relatively untested. Collision efficiencies (α) were determined using clean-bed filtration theory for two bacteria (Raoutella terrigena 33257 and Escherichia coli 25922), a bacteriophage (MS2), and latex microspheres for four GAC samples. These GAC samples had particle size distributions that were bimodal, but only a single particle diameter can be used in the filtration equation. Therefore, consistent with previous reports, we used a particle diameter based on the smallest diameter of the particles (derived from the projected areas of 10% of the smallest particles). The bacterial collision efficiencies calculated using the filtration model were high (0.8 ≤ α ≤ 4.9), indicating that GAC was an effective capture material. Collision efficiencies greater than unity reflect an underestimation of the collision frequency, likely as a result of particle roughness and wide GAC size distributions. The collision efficiencies for microspheres (0.7 ≤ α ≤ 3.5) were similar to those obtained for bacteria, suggesting that the microspheres were a reasonable surrogate for the bacteria. The bacteriophage collision efficiencies ranged from ≥0.2 to ≤0.4. The predicted levels of removal for 1-cm-thick carbon beds ranged from 0.8 to 3 log for the bacteria and from 0.3 to 1.0 log for the phage. These tests demonstrated that GAC can be an effective material for removal of bacteria and phage and that GAC particle size is a more important factor than relative stickiness for effective particle removal. PMID:16885264

  18. Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications

    Directory of Open Access Journals (Sweden)

    Jonas Matulevicius

    2014-01-01

    Full Text Available Electrospun polyamide 6 (PA 6 and polyamide 6/6 (PA 6/6 nanofibers were produced in order to investigate their experimental characteristics with the goal of obtaining filtration relevant fiber media. The experimental design model of each PA nanofibers contained the following variables: polymer concentration, ratio of solvents, nanofiber media collection time, tip-to-collector distance, and the deposition voltage. The average diameter of the fibers, their morphology, basis weight, thickness, and resulting media solidity were investigated. Effects of each variable on the essential characteristics of PA 6/6 and PA 6 nanofiber media were studied. The comparative analysis of the obtained PA 6/6 and PA 6 nanofiber characteristics revealed that PA 6/6 had higher potential to be used in filtration applications. Based on the experimental results, the graphical representation—response surfaces—for obtaining nanofiber media with the desirable fiber diameter and basis weight characteristics were derived. Based on the modelling results the nanofiber filter media (mats were fabricated. Filtration results revealed that nanofiber filter media electrospun from PA6/6 8% (w/vol solutions with the smallest fiber diameters (62–66 nm had the highest filtration efficiency (PA6/6_30 = 84.9–90.9% and the highest quality factor (PA6/6_10 = 0.0486–0.0749 Pa−1.

  19. Particle clogging in porous media. Filtration of a smectite solution

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Tobias (Chalmers University of Technology, Goeteborg (Sweden))

    2010-01-15

    The goal of this project is to find out if it is possible for bentonite clay to self heal during leaching with deionized water. The investigation has focused on the formation of a filter cake made of accessory material from MX 80 and the separation of solid material when a smectite solution (1%) is pushed through the cake using a pressure difference of 5 bar. It was also in the scope of this project to design and build the necessary equipment for these experiments. In the literature review it was not found any example that the phenomenon of clogging has been used as a self-healing method previously. It was rather separated also between the clogging of a filter cake (deep bed filtration or cake filtration) and the filtration of colloidal particles. Probably because the latter are in such low concentrations in natural systems and the focus have mainly been in the transport properties of colloids within a filter cake or deep bed filter. An experimental equipment was designed and built. It consists of seven filtration cells that could operate in parallel. All of them are connected to the same source of pressure to ensure equal conditions. A system was also prepared to prevent air from dissolving in the solution because it could create an unwanted expansion in the filter cake due to lower solubility at lower pressure. The experiment showed good separation of smectite particles from the solution when it passed through the filter cake. In all tested cases, the separation was almost complete after long enough time, indicating that the cake has small enough pores to act as a geometrical hinder for the small particles. Comparison between the materials prepared at Chalmers University of Technology and at Clay Technology showed a very good agreement indicating similar properties of the produced smectite

  20. Particle clogging in porous media. Filtration of a smectite solution

    International Nuclear Information System (INIS)

    Richards, Tobias

    2010-01-01

    The goal of this project is to find out if it is possible for bentonite clay to self heal during leaching with deionized water. The investigation has focused on the formation of a filter cake made of accessory material from MX 80 and the separation of solid material when a smectite solution (1%) is pushed through the cake using a pressure difference of 5 bar. It was also in the scope of this project to design and build the necessary equipment for these experiments. In the literature review it was not found any example that the phenomenon of clogging has been used as a self-healing method previously. It was rather separated also between the clogging of a filter cake (deep bed filtration or cake filtration) and the filtration of colloidal particles. Probably because the latter are in such low concentrations in natural systems and the focus have mainly been in the transport properties of colloids within a filter cake or deep bed filter. An experimental equipment was designed and built. It consists of seven filtration cells that could operate in parallel. All of them are connected to the same source of pressure to ensure equal conditions. A system was also prepared to prevent air from dissolving in the solution because it could create an unwanted expansion in the filter cake due to lower solubility at lower pressure. The experiment showed good separation of smectite particles from the solution when it passed through the filter cake. In all tested cases, the separation was almost complete after long enough time, indicating that the cake has small enough pores to act as a geometrical hinder for the small particles. Comparison between the materials prepared at Chalmers University of Technology and at Clay Technology showed a very good agreement indicating similar properties of the produced smectite

  1. Rapid penetration into granular media visualizing the fundamental physics of rapid earth penetration

    CERN Document Server

    Iskander, Magued

    2015-01-01

    Rapid Penetration into Granular Media: Visualizing the Fundamental Physics of Rapid Earth Penetration introduces readers to the variety of methods and techniques used to visualize, observe, and model the rapid penetration of natural and man-made projectiles into earth materials. It provides seasoned practitioners with a standard reference that showcases the topic's most recent developments in research and application. The text compiles the findings of new research developments on the subject, outlines the fundamental physics of rapid penetration into granular media, and assembles a com

  2. Frustration and disorder in granular media and tectonic blocks: implications for earthquake complexity

    Directory of Open Access Journals (Sweden)

    A. Sornette

    1994-01-01

    Full Text Available We present exploratory analogies and speculations on the mechanisms underlying the organization of faulting and earthquake in the earth crust. The mechanical properties of the brittle lithosphere at scales of the order or larger than a few kilometers are proposed to be analogous to those of non-cohesive granular media, since both systems present stress amplitudes controlled by gravity, and shear band (faulting localization is determined by a type of friction Mohr-Coulomb rupture criterion. here, we explore the implications of this correspondence with respect to the origin of tectonic and earthquake complexity, on the basis of the existing experimental data on granular media available in the mechanical literature. An important observation is that motions and deformations of non-cohesive granular media are characterized by important fluctuations both in time (sudden breaks, avalanches, which are analogous to earthquakes and space (strain localizations, yield surfaces forming sometimes complex patterns. This is in apparent contradiction with the conventional wisdom in mechanics, based on the standard tendency to homogenize, which has led to dismiss fluctuations as experimental noise. On the basis of a second analogy with spinglasses and neural networks, based on the existence of block and grain packing disorder and block rotation "frustration", we suggest that these fluctuations observed both at large scales and at the block scale constitute an intrinsic signature of the mechanics of granular media. The space-time complexity observed in faulting and earthquake phenomenology is thus proposed to result form the special properties of the mechanics of granular media, dominated by the "frustration" of the kinematic deformations of its constitutive blocks.

  3. Mechanisms Involved in the Removal of Heavy Metals from Stormwater via Lignocellulosic Filtration Media

    Science.gov (United States)

    2018-01-01

    This report aims to supplement our previous report (Yonge et al. 2016; WA-RD 816.3) that assessed copper and zinc adsorption to lignocellulosic filtration media using laboratory tests and field-scale column tests for urban stormwater remediation. The...

  4. Small Water System Alternatives: Media and Membrane Filtration Alternatives for Small Communities and Households

    Science.gov (United States)

    This webinar presentation will highlight research case studies on innovative drinking water treatment alternatives for small community water systems. Emphasis will be placed on media and membrane filtration technologies capable of meeting the requirements of the Long-Term 2 Enha...

  5. On the rheology of dilative granular media: Bridging solid- and fluid-like behavior

    Science.gov (United States)

    Andrade, José E.; Chen, Qiushi; Le, Phong H.; Avila, Carlos F.; Matthew Evans, T.

    2012-06-01

    A new rate-dependent plasticity model for dilative granular media is presented, aiming to bridge the seemingly disparate solid- and fluid-like behavioral regimes. Up to date, solid-like behavior is typically tackled with rate-independent plasticity models emanating from Mohr-Coulomb and Critical State plasticity theory. On the other hand, the fluid-like behavior of granular media is typically treated using constitutive theories amenable to viscous flow, e.g., Bingham fluid. In our proposed model, the material strength is composed of a dilation part and a rate-dependent residual strength. The dilatancy strength plays a key role during solid-like behavior but vanishes in the fluid-like regime. The residual strength, which in a classical plasticity model is considered constant and rate-independent, is postulated to evolve with strain rate. The main appeal of the model is its simplicity and its ability to reconcile the classic plasticity and rheology camps. The applicability and capability of the model are demonstrated by numerical simulation of granular flow problems, as well as a classical shear banding problem, where the performance of the continuum model is compared to discrete particle simulations and physical experiment. These results shed much-needed light onto the mechanics and physics of granular media at various shear rates.

  6. Granular media in the context of small bodies

    Science.gov (United States)

    Tancredi, G.

    2014-07-01

    Granular materials of different particle sizes are present on the surface and the interior of several atmosphereless Solar System bodies. The presence of very fine particles on the surface of the Moon, the so-called regolith, was confirmed by the Apollo astronauts. From the polarimetric observations and phase angle curves, it is possible to indirectly infer the presence of fine particles on the surfaces of asteroids and planetary satellites. More recently, the visit of spacecraft to several asteroids and comets has provided us with close pictures of the surface, where particles of a wide size range from cm to hundreds of meters have been directly observed. The presence of even finer particles on the visited bodies can also be inferred from image analysis. Solar System bodies smaller than a few hundred km may have a variety of internal structures: monolithic single bodies, objects with internal fractures, rubble piles maintained as a single object by self-gravity, etc. After the visit of the small asteroid Itokawa, it has been speculated that ''some small asteroids appear to be clumps of gravel glued by a very weak gravity field'' (Asphaug 2007). We still do not know the internal structure of these rubble piles and the size distribution of the interior constituents, but these clumps could have several million meter-sized boulders inside. There are several pieces of evidence that many asteroids are agglomerates of small components, like: - Rotation periods for small asteroids - Tidal disruption of asteroids and comets when they enter the Roche's limit of a massive object - The existence of crater chains like the ones observed in Ganymede - Low density estimates (laboratory experiments on granular material trying to reproduce the conditions in space: vacuum and low gravity. We describe the experimental set-ups and some results of these experiments. Some open problems and future line of work in this field will be presented.

  7. Water flow exchange characteristics in coarse granular filter media

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Pugliese, Lorenzo; Poulsen, Tjalfe

    2013-01-01

    Elution of inhibitory metabolites is a key parameter controlling the efficiency of air cleaning bio- and biotrickling filters. To the authors knowledge no studies have yet considered the relationship between specific surface area related elution velocity and physical media characteristics, which...... in this study are performed at a concurrent airflow of 0.3 m s−1, water irrigation rates of 1–21 cm h−1 in materials with particle diameters ranging from 2 to 14 mm to represent media and operation conditions relevant for low flow biotrickling filter design. Specific surface area related elution velocity...... distribution was closely related to the filter water content, water irrigation rate, media specific surface area and particle size distribution. A predictive model linking the specific surface area related elution velocity distribution to irrigation rate, specific surface area and particle size distribution...

  8. Gas Dispersion in Granular Porous Media under Air-Dry and Wet Conditions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Hamamoto, S; Kawamoto, K

    2012-01-01

    Subsurface gaseous-phase transport is governed by three gas transport parameters: the air permeability coefficient (ka), gas diffusion coefficient (DP), and gas dispersion coefficient (DH). Among these, DH is the least understood due to hitherto limited research into the relationship between gas...... dispersion and soil physical characteristics. In this study, a series of advection–dispersion experiments was performed on granular porous media to identify the effects of soil column dimensions (length and diameter), particle size and shape, dry bulk density, and moisture content on the magnitude of gas...... dispersion. Glass beads and various sands of different shapes (angular and rounded) with mean particle diameters (d50) ranging from 0.19 to 1.51 mm at both air-dry and variable moisture contents were used as granular porous media. Gas dispersion coefficients and gas dispersivities (a = DH/v, where v...

  9. Phosphorus removal from UASB reactor effluent by reactive media filtration.

    Science.gov (United States)

    Rodríguez-Gómez, Raúl; Renman, Gunno

    2017-08-01

    The phosphorus (P) and BOD7 removal performance of an upflow packed bed reactor (PBR) filled with two reactive filter media was studied over 50 weeks. The lower one-fifth of the reactor was filled with calcium-silicate-hydrate (Sorbulite®) and the upper four-fifth with calcium-silicate (Polonite®). A laboratory-scale upflow anaerobic sludge bed reactor (UASB) delivered wastewater to the PBR. A model was developed to describe the gradient in P concentration change in the reactor, based on reaction kinetics. The reaction terms were assumed to follow the Langmuir isotherm, based on the results obtained in a batch test. First, a comparison was made between experimental and simulated results. The capability of the model to forecast P removal capacity was then tested for three hypothetical cases: (i) reactor filled with Sorbulite and Polonite, (ii) reactor filled with only Sorbulite, and (iii) reactor filled with only Polonite. Finally, a sensitivity analysis was performed for the main parameters in the model. The average removal of P and BOD7 from the UASB effluent was 98% and 90%, respectively. The starting pH of the dual-medium effluent was 12.2 and decreased gradually over time to 11.1. The simulation both overestimated and underestimated mean measured P removal but was within the range of maximum and minimum measured values. The hypothetical cases revealed that most P was removed by Polonite due to calcium phosphate precipitation. The removal capacity of the two filter materials and their layer height in the reactor were the most sensitive parameters in the simulation.

  10. Development of an Indexing Media Filtration System for Long Duration Space Missions

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    The effective maintenance of air quality aboard spacecraft cabins will be vital to future human exploration missions. A key component will be the air cleaning filtration system which will need to remove a broad size range of particles derived from multiple biological and material sources. In addition, during surface missions any extraterrestrial planetary dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat will also need to be managed by the filtration system inside the pressurized habitat compartments. An indexing media filter system is being developed to meet the demand for long-duration missions that will result in dramatic increases in filter service life and loading capacity, and will require minimal crew involvement. The filtration system consists of three stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular cartridge configuration. Each stage will target a specific range of particle sizes that optimize the filtration and regeneration performance of the system. An 1/8th scale and full-scale prototype of the filter system have been fabricated and have been tested in the laboratory and reduced gravity environments that simulate conditions on spacecrafts, landers and habitats. Results from recent laboratory and reduce-gravity flight tests data will be presented. The features of the new filter system may also benefit other closed systems, such as submarines, and remote location terrestrial installations where servicing and replacement of filter units is not practical.

  11. Measurement of magnetic property of FePt granular media at near Curie temperature

    International Nuclear Information System (INIS)

    Yang, H.Z.; Chen, Y.J.; Leong, S.H.; An, C.W.; Ye, K.D.; Hu, J.F.

    2017-01-01

    The characterization of the magnetic switching behavior of heat assisted magnetic recording (HAMR) media at near Curie temperature (T_c) is important for high density recording. In this study, we measured the magnetic property of FePt granular media (with room temperature coercivity ~25 kOe) at near T_c with a home built HAMR testing instrument. The local area of HAMR media is heated to near T_c by a flat-top optical heating beam. The magnetic property in the heated area was in-situ measured by a magneto-optic Kerr effect (MOKE) testing beam. The switching field distribution (SFD) and coercive field (H_c) of the FePt granular media and their dependence on the optical heating power at near T_c were studied. We measured the DC demagnetization (DCD) signal with pulsed laser heating at different optical powers. We also measured the T_c distribution of the media by measuring the AC magnetic signal as a function of optical heating power. In a summary, we studied the SFD, H_c of the HAMR media at near T_c in a static manner. The present methodology will facilitate the HAMR media testing. - Highlights: • A flat-top optical beam homogeneously heats up HAMR media to near T_c. • When H_c of media drops to 5 kOe with optical heating, SFD is measured to be 0.6. • H_c, SFD, M_s of HAMR media at near T_c are measured with the methodology.

  12. Measurement of magnetic property of FePt granular media at near Curie temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.Z., E-mail: YANG_Hongzhi@dsi.a-star.edu.sg; Chen, Y.J.; Leong, S.H.; An, C.W.; Ye, K.D.; Hu, J.F.

    2017-02-01

    The characterization of the magnetic switching behavior of heat assisted magnetic recording (HAMR) media at near Curie temperature (T{sub c}) is important for high density recording. In this study, we measured the magnetic property of FePt granular media (with room temperature coercivity ~25 kOe) at near T{sub c} with a home built HAMR testing instrument. The local area of HAMR media is heated to near T{sub c} by a flat-top optical heating beam. The magnetic property in the heated area was in-situ measured by a magneto-optic Kerr effect (MOKE) testing beam. The switching field distribution (SFD) and coercive field (H{sub c}) of the FePt granular media and their dependence on the optical heating power at near T{sub c} were studied. We measured the DC demagnetization (DCD) signal with pulsed laser heating at different optical powers. We also measured the T{sub c} distribution of the media by measuring the AC magnetic signal as a function of optical heating power. In a summary, we studied the SFD, H{sub c} of the HAMR media at near T{sub c} in a static manner. The present methodology will facilitate the HAMR media testing. - Highlights: • A flat-top optical beam homogeneously heats up HAMR media to near T{sub c}. • When H{sub c} of media drops to 5 kOe with optical heating, SFD is measured to be 0.6. • H{sub c}, SFD, M{sub s} of HAMR media at near T{sub c} are measured with the methodology.

  13. Deformation of a 3D granular media caused by fluid invasion

    Science.gov (United States)

    Dalbe, M. J.; Juanes, R.

    2016-12-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Several experimental and computational studies have shown that the competition between capillary and friction forces can lead to different regimes of deformation, from frictional fingering to hydro-capillary fracturing (Sandnes et al., Nat. Comm. 2011, Holtzman et al., PRL 2012). Most of these investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a fully 3D granular bed and measure the fluid pressure while controlling the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We extract the deformation the whole granular bulk as well as at the particle level. Our results show the existence of different regimes of invasion patterns depending on key dimensionless groups that control the system.

  14. Preparation and recording characteristics of granular-type perpendicular magnetic recording media with thin intermediate layer

    International Nuclear Information System (INIS)

    Shintaku, K.; Kiya, T.

    2008-01-01

    Granular-type media with thin Ru intermediate layer were prepared on a highly oriented high-B s FeCo soft underlayer (SUL). A CoPt-TiO 2 recording layer on a Ru intermediate layer of only 2 nm had high-crystal orientation, high H c of 6.5 kOe, and a high squareness ratio (SQ) of 0.99. The magnetic property of the SUL was also good. The recording performance was measured for the media with different Ru intermediate thicknesses by using a single-pole-type (SPT) head. The media had large reproduced output even for the Ru intermediate layer thickness of 2 nm

  15. Preparation and recording characteristics of granular-type perpendicular magnetic recording media with thin intermediate layer

    Energy Technology Data Exchange (ETDEWEB)

    Shintaku, K. [Akita Research Institute of Advanced Technology, Akita Prefectural R and D Center, 4-21 Sanuki, Araya, Akita 010-1623 (Japan)], E-mail: shintaku@ait.pref.akita.jp; Kiya, T. [Akita Research Institute of Advanced Technology, Akita Prefectural R and D Center, 4-21 Sanuki, Araya, Akita 010-1623 (Japan)

    2008-11-15

    Granular-type media with thin Ru intermediate layer were prepared on a highly oriented high-B{sub s} FeCo soft underlayer (SUL). A CoPt-TiO{sub 2} recording layer on a Ru intermediate layer of only 2 nm had high-crystal orientation, high H{sub c} of 6.5 kOe, and a high squareness ratio (SQ) of 0.99. The magnetic property of the SUL was also good. The recording performance was measured for the media with different Ru intermediate thicknesses by using a single-pole-type (SPT) head. The media had large reproduced output even for the Ru intermediate layer thickness of 2 nm.

  16. Effect of deformation on the thermal conductivity of granular porous media with rough grain surface

    Science.gov (United States)

    Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad

    2017-08-01

    Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.

  17. Nutritional effects of culture media on mycoplasma cell size and removal by filtration.

    Science.gov (United States)

    Folmsbee, Martha; Howard, Glenn; McAlister, Morven

    2010-03-01

    Careful media filtration prior to use is an important part of a mycoplasma contamination prevention program. This study was conducted to increase our knowledge of factors that influence efficient filtration of mycoplasma. The cell size of Acholeplasma laidlawii was measured after culture in various nutritional conditions using scanning electron microscopy. The maximum cell size changed, but the minimum cell size remained virtually unchanged and all tested nutritional conditions resulted in a population of cells smaller than 0.2 microm. Culture in Tryptic Soy Broth (TSB) resulted in an apparent increase in the percentage of very small cells which was not reflected in increased penetration of non-retentive 0.2 microm rated filters. A. laidlawii cultured in selected media formulations was used to challenge 0.2 microm rated filters using mycoplasma broth base as the carrier fluid. We used 0.2 microm rated filters as an analytical tool because A. laidlawii is known to penetrate 0.2 microm filters and the degrees of penetration can be compared. Culture of A. laidlawii in TSB resulted in cells that did not penetrate 0.2 microm rated filters to the same degree as cells cultured in other media such as mycoplasma broth or in TSB supplemented with 10% horse serum. (c) 2009 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  18. Effects of acoustic waves on stick-slip in granular media and implications for earthquakes

    Science.gov (United States)

    Johnson, P.A.; Savage, H.; Knuth, M.; Gomberg, J.; Marone, Chris

    2008-01-01

    It remains unknown how the small strains induced by seismic waves can trigger earthquakes at large distances, in some cases thousands of kilometres from the triggering earthquake, with failure often occurring long after the waves have passed. Earthquake nucleation is usually observed to take place at depths of 10-20 km, and so static overburden should be large enough to inhibit triggering by seismic-wave stress perturbations. To understand the physics of dynamic triggering better, as well as the influence of dynamic stressing on earthquake recurrence, we have conducted laboratory studies of stick-slip in granular media with and without applied acoustic vibration. Glass beads were used to simulate granular fault zone material, sheared under constant normal stress, and subject to transient or continuous perturbation by acoustic waves. Here we show that small-magnitude failure events, corresponding to triggered aftershocks, occur when applied sound-wave amplitudes exceed several microstrain. These events are frequently delayed or occur as part of a cascade of small events. Vibrations also cause large slip events to be disrupted in time relative to those without wave perturbation. The effects are observed for many large-event cycles after vibrations cease, indicating a strain memory in the granular material. Dynamic stressing of tectonic faults may play a similar role in determining the complexity of earthquake recurrence. ??2007 Nature Publishing Group.

  19. Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration.

    Science.gov (United States)

    Ali, Asmaa; Ahmed, Abdelkader; Gad, Ali

    2017-01-01

    This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb 2+ , Cu 2+ , and Cd 2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.

  20. Air filtration media from electrospun waste high-impact polystyrene fiber membrane

    Science.gov (United States)

    Zulfi, Akmal; Miftahul Munir, Muhammad; Hapidin, Dian Ahmad; Rajak, Abdul; Edikresnha, Dhewa; Iskandar, Ferry; Khairurrijal, Khairurrijal

    2018-03-01

    Nanofiber membranes were synthesized from waste high-impact polystyrene (HIPS) using electrospinning method and then applied as air filtration media. The waste HIPS precursor solution with the concentration of 20 wt.% was prepared by dissolving waste HIPS into the mixture of d-limonene and DMF solvents. Beaded or fine nanofibers could be achieved by adjusting the ratio of solvents mixture (d-limonene and DMF). Using the ratios of solvents (d-limonene: DMF) of 3:1, 1:1, and 1:3, it was obtained beaded HIPS nanofibers with the average diameter of 272 nm, beaded HIPS nanofibers with the average diameter of 937, and fine HIPS nanofibers with the average diameter of 621 nm, respectively. From the FTIR spectral analysis, it was found that the FTIR peaks of the HIPS nanofiber membranes are the same as those of the cleaned waste HIPS and there are no FTIR peaks of DMF and d-limonene solvents. These findings implied that the electrospinning process allows the recycling of waste HIPS into HIPS nanofibers without any trapped solvent phases or apparent degradation of the original material. From the contact angle measurement, it was confirmed that the HIPS nanofiber membranes are hydrophobic and the presence of the beads in the HIPS nanofiber membranes varies their contact angles. From the air-filtration test, it was shown that the fiber morphology (beaded or fine nanofibers) considerably affects the filtration performance of the membranes. The presence of beads increased the distance between the fibers so that the pressure drop decreased. Moreover, the basis weight of the membrane greatly affected the filtration efficiency. The HIPS nanofiber membrane with the basis weight of 12.22 g m‑2 had the efficiency greater than 99.999%, which was equivalent to that of the HEPA filter.

  1. Network flow model of force transmission in unbonded and bonded granular media.

    Science.gov (United States)

    Tordesillas, Antoinette; Tobin, Steven T; Cil, Mehmet; Alshibli, Khalid; Behringer, Robert P

    2015-06-01

    An established aspect of force transmission in quasistatic deformation of granular media is the existence of a dual network of strongly versus weakly loaded particles. Despite significant interest, the regulation of strong and weak forces through the contact network remains poorly understood. We examine this aspect of force transmission using data on microstructural fabric from: (I) three-dimensional discrete element models of grain agglomerates of bonded subspheres constructed from in situ synchrotron microtomography images of silica sand grains under unconfined compression and (II) two-dimensional assemblies of unbonded photoelastic circular disks submitted to biaxial compression under constant volume. We model force transmission as a network flow and solve the maximum flow-minimum cost (MFMC) problem, the solution to which yields a percolating subnetwork of contacts that transmits the "maximum flow" (i.e., the highest units of force) at "least cost" (i.e., the dissipated energy from such transmission). We find the MFMC describes a two-tier hierarchical architecture. At the local level, it encapsulates intraconnections between particles in individual force chains and in their conjoined 3-cycles, with the most common configuration having at least one force chain contact experiencing frustrated rotation. At the global level, the MFMC encapsulates interconnections between force chains. The MFMC can be used to predict most of the force chain particles without need for any information on contact forces, thereby suggesting the network flow framework may have potential broad utility in the modeling of force transmission in unbonded and bonded granular media.

  2. Microspectroscopic investigation of the membrane clogging during the sterile filtration of the growth media for mammalian cell culture.

    Science.gov (United States)

    Cao, Xiaolin; Loussaert, James A; Wen, Zai-qing

    2016-02-05

    Growth media for mammalian cell culture are very complex mixtures of several dozens of ingredients, and thus the preparation of qualified media is critical to viable cell density and final product titers. For liquid media prepared from powdered ingredients, sterile filtration is required prior to use to safeguard the cell culture process. Recently one batch of our prepared media failed to pass through the sterile filtration due to the membrane clogging. In this study, we report the root cause analysis of the failed sterile filtration based on the investigations of both the fouling media and the clogged membranes with multiple microspectroscopic techniques. Cellular particles or fragments were identified in the fouling media and on the surfaces of the clogged membranes, which were presumably introduced to the media from the bacterial contamination. This study demonstrated that microspectroscopic techniques may be used to rapidly identify both microbial particles and inorganic precipitates in the cell culture media. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Acoustic probing of elastic behavior and damage in weakly cemented granular media

    Science.gov (United States)

    Langlois, V.; Jia, X.

    2014-02-01

    We investigate the elastic behavior and damage of weakly cemented granular media under external load with ultrasound. The cementation controlled experiments are performed by freezing the capillary liquid at the bead contact in a dense glass or polymeric [poly(methyl methacrylate)] bead pack wet by tetradecane of volume fraction ϕ = 0.1%-4%. When the pendular rings are solidified, an abrupt increase by a factor of 2 in the compressional wave velocity is observed. We interpret the data in terms of effective medium models in which the contact stiffnesses are derived by either a bonded contact model [P. J. Digby, J. Appl. Mech. 48, 803 (1981), 10.1115/1.3157738] or a cemented contact model [J. Dvorkin, A. Nur, and H. Yin, Mech. Mater. 18, 351 (1994), 10.1016/0167-6636(94)90044-2]. The former fails to quantitatively account for the results with a soft cement relative to the grain, whereas the latter considering the mechanical properties of the cement does apply. Moreover, we monitor the irreversible behavior of the cemented granular packs under moderate uniaxial loading (cemented materials is accompanied by a compressional wave velocity decrease up to 60%, likely due to the fractures induced at the grain-cement interfaces.

  4. Contrast media and glomerular filtration: dose dependence of clearance for three agents

    International Nuclear Information System (INIS)

    Baeck, S.E.K.; Krutzen, E.; Nilsson-Ehle, P.

    1988-01-01

    Determination of plasma clearance of contrast agents has been advocated as a means to assess glomerular filtration rate. To evaluate the feasibility of different agents for this purpose, we have compared, in healthy volunteers, the dose dependence of plasma clearance for three contrast media (iohexol, a nonionic agent, and iothalamate and metrizoate, which are ionic substances), with special emphasis on the lower dose range (2-20 mL corresponding to 0.9-12.9 g, depending on dose and agent). Iohexol and iothalamate were cleared at constant rates, irrespective of given dose, whereas metrizoate clearance increased significantly at lower doses. In general, the clearances or iothalamate and metrizoate were, respectively, moderately and markedly higher than that of iohexol. The clearance of different doses of metrizoate (2 mL versus a radiographic dose of 40 mL or more) was also compared with the clearance of [ 51 Cr]EDTA in two groups of patients with reduced renal function. When compared with [ 51 Cr]EDTA in patients with renal dysfunction, metrizoate was cleared significantly faster after a 2-mL dose, whereas clearances were identical when the metrizoate dose was 40 mL or more. These findings indicate that tubular secretion plays an active role in the elimination of metrizoate. The pharmacokinetic properties of iohexol, in combination with its low toxicity, make it a suitable agent for determination of glomerular filtration rate in clinical practice

  5. In situ bioremediation: A network model of diffusion and flow in granular porous media

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, S.K.; Nilson, R.H.; Bradshaw, R.W.

    1997-04-01

    In situ bioremediation is a potentially expedient, permanent and cost- effective means of waste site decontamination. However, permeability reductions due to the transport and deposition of native fines or due to excessive microorganism populations may severely inhibit the injection of supplemental oxygen in the contamination zone. To help understand this phenomenon, we have developed a micro-mechanical network model of flow, diffusion and particle transport in granular porous materials. The model differs from most similar models in that the network is defined by particle positions in a numerically-generated particle array. The model is thus widely applicable to computing effective transport properties for both ordered and realistic random porous media. A laboratory-scale apparatus to measure permeability reductions has also been designed, built and tested.

  6. The effect of bed particle size and deposit morphology on the filtration of magnetite through granular graphite beds

    International Nuclear Information System (INIS)

    Barbieri, R.R.; Bercovich, E.J.; Liberman, S.J.

    1980-01-01

    Graphite filters are of great interest for water purification in nuclear power reactors' primary systems due to their possible operation at high temperature. The influence of the bed particle size on the retention of magnetite from aqueous suspensions at room temperature was studied. The filtration coefficient changes from 0.0 to 0.18 as the mean graphite particle diameter decreases from 1.2 to 0. mm. As the retention increases, there is also an increase in the differential pressure across the bed, so both effects must be considered in order to optimize filter's operation. The specific effective volume of the deposit was calculated with the Blake-Kozeny equation and the experimental specific volumes. These are much larger than the specific volume of solid magnetite. From the results, information regarding the morphology of the deposit in the filter is obtained. (M.E.L) [es

  7. An Investigation of Parallel Post-Laminar Flow through Coarse Granular Porous Media with the Wilkins Equation

    Directory of Open Access Journals (Sweden)

    Ashes Banerjee

    2018-02-01

    Full Text Available Behaviour of flow resistance with velocity is still undefined for post-laminar flow through coarse granular media. This can cause considerable errors during flow measurements in situations like rock fill dams, water filters, pumping wells, oil and gas exploration, and so on. Keeping the non-deviating nature of Wilkins coefficients with the hydraulic radius of media in mind, the present study further explores their behaviour to independently varying media size and porosity, subjected to parallel post-laminar flow through granular media. Furthermore, an attempt is made to simulate the post-laminar flow conditions with the help of a Computational Fluid Dynamic (CFD Model in ANSYS FLUENT, since conducting large-scale experiments are often costly and time-consuming. The model output and the experimental results are found to be in good agreement. Percentage deviations between the experimental and numerical results are found to be in the considerable range. Furthermore, the simulation results are statistically validated with the experimental results using the standard ‘Z-test’. The output from the model advocates the importance and applicability of CFD modelling in understanding post-laminar flow through granular media.

  8. Influence of inhomogeneous coercivities on media noise in granular perpendicular media investigated by using magnetic force microscopy

    International Nuclear Information System (INIS)

    Bai, J.; Takahoshi, H.; Ito, H.; Rheem, Y.W.; Saito, H.; Ishio, S.

    2004-01-01

    We investigated the influence of the inhomogeneous coercivities on the media noise in a CoPtCr-SiO 2 granular perpendicular magnetic recording medium via ex situ and in situ magnetic force microscopy (MFM) techniques. The ex situ MFM analyses exhibited that transition zigzags contributed to strong magnetic clusters in noise images, and thus resulted in dominant component of the media noise. According to the in situ MFM measurements, it was suggested that an amount of magnetic grains inside a microscopic area reversed like one magnetic ''particle because of strong inter-grain exchange coupling, and that these microscopic areas showed their local magnetic switching behaviors. A mathematic transformation was used to obtain approximately the magnetization distribution in recording layer. And the individual microscopic areas inside recorded bits were compared quasi-quantitatively with those leading large transition zigzags in magnetization switching behaviors. It was indicated that the inhomogeneous coercivities is one of crucial reasons of the medium noise in the perpendicular magnetic recording

  9. A Comparison of Streaming and Microelectrophoresis Methods for Obtaining the zeta Potential of Granular Porous Media Surfaces.

    Science.gov (United States)

    Johnson

    1999-01-01

    The electrokinetic behavior of granular quartz sand in aqueous solution is investigated by both microelectrophoresis and streaming potential methods. zeta potentials of surfaces composed of granular quartz obtained via streaming potential methods are compared to electrophoretic mobility zeta potential values of colloid-sized quartz fragments. The zeta values generated by these alternate methods are in close agreement over a wide pH range and electrolyte concentrations spanning several orders of magnitude. Streaming measurements performed on chemically heterogeneous mixtures of physically homogeneous sand are shown to obey a simple mixing model based on the surface area-weighted average of the streaming potentials associated with the individual end members. These experimental results support the applicability of the streaming potential method as a means of determining the zeta potential of granular porous media surfaces. Copyright 1999 Academic Press.

  10. Double-layered perpendicular magnetic recording media of granular-type FePt-MgO films

    International Nuclear Information System (INIS)

    Zhang Zhengang; Singh, Amarendra K.; Yin Jinhua; Perumal, A.; Suzuki, Takao

    2005-01-01

    The recording performance of double-layered granular-type FePt-MgO perpendicular magnetic recording media fabricated onto glass discs by sputtering is investigated. The (0 0 1)-textured FePt granular films are obtained by annealing FePt/MgO multilayers. Three different multilayer structures are compared in their magnetic properties and recording SNR performances. To evaluate thermal stability property of these granular-type FePt disks, the time-dependent magnetic force microscope (MFM) signal from the written bits on one of these disks is recorded in the temperature range 25-200 degree sign C. The signal decay at high observation temperature is interpreted based on the temperature dependence of magnetic anisotropy (K u )

  11. Poroelastic measurement schemes resulting in complete data sets for granular and other anisotropic porous media

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2009-11-20

    Poroelastic analysis usually progresses from assumed knowledge of dry or drained porous media to the predicted behavior of fluid-saturated and undrained porous media. Unfortunately, the experimental situation is often incompatible with these assumptions, especially when field data (from hydrological or oil/gas reservoirs) are involved. The present work considers several different experimental scenarios typified by one in which a set of undrained poroelastic (stiffness) constants has been measured using either ultrasound or seismic wave analysis, while some or all of the dry or drained constants are normally unknown. Drained constants for such a poroelastic system can be deduced for isotropic systems from available data if a complete set of undrained compliance data for the principal stresses are available - together with a few other commonly measured quantities such as porosity, fluid bulk modulus, and grain bulk modulus. Similar results are also developed here for anisotropic systems having up to orthotropic symmetry if the system is granular (i.e., composed of solid grains assembled into a solid matrix, either by a cementation process or by applied stress) and the grains are known to be elastically homogeneous. Finally, the analysis is also fully developed for anisotropic systems with nonhomogeneous (more than one mineral type), but still isotropic, grains - as well as for uniform collections of anisotropic grains as long as their axes of symmetry are either perfectly aligned or perfectly random.

  12. An innovative treatment concept for future drinking water production: fluidized ion exchange – ultrafiltration – nanofiltration – granular activated carbon filtration

    Directory of Open Access Journals (Sweden)

    J. C. van Dijk

    2009-08-01

    Full Text Available A new treatment concept for drinking water production from surface water has been investigated on a pilot scale. The treatment concept consists of fluidized ion exchange (FIEX, ultrafiltration (UF, nanofiltration (NF, and granular activated carbon filtration (GAC. The FIEX process removed calcium and other divalent cations; the UF membrane removed particles and micro-organisms; and the NF membrane and GAC removed natural organic matter (NOM and micro-pollutants. This study focused on the prevention of fouling of the UF and scaling of the NF and investigated the overall removal of micro-pollutants by the treatment concept. The results of the experiments showed that in 14 days of continuous operation at a flux of 65 l/h m2 the UF performance was stable with the FIEX pre-treated feed water without the aid of a coagulant. The scaling of the NF was also not observed even at 97% recovery. Different micro-pollutants were spiked in the NF feed water and their concentrations in the effluent of NF and GAC were measured. The combination of NF and GAC removed most of the micro-pollutants successfully, except for the very polar substances with a molecular weight lower than 100 Daltons.

  13. Modeling Manganese Sorption and Surface Oxidation During Filtration

    OpenAIRE

    Bierlein, Kevin Andrew

    2012-01-01

    Soluble manganese (Mn) is a common contaminant in drinking water sources. High levels of Mn can lead to aesthetic water quality problems, necessitating removal of Mn during treatment to minimize consumer complaints. Mn may be removed during granular media filtration by the â natural greensand effect,â in which soluble Mn adsorbs to manganese oxide-coated (MnOx(s)) media and is then oxidized by chlorine, forming more manganese oxide. This research builds on a previous model developed by Mer...

  14. Discharge flow of a granular media from a silo: effect of the packing fraction and of the hopper angle

    Science.gov (United States)

    Benyamine, Mebirika; Aussillous, Pascale; Dalloz-Dubrujeaud, Blanche

    2017-06-01

    Silos are widely used in the industry. While empirical predictions of the flow rate, based on scaling laws, have existed for more than a century (Hagen 1852, translated in [1] - Beverloo et al. [2]), recent advances have be made on the understanding of the control parameters of the flow. In particular, using continuous modeling together with a mu(I) granular rheology seem to be successful in predicting the flow rate for large numbers of beads at the aperture (Staron et al.[3], [4]). Moreover Janda et al.[5] have shown that the packing fraction at the outlet plays an important role when the number of beads at the apeture decreases. Based on these considerations, we have studied experimentally the discharge flow of a granular media from a rectangular silo. We have varied two main parameters: the angle of the hopper, and the bulk packing fraction of the granular material by using bidisperse mixtures. We propose a simple physical model to describe the effect of these parameters, considering a continuous granular media with a dilatancy law at the outlet. This model predicts well the dependance of the flow rate on the hopper angle as well as the dependance of the flow rate on the fine mass fraction of a bidisperse mixture.

  15. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    Science.gov (United States)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  16. Transport of water and ions in partially water-saturated porous media. Part 2. Filtration effects

    Science.gov (United States)

    Revil, A.

    2017-05-01

    A new set of constitutive equations describing the transport of the ions and water through charged porous media and considering the effect of ion filtration is applied to the problem of reverse osmosis and diffusion of a salt. Starting with the constitutive equations derived in Paper 1, I first determine specific formula for the osmotic coefficient and effective diffusion coefficient of a binary symmetric 1:1 salt (such as KCl or NaCl) as a function of a dimensionless number Θ corresponding to the ratio between the cation exchange capacity (CEC) and the salinity. The modeling is first carried with the Donnan model used to describe the concentrations of the charge carriers in the pore water phase. Then a new model is developed in the thin double layer approximation to determine these concentrations. These models provide explicit relationships between the concentration of the ionic species in the pore space and those in a neutral reservoir in local equilibrium with the pore space and the CEC. The case of reverse osmosis and diffusion coefficient are analyzed in details for the case of saturated and partially saturated porous materials. Comparisons are done with experimental data from the literature obtained on bentonite. The model predicts correctly the influence of salinity (including membrane behavior at high salinities), porosity, cation type (K+ versus Na+), and water saturation on the osmotic coefficient. It also correctly predicts the dependence of the diffusion coefficient of the salt with the salinity.

  17. Laser-Doppler acoustic probing of granular media with in-depth property gradient and varying pore pressures

    International Nuclear Information System (INIS)

    Bodet, L.; Dhemaied, A.; Mourgues, R.; Tournat, V.; Rejiba, F.

    2012-01-01

    Non-contacting ultrasonic techniques recently proved to be efficient in the physical modeling of seismic-wave propagation at various application scales, as for instance in the context of geological analogue and seismic modeling. An innovative experimental set-up is proposed here to perform laser-Doppler acoustic probing of unconsolidated granular media with varying pore pressures. The preliminary experiments presented here provide reproducible results and exploitable data, thus validating both the proposed medium preparation and pressure gradient generation procedure.

  18. Role of contact couples and couple stress in the behaviour of granular media

    International Nuclear Information System (INIS)

    Dedecker, F.; Dubujet, P.; Cambou, B.

    1998-01-01

    This paper analyses the interest of taking into account contact couples in the granular material description as well as considering the inadequacy of the micropolar description. The study is made on two types of samples: one which takes into account contact couples, and the other which does not. The response of these two media, which are submitted to a biaxial test, is analysed from both the micromechanic and macroscopic viewpoints. A numerical study which is performed on these two samples shows the influence of the presence of couples on the local static variables as well as on the macroscopic behaviour. A statistical homogenization approach is analysed to simulate the effects of couples. Due to the presence of an internal variable, a numerical study proves that this approach is relevant. This internal variable allows the taking into consideration of the influence of contact couples. A first step in the description of couples versus contact orientation is made by the introduction of the standard deviation. Finally, the inadequacy of the micropolar description which takes into account micropolar stresses is pointed out. (orig.)

  19. Effect of granular porous media on the composting of swine manure

    International Nuclear Information System (INIS)

    Kim, Ku-Yong; Kim, Hyun-Woo; Han, Sun-Kee; Hwang, Eung-Ju; Lee, Chae-Young; Shin, Hang-Sik

    2008-01-01

    This study investigated the feasibility of a bulking agent of granular porous media (GPM) for the composting of swine manure. Two lab-scale composting reactors were operated to evaluate the general performances and maturity parameters using GPM made of wastes from the Portland cement manufacturing processes as an alternative bulking agent. The overall volatile solid (VS) removal was 38.5% (dry basis). During the experiments, moisture content ranged between 41% and 53%, ensuring feasibility of microbial activity in composting. Cured compost showed proper maturity and low phytotoxicity, despite the slight decreases of CO 2 production and VS removal at the second batch operation. Various physico-chemical parameters of the cured compost met the regulatory standards reported elsewhere. The pH, carbon-to-nitrogen ratio, ammonia nitrogen and soluble organic carbon (SOC) of the cured compost were significantly correlated to the germination index (GI) using the seeds of Chinese cabbage and lettuce, indicating the progressive biodegradation of phytotoxins as well as organic matter. Consequently, the results obtained in this study demonstrate that GPM could contribute to the environmentally friendly and economical composting of problematic swine manure as a recyclable bulking agent

  20. Effect of granular porous media on the composting of swine manure.

    Science.gov (United States)

    Kim, Ku-Yong; Kim, Hyun-Woo; Han, Sun-Kee; Hwang, Eung-Ju; Lee, Chae-Young; Shin, Hang-Sik

    2008-11-01

    This study investigated the feasibility of a bulking agent of granular porous media (GPM) for the composting of swine manure. Two lab-scale composting reactors were operated to evaluate the general performances and maturity parameters using GPM made of wastes from the Portland cement manufacturing processes as an alternative bulking agent. The overall volatile solid (VS) removal was 38.5% (dry basis). During the experiments, moisture content ranged between 41% and 53%, ensuring feasibility of microbial activity in composting. Cured compost showed proper maturity and low phytotoxicity, despite the slight decreases of CO2 production and VS removal at the second batch operation. Various physico-chemical parameters of the cured compost met the regulatory standards reported elsewhere. The pH, carbon-to-nitrogen ratio, ammonia nitrogen and soluble organic carbon (SOC) of the cured compost were significantly correlated to the germination index (GI) using the seeds of Chinese cabbage and lettuce, indicating the progressive biodegradation of phytotoxins as well as organic matter. Consequently, the results obtained in this study demonstrate that GPM could contribute to the environmentally friendly and economical composting of problematic swine manure as a recyclable bulking agent.

  1. Influence of Acidification on the Partitioning of Steroid Hormones among Filtrate, Filter Media, and Retained Particulate Matter.

    Science.gov (United States)

    Havens, Sonya M; Hedman, Curtis J; Hemming, Jocelyn D C; Mieritz, Mark G; Shafer, Martin M; Schauer, James J

    2016-09-01

    Hormone contamination of aquatic systems has been shown to have deleterious effects on aquatic biota. However, the assessment of hormone contamination of aquatic environments requires a quantitative evaluation of the potential effects of sample preservation on hormone concentrations. This study investigated the influence of acidification (pH 2) of surface water samples on the partitioning of hormones among filtrate, filter media, and filter-retained particulate matter. Hormones were spiked into unpreserved and sulfuric acid-preserved ultrapure water and surface water runoff samples. The samples were filtered, and hormones were extracted from the filter and filtrate and analyzed by high-performance liquid chromatography. Acidification did not influence the partitioning of hormones onto the filter media. For the majority of the hormones investigated in this study, the partitioning of hormones to the filter-retained particulate matter was not influenced by acidification. Acidification increased the partitioning of progesterone and melengestrol acetate onto the retained particulate matter (about 25% for both analytes). Incorporation of an isotopically labeled internal standard (ISTD) for progesterone accounted for the loss of progesterone to the filter-retained particulates and resulted in accurate concentrations of progesterone in the filtrate. The incorporation of an ISTD for melengestrol acetate, however, was unable to account for the loss of melengestrol acetate to the retained particulates and resulted in underestimations of melengestrol acetate in the filtrate. Our results indicate that the analysis of melengestrol acetate in acid preserved surface runoff samples should be conducted on the filter-retained particulates as well as the filtrate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Force and flow at the onset of drag in plowed granular media.

    Science.gov (United States)

    Gravish, Nick; Umbanhowar, Paul B; Goldman, Daniel I

    2014-04-01

    We study the transient drag force FD on a localized intruder in a granular medium composed of spherical glass particles. A flat plate is translated horizontally from rest through the granular medium to observe how FD varies as a function of the medium's initial volume fraction, ϕ. The force response of the granular material differs above and below the granular critical state, ϕc, the volume fraction which corresponds to the onset of grain dilatancy. For ϕϕc, FD rapidly rises to a maximum and then decreases over further displacement. The maximum force for ϕ>ϕc increases with increasing drag velocity. In quasi-two-dimensional drag experiments, we use granular particle image velocimetry (PIV) to measure time resolved strain fields associated with the horizontal motion of a plate started from rest. PIV experiments show that the maxima in FD for ϕ>ϕc are associated with maxima in the spatially averaged shear strain field. For ϕ>ϕc the shear strain occurs in a narrow region in front of the plate, a shear band. For ϕϕc, surface particles move only during the formation of the shear band, coincident with the maxima in FD, after which the particles remain immobile until the sheared region reaches the measurement region.

  3. Risks of using membrane filtration for trace metal analysis and assessing the dissolved metal fraction of aqueous media - A study on zinc, copper and nickel

    International Nuclear Information System (INIS)

    Hedberg, Yolanda; Herting, Gunilla; Wallinder, Inger Odnevall

    2011-01-01

    Membrane filtration is commonly performed for solid-liquid separation of aqueous solutions prior to trace metal analysis and when assessing 'dissolved' metal fractions. Potential artifacts induced by filtration such as contamination and/or adsorption of metals within the membrane have been investigated for different membrane materials, metals, applied pressures and pre-cleaning steps. Measurements have been conducted on aqueous solutions including well-defined metal standards, ultrapure water, and on runoff water from corroded samples. Filtration using both non-cleaned and pre-cleaned filters revealed contamination and adsorption effects, in particular pronounced for zinc, evident for copper but non-significant for nickel. The results clearly show these artifacts to be non-systematic both for non-cleaned and pre-cleaned membranes. The applied pressure was of minor importance. Measurements of the labile fraction by means of stripping voltammetry clearly elucidate that membrane filtration followed by total metal analysis cannot accurately assess the labile or the dissolved metal fraction. - Highlights: → Membrane filtration for trace metal analysis can introduce significant artifacts. → The dissolved metal fraction cannot be assessed by membrane filtration. → Non-specified filtration procedures are inadequate for scientific studies. → Artifacts caused by membrane filtration need to be addressed by regulators. - Membrane filtration cannot be used to assess the dissolved metal fraction of aqueous media and needs to be defined in detail in standard tests.

  4. Water Filtration Products

    Science.gov (United States)

    1986-01-01

    American Water Corporation manufactures water filtration products which incorporate technology originally developed for manned space operations. The formula involves granular activated charcoal and other ingredients, and removes substances by catalytic reactions, mechanical filtration, and absorption. Details are proprietary. A NASA literature search contributed to development of the compound. The technology is being extended to a deodorizing compound called Biofresh which traps gas and moisture inside the unit. Further applications are anticipated.

  5. Inhibition of biofilm formation on the surface of water storage containers using biosand zeolite silver-impregnated clay granular and silver impregnated porous pot filtration systems.

    Science.gov (United States)

    Budeli, Phumudzo; Moropeng, Resoketswe Charlotte; Mpenyana-Monyatsi, Lizzy; Momba, Maggie Ndombo Benteke

    2018-01-01

    Development of biofilms occurring on the inner surface of storage vessels offers a suitable medium for the growth of microorganisms and consequently contributes to the deterioration of treated drinking water quality in homes. The aim of this study was to determine whether the two point-of-use technologies (biosand zeolite silver-impregnated clay granular (BSZ-SICG) filter and silver-impregnated porous pot (SIPP) filter) deployed in a rural community of South Africa could inhibit the formation of biofilm on the surface of plastic-based containers generally used by rural households for the storage of their drinking water. Culture-based methods and molecular techniques were used to detect the indicator bacteria (Total coliforms, faecal coliform, E. coli) and pathogenic bacteria (Salmonella spp., Shigella spp. and Vibrio cholerae) in intake water and on the surface of storage vessels containing treated water. Scanning electron microscopy was also used to visualize the development of biofilm. Results revealed that the surface water source used by the Makwane community was heavily contaminated and harboured unacceptably high counts of bacteria (heterotrophic plate count: 4.4-4.3 Log10 CFU/100mL, total coliforms: 2.2 Log10 CFU/100 mL-2.1 Log10 CFU/100 mL, faecal coliforms: 1.9 Log10 CFU/100 mL-1.8 Log10 CFU/100 mL, E. coli: 1.7 Log10 CFU/100 mL-1.6 Log10 CFU/100 mL, Salmonella spp.: 3 Log10 CFU/100 mL -8 CFU/100 mL; Shigella spp. and Vibrio cholerae had 1.0 Log10 CFU/100 mL and 0.8 Log10 CFU/100 mL respectively). Biofilm formation was apparent on the surface of the storage containers with untreated water within 24 h. The silver nanoparticles embedded in the clay of the filtration systems provided an effective barrier for the inhibition of biofilm formation on the surface of household water storage containers. Biofilm formation occurred on the surface of storage plastic vessels containing drinking water treated with the SIPP filter between 14 and 21 days, and on those

  6. Inhibition of biofilm formation on the surface of water storage containers using biosand zeolite silver-impregnated clay granular and silver impregnated porous pot filtration systems

    Science.gov (United States)

    Moropeng, Resoketswe Charlotte; Mpenyana-Monyatsi, Lizzy; Momba, Maggie Ndombo Benteke

    2018-01-01

    Development of biofilms occurring on the inner surface of storage vessels offers a suitable medium for the growth of microorganisms and consequently contributes to the deterioration of treated drinking water quality in homes. The aim of this study was to determine whether the two point-of-use technologies (biosand zeolite silver-impregnated clay granular (BSZ-SICG) filter and silver-impregnated porous pot (SIPP) filter) deployed in a rural community of South Africa could inhibit the formation of biofilm on the surface of plastic-based containers generally used by rural households for the storage of their drinking water. Culture-based methods and molecular techniques were used to detect the indicator bacteria (Total coliforms, faecal coliform, E. coli) and pathogenic bacteria (Salmonella spp., Shigella spp. and Vibrio cholerae) in intake water and on the surface of storage vessels containing treated water. Scanning electron microscopy was also used to visualize the development of biofilm. Results revealed that the surface water source used by the Makwane community was heavily contaminated and harboured unacceptably high counts of bacteria (heterotrophic plate count: 4.4–4.3 Log10 CFU/100mL, total coliforms: 2.2 Log10 CFU/100 mL—2.1 Log10 CFU/100 mL, faecal coliforms: 1.9 Log10 CFU/100 mL—1.8 Log10 CFU/100 mL, E. coli: 1.7 Log10 CFU/100 mL—1.6 Log10 CFU/100 mL, Salmonella spp.: 3 Log10 CFU/100 mL -8 CFU/100 mL; Shigella spp. and Vibrio cholerae had 1.0 Log10 CFU/100 mL and 0.8 Log10 CFU/100 mL respectively). Biofilm formation was apparent on the surface of the storage containers with untreated water within 24 h. The silver nanoparticles embedded in the clay of the filtration systems provided an effective barrier for the inhibition of biofilm formation on the surface of household water storage containers. Biofilm formation occurred on the surface of storage plastic vessels containing drinking water treated with the SIPP filter between 14 and 21 days, and on

  7. Quantifying the Micromechanical Effects of Variable Cement in Granular Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, Laurel B.; Boutt David F.

    2010-02-18

    The mechanical and hydrologic behavior of clastic rocks and sediments is fundamentally controlled by variables such as grain size and shape, sorting, grain and cement mineralogy, porosity, and %cement - parameters that are not used directly in field-scale models of coupled flow and deformation. To improve our understanding of the relationship between these micromechanical properties and bulk behavior we focused on (1) relating detailed, quantitative characterization of the grain-pore systems to both hydrologic and mechanical properties of a suite of variably quartz-cemented quartz arenite samples and (2) the use of a combination of discrete element method (DEM) and poroelastic models parameterized by data from the natural samples to isolate and compare the influence of changes in the mechanical and hydrologic properties of granular porous media due to changes in degree of cementation. Quartz overgrowths, the most common form of authigenic cements in sandstones, are responsible for significant porosity and permeability reduction. The distribution of quartz overgrowths is controlled by available pore space and the crystallographic orientations of individual quartz grains. Study of the St. Peter Sandstone allowed evaluation of the relative effects of quartz cementation and compaction on final grain and pore morphology, showing that progressive quartz cementation modifies the grain framework in consistent, predictable ways. Detailed microstructural characterization and multiple regression analyses show that with progressive diagenesis, the number and length of grain contacts increases as the number of pores increases, the number of large, well-connected pores decreases, and pores become rounder. These changes cause a decrease in pore size variability that leads to a decrease in bulk permeability and both stiffening and strengthening of the grain framework. The consistent nature of these changes allows us to predict variations in hydrologic and mechanical properties

  8. Application of Colloidal Filtration Theory on Textile Fibrous Media: Effect of Fiber Orientation on Bacterial Removal Efficiency and Attachment

    Science.gov (United States)

    Roy, Sukumar; Ghosh, Subrata; Bhowmick, Niranjan

    2018-05-01

    A mechanism to remove the Pseudomonas bacteria from contaminated water by using textile fibrous media has been proposed in this article. The attachment of Pseudomonas bacteria on nylon fibrous media was studied in laboratory column experiment. A systematic study was carried out to investigate the attachment of bacteria on the fibrous material as a function of fiber orientation to the direction of the liquid flow. Three types of textiles media with different orientation fiber were selected for the experiment (i.e. 0°, 45° and 90°). It was found that the bacteria removal efficiency was comparatively higher at 90° orientation as compared to that of 45° and 0° orientation of fibrous media, suggesting that the removal efficiency of bacteria (1 - Fp) was depended on fiber orientation. The removal trends were explained on the basis of colloidal filtration theory. This is due to the higher single collector contact efficiency and attachment/collision efficiency as observed from the experimental data of removal efficiency.

  9. Fast Swinnex Filtration (FSF): A fast and robust sampling and extraction method suitable for metabolomics analysis of cultures grown in complex media

    DEFF Research Database (Denmark)

    McCloskey, Douglas; Utrilla, Jose; Naviaux, Robert K.

    2015-01-01

    , we develop a fast-filtration method using pressuredriven Swinnex filters. We show that the method is fast enough to provide an accurate snapshot of intracellular metabolism, reduces matrix interference from the media to improve the number of compounds that can be detected, and is applicable...... to anaerobic and aerobic liquid cultures grown in a variety of culturing systems. Furthermore, we apply the fast filtration method to investigate differences in the absolute intracellular metabolite levels of anaerobic cultures grown in minimal and complex media....

  10. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid

    Science.gov (United States)

    Hydroxyapatite nanoparticles (nHAP) are increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP in water-saturated granular media were investigated. Experiments were conducted over a range of ionic ...

  11. Gas-solute dispersivity ratio in granular porous media as related to particle size distribution and particle shape

    DEFF Research Database (Denmark)

    Pugliese, Lorenzo; Poulsen, Tjalfe; Straface, Salvatore

    2013-01-01

    Measurements of solute dispersion in porous media is generally much more time consuming than gas dispersion measurements performed under equivalent conditions. Significant time savings may therefore, be achieved if solute dispersion coefficients can be estimated based on measured gas dispersion...... data. This paper evaluates the possibility for estimating solute dispersion based on gas dispersion measurements. Breakthrough measurements were carried out at different fluid velocities (covering the same range in Reynolds number), using O2 and NaCl as gas and solute tracers, respectively. Three...... different, granular porous materials were used: (1) crushed granite (very angular particles), (2) gravel (particles of intermediate roundness) and (3) Leca® (almost spherical particles). For each material, 21 different particle size fractions were used. Gas and solute dispersion coefficients were determined...

  12. Influence of granulometry in the Hurst exponent of air liquid interfaces formed during capillary rising in a granular media

    Directory of Open Access Journals (Sweden)

    Gontijo Guilherme L.

    2017-01-01

    Full Text Available We report results concerning the fractal dimension of a air/fluid interface formed during the capillary rising of a fluid into a dense granular media. The system consists in a modified Hele-Shaw cell filled with grains at different granulometries and confined in a narrow gap between the glass plates. The system is then placed onto a water reservoir, and the liquid penetrates the medium due to capillary forces. We measure the Hurst exponent of the liquid/air interface with help of image processing, and follow the temporal evolution of the profiles. We observe that the Hurst exponent can be related with the granulometry, but the range of values are odd to the predicted values from models or theory.

  13. Modelling technological process of ion-exchange filtration of fluids in porous media

    Science.gov (United States)

    Ravshanov, N.; Saidov, U. M.

    2018-05-01

    Solution of an actual problem related to the process of filtration and dehydration of liquid and ionic solutions from gel particles and heavy ionic compounds is considered in the paper. This technological process is realized during the preparation and cleaning of chemical solutions, drinking water, pharmaceuticals, liquid fuels, products for public use, etc. For the analysis, research, determination of the main parameters of the technological process and operating modes of filter units and for support in managerial decision-making, a mathematical model is developed. Using the developed model, a series of computational experiments on a computer is carried out. The results of numerical calculations are illustrated in the form of graphs. Based on the analysis of numerical experiments, the conclusions are formulated that serve as the basis for making appropriate managerial decisions.

  14. Mathematical Modeling of Multiphase Filtration in Porous Media with a Chemically Active Skeleton

    Science.gov (United States)

    Khramchenkov, M. G.; Khramchenkov, É. M.

    2018-01-01

    The authors propose a mathematical model of two-phase filtration that occurs under the conditions of dissolution of a porous medium. The model can be used for joint description of complex chemical-hydrogeomechanical processes that are of frequent occurrence in the oil-and-gas producing and nature conservation practice. As an example, consideration is given to the acidizing of the bottom zone of the injection well of an oil reservoir. Enclosing rocks are represented by carbonates. The phases of the process are an aqueous solution of hydrochloric acid and oil. A software product for computational experiments is developed. For the numerical experiments, use is made of the data on the wells of an actual oil field. Good agreement is obtained between the field data and the calculated data. Numerical experiments with different configurations of the permeability of an oil stratum are conducted.

  15. The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media

    International Nuclear Information System (INIS)

    Li, W.M.; Lim, W.K.; Shi, J.Z.; Ding, J.

    2013-01-01

    A systematic investigation of magnetic switching behavior of CoCrPt based capped media (perpendicularly coupled granular/continuous (CGC) media consisting of granular CoCrPt:SiO 2 TiO 2 Ta 2 O 5 /capped CoCrPt(B)) is performed by varying the thickness of the capped layer from 0 to 9 nm. The microscopic structures of CGC media with different thickness of capped layer are examined by transmission electron microscope. We find out that CoCrPt magnetic grains are separated by nonmagnetic oxide grain boundaries. Grain size and grain boundary are about 8.9 nm and 2 nm, respectively. The nonmagnetic oxide grain boundaries in the granular layer do not disappear immediately at the interface between the granular and capped layers. The amorphous grain boundary phase in the granular layer propagates to the top surface of the capped layer. After capping with the CoCrPt(B) layer, the grain size at the surface of CGC structure increases and the grain boundary decreases. Both coercivity and intergranular exchange coupling of the CGC media are investigated by Polar magneto-optic Kerr effect magnetometer and alternating gradient force magnetometer. Although H c apparently decreases at thicker capped layer, no obvious variation of macroscopic switching field distribution (SFD/H c ) is observed. We separate intrinsic switching field distribution from intergranular interactions. The investigation of reduced intrinsic SFD/H c and increased hysteresis loop slope at coercivity, suggests that improvement of absolute switching field distribution (SFD) is caused by both strong intergranular exchange coupling and uniform grain size. Micromagnetic simulation results further verify our conclusion that the capped layer in CGC media is not uniformly continuous but has some granular nature. However, grains in the CoCrPt(B) capped layer is not absolutely isolated, strong exchange coupling exists between grains. - Highlights: • In CGC media, CoCrPt magnetic grains are separated by nonmagnetic oxide

  16. Dissipation consistent fabric tensor definition from DEM to continuum for granular media

    Science.gov (United States)

    Li, X. S.; Dafalias, Y. F.

    2015-05-01

    In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.

  17. From continuum analytical description to discrete numerical modelling of localized fluidization in granular media

    Directory of Open Access Journals (Sweden)

    Puig i Montellà Eduard

    2017-01-01

    Full Text Available We present analytical and numerical results on localized fluidization within a granular layer subjected to a local injection of fluid. As the injection rate increases the three different regimes previously reported in the literature are recovered: homogeneous expansion of the bed, fluidized cavity in which fluidization starts developing above the injection area, and finally the chimney of fluidized grains when the fluidization zone reaches the free surface. The analytical approach is at the continuum scale, based on Darcy’s law and Therzaghi’s effective stress principle. It provides a good description of the phenomenon as long as the porosity of the granular assembly remains relatively homogeneous. The numerical approach is at the particle scale based on the coupled DEM-PFV method. It tackles the more heterogeneous situations which occur at larger injection rates. A direct link is evidenced between the occurrence of the different regimes of fluidization and the injection aperture. Finally, the merging of chimneys in case of two injection points is investigated.

  18. Systematic description of the effect of particle shape on the strength properties of granular media

    Directory of Open Access Journals (Sweden)

    Azéma Emilien

    2017-01-01

    Full Text Available In this paper, we explore numerically the effect of particle shape on the mechanical behavior of sheared granular packings. In the framework of the Contact Dynamic (CDMethod, we model angular shape as irregular polyhedral particles, non-convex shape as regular aggregates of four overlapping spheres, elongated shape as rounded cap rectangles and platy shape as square-plates. Binary granular mixture consisting of disks and elongated particles are also considered. For each above situations, the number of face of polyhedral particles, the overlap of spheres, the aspect ratio of elongated and platy particles, are systematically varied from spheres to very angular, non-convex, elongated and platy shapes. The level of homogeneity of binary mixture varies from homogenous packing to fully segregated packings. Our numerical results suggest that the effects of shape parameters are nonlinear and counterintuitive. We show that the shear strength increases as shape deviate from spherical shape. But, for angular shapes it first increases up to a maximum value and then saturates to a constant value as the particles become more angular. For mixture of two shapes, the strength increases with respect of the increase of the proportion of elongated particles, but surprisingly it is independent with the level of homogeneity of the mixture. A detailed analysis of the contact network topology, evidence that various contact types contribute differently to stress transmission at the micro-scale.

  19. High-Performance Modeling and Simulation of Anchoring in Granular Media for NEO Applications

    Science.gov (United States)

    Quadrelli, Marco B.; Jain, Abhinandan; Negrut, Dan; Mazhar, Hammad

    2012-01-01

    NASA is interested in designing a spacecraft capable of visiting a near-Earth object (NEO), performing experiments, and then returning safely. Certain periods of this mission would require the spacecraft to remain stationary relative to the NEO, in an environment characterized by very low gravity levels; such situations require an anchoring mechanism that is compact, easy to deploy, and upon mission completion, easy to remove. The design philosophy used in this task relies on the simulation capability of a high-performance multibody dynamics physics engine. On Earth, it is difficult to create low-gravity conditions, and testing in low-gravity environments, whether artificial or in space, can be costly and very difficult to achieve. Through simulation, the effect of gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine, a simulation pack age capable of utilizing massively parallel Graphic Processing Unit (GPU) hardware, several validation experiments were performed. Modeling of the regolith interaction has been carried out, after which the anchor penetration tests were performed and analyzed. The regolith was modeled by a granular medium composed of very large numbers of convex three-dimensional rigid bodies, subject to microgravity levels and interacting with each other with contact, friction, and cohesional forces. The multibody dynamics simulation approach used for simulating anchors penetrating a soil uses a differential variational inequality (DVI) methodology to solve the contact problem posed as a linear complementarity method (LCP). Implemented within a GPU processing environment, collision detection is greatly accelerated compared to traditional CPU (central processing unit)- based collision detection. Hence, systems of millions of particles interacting with complex dynamic systems can be efficiently analyzed, and design recommendations can be made in a much shorter time. The figure

  20. Cohesive granular media modelization with non-convex particles shape: Application to UO2 powder compaction

    International Nuclear Information System (INIS)

    Saint-Cyr, B.

    2011-01-01

    We model in this work granular materials composed of non-convex and cohesive aggregates, in view of application to the rheology of UO 2 powders. The effect of non convexity is analyzed in terms of bulk quantities (Coulomb internal friction and cohesion) and micromechanical parameters such as texture anisotropy and force transmission. In particular, we find that the packing fraction evolves in a complex manner with the shape non convexity and the shear strength increases but saturates due to interlocking between the aggregates. We introduce simple models to describe these features in terms of micro-mechanical parameters. Furthermore, a systematic investigation of shearing, uniaxial compaction and simple compression of cohesive packings show that bulk cohesion increases with non-convexity but is strongly influenced by the boundary conditions and shear bands or stress concentration. (author) [fr

  1. Alternative strategies to reduce cost and waste volume in HEPA filtration using metallic filter media - 59348

    International Nuclear Information System (INIS)

    Chadwick, Chris

    2012-01-01

    Document available in abstract form only. Full text of publication follows: The disposal costs of contaminated HEPA and THE filter elements have been proved to be disproportionately high compared with the cost of the elements themselves. Work published elsewhere (Moore, et el 1992; Bergman et al 1997) suggests that the cost of use of traditional, panel type, glass fibre HEPA filtration trains to the DOE was, during that period, $29.5 million, based on a five year life cycle, and including installation, testing, removal and disposal life cycle costs being based on estimates dating from 1987-1990. Within that cost estimate, $300 was the value given to the filter and $4, 450 was given to the peripheral activity. Clearly, if the $4, 450 component could be reduced, tremendous saving could ensue, in addition to the reduction of the legacy burden of waste volume. This issue exists for operators in both the US and in Europe. If HEPA filters could be cleaned to a condition where they could either be re-used or decontaminated to the extent that they could be stored as a lower cost wasteform or if HEPA/THE filter elements were available without any organic content likely to give rise to flammable or explosive decomposition gases during long term storage this would also reduce the costs and monitoring necessary in storage. (author)

  2. PART 2: LARGE PARTICLE MODELLING Simulation of particle filtration processes in deformable media

    Directory of Open Access Journals (Sweden)

    Gernot Boiger

    2008-06-01

    Full Text Available In filtration processes it is necessary to consider both, the interaction of thefluid with the solid parts as well as the effect of particles carried in the fluidand accumulated on the solid. While part 1 of this paper deals with themodelling of fluid structure interaction effects, the accumulation of dirtparticles will be addressed in this paper. A closer look is taken on theimplementation of a spherical, LAGRANGIAN particle model suitable forsmall and large particles. As dirt accumulates in the fluid stream, it interactswith the surrounding filter fibre structure and over time causes modificationsof the filter characteristics. The calculation of particle force interactioneffects is necessary for an adequate simulation of this situation. A detailedDiscrete Phase Lagrange Model was developed to take into account thetwo-way coupling of the fluid and accumulated particles. The simulation oflarge particles and the fluid-structure interaction is realised in a single finitevolume flow solver on the basis of the OpenSource software OpenFoam.

  3. Remoção de atrazina e metabólitos pela filtração lenta com leito de areia e carvão ativado granular Removal of atrazine and metabolites through slow filtration by sand and granular activated carbon

    Directory of Open Access Journals (Sweden)

    Edumar Ramos Cabral Coelho

    2012-09-01

    Full Text Available A atrazina (ATZé um herbicida largamente utilizado no mundo, sendo encontrada associada aos seus produtos de degradação em águas superficiais e subterrâneas. Pertence à classe das s-triazinas e, juntamente com os metabólitos clorados deetilatrazina (DEA e deisopropilatrazina (DIA, possui potencial carcinogênico e toxicidade como disruptores endócrinos. A limitação dos processos que empregam a coagulação química na remoção de ATZ, a conhecida capacidade do carvão ativado em remover microcontaminantes em água e o risco que a ATZ e seus metabólitos apresentam à saúde motivaram o estudo da filtração lenta com leito de areia e carvão ativado granular. Os resultados apontaram a eficiência do processo de filtração lenta com camada intermediária de carvão ativado granular na remoção de ATZ e a limitação deste na remoção dos metabólitos DEA, DIA e deetilhidroxiatrazina (DEHA.Atrazine (ATZ is widely used as herbicide, commonly found in association to its degradation products in surface water and groundwater. It belongs to the class of s-triazines and together with the chlorinated metabolites dieethylatrazine (DEA and deisopropilatrazine (DIA have carcinogenic potential and toxicity as endocrine disruptors. The limitation of the processes employing chemical coagulation in the removal of atrazine, the known ability of activated carbon to remove microcontaminants in water and the risk that atrazine and the potential toxicity to human health of its metabolits motivated the study of slow sand filtration bed combined with granular activated carbon. The results showed the high efficiency of the slow filtration process with intermediate layer of granular activated carbon in the removal of atrazine and its limitation on the removal of the metabolites DEA, DIA and diethylhidroxiatrazine (DEHA.

  4. Reduction of intergranular exchange coupling and grain size for high Ku CoPt-based granular media: Metal-oxide buffer layer and multiple oxide boundary materials

    Directory of Open Access Journals (Sweden)

    Kim Kong Tham

    2018-05-01

    Full Text Available Investigation of magnetic properties and microstructure of granular media with various multiple oxides as the grain boundary material is reported. Saturation magnetization (Ms, uniaxial magnetocrystalline anisotropy (Ku, and magnetic grain diameter (GD of the granular media show linear correlation with volume weighted average for melting point (Tm of each oxides (Tmave. Ku of magnetic grains (Kugrain shows a trade-off relation with GD that it is a big challenge to satisfy both high Kugrain and small GD by only controlling Tmave. To obtain a granular medium with appropriate Kugrain, GD, and low degree of intergranular exchange coupling, the combination of Tmave control of grain boundary material by mixing oxides and employment of a buffer layer are required. Here the degree of intergranular exchange coupling is estimated from the slope of M-H loop at around coercivity (α. By applying this technique, a typical granular medium with Kugrain of 1.0×107 erg/cm3, GD of 5.1 nm, and α of 1.2 is realized.

  5. Reduction of intergranular exchange coupling and grain size for high Ku CoPt-based granular media: Metal-oxide buffer layer and multiple oxide boundary materials

    Science.gov (United States)

    Tham, Kim Kong; Kushibiki, Ryosuke; Kamada, Tomonari; Hinata, Shintaro; Saito, Shin

    2018-05-01

    Investigation of magnetic properties and microstructure of granular media with various multiple oxides as the grain boundary material is reported. Saturation magnetization (Ms), uniaxial magnetocrystalline anisotropy (Ku), and magnetic grain diameter (GD) of the granular media show linear correlation with volume weighted average for melting point (Tm) of each oxides (Tmave). Ku of magnetic grains (Kugrain) shows a trade-off relation with GD that it is a big challenge to satisfy both high Kugrain and small GD by only controlling Tmave. To obtain a granular medium with appropriate Kugrain, GD, and low degree of intergranular exchange coupling, the combination of Tmave control of grain boundary material by mixing oxides and employment of a buffer layer are required. Here the degree of intergranular exchange coupling is estimated from the slope of M-H loop at around coercivity (α). By applying this technique, a typical granular medium with Kugrain of 1.0×107 erg/cm3, GD of 5.1 nm, and α of 1.2 is realized.

  6. Some effects of gas-induced fluidization in dry granular media

    Energy Technology Data Exchange (ETDEWEB)

    Nermoen, Anders

    2010-06-15

    The main body of this thesis consists of three papers in which aspects of fluid induced deformation in granular materials are studied. Insight from experiments, dimensional analysis, numerical modeling and analytic predictions are combined to interpret observations various aspects of piercement structures in the geological record. A fourth paper is included showing how analogue modeling has been used to understand a geological processes. Paper 1 presents experimental work on the segregation pattern forming in partially fluidized, bi-modal sized granular mixtures. The experiments are performed on a vertically oriented Hele-Shaw cell (HS-cell), the narrow box between two parallel glass plates, filled with glass beads. Gas flow is imparted through the bottom of the bed causing fluidization when the system is driven at velocities exceeding a critical limit. The co-existence of fluidized and static zones is termed partial fluidization and occurs when the imposed gas flux is insufficient to fluidize the whole system. Within the fluidized zones, the particles re-organize and the large particles sediment down while the small particles remains fluidized. The re-organization is caused by differences in the ratio of the weight to the viscous drag. A pipe-like pattern develops due to a feedback mechanism in which the flow is focused through domains dominated by large particles. The focusing of the flow localizes the fluidization, which in turn enables the sedimentation of the large grains. Paper 2 presents an experimental and analytical study of the critical conditions for fluidization of a dry granular material. Based on the experiments, we find that the critical velocity of fluidization scales almost linear with the ratio of the filling height to the inlet width. An analytic model for the pressure field is obtained by solving the Laplace equation for the velocity boundary conditions given by the geometry of the experimental setup. By integrating the vertical component of the

  7. VELOCITY FIELD COMPUTATION IN VIBRATED GRANULAR MEDIA USING AN OPTICAL FLOW BASED MULTISCALE IMAGE ANALYSIS METHOD

    Directory of Open Access Journals (Sweden)

    Johan Debayle

    2011-05-01

    Full Text Available An image analysis method has been developed in order to compute the velocity field of a granular medium (sand grains, mean diameter 600 μm submitted to different kinds of mechanical stresses. The differential method based on optical flow conservation consists in describing a dense motion field with vectors associated to each pixel. A multiscale, coarse-to-fine, analytical approach through tailor sized windows yields the best compromise between accuracy and robustness of the results, while enabling an acceptable computation time. The corresponding algorithmis presented and its validation discussed through different tests. The results of the validation tests of the proposed approach show that the method is satisfactory when attributing specific values to parameters in association with the size of the image analysis window. An application in the case of vibrated sand has been studied. An instrumented laboratory device provides sinusoidal vibrations and enables external optical observations of sand motion in 3D transparent boxes. At 50 Hz, by increasing the relative acceleration G, the onset and development of two convective rolls can be observed. An ultra fast camera records the grain avalanches, and several pairs of images are analysed by the proposed method. The vertical velocity profiles are deduced and allow to precisely quantify the dimensions of the fluidized region as a function of G.

  8. Axial segregation of granular media rotated in a drum mixer: Pattern evolution

    International Nuclear Information System (INIS)

    Hill, K.M.; Kakalios, J.; Caprihan, A.

    1997-01-01

    In the traditional axial segregation effect, a homogeneous mixture of different types of granular material rotated in a drum mixer segregates into surface bands of relatively pure single concentrations along the axis of rotation. This effect primarily has been studied with respect to the initial segregation. However, the initial pattern is not stable, but evolves in time with continued rotation through metastable states of fewer and fewer bands. We describe two experimental studies of this evolution that provide a more complete picture of the dynamics involved in the pattern progression. The use of a charge coupled device camera in conjunction with digital analysis techniques provides a quantitative measure of the state of the surface as a function of time, while magnetic resonance imaging techniques provide a noninvasive method for studying the segregation beneath the surface. These methods indicate that the underlying mechanisms for the pattern evolution may originate in the bulk of the material, beneath the avalanching surface. copyright 1997 The American Physical Society

  9. Experimental Study of the Composition and Structure of Granular Media in the Shear Bands Based on the HHC-Granular Model

    Directory of Open Access Journals (Sweden)

    Guang-jin Wang

    2014-01-01

    Full Text Available The researchers cannot control the composition and structure of coarse grained soil in the indoor experiment because the granular particles of different size have the characteristics of random distribution and no sorting. Therefore, on the basis of the laboratory tests with the coarse grained soil, the HHC-Granular model, which could simulate the no sorting and random distribution of different size particles in the coarse-grained soil, was developed by use of cellular automata method. Meanwhile, the triaxial numerical simulation experiments of coarse grained soil were finished with the different composition and structure soil, and the variation of shear strength was discussed. The results showed that the internal friction angle was likely to reduce with the increasing of gravel contents in the coarse-grained soil, but the mean internal friction angle significantly increased with the increment of gravel contents. It indicated that the gravel contents of shear bands were the major factor affecting the shear strength.

  10. Thermal conductivity of granular porous media: A pore scale modeling approach

    Directory of Open Access Journals (Sweden)

    R. Askari

    2015-09-01

    Full Text Available Pore scale modeling method has been widely used in the petrophysical studies to estimate macroscopic properties (e.g. porosity, permeability, and electrical resistivity of porous media with respect to their micro structures. Although there is a sumptuous literature about the application of the method to study flow in porous media, there are fewer studies regarding its application to thermal conduction characterization, and the estimation of effective thermal conductivity, which is a salient parameter in many engineering surveys (e.g. geothermal resources and heavy oil recovery. By considering thermal contact resistance, we demonstrate the robustness of the method for predicting the effective thermal conductivity. According to our results obtained from Utah oil sand samples simulations, the simulation of thermal contact resistance is pivotal to grant reliable estimates of effective thermal conductivity. Our estimated effective thermal conductivities exhibit a better compatibility with the experimental data in companion with some famous experimental and analytical equations for the calculation of the effective thermal conductivity. In addition, we reconstruct a porous medium for an Alberta oil sand sample. By increasing roughness, we observe the effect of thermal contact resistance in the decrease of the effective thermal conductivity. However, the roughness effect becomes more noticeable when there is a higher thermal conductivity of solid to fluid ratio. Moreover, by considering the thermal resistance in porous media with different grains sizes, we find that the effective thermal conductivity augments with increased grain size. Our observation is in a reasonable accordance with experimental results. This demonstrates the usefulness of our modeling approach for further computational studies of heat transfer in porous media.

  11. Bonding Strength Effects in Hydro-Mechanical Coupling Transport in Granular Porous Media by Pore-Scale Modeling

    Directory of Open Access Journals (Sweden)

    Zhiqiang Chen

    2016-03-01

    Full Text Available The hydro-mechanical coupling transport process of sand production is numerically investigated with special attention paid to the bonding effect between sand grains. By coupling the lattice Boltzmann method (LBM and the discrete element method (DEM, we are able to capture particles movements and fluid flows simultaneously. In order to account for the bonding effects on sand production, a contact bond model is introduced into the LBM-DEM framework. Our simulations first examine the experimental observation of “initial sand production is evoked by localized failure” and then show that the bonding or cement plays an important role in sand production. Lower bonding strength will lead to more sand production than higher bonding strength. It is also found that the influence of flow rate on sand production depends on the bonding strength in cemented granular media, and for low bonding strength sample, the higher the flow rate is, the more severe the erosion found in localized failure zone becomes.

  12. Granular flow

    DEFF Research Database (Denmark)

    Mitarai, Namiko; Nakanishi, Hiizu

    2012-01-01

    Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing...... on the shear flow of dry granular materials and granule-liquid mixture....

  13. Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media.

    Science.gov (United States)

    Abebe, Lydia S; Su, Yi-Hsuan; Guerrant, Richard L; Swami, Nathan S; Smith, James A

    2015-11-03

    Ceramic water filters (CWFs) impregnated with silver nanoparticles are a means of household-level water treatment. CWFs remove/deactivate microbial pathogens by employing two mechanisms: metallic disinfection and physical filtration. Herein we report on the independent effects of silver salt and nanoparticles on Cryptosporidium parvum and the removal of C. parvum by physical filtration in porous ceramic filter media. Using a murine (mouse) model, we observed that treatment of oocysts with silver nitrate and proteinate-capped silver nanoparticles resulted in decreased infection relative to untreated oocysts. Microscopy and excystation experiments were conducted to support the disinfection investigation. Heat and proteinate-capped silver-nanoparticle treatment of oocysts resulted in morphological modifications and decreased excystation rates of sporozoites. Subsequently, disk-shaped ceramic filters were produced to investigate the transport of C. parvum. Two factors were varied: sawdust size and clay-to-sawdust ratio. Five disks were prepared with combinations of 10, 16, and 20 mesh sawdust and sawdust percentage that ranged from 9 to 11%. C. parvum removal efficiencies ranged from 1.5 log (96.4%) to 2.1 log (99.2%). The 16-mesh/10% sawdust had the greatest mean reduction of 2.1-log (99.2%), though there was no statistically significant difference in removal efficiency. Based on our findings, physical filtration and silver nanoparticle disinfection likely contribute to treatment of C. parvum for silver impregnated ceramic water filters, although the contribution of physical filtration is likely greater than silver disinfection.

  14. Filtration set for gaseous fluids

    International Nuclear Information System (INIS)

    Lebrun, B.; Couvrat-Desvergnes, A.

    1988-01-01

    This filtration set is made by a cylindrical vessel containing upstairs to downstairs, the gas inlet, a sealed floor for man inspection, a horizontal granular filter bed, a linen with a porosity inferior to the granulometry of the filter bed, a light support layer of material of larger granulometry, gas permeable tubes and an annular collector connecting the tubes to the outlet [fr

  15. Corrosion-product filtration in PWRs: Topical report

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; Buckley, L.P.

    1988-04-01

    As part of a programme on the optimization of pressurized water reactor (PWR) secondary side water treatment, laboratory-scale studies on filtration of the feedwater using materials having chemically active adsorbing surfaces were carried out. Graphite, zirconia and titania were identified, from a review of existing literature, as suitable filtration media, the last two because of their ion-exchange capability. The efficiency of filters packed with granular graphite for filtration of simulated feed train corrosion products and the pressure drop across the filters were determined as functions of filter dimensions and operating parameters at room temperature. A rough sizing of a full-flow feedwater filter using granular graphite was done on the basis of observations from the room temperature tests. Further studies are suggested at low concentrations of the corrosion product and at high temperature typical of steam generator feedwater after the high pressure heaters to derive realistic design parameters for a filter for installation in the PWR secondary circuit. Zirconia was produced in the form of spherical particles using a sol-gel process. The zirconia behaved as an anion exchanger at low pH and as a cation exchanger at high pH. Its suitability for purification of water at high temperature should be determined by futher studies. 30 refs., 16 figs., 8 tabs

  16. Evaluation of Standard and Modified M-FC, MacConkey, and Teepol Media for Membrane Filtration Counting of Fecal Coliforms in Water

    OpenAIRE

    Grabow, W. O. K.; Hilner, C. A.; Coubrough, P.

    1981-01-01

    MacConkey agar, standard M-FC agar, M-FC agar without rosolic acid, M-FC agar with a resuscitation top layer, Teepol agar, and pads saturated with Teepol broth, were evaluated as growth media for membrane filtration counting of fecal coliform bacteria in water. In comparative tests on 312 samples of water from a wide variety of sources, including chlorinated effluents, M-FC agar without rosolic acid proved the medium of choice because it generally yielded the highest counts, was readily obtai...

  17. Uniform shock waves in disordered granular matter

    NARCIS (Netherlands)

    Gómez, L.R.; Turner, A.M.; Vitelli, V.

    2012-01-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates

  18. Advanced organic and biological analysis of dual media filtration used as a pretreatment in a full-scale seawater desalination plant

    KAUST Repository

    Jeong, Sanghyun; Vollprecht, Robert; Cho, Kyungjin; Leiknes, TorOve; Vigneswaran, Saravanamuthu; Bae, Hyokwan; Lee, Seockheon

    2016-01-01

    Dual media filter (DMF) is being used as a primary pretreatment to remove particulate foulants at seawater desalination plants. However, many plants experience organic and biological fouling. The first part of this paper focuses on the monitoring of organic and biological foulants using advanced analytical techniques to optimize functioning of DMF at Perth Seawater Desalination Plant (PSDP) in Western Australia. In addition, microbial community analysis in DMF filtered seawater, and on DMF media (DMF-M) and cartridge filter (CF) was conducted using terminal restriction fragment length polymorphism (T-RFLP) and 454-pyrosequencing. In the full-scale DMF system, the bacterial community structure was clustered along with the filtration time and sampling positions. For the DMF effluent samples, the bacterial community structure significantly shifted after 4 h of filtration time, which corresponded with the permeability reduction trend. The dominant bacterial communities in the DMF effluent were OTU 13 (Phaeobacter) and OTU 19 (Oceaniserpentilla). The different biofilm-forming bacteria communities were found in the biofilm samples on DMF-M and CF. In the second part of the study, semi-pilot scale DMF columns were operated on-site under same operating conditions used in PSDP. It demonstrated the advantage of operating DMF at the biofiltration mode for improving the reduction of biofoulants. © 2016 Elsevier B.V.

  19. Advanced organic and biological analysis of dual media filtration used as a pretreatment in a full-scale seawater desalination plant

    KAUST Repository

    Jeong, Sanghyun

    2016-02-19

    Dual media filter (DMF) is being used as a primary pretreatment to remove particulate foulants at seawater desalination plants. However, many plants experience organic and biological fouling. The first part of this paper focuses on the monitoring of organic and biological foulants using advanced analytical techniques to optimize functioning of DMF at Perth Seawater Desalination Plant (PSDP) in Western Australia. In addition, microbial community analysis in DMF filtered seawater, and on DMF media (DMF-M) and cartridge filter (CF) was conducted using terminal restriction fragment length polymorphism (T-RFLP) and 454-pyrosequencing. In the full-scale DMF system, the bacterial community structure was clustered along with the filtration time and sampling positions. For the DMF effluent samples, the bacterial community structure significantly shifted after 4 h of filtration time, which corresponded with the permeability reduction trend. The dominant bacterial communities in the DMF effluent were OTU 13 (Phaeobacter) and OTU 19 (Oceaniserpentilla). The different biofilm-forming bacteria communities were found in the biofilm samples on DMF-M and CF. In the second part of the study, semi-pilot scale DMF columns were operated on-site under same operating conditions used in PSDP. It demonstrated the advantage of operating DMF at the biofiltration mode for improving the reduction of biofoulants. © 2016 Elsevier B.V.

  20. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

    Science.gov (United States)

    Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously

  1. Pathogen filtration to control plant disease outbreak in greenhouse production

    Science.gov (United States)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei

    2016-04-01

    Previous research has been extensively focused on understanding the fate and transport of human microbial pathogens in soil and water environments. However, little is known about the transport of plant pathogens, although these pathogens are often found in irrigation waters and could cause severe crop damage and economical loss. Water mold pathogens including Phytophthora spp. and Pythium spp. are infective to a wide range of vegetable and floriculture crops, and they are primarily harbored in soils and disseminated through water flow. It is challenging to control these pathogens because they often quickly develop resistance to many fungicides. Therefore, this multi-scale study aimed to investigate physical removal of plant pathogens from water by filtration, thus reducing the pathogen exposure risks to crops. In column-scale experiments, we studied controlling factors on the transport and retention of Phytophthora capsici zoospores in saturated columns packed with iron oxide coated-sand and uncoated-sand under varying solution chemistry. Biflagellate zoospores were less retained than encysted zoospores, and lower solution pH and greater iron oxide content increased the retention of encysted zoospores. These results provided insights on environmental dispersal of Phytophthora zoospores in natural soils as well as on developing cost-effective engineered filtration systems for pathogen removal. Using small-scale greenhouse filtration systems, we further investigated the performance of varying filter media (i.e., granular sand, iron oxide coated ceramic porous media, and activated carbon) in mitigating disease outbreaks of Phytophthora and Pythium for greenhouse-grown squash and poinsettia, respectively, in comparison with fungicide treatment. For squash, filtration by iron oxide coated media was more effective in reducing the Phytophthora infection, comparing to sand filtration and fungicide application. For poinsettia, sand filtration performed better in controlling

  2. Granular patterns

    CERN Document Server

    Aranson, Igor S

    2009-01-01

    This title presents a review of experiments and novel theoretical concepts needed to understand the mechanisms of pattern formation in granular materials. An effort is made to connect concepts and ideas developed in granular physics with new emergent fields, especially in biology, such as cytoskeleton dynamics.

  3. Evaluation of standard and modified M-FC, MacConkey, and Teepol media for membrane filtration counting of fecal coliforms in water.

    Science.gov (United States)

    Grabow, W O; Hilner, C A; Coubrough, P

    1981-08-01

    MacConkey agar, standard M-FC agar, M-FC agar without rosolic acid, M-FC agar with a resuscitation top layer, Teepol agar, and pads saturated with Teepol broth, were evaluated as growth media for membrane filtration counting of fecal coliform bacteria in water. In comparative tests on 312 samples of water from a wide variety of sources, including chlorinated effluents, M-FC agar without rosolic acid proved the medium of choice because it generally yielded the highest counts, was readily obtainable, easy to prepare and handle, and yielded clearly recognizable fecal coliform colonies. Identification of 1,139 fecal coliform isolates showed that fecal coliform tests cannot be used to enumerate Escherichia coli because the incidence of E. coli among fecal coliforms varied from an average of 51% for river water to 93% for an activated sludge effluent after chlorination. The incidence of Klebsiella pneumoniae among fecal coliforms varied from an average of 4% for the activated sludge effluent after chlorination to 32% for the river water. The advantages of a standard membrane filtration procedure for routine counting of fecal coliforms in water using M-FC agar without rosolic acid as growth medium, in the absence of preincubation or resuscitation steps, are outlined.

  4. An Investigation on bilayer structures of electrospun polyacrylonitrile nanofibrous membrane and cellulose membrane used as filtration media for apple juice clarification

    Science.gov (United States)

    Sawitri, Asti; Miftahul Munir, Muhammad; Edikresnha, Dhewa; Sandi, Ahzab; Fauzi, Ahmad; Rajak, Abdul; Natalia, Dessy; Khairurrijal, Khairurrijal

    2018-05-01

    Nanofibrous membrane has a potential to use in filtration technology with electrospinning as one of the techniques used in synthesizing nanofibers. Polyacrylonitrile (PAN) nanofibrous membranes with various fibers diameters were electrospun by varying its precursor solution concentration. The average fibers diameters of the PAN nanofibrous membranes obtained from the precursor solution concentrations of 6, 9, 12, and 14 wt% were 341, 534, 1274, and 2107 nm, respectively. Filtration media for apple juice clarification were bilayer-structured membranes made of PAN nanofibrous membranes on commercial cellulose microfibrous membranes. It has been shown that the reduction of apple juice color or turbidity performed by the cellulose microfibrous membrane was well enhanced by the presence of the PAN nanofibrous membrane in the bilayer-structured membrane. In addition, the apple-juice color and turbidity reductions increased with decreasing the average fibers diameter of the PAN nanofibrous membrane. Furthermore, the PAN nanofibrous membrane also helped the cellulose microfibrous membrane in the bilayer-structured membrane enhance the reductions of total phenols, protein, and glucose of the apple juice.

  5. Development of Approaches to Creation of Active Vibration Control System in Problems of the Dynamics for Granular Media

    Directory of Open Access Journals (Sweden)

    Khomenko Andrei P.

    2018-01-01

    Full Text Available The article deals with the development of mathematical models and evaluation criteria of the vibration field in the dynamic interactions of the elements of the vibrational technological machines for the processes of vibrational strengthening of long-length parts with help of a steel balls working medium. The study forms a theoretical understanding of the modes of motions of material particles in interaction with a vibrating surface of the working body of the vibration machine. The generalized approach to the assessment of the dynamic quality of the work of vibrating machines in multiple modes of tossing, when the period of free flight of particles is a multiple of the period of the surface oscillations of the working body, is developed in the article. For the correction of vibration field of the working body, the characteristics of dynamic interactions of granular elements of the medium are taken into account using original sensors. The sensors that can detect different particularities of interaction of the granular medium elements at different points of the working body are proposed to evaluate the deviation from a homogeneous and one-dimensional mode of vibration field. Specially developed sensors are able to register interactions between a single granule, a system of granules in filamentous structures, and multipoint interactions of the elements in a close-spaced cylindrical structure. The system of regularization of the structure of vibration fields based on the introduction of motion translation devices is proposed using the multi-point sensor locations on the working body. The article refers to analytical approaches of the theory of vibration displacements. For the experimental data assessment, the methods of statistical analysis are applied. It is shown that the peculiar features of the motion of granular medium registered by the sensors can be used to build active control systems of field vibration.

  6. Mechanism of coercivity enhancement by Ag addition in FePt-C granular films for heat assisted magnetic recording media

    Energy Technology Data Exchange (ETDEWEB)

    Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K., E-mail: takahashi.yukiko@nims.go.jp; Wang, J.; Hono, K. [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Ina, T.; Nakamura, T.; Ueno, W.; Nitta, K.; Uruga, T. [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2014-06-02

    We investigated the Ag distribution in a FePtAg-C granular film that is under consideration for a heat assisted magnetic recording medium by aberration-corrected scanning transmission electron microscope-energy dispersive X-ray spectroscopy and X-ray absorption fine structure. Ag is rejected from the core of FePt grains during the deposition, forming Ag-enriched shell surrounding L1{sub 0}-ordered FePt grains. Since Ag has no solubility in both Fe and Pt, the rejection of Ag induces atomic diffusions thereby enhancing the kinetics of the L1{sub 0}-order in the FePt grains.

  7. Association of Microalbuminuria and Estimated Glomerular Filtration Rate With Carotid Intima-Media Thickness in Patients With Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Dehdashti Shahrokh

    2015-04-01

    Full Text Available Background Atherosclerosis is the main cause of cardiovascular diseases, and its risk enhances in type 2 diabetes mellitus. Objectives This study aimed to evaluate Carotid Intima-Media Thickness (CIMT by carotid artery ultrasonography and assess its correlation with microalbuminuria and estimated Glomerular Filtration Rate (eGFR in the patients with type 2 diabetes mellitus. Patients and Methods This cross-sectional study was included 205 patients with Type 2 Diabetes Mellitus (T2DM. We recorded clinical and biochemical data such as FBS, lipid profile, and urinary albumin. Intima-media thickness of carotid arteries was measured in all patients by high frequency ultrasound. Results In simple correlation coefficients analysis, CIMT was significantly associated with total cholesterol (r = 0.197, P = 0.008, serum creatinine (r = 0.240, P = 0.001, and urinary albumin (r = 0.420, P = 0.000. Also, CIMT elevated significantly with the stage progression of chronic kidney disease (0.67 ± 0.15 mm in stage 1, 0.73 ± 0.22 mm in stage 2, and 0.82 ± 0.21 mm in stage 3 (P value = 0.024. In multivariate linear regression analysis, the duration of diabetes, weight, HDL, serum creatinine, urinary albumin, and estimated Glomerular Filtration Rate (eGFR were independently associated with CIMT (P value < 0.05 for all. Conclusions Our study shows a relationship between CIMT and renal parameters, including eGFR and albuminuria. This study confirms the importance of intensive examinations for early detection of atherosclerosis and treatment of risk factors.

  8. Association Between Contrast Media Volume-Glomerular Filtration Rate Ratio and Contrast-Induced Acute Kidney Injury After Primary Percutaneous Coronary Intervention.

    Science.gov (United States)

    Celik, Omer; Ozturk, Derya; Akin, Fatih; Ayca, Burak; Yalcın, Ahmet Arif; Erturk, Mehmet; Bıyık, Ismail; Ayaz, Ahmet; Akturk, Ibrahim Faruk; Enhos, Asım; Aslan, Serkan

    2015-07-01

    We hypothesized that contrast media volume-estimated glomerular filtration rate (CV-e-GFR) ratio may be a predictor of contrast media-induced acute kidney injury (CI-AKI). We investigated the associations between CV-e-GFR ratio and CI-AKI in 597 patients undergoing primary percutaneous coronary intervention (pPCI). An absolute ≥0.3 mg/dL increase in serum creatinine compared with baseline levels within 48 hours after the procedure was considered as CI-AKI; 78 (13.1%) of the 597 patients experienced CI-AKI. The amount of contrast during procedure was higher in the CI-AKI group than in those without CI-AKI (153 vs 135 mL, P = .003). The CV-e-GFR ratio was significantly higher in patients with CI-AKI than without (2.3 vs 1.5, P 2 (P < .001, OR = 5.917). In conclusion, CV-e-GFR ratio is significantly associated with CI-AKI after pPCI. © The Author(s) 2014.

  9. Evaluation of Filtration and UV Disinfection for Inactivation of Viruses in Non-Community Water Systems in Minnesota

    Science.gov (United States)

    This study evaluated filtration and disinfection processes for removal and inactivation of pathogens in non-community water systems (NCWS) in two surface water supplies. Pretreatment systems included 1) pressure sand filtration, and 2) granular activated carbon adsorption, and 3...

  10. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Robert; Cooper, Anne Marie; Aymar, Kathryn; Jain, Arti [Environmental Technology, College of Technology and Innovation, Arizona State University, 6073 S. Backus Mall, Mesa, AZ 85212 (United States); Hristovski, Kiril, E-mail: Kiril.Hristovski@asu.edu [Environmental Technology, College of Technology and Innovation, Arizona State University, 6073 S. Backus Mall, Mesa, AZ 85212 (United States)

    2011-10-15

    Highlights: {yields} The morphology, content and distribution of ZrO{sub 2} nanoparticles inside the pores of GAC are affected by the type of GAC. {yields} Lignite ZrO{sub 2}-GAC exhibited Zr content of 12%, while bituminous based ZrO{sub 2}-GAC exhibited Zr content of 9.5%. {yields} The max. adsorption capacities under equilibrium conditions in 5 mM NaHCO{sub 3} buffered water matrix were {approx}8.6 As/g Zr and {approx}12.2 mg As/g Zr at pH = 7.6. {yields} The max. adsorption capacities under equilibrium conditions in NSF 53 Challenge water matrix while {approx}1.5 mg As/g Zr and {approx}3.2 mg As/g Zr at pH = 7.6. {yields} Introduction of nanoparticles did not impact the MB adsorption capacity of the lignite ZrO{sub 2}-GAC, while the one of bituminous ZrO{sub 2}-GAC decreased. - Abstract: This study investigated the effects of in situ ZrO{sub 2} nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 {sup o}C in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO{sub 2} nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5 mM NaHCO{sub 3} buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C{sub 0} {approx} 120 {mu}g/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of

  11. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles

    International Nuclear Information System (INIS)

    Sandoval, Robert; Cooper, Anne Marie; Aymar, Kathryn; Jain, Arti; Hristovski, Kiril

    2011-01-01

    Highlights: → The morphology, content and distribution of ZrO 2 nanoparticles inside the pores of GAC are affected by the type of GAC. → Lignite ZrO 2 -GAC exhibited Zr content of 12%, while bituminous based ZrO 2 -GAC exhibited Zr content of 9.5%. → The max. adsorption capacities under equilibrium conditions in 5 mM NaHCO 3 buffered water matrix were ∼8.6 As/g Zr and ∼12.2 mg As/g Zr at pH = 7.6. → The max. adsorption capacities under equilibrium conditions in NSF 53 Challenge water matrix while ∼1.5 mg As/g Zr and ∼3.2 mg As/g Zr at pH = 7.6. → Introduction of nanoparticles did not impact the MB adsorption capacity of the lignite ZrO 2 -GAC, while the one of bituminous ZrO 2 -GAC decreased. - Abstract: This study investigated the effects of in situ ZrO 2 nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 o C in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO 2 nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5 mM NaHCO 3 buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C 0 ∼ 120 μg/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of competing ions. Correlation between the properties of the media and arsenic and methylene blue removal

  12. Grain scale simulation of multiphase flow through porous media; Simulacao em escala granular do escoamento multifasico em meio poroso

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Ricardo Golghetto; Cheng, Liang-Yee [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica

    2012-07-01

    Since the grain scale modeling of multi-phase flow in porous media is of great interest for the oil industry, the aim of the present research is to show an implementation of Moving Particle Semi-Implicit (MPS) method for the grain scale simulation of multi-phase flow in porous media. Geometry data obtained by a high-resolution CT scan of a sandstone sample has been used as input for the simulations. The results of the simulations performed considering different resolutions are given, the head loss and permeability obtained numerically, as well as the influence of the wettability of the fluids inside the sample of the reservoir's sandstone. (author)

  13. Plasma creatinine levels, estimated glomerular filtration rate and carotid intima media thickness in middle-aged women: a population based cohort study.

    Science.gov (United States)

    Gentile, M; Panico, S; Mattiello, A; de Michele, M; Iannuzzi, A; Jossa, F; Marotta, G; Rubba, P

    2014-06-01

    The relationships between high Creatinine (Cr) levels or low estimated Glomerular Filtration Rate (eGFR) and common carotid Intima Media thickness (IMT) have been evaluated in a population-based cohort study in women, aged 30-69 (Progetto ATENA). Serum Cr and eGFR were measured in 310 women, as a part of 5.062. In this group carotid ultrasound examination (B-Mode imaging) was performed and mean max IMT was calculated. Women were classified by Cr levels >1 mg/dL or eGFR Women with Cr > 1 mg/dL (90th percentile of creatinine distribution) or eGFR less than 56 ml/min (5th percentile of eGFR distribution) had relatively more carotid plaques as compared to the rest of the cohort. Multivariate logistic analysis, after adjustment for age, demonstrated a significant association between Cr (>1 mg/dL) and IMT (≥1.2 mm): OR 4.12 (C.I 1.22-13.86), p = 0.022; or eGFR (women, independently of age, suggest the value of screening for early carotid disease in asymptomatic middle aged-women with mild renal insufficiency, in order to predict those at relatively higher risk for future cardiovascular events. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Treatment of wastewater from a school in a decentralized filtration system by percolation over organic packing media.

    Science.gov (United States)

    Garzón-Zúñiga, M A; Buelna, G

    2011-01-01

    Based on results obtained in the laboratory a WWTP composed of a septic tank and an aerated percolating filter packed with organic media was built for a school. The system can treat 18 m3 d(-1) and was operated with a hydraulic loading rate of 0.078 (m3 m(-2) d(-1). For 360 days different operational conditions including start-up; stabilization; operation with aeration and non aeration; effect of rainy season, breaks from activities due to holidays and restart; were monitored and described in the article. Once stabilized, the system was able to remove, without the need for mechanical aeration, 97% of BOD5, 71% of COD, 93% of TKN, 11% of PO(4-)-P, 95% of TSS, 96% of VSS, in addition to having a removal efficiency of 4 log units of Faecal Coliforms (FC) and 100% helminthes eggs (HE). With this quality, the treated wastewater can be chlorinated and reused to irrigate green areas and/or in toilets. Although sanitary wastewater has a high concentration of Total-N (250 mg L(-1)) and a C/N ratio of less than 1, the system removed 65% of Total-N. Finally it was observed that after non activity periods, there was neither system failure nor the need to re-stabilize the system.

  15. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid

    Science.gov (United States)

    Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Hao, Xiuzhen; Zhou, Dongmei

    2012-01-01

    Hydroxyapatite nanoparticle (nHAP) is increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated granular media. Experiments were carried out over a range of ionic strength (Ic, 0–50 mM NaCl) conditions in the presence of 10 mg L−1 humic acid. The transport of ARS-nHAP was found to decrease with increasing suspension Ic in part, because of enhanced aggregation and chemical heterogeneity. The retention profiles (RPs) of ARS-nHAP exhibited hyperexponential shapes (a decreasing rate of retention with increasing transport distance) for all test conditions, suggesting that some of the attachment was occurring under unfavorable conditions. Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population were contributing causes for the hyperexponential RPs. Consideration of the effect(s) of Ic in the presence of HA is needed to improve the efficacy of nHAP for scavenging metals and actinides in real soils and groundwater environments.

  16. Aerosol filtration

    International Nuclear Information System (INIS)

    First, M.W.; Gilbert, H.

    1982-01-01

    Significant developments in high-efficiency filtration for nuclear applications are reviewed for the period 1968 to 1980. Topics of special interest include (1) factory (bench) and in-place test methods, (2) new developments in paper and filter unit construction methods, (3) vented containment air cleaning systems for liquid-metal fast breeder reactors and light-water-moderated reactors, and (4) decontamination of off-gases from nuclear waste volume-reduction processes. Standards development has been vigorously pursued during this period, but advances in filtration theory have been few. One of the significant changes likely to occur in the immediate future is adoption of the European style of high-efficiency particulate air filters instead of those which have been in service for the past three decades to obtain the benefits of having almost twice as much filter paper in the same filter cartridge

  17. Aerosol filtration

    International Nuclear Information System (INIS)

    First, M.W.; Gilbert, H.

    1981-01-01

    Significant developments in high efficiency filtration for nuclear applications are reviewed for the period 1968 to 1980. Topics of special interest include factory (bench) and in-place test methods, new developments in paper and filter unit construction methods, vented containment air cleaning systems for LMFBR and light water moderated reactors, and decontamination of offgases from nuclear waste volume reduction processes. It is noted that standards development has been vigorously pursued during this period but that advances in filtration theory have been few. One of the significant changes likely to occur in the immediate future is adoption of the European style of HEPA filters for those that have been in service for the past three decades to obtain the benefits of having almost twice as much filter paper in the same filter cartridge. 71 references

  18. Investigation of Microgranular Adsorptive Filtration System

    Science.gov (United States)

    Cai, Zhenxiao

    Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling

  19. Acoustic waves in granular materials

    NARCIS (Netherlands)

    Mouraille, O.J.P.; Luding, Stefan

    2008-01-01

    Dynamic simulations with discrete elements are used to obtain more insight into the wave propagation in dense granular media. A small perturbation is created on one side of a dense, static packing and examined during its propagation until it arrives at the opposite side. The influence of

  20. Traffic and Granular Flow ’03

    CERN Document Server

    Luding, Stefan; Bovy, Piet; Schreckenberg, Michael; Wolf, Dietrich

    2005-01-01

    These proceedings are the fifth in the series Traffic and Granular Flow, and we hope they will be as useful a reference as their predecessors. Both the realistic modelling of granular media and traffic flow present important challenges at the borderline between physics and engineering, and enormous progress has been made since 1995, when this series started. Still the research on these topics is thriving, so that this book again contains many new results. Some highlights addressed at this conference were the influence of long range electric and magnetic forces and ambient fluids on granular media, new precise traffic measurements, and experiments on the complex decision making of drivers. No doubt the “hot topics” addressed in granular matter research have diverged from those in traffic since the days when the obvious analogies between traffic jams on highways and dissipative clustering in granular flow intrigued both c- munities alike. However, now just this diversity became a stimulating feature of the ...

  1. Latest aspects of mechanical filtration

    Directory of Open Access Journals (Sweden)

    Stanislav Koláček

    2013-01-01

    Full Text Available The aim of this study was to describe and unify all knowledge about mechanic filtration. The first part deals with the parameters and properties of filtration. Here some important basic concepts are explained such as pressure gradient, filter life, etc. There’s also a description of convenient filtration technology for coarse and fine materials, such as sand, smoke or soot. The second part primarily focuses on the real use and application of filters for liquid and gaseous media. The differences in construction between different types of filters for filtration of fuels, oils, hydraulic fluids, air and cabin filters are described. The last section is focused mainly on new materials for the production of filters. These materials are ceramic or nanomaterials, which can actually be enriched for example with antibacterial silver or some fungicides.

  2. Aerosol filtration

    International Nuclear Information System (INIS)

    Klein, M.; Goossens, W.R.A.; De Smet, M.; Trine, J.; Hertschap, M.

    1984-01-01

    This report summarizes the work on the development of fibre metallic prefilters to be placed upstream of HEPA filters for the exhaust gases of nuclear process plants. Investigations at ambient and high temperature were carried out. Measurements of the filtration performance of Bekipor porous webs and sintered mats were performed in the AFLT (aerosol filtration at low temperature) unit with a throughput of 15 m 3 /h. A parametric study on the influence of particle size, fibre diameter, number of layers and superficial velocity led to the optimum choice of the working parameters. Three selected filter types were then tested with polydisperse aerosols using a candle-type filter configuration or a flat-type filter configuration. The small-diameter candle type is not well suited for a spraying nozzles regeneration system so that only the flat-type filter was retained for high-temperature tests. A high-temperature test unit (AFHT) with a throughput of 8 to 10 m 3 /h at 400 0 C was used to test the three filter types with an aerosol generated by high-temperature calcination of a simulated nitric acid waste solution traced with 134 Cs. The regeneration of the filter by spray washing and the effect of the regeneration on the filter performance was studied for the three filter types. The porous mats have a higher dust loading capacity than the sintered web which means that their regeneration frequency can be kept lower

  3. Filtration of polydispersed colloids

    International Nuclear Information System (INIS)

    Nuttall, H.E.

    1988-01-01

    In this study, the dynamic microscopic form of the population balance model is applied to the problem of polydispersed particle capture in one spatial diffusion. This mathematical modeling approach can be applied to the difficult and potentially important problem of particulate (radiocolloid) transport in the groundwater surrounding a nuclear waste disposal site. To demonstrate the population balance methodology, the equations were developed and used to investigate transport and capture of polydispersed colloids in packed columns. Modeling simulations were compared to experimental column data. The multidimensional form of the population balance equation was used to analyze the transport and capture of polydispersed colloids. A numerical model was developed to describe transport of polydispersed colloids through a one-dimensional porous region. The effects of various size distributions were investigated in terms of capture efficiency. For simulating the column data, it was found by trial and error that as part of the population balance model a linear size dependent filtration function gave a good fit to the measured colloid concentration profile. The effects of constant versus size dependent filtration coefficients were compared and the differences illustrated by the calculated colloid profile within the column. Also observed from the model calculations was the dramatically changing liquid-phase colloid-size distribution which was plotted as a function of position down the column. This modeling approach was excellent for describing and understanding microscopic filtration in porous media

  4. Cake creep during filtration of flocculated manure

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Keiding, Kristian

    is filtered. Hence, it is not possible to scale up the experiments, and it is therefore difficult to optimize the flocculation and estimate the needed filter media area. Similar problems have been observed when sewage sludge and synthetic core-shell colloids are filtered, and it has been suggested......, and the mixing procedure affect the result, and lab-scale experiments are often used to study how these pre-treatments influence the filtration process. However, the existing mathematical filtration models are based on filtration of inorganic particles and cannot simulate the filtration data obtained when manure...

  5. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devicesThe Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  6. Grey water treatment in urban slums by a filtration system: optimisation of the filtration medium.

    Science.gov (United States)

    Katukiza, A Y; Ronteltap, M; Niwagaba, C B; Kansiime, F; Lens, P N L

    2014-12-15

    Two uPVC columns (outer diameter 160 cm, internal diameter 14.6 cm and length 100 cm) were operated in parallel and in series to simulate grey water treatment by media based filtration at unsaturated conditions and constant hydraulic loading rates (HLR). Grey water from bathroom, laundry and kitchen activities was collected from 10 households in the Bwaise III slum in Kampala (Uganda) in separate containers, mixed in equal proportions followed by settling, prior to transferring the influent to the tanks. Column 1 was packed with lava rock to a depth of 60 cm, while column 2 was packed with lava rock (bottom 30 cm) and silica sand, which was later replaced by granular activated carbon (top 30 cm) to further investigate nutrient removal from grey water. Operating the two filter columns in series at a HLR of 20 cm/day resulted in a better effluent quality than at a higher (40 cm/day) HLR. The COD removal efficiencies by filter columns 1 and 2 in series amounted to 90% and 84% at HLR of 20 cm/day and 40 cm/day, respectively. TOC and DOC removal efficiency amounted to 77% and 71% at a HLR of 20 cm/day, but decreased to 72% and 67% at a HLR of 40 cm/day, respectively. The highest log removal of Escherichia coli, Salmonella sp. and total coliforms amounted to 3.68, 3.50 and 3.95 at a HLR of 20 cm/day respectively. The overall removal of pollutants increased with infiltration depth, with the highest pollutant removal efficiency occurring in the top 15 cm layer. Grey water pre-treatment followed by double filtration using coarse and fine media has the potential to reduce the grey water pollution load in slum areas by more than 60%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Long-range interactions in dilute granular systems

    NARCIS (Netherlands)

    Müller, M.K

    2008-01-01

    In this thesis, on purpose, we focussed on the most challenging, longest ranging potentials. We analyzed granular media of low densities obeying 1/r long-range interaction potentials between the granules. Such systems are termed granular gases and differ in their behavior from ordinary gases by

  8. Uniform shock waves in disordered granular matter.

    Science.gov (United States)

    Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo

    2012-10-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.

  9. Bubbling in vibrated granular films.

    Science.gov (United States)

    Zamankhan, Piroz

    2011-02-01

    With the help of experiments, computer simulations, and a theoretical investigation, a general model is developed of the flow dynamics of dense granular media immersed in air in an intermediate regime where both collisional and frictional interactions may affect the flow behavior. The model is tested using the example of a system in which bubbles and solid structures are produced in granular films shaken vertically. Both experiments and large-scale, three-dimensional simulations of this system are performed. The experimental results are compared with the results of the simulation to verify the validity of the model. The data indicate evidence of formation of bubbles when peak acceleration relative to gravity exceeds a critical value Γ(b). The air-grain interfaces of bubblelike structures are found to exhibit fractal structure with dimension D=1.7±0.05.

  10. Wave propagation of spectral energy content in a granular chain

    NARCIS (Netherlands)

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-01-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like

  11. Cross-flow filtration and axial filtration

    International Nuclear Information System (INIS)

    Kraus, K.A.

    1974-01-01

    Two relatively novel alternative solid-liquid-separation techniques of filtration are discussed. In cross-flow filtration, the feed is pumped past the filtering surface. While in axial filtration the filter, mounted on a rotor, is moved with respect to the feed. While large-scale application of the axial filter is still in doubt, it permits with little expenditure of time and money, duplication of many hydrodynamic aspects of cross-flow filtration for fine-particle handling problems. The technique has been applied to municipal wastes, low-level radioactive waste treatment plant, lead removal from industrial wastes, removal of pulp-mill contaminants, textile-mill wastes, and pretreatment of saline waters by lime-soda process in preparation for hyperfiltration. Economics and energy requirements are also discussed

  12. Pesticide removal by combined ozonation and granular activated carbon filtration

    NARCIS (Netherlands)

    Orlandini, E.

    1999-01-01

    Since the seventies, new water treatment processes have been introduced in the production of drinking water from surface water. Their major aim was to adequately cope with the disinfection of this water, and/or with the removal of pesticides and other organic micropollutants from it. This

  13. Graphite beds for coolant filtration at high temperature

    International Nuclear Information System (INIS)

    Heathcock, R.E.; Lacy, C.S.

    1978-01-01

    High temperature filtration will be provided for new Ontario Hydro CANDU heat transport systems. Filtration has been shown to effectively reduce the concentration of circulating corrosion products in our heat transport systems, hence, minimizing the processes of activity transport. This paper will present one option we have for this application; Deep Bed Granular Graphite Filters. The filter system is described by discussing pertinent aspects of its development programme. The compatibility of the filter and the heat transport coolant are demonstrated by results from loop tests, both out- and in-reactor, and by subsequent results from a large filter installation in the NPD NGS heat transport system. (author)

  14. Kinetic Monte Carlo simulations of the effect of the exchange control layer thickness in CoPtCrB/CoPtCrSiO granular media

    Science.gov (United States)

    Almudallal, Ahmad M.; Mercer, J. I.; Whitehead, J. P.; Plumer, M. L.; van Ek, J.

    2018-05-01

    A hybrid Landau Lifshitz Gilbert/kinetic Monte Carlo algorithm is used to simulate experimental magnetic hysteresis loops for dual layer exchange coupled composite media. The calculation of the rate coefficients and difficulties arising from low energy barriers, a fundamental problem of the kinetic Monte Carlo method, are discussed and the methodology used to treat them in the present work is described. The results from simulations are compared with experimental vibrating sample magnetometer measurements on dual layer CoPtCrB/CoPtCrSiO media and a quantitative relationship between the thickness of the exchange control layer separating the layers and the effective exchange constant between the layers is obtained. Estimates of the energy barriers separating magnetically reversed states of the individual grains in zero applied field as well as the saturation field at sweep rates relevant to the bit write speeds in magnetic recording are also presented. The significance of this comparison between simulations and experiment and the estimates of the material parameters obtained from it are discussed in relation to optimizing the performance of magnetic storage media.

  15. Magnetic-seeding filtration

    International Nuclear Information System (INIS)

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S.

    1997-10-01

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab

  16. Granular gas dynamics

    CERN Document Server

    Brilliantov, Nikolai

    2003-01-01

    While there is not yet any general theory for granular materials, significant progress has been achieved for dilute systems, also called granular gases. The contributions in this book address both the kinetic approach one using the Boltzmann equation for dissipative gases as well as the less established hydrodynamic description. The last part of the book is devoted to driven granular gases and their analogy with molecular fluids. Care has been taken so as to present the material in a pedagogical and self-contained way and this volume will thus be particularly useful to nonspecialists and newcomers to the field.

  17. PROBLEMS OF NONSTATIONARY FILTRATION

    Directory of Open Access Journals (Sweden)

    Vsevolod A. Shabanov

    2018-03-01

    Full Text Available he article deals with the classical hydrodynamic theory of filtration. Discusses models of soil, fluid and nature of fluid flow that formed the basis for the creation of the classic filtration theory. Also discusses the assumptions made for the linearization of the equations. Evaluated the scope of the classical filtration theory. Proposed a new model of filtration through a porous medium, based on the application of the laws of theoretical mechanics. It is based on the classical model of soil: the soil is composed of capillaries with ..parallel axes, in which the liquid moves. For tasks of infiltration equations of motion. Considered special cases of unsteady motion of a finite volume of liquid. Numerical example a machine experiment.

  18. On the submerging of a spherical intruder into granular beds

    Directory of Open Access Journals (Sweden)

    Wu Chuan-Yu

    2017-01-01

    Full Text Available Granular materials are complex systems and their mechanical behaviours are determined by the material properties of individual particles, the interaction between particles and the surrounding media, which are still incompletely understood. Using an advanced discrete element method (DEM, we simulate the submerging process of a spherical projectile (an intruder into granular materials of various properties with a zero penetration velocity (i.e. the intruder is touching the top surface of the granular bed and released from stationary and examine its settling behaviour. By systematically changing the density and size of the intruder and the particle density (i.e. the density of the particles in the granular bed, we find that the intruder can sink deep into the granular bed even with a zero penetration velocity. Furthermore, we confirm that under certain conditions the granular bed can behave like a Newtonian liquid and the submerging intruder can reach a constant velocity, i.e. the terminal velocity, identical to the settling of a sphere in a liquid, as observed experimentally. A mathematical model is also developed to predict the maximum penetration depth of the intruder. The model predictions are compared with experimental data reported in the literature,good agreement was obtained, demonstrating the model can accurately predict the submerging behaviour of the intruder in the granular media.

  19. Centrifuge modelling of granular flows

    Science.gov (United States)

    Cabrera, Miguel Angel; Wu, Wei

    2015-04-01

    A common characteristic of mass flows like debris flows, rock avalanches and mudflows is that gravity is their main driving force. Gravity defines the intensity and duration of the main interactions between particles and their surrounding media (particle-particle, particle-fluid, fluid-fluid). At the same time, gravity delimits the occurrence of phase separation, inverse segregation, and mass consolidation, among other phenomena. Therefore, in the understanding of the flow physics it is important to account for the scaling of gravity in scaled models. In this research, a centrifuge model is developed to model free surface granular flows down an incline at controlled gravity conditions. Gravity is controlled by the action of an induced inertial acceleration field resulting from the rotation of the model in a geotechnical centrifuge. The characteristics of the induced inertial acceleration field during flow are discussed and validated via experimental data. Flow heights, velocity fields, basal pressure and impact forces are measured for a range of channel inclinations and gravity conditions. Preliminary results enlighten the flow characteristics at variable gravity conditions and open a discussion on the simulation of large scale processes at a laboratory scale. Further analysis on the flow physics brings valuable information for the validation of granular flows rheology.

  20. Numerical Solutions of Mechanical Turbulent Filtration Equation Used in Mechatronics and Micro Mechanic

    OpenAIRE

    Hassan Fathabadi

    2013-01-01

    In this study, several novel numerical solutions are presented to solve the turbulent filtration equation and its special case called “Non-Newtonian mechanical filtration equation”. The turbulent filtration equation in porous media is a very important equation which has many applications to solve the problems appearing especially in mechatronics, micro mechanic and fluid mechanic. Many applied mechanical problems can be solved using this equation. For example, non-Newtonian mechanical filtrat...

  1. Granular computing: perspectives and challenges.

    Science.gov (United States)

    Yao, JingTao; Vasilakos, Athanasios V; Pedrycz, Witold

    2013-12-01

    Granular computing, as a new and rapidly growing paradigm of information processing, has attracted many researchers and practitioners. Granular computing is an umbrella term to cover any theories, methodologies, techniques, and tools that make use of information granules in complex problem solving. The aim of this paper is to review foundations and schools of research and to elaborate on current developments in granular computing research. We first review some basic notions of granular computing. Classification and descriptions of various schools of research in granular computing are given. We also present and identify some research directions in granular computing.

  2. Filtration by eyelashes

    Science.gov (United States)

    Vistarakula, Krishna; Bergin, Mike; Hu, David

    2010-11-01

    Nearly every mammalian and avian eye is rimmed with lashes. We investigate experimentally the ability of lashes to reduce airborne particle deposition in the eye. We hypothesize that there is an optimum eyelash length that maximizes both filtration ability and extent of peripheral vision. This hypothesis is tested using a dual approach. Using preserved heads from 36 species of animals at the American Museum of Natural History, we determine the relationship between eye size and eyelash geometry (length and spacing). We test the filtration efficacy of these geometries by deploying outdoor manikins and measuring particle deposition rate as a function of eyelash length.

  3. Magnetic-seeding filtration

    International Nuclear Information System (INIS)

    Depaoli, D.

    1996-01-01

    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes

  4. Impact of granular drops

    KAUST Repository

    Marston, J. O.

    2013-07-15

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  5. Impact of granular drops

    KAUST Repository

    Marston, J. O.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T

    2013-01-01

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  6. Water Treatment Technology - Filtration.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  7. Granular filters for water treatment: heterogeneity and diagnostic tools

    DEFF Research Database (Denmark)

    Lopato, Laure Rose

    the last barrier against disinfection resistant protozoan pathogens and this has led to increased regulation of the filtration process. To be able to produce high-quality filtrate in a constant and reliable manner while meeting stricter drinking water guideline values, it is important to be able......Rapid granular filters are the most commonly used filters in drinking water treatment plants and are the focus of this PhD study. They are usually constructed with sand, anthracite, activated carbon, garnet sand, and ilmenite and have filtration rates ranging from 3 to 15 m/h. Filters are often...... options prescribed. The diagnostic tools are then used again to verify the efficiency of the solution applied. If the problem is not solved the whole process starts again. These tools are of significant interest for the development of the Water Safety Plans recommended by WHO to monitor filters...

  8. Similitude study of a moving bed granular filter

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Huawei Shi; Gerald Colver; Saw-Choon Soo [Iowa State University, IA (United States)

    2003-12-10

    The goal of this study was to evaluate the performance of a moving bed granular filter designed for hot gas clean up. This study used similitude theory to devise experiments that were conducted at near-ambient conditions while simulating the performance of filters operated at elevated temperatures and pressures (850{sup o}C and 1000 kPa). These experiments revealed that the proposed moving bed granular filter can operate at high collection efficiencies, typically exceeding 99%, and low pressure drops without the need for periodic regeneration through the use of a continuous flow of fresh granular filter media in the filter. In addition, important design constraints were discovered for the successful operation of the proposed moving bed granular filter.

  9. Granular Cell Tumor

    African Journals Online (AJOL)

    1). Her packed cell volume was 40%, she was system, gastro-intestinal tract, brain, heart, and negative to human immunodeficiency virus. 2 female reproductive . ... histocytes and neurons at various times. They granules. The granules are probably of lysosmal were consequently termed granular cell origin and contain ...

  10. Controlling wave propagation through nonlinear engineered granular systems

    Science.gov (United States)

    Leonard, Andrea

    We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave

  11. Effect of ozone and granular activated coal (GAC) on the bioactivity of drinking water.

    Science.gov (United States)

    Sallanko, Jarmo; Iivari, Pekka; Heiska, Eeva

    2009-02-15

    In this research, the appearance of easily biodegradable organic material in ozonation and granular activated coal (GAC) filtration was studied. The amount of bioactivity was measured by conventional AOC analyses used in two different modes and also using quite a new growth potential (GP) method. GAC filtration without ozone doubled the amount of AOC of the chemically treated surface water, whereas by ozonation with GAC filtration it was possible to halve the amount of the AOC. The measurement of GP was noticeably simpler than measuring AOC, but for wider use more parallel studies are needed for the comparability of the results of the analysis.

  12. Use of industrial by-products and natural media to adsorb nutrients, metals and organic carbon from drinking water.

    Science.gov (United States)

    Grace, Maebh A; Healy, Mark G; Clifford, Eoghan

    2015-06-15

    Filtration technology is well established in the water sector but is limited by inability to remove targeted contaminants, found in surface and groundwater, which can be damaging to human health. This study optimises the design of filters by examining the efficacy of seven media (fly ash, bottom ash, Bayer residue, granular blast furnace slag (GBS), pyritic fill, granular activated carbon (GAC) and zeolite), to adsorb nitrate, ammonium, total organic carbon (TOC), aluminium, copper (Cu) and phosphorus. Each medium and contaminant was modelled to a Langmuir, Freundlich or Temkin adsorption isotherm, and the impact of pH and temperature (ranging from 10 °C to 29 °C) on their performance was quantified. As retention time within water filters is important in contaminant removal, kinetic studies were carried out to observe the adsorption behaviour over a 24h period. Fly ash and Bayer residue had good TOC, nutrient and Cu adsorption capacity. Granular blast furnace slag and pyritic fill, previously un-investigated in water treatment, showed adsorption potential for all contaminants. In general, pH or temperature adjustment was not necessary to achieve effective adsorption. Kinetic studies showed that at least 60% of adsorption had occurred after 8h for all media. These media show potential for use in a multifunctional water treatment unit for the targeted treatment of specific contaminants. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Filter aids influence on pressure drop across a filtration system

    Science.gov (United States)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  14. Method of electrostatic filtration

    International Nuclear Information System (INIS)

    Devienne, F.M.

    1975-01-01

    Electrostatic filtration of secondary ions of mass m in a given mass ratio with a primary ion of mass M which has formed the secondary ions by fission is carried out by a method which consists in forming a singly-charged primary ion of the substance having a molecular mass M and extracting the ion at a voltage V 1 with respect to ground. The primary ion crosses a potential barrier V 2 , in producing the dissociation of the ion into at least two fragments of secondary ions and in extracting the fragment ion of mass m at a voltage V 2 . Filtration is carried out in an electrostatic analyzer through which only the ions of energy eV'' are permitted to pass, detecting the ions which have been filtered. The mass m of the ions is such that (M/m) = (V 1 - V 2 )/(V'' - V 2 )

  15. Facility of aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G; Regnier, J

    1975-04-18

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator).

  16. Mixture based outlier filtration

    Czech Academy of Sciences Publication Activity Database

    Pecherková, Pavla; Nagy, Ivan

    2006-01-01

    Roč. 46, č. 2 (2006), s. 30-35 ISSN 1210-2709 R&D Projects: GA MŠk 1M0572; GA MDS 1F43A/003/120 Institutional research plan: CEZ:AV0Z10750506 Keywords : data filtration * system modelling * mixture models Subject RIV: BD - Theory of Information http://library.utia.cas.cz/prace/20060165.pdf

  17. Detergent zeolite filtration plant

    OpenAIRE

    Stanković Mirjana S.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for detergent zeolite filtration plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production, from 50,000 to 100,000 t/y. The main goal was to increase the detergent zeoli...

  18. Assessing the fate of organic micropollutants during riverbank filtration utilizing field studies and laboratory test systems

    Science.gov (United States)

    Schmidt, C. K.; Lange, F. T.; Sacher, F.; Baus, C.; Brauch, H.-J.

    2003-04-01

    In Germany and other highly populated countries, several waterworks use riverbank filtration as a first step in the treatment of river water for water supplies. Unfortunately, industrial and municipal discharges and the influence of agriculture lead to the pollution of rivers and lakes by a number of organic chemicals. In order to assess the impact of those organic micropollutants on the quality of drinking water, it is necessary to clarify their fate during infiltration and underground passage. The fate of organic micropollutants in a river water-groundwater infiltration system is mainly determined by adsorption mechanisms and biological transformations. One possibility to simulate the microbial degradation of single compounds during riverbank filtration is the use of laboratory test filter systems, that are operated as biological fixed-bed reactors under aerobic conditions. The benefit and meaningfulness of those test filters was evaluated on the basis of selected target compounds by comparing the results derived from test filter experiments with field studies under environmental conditions at the River Rhine. Samples from the river and from groundwater of a well characterized aerobic infiltration pathway were analyzed over a time period of several years for a spectrum of organic micropollutants. Target compounds comprised several contaminants relevant for the aquatic environment, such as complexing agents, aromatic sulfonates, pharmaceuticals (including iodinated X ray contrast media), and MTBE. Furthermore, the behaviour of some target compounds during aerobic riverbank filtration was compared to their fate along a section of an anaerobic (oxygen-depleted) aquifer at the River Ruhr that is characterized by a transition state between sulfate reduction and methane production. While some organic micropollutants showed no major differences, the elimination of others turned out to be clearly dependent on the underlying redox processes in the groundwater. The

  19. Distrofia corneal granular

    Directory of Open Access Journals (Sweden)

    Alexeide de la C Castillo Pérez

    Full Text Available Las distrofias corneales constituyen un conjunto de enfermedades que presentan, en su mayoría, una baja incidencia y se caracterizan por acúmulo de material hialino o amiloide que disminuyen la transparencia corneal. La distrofia granular es una enfermedad autosómica dominante que presenta opacidades grises en el estroma superficial central de la córnea y se hacen visibles en la primera y segunda décadas de la vida, lo que provoca disminución de la visión más significativa cerca de los 40 años de edad. Presentamos dos casos clínicos de distrofia granular en pacientes hermanos de diferentes sexos, quienes acudieron a la consulta y refirieron visión nublada. El estudio de la historia familiar nos ayuda en el correcto diagnóstico y la biomicroscopia constituye el elemento más importante.

  20. Low pressure drop filtration of airborne molecular organic contaminants using open-channel networks

    Science.gov (United States)

    Dallas, Andrew J.; Joriman, Jon; Ding, Lefei; Weineck, Gerald; Seguin, Kevin

    2007-03-01

    Airborne molecular contamination (AMC) continues to play a very decisive role in the performance of many microelectronic devices and manufacturing processes. Besides airborne acids and bases, airborne organic contaminants such as 1-methyl-2-pyrrolidinone (NMP), hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), perfluoroalkylamines and condensables are of primary concern in these applications. Currently, the state of the filtration industry is such that optimum filter life and removal efficiency for organics is offered by granular carbon filter beds. However, the attributes that make packed beds of activated carbon extremely efficient also impart issues related to elevated filter weight and pressure drop. Most of the lower pressure drop AMC filters currently offered are quite expensive and are simply pleated combinations of various adsorptive and reactive media. On the other hand, low pressure drop filters, such as those designed as open-channel networks (OCN's), offer good filter life and removal efficiency with the additional benefits of significant reductions in overall filter weight and pressure drop. Equally important for many applications, the OCN filters can reconstruct the airflow so as to enhance the operation of a tool or process. For tool mount assemblies and fan filter units (FFUs) this can result in reduced fan and blower speeds, which subsequently can provide reduced vibration and energy costs. Additionally, these low pressure drop designs can provide a cost effective way of effectively removing AMC in full fab (or HVAC) filtration applications without significantly affecting air-handling requirements. Herein, we will present a new generation of low pressure drop OCN filters designed for the removal of airborne organics in a wide range of applications.

  1. Microservices: Granularity vs. Performance

    OpenAIRE

    Shadija, Dharmendra; Rezai, Mo; Hill, Richard

    2017-01-01

    Microservice Architectures (MA) have the potential to increase the agility of software development. In an era where businesses require software applications to evolve to support emerging software requirements, particularly for Internet of Things (IoT) applications, we examine the issue of microservice granularity and explore its effect upon application latency. Two approaches to microservice deployment are simulated; the first with microservices in a single container, and the second with micr...

  2. Type-2 fuzzy granular models

    CERN Document Server

    Sanchez, Mauricio A; Castro, Juan R

    2017-01-01

    In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.

  3. Mathematical models of granular matter

    CERN Document Server

    Mariano, Paolo; Giovine, Pasquale

    2008-01-01

    Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.

  4. BWR condensate filtration studies

    International Nuclear Information System (INIS)

    Wilson, J.A.; Pasricha, A.; Rekart, T.E.

    1993-09-01

    Poor removal of particulate corrosion products (especially iron) from condensate is one of the major problems in BWR systems. The presence of activated corrosion products creates ''hot spots'' and increases piping dose rates. Also, fuel efficiency is reduced and the risk of fuel failure is increased by the deposit of corrosion products on the fuel. Because of these concerns, current EPRI guidelines call for a maximum of 2 ppb of iron in the reactor feedwater with a level of 0.5 ppb being especially desirable. It has become clear that conventional deep bed resins are incapable of meeting these levels. While installation of prefilter systems is an option, it would be more economical for plants with naked deep beds to find an improved bead resin for use in existing systems. BWR condensate filtration technologies are being tested on a condensate side stream at Hope Creek Nuclear Generating Station. After two years of testing, hollow fiber filters (HFF) and fiber matrix filters (FMF), and low crosslink cation resin, all provide acceptable results. The results are presented for pressure drop, filtration efficiency, and water quality measurements. The costs are compared for backwashable non-precoat HFF and FMF. Results are also presented for full deep bed vessel tests of the low crosslink cation resin

  5. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, D.W.; Tsouris, C. [Oak Ridge National Lab., TN (United States); Yiacoumi, Sotira

    1997-10-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process.

  6. Magnetic-seeding filtration

    International Nuclear Information System (INIS)

    DePaoli, D.W.; Tsouris, C.; Yiacoumi, Sotira.

    1997-01-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process

  7. Health Benefits of Particle Filtration

    OpenAIRE

    Fisk, William J.

    2013-01-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and as...

  8. Immobilized Filters for Air Filtration

    National Research Council Canada - National Science Library

    Mahle, John J; Zaiee, Saeed

    2002-01-01

    ... (settling performance) and attrition resistance. The fabricated filter samples will be analyzed in order to determine the physical and chemical factors affecting mechanical strength and chemical filtration...

  9. Enhanced biofiltration of O&G produced water comparing granular activated carbon and nutrients.

    Science.gov (United States)

    Riley, Stephanie M; Ahoor, Danika C; Cath, Tzahi Y

    2018-05-31

    Large volumes of water are required for the development of unconventional oil and gas (O&G) wells. Water scarcity coupled with seismicity induced by deep-well disposal promote new O&G wastewater management strategies, specifically treatment and reuse. One technology that has been proven effective for removal of organic matter and solids is biologically active filtration (BAF) with granular active carbon (GAC); however, further optimization is needed to enhance BAF performance. This study evaluated three GAC media (one spent and two new) and two nutrient-mix supplements for enhanced removal of chemical oxygen demand (COD) and dissolved organic carbon (DOC). Biofilm development was also monitored and correlated to BAF performance. The spent GAC with extant biofilm quickly acclimated to PW and demonstrated up to 92% DOC removal (81% COD) in 24h, while little impact by nutrient addition was observed. In addition, virgin GAC was slow to establish a biofilm, indicating that appropriate GAC selection and pre-developed biofilm is critical for efficient BAF performance. Furthermore, the production of high quality BAF effluent (less than 20mg/L DOC) presents the opportunity to apply BAF as a pretreatment for subsequent desalination-expanding the potential for reuse applications of PW. Copyright © 2017. Published by Elsevier B.V.

  10. Using a Time Granularity Table for Gradual Granular Data Aggregation

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Pedersen, Torben Bach

    2010-01-01

    solution for data reduction based on gradual granular data aggregation. With the gradual granular data aggregation mechanism, older data can be made coarse-grained while keeping the newest data fine-grained. For instance, when data is 3 months old aggregate to 1 minute level from 1 second level, when data...... and improve query performance, especially on resource-constrained systems with limited storage and query processing capabilities. A number of data reduction solutions have been developed, however an effective solution particularly based on gradual data reduction is missing. This paper presents an effective...... is 6 months old aggregate to 2 minutes level from 1 minute level and so on. The proposed solution introduces a time granularity based data structure, namely a relational time granularity table that enables long term storage of old data by maintaining it at different levels of granularity and effective...

  11. Granular corneal dystrophy

    OpenAIRE

    Castillo Pérez, Alexeide de la C; Vilches Lescaille, Daysi; Noriega, Justo Luis; Martínez Balido, Daneel; León Balbón, Bárbaro Ramón; León Bernal, Danysleidi

    2015-01-01

    Las distrofias corneales constituyen un conjunto de enfermedades que presentan, en su mayoría, una baja incidencia y se caracterizan por acúmulo de material hialino o amiloide que disminuyen la transparencia corneal. La distrofia granular es una enfermedad autosómica dominante que presenta opacidades grises en el estroma superficial central de la córnea y se hacen visibles en la primera y segunda décadas de la vida, lo que provoca disminución de la visión más significativa cerca de los 40 año...

  12. Sinking a Granular Raft

    Science.gov (United States)

    Protière, Suzie; Josserand, Christophe; Aristoff, Jeffrey M.; Stone, Howard A.; Abkarian, Manouk

    2017-03-01

    We report experiments that yield new insights on the behavior of granular rafts at an oil-water interface. We show that these particle aggregates can float or sink depending on dimensionless parameters taking into account the particle densities and size and the densities of the two fluids. We characterize the raft shape and stability and propose a model to predict its shape and maximum length to remain afloat. Finally we find that wrinkles and folds appear along the raft due to compression by its own weight, which can trigger destabilization. These features are characteristics of an elastic instability, which we discuss, including the limitations of our model.

  13. Numerical and experimental approaches to study soil transport and clogging in granular filters

    Science.gov (United States)

    Kanarska, Y.; Smith, J. J.; Ezzedine, S. M.; Lomov, I.; Glascoe, L. G.

    2012-12-01

    Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. Numerical modeling has proved to be a cost-effective tool for improving our understanding of physical processes. Traditionally, the consideration of flow and particle transport in porous media has focused on treating the media as continuum. Practical models typically address flow and transport based on the Darcy's law as a function of a pressure gradient and a medium-dependent permeability parameter. Additional macroscopic constitutes describe porosity, and permeability changes during the migration of a suspension through porous media. However, most of them rely on empirical correlations, which often need to be recalibrated for each application. Grain-scale modeling can be used to gain insight into scale dependence of continuum macroscale parameters. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration in the filter layers of gravity dam. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. It is believed that the agreement between simulations and experimental data demonstrates the applicability of the proposed approach for prediction of the soil transport and clogging in embankment dams. To get more precise understanding of

  14. Hot filtration 2

    International Nuclear Information System (INIS)

    Jimenez Rebagliati, Raul; Liberman, S.J.

    1982-01-01

    The magnetic filtration technique allows the removal of suspended magnetic species from a fluid at high flow rate and temperature. It is specially advantageous for water purification in systems such as thermonuclear and thermoelectric plants in which corrosion products must be removed from the heat transport and cooling circuits. Using diluted aqueous suspensions of magnetite, the behaviour of a ball matrix filter was studied as a function of flow rate, temperature and concentration of particles. The retention efficiency shows an exponential decay with fluid's velocity and viscosity in agreement with theory. Within the range of concentration considered, there is no change in the retention with concentration. Design parameters for filters according to plant's needs are obtained from the results of this study. (Author) [es

  15. Spreading of a granular droplet

    Science.gov (United States)

    Clement, Eric; Sanchez, Ivan; Raynaud, Franck; Lanuza, Jose; Andreotti, Bruno; Aranson, Igor

    2008-03-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the``granular droplet'') and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  16. The behaviour of free-flowing granular intruders

    Directory of Open Access Journals (Sweden)

    Wyburn Edward

    2017-01-01

    Full Text Available Particle shape affects both the quasi-static and dynamic behaviour of granular media. There has been significant research devoted to the flowability of systems of irregularly shaped particles, as well as the flow of grains around fixed intruders, however the behaviour of free flowing intruders within granular flows remains comparatively unexplored. Here, the effect of the shape of these intruder particles is studied, looking at the kinematic behaviour of the intruders and in particular their tendency of orientation. Experiments are carried out within the Stadium Shear Device, which is a novel apparatus able to continuously apply simple shear conditions to two-dimensional grain analogues. It is found that the intruder shows different behaviour to that of the bulk flow, and that this behaviour is strongly shape dependent. These insights could lead to the development of admixtures that alter the flowability of granular materials.

  17. Air filtration in HVAC systems

    CERN Document Server

    Ginestet, Alain; Tronville, Paolo; Hyttinen, Marko

    2010-01-01

    Air filtration Guidebook will help the designer and user to understand the background and criteria for air filtration, how to select air filters and avoid problems associated with hygienic and other conditions at operation of air filters. The selection of air filters is based on external conditions such as levels of existing pollutants, indoor air quality and energy efficiency requirements.

  18. 40 CFR 141.173 - Filtration.

    Science.gov (United States)

    2010-07-01

    ... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system...

  19. Hot filtration 1

    International Nuclear Information System (INIS)

    Barbieri, R.R.; Krikscikas de Blanco, Elsa; Liberman, S.J.

    1982-01-01

    The study of graphite filters is a subject of interest since they provide a convenient method for water cleaning at high temperature in nuclear power stations. The contribution of the double layer interaction on the mechanism of magnetite deposition on granular graphite beds was determined by measuring retention efficiencies, differential pressures across the bed and electrophoretic mobilities as a function of pH. At pH 5 a flat maximum in the retention efficiency and a deep minimum in the superficial energy of interaction as a function of pH were obtained. These results show that, even though the double layer interaction is responsible for the changes of the retention efficiency with pH, its contribution does not play an important role on the mechanism of the deposition of the magnetite particles in the graphite bed. It is suggested that the pores' mechanical obstruction effect by particle's aggregation could be a factor of great influence on the retention efficiency. (Author) [es

  20. Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems.

    Science.gov (United States)

    Zhang, Yanyan; Hunt, Heather K; Hu, Zhiqiang

    2013-09-01

    Water and wastewater filtration systems often house pathogenic bacteria, which must be removed to ensure clean, safe water. Here, we determine the persistence of the model bacterium Pseudomonas aeruginosa in two types of filtration systems, and use P. aeruginosa bacteriophages to determine their ability to selectively remove P. aeruginosa. These systems used beds of either anthracite or granular activated carbon (GAC), which were operated at an empty bed contact time (EBCT) of 45 min. The clean bed filtration systems were loaded with an instantaneous dose of P. aeruginosa at a total cell number of 2.3 (± 0.1 [standard deviation]) × 10(7) cells. An immediate dose of P. aeruginosa phages (1 mL of phage stock at the concentration of 2.7 × 10(7) PFU (Plaque Forming Units)/mL) resulted in a reduction of 50% (± 9%) and >99.9% in the effluent P. aeruginosa concentrations in the clean anthracite and GAC filters, respectively. To further evaluate the effects of P. aeruginosa phages, synthetic stormwater was run through anthracite and GAC biofilters where mixed-culture biofilms were present. Eighty five days after an instantaneous dose of P. aeruginosa (2.3 × 10(7) cells per filter) on day 1, 7.5 (± 2.8) × 10(7) and 1.1 (± 0.5) × 10(7) P. aeruginosa cells/g filter media were detected in the top layer (close to the influent port) of the anthracite and GAC biofilters, respectively, demonstrating the growth and persistence of pathogenic bacteria in the biofilters. A subsequent 1-h dose of phages, at the concentration of 5.1 × 10(6) PFU/mL and flow rate of 1.6 mL/min, removed the P. aeruginosa inside the GAC biofilters and the anthracite biofilters by 70% (± 5%) and 56% (± 1%), respectively, with no P. aeruginosa detected in the effluent, while not affecting ammonia oxidation or the ammonia-oxidizing bacterial community inside the biofilters. These results suggest that phage treatment can selectively remove pathogenic bacteria with minimal impact on beneficial

  1. Kinetic Theory of Granular Gases

    Energy Technology Data Exchange (ETDEWEB)

    Trizac, Emmanuel [Center of Theoretical Biological Physics, UC San Diego, La Jolla, CA 92093-0374 (United States); Laboratoire de Physique Theorique et Modeles Statistiques, Campus Universitaire, 91405 Orsay (France)

    2005-11-25

    tangential and normal restitution coefficients, that are again velocity dependent. Th is seems to be the price of a consistent approach, which does not lend itself to much insight. In addition, the behaviour of driven systems is not addressed, whereas in the realm of granular media, force-free systems are the exception rather than the rule. The differences between constant {epsilon} and visco-elastic models is presumably less pronounced in the driven case. Study of driven systems also reveals that the rheology of granular gases is intrinsically non-Newtonian, which is a key feature. Finally, the powerful direct simulation Monte Carlo technique is not described, whereas it is an important tool, particularly relevant for the physics of the Boltzmann equation, and straightforward to implement in its simplest version. N Brilliantov and T Poeschel concentrate on the (equally relevant) molecular dynamics method instead. In conclusion, the book fills a gap in the field. The companion webpage from where molecular dynamics and symbolic algebra programs can be downloaded is also useful. (book review)

  2. Kinetic Theory of Granular Gases

    International Nuclear Information System (INIS)

    Trizac, Emmanuel

    2005-01-01

    coefficients, that are again velocity dependent. Th is seems to be the price of a consistent approach, which does not lend itself to much insight. In addition, the behaviour of driven systems is not addressed, whereas in the realm of granular media, force-free systems are the exception rather than the rule. The differences between constant ε and visco-elastic models is presumably less pronounced in the driven case. Study of driven systems also reveals that the rheology of granular gases is intrinsically non-Newtonian, which is a key feature. Finally, the powerful direct simulation Monte Carlo technique is not described, whereas it is an important tool, particularly relevant for the physics of the Boltzmann equation, and straightforward to implement in its simplest version. N Brilliantov and T Poeschel concentrate on the (equally relevant) molecular dynamics method instead. In conclusion, the book fills a gap in the field. The companion webpage from where molecular dynamics and symbolic algebra programs can be downloaded is also useful. (book review)

  3. Longitudinal-transverse liquid filtration in an annular heat-liberating medium

    International Nuclear Information System (INIS)

    Akhramovich, A.P.; Kolos, V.P.; Sorokin, V.N.

    1987-01-01

    The authors interpret experimental flow visualization data and construct a flow model for coolant filtration and flow in a layered granular heat exchange material for implementation in a reactor cooling system. Breakaway flow zones close to the ends of a layer in longitudinal-transverse liquid filtration are observed. In a linear approximation the problem of determining the form of the ends of the layer for which there is no flow breakaway is solved. The model is tested against experimental data for water and a nitrogen tetroxide coolant

  4. Going Public on Social Media

    Directory of Open Access Journals (Sweden)

    Greg Elmer

    2015-04-01

    Full Text Available This brief essay questions the disconnect between the financial goals of social media properties and the concerns of privacy advocates and other new media critics. It is argued that critics of social media often fail to recognize the financial imperative of social media companies, one that requires users to divulge and publicize ever more granular aspects of their daily lives, thoughts, and feelings.

  5. Large granular lymphocyte leukemia

    OpenAIRE

    Terra, Bruno; Maia, Amanda M.

    2010-01-01

    O presente estudo tem como objetivo o estabelecimento de fundamentação teórica atualizada baseada em revisão bibliográfica sobre a leucemia de grandes linfócitos granulares (LGLG), doença onco-hematológica, que, devido à sua relativa raridade, é pouco conhecida e subdiagnosticada. A LGLG é caracterizada pela proliferação clonal de linfócitos T ou NK na medula óssea e/ou no sangue periférico. Dentre as manifestações clínico-laboratoriais, podem ocorrer citopenias (anemia e/ou neutropenia e/ou ...

  6. Diesel fuel filtration system

    International Nuclear Information System (INIS)

    Schneider, D.

    1996-01-01

    The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel's hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system

  7. Thermal conductivity of granular materials

    Energy Technology Data Exchange (ETDEWEB)

    Buyevich, Yu A

    1974-01-01

    Stationary heat transfer in a granular material consisting of a continuous medium containing spherical granules of other substances is considered under the assumption that the spatial distribution of granules is random. The effective thermal conductivity characterizing macroscopic heat transfer in such a material is expressed as a certain function of the conductivities and volume fractions of the medium and dispersed substances. For reasons of mathematical analogy, all the results obtained for the thermal conductivity are valid while computing the effective diffusivity of some admixture in granular materials as well as for evaluation of the effective electric conductivity or the mean dielectric and magnetic permeabilities of granular conductors and dielectrics. (23 refs.)

  8. Problems of multiphase fluid filtration

    CERN Document Server

    Konovalov, AN

    1994-01-01

    This book deals with a spectrum of problems related to the mathematical modeling of multiphase filtration. Emphasis is placed on an inseparable triad: model - algorithm - computer code. An analysis of new and traditional filtration problems from the point of view of both their numerical implementation and the reproduction of one or another technological characteristics of the processes under consideration is given. The basic principles which underlie the construction of efficient numerical methods taking into account the filtration problems are discussed: non-evolutionary nature, degeneration,

  9. Research of process of filtration of salt water by bulk filters with the use of vibration

    Directory of Open Access Journals (Sweden)

    A. I. Krikun

    2018-01-01

    Full Text Available For the purification of process water from impurities at fish processing plants, a large number of filtering devices are currently used, differing in their design parameters (mesh, woven, disco, etc.. However, in practice, these filtering devices are mainly used as the first stage of water treatment, since they can not provide sufficient quality of the filtrate. The most effective, as numerous studies of scientists of our country and the world show, are bulk granular filters. Their main advantages over other devices of similar designation are: they have a simple and reliable design; resistant to aggressive operating conditions; they are capable of effectively purifying seawater from mechanical impurities at relatively low pressure; most economical; have a filtering load capable of a long time to work without regeneration (the approximate service life of a grain-loading is 3 to 5 years etc. In this article, the influence of vibration effects on the filtration of sea water in a designed and fabricated filter unit with bulk granular materials of natural and artificial origin, the design of which is protected by two patents for the utility model. The results of the study are presented, revealing the degree of influence of the intensity of vibration of the perforated partitioning wall on the state of bulk granular materials located on it (segregation by size, stratified vibro-packing, compacting or loosening of a layer of granular material. The dependences of the capacity of the filtration unit on the amplitude, frequency and the vibration intensity factor have been experimentally established, which made it possible to establish rational vibration parameters of the perforated septum, under which the filtering layer becomes denser, the porosity of the loading decreases, and the precipitate does not break into the filtrate.

  10. Granular flows: fundamentals and applications

    Science.gov (United States)

    Cleary, Paul W.

    DEM allows the prediction of complex industrial and geophysical particle flows. The importance of particle shape is demonstrated through a series of simple examples. Shape controls resistance to shear, the magnitude of collision stress, dilation and the angle of repose. We use a periodic flow of a bed of particles to demonstrate the different states of granular matter, the generation of dilute granular flow when granular temperature is high and the flow dependent nature of the granular thermodynamic boundary conditions. A series of industrial case studies examines how DEM can be used to understand and improve processes such as separation, mixing, grinding, excavation, hopper discharge, metering and conveyor interchange. Finally, an example of landslide motion over real topography is presented.

  11. Filtration characteristics in membrane bioreactors

    NARCIS (Netherlands)

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and

  12. Superconductivity in inhomogeneous granular metals

    International Nuclear Information System (INIS)

    McLean, W.L.

    1980-01-01

    A model of elongated metal ellipsoids imbedded in a granular metal is treated by an effective medium approach to explain the observed temperature dependence of the normal-state conductivity of superconducting granular aluminum. Josephson tunneling is thus still required to account for the superconductivity. The model predicts the same kind of contrasting behavior on opposite sides of the metal-insulator transition as is found in the recent scaling treatment of Anderson localization

  13. Health benefits of particle filtration.

    Science.gov (United States)

    Fisk, W J

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, for example, 7% to 25%. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air. Published 2013. This article is a US Government work and is in the public domain in the USA.

  14. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percent age improvement in health outcomes is typically modest, for example, 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  15. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, e.g., 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  16. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  17. Self Cleaning HEPA Filtration without Interrupting Process Flow

    International Nuclear Information System (INIS)

    Wylde, M.

    2009-01-01

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research (Bergman et al 1997, Moore et al 1992) suggests that the then costs to the DOE, based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4,450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft 3 /min, cleanable, stainless HEPA could be commercially available for $5,000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15,000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  18. Analytical and Computational Modeling of Mechanical Waves in Microscale Granular Crystals: Nonlinearity and Rotational Dynamics

    Science.gov (United States)

    Wallen, Samuel P.

    Granular media are one of the most common, yet least understood forms of matter on earth. The difficulties in understanding the physics of granular media stem from the fact that they are typically heterogeneous and highly disordered, and the grains interact via nonlinear contact forces. Historically, one approach to reducing these complexities and gaining new insight has been the study of granular crystals, which are ordered arrays of similarly-shaped particles (typically spheres) in Hertzian contact. Using this setting, past works explored the rich nonlinear dynamics stemming from contact forces, and proposed avenues where such granular crystals could form designer, dynamically responsive materials, which yield beneficial functionality in dynamic regimes. In recent years, the combination of self-assembly fabrication methods and laser ultrasonic experimental characterization have enabled the study of granular crystals at microscale. While our intuition may suggest that these microscale granular crystals are simply scaled-down versions of their macroscale counterparts, in fact, the relevant physics change drastically; for example, short-range adhesive forces between particles, which are negligible at macroscale, are several orders of magnitude stronger than gravity at microscale. In this thesis, we present recent advances in analytical and computational modeling of microscale granular crystals, in particular concerning the interplay of nonlinearity, shear interactions, and particle rotations, which have previously been either absent, or included separately at macroscale. Drawing inspiration from past works on phononic crystals and nonlinear lattices, we explore problems involving locally-resonant metamaterials, nonlinear localized modes, amplitude-dependent energy partition, and other rich dynamical phenomena. This work enhances our understanding of microscale granular media, which may find applicability in fields such as ultrasonic wave tailoring, signal processing

  19. Granular flows in constrained geometries

    Science.gov (United States)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  20. Wave propagation of spectral energy content in a granular chain

    Directory of Open Access Journals (Sweden)

    Shrivastava Rohit Kumar

    2017-01-01

    Full Text Available A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.

  1. Groundwater Quality Improvement by Using Aeration and Filtration Methods

    OpenAIRE

    Nik N. Nik Daud; Nur H. Izehar; B. Yusuf; Thamer A. Mohamed; A. Ahsan

    2013-01-01

    An experiment was conducted using two aeration methods (water-into-air and air-into-water) and followed by filtration processes using manganese greensand material. The properties of groundwater such as pH, dissolved oxygen, turbidity and heavy metal concentration (iron and manganese) will be assessed. The objectives of this study are i) to determine the effective aeration method and ii) to assess the effectiveness of manganese greensand as filter media in removing iron an...

  2. Filtration and compression of organic materials

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Keiding, Kristian

    is to use more simple systems. Dextran-MnO2 particles and polystyrene particles with a water-swollen polyacrylic acid shell have therefore been synthesised. These particles have been filtered and used to study the non-linear filtration behaviour. The compressibility of the formed cake has been investigated......The conventional filtration theory has been based on filtrations of incompressible particles such as anatase, kaolin and clay. The filtration models have later been used for organic slurries but can often not explain the observed experimental data. At constant pressure, the filtrate volume does...... and the discrepancy between the filtration theory and the observed filtration behaviour explained as a time-dependent collapse of the formed cake (creep). Thus, the creep phenomenon has been adopted in the conventional filtration models and it will be shown that the model can be used to simulate filtration data...

  3. Modeling the filtration ability of stockpiled filtering facepiece

    Science.gov (United States)

    Rottach, Dana R.

    2016-03-01

    Filtering facepiece respirators (FFR) are often stockpiled for use during public health emergencies such as an infectious disease outbreak or pandemic. While many stockpile administrators are aware of shelf life limitations, environmental conditions can lead to premature degradation. Filtration performance of a set of FFR retrieved from a storage room with failed environmental controls was measured. Though within the expected shelf life, the filtration ability of several respirators was degraded, allowing twice the penetration of fresh samples. The traditional picture of small particle capture by fibrous filter media qualitatively separates the effect of inertial impaction, interception from the streamline, diffusion, settling, and electrostatic attraction. Most of these mechanisms depend upon stable conformational properties. However, common FFR rely on electrets to achieve their high performance, and over time heat and humidity can cause the electrostatic media to degrade. An extension of the Langevin model with correlations to classical filtration concepts will be presented. The new computational model will be used to predict the change in filter effectiveness as the filter media changes with time.

  4. Traffic and Granular Flow '11

    CERN Document Server

    Buslaev, Alexander; Bugaev, Alexander; Yashina, Marina; Schadschneider, Andreas; Schreckenberg, Michael; TGF11

    2013-01-01

    This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike. It addresses new developments at the interface between physics, engineering and computational science. Complex systems, where many simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena.   The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic, granular matter, biological transport, transport networks, data acquisition, data analysis and technological applications. Different perspectives, i.e. modeling, simulations, experiments and phenomenological observations, are considered.

  5. Solitons in Granular Chains

    International Nuclear Information System (INIS)

    Manciu, M.; Sen, S.; Hurd, A.J.

    1999-01-01

    The authors consider a chain of elastic (Hertzian) grains that repel upon contact according to the potential V = adelta u , u > 2, where delta is the overlap between the grains. They present numerical and analytical results to show that an impulse initiated at an end of a chain of Hertzian grains in contact eventually propagates as a soliton for all n > 2 and that no solitons are possible for n le 2. Unlike continuous, they find that colliding solitons in discrete media initiative multiple weak solitons at the point of crossing

  6. Optimization of suspensions filtration with compressible cake

    Directory of Open Access Journals (Sweden)

    Janacova Dagmar

    2016-01-01

    Full Text Available In this paper there is described filtering process for separating reaction mixture after enzymatic hydrolysis to process the chromium tanning waste. Filtration of this mixture is very complicated because it is case of mixture filtration with compressible cake. Successful process strongly depends on mathematical describing of filtration, calculating optimal values of pressure difference, specific resistant of filtration cake and temperature maintenance which is connected with viscosity change. The mathematic model of filtration with compressible cake we verified in laboratory conditions on special filtration device developed on our department.

  7. Some observations on air filtration

    NARCIS (Netherlands)

    Kluyver, A.J.; Visser, J.

    1950-01-01

    1. A method has been developed for testing the filtration efficiency of some filter materials. For each of the materials investigated — cotton wool, stillite and carbon — a suitable filter has been devised. 2. The filtered air was analyzed as to its germ content with the aid of a set of 3 capillary

  8. Filtration device for active effluents

    International Nuclear Information System (INIS)

    Guerin, M.; Meunier, G.

    1994-01-01

    Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter

  9. Penetration in bimodal, polydisperse granular material

    KAUST Repository

    Kouraytem, Nadia; Thoroddsen, Sigurdur T; Marston, J. O.

    2016-01-01

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  10. Penetration in bimodal, polydisperse granular material

    KAUST Repository

    Kouraytem, N.

    2016-11-07

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  11. Granular boycott effect: How to mix granulates

    Science.gov (United States)

    Duran, J.; Mazozi, T.

    1999-11-01

    Granular material can display the basic features of the Boycott effect in sedimentation. A simple experiment shows that granular material falls faster in an inclined tube than in a vertical tube, in analogy with the Boycott effect. As long as the inclination of the tube is above the avalanche threshold, descent of granular material in the tube causes internal convection which in turn results in an efficient mixture of the granular components. By contrast, as in analogous experiments in two dimensions, a vertical fall of granular material occurs via successive block fragmentation, resulting in poor mixing.

  12. Filtrations of free groups as intersections

    OpenAIRE

    Efrat, Ido

    2013-01-01

    For several natural filtrations of a free group S we express the n-th term of the filtration as the intersection of all kernels of homomorphisms from S to certain groups of upper-triangular unipotent matrices. This generalizes a classical result of Grun for the lower central filtration. In particular, we do this for the n-th term in the lower p-central filtration of S.

  13. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    Science.gov (United States)

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Portable field water sample filtration unit

    International Nuclear Information System (INIS)

    Hebert, A.J.; Young, G.G.

    1977-01-01

    A lightweight back-packable field-tested filtration unit is described. The unit is easily cleaned without cross contamination at the part-per-billion level and allows rapid filtration of boiling hot and sometimes muddy water. The filtration results in samples that are free of bacteria and particulates and which resist algae growth even after storage for months. 3 figures

  15. Demonstration of creep during filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Bugge, Thomas Vistisen; Kirchheiner, Anders Løvenbalk

    The classical filtration theory assumes a unique relationship between the local filter cake porosity and the local effective pressure. For a number of compressible materials, it has however been observed that during the consolidation stage this may not be the case. It has been found...... that the production of filtrate also depends on the characteristic time for the filter cake solids to deform. This is formulated in the Terzaghi-Voigt model in which a secondary consolidation is introduced. The secondary consolidation may be visualized by plots of the relative cake deformation (U) v.s. the square...... root of time. Even more clearly it is demonstrated by plotting the liquid pressure at the cake piston interface v.s. the relative deformation (to be shown). The phenomenon of a secondary consolidation processes is in short called creep. Provided that the secondary consolidation rate is of the same...

  16. Properties of plastic filtration material

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, W.

    1988-01-01

    Discusses properties of filters made of thermoplastic granulated material. The granulated plastic has a specific density of 10.3-10.6 kN/m/sup 3/ and a bulk density of about 6 kN/m/sup 3/. Its chemical resistance to acids, bases and salts is high but is it soluble in organic solvents. Filters made of this material are characterized by a porosity coefficient of 36.5% and a bulk density of 5.7-6.8 kN/m/sup 3/. Physical and mechanical properties of filter samples made of thermoplastic granulated material (50x50x50 mm) were investigated under laboratory conditions. Compression strength and influencing factors were analyzed (ambient temperature, manufacturing technology). Tests show that this filtration material developed by Poltegor is superior to other filtration materials used in Poland.

  17. HYPERELASTIC MODELS FOR GRANULAR MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse, Paul W; Corradini, Michael L

    2009-01-29

    A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent “granular elasticity” theory proposes a non-linear elastic model based on “Hertz contacts” between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of

  18. Experimental investigation of the Rowe's dilatancy law on an atypical granular medium from a municipal solid waste incineration bottom ash

    Science.gov (United States)

    Becquart, Frédéric; Abriak, Nor Edine

    2013-06-01

    Municipal Solid Waste Incineration (MSWI) bottom ashes are irregular granular media because of their origin and are very heterogeneous with a large quantity of angular particles of different chemical species. MSWI bottom ash is a renewable granular resource alternative to the use of non-renewable standard granular materials. Beneficial use of these alternative granular materials mainly lies in road engineering. However, the studies about mechanical properties of such granular media still remain little developed, those being mainly based on empirical considerations. In this paper, a study of mechanical behaviour of a MSWI bottom ash under axisymmetric triaxial loadings conditions is presented. Samples are initially dense after Proctor compaction, are saturated and tested in drained conditions, under different effective confining pressures ranging from 100 to 600 kPa. The evolutions of volumetric strains show an initial contracting phase followed by a dilatancy phase, more pronounced when the confining pressure is low. The stresses ratios at the characteristic state and at the critical state appear in good agreement and with a null rate of volume variation. The angles of internal friction and dilatancy of the studied MSWI bottom ash are estimated and are similar to conventional granular materials used especially in road engineering. The dilatancy law of Rowe is well experimentally verified on this irregular recycled granular material.

  19. Critical state flow rules for CFD simulations of wet granular flows

    NARCIS (Netherlands)

    Schwarze, R.; Gladkyy, A.; Luding, Stefan; E. Onate M. Bischoff, E. Ramm; P. Wriggers,

    2013-01-01

    First rheological investigation results of weakly wet granular media are presented. The materials have been examined experimentally and numerically in well- defined shear configurations in steady state, in the intermediate flow regime. For the experiments, a Searl-type ring shear cell with rotating

  20. Development of a double-layered ceramic filter for aerosol filtration at high-temperatures: the filter collection efficiency.

    Science.gov (United States)

    de Freitas, Normanda L; Gonçalves, José A S; Innocentini, Murilo D M; Coury, José R

    2006-08-25

    The performance of double-layered ceramic filters for aerosol filtration at high temperatures was evaluated in this work. The filtering structure was composed of two layers: a thin granular membrane deposited on a reticulate ceramic support of high porosity. The goal was to minimize the high pressure drop inherent of granular structures, without decreasing their high collection efficiency for small particles. The reticulate support was developed using the technique of ceramic replication of polyurethane foam substrates of 45 and 75 pores per inch (ppi). The filtering membrane was prepared by depositing a thin layer of granular alumina-clay paste on one face of the support. Filters had their permeability and fractional collection efficiency analyzed for filtration of an airborne suspension of phosphatic rock in temperatures ranging from ambient to 700 degrees C. Results revealed that collection efficiency decreased with gas temperature and was enhanced with filtration time. Also, the support layer influenced the collection efficiency: the 75 ppi support was more effective than the 45 ppi. Particle collection efficiency dropped considerably for particles below 2 microm in diameter. The maximum collection occurred for particle diameters of approximately 3 microm, and decreased again for diameters between 4 and 8 microm. Such trend was successfully represented by the proposed correlation, which is based on the classical mechanisms acting on particle collection. Inertial impaction seems to be the predominant collection mechanism, with particle bouncing/re-entrainment acting as detachment mechanisms.

  1. Pré-filtração em pedregulho e filtração lenta com areia, manta não tecida e carvão ativado para polimento de efluentes domésticos tratados em leitos cultivados Pré-filtration in boulder and slow sand filtration with non-woven synthetic layers and granulated vegetal coal to improve quality in wastewater treated by constructed wetlands

    Directory of Open Access Journals (Sweden)

    José E. S. Paterniani

    2011-01-01

    Full Text Available O presente trabalho teve como objetivo comparar sistemas de filtragem, composto de pré-filtro de pedregulho seguido de filtro lento com o meio filtrante areia e no topo manta sintética não tecida e pré-filtro de pedregulho seguido de filtro lento com meio filtrante areia e carvão ativado granular e no topo manta sintética não tecida, para polimento de efluentes domésticos tratados em leitos cultivados, visando à aplicação na fertirrigação. Na comparação dos sistemas de filtragem, avaliou-se a eficiência de remoção dos parâmetros: sólidos em suspensão, turbidez, cor aparente, demanda química de oxigênio, oxigênio dissolvido, ferro, manganês, coliformes totais e E. coli. Os dois sistemas operavam 24 horas por dia, com a mesma taxa de aplicação, tratando uma vazão total final de 1,5 m³ dia-1, sendo que a taxa de aplicação para a unidade de pré-filtração era, em média, de 8,4 m³ m-2 dia-1 e para cada uma das unidades de filtração lenta era, em media, de 2,7 m³ m-2 dia-1. As unidades de pré-filtração e filtração lenta mostraram-se eficientes na redução das concentrações de sólidos suspensos, turbidez, cor aparente e DQO, como polimento de esgotos domésticos previamente tratados. O uso de carvão ativado granular, em combinação com areia, proporcionou ao filtro lento maior eficiência na remoção de sólidos suspensos, cor, turbidez, coliformes totais e E. Coli., sem com isso aumentar a perda de carga inicial. Existe a possibilidade de utilização dos efluentes para a prática da fertirrigação, sendo necessário o processo de desinfecção ou não, dependendo da cultura e o sistema de irrigação utilizado.The objective of this study was the comparison between two filtration systems, being one composed of a boulder pre-filter followed by a slow filter with sand as filtration media and a non-woven synthetic fabric in the upper part, and the other one composed of a boulder pre-filter followed by a

  2. Relation Between Filtration and Soil Consolidation Theories

    Directory of Open Access Journals (Sweden)

    Strzelecki Tomasz

    2015-03-01

    Full Text Available This paper presents a different, than commonly used, form of equations describing the filtration of a viscous compressible fluid through a porous medium in isothermal conditions. This mathematical model is compared with the liquid flow equations used in the theory of consolidation. It is shown that the current commonly used filtration model representation significantly differs from the filtration process representation in Biot’s and Terzaghi’s soil consolidation models, which has a bearing on the use of the methods of determining the filtration coefficient on the basis of oedometer test results. The present analysis of the filtration theory equations should help interpret effective parameters of the non-steady filtration model. Moreover, equations for the flow of a gas through a porous medium and an interpretation of the filtration model effective parameters in this case are presented.

  3. Development and testing of a two stage granular filter to improve collection efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rangan, R.S.; Prakash, S.G.; Chakravarti, S.; Rao, S.R.

    1999-07-01

    A circulating bed granular filter (CBGF) with a single filtration stage was tested with a PFB combustor in the Coal Research Facility of BHEL R and D in Hyderabad during the years 1993--95. Filter outlet dust loading varied between 20--50 mg/Nm{sup 3} for an inlet dust loading of 5--8 gms/Nm{sup 3}. The results were reported in Fluidized Bed Combustion-Volume 2, ASME 1995. Though the outlet consists of predominantly fine particulates below 2 microns, it is still beyond present day gas turbine specifications for particulate concentration. In order to enhance the collection efficiency, a two-stage granular filtration concept was evolved, wherein the filter depth is divided between two stages, accommodated in two separate vertically mounted units. The design also incorporates BHEL's scale-up concept of multiple parallel stages. The two-stage concept minimizes reentrainment of captured dust by providing clean granules in the upper stage, from where gases finally exit the filter. The design ensures that dusty gases come in contact with granules having a higher dust concentration at the bottom of the two-stage unit, where most of the cleaning is completed. A second filtration stage of cleaned granules is provided in the top unit (where the granules are returned to the system after dedusting) minimizing reentrainment. Tests were conducted to determine the optimum granule to dust ratio (G/D ratio) which decides the granule circulation rate required for the desired collection efficiency. The data brings out the importance of pre-separation and the limitation on inlet dust loading for any continuous system of granular filtration. Collection efficiencies obtained were much higher (outlet dust being 3--9 mg/Nm{sub 3}) than in the single stage filter tested earlier for similar dust loading at the inlet. The results indicate that two-stage granular filtration has a high potential for HTHT application with fewer risks as compared to other systems under development.

  4. Paediatric laryngeal granular cell tumour

    Directory of Open Access Journals (Sweden)

    Dauda Ayuba

    2009-01-01

    Full Text Available Granular cell tumour (GCT affecting the larynx is not common, especially in children. Most cases are apt to be confused with respiratory papilloma and may even be mistaken for a malignant neoplasia. We present a case of laryngeal GCT in a 12-year-old child to emphasize that the tumour should be regarded in the differential of growths affecting the larynx in children.

  5. 10,000 - A reason to study granular heat convection

    Energy Technology Data Exchange (ETDEWEB)

    Einav, I.; Rognon, P.; Gan, Y.; Miller, T.; Griffani, D. [Particles and Grains Laboratory, School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia)

    2013-06-18

    In sheared granular media, particle motion is characterized by vortex-like structures; here this is demonstrated experimentally for disks system undergoing indefinite deformation during simple shear, as often imposed by the rock masses hosting earthquake fault gouges. In traditional fluids it has been known for years that vortices represent a major factor of heat transfer enhancement via convective internal mixing, but in analyses of heat transfer through earthquake faults and base planes of landslides this has been continuously neglected. Can research proceed by neglecting heat convection by internal mixing? Our answer is astonishingly far from being yes.

  6. Impact Compaction of a Granular Material

    Science.gov (United States)

    Fenton, Gregg; Asay, Blaine; Todd, Steve; Grady, Dennis

    2017-06-01

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Although, the mechanical behavior of granular materials have been studied extensively for several decades, the dynamic behavior of these materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This paper describes how an instrumented plunger impact system can be used to measure the compaction process for granular materials at high and controlled strain rates and subsequently used for computational modelling. The experimental technique relies on a gas-gun driven plunger system to generate a compaction wave through a volume of granular material. This volume of material has been redundantly instrumented along the bed length to track the progression of the compaction wave, and the piston displacement is measured with Photon Doppler Velocimetry (PDV). Using the gathered experimental data along with the initial material tap density, a granular material equation of state can be determined.

  7. Granular packing as model glass formers

    International Nuclear Information System (INIS)

    Wang Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories. (paper)

  8. Water filtration using plant xylem.

    Directory of Open Access Journals (Sweden)

    Michael S H Boutilier

    Full Text Available Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees--a readily available, inexpensive, biodegradable, and disposable material--can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm(3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  9. Macular thickness after glaucoma filtration surgery.

    Science.gov (United States)

    Sesar, Antonio; Cavar, Ivan; Sesar, Anita Pusić; Geber, Mia Zorić; Sesar, Irena; Laus, Katia Novak; Vatavuk, Zoran; Mandić, Zdravko

    2013-09-01

    The aim of present study was to analyze early postoperative changes in the macular area using optical coherence tomography (OCT) after uncomplicated glaucoma filtration surgery. This prospective study included 32 patients (34 eyes) with open-angle glaucoma, which underwent trabeculectomy with or without use of mitomycin C. Exclusion criteria were macular edema, uveitis, age-related macular degeneration, blurred optical media, secondary glaucoma and angle-closure glaucoma. All standard clinical examinations were made before surgery, at the 2nd day, 1 week and 1 month after surgery. Tomography of the macula was performed during every examination using Cirrus HD OCT for the analysis of central subfield thickness. Results show that thickening of the macula was slightly higher 1 week and 1 month after operation in comparison with baseline end 2nd day postoperativelly. There was no significant difference in the change of macular thickness in patients who have used topical prostaglandins compared with those who have used other topical medications. Also, there was no difference in macular changes between patients treated with or without mitomycin C. In conclusion, we found a slight subclinical increase in macular thickness after uncomplicated trabeculectomy, for which we considered that was the result in reduction of intraocular pressure after glaucoma surgery. Macular thickening after glaucoma filtering surgery could be a physiological reaction to the stress of the retina caused by a sudden reduction of intraocular pressure and it is the consequence of altered relationship between capillary pressure and interstitial fluid pressure.

  10. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.

    2017-01-01

    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  11. Uncertainty and Sensitivity Analysis of Filtration Models for Non-Fickian transport and Hyperexponential deposition

    DEFF Research Database (Denmark)

    Yuan, Hao; Sin, Gürkan

    2011-01-01

    Uncertainty and sensitivity analyses are carried out to investigate the predictive accuracy of the filtration models for describing non-Fickian transport and hyperexponential deposition. Five different modeling approaches, involving the elliptic equation with different types of distributed...... filtration coefficients and the CTRW equation expressed in Laplace space, are selected to simulate eight experiments. These experiments involve both porous media and colloid-medium interactions of different heterogeneity degrees. The uncertainty of elliptic equation predictions with distributed filtration...... coefficients is larger than that with a single filtration coefficient. The uncertainties of model predictions from the elliptic equation and CTRW equation in Laplace space are minimal for solute transport. Higher uncertainties of parameter estimation and model outputs are observed in the cases with the porous...

  12. Side Stream Filtration for Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-20

    This technology evaluation assesses side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This evaluation provides an overview of the characterization of side stream filtration technology, describes typical applications, and details specific types of filtration technology.

  13. Relation Between Filtration and Soil Consolidation Theories

    OpenAIRE

    Strzelecki Tomasz; Strzelecki Michał

    2015-01-01

    This paper presents a different, than commonly used, form of equations describing the filtration of a viscous compressible fluid through a porous medium in isothermal conditions. This mathematical model is compared with the liquid flow equations used in the theory of consolidation. It is shown that the current commonly used filtration model representation significantly differs from the filtration process representation in Biot’s and Terzaghi’s soil consolidation models, which has a bearing on...

  14. Filtration of Sludge and Sodium Nonatitanate Solutions

    International Nuclear Information System (INIS)

    Poirier, M.R.

    2000-01-01

    The proposed facility designs for the ion exchange and solvent extraction flowsheets under development to treat high level waste at the Savannah River Site use crossflow filtration to remove entrained sludge and monosodium titanate (MST). Bench-scale and pilot-scale testing performed with simulated feed streams showed much lower filtration rates than desired for the process. This report documents an investigation of the impact on filtration of using Honeywell sodium nonatitanate (ST), rather than MST, for strontium and actinide removal

  15. Environmental Technology Verification: Baghouse Filtration Products--TDC Filter Manufacturing, Inc., SB025 Filtration Media

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. ETV seeks to ach...

  16. Improved Filtration Technology for Pathogen Reduction in Rural Water Supplies

    Directory of Open Access Journals (Sweden)

    Valentine Tellen

    2010-06-01

    Full Text Available Intermittent bio-sand filtration (BSF is a low-cost process for improving water quality in rural households. This study addresses its two drawbacks: flow limitations requiring excessive waiting, and inadequate purification when high flows are imposed. Two modifications were examined: increasing the sand’s effective size, and adding zero-valent iron (ZVI into the media as a disinfectant. After 65 days, percent reductions in total coliform, fecal coliform, and fecal streptococci averaged 98.9% for traditional BSF and 99% for the improved BSF. Both modifications showed statistically significant improvements. Increased sand size and ZVI addition can counter the drawbacks of traditional BSF.

  17. The Granular Blasius Problem: High inertial number granular flows

    Science.gov (United States)

    Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie

    2017-11-01

    The classical Blasius problem considers the formation of a boundary layer through the change at x = 0 from a free-slip to a no-slip boundary beneath an otherwise steady uniform flow. Discrete particle model (DPM) simulations of granular gravity currents show that a similar phenomenon exists for a steady flow over a uniformly sloped surface that is smooth upstream (allowing slip) but rough downstream (imposing a no-slip condition). The boundary layer is a region of high shear rate and therefore high inertial number I; its dynamics are governed by the asymptotic behaviour of the granular rheology as I -> ∞ . The μ(I) rheology asserts that dμ / dI = O(1 /I2) as I -> ∞ , but current experimental evidence is insufficient to confirm this. We show that `generalised μ(I) rheologies', with different behaviours as I -> ∞ , all permit the formation of a boundary layer. We give approximate solutions for the velocity profile under each rheology. The change in boundary condition considered here mimics more complex topography in which shear stress increases in the streamwise direction (e.g. a curved slope). Such a system would be of interest in avalanche modelling. EPSRC studentship (Tsang) and Royal Society Dorothy Hodgkin Fellowship (Vriend).

  18. Theoretical model of granular compaction

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Naim, E. [Los Alamos National Lab., NM (United States); Knight, J.B. [Princeton Univ., NJ (United States). Dept. of Physics; Nowak, E.R. [Univ. of Illinois, Urbana, IL (United States). Dept. of Physics]|[Univ. of Chicago, IL (United States). James Franck Inst.; Jaeger, H.M.; Nagel, S.R. [Univ. of Chicago, IL (United States). James Franck Inst.

    1997-11-01

    Experimental studies show that the density of a vibrated granular material evolves from a low density initial state into a higher density final steady state. The relaxation towards the final density follows an inverse logarithmic law. As the system approaches its final state, a growing number of beads have to be rearranged to enable a local density increase. A free volume argument shows that this number grows as N = {rho}/(1 {minus} {rho}). The time scale associated with such events increases exponentially e{sup {minus}N}, and as a result a logarithmically slow approach to the final state is found {rho} {infinity} {minus}{rho}(t) {approx_equal} 1/lnt.

  19. Filtration Behaviour and Fouling Mechanisms of Polysaccharides

    Directory of Open Access Journals (Sweden)

    Sondus Jamal

    2014-07-01

    Full Text Available This study investigated filtration behaviors of polysaccharides solutions, both alone and in mixture with proteins, in the short-time constant flux filtration with the focus on factors affecting the transmembrane pressure (TMP increase rate, the irreversible filtration resistance, and the membrane rejection behavior. The results showed that the TMP increase rates in the short-time constant flux filtration of alginate solutions were significantly affected by the calcium addition, alginate concentration, and flux. Although the addition of calcium resulted in a decrease in the TMP increase rate, it was found that the irreversible fouling developed during the filtration increased with the calcium addition, implying that the double-sided effect of calcium on membrane filtration and that the TMP increase rate observed in the filtration does not always reflect the irreversible membrane fouling development. It was also found that for the filtration of solutions containing mixed alginate and BSA, alginate exerted a dominant effect on the TMP increase rate and the membrane exhibited a reduced rejection to both alginate and BSA molecules compared to that in the filtration of the pure alginate or BSA.

  20. Relationship between electrical conductivity anisotropy and fabric anisotropy in granular materials during drained triaxial compressive tests: a numerical approach

    Science.gov (United States)

    Niu, Qifei; Revil, André; Li, Zhaofeng; Wang, Yu-Hsing

    2017-07-01

    The anisotropy of granular media and its evolution during shearing are important aspects required in developing physics-based constitutive models in Earth sciences. The development of relationships between geoelectrical properties and the deformation of porous media has applications to the monitoring of faulting and landslides. However, such relationships are still poorly understood. In this study, we first investigate the definition of the electrical conductivity anisotropy tensor of granular materials in presence of surface conductivity of the grains. Fabric anisotropy is related to the components of the fabric tensor. We define an electrical anisotropy factor based on the Archie's exponent second-order symmetric tensor m of granular materials. We use numerical simulations to confirm a relationship between the evolution of electrical and fabric anisotropy factors during shearing. To realize the simulations, we build a virtual laboratory in which we can easily perform synthetic experiments. We first simulate drained compressive triaxial tests of loose and dense granular materials (porosity 0.45 and 0.38, respectively) using the discrete element method. Then, the electrical conductivity tensor of a set of deformed synthetic samples is computed using the finite-difference method. The numerical results show that shear strains are responsible for a measurable anisotropy in the bulk conductivity of granular media. The observed electrical anisotropy response, during shearing, is distinct for dense and loose synthetic samples. Electrical and fabric anisotropy factors exhibit however a unique linear correlation, regardless of the shear strain and the initial state (porosity) of the synthetic samples. The practical implication of this finding confirms the usefulness of the electrical conductivity method in studying the fabric tensor of granular media. This result opens the door in using time-lapse electrical resistivity to study non-intrusively the evolution of anisotropy

  1. Effect of granular activated carbon addition on the effluent properties and fouling potentials of membrane-coupled expanded granular sludge bed process.

    Science.gov (United States)

    Ding, An; Liang, Heng; Qu, Fangshu; Bai, Langming; Li, Guibai; Ngo, Huu Hao; Guo, Wenshan

    2014-11-01

    To mitigate membrane fouling of membrane-coupled anaerobic process, granular activated carbon (GAC: 50 g/L) was added into an expanded granular sludge bed (EGSB). A short-term ultrafiltration test was investigated for analyzing membrane fouling potential and underlying fouling mechanisms. The results showed that adding GAC into the EGSB not only improved the COD removal efficiency, but also alleviated membrane fouling efficiently because GAC could help to reduce soluble microbial products, polysaccharides and proteins by 26.8%, 27.8% and 24.7%, respectively, compared with the control system. Furthermore, excitation emission matrix (EEM) fluorescence spectroscopy analysis revealed that GAC addition mainly reduced tryptophan protein-like, aromatic protein-like and fulvic-like substances. In addition, the resistance distribution analysis demonstrated that adding GAC primarily decreased the cake layer resistance by 53.5%. The classic filtration mode analysis showed that cake filtration was the major fouling mechanism for membrane-coupled EGSB process regardless of the GAC addition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Homogenization of discrete media

    International Nuclear Information System (INIS)

    Pradel, F.; Sab, K.

    1998-01-01

    Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.)

  3. Storage and discharge of a granular fluid

    NARCIS (Netherlands)

    Pacheco-Martinez, Hector; van Gerner, H.J.; Ruiz-Suarez, J.C.

    2008-01-01

    Experiments and computational simulations are carried out to study the behavior of a granular column in a silo whose walls are able to vibrate horizontally. The column is brought to a steady fluidized state and it behaves similar to a hydrostatic system. We study the dynamics of the granular

  4. Characterization of Unbound Granular Materials for Pavements

    NARCIS (Netherlands)

    Araya, A.A.

    2011-01-01

    This research is focused on the characterization of the mechanical behavior of unbound granular road base materials (UGMs). An extensive laboratory investigation is described, in which various methods for determination of the mechanical properties of granular materials are examined for their

  5. Periurethral granular cell tumor: a case report

    International Nuclear Information System (INIS)

    Kim, Jeong Kon; Choi, Hyo Gyeong; Cho, Kyoung Sik

    1998-01-01

    Granular cell tumors are uncommon soft tissue tumors which arise as solitary or multiple masses. Lesions commonly arise in the head, neck, and chest wall, but can occur in any part of the body. To our knowledge, periurethral granular cell tumor has not been previously reported. We report one such case

  6. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  7. Relating water and air flow characteristics in coarse granular materials

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Canga, Eriona; Poulsen, Tjalfe Gorm

    2013-01-01

    Water pressure drop as a function of velocity controls w 1 ater cleaning biofilter operation 2 cost. At present this relationship in biofilter materials must be determined experimentally as no 3 universal link between pressure drop, velocity and filter material properties have been established. 4...... Pressure drop - velocity in porous media is much simpler and faster to measure for air than for water. 5 For soils and similar materials, observations show a strong connection between pressure drop – 6 velocity relations for air and water, indicating that water pressure drop – velocity may be estimated 7...... from air flow data. The objective of this study was, therefore, to investigate if this approach is valid 8 also for coarse granular biofilter media which usually consists of much larger particles than soils. In 9 this paper the connection between the pressure drop – velocity relationships for air...

  8. Hydrolysis and degradation of filtrated organic particulates in a biofilm reactor under anoxic and aerobic conditions

    DEFF Research Database (Denmark)

    Janning, K.F.; Mesterton, K.; Harremoës, P.

    1997-01-01

    Two experiments were performed in order to investigate the anoxic and the aerobic degradation of filtrated organic matter in a biofilter. In submerged lab: scale reactors with Biocarbone media as filter material, accumulated particulate organic matter from pre-settled wastewater served as the only...

  9. A Stochastic Theory for Deep Bed Filtration Accounting for Dispersion and Size Distributions

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Bedrikovetsky, P. G.

    2010-01-01

    We develop a stochastic theory for filtration of suspensions in porous media. The theory takes into account particle and pore size distributions, as well as the random character of the particle motion, which is described in the framework of the theory of continuous-time random walks (CTRW...

  10. Experience with high-temperature filtration of incinerator flue gases

    International Nuclear Information System (INIS)

    Carpentier, S.; de Tassigny, C.

    1990-01-01

    It is always preferable to filter incinerator flue gases as close as possible to their origin, i.e. in a high-temperature zone, and means must be provided to destroy the other organic parts of the flyash resulting from these gases by in-filter combustion. The filter also traps a mineral part of the flyash, which eventually causes clogging and requires replacement or regeneration. Such filtration systems are available and can be operated on an industrial scale. They include candles made of micro-expanded refractory alloys supporting filtering media, porous ceramic candles and other devices. Research and subsequent pilot facility testing have enabled development of alumina fiber filter cartridges that offer more advantages than other equipment employed to date. Specifically, these advantages are: ultralight weight, which enables construction of systems that are relatively unaffected by creep and high-temperature deformations; excellent refractory qualities, which permit a use above 1000 degrees C; insensitivity to thermal shocks and in-situ carbon fines combustion capability; anti-acid quality of the material, which enables high-temperature filtration of acidic flue gases (chlorine and hydrochloric acid, SO x , etc.); low initial pressure drop of the cartridges; dimensional stability of the cartridges, which can be machined to a given tolerance with specific contours after casting and drying. This paper reports the results obtained during the last filtration system test campaign. Details are given for operating conditions, grain sizes and real-time monitoring of various parameters

  11. Traffic and Granular Flow’05

    CERN Document Server

    Pöschel, Thorsten; Kühne, Reinhart; Schreckenberg, Michael; Wolf, Dietrich

    2007-01-01

    The conference series Tra?c and Granular Flow has been established in 1995 and has since then been held biannually. At that time, the investigation of granular materials and tra?c was still somewhat exotic and was just starting to become popular among physicists. Originally the idea behind this conference series was to facilitate the c- vergence of the two ?elds, inspired by the similarities of certain phenomena and the use of similar theoretical methods. However, in recent years it has become clear that probably the di?erences between the two systems are much more interesting than the similarities. Nevertheless, the importance of various interrelations among these ?elds is still growing. The workshop continues to o?er an opportunity to stimulate this interdisciplinary research. Over the years the spectrum of topics has become much broader and has included also problems related to topics ranging from social dynamics to - ology. The conference manages to bring together people with rather di?erent background, r...

  12. Numerical investigations on flow dynamics of prismatic granular materials using the discrete element method

    Science.gov (United States)

    Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.

    2012-04-01

    The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more

  13. Performance Comparison of Various Filters Media in

    Directory of Open Access Journals (Sweden)

    Lilyan Yaqup Matti

    2013-05-01

    Full Text Available   In this research, a bench-scale filter is designed and constructed in order to compare the performance of different media namely, sand, crushed marble stone and crushed red brick. The filters are operated under various operating conditions such as filter depth, raw water turbidity, pretreatment, effective size and uniformity coefficient.          These filters are operated under conventional and direct filtration modes with different doses of alum. Statistical methods had been used to determine the best media using  Duncan multiple range test.     The result showed the superiority of crushed red brick media in the  removal of turbidity and total bacteria. The results also indicated that filters operated under direct filtration mode show better performance than that operated under conventional filtration mode. The pH of treated water show slight increase for the two modes of filtration.

  14. New Innovations in Highly Ion Specific Media for Recalcitrant Waste stream Radioisotopes

    International Nuclear Information System (INIS)

    Denton, M. S.; Wilson, J.; Ahrendt, M.; Bostick, W. D.; DeSilva, F.; Meyers, P.

    2006-01-01

    Nuclear Power Plant (NPP) outage cycle and recovery (four months), was the down-select and development of a number of highly ion specific media for the specific removal of such elusive isotopes. Over three dozen media including standard cation and anion ion exchangers, specialty IX, standard carbons, and, finally, chemically doped media (e.g., carbon and alumina substrates). The latter involved doping with iron, manganese, and even metals. The media down-select was carried out on actual plant waste streams so that all possible outage affects were accounted for, and distribution coefficients (Kd's) were determined (vs. decontamination factors, DF's, or percent removals). Such Kd's, in milliliters of solution per gram of media (mug), produce data indicative of the longevity of the media in that particular waste stream. Herein, the down-select is reported in Pareto (decreasing order) tables. Further affects such as the presence of high cobalt concentrations, high boron concentrations, the presence of hydrazine and chelating agents, and extreme pH conditions. Of particular importance here is to avoid the affinity of competing ions (e.g., a Sb specific media having more than a slight affinity for Co). The latter results in the snow-plow effect of sloughing off 3 to 4 times the cobalt into the effluent as was in the feed upon picking up the Sb. The study was quite successful and resulted in the development of and selection of a resin-type and two granular media for antimony removal, and two resin-types and a granular media for cobalt removal. The decontamination factors for both media were hundreds to thousands of times that of the full filtration and de-min. (authors)

  15. DEM simulation of granular flows in a centrifugal acceleration field

    Science.gov (United States)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  16. Performance of multistage filtration using different filter media ...

    African Journals Online (AJOL)

    Evaluating the MSF performance vs. the existing conventional system in removing selected physical and chemical drinking water quality parameters together with the biological water quality improvement by the MSF without chemical use was done. Evaluation of the effectiveness of the MSF system utilizing locally available ...

  17. Filtration and retention capacities of filter aids

    International Nuclear Information System (INIS)

    Mellah, A.; Boualia, A.

    1992-01-01

    The present work involves the filtration of impure uranyl nitrate solutions by different filter aids such as kieselguhr, celite and bleaching clay. The retention of substances contained in uranyl nitrate solution was determined using the three filter aids. A study of the effects of granulometry and filter earths treatment (thermal and chemical) on the filtration rate was performed

  18. 40 CFR 141.73 - Filtration.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system that uses a surface water source or a ground water source under the direct influence of surface water...

  19. Real-time magnetic resonance imaging of highly dynamic granular phenomena

    Science.gov (United States)

    Penn, Alexander; Pruessmann, Klaas P.; Müller, Christoph

    Probing non-intrusively the interior of three-dimensional granular systems is a challenging task for which a number of imaging techniques have been applied including positron emission particle tracking, X-ray tomography and magnetic resonance imaging (MRI). A particular advantage of MRI is its versatility allowing quantitative velocimetry through phase contrast encoding and tagging, arbitrary slice orientations and the flexibility to trade spatial for temporal resolution and vice versa during image reconstruction. However, previous attempts to image granular systems using MRI were often limited to (pseudo-) steady state systems due to the poor temporal resolution of conventional imaging methodology. Here we present an experimental approach that overcomes previous limitations in temporal resolution by implementing a variety of methodological advances, viz. parallel data acquisition through tailored multiple receiver coils, fast gradient readouts for time-efficient data sampling and engineered granular materials that contain signal sources of high proton density. Achieving a spatial and temporal resolution of, respectively, 2 mm x 2 mm and 50 ms, we were able to image highly dynamic phenomena in granular media such as bubble coalescence and granular compaction waves.

  20. Impact induced splash and spill in a quasi-confided granular medium

    Science.gov (United States)

    Ogale, S. B.

    2005-03-01

    Dissipation of the energy of impact in a granular medium and its effects has been a subject of considerable scientific for quite some time. In this work we have explored and analyzed the splash and spill effects caused by the impact of a ball dropped from a height into a granular medium in a open container. Three different granular media, namely rice, mustard seeds, and cream of wheat were used. The amount of spilled-over granular matter was measured as a function of the ball-drop height. Digital pictures of the splash process were also recorded. The quantity of spilled granular matter varies linearly with the impact energy. However additional step like structures are also noted. Specifically, a distinct and large jump is seen in the spilled quantity at a specific impact energy in the case of mustard seeds, which also exhibit obvious charging effects and repulsion. Although the parameters such as mass per grain and packing density for the case of mustard seeds are intermediate between those for rice and cream of wheat, the spill quantity for comparable impact energy is considerably higher. These data will be presented and discussed.

  1. Granular metamaterials for vibration mitigation

    Science.gov (United States)

    Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.

    2013-09-01

    Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.

  2. Fracture surfaces of granular pastes.

    Science.gov (United States)

    Mohamed Abdelhaye, Y O; Chaouche, M; Van Damme, H

    2013-11-01

    Granular pastes are dense dispersions of non-colloidal grains in a simple or a complex fluid. Typical examples are the coating, gluing or sealing mortars used in building applications. We study the cohesive rupture of thick mortar layers in a simple pulling test where the paste is initially confined between two flat surfaces. After hardening, the morphology of the fracture surfaces was investigated, using either the box counting method to analyze fracture profiles perpendicular to the mean fracture plane, or the slit-island method to analyze the islands obtained by cutting the fracture surfaces at different heights, parallel to the mean fracture plane. The fracture surfaces were shown to exhibit scaling properties over several decades. However, contrary to what has been observed in the brittle or ductile fracture of solid materials, the islands were shown to be mass fractals. This was related to the extensive plastic flow involved in the fracture process.

  3. Shear failure of granular materials

    Science.gov (United States)

    Degiuli, Eric; Balmforth, Neil; McElwaine, Jim; Schoof, Christian; Hewitt, Ian

    2012-02-01

    Connecting the macroscopic behavior of granular materials with the microstructure remains a great challenge. Recent work connects these scales with a discrete calculus [1]. In this work we generalize this formalism from monodisperse packings of disks to 2D assemblies of arbitrarily shaped grains. In particular, we derive Airy's expression for a symmetric, divergence-free stress tensor. Using these tools, we derive, from first-principles and in a mean-field approximation, the entropy of frictional force configurations in the Force Network Ensemble. As a macroscopic consequence of the Coulomb friction condition at contacts, we predict shear failure at a critical shear stress, in accordance with the Mohr-Coulomb failure condition well known in engineering. Results are compared with numerical simulations, and the dependence on the microscopic geometric configuration is discussed. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  4. Mechanics of a granular skin

    Science.gov (United States)

    Karmakar, Somnath; Sane, Anit; Bhattacharya, S.; Ghosh, Shankar

    2017-04-01

    Magic sand, a hydrophobic toy granular material, is widely used in popular science instructions because of its nonintuitive mechanical properties. A detailed study of the failure of an underwater column of magic sand shows that these properties can be traced to a single phenomenon: the system self-generates a cohesive skin that encapsulates the material inside. The skin, consisting of pinned air-water-grain interfaces, shows multiscale mechanical properties: they range from contact-line dynamics in the intragrain roughness scale, to plastic flow at the grain scale, all the way to sample-scale mechanical responses. With decreasing rigidity of the skin, the failure mode transforms from brittle to ductile (both of which are collective in nature) to a complete disintegration at the single-grain scale.

  5. Storage and discharge of a granular fluid.

    Science.gov (United States)

    Pacheco-Martinez, Hector; van Gerner, Henk Jan; Ruiz-Suárez, J C

    2008-02-01

    Experiments and computational simulations are carried out to study the behavior of a granular column in a silo whose walls are able to vibrate horizontally. The column is brought to a steady fluidized state and it behaves similar to a hydrostatic system. We study the dynamics of the granular discharge through openings at the bottom of the silo in order to search for a Torricelli-like behavior. We show that the flow rate scales with the wall induced shear rate, and at high rates, the granular bed indeed discharges similar to a viscous fluid.

  6. Energy decay in a granular gas collapse

    International Nuclear Information System (INIS)

    Almazán, Lidia; Serero, Dan; Pöschel, Thorsten; Salueña, Clara

    2017-01-01

    An inelastic hard ball bouncing repeatedly off the ground comes to rest in finite time by performing an infinite number of collisions. Similarly, a granular gas under the influence of external gravity, condenses at the bottom of the confinement due to inelastic collisions. By means of hydrodynamical simulations, we find that the condensation process of a granular gas reveals a similar dynamics as the bouncing ball. Our result is in agreement with both experiments and particle simulations, but disagrees with earlier simplified hydrodynamical description. Analyzing the result in detail, we find that the adequate modeling of pressure plays a key role in continuum modeling of granular matter. (paper)

  7. On inconsistency in frictional granular systems

    Science.gov (United States)

    Alart, Pierre; Renouf, Mathieu

    2018-04-01

    Numerical simulation of granular systems is often based on a discrete element method. The nonsmooth contact dynamics approach can be used to solve a broad range of granular problems, especially involving rigid bodies. However, difficulties could be encountered and hamper successful completion of some simulations. The slow convergence of the nonsmooth solver may sometimes be attributed to an ill-conditioned system, but the convergence may also fail. The prime aim of the present study was to identify situations that hamper the consistency of the mathematical problem to solve. Some simple granular systems were investigated in detail while reviewing and applying the related theoretical results. A practical alternative is briefly analyzed and tested.

  8. Granular-relational data mining how to mine relational data in the paradigm of granular computing ?

    CERN Document Server

    Hońko, Piotr

    2017-01-01

    This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing! This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining r...

  9. Non-filtration method of processing of uranium ores

    International Nuclear Information System (INIS)

    Laskorin, B.N.; Vodolazov, L.I.; Tokarev, N.N.; Vyalkov, V.I.; Goldobina, V.A.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1977-01-01

    The development of the filterless sorption method has lead to working out the sorption leaching process and the process of extraction desorption, which has made possible to intensify the process of uranium ore working and to improve greatly the technical economic indexes by liquidating the complex method of multiple filtration and repulping of cakes. This method makes possible to involve more poor uranium raw materials and at the same time to extract valuable components: molybdenum, vanadium, copper, etc. Great industrial experience has been accumulating in sorption of dense pulp with the ratio of solid phase to liquid one equal to 1:1. This has lead to the increase of productivity of working plants by 1,5-3,0 times, the increase of uranium extraction by 5-10%, the increase of labour capacity of main workers by 2-3 times, and to the decrease of reagents expense, auxiliary materials, electric energy and vapour by several times. In fact the developed technology is continuous in all its steps with complete complex automatization of the process with the help of the most simple and available means of regulation and controlling. The process is equipped with high productivity apparatuses of great power with mechanic and pneumatic mixing for high density pulps, and with the columns KDS, KDZS, KNSPR and PIK for the regeneration of saturated sorbent in the counterflow regime. The exploitation of fine-granular hydrophilic ion-exchange resins in hydrophobized state is foreseen [ru

  10. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    Science.gov (United States)

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  11. Spatial correlations in compressible granular flows

    NARCIS (Netherlands)

    van Noije, T.P.C.; Ernst, M.H.; Brito, R.

    The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time increases, the structure factor of density fluctuations develops a maximum, which

  12. Granular Gases: Probing the Boundaries of Hydrodynamics

    International Nuclear Information System (INIS)

    Goldhirsch, I.

    1999-01-01

    The dissipative nature of the particle interactions in granular systems renders granular gases mesoscopic and bearing some similarities to regular gases in the ''continuum transition regime'' where shear rates and/or thermal gradients are very large). The following properties of granular gases support the above claim: (i). Mean free times are of the same order as macroscopic time scales (inverse shear rates); (ii). Mean free paths can be macroscopic and comparable to the system's dimensions; (iii). Typical flows are supersonic; (iv). Shear rates are typically ''large''; (v). Stress fields are scale (resolution) dependent; (vi). Burnett and super-Burnett corrections to both the constitutive relations and the boundary conditions are of importance; (vii). Single particle distribution functions can be far from Gaussian. It is concluded that while hydrodynamic descriptions of granular gases are relevant, they are probing the boundaries of applicability of hydrodynamics and perhaps slightly beyond

  13. Advanced Granular System Modeling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spaceports of the future will utilize new granular materials in unique applications including insulation for cryogenic tanks and Lunar regolith processing for usable...

  14. Resistance capability of microaerobic granular sludge for ...

    African Journals Online (AJOL)

    enoh

    2012-02-08

    Feb 8, 2012 ... The resistance capability to pH shock of microaerobic granular sludge for pentachlorophenol (PCP) ... process with chlorine gas in pulp and paper, leather and spinning ... nitrifying bacteria in the aerobic zone, and then trans-.

  15. Microbiological aspects of granular methanogenic sludge

    NARCIS (Netherlands)

    Dolfing, J.

    1987-01-01

    The settling characteristics of anaerobic sludge are enhanced by the formation of microbial conglomerates. Various types of conglomerates having different structures, were distinguished in the present study, viz. granules, pellets and flocs (chapter 1). Granular methanogenic sludge, often

  16. NMR Measurements of Granular Flow and Compaction

    Science.gov (United States)

    Fukushima, Eiichi

    1998-03-01

    Nuclear magnetic resonance (NMR) can be used to measure statistical distributions of granular flow velocity and fluctuations of velocity, as well as spatial distributions of particulate concentration, flow velocity, its fluctuations, and other parameters that may be derived from these. All measurements have been of protons in liquid-containing particles such as mustard seeds or pharmaceutical pills. Our favorite geometry has been the slowly rotating partially filled rotating drum with granular flow taking place along the free surface of the particles. All the above-mentioned parameters have been studied as well as a spatial distribution of particulate diffusion coefficients, energy dissipation due to collisions, as well as segregation of non-uniform mixtures of granular material. Finally, we describe some motions of granular material under periodic vibrations.

  17. Mechanical Behavior of Granular/Particulate Media Reinforced with Fibers

    National Research Council Canada - National Science Library

    Michalowski, Radoslw

    1999-01-01

    Fiber-reinforced ganular composites (for instance, fiber-reinforced sand) are considered as construction materials for such applications as subgrades of airfields and roads, aircraft parking facilities, etc...

  18. Dynamical heterogeneities in glasses colloids and granular media

    CERN Document Server

    2011-01-01

    Most everyday solid materials, from plastics to cosmetic gels, exist in a non-crystalline, amorphous form: they are glasses. Yet we are still seeking an explanation as to what glasses really are and to why they form. Here, leading experts present broad perspectives on one of the deepest mysteries of condensed matter physics.

  19. Modeling intragranular diffusion in low-connectivity granular media

    Science.gov (United States)

    Ewing, Robert P.; Liu, Chongxuan; Hu, Qinhong

    2012-03-01

    Characterizing the diffusive exchange of solutes between bulk water in an aquifer and water in the intragranular pores of the solid phase is still challenging despite decades of study. Many disparities between observation and theory could be attributed to low connectivity of the intragranular pores. The presence of low connectivity indicates that a useful conceptual framework is percolation theory. The present study was initiated to develop a percolation-based finite difference (FD) model, and to test it rigorously against both random walk (RW) simulations of diffusion starting from nonequilibrium, and data on Borden sand published by Ball and Roberts (1991a,b) and subsequently reanalyzed by Haggerty and Gorelick (1995) using a multirate mass transfer (MRMT) approach. The percolation-theoretical model is simple and readily incorporated into existing FD models. The FD model closely matches the RW results using only a single fitting parameter, across a wide range of pore connectivities. Simulation of the Borden sand experiment without pore connectivity effects reproduced the MRMT analysis, but including low pore connectivity effects improved the fit. Overall, the theory and simulation results show that low intragranular pore connectivity can produce diffusive behavior that appears as if the solute had undergone slow sorption, despite the absence of any sorption process, thereby explaining some hitherto confusing aspects of intragranular diffusion.

  20. Granular materials flow like complex fluids

    Science.gov (United States)

    Kou, Binquan; Cao, Yixin; Li, Jindong; Xia, Chengjie; Li, Zhifeng; Dong, Haipeng; Zhang, Ang; Zhang, Jie; Kob, Walter; Wang, Yujie

    2017-11-01

    Granular materials such as sand, powders and foams are ubiquitous in daily life and in industrial and geotechnical applications. These disordered systems form stable structures when unperturbed, but in the presence of external influences such as tapping or shear they `relax', becoming fluid in nature. It is often assumed that the relaxation dynamics of granular systems is similar to that of thermal glass-forming systems. However, so far it has not been possible to determine experimentally the dynamic properties of three-dimensional granular systems at the particle level. This lack of experimental data, combined with the fact that the motion of granular particles involves friction (whereas the motion of particles in thermal glass-forming systems does not), means that an accurate description of the relaxation dynamics of granular materials is lacking. Here we use X-ray tomography to determine the microscale relaxation dynamics of hard granular ellipsoids subject to an oscillatory shear. We find that the distribution of the displacements of the ellipsoids is well described by a Gumbel law (which is similar to a Gaussian distribution for small displacements but has a heavier tail for larger displacements), with a shape parameter that is independent of the amplitude of the shear strain and of the time. Despite this universality, the mean squared displacement of an individual ellipsoid follows a power law as a function of time, with an exponent that does depend on the strain amplitude and time. We argue that these results are related to microscale relaxation mechanisms that involve friction and memory effects (whereby the motion of an ellipsoid at a given point in time depends on its previous motion). Our observations demonstrate that, at the particle level, the dynamic behaviour of granular systems is qualitatively different from that of thermal glass-forming systems, and is instead more similar to that of complex fluids. We conclude that granular materials can relax

  1. Small-signal analysis of granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The small-signal ac response of granular n-type semiconductors is calculated analytically using the drift-diffusion theory when electronic trapping at grain boundaries is present. An electrical equivalent circuit (EEC) model of a granular n-type semiconductor is presented. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is very good in a broad frequency range at low dc bias voltages.

  2. Small-signal analysis of granular semiconductors

    International Nuclear Information System (INIS)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey

    2010-01-01

    The small-signal ac response of granular n-type semiconductors is calculated analytically using the drift-diffusion theory when electronic trapping at grain boundaries is present. An electrical equivalent circuit (EEC) model of a granular n-type semiconductor is presented. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is very good in a broad frequency range at low dc bias voltages.

  3. Granular cell tumor: An uncommon benign neoplasm

    Directory of Open Access Journals (Sweden)

    Tirthankar Gayen

    2015-01-01

    Full Text Available Granular cell tumor is a distinctly rare neoplasm of neural sheath origin. It mainly presents as a solitary asymptomatic swelling in the oral cavity, skin, and rarely internal organs in the middle age. Histopathology is characteristic, showing polyhedral cells containing numerous fine eosinophilic granules with indistinct cell margins. We present a case of granular cell tumor on the back of a 48-year-old woman which was painful, mimicking an adnexal tumor.

  4. A constitutive law for dense granular flows.

    Science.gov (United States)

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  5. Projective Dimension in Filtrated K-Theory

    DEFF Research Database (Denmark)

    Bentmann, Rasmus Moritz

    2013-01-01

    Under mild assumptions, we characterise modules with projective resolutions of length n∈N in the target category of filtrated K-theory over a finite topological space in terms of two conditions involving certain Tor -groups. We show that the filtrated K-theory of any separable C∗dash-algebra over...... any topological space with at most four points has projective dimension 2 or less. We observe that this implies a universal coefficient theorem for rational equivariant KK-theory over these spaces. As a contrasting example, we find a separable C∗dash-algebra in the bootstrap class over a certain five......-point space, the filtrated K-theory of which has projective dimension 3. Finally, as an application of our investigations, we exhibit Cuntz-Krieger algebras which have projective dimension 2 in filtrated K-theory over their respective primitive spectrum....

  6. Filtration aids in uranium ore processing

    International Nuclear Information System (INIS)

    Ford, H.L.; Levine, N.M.; Risdon, A.L.

    1975-01-01

    The patent describes a process whereby improved flocculation efficiency and filtration of carbonate leached uranium ore pulps are obtained by treating the filter feed slurry with an aqueous solution of hydroxyalkyl guar. (J.R.)

  7. Effective transport properties for the pyridine-granular activated carbon adsorption system

    OpenAIRE

    Baz-Rodríguez, S. A.; Ocampo-Pérez, R.; Ruelas-Leyva, J. P.; Aguilar-Madera, C. G.

    2012-01-01

    In this work, the kinetics of pyridine adsorption onto granular activated carbon was studied from the point of view of an up-scaling process by using the method of volume averaging. The pore and surface effective diffusivities were estimated by supposing simple microscale geometries (ordered media of cylinders and spheres) and those of images processed from SEM (Scanning Electron Microscopy) micrographs. In addition, as a rough estimate, the point surface diffusivity is reported. The results ...

  8. Evaluation of granular anaerobic ammonium oxidation process for the disposal of pre-treated swine manure

    OpenAIRE

    Shou-Qing Ni; Ning Yang

    2014-01-01

    With rising environmental concerns on potable water safety and eutrophication, increased media attention and tighter environmental regulations, managing animal waste in an environmentally responsible and economically feasible way can be a challenge. In this study, the possibility of using granular anammox process for ammonia removal from swine waste treatment water was investigated. A rapid decrease of NO2 −–N and NH4 +–N was observed during incubation with wastewater from an activated sludge...

  9. Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of gravity

    Directory of Open Access Journals (Sweden)

    S. M. Ahmed

    2005-01-01

    Full Text Available The aim of this paper is to investigate the Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of a gravity field. The frequency equation obtained, in the form of a sixth-order determinantal expression, is in agreement with the corresponding result when both media are elastic. The frequency equation when the gravity field is neglected has been deduced as a particular case.

  10. Removal of waterborne microorganisms by filtration using clay-polymer complexes.

    Science.gov (United States)

    Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda

    2014-08-30

    Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Flow and fracture in water-saturated, unconstrained granular beds

    Directory of Open Access Journals (Sweden)

    Germán eVaras

    2015-06-01

    Full Text Available The injection of gas in a liquid-saturated granular bed gives rise to a wide variety of invasion patterns. Many studies have focused on constrained porous media, in which the grains are fixed in the bed and only the interstitial fluid flows when the gas invades the system. With a free upper boundary, however, the grains can be entrained by the ascending gas or fluid motion, and the competition between the upward motion of grains and sedimentation leads to new patterns. We propose a brief review of the experimental investigation of the dynamics of air rising through a water-saturated, unconstrained granular bed, in both two and three dimensions. After describing the invasion pattern at short and long time, a tentative regime-diagram is proposed. We report original results showing a dependence of the fluidized zone shape, at long times, on the injection flow rate and grain size. A method based on image analysis makes it possible to detect not only the fluidized zone profile in the stationary regime, but also to follow the transient dynamics of its formation. Finally, we describe the degassing dynamics inside the fluidized zone, in the stationary regime. Depending on the experimental conditions, regular bubbling, continuous degassing, intermittent regime or even spontaneous flow-to-fracture transition are observed.

  12. Microfluidics of soft granular gels

    Science.gov (United States)

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  13. Filtration of aluminum alloys and its influence on mechanical properties and shape of eutectical silicium

    Directory of Open Access Journals (Sweden)

    M. Brůna

    2008-07-01

    Full Text Available Filtration during casting of high quality aluminum alloys belongs to main refining methods. Even when there are many years of experiences and experimental works on this subject, there are still some specific anomalies. While using ceramic filtration media during casting of aluminum alloys, almost in all experiments occurred increase of strength limit and atypical increase of extension. This anomaly was not explained with classical metallurgical methods, black-white contrast after surface etching neither with color surface etching. For that reason was used deep etching on REM. By using pressed ceramic filters, by studying morphology eutectical silicon was observed modification morphology of eutectical silicon, this explains increase extension after filtration. Pressed ceramic filters were used on experimental works. Casting was executed on hardenable alloy AlSi10MgMn.

  14. Dynamic Deformation and Collapse of Granular Columns

    Science.gov (United States)

    Uenishi, K.; Tsuji, K.; Doi, S.

    2009-12-01

    Large dynamic deformation of granular materials may be found in nature not only in the failure of slopes and cliffs — due to earthquakes, rock avalanches, debris flows and landslides — but also in earthquake faulting itself. Granular surface flows often consist of solid grains and intergranular fluid, but the effect of the fluid may be usually negligible because the volumetric concentration of grains is in many cases high enough for interparticle forces to dominate momentum transport. Therefore, the investigation of dry granular flow of a mass might assist in further understanding of the above mentioned geophysical events. Here, utilizing a high-speed digital video camera system, we perform a simple yet fully-controlled series of laboratory experiments related to the collapse of granular columns. We record, at an interval of some microseconds, the dynamic transient granular mass flow initiated by abrupt release of a tube that contains dry granular materials. The acrylic tube is partially filled with glass beads and has a cross-section of either a fully- or semi-cylindrical shape. Upon sudden removal of the tube, the granular solid may fragment under the action of its own weight and the particles spread on a rigid horizontal plane. This study is essentially the extension of the previous ones by Lajeunesse et al. (Phys. Fluids 2004) and Uenishi and Tsuji (JPGU 2008), but the striped layers of particles in a semi-cylindrical tube, newly introduced in this contribution, allow us to observe the precise particle movement inside the granular column: The development of slip lines inside the column and the movement of particles against each other can be clearly identified. The major controlling parameters of the spreading dynamics are the initial aspect ratio of the granular (semi-)cylindrical column, the frictional properties of the horizontal plane (substrate) and the size of beads. We show the influence of each parameter on the average flow velocity and final radius

  15. Development of mixed microbial granular biofilms for denitrification of concentrated wastes

    International Nuclear Information System (INIS)

    Krishna Mohan, T.V.; Nancharaiah, Y.V.; Venugopalan, V.P.; Narasimhan, S.V.; Satyasai, P.M.

    2010-01-01

    Nitrate containing wastes are generated at various stages of the nuclear fuel cycle; fuel fabrication and reprocessing. A treatment process for removing nitrate from such concentrated nitrate bearing effluents is needed. Among other available options, biological denitrification is an economical and technically feasible method for nitrate removal. Granular biofilm based sequencing batch reactors (SBRs) may allow designing a compact and high rate processes suitable for the treatment of concentrated effluents. Hence, experiments were carried out in laboratory scale sequencing batch reactors (SBRs) to develop granular biofilms (composed of mixed microbes) for removing nitrate from the concentrated nitrate containing-media. Microbial granular biofilms, capable of consuming nitrate up to 2710 mg/l nitrate-N, were developed under anaerobic conditions in a 6-litre volume sequencing batch reactor (SBR). The SBR was inoculated with activated sludge flocs and operated with 24-h cycle and 50% volumetric exchange ratio. Synthetic media containing acetate as the energy source and electron donor, at carbon to nitrogen molar ratio of 2:1 and 3:1 was fed into the SBRs. Nitrate-N concentration in the SBR was increased in a step-wise manner starting from 677 to 2710 mg/l (1355 to 5420 mg/l in the feed). Complete removal of influent nitrate occurred within the first few hours of SBR cycle period. Effluent nitrate and nitrite levels (∼3 mg/l nitrate-N or nitrite-N) at the end of SBR cycle period (24 h) were found to be below the discharge limits. Under these conditions biomass predominantly consisted of granular biofilms. Results show the potential of granular biofilm based SBR for converting nitrate to nitrogen gas from concentrated nitrate bearing industrial effluents. (author)

  16. Protocol dependence of mechanical properties in granular systems.

    Science.gov (United States)

    Inagaki, S; Otsuki, M; Sasa, S

    2011-11-01

    We study the protocol dependence of the mechanical properties of granular media by means of computer simulations. We control a protocol of realizing disk packings in a systematic manner. In 2D, by keeping material properties of the constituents identical, we carry out compaction with various strain rates. The disk packings exhibit the strain rate dependence of the critical packing fraction above which the pressure becomes non-zero. The observed behavior contrasts with the well-studied jamming transitions for frictionless disk packings. We also observe that the elastic moduli of the disk packings depend on the strain rate logarithmically. Our results suggest that there exists a time-dependent state variable to describe macroscopic material properties of disk packings, which depend on its protocol.

  17. Crossflow Filtration: EM-31, WP-2.3.6

    International Nuclear Information System (INIS)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-01

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing crossflow equipment. The Savannah River National Laboratory (SRNL) performed some of those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Crossflow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate solutions. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Integrated Salt Disposition Process and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the crossflow filter feed flow rate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and crossflow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several

  18. CROSSFLOW FILTRATION: EM-31, WP-2.3.6

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-02-01

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing crossflow equipment. The Savannah River National Laboratory (SRNL) performed some of those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Crossflow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate solutions. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Integrated Salt Disposition Process and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the crossflow filter feed flow rate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and crossflow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several

  19. 40 CFR 141.719 - Additional filtration toolbox components.

    Science.gov (United States)

    2010-07-01

    ... taken from a surface water or GWUDI source. A cap, such as GAC, on a single stage of filtration is not... separate stage of filtration if both filtration stages treat entire plant flow taken from a surface water... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Additional filtration toolbox...

  20. Self Cleaning High Efficiency Particulate Air (HEPA) Filtration without Interrupting Process Flow - 59347

    International Nuclear Information System (INIS)

    Chadwick, Chris

    2012-01-01

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research suggests that the then costs to the Department of Energy (DOE), based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4, 450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft 3 /min, cleanable, stainless HEPA could be commercially available for $5, 000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15, 000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  1. Organo-clay/anthracite filtration for oil removal

    International Nuclear Information System (INIS)

    Moazed, H.; Viragahavan, T.

    1999-01-01

    An advantage of organo-clay compared to other sorbents is that it can selectively remove organic pollutants from contaminated waters. An investigation was conducted to determine the potential of an organo-clay/anthracite mixture as a filter media for the removal of oil from synthetic and real oily waters. Also included in the study were column filtration studies using synthetic and real waste waters to determine the sorptive capacity of the material. In general, oil removal efficiencies in a 300 mm organo-clay/anthracite bed decreased with an increase in flow rates. Results of eight hour studies indicated that the depth of an organo-clay/anthracite bed has a direct effect on oil removal efficiency. The Thomas equation provides a reasonable fit of the data based on breakthrough studies. The model can be used to determine the parameters needed to design full-scale filtration columns. The uptake of oil by an organo-clay/anthracite mixture is well described by an equation including time such as the Weber or Moris model. The maximum solid-phase concentration of the solute values obtained from the Thomas equation were comparable to the values found by a mass balance approach. 12 refs., 8 figs., 4 tabs

  2. Granular Materials and Risks In ISRU

    Science.gov (United States)

    Behringer, Robert P.; Wilkinson, R. Allen

    2004-01-01

    Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to execute these operations on the Moon and Mars as we do on Earth. We discuss how little these processes are understood and point out the nature of trial-and-error practices that are used in today's massive over-design. Nevertheless, such designs have a high failure rate. Implementation and extensive incremental scaling up of industrial processes are routine because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, what some of the basic issues are, and what understanding is needed to greatly reduce the risks. This talk will focus on a particular class of granular flow issues, those that pertain to dense materials, their physics, and the failure problems associated with them. In particular, key issues where basic predictability is lacking include stability of soils for the support of vehicles and facilities, ability to control the flow of dense materials (jamming and flooding/unjamming at the wrong time), the ability to predict stress profiles (hence create reliable designs) for containers such as bunkers or silos. In particular, stress fluctuations, which are not accounted for in standard granular design models, can be very large as granular materials flows, and one result is frequent catastrophic failure of granular devices.

  3. Collapse of tall granular columns in fluid

    Science.gov (United States)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  4. Wet granular matter a truly complex fluid

    CERN Document Server

    Herminghaus, Stephan

    2013-01-01

    This is a monograph written for the young and advanced researcher who is entering the field of wet granular matter and keen to understand the basic physical principles governing this state of soft matter. It treats wet granulates as an instance of a ternary system, consisting of the grains, a primary, and a secondary fluid. After addressing wetting phenomena in general and outlining the basic facts on dry granular systems, a chapter on basic mechanisms and their effects is dedicated to every region of the ternary phase diagram. Effects of grain shape and roughness are considered as well. Rather than addressing engineering aspects such as existing books on this topic do, the book aims to provide a generalized framework suitable for those who want to understand these systems on a more fundamental basis. Readership: For the young and advanced researcher entering the field of wet granular matter.

  5. 11th Traffic and Granular Flow Conference

    CERN Document Server

    Daamen, Winnie

    2016-01-01

    The Conference on Traffic and Granular Flow brings together international researchers from different fields ranging from physics to computer science and engineering to discuss the latest developments in traffic-related systems. Originally conceived to facilitate new ideas by considering the similarities of traffic and granular flow, TGF'15, organised by Delft University of Technology, now covers a broad range of topics related to driven particle and transport systems. Besides the classical topics of granular flow and highway traffic, its scope includes data transport (Internet traffic), pedestrian and evacuation dynamics, intercellular transport, swarm behaviour and the collective dynamics of other biological systems. Recent advances in modelling, computer simulation and phenomenology are presented, and prospects for applications, for example to traffic control, are discussed. The conference explores the interrelations between the above-mentioned fields and offers the opportunity to stimulate interdisciplinar...

  6. Granular Silo collapse: an experimental study

    Science.gov (United States)

    Clement, Eric; Gutierriez, Gustavo; Boltenhagen, Philippe; Lanuza, Jose

    2008-03-01

    We present an experimental work that develop some basic insight into the pre-buckling behavior and the buckling transition toward plastic collapse of a granular silo. We study different patterns of deformation generated on thin paper cylindrical shells during granular discharge. We study the collapse threshold for different bed height, flow rates and grain sizes. We compare the patterns that appear during the discharge of spherical beads, with those obtained in the axially compressed cylindrical shells. When the height of the granular column is close to the collapse threshold, we describe a ladder like pattern that rises around the cylinder surface in a spiral path of diamond shaped localizations, and develops into a plastic collapsing fold that grows around the collapsing silo.

  7. 76 FR 8774 - Granular Polytetrafluoroethylene Resin From Japan

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-386 (Third Review)] Granular Polytetrafluoroethylene Resin From Japan AGENCY: United States International Trade Commission. ACTION: Termination of five... revocation of the antidumping duty order on granular polytetrafluoroethylene resin from Japan would be likely...

  8. EM Task 9 - Centrifugal membrane filtration

    International Nuclear Information System (INIS)

    Stepan, Daniel J.; Stevens, Bradley G.; Hetland, Melanie D.

    1999-01-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc)

  9. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  10. International Workshop on Traffic and Granular Flow

    CERN Document Server

    Herrmann, Hans; Schreckenberg, Michael; Wolf, Dietrich; Social, Traffic and Granular Dynamics

    2000-01-01

    "Are there common phenomena and laws in the dynamic behavior of granular materials, traffic, and socio-economic systems?" The answers given at the international workshop "Traffic and Granular Flow '99" are presented in this volume. From a physical standpoint, all these systems can be treated as (self)-driven many-particle systems with strong fluctuations, showing multistability, phase transitions, non-linear waves, etc. The great interest in these systems is due to several unexpected new discoveries and their practical relevance for solving some fundamental problems of today's societies. This includes intelligent measures for traffic flow optimization and methods from "econophysics" for stabilizing (stock) markets.

  11. Granular contact dynamics using mathematical programming methods

    DEFF Research Database (Denmark)

    Krabbenhoft, K.; Lyamin, A. V.; Huang, J.

    2012-01-01

    granular contact dynamics formulation uses an implicit time discretization, thus allowing for large time steps. Moreover, in the limit of an infinite time step, the general dynamic formulation reduces to a static formulation that is useful in simulating common quasi-static problems such as triaxial tests...... is developed and it is concluded that the associated sliding rule, in the context of granular contact dynamics, may be viewed as an artifact of the time discretization and that the use of an associated flow rule at the particle scale level generally is physically acceptable. (C) 2012 Elsevier Ltd. All rights...

  12. Granular cells Tumor in the gastrointestinal tract

    International Nuclear Information System (INIS)

    Castano LL, Rodrigo; Gaitan B, Maria H; Juliao E, Fabian

    2005-01-01

    Granular cells tumors are ubiquitous lesions in the gastrointestinal tract, are rare and asymptomatic and they are generally an incidental discovery at gastroduodenoscopy or colonoscopy. In the gastrointestinal tract they are more frequently located in the esophagus, right colon and rectum, stomach, appendix, small intestine or biliopancreatic tract. This article describes three patients with four tumors of granular cells in rectum, esophagus (2 lesions) and appendix. It becomes special emphasis in their neural origin, their benign behavior that justifies the endoscopic resections or limited surgical excisions and the necessity of a pursuit for the possibility, although little, of malignant transformation

  13. Vacuum distillation/vapor filtration water recovery

    Science.gov (United States)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  14. Statistical data filtration in neutron coincidence counting

    International Nuclear Information System (INIS)

    Beddingfield, D.H.; Menlove, H.O.

    1992-11-01

    We assessed the effectiveness of statistical data filtration to minimize the contribution of matrix materials in 200-ell drums to the nondestructive assay of plutonium. Those matrices were examined: polyethylene, concrete, aluminum, iron, cadmium, and lead. Statistical filtration of neutron coincidence data improved the low-end sensitivity of coincidence counters. Spurious data arising from electrical noise, matrix spallation, and geometric effects were smoothed in a predictable fashion by the statistical filter. The filter effectively lowers the minimum detectable mass limit that can be achieved for plutonium assay using passive neutron coincidence counting

  15. The Perspective of Riverbank Filtration in China

    Science.gov (United States)

    Li, J.; Teng, Y.; Zhai, Y.; Zuo, R.

    2014-12-01

    Sustainable drinking water supply can affect the health of people, and the surrounding ecosystems. According to statistics of the monitoring program of drinking water sources in 309 at or above prefecture level of China in 2013, the major pollutants index were total phosphorus, ammonia and manganese in surface drinking water sources, respectively, iron, ammonia and manganese in groundwater drinking water sources, respectively. More than 150 drinking water emergency environmental accidents happened since 2006, 52 of these accidents led to the disruption of water supply in waterworks, and a population of over ten million were affected. It indicated that there is a potential risk for people's health by the use of river water directly and it is necessary to require alternative techniques such as riverbank filtration for improving the drinking water quality. Riverbank filtration is an inexpensive natural process, not only smoothing out normal pollutant concentration found in surface water but also significantly reducing the risk from such emergency events as chemical spill into the river. Riverbank filtration technique has been used in many countries more than 100 years, including China. In China, in 1950s, the bank infiltration technique was first applied in northeast of China. Extensive bank infiltration application was conducted in 1980s, and more than 300 drinking water sources utilities bank infiltration established mainly near the Songhua River Basin, the Yellow River Basin, Haihe River Basin. However, the comparative lack of application and researches on riverbank filtration have formed critical scientific data gap in China. As the performance of riverbank filtration technique depend on not only the design and setting such as well type, pumping rate, but also the local hydrogeology and environmental properties. We recommend more riverbank filtration project and studies to be conducted to collect related significant environmental geology data in China

  16. Industrial investigations of the liquid steel filtration

    Directory of Open Access Journals (Sweden)

    K. Janiszewski

    2014-07-01

    Full Text Available Hitherto existing investigations concerning the ceramic filter use in the steel making processes have given good results. The obtained results of filtration have proved that this method may be used as an effective and cheap way of steel filtration from non-metallic inclusions. Placing filters in the tundish is the best location considering the limitation of the possibility of secondary pollution of steel. Yet, the results presented in this paper, of an experiment prepared and carried out in the industrial environment, are the only positive results obtained, which are connected with so much quantities of liquid steel processed with use of the multi-hole ceramic filters.

  17. Salt disposition alternatives filtration at SRTC

    International Nuclear Information System (INIS)

    Walker, B. W.; Hobbs, D.

    2000-01-01

    Several of the prospective salt disposition alternative technologies require a monosodium titanate (MST) contact to remove strontium and actinides from inorganic salt solution feedstock. This feedstock also contains sludge solids from waste removal operations and may contain defoamers added in the evaporator systems. Filtration is required to remove the sludge and MST solids before sending the salt solution for further processing. This report describes testing performed using the Parallel Theological Experimental Filter (PREF). The PREF contains two single tube Mott sintered metal crossflow filters. For this test one filter was isolated so that the maximum velocities could be achieved. Previous studies showed slurries of MST and sludge in the presence of sodium tetraphenylborate (NaTPB) were filterable since the NaTPB slurry formed a filter cake which aided in removing the smaller MST and sludge particles. Some of the salt disposition alternative technologies do not use NaTPB raising the question of how effective crossflow filtration is with a feed stream containing only sludge and MST. Variables investigated included axial velocity, transmembrane pressure, defoamer effects, and solids concentration (MST and sludge). Details of the tests are outlined in the technical report WSRC-RP-98-O0691. Key conclusions from this study are: (1) Severe fouling of the Mott sintered metal filter did not occur with any of the solutions filtered. (2) The highest fluxes, in the range of .46 to 1.02 gpm/f 2 , were obtained when salt solution decanted from settled solids was fed to the filter. These fluxes would achieve 92 to 204 gpm filtrate production for the current ITP filters. The filtrate fluxes were close to the flux of 0.42 gpm/f 2 reported for In Tank Precipitation Salt Solution by Morrisey. (3) For the range of solids loading studied, the filter flux ranged from .04 to .17 gpm/f 2 which would result in a filtrate production rate of 9 to 31 gpm for the current HP filter. (4

  18. IMMUNOLOGICAL SIGNIFICANCE OF A COLLAGEN-DERIVED CULTURE FILTRATE CONTAINING PROTEOLYTIC ACTIVITY IN ASPERGILLUS-RELATED DISEASES

    NARCIS (Netherlands)

    TOMEE, JFC; KAUFFMAN, HF; KLIMP, AH; DEMONCHY, JGR; KOETER, GH; DUBOIS, AEJ

    Background: Despite increasing evidence implicating fungal proteases in the virulence of pulmonary fungal diseases, routine fungal culture media do not favor protease production. Hence, filtrates that serve as the source of antigen for serologic determinations are poor in proteases, and consequently

  19. Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Swift, W.M.; Johnson, I.

    1980-01-01

    Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

  20. Drugs of abuse, cytostatic drugs and iodinated contrast media in tap water from the Madrid region (central Spain):A case study to analyse their occurrence and human health risk characterization.

    Science.gov (United States)

    Mendoza, A; Zonja, B; Mastroianni, N; Negreira, N; López de Alda, M; Pérez, S; Barceló, D; Gil, A; Valcárcel, Y

    2016-01-01

    This work analyses the presence of forty-eight emerging pollutants, including twenty-five drugs of abuse and metabolites, seventeen cytostatic drugs and six iodinated contrast media, in tap water from the Madrid Region. Analysis of the target compounds in the tap water was performed by means of (on-line or off-line) solid-phase extraction followed by analysis by liquid chromatography-tandem mass spectrometry. A preliminary human health risk characterization was undertaken for each individual compound and for different groups of compounds with a common mechanism of action found in tap water. The results of the study showed the presence of eight out of the twenty-five drugs of abuse and metabolites analysed, namely, the cocainics cocaine and benzoylecgonine, the amphetamine-type stimulants ephedrine, 3,4-methylenedioxymethamphetamine and methamphetamine, the opioid methadone and its metabolite 2-ethylene-1,5-dimethyl-3,3-diphenylpyrrolidine and, finally caffeine at concentrations ranging from 0.11 to 502 ng L(-1). Four out of the six analysed iodinated contrast media, namely, diatrizoate, iohexol, iomeprol and iopromide, were detected in at least one sample, with concentration values varying between 0.4 and 5 ng L(-1). Cytostatic compounds were not detected in any sample. Caffeine was the substance showing the highest concentrations, up to 502 ng L(-1), mainly in the drinking water sampling point located in Madrid city. Among the other drugs of abuse, the most abundant compounds were cocaine and benzoylecgonine, detected at concentrations ranging from 0.11 to 86 ng L(-1) and from 0.11 to 53 ng L(-1), respectively. Regarding iodinated contrast media, iohexol was the most ubiquitous and abundant compound, with a frequency of detection of 100% and concentrations from 0.5 to 5.0 ng L(-1) in basically the same range in all sampling points. Taking into account the results and types of treatment applied, ozonisation plus granular activated carbon filtration appears to be

  1. Colloid migration in porous media

    International Nuclear Information System (INIS)

    Hunt, J.R.; McDowell-Boyer; Sitar, N.

    1985-01-01

    Retention of radionuclides for long periods near waste repositories depends upon multiple barriers, one of which is adsorption to immobile solid surfaces. Since small particles and colloidal matter have high adsorption capacities per unit mass and can be mobile in subsurface flows, colloidal transport of waste components requires analysis. Theories for predicting colloid migration through porous media have been developed in the filtration literature. The applicability of filtration theories for predicting particle and colloid transport. Emphasis is on suspended matter much smaller than pore sizes, where physical and chemical forces control migration rather than size dependent physical straining. In general, experimentally verifiable theories exist for particle filtration by clean media, and a sensitivity analysis is possible on particle and media properties and fluid flow rate. When particle aggregates accumulate within pores, media permeability decreases, resulting in flow field alteration and possible radionuclide isolation. An analysis of the limited experimental data available indicates that present theories cannot predict long-term colloid transport when permeability reduction occurs. The coupling of colloid attachment processes and the hydrologic flow processes requires more extensive laboratory field research than has currently been carried out. An emphasis on the fundamental mechanisms is necessary to enhance long-term predictability

  2. Filtration of engineered nanoparticles using porous membranes

    NARCIS (Netherlands)

    Trzaskus, Krzystof

    2016-01-01

    The research presented in this thesis aims at providing a better understanding of the fundamental aspects responsible for nanoparticle removal and fouling development during filtration of engineered nanoparticles. The emphasis is put on the role of interparticle interactions in the feed solution,

  3. Dynamic membrane filtration in tangential flow

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Oil-containing waste water is produced in many cleaning processes and also on production of compressed air. Dynamic membrane filtration in the tangential flow mode has proved effective in the treatment of these stable emulsions. The possible applications of ceramic membrane filters are illustrated for a variety of examples. (orig.) [de

  4. Filtration aids in uranium ore processing

    International Nuclear Information System (INIS)

    Ford, H.L.; Levine, N.M.; Risdon, A.R.

    1975-01-01

    A process of improving the filtration efficiency and separation of uranium ore pulps obtained by carbonate leaching of uranium ore which comprises treating said ore pulps with an aqueous solution of hydroxyalkyl guar selected from the group consisting of hydroxyethyl and hydroxypropyl guar in the amount of 0.1 and 2.0 pounds of hydroxyalkyl guar per ton of uranium ore

  5. Filtration engineering study to upgrade the ETF

    International Nuclear Information System (INIS)

    McDonald, F.N.N.

    1995-01-01

    Filtration technologies are evaluated which have potential to augment or upgrade the 200 Area Effluent Treatment Facility. The study was written in anticipation of treating future waste waters that have high fouling potentials. The Three ultrafilters judged to be capable of treating future waste waters are: hollow fiber, tubular, and centrifugal

  6. Water Filtration through Homogeneous Granulated Charge

    Directory of Open Access Journals (Sweden)

    A. M. Krautsou

    2005-01-01

    Full Text Available General relationship for calculation of water filtration through homogeneous granulated charge has been obtained. The obtained relationship has been compared with experimental data. Discrepancies between calculated and experimental values do not exceed 6 % throughout the entire investigated range.

  7. Organic micropollutant removal during river bank filtration

    NARCIS (Netherlands)

    Bertelkamp, C.

    2015-01-01

    This study investigated the factors influencing the main removal mechanisms (adsorption and biodegradation) for organic micropollutant (OMP) removal during river bank filtration (RBF) and the possibility of developing a predictive model of this process for OMP removal during RBF. Chapter 2 analysed

  8. Granular Gas in a Periodic Lattice

    Science.gov (United States)

    Dorbolo, S.; Brandenbourger, M.; Damanet, F.; Dister, H.; Ludewig, F.; Terwagne, D.; Lumay, G.; Vandewalle, N.

    2011-01-01

    Glass beads are placed in the compartments of a horizontal square grid. This grid is then vertically shaken. According to the reduced acceleration [image omitted] of the system, the granular material exhibits various behaviours. By counting the number of beads in each compartment after shaking, it is possible to define three regimes. At low…

  9. Pion showers in highly granular calorimeters

    Indian Academy of Sciences (India)

    New results on properties of hadron showers created by pion beam at 8–80 GeV in high granular electromagnetic and hadron calorimeters are presented. Data were used for the first time to investigate the separation of the neutral and charged hadron showers. The result is important to verify the prediction of the PFA ...

  10. Anomalous infrared absorption in granular superconductors

    International Nuclear Information System (INIS)

    Carr, G.L.; Garland, J.C.; Tanner, D.B.

    1983-01-01

    Granular superconductors are shown to have a far-infrared absorption that is larger when the samples are superconducting than when they are normal. By constrast, theoretical models for these materials predict that when the samples become superconducting, the absorption should decrease

  11. Vortex jamming in superconductors and granular rheology

    International Nuclear Information System (INIS)

    Yoshino, Hajime; Nogawa, Tomoaki; Kim, Bongsoo

    2009-01-01

    We demonstrate that a highly frustrated anisotropic Josephson junction array (JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings along the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i.e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress versus shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as exotic fragile vortex matter: it behaves as a superconductor (vortex glass) in one direction, whereas it is a normal conductor (vortex liquid) in the other direction even at zero temperature. Furthermore, we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields-the rheology of soft materials and superconductivity.

  12. Random packing of colloids and granular matter

    NARCIS (Netherlands)

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials

  13. Deposition and shaking of dry granular piles

    NARCIS (Netherlands)

    Hasan, M.

    2003-01-01

    A friction force model describing reversible stick-slip transition during contact has been developed with the special purpose to simulate the deposition of granular material. A test with a mass on a conveyor belt kept in position by a spring shows that a numerical simulation of the dynamics of such

  14. ENGINEERING BULLETIN: GRANULAR ACTIVATED CARBON TREATMENT

    Science.gov (United States)

    Granular activated carbon (GAC) treatment is a physicochemical process that removes a wide variety of contaminants by adsorbing them from liquid and gas streams [1, p. 6-3]. This treatment is most commonly used to separate organic contaminants from water or air; however, it can b...

  15. Velocity distributions in dilute granular systems

    NARCIS (Netherlands)

    van Zon, J.S.; Mac Kintosh, F.C.

    2005-01-01

    We investigate the idea that velocity distributions in granular gases are determined mainly by η, the coefficient of restitution and q, which measures the relative importance of heating (or energy input) to collisions. To this end, we study by numerical simulation the properties of inelastic gases

  16. Granular cell tumour of the urinary bladder

    Directory of Open Access Journals (Sweden)

    Christoph von Klot

    2012-04-01

    Full Text Available With only 16 cases reported in the literature, the mostly benign granular cell tumour of the urinary bladder is exceptionally rare. We present the case of a 68-year old patient with one of these lesions demonstrating our histological findings including several immunohistochemical stainings used to differentiate between other more common entities.

  17. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  18. The critical current of granular superconductor

    International Nuclear Information System (INIS)

    Ignat'ev, V.K.

    1998-01-01

    A mechanism of hyper vortex pinning in granular superconductors is proposed to describe the field dependence of the critical current density and pinning potential. The results are in a good agreement with the experiment. The model represents the peak effect and the percolation mechanism of conductivity in ceramic superconductors

  19. Use of gamma radiation for preparation of nutrient culture media

    Energy Technology Data Exchange (ETDEWEB)

    Speranskaya, I.D.; Tumanyan, M.A.; Mironova, L.L.

    1977-01-01

    A technique was developed for sterilization of nutrient culture media using ..gamma..-radiation. For this purpose, dry preparations were exposed to 3 to 6 Mrad radiation, then dissolved in sterile distilled water. The quality of media and solutions thus obtained is as good as that of preparations sterilized by filtration. The advantage of the proposed sterilization method is that liquid media can be rapidly prepared and dry sterile media can be stored at room temperature for long periods of time.

  20. Developing a Magnetic Resonance Imaging measurement of the forces within 3D granular materials under external loads

    Science.gov (United States)

    Elrington, Stefan; Bertrand, Thibault; Frey, Merideth; Shattuck, Mark; O'Hern, Corey; Barrett, Sean

    2014-03-01

    Granular materials are comprised of an ensemble of discrete macroscopic grains that interact with each other via highly dissipative forces. These materials are ubiquitous in our everyday life ranging in scale from the granular media that forms the Earth's crust to that used in agricultural and pharmaceutical industries. Granular materials exhibit complex behaviors that are poorly understood and cannot be easily described by statistical mechanics. Under external loads individual grains are jammed into place by a network of force chains. These networks have been imaged in quasi two-dimensional and on the outer surface of three-dimensional granular materials. Our goal is to use magnetic resonance imaging (MRI) to detect contact forces deep within three-dimensional granular materials, using hydrogen-1 relaxation times as a reporter for changes in local stress and strain. To this end, we use a novel pulse sequence to narrow the line width of hydrogen-1 in rubber. Here we present our progress to date, and prospects for future improvements.

  1. Reactive granular optics for passive tracking of the sun

    Science.gov (United States)

    Frenkel, I.; Niv, A.

    2017-08-01

    The growing need for cost-effective renewable energy sources is hampered by the stagnation in solar cell technology, thus preventing a substantial reduction in the module and energy-production price. Lowering the energy-production cost could be achieved by using modules with efficiency. One of the possible means for increasing the module efficiency is concentrated photovoltaics (CPV). CPV, however, requires complex and accurate active tracking of the sun that reduces much of its cost-effectiveness. Here, we propose a passive tracking scheme based on a reactive optical device. The optical reaction is achieved by a new kind of light activated mechanical force that acts on micron-sized particles. This optical force allows the formation of granular disordered optical media that can be switched from being opaque to become transparent based on the intensity of light it interacts with. Such media gives rise to an efficient passive tracking scheme that when combined with an external optical cavity forms a new solar power conversion approach. Being external to the cell itself, this approach is indifferent to the type of semiconducting material that is used, as well as to other aspects of the cell design. This, in turn, liberates the cell layout from its optical constraints thus paving the way to higher efficiencies at lower module price.

  2. Mechanical and Structural Behavior of Granular Material Packed Beds for Space Life Support System Applications

    Science.gov (United States)

    Malla, Ramesh B.; Anandakumar, Ganesh

    2005-01-01

    Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of

  3. Filtration of aerosols produced by a sodium fire

    International Nuclear Information System (INIS)

    Duverger de Cuy, G.; Colome, J.

    1977-01-01

    The containment system of the Super Phenix reactor takes account of the possibility of contaminated sodium fires, particularly in the vicinity of the fuel storage drum. It is thus necessary to contain the emitted radioactivity associated with a quantity of sodium aerosols of the order of some 10 g/m 3 . Investigations previously carried out had shown that the retention capacity of high-efficiency asbestos filters was clearly insufficient. A new research programme on the filtration of sodium aerosols has thus been worked out with the aim of: gaining a better understanding of the granulometry of the aerosols produced by the fire; checking the efficiency of the new glass-fibre media of which high-efficiency filters are composed; selecting a prefiltering system which, in conjunction with the high-efficiency filter, would ensure a suitable retention capacity for the whole unit. The following prefilters are under investigation: agglomerating cyclones; fabric prefilters (dense filter media - variable density filters - bag filters); water prefilters; sand prefilters. The experimental equipment on which this programme has been based is presented. Results have so far been obtained for agglomerating cyclones (recirculating loop with a cyclone of 95% efficiency), for a number of textile prefilters and for the retention capacity of high-efficiency filters

  4. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    Science.gov (United States)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  5. Characterization of granular collapse onto hard substrates by acoustic emissions

    Science.gov (United States)

    Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; De Rosny, Julien

    2013-04-01

    Brittle deformation in granular porous media can generate gravitational instabilities such as debris flows and rock avalanches. These phenomena constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what

  6. Linear and nonlinear Biot waves in a noncohesive granular medium slab: transfer function, self-action, second harmonic generation.

    Science.gov (United States)

    Legland, J-B; Tournat, V; Dazel, O; Novak, A; Gusev, V

    2012-06-01

    Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.

  7. OPTIMIZATION OF THE PROCESS OF DRYING THE FILTRATE DISTILLERY DREGS

    Directory of Open Access Journals (Sweden)

    A. A. Shevtsov

    2013-01-01

    Full Text Available The interactions of various factors affecting the process of drying the filtrate distillery dregs are investigated. Rational conditions for the process of drying the filtrate distillery dregs in a spray dryer are obtained.

  8. Role of ozone and granular activated carbon in the removal of mutagenic compounds.

    Science.gov (United States)

    Bourbigot, M M; Hascoet, M C; Levi, Y; Erb, F; Pommery, N

    1986-01-01

    The identification of certain organic compounds in drinking water has led water treatment specialists to be increasingly concerned about the eventual risks of such pollutants to the health of consumers. Our experiments focused on the role of ozone and granular activated carbon in removing mutagenic compounds and precursors that become toxic after chlorination. We found that if a sufficient dose of ozone is applied, its use does not lead to the creation of mutagenic compounds in drinking water and can even eliminate the initial mutagenicity of the water. The formation of new mutagenic compounds seems to be induced by ozonation that is too weak, although these mutagens can be removed by GAC filtration. Ozone used with activated carbon can be one of the best means for eliminating the compounds contributing to the mutagenicity of water. A combined treatment of ozone and activated carbon also decreases the chlorine consumption of the treated water and consequently reduces the formation of chlorinated organic compounds. PMID:3816720

  9. Homogenization of discrete media

    Energy Technology Data Exchange (ETDEWEB)

    Pradel, F.; Sab, K. [CERAM-ENPC, Marne-la-Vallee (France)

    1998-11-01

    Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.) 7 refs.

  10. Determination of chromate ion in drilling mud filtrates

    International Nuclear Information System (INIS)

    Whitfill, D.

    1980-01-01

    A method of determining the amount of chromate ion in an aqueous drilling mud filtrate containing organic color bodies such as lignosulfate wherein the method comprises: (A) treating the aqueous filtrate with an effective amount of hydrogen peroxide to destroy said color bodies, and (B) measuring the amount of chromate ion in the filtrate by means of a spectrophotometer

  11. 40 CFR 141.174 - Filtration sampling requirements.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection... water system subject to the requirements of this subpart that provides conventional filtration treatment... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Filtration sampling requirements. 141...

  12. 40 CFR 141.71 - Criteria for avoiding filtration.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.71 Criteria for avoiding filtration. A public water system that uses a surface water source must meet all of...)(C)(iii), that filtration is required. A public water system that uses a ground water source under...

  13. 21 CFR 177.2910 - Ultra-filtration membranes.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ultra-filtration membranes. 177.2910 Section 177... Components of Articles Intended for Repeated Use § 177.2910 Ultra-filtration membranes. Ultra-filtration membranes identified in paragraphs (a)(1), (a)(2), (a)(3), and (a)(4) of this section may be safely used in...

  14. The effect of filter cake viscoelasticity on filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    , it is difficult to use the existing mathematical filtration models to simulate and optimise the filtration process. Activated sludge as well as synthetic model particles has been filtrated in this project. The study shows that compression of the formed filter cake is a time dependent process, and not only...

  15. Emergency field water supply system using natural filtration elements

    Science.gov (United States)

    Vikneswaran, M.; Yahya, Muhamad Azani; Yusof, Mohammed Alias; Ismail, Siti Nor Kamariah

    2018-02-01

    Water is the most important resource in times of emergency and during military missions. In addition, if there is a war in a country, sources of clean water are essential for life. But, the safety and cleanliness of the river water for the campers and hikers still uncertain. Usually, polluted and contaminated river water is not safe to be directly consumed by human. However, this problem can be partly resolved by using water filter where the river water can be consumed directly after the filtration process. In respect of that, this study was conducted to design the filter media for personal water purification system. Hence, the objective of this work also is to develop a personal, portable dual purpose handy water filter to provide an easier way to get safe, clean and healthy drinking water for human wherever they go. The water quality of samples collected before and after filtration were analyzed. Water samples were taken from a waterfall near Lestari Block and Lake beside Marine Centre UPNM Campus. The experimental results were analyzed based on the assessment of water quality parameters. Overall, the analysis of the results showed that the water filter was designed with basic mix tabs aqua filter water purification tablets is showing a better result where it achieve the class I of water quality index (WQI). In details, the water sample taken from waterfall near Lestari Block shown the WQI around 93 which is higher than WQI of water sample from Lake near Marine Centre UPNM which is 86, class II A which can be used for external purpose only.

  16. SOCIAL MEDIA

    Science.gov (United States)

    RESPONSIBILITY CENTCOM COALITION MEDIA SOCIAL MEDIA NEWS ARTICLES PRESS RELEASES IMAGERY VIDEOS TRANSCRIPTS VISITORS AND PERSONNEL FAMILY CENTER FAMILY READINESS CENTCOM WEBMAIL SOCIAL MEDIA SECURITY ACCOUNTABILITY HomeMEDIASOCIAL MEDIA Social Media CENTCOM'S ENGLISH SOCIAL MEDIA ACCOUNTS There are many U.S. military commands

  17. Granular activated carbon for removal of organic matter and turbidity from secondary wastewater.

    Science.gov (United States)

    Hatt, J W; Germain, E; Judd, S J

    2013-01-01

    A range of commercial granular activated carbon (GAC) media have been assessed as pretreatment technologies for a downstream microfiltration (MF) process. Media were assessed on the basis of reduction in both organic matter and turbidity, since these are known to cause fouling in MF membranes. Isotherm adsorption analysis through jar testing with supplementary column trials revealed a wide variation between the different adsorbent materials with regard to organics removal and adsorption kinetics. Comparison with previous work using powdered activated carbon (PAC) revealed that for organic removal above 60% the use of GAC media incurs a significantly lower carbon usage rate than PAC. All GACs tested achieved a minimum of 80% turbidity removal. This combination of turbidity and organic removal suggests that GAC would be expected to provide a significant reduction in fouling of a downstream MF process with improved product water quality.

  18. Hanford phosphate precipitation filtration process evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Hanford wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning. A proposed Hanford waste pre-treatment process uses sodium hydroxide at high temperature to remove aluminum from sludge. This process also dissolves phosphates. Upon cooling to 40 degrees centigrade the phosphates form a Na7(PO4)2F9H2O precipitate which must be removed prior to further treatment. Filter studies were conducted with a phosphate slurry simulant to evaluate whether 0.5 micron cross-flow sintered metal Mott filters can separate the phosphate precipitate from the wash solutions. The simulant was recirculated through the filters at room temperature and filtration performance data was collected

  19. Primary effluent filtration for coastal discharges

    Energy Technology Data Exchange (ETDEWEB)

    Cooper-Smith, G.D. [Yorkshire Water Services, Huddersfield (United Kingdom); Rundle, H. [The Capital Controls Group, Nottingham (United Kingdom)

    1998-12-31

    The use of a Tetra Deep Bed filter demonstration unit to treat primary effluent (Primary Effluent Filtration, PEF) was investigated. PEF proved capable of achieving the UWWTD primary standard, even when the primary stage performs poorly, but is not a cost-effective alternative to chemically assisted settlement. Results demonstrated that using a 1.5 to 2.2 mm grade medium, a filtration rate of 5 m/h, three backwashes a day and dosing 40 mg/l of PAXXL60 (a polyaluminium silicte) an average effluent quality of 20 mg/l BOD and 15 mgl/l total solid could be achieved. UV disinfection produced an effluent which complied with the Bathing Water Directive imperative requirement. A high enterovirus kill was also achieved. However, considerable additional work would be required before PEF could be considered suitable for full-scale applications. (orig.)

  20. Ultrasonic filtration of industrial chemical solutions

    Science.gov (United States)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  1. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  2. High Temperature Particle Filtration Technology; TOPICAL

    International Nuclear Information System (INIS)

    Besmann, T.M.

    2001-01-01

    High temperature filtration can serve to improve the economic, environmental, and energy performance of chemical processes. This project was designed to evaluate the stability of filtration materials in the environments of the production of dimethyldichlorosilane (DDS). In cooperation with Dow Corning, chemical environments for the fluidized bed reactor where silicon is converted to DDS and the incinerator where vents are cornbusted were characterized. At Oak Ridge National Laboratory (ORNL) an exposure system was developed that could simulate these two environments. Filter samples obtained from third parties were exposed to the environments for periods up to 1000 hours. Mechanical properties before and after exposure were determined by burst-testing rings of filter material. The results indicated that several types of filter materials would likely perform well in the fluid bed environment, and two materials would be good candidates for the incinerator environment

  3. Enlargement of filtration with finance in view

    CERN Document Server

    Aksamit, Anna

    2017-01-01

    This volume presents classical results of the theory of enlargement of filtration. The focus is on the behavior of martingales with respect to the enlarged filtration and related objects. The study is conducted in various contexts including immersion, progressive enlargement with a random time and initial enlargement with a random variable.  The aim of this book is to collect the main mathematical results (with proofs) previously spread among numerous papers, great part of which is only available in French. Many examples and applications to finance, in particular to credit risk modelling and the study of asymmetric information, are provided to illustrate the theory. A detailed summary of further connections and applications is given in bibliographic notes which enables to deepen study of the topic.  This book fills a gap in the literature and serves as a guide for graduate students and researchers interested in the role of information in financial mathematics and in econometric science. A basic knowledge of...

  4. Aerosol filtration with metallic fibrous filters

    International Nuclear Information System (INIS)

    Klein, M.; Goossens, W.R.A.

    1983-01-01

    The filtration efficiency of stainless steel fibrous filters (BEKIPOR porous mats and sintered webs) is determined using submicronic monodisperse polystyrene aerosols. Lasers spectrometers are used for the aerosol measurements. The parameters varied are the fiber diameter, the number of layers, the aerosol diameter and the superficial velocity. Two selected types of filters are tested with polydisperse methylene blue aerosols to determine the effect of bed loading on the filter performance and to test washing techniques for the regeneration of the filter

  5. Diatomite releases silica during spirit filtration

    OpenAIRE

    Gómez Benítez, Juan; Gil Montero, María Luisa Almoraima; De la Rosa Fox, Nicolas; Alguacil, Marcos

    2014-01-01

    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer’s health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon cont...

  6. Portable Hybrid Powered Water Filtration Device

    Directory of Open Access Journals (Sweden)

    Maria Lourdes V. Balansay

    2015-08-01

    Full Text Available The existing water filtration device has features that can be developed to be more useful and functional during emergency situations. The project’s development has been aided by following provisions in PEC, NEC, NEMA and Philippine National Standard for Safe Drinking Water provide standards for the construction of the project. These standards protect both the prototype and the user. These also served as guide for the maintenance of every component. The design of the portable hybrid powered water filtration device shows that the project has more advanced features such as portability and the power supply used such as photovoltaic module solar cells and manually operated generator. This also shows its effectiveness and reliability based on the results of discharging test, water quality test and water production test. Based on analysis of the overall financial aspects, the machine can be profitable and the amount of revenue and operating cost will increase as years pass. Using the proper machine/ tools and methods of fabrication helps in easy assembly of the project. The materials and components used are cost effective and efficient. The best time for charging the battery using solar panel is 9:00 am onwards while the hand crank generator is too slow because the generated current is little. The water filtration device is very efficient regarding the operating hours and water production. The machine may have a great effect to society and economy in generation of clean available water at less cost.

  7. Filtration system for nuclear power plant

    International Nuclear Information System (INIS)

    Otani, Takashi; Nakamizo, Hiroshi.

    1991-01-01

    The filtration system of the present invention comprises a filtering device incorporating ceramic filament element bundles, a pool return line for returning filtrates to a side banker pool or fuel storage pool, a waste sludge discharge line for discharging waste sludges captured in the filter elements by way of washing operation and a settling separation vessel. Ceramics of excellent radiation resistance and having an extremely thin multi-layered structure at the surface are used for the filter elements. Highly radioactive cruds captured at the surface of the elements by liquid passage are removed by supplying water or gas in a pulsative manner in the direction opposite to the liquid passage thereby cleaning the surface of the elements at a high speed. The thus removed high radioactive cruds are concentrically confined within the settling separation layer by gravitational settling separation. Thus, there is no more necessary for disposing the filtration element bundles after use, so that the amount of wastes can be reduced, the radiation dosage can be lowered and the facility can be simplified. (N.H.)

  8. Direct filtration of Biesbosch water and Algae and water treatment in the Netherlands : 3rd Direct Filtration Seminar

    NARCIS (Netherlands)

    Petrusevski, B.; Vlaski, A.; Van Breemen, A.N.; Alaerts, G.J.

    1993-01-01

    This presentation summarises basic information on direct filtration, and demonstrates the main research findings, related to the performance of simple in-line direct filtration. The results reported are part of a comprehensive ongoing research programm "Direct filtration of Biesbosch water"

  9. Constitutive law of dense granular matter

    International Nuclear Information System (INIS)

    Hatano, Takahiro

    2010-01-01

    The frictional properties of dense granular matter under steady shear flow are investigated using numerical simulation. Shear flow tends to localize near the driving boundary unless the coefficient of restitution is close to zero and the driving velocity is small. The bulk friction coefficient is independent of shear rate in dense and slow flow, whereas it is an increasing function of shear rate in rapid flow. The coefficient of restitution affects the friction coefficient only in such rapid flow. Contrastingly, in dense and slow regime, the friction coefficient is independent of the coefficient of restitution and mainly determined by the elementary friction coefficient and the rotation of grains. It is found that the mismatch between the vorticity of flow and the angular frequency of grains plays a key role to the frictional properties of sheared granular matter.

  10. An automata model of granular materials

    International Nuclear Information System (INIS)

    Gutt, G.M.; Haff, P.K.

    1990-01-01

    In this paper a new modeling technique (the Lattice Grain Model) is presented for the simulation of two-dimensional granular systems involving large numbers of grains. These granular systems may include both high shear rate regions as well as static plugs of grains and cannot easily be handled within the framework of existing continuum theories such as soil mechanics. The Lattice Grain Model (LGrM) is similar to the Lattice Gas Model (LBM). This allows large simulations to be programmed onto a hypercube concurrent processor in a straightforward manner. However, it differs from LBM in that it includes the inelastic collisions and volume-filling properties of macroscopic grains. Examples to be presented will include Couette flow, flow through an hourglass, and gravity-driven flows around obstacles

  11. Submammary Granular Parakeratosis Treated With Mastopexy.

    Science.gov (United States)

    Nelson, Garrett; Lien, Mary H; Messina, Jane L; Ranjit, Sonali; Fenske, Neil Alan

    2017-08-01

    Granular parakeratosis, originally named axillary granular parakeratosis, is an uncommon disease with an unclear etiology. It is thought to result from defective processing of profillagrin to fillagrin, causing retention of keratohyaline granules in the epidermis. A myriad of causative factors has been proposed, including friction, moisture, heat, and contact irritants such as deodorants. We present a case in the inframammary area that resolved with mastopexy, further supporting the role of friction, moisture, and heat. Furthermore, we present electron microscopic evidence demonstrating non-degraded keratohyaline granules upon epidermal maturation. This entity, we believe, is reactive and represents a protective response of the body to moisture and heat. J Drugs Dermatol. 2017;16(8):810-812..

  12. Granular flow down a flexible inclined plane

    Directory of Open Access Journals (Sweden)

    Sonar Prasad

    2017-01-01

    Full Text Available Discrete and continuous systems are commonly studied individually, but seldom together. Indeed, granular flows are typically studied through flows over a rigid base. Here, we investigate the behaviour of granular flows over an inclined, flexible base. The flexible base is modeled as a rigid platform mounted on springs and has one degree of freedom. The base vibrations are introduced by the flow. We simulate such flows through a discrete element method and compare with experiments. We find that a flexible base increased the upper limit of the inclination up to which a steady flow is possible by at least 3 degrees. This stabilized zone may have important implications in applications such as conveyor belts and chutes.

  13. Memory effect in uniformly heated granular gases

    Science.gov (United States)

    Trizac, E.; Prados, A.

    2014-07-01

    We evidence a Kovacs-like memory effect in a uniformly driven granular gas. A system of inelastic hard particles, in the low density limit, can reach a nonequilibrium steady state when properly forced. By following a certain protocol for the drive time dependence, we prepare the gas in a state where the granular temperature coincides with its long time value. The temperature subsequently does not remain constant but exhibits a nonmonotonic evolution with either a maximum or a minimum, depending on the dissipation and on the protocol. We present a theoretical analysis of this memory effect at Boltzmann-Fokker-Planck equation level and show that when dissipation exceeds a threshold, the response can be called anomalous. We find excellent agreement between the analytical predictions and direct Monte Carlo simulations.

  14. Tumor of granular cells of esophagus

    International Nuclear Information System (INIS)

    Gonzalez Fabian, Licet; Diaz Anaya, Amnia; Perez de la Torre, Georgina

    2010-01-01

    Granular cells tumors are rare and asymptomatic lesions and by general, it is an incidental finding en high or low endoscopy. They were described for the first time by Abrikossoff in 1926. The more frequent locations are the buccal mucosa, dermis and subcutaneous cellular tissue, most of these tumors has a benign origin. This is the case of a woman aged 44 with a pyrosis history from a year ago; by high endoscopy it is noted a 8 mm lesion distal to esophagus and confirmed by histological study of granular cells tumor. Elective treatment of this lesion is the endoscopic polypectomy. Despite that the malign potential is low; we suggested a close clinical and endoscopic follow-up.

  15. Traffic and Granular Flow ’07

    CERN Document Server

    Chevoir, François; Gondret, Philippe; Lassarre, Sylvain; Lebacque, Jean-Patrick; Schreckenberg, Michael

    2009-01-01

    This book covers several research fields, all of which deal with transport. Three main topics are treated: road traffic, granular matter, and biological transport. Different points of view, i.e. modelling, simulations, experiments, and phenomenological observations, are considered. Sub-topics include: highway or urban vehicular traffic (dynamics of traffic, macro/micro modelling, measurements, data analysis, security issues, psychological issues), pedestrian traffic, animal traffic (e.g. social insects), collective motion in biological systems (molecular motors...), granular flow (dense flows, intermittent flows, solid/liquid transition, jamming, force networks, fluid and solid friction), networks (biological networks, urban traffic, the internet, vulnerability of networks, optimal transport networks) and cellular automata applied to the various aforementioned fields.

  16. Evaluating Energy Flux in Vibrofluidized Granular Bed

    Directory of Open Access Journals (Sweden)

    N. A. Sheikh

    2013-01-01

    Full Text Available Granular flows require sustained input of energy for fluidization. A level of fluidization depends on the amount of heat flux provided to the flow. In general, the dissipation of the grains upon interaction balances the heat inputs and the resultant flow patterns can be described using hydrodynamic models. However, with the increase in packing fraction, the heat fluxes prediction of the cell increases. Here, a comparison is made for the proposed theoretical models against the MD simulations data. It is observed that the variation of packing fraction in the granular cell influences the heat flux at the base. For the elastic grain-base interaction, the predictions vary appreciably compared to MD simulations, suggesting the need to accurately model the velocity distribution of grains for averaging.

  17. Granularity controlled irradiation response of cuprate superconductors

    International Nuclear Information System (INIS)

    Mishra, N.C.; Behera, D.; Mohanty, T.; Mohanta, D.; Kanjilal, D.; Mehta, G.K.; Pinto, R.

    1999-01-01

    Confining to an energy range where ions can neither create defects through elastic energy loss nor they can create defects through latent track formation, we study the effect of 140 MeV Si-ion irradiation in YBa 2 Cu 3 O 7-x (YBCO). We show that the evolution of superconducting and normal state properties in such situation is largely governed by the initial defects structure, particularly the grain boundary characteristics of the YBCO system. Both intra- and inter-granular defect structure in films of two batches were made widely different by having Ag as composite and substituent in one and by aging the other prior to irradiation. Evolution of the resistivity vs temperature characteristics in these films with ion fluence reveals the importance of Ag in bringing about both inter- and intra-granular modifications and making the films insensitive to ion irradiation

  18. Mathematics and Mechanics of Granular Materials

    CERN Document Server

    Hill, James M

    2005-01-01

    Granular or particulate materials arise in almost every aspect of our lives, including many familiar materials such as tea, coffee, sugar, sand, cement and powders. At some stage almost every industrial process involves a particulate material, and it is usually the cause of the disruption to the smooth running of the process. In the natural environment, understanding the behaviour of particulate materials is vital in many geophysical processes such as earthquakes, landslides and avalanches. This book is a collection of current research from some of the major contributors in the topic of modelling the behaviour of granular materials. Papers from every area of current activity are included, such as theoretical, numerical, engineering and computational approaches. This book illustrates the numerous diverse approaches to one of the outstanding problems of modern continuum mechanics.

  19. Slow creep in soft granular packings.

    Science.gov (United States)

    Srivastava, Ishan; Fisher, Timothy S

    2017-05-14

    Transient creep mechanisms in soft granular packings are studied numerically using a constant pressure and constant stress simulation method. Rapid compression followed by slow dilation is predicted on the basis of a logarithmic creep phenomenon. Characteristic scales of creep strain and time exhibit a power-law dependence on jamming pressure, and they diverge at the jamming point. Microscopic analysis indicates the existence of a correlation between rheology and nonaffine fluctuations. Localized regions of large strain appear during creep and grow in magnitude and size at short times. At long times, the spatial structure of highly correlated local deformation becomes time-invariant. Finally, a microscale connection between local rheology and local fluctuations is demonstrated in the form of a linear scaling between granular fluidity and nonaffine velocity.

  20. Fuzzy batch controller for granular materials

    OpenAIRE

    Zamyatin Nikolaj; Smirnov Gennadij; Fedorchuk Yuri; Rusina Olga

    2018-01-01

    The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy infer...

  1. Arching Structures in Granular Sedimentary Deposits

    Czech Academy of Sciences Publication Activity Database

    Kulaviak, Lukáš; Hladil, Jindřich; Růžička, Marek; Drahoš, Jiří; Saint-Lary, L.

    2013-01-01

    Roč. 246, SEP (2013), s. 269-277 ISSN 0032-5910 R&D Projects: GA ČR GA104/07/1110; GA AV ČR IAAX00130702; GA MŠk(CZ) LG11014 Institutional support: RVO:67985858 ; RVO:67985831 Keywords : wet granulars * deposit * arching structure Subject RIV: CI - Industrial Chemistry, Chemical Engineering; DB - Geology ; Mineralogy (GLU-S) Impact factor: 2.269, year: 2013

  2. Simulation of 2D Granular Hopper Flow

    Science.gov (United States)

    Li, Zhusong; Shattuck, Mark

    2012-02-01

    Jamming and intermittent granular flow are big problems in industry, and the vertical hopper is a canonical example of these difficulties. We simulate gravity driven flow and jamming of 2D disks in a vertical hopper and compare with identical companion experiments presented in this session. We measure and compare the flow rate and probability for jamming as a function of particle properties and geometry. We evaluate the ability of standard Hertz-Mindlin contact mode to quantitatively predict the experimental flow.

  3. Spatial correlations in compressible granular flows

    OpenAIRE

    Van Noije, T. P. C.; Ernst, M. H.; Brito López, Ricardo

    1998-01-01

    The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time increases, the structure factor of density fluctuations develops a maximum, which shifts to smaller wave numbers (growing correlation length). Furthermore, the inclusion of longitudinal velocity fluctuations changes long-range correlations in the flow field qualitatively and exten...

  4. Small solar system bodies as granular systems

    Science.gov (United States)

    Hestroffer, Daniel; Campo Bagatín, Adriano; Losert, Wolfgang; Opsomer, Eric; Sánchez, Paul; Scheeres, Daniel J.; Staron, Lydie; Taberlet, Nicolas; Yano, Hajime; Eggl, Siegfried; Lecomte, Charles-Edouard; Murdoch, Naomi; Radjai, Fahrang; Richardson, Derek C.; Salazar, Marcos; Schwartz, Stephen R.; Tanga, Paolo

    2017-06-01

    Asteroids and other Small Solar System Bodies (SSSBs) are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining). In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  5. Iodine Gas Trapping using Granular Porous Bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Hwan; Shin, Jin Myeong; Park, Jang Jin; Park, Geun Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Mansung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    {sup 129}I is a radionuclide with a very long half-life of 1.57 Χ 10{sup 7} years and has negative health effects to the human body. Therefore, the emission of {sup 129}I into the air is closely regulated by the Environmental Protection Agency (EPA). Many methods for trapping gaseous {sup 129}I have been developed thus far, including wet scrubbing and adsorption using silver loaded zeolites. Although wet scrubbing can effectively remove iodine, it suffers from corrosion of the vessel due to high concentration of the scrubbing solution. Silver loaded zeolites also show effectiveness in capturing {sup 129}I gas, yet weak thermal stability of physisorbed iodine remains a challenge. We studied a novel and facile method to trap iodine gas using bismuth. Granular bismuth having many pores was synthesized using bismuth nitrate and polyvinyl alcohol as a bismuth precursor and pore forming agent, respectively. Reaction of iodine and our samples resulted in an iodine capturing capacity of more than 2 times that of the commercial grade silver exchanged zeolite (AgX). Granular porous bismuths synthesized using bismuth nitrate and PVA show a promising performance in capturing iodine gas. The use of bismuth in trapping {sup 129}I gas can reduce the process cost as bismuth is cheap. Further study is going on to improve the mechanical property of granular porous bismuths for their easy handling.

  6. Iodine Gas Trapping using Granular Porous Bismuth

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Shin, Jin Myeong; Park, Jang Jin; Park, Geun Il; Yim, Mansung

    2014-01-01

    129 I is a radionuclide with a very long half-life of 1.57 Χ 10 7 years and has negative health effects to the human body. Therefore, the emission of 129 I into the air is closely regulated by the Environmental Protection Agency (EPA). Many methods for trapping gaseous 129 I have been developed thus far, including wet scrubbing and adsorption using silver loaded zeolites. Although wet scrubbing can effectively remove iodine, it suffers from corrosion of the vessel due to high concentration of the scrubbing solution. Silver loaded zeolites also show effectiveness in capturing 129 I gas, yet weak thermal stability of physisorbed iodine remains a challenge. We studied a novel and facile method to trap iodine gas using bismuth. Granular bismuth having many pores was synthesized using bismuth nitrate and polyvinyl alcohol as a bismuth precursor and pore forming agent, respectively. Reaction of iodine and our samples resulted in an iodine capturing capacity of more than 2 times that of the commercial grade silver exchanged zeolite (AgX). Granular porous bismuths synthesized using bismuth nitrate and PVA show a promising performance in capturing iodine gas. The use of bismuth in trapping 129 I gas can reduce the process cost as bismuth is cheap. Further study is going on to improve the mechanical property of granular porous bismuths for their easy handling

  7. Rough – Granular Computing knowledge discovery models

    Directory of Open Access Journals (Sweden)

    Mohammed M. Eissa

    2016-11-01

    Full Text Available Medical domain has become one of the most important areas of research in order to richness huge amounts of medical information about the symptoms of diseases and how to distinguish between them to diagnose it correctly. Knowledge discovery models play vital role in refinement and mining of medical indicators to help medical experts to settle treatment decisions. This paper introduces four hybrid Rough – Granular Computing knowledge discovery models based on Rough Sets Theory, Artificial Neural Networks, Genetic Algorithm and Rough Mereology Theory. A comparative analysis of various knowledge discovery models that use different knowledge discovery techniques for data pre-processing, reduction, and data mining supports medical experts to extract the main medical indicators, to reduce the misdiagnosis rates and to improve decision-making for medical diagnosis and treatment. The proposed models utilized two medical datasets: Coronary Heart Disease dataset and Hepatitis C Virus dataset. The main purpose of this paper was to explore and evaluate the proposed models based on Granular Computing methodology for knowledge extraction according to different evaluation criteria for classification of medical datasets. Another purpose is to make enhancement in the frame of KDD processes for supervised learning using Granular Computing methodology.

  8. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration

    Science.gov (United States)

    Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre

    2017-02-01

    The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

  9. Filtration approach to mitigate indoor Thoron progeny concentration

    International Nuclear Information System (INIS)

    Wang, J.; Meisenberg, O.; Karg, E.; Tschiersch, J.; Chen, Y.

    2010-01-01

    This study investigates filtration of air as potential mitigation method of thoron progeny exposure. The experiments were conducted in a model room (volume 7.1 m 3 ) which was equipped with a pump and an HEPA (high efficiency particulate air) filter. Filtration at a rate of 0.2, 0.4, 0.5 and 0.8 h -1 during 88 h proved an effective practice in reducing the total indoor thoron decay product concentration. The results indicate that 0.4-0.8 h -1 filtration rate had almost the same filtration efficiency in decreasing the total thoron EEC (equilibrium equivalent concentration) by 97% while 80% of total thoron EEC were reduced by 0.2 h -1 filtration rate; meanwhile, the unattached thoron EEC rose significantly by 190, 270, 290%, respectively under 0.4-0.8 h -1 filtration rate, whereas 0.2 h -1 filtration rate increased unattached thoron EEC by 40%. The aerosol number size distribution variation reveals that filtration operation removes smaller particles faster or earlier than the larger ones. The annual effective dose calculated was reduced by 91-92% at a filtration rate of 0.4-0.8 h -1 while 75% reduced at 0.2 h -1 filtration rate after 88 h filtration process. (authors)

  10. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    Science.gov (United States)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  11. Correlations and the Ring-Kinetic Equation in Dense Sheared Granular Flows

    Science.gov (United States)

    Kumaran, V.

    A formal way of deriving fluctuation-correlation relations in densesheared granular media, starting with the Enskog approximation for the collision integral in the Chapman-Enskog theory, is discussed. The correlation correction to the viscosity is obtained using the ring-kinetic equation, in terms of the correlations in the hydrodynamic modes of the linearised Enskog equation. It is shown that the Green-Kubo formula for the shear viscosity emerges from the two-body correlation function obtained from the ring-kinetic equation.

  12. Effective temperature and fluctuation-dissipation theorem in athermal granular systems: A review

    International Nuclear Information System (INIS)

    Chen Qiong; Hou Mei-Ying

    2014-01-01

    The definition and the previous measurements of a dynamics-relevant temperature-like quantity in granular media are reviewed for slow and fast particle systems. Especially, the validity of the fluctuation-dissipation theorem in such an athermal system is explored. Experimental evidences for the fluctuation-dissipation theorem relevant effect temperature support the athermal statistical mechanics, which has been widely explored in recent years by physicists. Difficulties encountered in defining temperature or establishing thermodynamics or statistical mechanics in non-equilibrium situations are discussed. (topical review - statistical physics and complex systems)

  13. Nonlocal approach to the analysis of the stress distribution in granular systems. I. Theoretical framework

    Science.gov (United States)

    Kenkre, V. M.; Scott, J. E.; Pease, E. A.; Hurd, A. J.

    1998-05-01

    A theoretical framework for the analysis of the stress distribution in granular materials is presented. It makes use of a transformation of the vertical spatial coordinate into a formal time variable and the subsequent study of a generally non-Markoffian, i.e., memory-possessing (nonlocal) propagation equation. Previous treatments are obtained as particular cases corresponding to, respectively, wavelike and diffusive limits of the general evolution. Calculations are presented for stress propagation in bounded and unbounded media. They can be used to obtain desired features such as a prescribed stress distribution within the compact.

  14. Recent Trends in Nanofibrous Membranes and Their Suitability for Air and Water Filtrations

    Directory of Open Access Journals (Sweden)

    Seeram Ramakrishna

    2011-08-01

    Full Text Available In recent decades, engineered membranes have become a viable separation technology for a wide range of applications in environmental, food and biomedical fields. Membranes are now competitive compared to conventional techniques such as adsorption, ion exchangers and sand filters. The main advantage of membrane technology is the fact that it works without the addition of any chemicals, with relatively high efficiency and low energy consumption with well arranged process conductions. Hence they are widely utilized in biotechnology, food and drink manufacturing, air filtration and medical uses such as dialysis for kidney failure patients. Membranes from nanofibrous materials possess high surface area to volume ratio, fine tunable pore sizes and their ease of preparation prompted both industry and academic researchers to study their use in many applications. In this paper, modern concepts and current research progress on various nanofibrous membranes, such as water and air filtration media, are presented.

  15. The role of fluid viscosity in an immersed granular collapse

    Science.gov (United States)

    Yang, Geng Chao; Kwok, Chung Yee; Sobral, Yuri Dumaresq

    2017-06-01

    Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM) and discrete element method (DEM). It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  16. The role of fluid viscosity in an immersed granular collapse

    Directory of Open Access Journals (Sweden)

    Yang Geng Chao

    2017-01-01

    Full Text Available Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM and discrete element method (DEM. It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  17. Adsorption and bioadsorption of granular activated carbon (GAC) for dissolved organic carbon (DOC) removal in wastewater.

    Science.gov (United States)

    Xing, W; Ngo, H H; Kim, S H; Guo, W S; Hagare, P

    2008-12-01

    In this study, the performances of GAC adsorption and GAC bioadsorption in terms of dissolved organic carbon (DOC) removal were investigated with synthetic biologically treated sewage effluent (BTSE), synthetic primary treated sewage effluent (PTSE), real BTSE and real PTSE. The main aims of this study are to verify and compare the efficiency of DOC removal by GAC (adsorption) and acclimatized GAC (bioadsorption). The results indicated that the performance of bioadsorption was significantly better than that of adsorption in all cases, showing the practical use of biological granular activated carbon (BGAC) in filtration process. The most significance was observed at a real PTSE with a GAC dose of 5g/L, having 54% and 96% of DOC removal by adsorption and bioadsorption, respectively. In addition, it was found that GAC adsorption equilibrium was successfully predicted by a hybrid Langmuir-Freundlich model whilst integrated linear driving force approximation (LDFA)+hybrid isotherm model could describe well the adsorption kinetics. Both adsorption isotherm and kinetic coefficients determined by these models will be useful to model the adsorption/bioadsorption process in DOC removal of BGAC filtration system.

  18. Coupled granular/continuous medium for thermally stable perpendicular magnetic recording

    International Nuclear Information System (INIS)

    Sonobe, Y.; Weller, D.; Ikeda, Y.; Takano, K.; Schabes, M.E.; Zeltzer, G.; Do, H.; Yen, B.K.; Best, M.E.

    2001-01-01

    We studied coupled granular/continuous (CGC) perpendicular media consisting of a continuous multilayer structure and a granular layer. The addition of Co/Pt multilayers decreased the nucleation field from 200 to -1800 Oe and increased the squareness from 0.9 to 1.0. The moment decay at room temperature was significantly reduced from -4.8% to -0.05% per decade. At elevated temperatures, strong exchange coupling between a granular layer and a continuous layer is needed for thermal stability. The exchange-coupled continuous layer reduces thermal demagnetization as it effectively increases the grain size, tightens the grain distribution, and prevents the reversal of individual grains. Magnetic Force Microscope image showed a larger magnetic cluster size for the CGC structure. Compared to the CoCr 18 Pt 12 medium, the CGC medium had 2.3 dB higher output. However, the noise for the CGC medium increased with the recording density, while the noise for the CoCr 18 Pt 12 medium remained constant from 4 to 15 kfc/mm. Further optimization and noise reduction are still required for future high density recording

  19. Impact-induced splash and spill in a quasi-confined granular medium

    Science.gov (United States)

    Ogale, S. B.; Shinde, S. R.; Karve, P. A.; Ogale, Abhijit S.; Kulkarni, A.; Athawale, A.; Phadke, A.; Thakurdas, R.

    2006-05-01

    The splash and spill effects caused by the impact of a ball dropped from a height into a granular medium held in a small open container are examined. Different granular media, namely rice, mustard seeds, cream of wheat and plastic beads are used. The quantity of spilled-over granular matter ( W, grams) is measured as a function of the ball-drop height and compared for different cases. Digital pictures of the splash process are also recorded. The quantity W is seen to vary approximately linearly with the energy of impact. Interestingly, a distinct upward jump is seen in the spilled quantity at specific impact energy in the case of mustard seeds, which have spherical shape and also exhibit some charging effects. Similar jump was also confirmed for the case of plastic beads with broadly similar properties. Although the parameters such as mass per grain and packing density for the case of mustard seeds are intermediate between those for rice and cream of wheat, the spill quantity for comparable impact energy is considerably higher in the former case. The possible reasons for this non-monotonicity of behavior are discussed in terms of the differences in grain shapes and properties. Experiments are also performed using plastic beads of the same type but with four different sizes to explore the dependence of spilled quantity on bead size. The container size dependence is also examined for various bead types. Interesting systematics are seen, which are discussed qualitatively.

  20. Coupled granular/continuous medium for thermally stable perpendicular magnetic recording

    Science.gov (United States)

    Sonobe, Y.; Weller, D.; Ikeda, Y.; Takano, K.; Schabes, M. E.; Zeltzer, G.; Do, H.; Yen, B. K.; Best, M. E.

    2001-10-01

    We studied coupled granular/continuous (CGC) perpendicular media consisting of a continuous multilayer structure and a granular layer. The addition of Co/Pt multilayers decreased the nucleation field from 200 to -1800 Oe and increased the squareness from 0.9 to 1.0. The moment decay at room temperature was significantly reduced from -4.8% to -0.05% per decade. At elevated temperatures, strong exchange coupling between a granular layer and a continuous layer is needed for thermal stability. The exchange-coupled continuous layer reduces thermal demagnetization as it effectively increases the grain size, tightens the grain distribution, and prevents the reversal of individual grains. Magnetic Force Microscope image showed a larger magnetic cluster size for the CGC structure. Compared to the CoCr 18Pt 12 medium, the CGC medium had 2.3 dB higher output. However, the noise for the CGC medium increased with the recording density, while the noise for the CoCr 18Pt 12 medium remained constant from 4 to 15 kfc/mm. Further optimization and noise reduction are still required for future high density recording.

  1. Measurement and characterization of filtration efficiencies for prefilter materials used in aerosol filtration

    International Nuclear Information System (INIS)

    Sciortino, J.

    1991-01-01

    In applications where the filtration of large quantities of mixed (liquid and solid) aerosols is desired, a multistage filtration system is often employed. This system consists of a prefilter, a High Efficiency Particulate Air (HEPA) filter, and any number of specialized filters particular to the filtration application. The prefilter removes liquids and any large particles from the air stream, keeping them from prematurely loading the HEPA filter downstream. The HEPA filter eliminates 99.97% of all particulates in the aerosol. The specialized filters downstream of the HEPA filter can be used to remove organic volatiles or other vapors. While the properties of HEPA filters have been extensively investigated, literature characterizing the prefilter is scarce. The purpose of this report is to characterize the efficiency of the prefilter as a function of particle size, nature of the particle (solid or liquid), and the gas flow rate across the face of the prefilter. 1 ref., 4 figs

  2. Tunneling magnetoresistance in granular cermet films with particle size distribution

    International Nuclear Information System (INIS)

    Vovk, A.Ya.; Golub, V.O.; Malkinski, L.; Kravets, A.F.; Pogorily, A.M.; Shypil', O.V.

    2004-01-01

    The correlation between tunneling magnetoresistance (TMR) and field sensitivity (dMR/dH) for granular films (Co 50 Fe 50 ) x -(Al 2 O 3 ) 1-x was studied. The position of TMR maximum is shifted towards the lower x in the higher applied magnetic fields. Such a behavior was observed for metal granular nanocomposites but is first reported for granular cermets. However the highest dMR/dH was found for the compositions just below the percolation threshold

  3. Impact of backwashing procedures on deep bed filtration productivity in drinking water treatment.

    Science.gov (United States)

    Slavik, Irene; Jehmlich, Alexander; Uhl, Wolfgang

    2013-10-15

    Backwash procedures for deep bed filters were evaluated and compared by means of a new integrated approach based on productivity. For this, different backwash procedures were experimentally evaluated by using a pilot plant for direct filtration. A standard backwash mode as applied in practice served as a reference and effluent turbidity was used as the criterion for filter run termination. The backwash water volumes needed, duration of the filter-to-waste period, time out of operation, total volume discharged and filter run-time were determined and used to calculate average filtration velocity and average productivity. Results for filter run-times, filter backwash volumes, and filter-to-waste volumes showed considerable differences between the backwash procedures. Thus, backwash procedures with additional clear flushing phases were characterised by an increased need for backwash water. However, this additional water consumption could not be compensated by savings during filter ripening. Compared to the reference backwash procedure, filter run-times were longer for both single-media and dual-media filters when air scour and air/water flush were optimised with respect to flow rates and the proportion of air and water. This means that drinking water production time is longer and less water is needed for filter bed cleaning. Also, backwashing with additional clear flushing phases resulted in longer filter run-times before turbidity breakthrough. However, regarding the productivity of the filtration process, it was shown that it was almost the same for all of the backwash procedures investigated in this study. Due to this unexpected finding, the relationships between filter bed cleaning, filter ripening and filtration performance were considered and important conclusions and new approaches for process optimisation and resource savings were derived. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. INVESTIGATION OF INNER SHEAR RESISTANCE OF GEOGRIDS BUILT UNDER GRANULAR PROTECTION LAYERS AND RAILWAY BALLAST

    Directory of Open Access Journals (Sweden)

    Sz. Fischer

    2015-10-01

    Full Text Available Purpose. Using adequate granular materials and layer structures in the railway super- and substructure is able to stabilise railway track geometry. For this purpose special behaviour of above materials has to be determined, e.g. inner shear resistance. Inner shear resistance of granular media with and without geogrid reinforcement in different depths is not known yet. Methodology. The author developed a special laboratory method to measure and define inner shear resistance of granular materials, it is called «multi-level shear box test». This method is adequate to determine inner shear resistance (pushing force vs. depth (distance from the «zero» surface. Two different granular materials: andesite railway ballast (31.5/63 mm and andesite railway protection layer material (0/56 mm, and seven different types of geogrids (GG1…GG7 were used during the tests. Findings. Values of inner shear resistance functions of andesite railway ballast without geogrid reinforcement and reinforced with different types of geogrids and andesite granular protection layer in function of the vertical distance from the geogrid plane were determined with multi-layer shear box tests when the material aggregation is uncompacted and compacted. Only the compacted sample was tested in case of the 0/56 mm protection layer. Cubic polynomial regression functions fitted on the mean values of the measurements are described graphically. Determination coefficients with values of R2>0.97 were resulted in all the cases of regression functions. Based on the polynomial regression functions fitted on the mean values of the test results, three increasing factors were determined in function of the distance measured from the geogrid. Increasing factor «A», «B» and «D». Originality. Multi-level shear box test, developed by the author, is certified unequivocally adequate for determining inner shear resistance of reinforced and unreinforced granular materials, e.g. railway ballast

  5. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  6. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    Science.gov (United States)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  7. Nutrient gradients in a granular activated carbon biofilter drives bacterial community organization and dynamics.

    Science.gov (United States)

    Boon, Nico; Pycke, Benny F G; Marzorati, Massimo; Hammes, Frederik

    2011-12-01

    The quality of drinking water is ensured by hygienic barriers and filtration steps, such as ozonation and granular activated carbon (GAC) filtration. Apart from adsorption, GAC filtration involves microbial processes that remove biodegradable organic carbon from the ozonated ground or surface water and ensures biological stability of the treated water. In this study, microbial community dynamics in were monitored during the start-up and maturation of an undisturbed pilot-scale GAC filter at 4 depths (10, 45, 80 and 115 cm) over a period of 6 months. New ecological tools, based on 16S rRNA gene-DGGE, were correlated to filter performance and microbial activity and showed that the microbial gradients developing in the filter was of importance. At 10 cm from the top, receiving the freshly ozonated water with the highest concentration of nutrients, the microbial community dynamics were minimal and the species richness remained low. However, the GAC samples at 80-115 cm showed a 2-3 times higher species richness than the 10-45 cm samples. The highest biomass densities were observed at 45-80 cm, which corresponded with maximum removal of dissolved and assimilable organic carbon. Furthermore, the start-up period was clearly distinguishable using the Lorenz analysis, as after 80 days, the microbial community shifted to an apparent steady-state condition with increased evenness. This study showed that GAC biofilter performance is not necessarily correlated to biomass concentration, but rather that an elevated functionality can be the result of increased microbial community richness, evenness and dynamics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Stress Transmission in Granular Packings: Localization and Cooperative Response

    Science.gov (United States)

    Ramola, Kabir

    We develop a framework for stress transmission in two dimensional granular media that respects vector force balance at the microscopic level. For a packing of grains interacting via pairwise contact forces, we introduce local gauge degrees of freedom that determine the response of the system to external perturbations. This allows us to construct unique force-balanced solutions that determine the change in contact forces as a response to external stress. By mapping this response to diffusion in the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for stress localization using exact diagonalization studies of network Laplacians associated with soft disk packings. We use this formalism to characterize the deviation from elastic behaviour as the amount of disorder in the underlying network is varied. We discuss generalizations to systems with large friction between grains and other networks that display topological disorder. This work has been supported by NSF-DMR 1409093 and the W. M. Keck Foundation.

  9. A rigid porous filter and filtration method

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ta-Kuan; Straub, Douglas, Straub L.; Dennis, Richard A.

    1998-12-01

    The present invention involves a porous rigid filter comprising a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulate from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulate. The present filter has the advantage of requiring fewer filter elements due to the high surface area- to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  10. Limitation of releases and filtration by sand

    International Nuclear Information System (INIS)

    Schektman, N.

    1986-01-01

    In the highly hypothetic case of a severe reactor accident, it may lead to an increase of pressure within the containment and up to a value above the calculated pressure. A procedure is necessary in this case to maintain the integrity of the containment to prevent a release of radioactive products to the environment, while controlling in the best way releases. So, EDF and the CEA have developed a device of decompression-filtration of the containment atmosphere, using a free penetration of the containment and a sand box; the device and its operation constitute the U5 procedure [fr

  11. Good Filtrations and the Steinberg Square

    DEFF Research Database (Denmark)

    Kildetoft, Tobias

    that tensoring the Steinberg module with a simple module of restricted highest weight gives a module with a good filtration. This result was first proved by Andersen when the characteristic is large enough. In this dissertation, generalizations of those results, which are joint work with Daniel Nakano......, the socle completely determines how a Steinberg square decomposes. The dissertation also investigates the socle of the Steinberg square for a finite group of Lie type, again providing formulas which describe how to find the multiplicity of a simple module in the socle, given information about...

  12. Filtration of nanoparticles - Application to respiratory protecting devices

    International Nuclear Information System (INIS)

    Brochot, C.

    2012-01-01

    This study aims to determine how the respiratory protective devices (RPD), whose performances are qualified for particles above 100 nm, are effective for nanoparticles. Indeed, if the use of a collective filtration is inadequate, wearing a RPD is the last protection recommended. A literature review showed that no research concerned the effectiveness of half-masks for nanoparticles. The test bench ETNA has been sized and built to overcome these lacks. Two half masks were tested according to different configurations: constant flow rate and cyclic flow rate (average flow of 84 L /min), particle size (from 5 to 100 nm), positions of the mask (sealed, usual, or with calibrated leaks). The results show that, since the RPD contain high efficiency filter media (without charged fibers) for the most penetrating particle size (100 nm - 300 nm), the RPD is more efficient for nanoparticles. Furthermore, the results obtained in the presence of actual and calibrated leaks, highlighted the importance of face seal leakages in determining the performance of RPD. A model for calculating the protection factor was established based on the balance between the airflow through the filter and the leak. This model was validated using measurements obtained in the presence of calibrated leaks, and applied for the analysis of our results in usual position. (author)

  13. Effect of Lactobacillus paracasei Culture Filtrates and Artichoke Polyphenols on Cytokine Production by Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Angelo Sisto

    2016-10-01

    Full Text Available The most recent trend in research on probiotic bacteria aims at the exploitation of bioactive bacterial compounds that are responsible for health-promoting effects and suitable for medical applications. Therefore, the main purpose of this study was to ascertain if the immunomodulatory effects of L. paracasei strains on dendritic cells (DCs were caused by bacterial metabolites released in the culture medium. For that reason, bacterial strains were grown in two media generally used for the culture of DCs, and the effects of culture filtrates on the maturation of DCs and cytokine production were evaluated. Moreover, to reveal potential synergistic effects on the immunomodulation of DCs, an artichoke phenolic extract (APE was added to the media before bacterial growth. The experiments pointed out an interesting anti-inflammatory activity of a culture filtrate obtained after growing a probiotic L. paracasei strain in one of the media supplemented with APE. Therefore, this culture filtrate—which combines the anti-inflammatory activity and the other well-known health-promoting properties of artichoke phenolic compounds—could represent the basis for future particular exploitations.

  14. How granular vortices can help understanding rheological and mixing properties of dense granular flows

    Directory of Open Access Journals (Sweden)

    Rognon Pierre

    2017-01-01

    Full Text Available Dense granular flows exhibit fascinating kinematic patterns characterised by strong fluctuations in grain velocities. In this paper, we analyse these fluctuations and discuss their possible role on macroscopic properties such as effective viscosity, non-locality and shear-induced diffusion. The analysis is based on 2D experimental granular flows performed with the stadium shear device and DEM simulations. We first show that, when subjected to shear, grains self-organised into clusters rotating like rigid bodies. The average size of these so-called granular vortices is found to increase and diverge for lower inertial numbers, when flows decelerate and stop. We then discuss how such a microstructural entity and its associated internal length scale, possibly much larger than a grain, may be used to explain two important properties of dense granular flows: (i the existence of shear-induced diffusion of grains characterised by a shear-rate independent diffusivity and (ii the development of boundary layers near walls, where the viscosity is seemingly lower than the viscosity far from walls.

  15. Dynamic optimization of a dead-end filtration trajectory: non-ideal cake filtration

    NARCIS (Netherlands)

    Blankert, B.; Kattenbelt, C.; Betlem, Bernardus H.L.; Roffel, B.

    2007-01-01

    A control strategy aimed at minimizing energy consumption is formulated for non-ideal dead-end cake filtration with an inside-out hollow fiber ultrafiltration membrane system. The non-ideal behavior was assumed to originate from cake compression, non-linear cake resistance and a variable pump

  16. Dynamic optimization of a dead-end filtration trajectory: Blocking filtration laws

    NARCIS (Netherlands)

    Blankert, B.; Betlem, Bernardus H.L.; Roffel, B.

    2006-01-01

    An operating model for dead-end membrane filtration is proposed based on the well-known blocking laws. The resulting model contains three parameters representing, the operating strategy, the fouling mechanism and the fouling potential of the feed. The optimal control strategy is determined by

  17. Renal filtration function in patients with gout

    Directory of Open Access Journals (Sweden)

    N. N. Kushnarenko

    2016-01-01

    Full Text Available Aim. To study circadian blood pressure (BP profile in patients with gout depending on the presence of arterial hypertension (HT and their relationship to the renal filtration function.Material and methods. Patients with gout (n=87 were included into the study. All the patients underwent ambulatory BP monitoring (ABPM with the assessment of circadian BP profile, determination of uric acid serum levels, glomerular filtration rate (GFR was evaluated by CKD-EPI method. Depending on GFR level, all the patients were divided into 2 groups - with renal dysfunction or without one.Results. ABPM revealed circadian BP dysregulation in 55% of gout patients both with HT and without HT. Chronic kidney disease (CKD was revealed in 72.4% of male patients, with the prevalence in patients with HT (76.6 vs 61%; p<0.001. Correlations between uric acid levels and some ABPM indicators and GFR were determined.Conclusion. Obtained data suggest the contribution of hyperuricemia in disorders of systemic and renal hemodynamics, leading to the early development of CKD.

  18. EM Task 9 - Centrifugal Membrane Filtration

    International Nuclear Information System (INIS)

    Stevens, B.G.; Stepan, D.J.; Hetland, M.D.

    1998-01-01

    This project is designed to establish the utility of a novel centrifugal membrane filtration technology for the remediation of liquid mixed waste streams at US Department of Energy (DOE) facilities in support of the DOE Environmental Management (EM) program. The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., a small business and owner of the novel centrifugal membrane filtration technology, to establish the applicability of the technology to DOE site remediation and the commercial viability of the technology for liquid mixed waste stream remediation. The technology is a uniquely configured process that makes use of ultrafiltration and centrifugal force to separate suspended and dissolved solids from liquid waste streams, producing a filtered water stream and a low-volume contaminated concentrate stream. This technology has the potential for effective and efficient waste volume minimization, the treatment of liquid tank wastes, the remediation of contaminated groundwater plumes, and the treatment of secondary liquid waste streams from other remediation processes, as well as the liquid waste stream generated during decontamination and decommissioning activities

  19. Improved remote HEPA filtration development program

    International Nuclear Information System (INIS)

    Wilson, C.E. III.

    1987-03-01

    This paper presents a summary of the prototype development and hot cell mock-up testing program undertaken to adapt a commercial remote HEPA filter housing for use in the Process Facility Modification Project (PFMP). This program was initiated in response to the project design criteria and documentation that required the air from the hot cell environment to be exhausted through three stages of HEPA filtration. Due to the anticipated quantity of radioactive contamination captured by the first stage of filters, it was determined that the first stage would need to be located in a remotely operated and maintained shielded cell adjoining the primary hot cell areas. Commercially available remote filtration equipment was evaluated and candidate unit was identified, which could be developed into a suitable filter housing. A candidate unit was obtained from Flanders Filters, Inc. and a series of hot cell mock-up tests were identified in the 305 facility at the Hanford site. The results of these tests, and further interaction with the vendor, led to a prototype remote filter housing which satisfied most PFMP criteria and proved to be significantly superior to existing commercial units for remote operation/maintenance

  20. Diatomite releases silica during spirit filtration.

    Science.gov (United States)

    Gómez, J; Gil, M L A; de la Rosa-Fox, N; Alguacil, M

    2014-09-15

    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer's health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon content was analysed. It was found that up to 0.36% by weight of diatomite dissolved in the aqueous ethanol and amorphous silica, in the form of hollow spherical microparticles, was the most abundant component. Silicon concentrations in Brandy de Jerez increased by up to 163.0% after contact with diatomite and these changes were more marked for calcined diatomite. In contrast, reductions of more than 30% in silicon concentrations were achieved after membrane filtration at low temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Riverbed Clogging and Sustainability of Riverbank Filtration

    Directory of Open Access Journals (Sweden)

    Thomas Grischek

    2016-12-01

    Full Text Available Clogging refers to a reduction of riverbed hydraulic conductivity. Due to difficulties in determining the thickness of the clogging layer, the leakage coefficient (L is introduced and used to quantify the recoverable portion of bank filtrate. L was determined at several riverbank filtration (RBF sites in field tests and using an analytical solution. Results were compared with data from similar experiments in the early 1970s and 1991–1993. In the 1980s, severe river water pollution in conjunction with high water abstraction led to partly unsaturated conditions beneath the riverbed. A leakage coefficient L of 5 × 10−7 s−1 was determined. After water quality improvement, L increased to 1–1.5 × 10−6 s−1. An alternative, cost and time efficient method is presented to estimate accurate leakage coefficients. The analytical solution is based on groundwater level monitoring data from observation wells next to the river, which can later feed into numerical models. The analytical approach was able to reflect long-term changes as well as seasonal variations. Recommendations for its application are given based on experience.

  2. Silica incorporated membrane for wastewater based filtration

    Science.gov (United States)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  3. Sensors for the CMS High Granularity Calorimeter

    CERN Document Server

    Maier, Andreas Alexander

    2017-01-01

    The CMS experiment is currently developing high granularity calorimeter endcapsfor its HL-LHC upgrade. The design foresees silicon sensors as the active material for the high radiation region close to the beampipe. Regions of lower radiation are additionally equipped with plastic scintillator tiles. This technology is similar to the calorimeter prototypes developed in the framework of the Linear Collider by the CALICE collaboration. The current status of the silicon sensor development is presented. Results of single diode measurements are shown as well as tests of full 6-inch hexagonal sensor wafers. A short summary of test beam results concludes the article.

  4. Modelling of dc characteristics for granular semiconductors

    International Nuclear Information System (INIS)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey

    2010-01-01

    The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.

  5. Modelling of dc characteristics for granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.

  6. Special relativity induced by granular space

    International Nuclear Information System (INIS)

    Jizba, Petr; Scardigli, Fabio

    2013-01-01

    We show that the special relativistic dynamics, when combined with quantum mechanics and the concept of superstatistics, can be interpreted as arising from two interlocked non-relativistic stochastic processes that operate at different energy scales. This framework leads to Feynman amplitudes that are, in the Euclidean regime, identical to the transition probability of a Brownian particle propagating through a granular space. For illustration we consider the dynamics and the propagator of a Klein-Gordon particle. Implications for deformed special relativity, quantum field theory, quantum gravity and cosmology are also discussed. (orig.)

  7. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  8. Unifying Suspension and Granular flows near Jamming

    Directory of Open Access Journals (Sweden)

    DeGiuli Eric

    2017-01-01

    Full Text Available Rheological properties of dense flows of hard particles are singular as one approaches the jamming threshold where flow ceases, both for granular flows dominated by inertia, and for over-damped suspensions. Concomitantly, the lengthscale characterizing velocity correlations appears to diverge at jamming. Here we review a theoretical framework that gives a scaling description of stationary flows of frictionless particles. Our analysis applies both to suspensions and inertial flows of hard particles. We report numerical results in support of the theory, and show the phase diagram that results when friction is added, delineating the regime of validity of the frictionless theory.

  9. Shock propagation in locally driven granular systems

    Science.gov (United States)

    Joy, Jilmy P.; Pathak, Sudhir N.; Das, Dibyendu; Rajesh, R.

    2017-09-01

    We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.

  10. On the velocity distributions of granular gases

    International Nuclear Information System (INIS)

    Polito, A.M.M.; Rocha Filho, T.M.; Figueiredo, A.

    2009-01-01

    We present a new approach to determine velocity distributions in granular gases to improve the Sonine polynomial expansion of the velocity distribution function, at higher inelasticities, for the homogeneous cooling regime of inelastic hard spheres. The perturbative consistency is recovered using a new set of dynamical variables based on the characteristic function and we illustrate our approach by computing the first four Sonine coefficients for moderate and high inelasticities. The analytical coefficients are compared with molecular dynamics simulations results and with a previous approach by Huthmann et al.

  11. Filtration Systems Design for Universal Oils in Agricultural Tractors

    Directory of Open Access Journals (Sweden)

    R. Majdan

    2017-12-01

    Full Text Available Three filtration systems using the tractor hydraulic circuit were proposed and verified during the tractors operation. Using the tractor-implement hydraulic system and filter body with accessories the universally useful filtration systems were designed. The designed filtration systems are the second stage of universal oil filtration whereas the first stage is the standard tractor filter. The decrease in the content of iron reached the values 25.53 %, 32.95 % and 41.55 % and the average decrease in oil contamination characterized by average value of decrease in content of iron, copper and silicium reached values 24.3 %, 24.7 % and 35.53 % in dependence on the filtration system and an oil contamination level. The decrease in contamination level verified the ability of designed filtration systems for agricultural tractors.

  12. A study of dynamic filtration; Um estudo sobre filtracao dinamica

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Joaquim Helder S [PETROBRAS, Natal, RN (Brazil). Distrito de Perfuracao da Bacia Potiguar. Div. de Tecnicas de Perfuracao

    1990-12-31

    The problems that cause cost increase such as: formation damage and borehole swelling or caving lead us to study the filtration of the liquid part of formation drilling fluid. With the aim of comparing static and dynamic filtration rates, we developed a modest dynamic filtration equipment, consisting of a modified API filter, connected to reservoir by means of a positive injection pump. We carried out various tests, and the results were set in charts and tables. Through these, it is possible to notice how the static and dynamic filtration curves come apart for a same pressure value. We also evaluated the effects of circulation speed, starch concentration and counter pressure. This paper does not include calculations or mathematical models accounting for filtrate invasion radii, but it demonstrates, for example, that cleaning circulation will cause lower filtration rates at lower flows. (author) 5 refs., 11 figs., 14 tabs.

  13. A study of dynamic filtration; Um estudo sobre filtracao dinamica

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Joaquim Helder S. [PETROBRAS, Natal, RN (Brazil). Distrito de Perfuracao da Bacia Potiguar. Div. de Tecnicas de Perfuracao

    1989-12-31

    The problems that cause cost increase such as: formation damage and borehole swelling or caving lead us to study the filtration of the liquid part of formation drilling fluid. With the aim of comparing static and dynamic filtration rates, we developed a modest dynamic filtration equipment, consisting of a modified API filter, connected to reservoir by means of a positive injection pump. We carried out various tests, and the results were set in charts and tables. Through these, it is possible to notice how the static and dynamic filtration curves come apart for a same pressure value. We also evaluated the effects of circulation speed, starch concentration and counter pressure. This paper does not include calculations or mathematical models accounting for filtrate invasion radii, but it demonstrates, for example, that cleaning circulation will cause lower filtration rates at lower flows. (author) 5 refs., 11 figs., 14 tabs.

  14. In-Water Hull Cleaning & Filtration System

    Science.gov (United States)

    George, Dan

    2015-04-01

    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped

  15. Vibrating membrane filtration as improved technology for microalgae dewatering

    OpenAIRE

    Nurra, C.; Clavero, E.; Salvadó, J.; Torras, C.

    2014-01-01

    10.1016/j.biortech.2014.01.115 The effect of shear-enhanced filtration by vibratory process in microalgae dewatering is presented in this paper. The aim of this research was to investigate the technical performance and improvement of vibrating membrane filtration compared with conventional tangential cross-flow filtration in microalgae concentration. An industrial-scale available commercial set-up was used. Several membrane materials as polyethersulfone, polyacrylonitrile, etc., and mean ...

  16. Use of a tangential filtration unit for processing liquid waste from nuclear laundries

    International Nuclear Information System (INIS)

    Augustin, X.; Buzonniere, A. de; Barnier, H.

    1993-01-01

    Nuclear laundries produce large quantities of weakly contaminated effluents charged with insoluble and soluble products. In collaboration with CEA, TECHNICATOME has developed an ultrafiltration process for liquid waste from nuclear laundries, associated with prior in-solubilization of the radiochemical activity. This process 'seeded ultrafiltration' is based on the use of decloggable mineral filter media and combines very high separation efficiency with long membrane life. The efficiency of the tangential filtration unit which has been processing effluents from the Cadarache Nuclear Research Center (CEA-France) nuclear laundry since mid-1988, has been confirmed on several sites

  17. Origin of the resistivity minima in granular superconductors

    International Nuclear Information System (INIS)

    Simanek, E.

    1982-01-01

    The recently observed minima in the temperature dependence of the electrical resistivity of a granular superconductor are explained with use of a percolation model of a disordered granular array, which takes into account the electrostatic charging energy. The thermally activated tunneling of Cooper pairs is shown to play an important role in the interpretation of the experimental data on tin films

  18. Granular motor in the non-Brownian limit

    NARCIS (Netherlands)

    Oyarte Galvez, Loreto Alejandra; van der Meer, Roger M.

    2016-01-01

    In this work we experimentally study a granular rotor which is similar to the famous Smoluchowski–Feynman device and which consists of a rotor with four vanes immersed in a granular gas. Each side of the vanes can be composed of two different materials, creating a rotational asymmetry and turning

  19. Nonlinear instability and convection in a vertically vibrated granular bed

    NARCIS (Netherlands)

    Shukla, P.; Ansari, I.H.; van der Meer, Roger M.; Lohse, Detlef; Alam, M.

    2014-01-01

    The nonlinear instability of the density-inverted granular Leidenfrost state and the resulting convective motion in strongly shaken granular matter are analysed via a weakly nonlinear analysis of the hydrodynamic equations. The base state is assumed to be quasi-steady and the effect of harmonic

  20. Granular Leidenfrost effect: Experiment and theory of floating particle clusters

    NARCIS (Netherlands)

    Eshuis, Peter; Eshuis, P.G.; van der Meer, Roger M.; van der Weele, J.P.; Lohse, Detlef

    2005-01-01

    Granular material is vertically vibrated in a 2D container: above a critical shaking strength, and for a sufficient number of beads, a crystalline cluster is elevated and supported by a dilute gaseous layer of fast beads underneath. We call this phenomenon the granular Leidenfrost effect. The

  1. USE OF GRANULAR GRAPHITE FOR ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE

    Science.gov (United States)

    Granular graphite is a potential electrode material for the electrochemical remediation of refractory chlorinated organic compounds such as trichloroethylene (TCE). However, the use of granular graphite can complicate the experimental results. On one hand, up to 99% of TCE was re...

  2. Surface effects in the acetylation of granular potato starch

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Woortman, A.J.J.

    2008-01-01

    The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of

  3. Influence of granular strontium chloride as additives on some ...

    Indian Academy of Sciences (India)

    Influence of granular strontium chloride as additives on some electrical and mechanical properties for pure polyvinyl alcohol. A B Elaydy M Hafez ... Keywords. Polyvinyl-alcohol (PVA); granular strontium chloride, SrCl2; a.c. electrical conductivity; dielectric constant; dielectric loss; Young's modulus; creep relaxation curve.

  4. Large mid-esophageal granular cell tumor: benign versus malignant

    Directory of Open Access Journals (Sweden)

    Prarthana Roselil Christopher

    2015-06-01

    Full Text Available Granular cell tumors are rare soft tissue neoplasms, among which only 2% are malignant, arising from nervous tissue. Here we present a case of a large esophageal granular cell tumor with benign histopathological features which metastasized to the liver, but showing on positron emission tomography-computerized tomography standardized uptake value suggestive of a benign lesion.

  5. Adsorption Study of Cobalt on Treated Granular Activated Carbon

    OpenAIRE

    Y. V. Hete; S. B. Gholase; R. U. Khope

    2012-01-01

    This study is carried out for the removal of cobalt from aqueous solution using granular activated carbon in combination with p-nitro benzoic acid at temperature 25±1 °C. The adsorption isotherm of cobalt on granular activated carbon has been determined and the data fitted reasonably well to the Langmuir and Freundlich isotherm for activated carbon.

  6. Adsorption Study of Cobalt on Treated Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Y. V. Hete

    2012-01-01

    Full Text Available This study is carried out for the removal of cobalt from aqueous solution using granular activated carbon in combination with p-nitro benzoic acid at temperature 25±1 °C. The adsorption isotherm of cobalt on granular activated carbon has been determined and the data fitted reasonably well to the Langmuir and Freundlich isotherm for activated carbon.

  7. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  8. Filtration in the Use of Individual Water Purification Devices

    National Research Council Canada - National Science Library

    Lundquist, Arthur; Clarke, Steven; Bettin, William

    2006-01-01

    .... Understanding the ability of filtration to reduce disease-causing microorganisms in water is important in protecting Soldiers, who are considering using this technology, from acute health threats...

  9. Tratamento de água de abastecimento por meio da tecnologia de filtração em múltiplas etapas - FIME Water treatment by multistage filtration systems - MSF

    Directory of Open Access Journals (Sweden)

    Luciana Rodrigues Valadares Veras

    2008-03-01

    Full Text Available A pesquisa apresenta uma avaliação do sistema de Filtração em Múltiplas Etapas (FiME, utilizando instalação piloto composta por duas unidades de pré-filtros dinâmicos em série, três linhas de pré-filtros de escoamento ascendente, em série e em camadas, e quatro filtros lentos com diferentes meios filtrantes. O desempenho do sistema foi avaliado através de parâmetros como turbidez, cor aparente, sólidos suspensos, coliformes totais e fecais e ferro. Os resultados mostraram que as três linhas de pré-filtros de escoamento ascendente apresentaram comportamento semelhante em todas as carreiras de filtração. Os quatro filtros lentos tiveram igual desempenho com relação a sólidos suspensos e os filtros lentos 3 e 4 alcançaram as maiores remoções de ferro, turbidez e cor em algumas carreiras de filtração.This work presents an evaluation of some alternatives of multistage filtration system (MSF, using a pilot plant comprising two dynamic roughing filters, in series, three lines of upflow roughing filters, linked in series and in layers and four slow sand filters with different granular media composition. The performance of the system was evaluated by monitoring some water quality parameters such as: turbidity, suspended solids, total coliforms, fecal coliforms and particle size. The results showed that the MSF system produced effluents with low turbidity, solids and coliforms. The three lines of upflow roughing filters indicated the same efficiency in all tests. The four slow sand filters had similar performance concerning solids reductions and the slow sand filters 3 and 4 reached the greatest reductions in iron, organic matter, turbidity and color, in some experiments.

  10. Critical phenomenon of granular flow on a conveyor belt.

    Science.gov (United States)

    De-Song, Bao; Xun-Sheng, Zhang; Guang-Lei, Xu; Zheng-Quan, Pan; Xiao-Wei, Tang; Kun-Quan, Lu

    2003-06-01

    The relationship between the granular wafer movement on a two-dimensional conveyor belt and the size of the exit together with the velocity of the conveyor belt has been studied in the experiment. The result shows that there is a critical speed v(c) for the granular flow when the exit width d is fixed (where d=R/D, D being the diameter of a granular wafers). When vv(c), the flow rate Q is described as Q=Crho(v)(beta)(d-k)(3/2). These are the effects of the interaction among the granular wafers and the change of the states of the granular flow due to the changing of the speed or the exit width d.

  11. Wrinkles, folds, and plasticity in granular rafts

    Science.gov (United States)

    Jambon-Puillet, Etienne; Josserand, Christophe; Protière, Suzie

    2017-09-01

    We investigate the mechanical response of a compressed monolayer of large and dense particles at a liquid-fluid interface: a granular raft. Upon compression, rafts first wrinkle; then, as the confinement increases, the deformation localizes in a unique fold. This characteristic buckling pattern is usually associated with floating elastic sheets, and as a result, particle laden interfaces are often modeled as such. Here, we push this analogy to its limits by comparing quantitative measurements of the raft morphology to a theoretical continuous elastic model of the interface. We show that, although powerful to describe the wrinkle wavelength, the wrinkle-to-fold transition, and the fold shape, this elastic description does not capture the finer details of the experiment. We describe an unpredicted secondary wavelength, a compression discrepancy with the model, and a hysteretic behavior during compression cycles, all of which are a signature of the intrinsic discrete and frictional nature of granular rafts. It suggests also that these composite materials exhibit both plastic transition and jamming dynamics.

  12. Large granular lymphocytic leukaemia pathogenesis and management.

    Science.gov (United States)

    Dearden, Claire

    2011-02-01

    The WHO classification recognises three distinct disorders of large granular lymphocytes: T-cell large granular lymphocytic leukaemia (T-LGL), chronic lymphoproliferative disorders of NK-cells (CLPD-NK) and agressive NK-cell leukaemia. Despite the different cell of origin, there is considerable overlap between T-LGL and CLPD-NK in terms of clinical presentation and therapy. Many patients are asymptomatic and do not require treatment. Therapy, with immunosuppressant agents such as low dose methotrexate or ciclosporin, is usually indicated to correct cytopenias. In contrast, aggressive NK-cell leukaemia and the rare CD56(+) aggressive T-LGL leukaemia follow a fulminant clinical course, affect younger individuals and require more intensive combination chemotherapy followed by allogeneic stem cell transplant in eligible patients. The relative rarity of these disorders means that there have been few clinical trials to inform management. However, there is now considerable interest in the pathogenesis of the chronic LGL leukaemias and this has stimulated early trials to evaluate novel agents which target the dysregulated apoptotic pathways characteristic of this disease. © 2010 Blackwell Publishing Ltd.

  13. Characterizing granular networks using topological metrics

    Science.gov (United States)

    Dijksman, Joshua A.; Kovalcinova, Lenka; Ren, Jie; Behringer, Robert P.; Kramar, Miroslav; Mischaikow, Konstantin; Kondic, Lou

    2018-04-01

    We carry out a direct comparison of experimental and numerical realizations of the exact same granular system as it undergoes shear jamming. We adjust the numerical methods used to optimally represent the experimental settings and outcomes up to microscopic contact force dynamics. Measures presented here range from microscopic through mesoscopic to systemwide characteristics of the system. Topological properties of the mesoscopic force networks provide a key link between microscales and macroscales. We report two main findings: (1) The number of particles in the packing that have at least two contacts is a good predictor for the mechanical state of the system, regardless of strain history and packing density. All measures explored in both experiments and numerics, including stress-tensor-derived measures and contact numbers depend in a universal manner on the fraction of nonrattler particles, fNR. (2) The force network topology also tends to show this universality, yet the shape of the master curve depends much more on the details of the numerical simulations. In particular we show that adding force noise to the numerical data set can significantly alter the topological features in the data. We conclude that both fNR and topological metrics are useful measures to consider when quantifying the state of a granular system.

  14. Collisional model for granular impact dynamics.

    Science.gov (United States)

    Clark, Abram H; Petersen, Alec J; Behringer, Robert P

    2014-01-01

    When an intruder strikes a granular material from above, the grains exert a stopping force which decelerates and stops the intruder. Many previous studies have used a macroscopic force law, including a drag force which is quadratic in velocity, to characterize the decelerating force on the intruder. However, the microscopic origins of the force-law terms are still a subject of debate. Here, drawing from previous experiments with photoelastic particles, we present a model which describes the velocity-squared force in terms of repeated collisions with clusters of grains. From our high speed photoelastic data, we infer that "clusters" correspond to segments of the strong force network that are excited by the advancing intruder. The model predicts a scaling relation for the velocity-squared drag force that accounts for the intruder shape. Additionally, we show that the collisional model predicts an instability to rotations, which depends on the intruder shape. To test this model, we perform a comprehensive experimental study of the dynamics of two-dimensional granular impacts on beds of photoelastic disks, with different profiles for the leading edge of the intruder. We particularly focus on a simple and useful case for testing shape effects by using triangular-nosed intruders. We show that the collisional model effectively captures the dynamics of intruder deceleration and rotation; i.e., these two dynamical effects can be described as two different manifestations of the same grain-scale physical processes.

  15. Integrated bio-oxidation and adsorptive filtration reactor for removal of arsenic from wastewater.

    Science.gov (United States)

    Kamde, Kalyani; Dahake, Rashmi; Pandey, R A; Bansiwal, Amit

    2018-01-08

    Recently, removal of arsenic from different industrial effluent discharged using simple, efficient and low-cost technique has been widely considered. In this study, removal of arsenic (As) from real wastewater has been studied employing modified bio-oxidation followed by adsorptive filtration method in a novel continuous flow through the reactor. This method includes biological oxidation of ferrous to ferric ions by immobilized Acidothiobacillus ferrooxidans bacteria on granulated activated carbon (GAC) in fixed bed bio-column reactor with the adsorptive filtration unit. Removal efficiency was optimized regarding the initial flow rate of media and ferrous ions concentration. Synthetic wastewater sample having different heavy metal ions such as Arsenic (As), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Lead (Pb) and Manganese (Mn) were also used in the study. The structural and surface changes occurring after the treatment process were scrutinized using FT-IR and Scanning Electron Microscopy (SEM) analysis. The finding showed that not only arsenic can be removed considerably in the bioreactor system, but also removing efficiency was much more (oxidation with adsorptive filtration method improves the removal efficiency of arsenic and other heavy metal ions in wastewater sample.

  16. Magnetic properties of soft layer/FePt-MgO exchange coupled composite Perpendicular recording media

    Institute of Scientific and Technical Information of China (English)

    Yin Jin-Hua; Takao Suzuki; Pan Li-Qing

    2008-01-01

    The magnetic properties of exchange coupled composite(ECC)media that are composed of perpendicular magnetic recording media FePt-MgO and two kinds of soft layers have been studied by using an x-ray diffractometer,a polar Kerr magneto-optical system(PMOKE)and a vibrating sample magnetometer(VSM).The results show that ECC media can reduce the coercivities of perpendicular magnetic recording media FePt-MgO.The ECC media with granular-type soft layers have weaker exchange couplings between magnetic grains and the magnetization process,for ECC media of this kind mainly follow the Stoner-Wohlfarth model.

  17. Filtration of sodium-fire aerosols

    International Nuclear Information System (INIS)

    Alexas, A.; Jordan, S.; Lindner, W.

    1979-01-01

    Different filter devices have been developed and tested with respect to their use in the off-gas system of liquid-metal fast breeder reactors to prevent the escape of sodium-fire aerosols that might be formed in case of an accident. The testing results have shown that the use of a multilayer sand bed filter is still the best method to filter limited amounts of sodium-fire aerosols over a long operating time. Efficiencies on the order of 99.98 and 98.8% were reached for loading capacities of 500 and 1000 g/m 2 , respectively. Unlimited amounts of sodium-fire aerosols can be filtered by wet scrubbers with an efficiency of 70% per scrubber stage. Fiberglas filters connot be used for the filtration of sodium-fire aerosols over a long operating time because the filter material can be destroyed after several days of operating

  18. Experiments on high efficiency aerosol filtration

    International Nuclear Information System (INIS)

    Mazzini, M.; Cuccuru, A.; Kunz, P.

    1977-01-01

    Research on high efficiency aerosol filtration by the Nuclear Engineering Institute of Pisa University and by CAMEN in collaboration with CNEN is outlined. HEPA filter efficiency was studied as a function of the type and size of the test aerosol, and as a function of flowrate (+-50% of the nominal value), air temperature (up to 70 0 C), relative humidity (up to 100%), and durability in a corrosive atmosphere (up to 140 hours in NaCl mist). In the selected experimental conditions these influences were appreciable but are not sufficient to be significant in industrial HEPA filter applications. Planned future research is outlined: measurement of the efficiency of two HEPA filters in series using a fixed particle size; dependence of the efficiency on air, temperatures up to 300-500 0 C; performance when subject to smoke from burning organic materials (natural rubber, neoprene, miscellaneous plastics). Such studies are relevant to possible accidental fires in a plutonium laboratory

  19. Media education.

    Science.gov (United States)

    Strasburger, Victor C

    2010-11-01

    The American Academy of Pediatrics recognizes that exposure to mass media (eg, television, movies, video and computer games, the Internet, music lyrics and videos, newspapers, magazines, books, advertising) presents health risks for children and adolescents but can provide benefits as well. Media education has the potential to reduce the harmful effects of media and accentuate the positive effects. By understanding and supporting media education, pediatricians can play an important role in reducing harmful effects of media on children and adolescents.

  20. Fluoride removal from water by nano filtration

    International Nuclear Information System (INIS)

    Bejaoui, Imen; Mnif, Amine; Hamrouni, Bechir

    2009-01-01

    As any oligo element, fluoride is necessary and beneficial for human health to low concentrations, but an excess amount of fluoride ions in drinking water has been known to cause undesirable effects, especially tooth and bones fluoro sis. The maximum acceptable concentration of fluoride in drinking water was fixed by the World Health Organization according to the climate in the range of 1 mg.L -1 to 1,2 mg.L -1 . Many methods have been used to remove fluoride from water such as precipitation, adsorption, electrocoagulation and membrane processes. Technologies using membrane processes are being used in many applications, particularly for brackish water desalination. Nano filtration seems to be the best process for a good selective defluorination of fluorinated waters. The main objective of this work was to investigate the retention of fluoride anions by nano filtration. The first part of this study deals with the characterisation of the NF HL2514TF membrane. The influence of various experimental parameters such as initial fluoride content, feed pressure, permeate flux, ionic strength, type of cation associated to fluoride and pH were studied in the second part. Results show that the retention order for the salts tested was TR(Na 2 SO 4 ) > TR(CaCl 2 ) > TR(NaCl), showing a retention sequence inversely proportional to the salt diffusion coefficients in water. It was also shown that charge effects could not be neglected, and a titration experiments confirmed that the NF membrane carry a surplus of negatively charged groups. Fluoride retention exceeds 60 pour cent, and increases with increasing concentration, where the rejection mechanism is related to the dielectric effects. Speigler-Kedem model was applied to experimental results in the aim to determine phenomenological parametersσand P s respectively, the reflexion coefficient of the membrane and the solute permeability of ions. The convective and diffusive parts of the mass transfer were quantified with