WorldWideScience

Sample records for granular fertilizer application

  1. Features of a reciprocating sprout broadcaster in the process of granular fertilizer application

    NARCIS (Netherlands)

    Speelman, L.

    1979-01-01

    Introduction

    Since the end of the 1950's, variable bout width distributors were used for broadcast application of granular fertilizers. The bout width is a multiple of the width of the metering and distribution devices. The most important types are the spinning disc and

  2. Comparative effects of nitrogen fertigation and granular fertilizer application on growth and availability of soil nitrogen during establishment of highbush blueberry

    Directory of Open Access Journals (Sweden)

    David eBryla

    2011-09-01

    Full Text Available A 2-year study was done to compare the effects of nitrogen (N fertigation and granular fertilizer application on growth and availability of soil N during establishment of highbush blueberry (Vaccinium corymbosum L. ‘Bluecrop’. Treatments included four methods of N application (weekly fertigation, split fertigation, and two non-fertigated controls and four levels of N fertilizer (0, 50, 100, and 150 kg•ha-1 N. Fertigation treatments were irrigated by drip and injected with a liquid urea solution; weekly fertigation was applied once a week from leaf emergence to 60 d prior to the end of the season while split fertigation was applied as a triple split from April to June. Non-fertigated controls were fertilized with granular ammonium sulfate, also applied as a triple split, and irrigated by drip or microsprays. Weekly fertigation produced the smallest plants among treatments at 50 kg•ha-1 N in year 1 but the highest canopy cover at 150 kg•ha-1 N in both years 1 and 2. The other application methods required less N to maximize growth but were less responsive than weekly fertigation to additional N fertilizer applications. In fact, 44-50% of the plants died when granular fertilizer was applied at 150 kg•ha-1 N. By comparison, none of the plants died with weekly fertigation. Plant death with granular fertilizer was associated with high ammonium ion concentrations (up to 650 mg•L-1 and electrical conductivity (>3 dS•m-1 in the soil solution. Early results indicate that fertigation may be less efficient (i.e., less plant growth per unit of N applied at lower N rates than granular fertilizer application but is also safer (i.e., less plant death and promotes more growth when high amounts of fertilizer is applied.

  3. Dissolved Organic Carbon in Leachate after Application of Granular and Liquid N-P-K Fertilizers to a Sugarcane Soil.

    Science.gov (United States)

    Pittaway, P A; Melland, A R; Antille, D L; Marchuk, S

    2018-05-01

    The progressive decline of soil organic matter (SOM) threatens the sustainability of arable cropping worldwide. Residue removal and burning, destruction of protected microsites, and the acceleration of microbial decomposition are key factors. Desorption of SOM by ammonia-based fertilizers from organomineral complexes in soil may also play a role. A urea- and molasses-based liquid fertilizer formulation and a urea-based granular formulation were applied at recommended and district practice rates, respectively, to soil leaching columns, with unfertilized columns used as controls. The chemistry of leachate collected from the columns, filled with two sandy soils differing in recent cropping history, was monitored over eight successive wet-dry drainage events. The pH, electrical conductivity, and concentration and species of N in leachate was compared with the concentration and aromaticity of dissolved organic C (DOC) to indicate if salt solutions derived from the two fertilizers extracted SOM from clay mineral sites. Cation exchange capacity and exchangeable cations in the soil were monitored at the start and end of the trial. Fertilizer application increased DOC in leachate up to 40 times above the control, but reduced aromaticity (specific ultraviolet light absorbance at 253.7 nm). Dissolved organic C was linearly proportional to leachate NH-N concentration. Exchangeable Ca and Mg in soil from fertilized columns at the end of both trials were significantly lower than in unfertilized soil, indicating that ammonium salt solutions derived from the fertilizers extracted cations and variably charged organic matter from soil mineral exchange sites. Desorption of organic matter and divalent cations from organomineral sites by ammonia-based fertilizers may be implicated in soil acidification. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Comparative Effects of Nitrogen Fertigation and Granular Fertilizer Application on Growth and Availability of Soil Nitrogen during Establishment of Highbush Blueberry

    Science.gov (United States)

    Bryla, David R.; Machado, Rui M. A.

    2011-01-01

    A 2-year study was done to compare the effects of nitrogen (N) fertigation and granular fertilizer application on growth and availability of soil N during establishment of highbush blueberry (Vaccinium corymbosum L. “Bluecrop”). Treatments included four methods of N application (weekly fertigation, split fertigation, and two non-fertigated controls) and four levels of N fertilizer (0, 50, 100, and 150 kg·ha−1 N). Fertigation treatments were irrigated by drip and injected with a liquid urea solution; weekly fertigation was applied once a week from leaf emergence to 60 d prior to the end of the season while split fertigation was applied as a triple-split from April to June. Non-fertigated controls were fertilized with granular ammonium sulfate, also applied as a triple-split, and irrigated by drip or microsprinklers. Weekly fertigation produced the smallest plants among the four fertilizer application methods at 50 kg·ha−1 N during the first year after planting but the largest plants at 150 kg·ha−1 N in both the first and second year. The other application methods required less N to maximize growth but were less responsive than weekly fertigation to additional N fertilizer applications. In fact, 44–50% of the plants died when granular fertilizer was applied at 150 kg·ha−1 N. By comparison, none of the plants died with weekly fertigation. Plant death with granular fertilizer was associated with high ammonium ion concentrations (up to 650 mg·L−1) and electrical conductivity (>3 dS·m−1) in the soil solution. Early results indicate that fertigation may be less efficient (i.e., less plant growth per unit of N applied) at lower N rates than granular fertilizer application but is also safer (i.e., less plant death) and promotes more growth when high amounts of N fertilizer is applied. PMID:22639596

  5. Comparison between fertigation and granular application of potassium fertilizer on mineral nutrition, yield, and fruit quality in northern highbush blueberry

    Science.gov (United States)

    Fertigation with N increases growth and production relative to granular N applications in northern highbush blueberry (Vaccinium corymbosym L.), but little information is available on whether there is any benefit to fertigating with other nutrients. The objective of this study was to compare fertiga...

  6. Phosphorus migration analysis using synchrotron radiation in soil treated with Brazilian granular fertilizers

    International Nuclear Information System (INIS)

    Castro, Robson C. de; Melo Benites, Vinícius de; César Teixeira, Paulo; Anjos, Marcelino José dos; Oliveira, Luis Fernando de

    2015-01-01

    The aim of this study was to evaluate the phosphorus (P) mobility in a tropical Brazilian soil type red Oxisol treated with three different forms of granular fertilizer. Total Reflection X-Ray Fluorescence (TXRF) was applied to determine the concentration of P at different distances from granular fertilizer application point. The results showed that most of the P from fertilizers tends to concentrate in a region of up to 10 mm around the place of the fertilizer deposition. - Highlights: • Phosphorus (P) mobility in a tropical Brazilian soil. • Total Reflection X-Ray Fluorescence was applied to determine the concentration of P. • Fertilizers used monoammonium phosphate and polymer coated monoammonium phosphate.

  7. Granular flows: fundamentals and applications

    Science.gov (United States)

    Cleary, Paul W.

    DEM allows the prediction of complex industrial and geophysical particle flows. The importance of particle shape is demonstrated through a series of simple examples. Shape controls resistance to shear, the magnitude of collision stress, dilation and the angle of repose. We use a periodic flow of a bed of particles to demonstrate the different states of granular matter, the generation of dilute granular flow when granular temperature is high and the flow dependent nature of the granular thermodynamic boundary conditions. A series of industrial case studies examines how DEM can be used to understand and improve processes such as separation, mixing, grinding, excavation, hopper discharge, metering and conveyor interchange. Finally, an example of landslide motion over real topography is presented.

  8. Global Fertilizer and Manure, Version 1: Nitrogen Fertilizer Application

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nitrogen Fertilizer Application dataset of the Global Fertilizer and Manure, Version 1 Data Collection represents the amount of nitrogen fertilizer nutrients...

  9. Global Fertilizer and Manure, Version 1: Phosphorus Fertilizer Application

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phosphorus Fertilizer Application dataset of the Global Fertilizer and Manure, Version 1 Data Collection represents the amount of phosphorus fertilizer nutrients...

  10. Impact of fertilization and granular insecticides on the incidence of tobacco aphid, myzus persicae (sulz)

    International Nuclear Information System (INIS)

    Razaq, A.; Hussain, N.; Khalil, S.K.; Alamzeb

    1989-01-01

    Field studies were conducted on the control of tobacco aphid, Myzus persicase (Sulz) with four granular insecticides, viz, Furadan 3% G, Diazinon 5% g, Thiodan 5% g and Larsban 5% g, with and without NPK fertilization. The aphid population was significantly higher in the fertilized plots compared to the non-fertilized ones. All the four insecticides significantly reduced the aphids density compared to the check. Furada 3% gave best results for the control of this pest. (author)

  11. Analyzing the mobility in granular forms of P fertilizer in Brazilians soils under laboratory conditions

    International Nuclear Information System (INIS)

    Castro, Robson C. de; Oliveira, Davi Ferreira de; Oliveira, Luis Fernando de; Anjos, Marcelino Jose dos

    2013-01-01

    Phosphorus is an essential nutrient for plant growth. Million of tones of P are applied to the soils annually. However, only a small fraction of the P applied with fertilizers is taken up by crops in the year of application, and the effectiveness of any residual P fertilizer declines with time. To improve our understanding of the mechanisms underlying this response to P in the field, we have studied the mobility of P from 3 different fertilizes: monoammonium phosphate (MAP), polymer coated monoammonium phosphate (MAPp) and Organomineral phosphate (OMP) applied on high weathered soil samples in a Petri dish experiment. Total Reflection X-Ray Fluorescence (TXRF) was used to determine the P diffusive flux at different distances (0 - 7.5, 7.5 – 13.5, 13.5 – 25.5 and 25.5 – 43 mm) from granular fertilizer. TXRF analyses were performed at the X-Ray Fluorescence Beamline D09B at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, Sao Paulo, using a polychromatic beam with maximum energy of 20 keV for the excitation and an Ultra-LEGe detector with resolution of 148 eV at 5.9 keV. Besides that, the detections were performed in a high vacuum chamber (2.5 x 10-5 mbar) to avoid air absorption. After a period of five weeks, the total P concentration increased in the soil sampled 7.5 to 13.5 mm from the fertilizer showing a diffusive flux of P. About 20% (considering MAP and MAPp) of the total P applied diffused out of the central soil ring. Different sources showed differences in diffusive flux of P. Soil pH also influenced diffusive flux of P showing higher flux on lower pH soils. (author)

  12. Applicability and trends of anaerobic granular sludge treatment processes

    International Nuclear Information System (INIS)

    Lim, Seung Joo; Kim, Tak-Hyun

    2014-01-01

    Anaerobic granular sludge treatment processes have been continuously developed, although the anaerobic sludge granulation process was not clearly understood. In this review, an upflow anaerobic sludge blanket (UASB), an expanded granule sludge blanket (EGSB), and a static granular bed reactor (SGBR) were introduced as components of a representative anaerobic granular sludge treatment processes. The characteristics and application trends of each reactor were presented. The UASB reactor was developed in the late 1970s and its use has been rapidly widespread due to the excellent performance. With the active granules, this reactor is able to treat various high-strength wastewaters as well as municipal wastewater. Most soluble industrial wastewaters can be efficiently applied using a UASB. The EGSB reactor was developed owing to give more chance to contact between wastewater and the granules. Dispersed sludge is separated from mature granules using the rapid upward velocity in this reactor. The EGSB reactor shows the excellent performance in treating low-strength and/or high-strength wastewater, especially under low temperatures. The SGBR, developed at Iowa State University, is one of anaerobic granular sludge treatment processes. Although the configuration of the SGBR is very simple, the performance of this system is similar to that of the UASB or EGSB reactor. The anaerobic sludge granulation processes showed excellent performance for various wastewaters at a broad range of organic loading rate in lab-, pilot-scale tests. This leads to erect thousands of full-scale granular processes, which has been widely operated around the world. -- Highlights: • Anaerobic sludge granulation is a key parameter for maintaining granular processes. • Anaerobic granular digestion processes are applicable for various wastewaters. • The UASB is an economic high-rate anaerobic granular process. • The EGSB can treat high-strength wastewater using expanding granules. • The SGBR is

  13. Bio fertilizer Application in a Fertigation System

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Latiffah Noordin; Hoe, P.C.K.

    2011-01-01

    Bio fertilizers contain live beneficial microorganisms that provide nutrients and other benefits to crops. At present, bio fertilizers can be found in solid and liquid forms. Liquid bio fertilizer can be one of the alternatives to chemical fertilizers and pesticides. Liquid bio fertilizer is produced through culturing of microorganisms that are known to have specific capabilities in helping plant growth. However, application of bio fertilizers in the form of solution is more tedious than that of solid bio fertilizers, which can be applied directly to plants, whereas the liquid form requires several stages of preparation before it can be applied to crops. In Malaysian Nuclear Agency, a study on the distribution of liquid bio fertilizers to crops through the fertigation system has been conducted. In Malaysia, this study has not been conducted in depth, since the present fertigation system is associated to delivery of solubilised mineral fertilizers. This paper discusses the application of liquid bio fertilizers through a fertigation system. Discussions cover technical aspects of bio fertilizer preparation and its application via the said system. Tomato plant was used as test crop to determine the capability and efficiency of bio fertilizer application through the fertigation system. (author)

  14. Granular Salt Summary: Reconsolidation Principles and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stuehrenberg, Dieter

    2014-07-01

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  15. Uptake of 15N-labelled urea and 32P-labelled phosphate from acid-based urea phosphate and granular fertilizers

    International Nuclear Information System (INIS)

    Bole, J.B.

    1986-01-01

    The availability of nitrogen and phosphorus in fertilizer products labelled with both 32 P and 15 N was measured in a growth chamber experiment. The uptake of N and P by soft white spring wheat (Triticum aestivum L.) from a solution of acid urea phosphate fertilizer did not differ significantly from that of a mixture of granular urea and monammonium phosphate fertilizer. The fertilizer-P uptake efficiency of both sources was higher in a neutral soil than in acid or calcareous soils. Banding either fertilizer increased the uptake of fertilizer P compared with sources mixed with the soil, but did not significantly affect fertilizer-N uptake. The increase in fertilizer-P efficiency due to banding was significantly greater for the urea-monammonium phosphate than for the acid urea phosphate solution. Banding fertilizer did not increase the uptake of fertilizer P in the calcareous soil, and decreased the uptake of fertilizer N in that soil compared with mixed treatments. It is suggested that soluble Ca formed from the reaction of acid with naturally occurring lime may have reduced the availability of fertilizer P in the band

  16. Silicon photomultipliers. Properties and applications in a highly granular calorimeter

    International Nuclear Information System (INIS)

    Feege, Nils

    2008-12-01

    Silicon Photomultipliers (SiPMs) are novel semiconductor-based photodetectors operated in Geiger mode. Their response is not linear, and both their gain and their photon detection efficiency depend on the applied bias voltage and on temperature. The CALICE collaboration investigates several technology options for highly granular calorimeters for the future ILC. The prototype of a scintillator-steel sampling calorimeter with analogue readout for hadrons constructed at DESY and successfully operated in testbeam experiments at DESY, CERN and FNAL by this collaboration is the first large scale application for 7608 SiPMs developed by MEPhI. This thesis deals with properties of the SiPMs used in the calorimeter prototype. The effective numer of pixels of the SiPMs, which influences their saturation behaviour, is extracted from in situ measurements and compared to results obtained for the bare SiPMs. In addition, the effects of temperature and voltage changes on the parameters necessary for the calibration of the SiPMs and the detector are determined. Methods which allow for correcting or compensating these effects are evaluated. An approach to improve the absolute calibration of the temperature sensors in the prototype is described and temperature profiles are studied. Finally, a procedure to adjust the light yield of the cells of the prototype is presented. The results of the application of this procedure during the commissioning of the detector at FNAL are discussed. (orig.)

  17. Silicon photomultipliers. Properties and applications in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Feege, Nils

    2008-12-15

    Silicon Photomultipliers (SiPMs) are novel semiconductor-based photodetectors operated in Geiger mode. Their response is not linear, and both their gain and their photon detection efficiency depend on the applied bias voltage and on temperature. The CALICE collaboration investigates several technology options for highly granular calorimeters for the future ILC. The prototype of a scintillator-steel sampling calorimeter with analogue readout for hadrons constructed at DESY and successfully operated in testbeam experiments at DESY, CERN and FNAL by this collaboration is the first large scale application for 7608 SiPMs developed by MEPhI. This thesis deals with properties of the SiPMs used in the calorimeter prototype. The effective numer of pixels of the SiPMs, which influences their saturation behaviour, is extracted from in situ measurements and compared to results obtained for the bare SiPMs. In addition, the effects of temperature and voltage changes on the parameters necessary for the calibration of the SiPMs and the detector are determined. Methods which allow for correcting or compensating these effects are evaluated. An approach to improve the absolute calibration of the temperature sensors in the prototype is described and temperature profiles are studied. Finally, a procedure to adjust the light yield of the cells of the prototype is presented. The results of the application of this procedure during the commissioning of the detector at FNAL are discussed. (orig.)

  18. Applications of granular-dynamics numerical simulations to asteroid surfaces

    Science.gov (United States)

    Richardson, D. C.; Michel, P.; Schwartz, S. R.; Yu, Y.; Ballouz, R.-L.; Matsumura, S.

    2014-07-01

    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a totally different gravitational environment than on the Earth. Upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). (1) We carried out impacts into granular materials using different projectile shapes under Earth's gravity [5] and compared the results to laboratory experiments [6] in support of JAXA's Hayabusa 2 asteroid sample-return mission. We tested different projectile shapes and confirmed that the 90-degree cone was the most efficient at excavating mass when impacting 5-mm-diameter glass beads. Results are sensitive to the normal coefficient of restitution and the coefficient of static friction. Preliminary experiments in micro-gravity for similar impact conditions show both the amount of ejected mass and the timescale of the impact process increase, as expected. (2) It has been found (e.g., [7,8]) that ''fresh'' (unreddened) Q-class asteroids have a high probability of recent planetary encounters (˜1 Myr; also see [9]), suggesting that surface refreshening may have occurred due to tidal effects. As an application of the potential effect of tidal interactions, we carried out simulations of Apophis' predicted 2029 encounter with the Earth to see whether regolith motion might occur, using a range of plausible material parameters

  19. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications.

    Science.gov (United States)

    Nancharaiah, Y V; Kiran Kumar Reddy, G

    2018-01-01

    Aerobic granular sludge (AGS) is a novel microbial community which allows simultaneous removal of carbon, nitrogen, phosphorus and other pollutants in a single sludge system. AGS is distinct from activated sludge in physical, chemical and microbiological properties and offers compact and cost-effective treatment for removing oxidized and reduced contaminants from wastewater. AGS sequencing batch reactors have shown their utility in the treatment of abattoir, live-stock, rubber, landfill leachate, dairy, brewery, textile and other effluents. AGS is extensively researched for wide-spread implementation in sewage treatment plants. However, formation of AGS takes relatively much longer time while treating low-strength wastewaters like sewage. Strategies like increased volumetric flow by means of short cycles and mixing of sewage with industrial wastewaters can promote AGS formation while treating low-strength sewage. This article reviewed the state of research on AGS formation mechanisms, bioremediation capabilities and biotechnological applications of AGS technology in domestic and industrial wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fertilizer application and root development analyzed by neutron imaging

    International Nuclear Information System (INIS)

    Nihei, Naoto; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2013-01-01

    We studied the development of the soybean root system under different application of fertilizer applying neutron imaging technique. When neutron beam was irradiated, the root image as well as fertilizer imbedded in a thin aluminum container was clearly projected, since water amount in roots are higher than that in soil. Through image analysis, the development of root system was studied under different application of the fertilizer. The development of a main root with lateral roots was observed without applying fertilizer. When the fertilizer was homogeneously supplied to the soil, the morphological development of the root showed the similar pattern to that grown without fertilizer, in different to the amount of the fertilizer. In the case of local application of the fertilizer, lateral position or downward to the main root, the inhibition of the root growth was observed, suggesting that the localization of the fertilizer is responsible for reduction of the soybean yield. (author)

  1. Flowability of granular materials with industrial applications - An experimental approach

    Science.gov (United States)

    Torres-Serra, Joel; Romero, Enrique; Rodríguez-Ferran, Antonio; Caba, Joan; Arderiu, Xavier; Padullés, Josep-Manel; González, Juanjo

    2017-06-01

    Designing bulk material handling equipment requires a thorough understanding of the mechanical behaviour of powders and grains. Experimental characterization of granular materials is introduced focusing on flowability. A new prototype is presented which performs granular column collapse tests. The device consists of a channel whose design accounts for test inspection using visualization techniques and load measurements. A reservoir is attached where packing state of the granular material can be adjusted before run-off to simulate actual handling conditions by fluidisation and deaeration of the pile. Bulk materials on the market, with a wide range of particle sizes, can be tested with the prototype and the results used for classification in terms of flowability to improve industrial equipment selection processes.

  2. Bioremediation: Application of slow-release fertilizers on low-energy shorelines

    International Nuclear Information System (INIS)

    Lee, K.; Tremblay, G.H.; Levy, E.M.

    1993-01-01

    In situ biodegradation, the activation of microbial processes capable of destroying contaminants where they are found in the environment, is a biological process that responds rapidly to changing environmental factors. Accordingly, in situ sediment enclosures were used to test the efficacy of selected nutrient formulations to enhance the biodegradation of a waxy crude oil in a low-energy shoreline environment. The addition of soluble inorganic fertilizers (ammonium nitrate and triple superphosphate) and slow-release nutrient formulations (sulfur-coated urea) stimulated microbial activity and prolonged the period of oil degradation, despite a decline in seasonal temperatures. Low temperatures reduced the permeability of the coating on the slow-release fertilizers, effectively suppressing nutrient release. Of the nutrient formulations evaluated, the authors recommend the application of granular slow-release fertilizers (such as sulfur-coated urea) when the overlying water temperatures are above 15 degrees C, and the application of soluble inorganic fertilizers (such as ammonium nitrate) at lower temperatures. Comprehensive analysis of the experimental results indicate that application protocols for bioremediation (form and type of fertilizer or type and frequency of application), be specifically tailored to account for differences in environmental parameters (including oil characteristics) at each contaminated site

  3. A review on numerical models for granular flow inside hoppers and its applications in PBR

    International Nuclear Information System (INIS)

    Tang Yushi; Guo Qiuju; Zhang Liguo

    2015-01-01

    Granular flow is the shearing motion of a collection of discrete solid particles which are commonly seen and widely utilized in various industrial applications. One of the essential applications of dense slow granular flow in engineering is the pebble flow in pebble-bed nuclear reactor (PBR). A number of numerical models have been established for researching the basic physical mechanisms and properties of granular flow. For the purpose of generating an appropriate model for high temperature reactor-pebblebed modules (HTR-PM) in the future, numerical models on granular flow in hoppers and some of their previous applications on PBRs are reviewed. In this paper, basic transport and contact mechanisms of granular flow are firstly introduced, then kinetic theory from gas molecules and plastic theory from metal mechanics approaches give descriptions of the macroscopic behavior of rapid flow and quasistatic flow regimes, respectively, subsequently kinematic continuum method and discrete element method (DEM) are presented to describe the bulk features of dense slow flow in hoppers. Since various kinematic models, DEM models and their modified versions for dense slow granular flow in hoppers have been experimentally verified and applied in prediction of pebble flow in PBRs, a promising model for HTR-PM is expected with further work to generate pebble flow profile in the future. (author)

  4. Granular computing in decision approximation an application of rough mereology

    CERN Document Server

    Polkowski, Lech

    2015-01-01

    This book presents a study in knowledge discovery in data with knowledge understood as a set of relations among objects and their properties. Relations in this case are implicative decision rules and the paradigm in which they are induced is that of computing with granules defined by rough inclusions, the latter introduced and studied  within rough mereology, the fuzzified version of mereology. In this book basic classes of rough inclusions are defined and based on them methods for inducing granular structures from data are highlighted. The resulting granular structures are subjected to classifying algorithms, notably k—nearest  neighbors and bayesian classifiers. Experimental results are given in detail both in tabular and visualized form for fourteen data sets from UCI data repository. A striking feature of granular classifiers obtained by this approach is that preserving the accuracy of them on original data, they reduce  substantially the size of the granulated data set as well as the set of granular...

  5. Dynamic weighing for accurate fertilizer application and monitoring

    NARCIS (Netherlands)

    Bergeijk, van J.; Goense, D.; Willigenburg, van L.G.; Speelman, L.

    2001-01-01

    The mass flow of fertilizer spreaders must be calibrated for the different types of fertilizers used. To obtain accurate fertilizer application manual calibration of actual mass flow must be repeated frequently. Automatic calibration is possible by measurement of the actual mass flow, based on

  6. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    Science.gov (United States)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  7. Activated-Lignite-Based Super Large Granular Slow-Release Fertilizers Improve Apple Tree Growth: Synthesis, Characterizations, and Laboratory and Field Evaluations.

    Science.gov (United States)

    Tang, Yafu; Wang, Xinying; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Cheng, Dongdong

    2017-07-26

    In this work, lignite, a low-grade coal, was modified using the solid-phase activation method with the aid of a Pd/CeO 2 nanoparticle catalyst to improve its pore structure and nutrient absorption. Results indicate that the adsorption ability of the activated lignite to NO 3 - , NH 4 + , H 2 PO 4 - , and K + was significantly higher than that of raw lignite. The activated lignite was successfully combined with the polymeric slow-release fertilizer, which exhibits typical slow-release behavior, to prepare the super large granular activated lignite slow-release fertilizer (SAF). In addition to the slow-release ability, the SAF showed excellent water-retention capabilities. Soil column leaching experiments further confirmed the slow-release characteristics of the SAF with fertilizer nutrient loss greatly reduced in comparison to traditional and slow-release fertilizers. Furthermore, field tests of the SAF in an orchard showed that the novel SAF was better than other tested fertilizers in improve the growth of young apple trees. Findings from this study suggest that the newly developed SAF has great potential to be used in apple cultivation and production systems in the future.

  8. Fonofos poisons raptors and waterfowl several months after granular application.

    Science.gov (United States)

    Elliott, John E; Birmingham, Anna L; Wilson, Laurie K; McAdie, Malcolm; Trudeau, Suzanne; Mineau, Pierre

    2008-02-01

    From 1994 to 1999 in the Lower Fraser Valley region of southwest Canada, fonofos (Dyfonate G) was recommended for control of introduced wireworm (Agriotes spp.) pests on potato and other root crops. As part of a wildlife-monitoring program, we collected 15 raptors, including 12 bald eagles (Haliaeetus leucocephalus), found dead or debilitated on or near agricultural lands with severely inhibited brain and/or plasma cholinesterase activity and fonofos residues in ingesta. Bird remains, in nine cases waterfowl, were identified in the ingesta samples. Another seven bald eagles had severe cholinesterase inhibition, but without evidence of fonofos residues. During two winters from 1996 to 1998, 420 ha of potato fields, half of which had been treated the previous spring with fonofos and the remainder untreated, were searched weekly for evidence of wildlife mortality. Search efficiency was assessed with placed duck carcasses. Waterfowl outnumbered other species in field-use counts and comprised the greatest proportion of birds found dead. We found 211 wildlife remains, most scavenged; 35 intact carcasses were suitable for postmortem examination and/or toxicology analyses. Cholinesterase activity was assayed in brains of 18 waterfowl, five of which had severely depressed activity (average inhibition 74%; range, 69-78%). The gastrointestinal tract of a mallard found in a field treated with granular product contained 49 microg/g fonofos residues, linking waterfowl mortality with labelled use of the product. These findings demonstrate the risk of both primary and secondary poisoning by anticholinesterase insecticides where wildlife make intensive use of farmed fields.

  9. Evaluation of fertilizer application on some peasant cocoa farms in ...

    African Journals Online (AJOL)

    Theobroma cacao L.) on peasant farms in Ghana. The objective of the trial is to evaluate the effect of fertilizer application on yields of cocoa (T. cacao L.) under peasant farmers' management in Ghana with the aim of introducing fertilizers to ...

  10. Management strategy 3: fixed rate fertilizer applications

    Science.gov (United States)

    Previous chapters outlined management strategies for pond fertilization that take into account specific individual pond nutrient needs. Those methods would most likely be more ecologically efficient than a pre-determined fixed-rate nutrient addition strategy. However, the vast majority of available ...

  11. Aqueous and gaseous nitrogen losses induced by fertilizer application

    Energy Technology Data Exchange (ETDEWEB)

    Gu, C.; Maggi, F.; Riley, W.J.; Hornberger, G.M.; Xu, T.; Oldenburg, C.M.; Spycher, N.; Miller, N.L.; Venterea, R.T.; Steefel, C.

    2009-01-15

    In recent years concern has grown over the contribution of nitrogen (N) fertilizer use to nitrate (NO{sub 3}{sup -}) water pollution and nitrous oxide (N{sub 2}O), nitric oxide (NO), and ammonia (NH{sub 3}) atmospheric pollution. Characterizing soil N effluxes is essential in developing a strategy to mitigate N leaching and emissions to the atmosphere. In this paper, a previously described and tested mechanistic N cycle model (TOUGHREACT-N) was successfully tested against additional observations of soil pH and N{sub 2}O emissions after fertilization and irrigation, and before plant emergence. We used TOUGHREACT-N to explain the significantly different N gas emissions and nitrate leaching rates resulting from the different N fertilizer types, application methods, and soil properties. The N{sub 2}O emissions from NH{sub 4}{sup +}-N fertilizer were higher than from urea and NO{sub 3}{sup -}-N fertilizers in coarse-textured soils. This difference increased with decreases in fertilization application rate and increases in soil buffering capacity. In contrast to methods used to estimate global terrestrial gas emissions, we found strongly non-linear N{sub 2}O emissions as a function of fertilizer application rate and soil calcite content. Speciation of predicted gas N flux into N{sub 2}O and N{sub 2} depended on pH, fertilizer form, and soil properties. Our results highlighted the need to derive emission and leaching factors that account for fertilizer type, application method, and soil properties.

  12. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    Science.gov (United States)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  13. The effect of fertilizer application on 137 cesium accumulation in lucerne grown on a leached chernozem

    International Nuclear Information System (INIS)

    Konstantinov, G.; Kovachev, K.; Penchev, D.; Ermolaev, I.; Mirchev, M.

    1974-01-01

    On the basis of pot experiments, carried out in a glass-house the following conclusions on the effect of fertilizer application are made: nitrogen fertilizer application increases the amount of radioactive cesium in lucerne plants. Phosphorus fertilizer introduction, similarly to potassium fertilizer application decreases cesium uptake, resulting in an increase in available phosphorus in the soil. (M.Ts.)

  14. Application of different organic and mineral fertilizers on the growth ...

    African Journals Online (AJOL)

    CM), poultry manure (PM), rice straw + urea mix-application (SU), urea (UF) and M-coat, a slow released compound fertilizer (M-coat) were used as the N sources by comparing with no application (Control). Treatments were made with two ...

  15. Effect of fertilizer application on yield of oil palm

    Directory of Open Access Journals (Sweden)

    Eksomtramage, T.

    2001-11-01

    Full Text Available The effects of fertilizer application rates on leaf nutrient contents and yield of oil palm were investigated at the Agricultural and Technological College Plantation in Trang province during May 1998 - June 2001. A five-year-old oil palm plantation, planted on the Na Tham soil series (Fine loamy, mixed, isohyperthermic Oxic Plinthudults with spacing 9x9x9 m, was selected for study. A randomized complete block designwith three replications with 20 palms/replication was used. The treatments included six different rates of fertilizer application. The rates of fertilizer were as follows: T1 (farmer practice, T2 (40% of application rate in T4, T3 (70% of application rate in T4, T4 (urea 2,750 g/plant; triple super phosphate 1,500 g/plant; potassium chloride 4,000 g/plant; kieserite 1,000 g/plant; borate 80 g/plant, T5 (130% of application rate in T4 and T6 (170% of application rate in T4. The high leaf nutrient contents of N, P and K at the range of 2.6-2.8%, 0.16-0.18% and 1.13-1.18%, respectively, were found in the high nutrient application rate treatments (T5, T6. However, the amounts of leaf Ca and Mg in T5 and T6 decreased from 0.75-0.80% and 0.33- 0.37% at the beginning of experiment to 0.65-0.70% and 0.22-0.24%, respectively, at the end of the experiment. Small increases of leaf sulphur and boron up to about 0.20-0.22% and 16-19 mg/kg were also found in the high rate of fertilizer treatments. Accumulated fresh fruit bunch yield (FFB increased according to increasing rate of fertilizer application. Accumulated FFB yield of 268.4 kg/plant in the low fertilizer rate (T1 (farmer practice and 278.8 kg/plant in T2 were found compared with the highest yield of 370.2 kg/plant in the highest fertilizer application treatment (T6 for the 3 years experiment. Regarding the economic return, the medium rate of fertilizer application (T3 which achieved an accumulated FFB yield of 338.0 kg/ plant gave the highest profit with the VCR (Value: Cost ratio of 2.53.

  16. Effect of different split applications of npk fertilizer on growthand ...

    African Journals Online (AJOL)

    Declining inherent soil nutrient, poor grain yield of maize, delayed supply and high cost of inorganic fertilizer, call for proper timing of application, to optimize the use of this scarce resource in maize production in Nigeria. A field experiment was carried out in the 2007 and 2008 cropping seasons in the University of ...

  17. Effects of industrial effluents and fertilizer applications on the growth ...

    African Journals Online (AJOL)

    A field experiment was conducted in south-western Nigeria to determine the effects of different fertilizer applications on the growth performance of sunflower when cultivated in an Alfisols contaminated with effluents from a paints industry. This was with a view to assessing the yield and nutrient quality of harvested sunflower ...

  18. Effect of nitrogen fertilization application and maturity of wild ...

    African Journals Online (AJOL)

    N) fertilizer application (0, 125 and 250kg N/ha) and stage of maturity on chemical composition and degradation characteristics of wild sunflower forage meal in West African Dwarf sheep. Nitrogen (0,125 and 250 kg N/ha) as NPK was applied ...

  19. Fertility awareness-based mobile application for contraception

    Science.gov (United States)

    Berglund Scherwitzl, Elina; Gemzell Danielsson, Kristina; Sellberg, Jonas A.; Scherwitzl, Raoul

    2016-01-01

    Abstract Objectives: The aim of the study was to retrospectively evaluate the effectiveness of a fertility awareness-based method supported by a mobile-based application to prevent unwanted pregnancies as a method of natural birth control. Methods: In a retrospective analysis, the application’s efficiency as a contraceptive method was examined on data from 4054 women who used the application as contraception for a total of 2085 woman-years. Results: The number of identified unplanned pregnancies was 143 during 2053 woman-years, giving a Pearl Index of 7.0 for typical use. Ten of the pregnancies were due to the application falsely attributing a safe day within the fertile window, producing a perfect-use Pearl Index of 0.5. Calculating the cumulative pregnancy probability by life-table analysis resulted in a pregnancy rate of 7.5% per year (95% confidence interval 5.9%, 9.1% per year). Conclusions: The application appears to improve the effectiveness of fertility awareness-based methods and can be used to prevent pregnancies if couples consistently protect themselves on fertile days. PMID:27003381

  20. The Effects of Mixed Source Fertilizer Application on Vertisol Fertility and Growth of Mustard

    Directory of Open Access Journals (Sweden)

    Jauhari Syamsiyah

    2017-09-01

    Full Text Available Soil fertility is a crucial factor determining the growth and yield of plants. The increase of nutrient content and availability in soil can be achieved by fertilization. A field experiment was conducted using a Randomized Completely Block Design (RCBD with two factors and three replications in order to study the effects of Mixed Source of Fertilizer (MSF application on the nutrient contents in Vertisol and its relationship to the growth and yield of mustard. The first factor was the three MSF formulas (F1, F2, F3 and second factor was the doses of MSF (0; 2.5; 5.0; 7.5; 10 Mg ha-1 applied to the soil. At the end of the experiment, the soil pH, CEC, organic-C, total-N, available-P and exchangeable-K contents were measured. The results show that there are no significant differences on the soil chemical characteristics, such as pH, organic-C content, available-P, exchangeable-K, -Ca and -Mg measured after application of different MSF formulas to the soil. Meanwhile, the increase of MSF doses applied to the soil significantly increases organic-C content, total-N, available-P and exchangeable-K in the soil. The significant increase of available-P (by 29.13% and total-N (by 24.1% occured after application of MSF at 5.0 Mg ha-1 and the increase of exchangeable-K (by 50% is achieved after application of 7.5 Mg ha-1, in comparison to that without MSF application. The height and fresh weight of mustard increase in accordance with the increase of MSF doses applied. The application of 10.0 Mg ha-1 MSF results in the highest height and fresh weight of the mustard up to 63.9% and 620%, respectively. The height and fresh weight of mustard are positively correlated to the total-N, available-P and exchangeable-K in the soil. The MSF is an alternative fertilizer that can be used to improve Vertisol fertility and plant growth.

  1. Granular flow

    DEFF Research Database (Denmark)

    Mitarai, Namiko; Nakanishi, Hiizu

    2012-01-01

    Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing...... on the shear flow of dry granular materials and granule-liquid mixture....

  2. Graphene oxide. A fertile nanosheet for various applications

    International Nuclear Information System (INIS)

    Obata, Seiji; Saiki, Koichiro; Taniguchi, Takaaki; Ihara, Toshihiro; Kitamura, Yusuke; Matsumoto, Yasumichi

    2015-01-01

    Graphene oxide (GO) is chemically exfoliated graphene with various oxygen functional groups bound to its sp 2 basal plane. GO is not only a precursor for graphene in large-scale production but provides a fertile platform for applications from electronics to biology owing to its outstanding characteristics. In this review, we introduce the preparation and reduction methods and discuss recent application examples on electrochemistry and biological sensors. (author)

  3. DEM GPU studies of industrial scale particle simulations for granular flow civil engineering applications

    Science.gov (United States)

    Pizette, Patrick; Govender, Nicolin; Wilke, Daniel N.; Abriak, Nor-Edine

    2017-06-01

    The use of the Discrete Element Method (DEM) for industrial civil engineering industrial applications is currently limited due to the computational demands when large numbers of particles are considered. The graphics processing unit (GPU) with its highly parallelized hardware architecture shows potential to enable solution of civil engineering problems using discrete granular approaches. We demonstrate in this study the pratical utility of a validated GPU-enabled DEM modeling environment to simulate industrial scale granular problems. As illustration, the flow discharge of storage silos using 8 and 17 million particles is considered. DEM simulations have been performed to investigate the influence of particle size (equivalent size for the 20/40-mesh gravel) and induced shear stress for two hopper shapes. The preliminary results indicate that the shape of the hopper significantly influences the discharge rates for the same material. Specifically, this work shows that GPU-enabled DEM modeling environments can model industrial scale problems on a single portable computer within a day for 30 seconds of process time.

  4. Behavior of granular rubber waste tire reinforced soil for application in geosynthetic reinforced soil wall

    Directory of Open Access Journals (Sweden)

    G. G. D. RAMIREZ

    Full Text Available AbstractLarge quantities of waste tires are released to the environment in an undesirable way. The potential use of this waste material in geotechnical applications can contribute to reducing the tire disposal problem and to improve strength and deformation characteristics of soils. This paper presents a laboratory study on the effect of granular rubber waste tire on the physical properties of a clayey soil. Compaction tests using standard effort and consolidated-drained triaxial tests were run on soil and mixtures. The results conveyed an improvement in the cohesion and the angle of internal friction the clayey soil-granular rubber mixture, depending on the level of confining stress. These mixtures can be used like backfill material in soil retaining walls replacing the clayey soil due to its better strength and shear behavior and low unit weight. A numerical simulation was conducted for geosynthetic reinforced soil wall using the clayey soil and mixture like backfill material to analyzing the influence in this structure.

  5. Design and integration of components for site specific control of fertilizer application

    NARCIS (Netherlands)

    Bergeijk, van J.

    2001-01-01

    Keywords: Precision Agriculture, Site Specific Agriculture, Global Positioning System, GPS, Fertilizer Application, Information System.

    Spatial and temporal variability in soil, crop and climate characteristics results in non optimal use of fertilizers when the application

  6. Cohesive granular media modelization with non-convex particles shape: Application to UO2 powder compaction

    International Nuclear Information System (INIS)

    Saint-Cyr, B.

    2011-01-01

    We model in this work granular materials composed of non-convex and cohesive aggregates, in view of application to the rheology of UO 2 powders. The effect of non convexity is analyzed in terms of bulk quantities (Coulomb internal friction and cohesion) and micromechanical parameters such as texture anisotropy and force transmission. In particular, we find that the packing fraction evolves in a complex manner with the shape non convexity and the shear strength increases but saturates due to interlocking between the aggregates. We introduce simple models to describe these features in terms of micro-mechanical parameters. Furthermore, a systematic investigation of shearing, uniaxial compaction and simple compression of cohesive packings show that bulk cohesion increases with non-convexity but is strongly influenced by the boundary conditions and shear bands or stress concentration. (author) [fr

  7. Use of microorganisms to improve the cementation of granular structures. Applications in the restoration of monuments

    Science.gov (United States)

    González, Isabel; Mayoral, Eduardo; Ortiz, Pilar; Segura, Dolores; Vazquez, Auxiliadora; Barba, Cinta; Ortiz, Rocio; Romero, Antonio

    2015-04-01

    focuses on finding out the best conditions to cultivate populations of bacterias Bacillus pasteurii and Myxococcus xanthus and the suitable proportions of the mixing of urea, with building material, calcium chloride; to come out with structural components interesting for the civil engineering. Trials with some stone materials with alteration problems (granular disintegration) have been carried out to assess their application to the restoration of monuments. Porosity and petrographical characterization has been analyzed before and after the process.

  8. Dehydration/hydration of granular beds for thermal storage applications: a combined NMR and temperature study

    NARCIS (Netherlands)

    Donkers, P.A.J.; Pel, L.; Adan, O.C.G.

    For heat/cold storage systems a granular bed of salt hydrates is studied during dehydration/hydration. The water density in these beds are measured with help of NMR. Diffusion based dehydration of a granular bed of Na2SO4·10H2O is shown to be internally limited as larger grains dehydrate faster than

  9. Fate of phosphorus in Everglades agricultural soils after fertilizer application

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Everglades Research and Education Center, Belle Glade, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States); McCray, J. Mabry [Univ. of Florida, Gainesville, FL (United States)

    2012-07-01

    Land use changes, agricultural drainage and conventional cultivation of winter vegetables and sugarcane cropping in the Everglades Agricultural Area (EAA) may alter soil conditions and organic matter decomposition and ultimately influence the fate of phosphorus (P). Theses agricultural practices promote soil subsidence, reduce the soil depth to bedrock limestone and increase the potential for incorporation of limestone into the root zone of crops. The incorporation of limestone into surface soil has significantly increased soil pH which in turns causes greater fixation of P fertilizer into unavailable forms for plant growth. Additional P fertilization is thus required to satisfy crop nutrient requirements in plant-available P form. It is important to determine how the mixing of bedrock limestone into soils influences the behavior of P fertilizers after their application. To accomplish this task, P fertilizers were applied to (1) typical cultivated soils and to (2) soils that have never been fertilized or extensively tilled. The changes in P concentrations over time were then compared between the two land uses, with differences being attributable to the impacts of cultivation practices. The P distribution in soil varied between land uses, with sugarcane having more P in inorganic pools while the uncultivated soil had more in organic pools. Water-soluble P concentrations in soil increased with increasing fertilizer application rates for all sampling times and both land uses. However, concentrations in uncultivated soil increased proportionally to P-fertilized soil due to organic P mineralization. At all sampling times, plant-available P concentrations remained higher for uncultivated than sugarcane soil. Lower P concentrations for sugarcane were related to adsorption by mineral components (e.g. limestone). Cultivated soils have higher calcium concentrations resulting from incorporation of bedrock limestone into soil by tillage, which increased pH and fostered

  10. Soil Fertility Status, Nutrient Uptake, and Maize (Zea mays L.) Yield Following Organic Matters and P Fertilizer Application on Andisol

    Science.gov (United States)

    Minardi, S.; Harieni, S.; Anasrullah, A.; Purwanto, H.

    2017-04-01

    Objective of this study were to elucidate effects of organic matters and P fertilizer application on soil fertility status, nutrient uptake and maize yield in the Andisol. This experiment consisted of two factors. The first factor comprised of four levels of organic matters input (without organic matter, manure, rice straw, and Gliricidia sepium leaves), with the application dosage 10 t.ha-1 and the second factor comprised of three levels of P fertilizer application (without P addition (control), 50 kg P2O5 ha-1, 100 kg P2O5 ha-1). Results of this study showed that organic matters and P fertilizer application improved soil fertility status, especially pH, soil organic C, cation exchange capacity (CEC), available P which resulted in an increase in P uptake that improve yield of maize. The highest yield of maize (corn cob) was obtained through application Gliricida sepium (8.40 t.ha-1), followed by manure (6.02 t.ha-1) and rice straw (5.87 t.ha-1). Application of 50 kg P2O5 Ha-1 yield was (5.76 t.ha-1) and application of 100 Kg P2O5 Ha-1 yield was (6.12 t.ha-1).

  11. Discrete element modeling of triggered slip in faults with granular gouge: application to dynamic earthquake triggering

    International Nuclear Information System (INIS)

    Ferdowsi, B.

    2014-01-01

    Recent seismological observations based on new, more sensitive instrumentation show that seismic waves radiated from large earthquakes can trigger other earthquakes globally. This phenomenon is called dynamic earthquake triggering and is well-documented for over 30 of the largest earthquakes worldwide. Granular materials are at the core of mature earthquake faults and play a key role in fault triggering by exhibiting a rich nonlinear response to external perturbations. The stick-slip dynamics in sheared granular layers is analogous to the seismic cycle for earthquake fault systems. In this research effort, we characterize the macroscopic scale statistics and the grain-scale mechanisms of triggered slip in sheared granular layers. We model the granular fault gouge using three dimensional discrete element method simulations. The modeled granular system is put into stick-slip dynamics by applying a conning pressure and a shear load. The dynamic triggering is simulated by perturbing the spontaneous stick-slip dynamics using an external vibration applied to the boundary of the layer. The influences of the triggering consist in a frictional weakening during the vibration interval, a clock advance of the next expected large slip event and long term effects in the form of suppression and recovery of the energy released from the granular layer. Our study suggests that above a critical amplitude, vibration causes a significant clock advance of large slip events. We link this clock advance to a major decline in the slipping contact ratio as well as a decrease in shear modulus and weakening of the granular gouge layer. We also observe that shear vibration is less effective in perturbing the stick-slip dynamics of the granular layer. Our study suggests that in order to have an effective triggering, the input vibration must also explore the granular layer at length scales about or less than the average grain size. The energy suppression and the subsequent recovery and increased

  12. Operational optimization of organic fertilizer application in greenhouse crops

    NARCIS (Netherlands)

    Evert, van F.K.; Visser, de P.H.B.; Heinen, M.

    2006-01-01

    Organic fertilizers are the only fertilizers used in organic greenhouse horticulture. The nitrogen (N) in these fertilizers must be mineralized before it can be taken up by the crop. This makes it a challenge to minimize N losses while ensuring that adequate N is available to the crop at all times.

  13. Granular patterns

    CERN Document Server

    Aranson, Igor S

    2009-01-01

    This title presents a review of experiments and novel theoretical concepts needed to understand the mechanisms of pattern formation in granular materials. An effort is made to connect concepts and ideas developed in granular physics with new emergent fields, especially in biology, such as cytoskeleton dynamics.

  14. Nutrient losses from manure and fertilizer applications as impacted by time to first runoff event

    International Nuclear Information System (INIS)

    Smith, D.R.; Owens, P.R.; Leytem, A.B.; Warnemuende, E.A.

    2007-01-01

    Nutrient losses to surface waters following fertilization contribute to eutrophication. This study was conducted to compare the impacts of fertilization with inorganic fertilizer, swine (Sus scrofa domesticus) manure or poultry (Gallus domesticus) litter on runoff water quality, and how the duration between application and the first runoff event affects resulting water quality. Fertilizers were applied at 35 kg P ha -1 , and the duration between application and the first runoff event varied between 1 and 29 days. Swine manure was the greatest risk to water quality 1 day after fertilization due to elevated phosphorus (8.4 mg P L -1 ) and ammonium (10.3 mg NH 4 -N L -1 ) concentrations; however, this risk decreased rapidly. Phosphorus concentrations were 2.6 mg L -1 29 days after fertilization with inorganic fertilizer. This research demonstrates that manures might be more environmentally sustainable than inorganic fertilizers, provided runoff events do not occur soon after application. - Fertilization with manures results in lower nutrient runoff than inorganic fertilizers, especially if at least one week passes between fertilization and runoff

  15. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.

    Science.gov (United States)

    Lambert, Raphaël; Grant, Cynthia; Sauvé, Sébastien

    2007-06-01

    This study investigated the solubility of cadmium and zinc in soils after the application of phosphate fertilizers containing those two metals. The solubility of cadmium and zinc was assessed by measuring their concentration in soil water extracts. Three monoammonium phosphate fertilizers containing various amounts of metals were applied on cultivated fields for 3 years at three different rates. In order to investigate the effects of long-term applications of fertilizers on the solubility of Cd and Zn, a similar design was used to apply contaminated fertilizers to soils in a laboratory experiment using a single fertilizer addition equivalent to 15 years of application. Phosphate fertilizers increased the concentration of Cd in soil extracts compared to control in 87% and 80% of the treatments in field and laboratory experiments respectively. Both increasing the rate of application and using fertilizer containing more Cd lead to higher Cd concentrations in extracts for the field and the laboratory experiments. The addition of the equivalent of 15 years of fertilizer application in the laboratory results in higher Cd concentration in extracts compared to the field experiment. For Zn, the fertilizer treatments enhanced the metal solution concentration in 83% of field treatments, but no significant correlations could be found between Zn inputs and its concentration in solution. In the laboratory, fertilizer additions increase the Zn concentrations in 53% of the treatments and decrease it in most of the other treatments. The decrease in Zn concentrations in the laboratory trial is attributed to the higher phosphate concentrations in the soil solution; which is presumed to have contributed to the precipitation of Zn-phosphates. For both trials, the metal concentrations in soil extracts cannot be related to the Zn concentration in the fertilizer or the rate of application. The high Zn to Cd ratio is presumably responsible for the Cd increase in the soil extracts due to

  16. Optimizing nitrogen-fertilizer application to wheat under irrigation

    International Nuclear Information System (INIS)

    Boaretto, A.E.; Spolidoirio, E.S.; Trivelin, P.C.O.; Muraoka, T.; Freitas, J.G. de; Cantarella, H.

    2000-01-01

    The responses of wheat to urea, its time of application and the fate of the applied N under irrigation were studied over 2 years. Also studied was the recovery of residual N by soybean planted in the same plots. Maximum grain productivity was obtained with 90 kg N ha -1 . Urea-N uptake ranged from 52% for application at sowing, to 85% when applied at tillering. The main loss of fertilizer N occurred as ammonia volatilized, which ranged from 5 to 12%. Loss of N by leaching was less than 1%, even with an application of 135 kg N ha -1 , which is higher than the rate locally recommended for irrigated wheat. The small leaching loss was due to little rainfall during the growing season and irrigation sufficient only to moisten the root zone. The residual N after wheat harvest represented around 40% of that applied: 21% in soil (to a depth of 60 cm), 3% in roots and 16% in the wheat straw. Soybean recovered less than 2% of the N applied to the wheat. (author)

  17. Nonlocal approach to the analysis of the stress distribution in granular systems. II. Application to experiment

    International Nuclear Information System (INIS)

    Scott, J.E.; Kenkre, V.M.; Hurd, A.J.

    1998-01-01

    A theory of stress propagation in granular materials developed recently [Kenkre, Scott, Pease, and Hurd, preceding paper, Phys. Rev. E 57, 5841 (1998)] is applied to the compaction of ceramic and metal powders in pipes with previously unexplained experimental features such as nonmonotonic density and stress variation along the axis of cylindrical compacts. copyright 1998 The American Physical Society

  18. Nonlocal approach to the analysis of the stress distribution in granular systems. II. Application to experiment

    Science.gov (United States)

    Scott, J. E.; Kenkre, V. M.; Hurd, A. J.

    1998-05-01

    A theory of stress propagation in granular materials developed recently [Kenkre, Scott, Pease, and Hurd, preceding paper, Phys. Rev. E 57, 5841 (1998)] is applied to the compaction of ceramic and metal powders in pipes with previously unexplained experimental features such as nonmonotonic density and stress variation along the axis of cylindrical compacts.

  19. Power efficiency of mineral and organic fertilizers application in crop rotations

    OpenAIRE

    BOSAK V.M.

    2009-01-01

    In researches on sod podzolic light loamy soil the application of mineral and organic fertilizers has provided high indicators of agronomic and power efficiency. Entering of mineral fertilizers has raised efficiency of field crop rotations on 19,9-30,3 tha -1 of f.u., as well as entering of organic fertilizers on 5,2-10,8 tha -1 of f.u. at a recoupment of 1 ton of manure of 65,0-131,3 f.u. and 1 kg of NPK of 8,1-9,7 f.u. Power return of application of mineral fertilizers in crop rotations has...

  20. Type-2 fuzzy granular models

    CERN Document Server

    Sanchez, Mauricio A; Castro, Juan R

    2017-01-01

    In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.

  1. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria.

    Science.gov (United States)

    Simonsen, Anna K; Han, Shery; Rekret, Phil; Rentschler, Christine S; Heath, Katy D; Stinchcombe, John R

    2015-01-01

    Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia), a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community, either directly

  2. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria

    Directory of Open Access Journals (Sweden)

    Anna K. Simonsen

    2015-10-01

    Full Text Available Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia, a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community

  3. Advantage of Sesame and Cowpea Intercrops in Different Fertilizer Application Systems

    Directory of Open Access Journals (Sweden)

    Jasem Aminifar

    2017-04-01

    Full Text Available To investigate the effects of different fertilizer applications and sesame/cowpea intercropping systems on soil fertility, a split plot experiment based on randomized complete block design was conducted in Fasa, Fars province, during 2014. The main plots were five fertilizer levels consisted of: using chemical fertilizers nitrogen+phosphorous (F1, organic fertilizers (F2, biofertilizers (F3, 50% chemical fertilizer + 50% organic fertilizer (F4 and 50% chemical fertilizer + 50% biofertilizer (F5, and sub plots consisted of: sole cropping of sesame (M1, sole cropping of cowpea (M2, 50:50 sesame-cowpea intercropping (M3, 75:25 sesame-cowpea intercropping (M4 and 25:75 sesame-cowpea intercropping (M5. The results showed that soil fertility and cropping systems affected the yield and yield components of sesame and cowpea significantly. The highest yield of sesame (1292.6 kg.ha-1, and cowpea (3772.4 kg.ha-1 were obtained from their sole croppings. Among the applications of fertilizer, the highest yield of sesame (950.49 kg.ha-1 and cowpea (2582.50 kg.ha-1 belonged to bioorganic and biofertilizer treatments, respectively. In spite of these results, the highest land equivalent ratio (LER belonged to F4 (1.24 and M3 (1.03 treatments. In general, according to the results, it seems that 50:50 sesame-cowpea intercropping (M3 and application of 30 kg.ha-1 N + 50 kg.ha-1 P + 150 kg.ha-1 bio-organic fertilizer (F4, may reduce application of chemical fertilizers and be beneficial to sesame-cowpea intercropping system.

  4. Bacterial biofilm supported on granular activated carbon and on natural zeolites- an application to wastewater treatment

    OpenAIRE

    Lameiras, Sandra Raquel de Vasconcelos; Quintelas, C.; Tavares, M. T.

    2004-01-01

    The removal of many heavy metals from industrial wastewater is one of the most important environmental problems to be solved today. The retention of this contaminants by a biofilm supported on granular activated carbon or on natural zeolites is one of the promising technologies for the reduction of this problem, because it is cheap and it removes a broad range of substances, heavy metals and organic compounds. This study aims the development of a system of two mini-columns in series ...

  5. Conceptual Design of Fertilizer Applicator for Oil Palm on Terrace Cultivation

    Science.gov (United States)

    Hermawan, W.

    2018-05-01

    The mechanical application of fertilizer for oil palm planted on terraces is still constrained by the narrow path which is difficult to pass by a power spreader. The objective of this research was to develop a conceptual design of fertilizer applicator for oil palm planted on terraces. The design requirements were developed based on a) terrace and track conditions, b) fertilizers and fertilization conditions, c) available prime movers, and d) user needs. Five design concepts were obtained: 1) an applicator with left and right arms to distribute the fertilizer, 2) an all-terrain vehicle equipped with a manually operated fertilizer injector, 3) an applicator equipped with a hole digger, 4) an applicator equipped with a shovel, and 5) an applicator equipped with a rotary tiller. The concepts were evaluated and compared with the current power spreader. The evaluation results showed that the applicator equipped with a rotary tiller had the most advantages on the expected criteria. The final design concept uses a 110 cm wide mini crawler tractor as the prime mover and is equipped with a hopper and a spinner disk for metering and conveying the fertilizer, and a 20 cm wide rotary tiller in the front of the machine.

  6. Grain, milling, and head rice yields as affected by nitrogen rate and bio-fertilizer application

    Directory of Open Access Journals (Sweden)

    Saeed FIROUZI

    2015-11-01

    Full Text Available To evaluate the effects of nitrogen rate and bio-fertilizer application on grain, milling, and head rice yields, a field experiment was conducted at Rice Research Station of Tonekabon, Iran, in 2013. The experimental design was a factorial treatment arrangement in a randomized complete block with three replicates. Factors were three N rates (0, 75, and 150 kg ha-1 and two bio-fertilizer applications (inoculation and uninoculation with Nitroxin, a liquid bio-fertilizer containing Azospirillum spp. and Azotobacter spp. bacteria. Analysis of variance showed that rice grain yield, panicle number per m2, grain number per panicle, flag leaves area, biological yield, grains N concentration and uptake, grain protein concentration, and head rice yield were significantly affected by N rate, while bio-fertilizer application had significant effect on rice grain yield, grain number per panicle, flag leaves area, biological yield, harvest index, grains N concentration and uptake, and grain protein concentration. Results showed that regardless of bio-fertilizer application, rice grain and biological yields were significantly increased as N application rate increased from 0 to 75 kg ha-1, but did not significantly increase at the higher N rate (150 kg ha-1. Grain yield was significantly increased following bio-fertilizer application when averaged across N rates. Grains N concentration and uptake were significantly increased as N rate increased up to 75 kg ha-1, but further increases in N rate had no significant effect on these traits. Bio-fertilizer application increased significantly grains N concentration and uptake, when averaged across N rates. Regardless of bio-fertilizer application, head rice yield was significantly increased from 56 % to 60 % when N rate increased from 0 to 150 kg ha-1. Therefore, this experiment illustrated that rice grain and head yields increased with increasing N rate, while bio-fertilizer application increased only rice grain

  7. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System.

    Science.gov (United States)

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2017-08-23

    Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.

  8. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-08-01

    Full Text Available Artificial Neural Networks (ANNs, including Deep Neural Networks (DNNs, have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP. The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.

  9. The Effect of Different Fertilizer Applications on Plant and Fruit Yield in Greenhouse Organic Tomato Growing

    Directory of Open Access Journals (Sweden)

    Funda Ulusu

    2017-12-01

    Full Text Available Greenhouse tomato production is in the first place in Turkey, 34% of total tomato production (3.614.472 tonnes is under greenhouse conditions. The increase in yield in Turkey is due to the spread of undergrowth cultivation besides the use of qualified varieties and seeds. Synthetic fertilizers can’t be used to obtain economic efficiency in underground organic tomato growing Therefore, the application of alternative fertilizers (barn stubble, green manure, organic fertilizer, vermicompost etc. needs to be improved. For this purpose, effect of the eight different fertilizer combination including organic and worm liquid fertilizer, humic acid and mycorrhizae applications on tomato plant and fruit yield were investigated in the study. Negative check without any fertilizer application growing and a positive check; a synthetic liquid fertilizer application was included. Experiment was set up according to completely randomised block design with 3 replications under greenhouse conditions. Tomato fruit length, diameter and weight was determined as fruit yield and fresh and dry weight as plant yield. There was not any statistical difference among fertilizer applications for fruit and plant yield. However, the highest tomato fruit yield was obtained in the treatments of organic (7.17 kg/ plot and worm fertilizers (4,80 kg/ plot in combination with mycorrhizae. The results were similar for fruit diameter and length. Plant fresh and dry weight was between 2.01 to 5.92 and 0.368 to 1.153 kg, respectively. The highest plant weight was belong to mycorrhizae and organic fertilizer application.

  10. Application of different fertilizers on morphological traits of dill (Anethum graveolens L.).

    Science.gov (United States)

    Nejatzadeh-Barandozi, Fatemeh; Gholami-Borujeni, Fathollah

    2014-12-01

    The aim of this study was to evaluate the effects of nitroxin biofertilizer and chemical fertilizer on the growth, yield, and essential oil composition of dill. The experiment was conducted under field condition in randomized complete block design with three replications and two factors. The first factor was the concentrations of nitroxin biofertilizer (0%, 50%, and 100%) of the recommended amount (1 l of biological fertilizer for 30 kg of seed). The second factor was the following chemical fertilizer treatments: no fertilizer (control) and 50 and 100 kg ha(-1) urea along with 300 kg ha(-1) ammonium phosphate. Different characteristics such as plant height, number of umbel per plant, number of umbellet per umbel, number of grain per umbellet, 1,000 seed weight, grain yield, biological yield, and oil percentage were recorded. According to the results, the highest height, biological yield, and grain yield components (except harvest index) were obtained on biological fertilizer. The results showed the highest essential oil content detected in biological fertilizer and chemical fertilizer. Identification of essential oil composition showed that the content of carvone increased with the application of biofertilizers and chemical fertilizers. The results indicated that the application of biofertilizers enhanced yield and other plant criteria in this plant. Generally, it seems that the use of biofertilizers or combinations of biofertilizer and chemical fertilizer could improve dill performance in addition to reduction of environmental pollution.

  11. Obtaining of granular fertilizers based on ashes from combustion of waste residues and ground bones using phosphorous solubilization by bacteria Bacillus megaterium.

    Science.gov (United States)

    Rolewicz, M; Rusek, P; Borowik, K

    2018-06-15

    The article presents research results on obtaining phosphorus granulated fertilizers on the basis of microbiologically activated sewage sludge ashes, ground bones and dried blood from meat industry. Granulation tests were carried out using a laboratory pan granulator as well as on an experimental pilot plant. The aim of the studies was to select the proper composition of the mixture of raw materials and binding agents to obtain granulated fertilizers from waste materials such as MSSA and MBM and bacteria lyophilisate. Obtained fertilizer samples were subjected to physical tests (granulation tests etc.) and quality assessment. The tests confirmed that it was possible to produce granulated phosphate fertilizers using the Bacillus megaterium for solubilization of phosphorus in a simple process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Regional difference of NPK fertilizers application and environmental risk assessment in Jiangsu Province, China].

    Science.gov (United States)

    Liu, Qin-pu

    2015-05-01

    It is of great importance to have a deep understanding of the spatial distribution of NPK fertilizers application and the potential threat to the ecological environment in Jiangsu Province, which is helpful for regulating the rational fertilization, strengthening the fertilizer use risk management and guidance, and preventing agricultural non-point pollution. Based on the environmental risk assessment model with consideration of different impacts of N, P, K fertilizers on environment, this paper researched the regional differentiation characteristic and environmental risk of intensity of NPK fertilizer usages in Jiangsu. Analystic hierarchy process ( AHP) was used to determine the weithts of N, P, K. The environmental safety thresholds of N, P, K were made according to the standard of 250 kg · hm(-2) for the construction of ecological counties sponsered by Chinese government and the proportion of 1:0.5:0.5 for N:P:K surposed by some developed countries. The results showed that the intensity of NPK fertilizer application currently presented a gradually increasing trend from south to north of Jiangsu, with the extremum ratio of 3.3, and the extremum ratios of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer were 3.3, 4.5 and 4.4, respectively. The average proportion of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer of 13 cities in Jiangsu was 1:0.39:0.26. Their proportion was relatively in equilibrium in southern Jiangsu, but the nutrient structure disorder was serious in northern Jiangsu. In Jiangsu, the environmental risk index of fertilization averaged at 0.69 and in the middle-range of environmental risk. The environmental risk index of fertilizer application in southern and central Jiangsu was respectively at the low and moderate levels, while that of cities in northern Jiangsu was at the moderate, serious or severe level. In Jiangsu, the regional difference of fertilizer application and environmental risk assessment were

  13. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    Science.gov (United States)

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Microservices: Granularity vs. Performance

    OpenAIRE

    Shadija, Dharmendra; Rezai, Mo; Hill, Richard

    2017-01-01

    Microservice Architectures (MA) have the potential to increase the agility of software development. In an era where businesses require software applications to evolve to support emerging software requirements, particularly for Internet of Things (IoT) applications, we examine the issue of microservice granularity and explore its effect upon application latency. Two approaches to microservice deployment are simulated; the first with microservices in a single container, and the second with micr...

  15. Modified Application of Nitrogen Fertilizer for Increasing Rice Variety Tolerance toward Submergence Stress

    Directory of Open Access Journals (Sweden)

    Gribaldi Gribaldi

    2017-01-01

    Full Text Available This research was conducted from July to October 2015, using Randomized Block Design with two treatment factors and three replications for each treatment. The first factor was rice varieties (V: V1 = IR 64; V2 = Inpara 5. The second factor was fertilizer (N: N0: without submergence, all N fertilizer was given during planting; N1: all N fertilizer dose was given during planting; and N2: 1/2 dose of N fertilizer was given during planting; the rest was given at 42 days after planting. The submergence was during 7–14 days after planting; N3 = the entire dose of N fertilizer that was given during planting, N4 = 1/2 the dose of N fertilizer that was given during planting, and the rest was given at 42 days after planting. The submergence was during 7–14 and 28–35 days after planting. The results showed that the management of nitrogen fertilizer application had effect on rice growth and production which experienced dirty water submergence stress; the application of 1/2 dose of N fertilizer given during planting had the best effect on rice growth and production; the longer the submergence period for rice variety, the higher the effect on rice growth and production.

  16. Efficiency of soil and fertilizer nitrogen in relation to variety and application time, using N-15 labelled fertilizer. Part of a coordinated programme on agricultural nitrogen residues with particular reference to their conservation as fertilizers and behaviour as potential pollutants

    International Nuclear Information System (INIS)

    Park, H.

    1979-12-01

    A series of experiments with flooded rice were carried out on 36 locations to study the influence of rice variety, fertilizer source, frequency of fertilizer application and soil conditions on the uptake of fertilizer N and grain yield. 15 N-labelled fertilizer was used in this study. The results show that (i) urea is a better source of N than ammonium sulphate on saline soils and also for the leading local rice variety (Milyang 15). The new variety Tongil utilized ammonium sulphate more efficiently; (ii) Fertilizer was more efficiently utilized on high organic matter soils; (iii) Varieties differed in fertilizer use efficiency; (iv) Hybrid Tongil lines gave higher grain yields than the local varieties, and made better use of fertilizer N, especially on saline soil, when applied at transplanting; (v) Sulphur-coated urea gave higher yield than urea on saline soils (27-39%), virgin soils (20%) and unmatured soils (10%)

  17. High-Performance Modeling and Simulation of Anchoring in Granular Media for NEO Applications

    Science.gov (United States)

    Quadrelli, Marco B.; Jain, Abhinandan; Negrut, Dan; Mazhar, Hammad

    2012-01-01

    NASA is interested in designing a spacecraft capable of visiting a near-Earth object (NEO), performing experiments, and then returning safely. Certain periods of this mission would require the spacecraft to remain stationary relative to the NEO, in an environment characterized by very low gravity levels; such situations require an anchoring mechanism that is compact, easy to deploy, and upon mission completion, easy to remove. The design philosophy used in this task relies on the simulation capability of a high-performance multibody dynamics physics engine. On Earth, it is difficult to create low-gravity conditions, and testing in low-gravity environments, whether artificial or in space, can be costly and very difficult to achieve. Through simulation, the effect of gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine, a simulation pack age capable of utilizing massively parallel Graphic Processing Unit (GPU) hardware, several validation experiments were performed. Modeling of the regolith interaction has been carried out, after which the anchor penetration tests were performed and analyzed. The regolith was modeled by a granular medium composed of very large numbers of convex three-dimensional rigid bodies, subject to microgravity levels and interacting with each other with contact, friction, and cohesional forces. The multibody dynamics simulation approach used for simulating anchors penetrating a soil uses a differential variational inequality (DVI) methodology to solve the contact problem posed as a linear complementarity method (LCP). Implemented within a GPU processing environment, collision detection is greatly accelerated compared to traditional CPU (central processing unit)- based collision detection. Hence, systems of millions of particles interacting with complex dynamic systems can be efficiently analyzed, and design recommendations can be made in a much shorter time. The figure

  18. Effect of Phosphorus Fertilizer Application on Some Soil Chemical ...

    African Journals Online (AJOL)

    Research was conducted during the 2004, 2005 and 2006 cropping seasons to study the effect of phosphorus fertilizer on some soil chemical properties and nitrogen fixation of legumes at Bauchi, northeastern Nigeria. Composite soil samples were collected from sites before planting and after harvesting at the depths of ...

  19. mineral fertilizer Application on growth and yield of French- beans

    African Journals Online (AJOL)

    The main constraints to sustainable crop production in arid environment are mainly inherent low fertility of the soil and moisture deficit. A study was conducted at Mekelle University, Tigray Region in Ethiopia to test the hypothesis that Integrated soil management practices consisting of manure (Cow dung) and Inorganic ...

  20. Increasing yield and nitrogen use efficiency of rice through multiple-split fertilizer application

    International Nuclear Information System (INIS)

    Rallos, R.V.; Rivera, F.G.; Samar, E.D.; Rojales, J.S.; Anida, A.H.

    2015-01-01

    The low availability of nitrogen (N) is one of the most important limiting factors impeding the increase in rice yield among the various factors. Split N fertilizer applications can play an important role in nutrient management strategy that is productive, profitable and environmentally responsible. In this study, the recoveries and efficiencies of a multiple-split N fertilizer application of were determined using 15N labeled fertilizer, in order to provide science-based foundation for the nitrogen management in sustainable rice production. A lysimeter experiment with five treatments in four replications was set-up T0 (control). T1 (45 kg N ha“- “1), T2 (90 kg N ha“- “1), T3 (135 kg N ha“- “1) and T4 (180 kg N ha“- “1). 15N tracer analysis showed that, on average, only 30% of applied N is recovered by the crop following one time basal application. In contrast, higher fertilizer nitrogen use efficiencies (FNUE) (>50%) were observed following multiple-split N application. The result of FNUE also corroborates with the significant increase in rice grain yield. Many crops, however, have different nutrient requirements, therefore as in all fertilization strategies, it is highly recommended that source, rate, time and place of application should be considered in making split fertilization decisions. (author)

  1. Effect of different nitrogen application types on nitrogen utilization efficiency and fate of fertilizer for sugacane

    International Nuclear Information System (INIS)

    Wei Jianfeng; Wei Dongping; Liu Huanyu; Chen Chaojun; Lan Libin; Liang He

    2013-01-01

    A pot experiment in greenhouse was conducted with "1"5N-labeled urea 5 g/pot (equal to 450 kg · hm"-"2) total nitrogen by three kinds of treatments of disposable bottom application nitrogen before sowing (T1), 50% nitrogen before sowing and 50% nitrogrn during tillering stage (T2), and 30% nitrogen before sowing, 30% nitrogen during tillering stage and 40% nitrogen applied during elongation stage (T3) to investigate the use efficiency and fate of fertilizer nitrogen using the sugarcane cultivar ROC22. Results showed that almost 18% ∼ 29% of total N uptake by sugarcane was supplied by fertilizer, and 71% ∼ 82% N derived from soil and seed-stem. Nitrogen use efficiency ranged from 21.0% to 34.52%, with "1"5N-fertilizer residue of 37.61% ∼ 44.13%, and "1"5N-fertilizer loss of 21.35% ∼ 41.39% among three treatments. Under the three levels of nitrogen application, residual was "1"5N-fertilizer was mainly distributed in 0 ∼ 20 cm top soil. The uptake of nitrogen and the proportion of total N from fertilizer in sugarcane plant, the yield of stalk and sugar after the nitrogen applied, and the use efficiency and residue ratio of "1"5N-fertilizer increased significantly over time, while loss rate of "1"5N-fertilizer decreased significantly with a slight decline trend of nitrogen distribution and sucrose accumulation in stalk. The results also indicated that after the nitrogen applied the amounts "1"5N-fertilizer residue in 0 ∼ 20 cm top soil showed a rising trend, but dropped in 20 ∼ 40 cm soil profile. From the viewpoints of economic benefit and ecological benefit, the nitrogen fertilizer applied of T3 could be optimal treatment. (authors)

  2. Mechanical and Structural Behavior of Granular Material Packed Beds for Space Life Support System Applications

    Science.gov (United States)

    Malla, Ramesh B.; Anandakumar, Ganesh

    2005-01-01

    Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of

  3. Organic and mineral fertilization of squash plant with application of 1'5N staple isotope

    International Nuclear Information System (INIS)

    El-Sherbiny, A.E.; Dahdouh, S.M.; Galal, Y.G.M.; Habib, A.A.M.

    2012-01-01

    A field experiment was conducted on virgin sand soil under drip irrigation system using squash fertilized with ammonium sulfate fertilizer, commercial compost locally manufactured in Egypt and artificial compost prepared fertilizer were applied either completely (100%) of mineral or of organic; or 50%: 50% (mineral: organic) by the authors at the Atomic Energy Authority of Egypt. All fertilization treatments were either inoculated or not inoculated with Azospirillum. Inoculation increased roots fresh weight. This was more pronounced with application of 50% mineral fertilizer plus 50% commercial compost, 100% artificial compost and 100% commercial compost. Similar trends, but to high extent were noticed with shoot fresh weight as affected by microbial inoculation and different organic composts. The 50%: 50% treatments as well as 100% artificial compost treatment gave high root and shoot dry weights. Inoculation and 50%: 50% fertilization treatments were more effective on N uptake. Higher N uptake was by shoots than roots. Portion and absolute value of N derived by roots from mineral fertilizer were significantly affected by combined fertilization treatments. Nitrogen derived from air (Ndfa) was positively affected by addition of organic compost and bacterial inoculation. Reversible trend was noticed with N derived from soil (Ndfa) which decreased when treated with compost and bacterial inoculation. All measurements were high in shoots than roots

  4. [Mechanisms for the increased fertilizer nitrogen use efficiency of rice in wheat-rice rotation system under combined application of inorganic and organic fertilizers].

    Science.gov (United States)

    Liu, Yi-Ren; Li, Xiang; Yu, Jie; Shen, Qi-Rong; Xu, Yang-Chun

    2012-01-01

    A pot experiment was conducted to study the effects of combined application of organic and inorganic fertilizers on the nitrogen uptake by rice and the nitrogen supply by soil in a wheat-rice rotation system, and approach the mechanisms for the increased fertilizer nitrogen use efficiency of rice under the combined fertilization from the viewpoint of microbiology. Comparing with applying inorganic fertilizers, combined application of organic and inorganic fertilizers decreased the soil microbial biomass carbon and nitrogen and soil mineral nitrogen contents before tillering stage, but increased them significantly from heading to filling stage. Under the combined fertilization, the dynamics of soil nitrogen supply matched best the dynamics of rice nitrogen uptake and utilization, which promoted the nitrogen accumulation in rice plant and the increase of rice yield and biomass, and increased the fertilizer nitrogen use efficiency of rice significantly. Combined application of inorganic and organic fertilizers also promoted the propagation of soil microbes, and consequently, more mineral nitrogen in soil was immobilized by the microbes at rice early growth stage, and the immobilized nitrogen was gradually released at the mid and late growth stages of rice, being able to better satisfy the nitrogen demand of rice in its various growth and development stages.

  5. Application of granular ferric hydroxides for removal elevated concentrations of arsenic from mine waters

    Science.gov (United States)

    Szlachta, Małgorzata; Włodarczyk, Paweł; Wójtowicz, Patryk

    2015-04-01

    Arsenic is naturally occurring element in the environment. Over three hundred minerals are known to contain some form of arsenic and among them arsenopyrite is the most common one. Arsenic-bearing minerals are frequently associated with ores containing mined metals such as copper, tin, nickel, lead, uranium, zinc, cobalt, platinum and gold. In the aquatic environment arsenic is typically present in inorganic forms, mainly in two oxidation states (+5, +3). As(III) is dominant in more reduced conditions, whereas As(V) is mostly present in an oxidizing environment. However, due to certain human activities the elevated arsenic levels in aquatic ecosystems are arising to a serious environmental problem. High arsenic concentrations found in surface and groundwaters, in some regions originate from mining activities and ore processing. Therefore, the major concern of mining industry is to maintain a good quality of effluents discharged in large volumes. This requires constant monitoring of effluents quality that guarantee the efficient protection of the receiving waters and reacting to possible negative impact of contamination on local communities. A number of proven technologies are available for arsenic removal from waters and wastewaters. In the presented work special attention is given to the adsorption method as a technically feasible, commonly applied and effective technique for the treatment of arsenic rich mine effluents. It is know that arsenic has a strong affinity towards iron rich materials. Thus, in this study the granular ferric hydroxides (CFH 12, provided by Kemira Oyj, Finland) was applied to remove As(III) and As(V) from aqueous solutions. The batch adsorption experiments were carried out to assess the efficiency of the tested Fe-based material under various operating parameters, including composition of treated water, solution pH and temperature. The results obtained from the fixed bed adsorption tests demonstrated the benefits of applying granular

  6. Application of Ozone and Granular Activated Carbon for Distillery Effluent Treatment

    Directory of Open Access Journals (Sweden)

    Mojtaba Hadavifar

    2010-06-01

    Full Text Available The main objective of this study was to investigate the treatment of distillery vinasse through the integrated process of ozone oxidation and Granular Activated Carbon (GAC in a continuous process. The continuous process was carried out both by each of the GAC and ozone processes alone and by the combination of the two in order to investigate the synergistic effects of the two modes on COD and color removal in the treatment of vinasse from laboratory ethanol production from cane molasses. The continuous processes were performed at an ozone generation rate of 240mg/h, GAC dose of 100g, and at room temperature (25°C. Color removal efficiency of O3 was higher than its COD removal from vinasse. The COD and color removal efficiencies of the O3 process were about 25% and 74%, respectively. Moreover, GAC/O3 process was found to negatively affect the synergy of COD and color removal efficiency from distillery vinasse. This negative effect decreased by increasing influent pH level. The results indicate that the initial pH has a considerable effect on the three processes investigated.

  7. Tracer studies on the effect of different methods of phosphorus application on fertilizer P uptake by Sunnhemp (Crotolaria juncea L.)

    International Nuclear Information System (INIS)

    Chaudhury, J.; Ray, P.K.

    1994-01-01

    The relative efficacy of seven methods of phosphorus application on dry matter yield, and fertilizer phosphorus uptake and its utilization by Sunnhemp (var. K-12 yellow) was studied under field conditions using 32 P tagged superphosphate (SSP). Fertilizer was least utilized by the traditional method of application of fertilizer i.e. broadcasting, whereas placement below the seed was significantly superior to all other methods in relation to dry matter yield, total and fertilizer P uptake by Sunnhemp. The per cent utilization of fertilizer P added and per cent Pdff followed the similar pattern as that of the dry matter yield. (author). 7 refs., 1 tab

  8. Transformation of nitrogenous fertilizers of surface and deep application in calcareous soil

    International Nuclear Information System (INIS)

    Zuo Dongfeng

    1990-01-01

    The transformations of 15 N labelled fertilizer N in calcareous soil were studied under greennhouse conditions. The experimental results indicate that the ratio of fixed ammonium is closely related to the methods of fertilizer application to the soil. When fertilizer N applied as deep dressing the fixation of nitrogen by clay minerals and microorganisms may markedly reduce the losses of nitrogen, but the amount of nitrogen fixed by the clay minerals and that by microorganisms showed negative correlation (r = -0.9185 ** ). The more the amount of fixed nitrogen by clay minerals, the less by microorganisms. No obvious interrelation between the residual utilization of urea, ammonium bicarbonate, ammonium sulfate and the ammount of nitrogen fixed by organisms can be observed, but the residual utilization of these fertilizers by the succeeding crop has been related to the total amount of mineral nitrogen

  9. Natural radiation sources fabricated from potassic chemical fertilizers and application to radiation education

    International Nuclear Information System (INIS)

    Kawano, Takao

    2010-01-01

    Potassic chemical fertilizers contain potassium, a small part of which is potassium-40. Since potassium-40 is a naturally occurring radioisotope, potassic chemical fertilizers are often used for demonstrations of the existence of natural radioisotopes and radiation. To fabricate radiation sources as educational tools, the compression and formation method developed by our previous study was applied to 13 brands of commercially available chemical fertilizers containing different amounts of potassium. The suitability (size, weight, and solidness) of thus fabricated sources was examined and 12 of them were selected as easy-to-use radiation sources at radiation educational courses. The radiation strength (radiation count rate measured by a GM survey meter) and potassium content of the 12 sources were examined. It was found that the count rate was wholly proportional to the percentage of potassium, and a new educational application was proposed and discussed for understanding that the substance emitting radiation must be the potassium present in the raw fertilizers. (author)

  10. Effect of different methods of soil fertility increasing via application of organic, chemical and biological fertilizers on grain yield and quality of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    K. Mohammadi

    2016-05-01

    Full Text Available Different resource of fertilizers had an effect on grain yield, oil and grain quality. Information regarding the effect of simultaneous application of organic, chemical and biological fertilizers on canola (Brassica napus L. traits is not available. In order to study the effect of different systems of soil fertility on grain yield and quality of canola (Talayeh cultivar, an experiment was conducted at experimental farm of Agricultural Research Center of Sanandaj, Iran, during two growing seasons of 2007-2008 and 2008-2009. The experimental units were arranged as split plots based on randomized complete blocks design with three replications. Main plots consisted of five methods for obtaining the basal fertilizers requirement including (N1: farm yard manure; (N2: compost; (N3: chemical fertilizers; (N4: farm yard manure + compost and (N5: farm yard manure + compost + chemical fertilizers; and control (N6. Sub plots consisted four levels of biofertilizers were (B1: Bacillus lentus and Pseudomonas putida; (B2: Trichoderma harzianum; (B3: Bacillus lentus and Pseudomonas putida and Trichoderma harzianum; and (B4: control, (without biofertilizers. Results showed that basal fertilizers and biofertilizers have a significant effect on grain yield. The highest grain yield was obtained from N5 treatment in which organic and chemical fertilizers were applied simultaneously applied. Basal fertilizers, biofertilizers have a significant effect on leaf chlorophyll. The highest nitrogen content (42.85 mg.g-1 and least amount of (N/S were obtained from N5 treatment. The highest oil percent was obtained from N1 and N2 treatments and highest oil yield was obtained from N5 treatment. Finally, application of organic manure and biofertilizers with chemical fertilizer led to an increase in yield and quality of canola grain.

  11. Effect of fertilizer application and deep rooting measures on the absorption of 137Cs by rice

    International Nuclear Information System (INIS)

    Zhu Yongyi; Yang Juncheng; Chen Jingjian; Liu Xuelian; Xu Yinliang; Sun Zhiming

    1998-01-01

    Effects of the application of phosphorus and potassium fertilizer and deep rooting on reducing the absorption of 137 Cs by rice (especially in the seed) were estimated using pot and plot experiment. The results show that the available 137 Cs in soil decreased significantly by applying potassium fertilizer, which led to the lower accumulation of 137 Cs in rice stem and the most effective measure was to apply potassium sulphate of 922.5 kg/ha. An unsteady effect with phosphate fertilizer existed. When P application was in a lower amount, the accumulation of 137 Cs in rice decreased. But following the increase of P application, the absorption of 137 Cs was promoted. The 137 Cs accumulation in rice decreased significantly by deep rooting

  12. Application of Bioorganic Fertilizer Significantly Increased Apple Yields and Shaped Bacterial Community Structure in Orchard Soil.

    Science.gov (United States)

    Wang, Lei; Li, Jing; Yang, Fang; E, Yaoyao; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2017-02-01

    Application of bioorganic fertilizers has been reported to improve crop yields and change soil bacterial community structure; however, little work has been done in apple orchard soils where the biological properties of the soils are being degraded due to long-term application of chemical fertilizers. In this study, we used Illumina-based sequencing approach to characterize the bacterial community in the 0-60-cm soil profile under different fertilizer regimes in the Loess Plateau. The experiment includes three treatments: (1) control without fertilization (CK); (2) application of chemical fertilizer (CF); and (3) application of bioorganic fertilizer and organic-inorganic mixed fertilizer (BOF). The results showed that the treatment BOF increased the apple yields by 114 and 67 % compared to the CK and CF treatments, respectively. The treatment BOF also increased the soil organic matter (SOM) by 22 and 16 % compared to the CK and CF treatments, respectively. The Illumina-based sequencing showed that Acidobacteria and Proteobacteria were the predominant phyla and Alphaproteobacteria and Gammaproteobacteria were the most abundant classes in the soil profile. The bacterial richness for ACE was increased after the addition of BOF. Compared to CK and CF treatments, BOF-treated soil revealed higher abundance of Proteobacteria, Alphaproteobacteria and Gammaproteobacteria, Rhizobiales, and Xanthomonadales while Acidobacteria, Gp7, Gp17, and Sphaerobacter were found in lower abundance throughout the soil profile. Bacterial community structure varied with soil depth under different fertilizer treatments, e.g., the bacterial richness, diversity, and the relative abundance of Verruccomicrobia, Candidatus Brocadiales, and Skermanella were decreased with the soil depth in all three treatments. Permutational multivariate analysis showed that the fertilizer regime was the major factor than soil depth in the variations of the bacterial community composition. Two groups, Lysobacter

  13. Improvement of thermal regeneration of spent granular activated carbon using air agent : Application of sintering and deoxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Joon-Hyung; Jeon, Soo-Bin; Oh, Kwang-Joong [Pusan National University, Busan (Korea, Republic of); Kim, Yoon-Su [Kolon Global Corporation, Gwacheon (Korea, Republic of); Seo, Jong-Beom [HyunDai Steel Company, Dangjin (Korea, Republic of); Jung, Jong-Hyeon [Daegu Haany University, Gyeongsan (Korea, Republic of)

    2014-09-15

    Thermal regeneration of spent granular activated carbon (GAC) using sintering, air-activation, and deoxygenation was investigated to determine the potential of this method for overcoming the drawbacks of thermal regeneration. The conditions for each step were optimized. The physicochemical properties of four regenerated GACs were assessed using BET, SEM, and FT-IR analysis. The suitability of the regenerated GACs for liquid-phase applications was assessed by phenol adsorption, using adsorption isotherms, kinetics, and thermodynamics. Sintering increased the micropore area and volume of regenerated GAC by 19% and 16%, respectively, and controlled excessive burn-off, reducing it by 19%. Air-activation has economic advantages because the reaction time is 80% less than that for steam activation. Deoxygenation improved the maximum adsorption capacity by 7%, although the number of micropores was reduced. Regenerated GAC by sintering, air-activation, and deoxygenation was best for liquid-phase applications; the results show that these steps help to overcome the drawbacks of thermal regeneration.

  14. Improvement of thermal regeneration of spent granular activated carbon using air agent : Application of sintering and deoxygenation

    International Nuclear Information System (INIS)

    Cho, Joon-Hyung; Jeon, Soo-Bin; Oh, Kwang-Joong; Kim, Yoon-Su; Seo, Jong-Beom; Jung, Jong-Hyeon

    2014-01-01

    Thermal regeneration of spent granular activated carbon (GAC) using sintering, air-activation, and deoxygenation was investigated to determine the potential of this method for overcoming the drawbacks of thermal regeneration. The conditions for each step were optimized. The physicochemical properties of four regenerated GACs were assessed using BET, SEM, and FT-IR analysis. The suitability of the regenerated GACs for liquid-phase applications was assessed by phenol adsorption, using adsorption isotherms, kinetics, and thermodynamics. Sintering increased the micropore area and volume of regenerated GAC by 19% and 16%, respectively, and controlled excessive burn-off, reducing it by 19%. Air-activation has economic advantages because the reaction time is 80% less than that for steam activation. Deoxygenation improved the maximum adsorption capacity by 7%, although the number of micropores was reduced. Regenerated GAC by sintering, air-activation, and deoxygenation was best for liquid-phase applications; the results show that these steps help to overcome the drawbacks of thermal regeneration

  15. Fertilizer nitrogen fixation in plants and its transmutation in soils in case of annual application

    International Nuclear Information System (INIS)

    Shilova, E.I.; Smirnov, P.M.; Khon, N.I.

    1974-01-01

    Using certain combinations of 15 N labeled and unlabeled nitrogen-containing fertilizers data were obtained for direct determination of nitrogen balance in the year of fertilization and subsequently. Annual and total (for 3 years) increment in utilization of soil nitrogen resulting from repeated fertilization was also determined. Coefficient of nitrogen utilization by barley decreased over the 3-year period after additional application of ammonium sulfate while biological immobilization of nitrogen tended to increase. Application of straw during the first year of the experiment did not significantly affect the nitrogen balance in the following years. The total coefficient of nitrogen utilization for the 2 to 3-year period was higher than that of the first year while biological immobilization was relatively lower. Additional utilization of soil nitrogen as compared to the control was the same over the whole 3-year period; additional mobilization (annual and total) was relatively higher due to lower removal of soil nitrogen in the subsequent years. Utilization of previously immobilized nitrogen was higher in the case of repeated fertilization than without application of nitrogen fertilizers. The content of newly immobilized nitrogen during 3 years in the hydrolyzable undistilable fraction (nitrogen of bounded amino acids) was relatively lower and this was accompanied by the growth of hydrolyzable distilable and unhydrolyzable nitrogen

  16. The effect of different P fertilizer application (chemical, biologic and integrated on forage quality of two barely varieties (Bahman and Fasieh

    Directory of Open Access Journals (Sweden)

    Lezhia Zandiyeh

    2016-05-01

    Full Text Available Abstract To evaluate the effect of different sources of P fertilizer on grain yield and yield components of two barely varieties, this experiment was conducted in Research Farm, College of Agriculture, University of Tehran in 2010. The experimental treatments were arranged as factorial based on randomized complete block design with three replications. The treatments consisted of two barely varieties (Bahman and Fasieh and 7 levels of P fertilizer viz: 1. Control (no fertilizer application, 2. Chemical P fertilizer (based on the soil test, 3. Biological P fertilizer (P solubilizing bacteria, 4. Biological P fertilizer + 100% chemical P fertilizer, 5. Biological P fertilizer + 75% chemical P fertilizer, 6. Biological P fertilizer + 50% chemical P fertilizer, 7. Biological P fertilizer + 25% chemical P fertilizer. The results indicated that the ash percentage in Fasieh was significantly higher than Bahman at Chemical P fertilizer, integrated and Biological P fertilizer + 50% chemical P fertilizer. Except for Biological P fertilizer, DMD percentage was significantly higher in Fasieh compared to Bahman. The highest crude protein percentage was obtained for Fasieh in Biological P fertilizer + 50% chemical P fertilizer for Bahman in Biological P fertilizer + 75% chemical P fertilizer, respectively. The water soluble carbohydrate content was significantly higher in Fasieh at Chemical P fertilizer and integrated fertilizer treatments compared to Bahman variety. The highest NDF in Bahman was observed when received Biological P fertilizer + 50% chemical P fertilizer treatment, while the same results was obtained for Fasieh when received Biological P fertilizer + 100% chemical P fertilizer and Biological P fertilizer + 75% chemical P fertilizer.

  17. Response of maize to reduced urea application combined with compound nitrogen fertilizer synergists

    International Nuclear Information System (INIS)

    Tian Xiuying; WANG Zhengyin

    2006-01-01

    Pot and field experiments were conducted to study the response to application rate of urea labeled with 15 N combined with compound nitrogen fertilizer synergists in the growth, yield, uptake and utilization rate of urea of maize. In pot experiment, the standard urea application rate is 120 mg/perpot; in field experiment, the standard urea application rate is 157.5 kg/hm 2 . Maize with 15 N-urea. The results showed that the growth of maize seedling was obviously promoted with appropriate dosage of compound nitrogen fertilizer synergists (20%-60% of N). The treatments of urea application rate reduced by 5%-15% and added compound nitrogen fertilizer synergists, the growth and nitrogen content of maize were not significant changed, and the total 15 N uptake and nitrogen uptake by maize were the same as CK 2 or increased a little. Nitrogen use efficiency of other treatments increased by 5.6%-7.3% comparing with CK, except the treatment of urea application rate reduced by 30%. The apparent utilization rate of nitrogen was enhanced by 7.7%-17.0%. Under the field condition, maize yield, total uptake, net uptake, physiological rate and agronomic use efficiency of nitrogen were the same as CK or increased. The apparent utilization rate of nitrogen was enhanced by 14.8%-15.2% treated with urea reduced by 5%-15% (7.8-23.7 kg/hm 2 ) and added with compound nitrogen fertilizer synergists. It was not helpful for the growth and nitrogen utilization rate of maize when urea reduced by 30% and combined with compound nitrogen fertilizer synergists. As a result, treated with urea decreased by 15% and combined with appropriate dosage of compound nitrogen fertilizer synergists (20% of urea), the growth and yield of maize had litter effect and higher the uptake and utilization of nitrogen. (authors)

  18. Application time of nitrogen fertilizer 15N by a potato crop (Solanum Tuberosum L.)

    International Nuclear Information System (INIS)

    Bastidas, O.G.; Urquiaga, S.

    1987-01-01

    This study was performed at the ''San Jorge'' experimental farm of the Instituto Colombiano Agropecuario (ICA), Bogota, Colombia. The study was performed to investigate the effect of timing of application of nitrogen fertilizer on the productivity of, and the efficiency of utilization of 15 N-labelled fertilizer by, a potato crop (Solanum tuberosum L.), cv. Tequendama. The crop was fertilized with 100, 200 and 100 Kg/ha -1 of N, P 2 O 5 and K 2 O respectively. The N fertilizers were either added as 15 N labelled urea (2.955 at.% 15 N excess) or as labelled ammonium sulphate (2.071 at.% 15 N excess). In all treatments with nitrogen, a total of 100 Kg N ha -1 was added, but the nitrogen was added either in two or three split doses (only one dose being labelled with 15 N) at the following times: at planting, 35 days after emergence (DAE) and/or 60 DAE. It was found that: a) Nitrogen fertilization increased tuber production from 24 to 43 t/ha -1 ; b) The tubers constituted approximately 80% of total plant dry matter and 70% of the total nitrogen and fertilizer N accumulated by the plant; c) The fertilizer use efficiency varied between 49 and 68%, and the highest efficiency occurred when the nitrogen was split in three doses; d) The urea and ammonium sulphate gave similar results in all parameters evaluated; e) When the total nitrogen difference method was applied to interpretation of the results the fertilizer use efficiency was overestimated by 15 to 30%

  19. Grain-scale numerical modeling of granular mechanics and fluid dynamics and application in a glacial context

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.

    The macroscopic behavior of granular materials is the result of the self-organizing complexity of the constituent grains. Granular materials are known for their ability to change phase, where each phase is characterized by distinct mechanical properties. This rich generic phenomenology has made...... it difficult to constrain generalized and adequate mathematical models for their mechanical behavior. Glaciers and ice streams often move by deformation of underlying melt-water saturated sediments. Glacier flow models including subglacial sediment deformation use simplified a priori assumptions for sediment......, the method imposes intense computational requirements on the computational time step. The majority of steps in the granular dynamics algorithm are massively parallel, which makes the DEM an obvious candidate for exploiting the capabilities of modern GPUs. The granular computations are coupled to a fluid...

  20. Effect of application of fertilizer nitrogen, zinc and selenium on zinc nutrition of ryegrass

    International Nuclear Information System (INIS)

    Wei Dongpu; Bai Lingyu; Yao Yunyin; Hua Luo

    2001-01-01

    A pot experiment was carried out to study the effect of zinc or selenium fertilizer applied alone, combined application of nitrogen, zinc and selenium fertilizer on zinc nutrition of ryegrass in mono culture or in mixed culture in mountain yellow-brown earth of Hubei province. The results showed that: 1) Zn content was enhanced by mixed culture (white clover: ryegrass = 1:4), at the same time, Zn content of ryegrass in mixed culture was increased with increasing of Zn fertilizer. 2) The main reason of Zn content of ryegrass decreased in mixed culture was dilution effect due to the increase of dry weight. 3) In mono-Se treatment, Zn content of ryegrass in mixed culture was decreased with increasing of Se fertilizer. 4) In 9 treatment of combined applications of N, Zn and Se fertilizer, treatment of the highest Zn content of ryegrass in mixed culture was N46Zn25Se1; treatment of the highest Zn content of ryegrass in mono culture was N30Zn25Se5

  1. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome

    NARCIS (Netherlands)

    Wu, Xiong; Guo, Sai; Jousset, Alexandre; Zhao, Qingyun; Wu, Huasong; Li, Rong; Kowalchuk, George A.; Shen, Qirong

    2017-01-01

    Fusarium wilt disease is a growing problem in agriculture systems. Application of bio-fertilizers containing beneficial microbes represents a promising disease control strategy. However, the mechanisms underlying disease suppression remain elusive. Here, in order to assess the importance of direct

  2. Effect of time of fertilizer application on growth and yield of maize ...

    African Journals Online (AJOL)

    An experiment was carried out during the 2006 growing season, between June and November, to investigate the growth and yield responses of four varieties of maize (SUWAN-1-Y, TZSR-Y, DMESR-W and ACROSS-97 TZL) to time of fertilizer application (2,4 and 6 weeks after planting). The experiment was laid out in a 3 x ...

  3. Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment, Germany

    NARCIS (Netherlands)

    Chytry, M.; Hejcman, M.; Hennekens, S.M.; Schellberg, J.

    2009-01-01

    Question: How does semi-natural grassland diversify after 65 years of differential application of Ca, N, P, and K fertilizers? Is fertilizer application adequately reflected by the Ellenberg indicator values (EIVs)? Location: Eifel Mountains, West Germany. Methods: The Rengen Grassland Experiment

  4. Evaluating Liquid and Granular Bacillus thuringiensis var. israelensis Broadcast Applications for Controlling Vectors of Dengue and Chikungunya Viruses in Artificial Containers and Tree Holes.

    Science.gov (United States)

    Harwood, James F; Farooq, Muhammad; Turnwall, Brent T; Richardson, Alec G

    2015-07-01

    The principal vectors of chikungunya and dengue viruses typically oviposit in water-filled artificial and natural containers, including tree holes. Despite the risk these and similar tree hole-inhabiting mosquitoes present to global public health, surprisingly few studies have been conducted to determine an efficient method of applying larvicides specifically to tree holes. The Stihl SR 450, a backpack sprayer commonly utilized during military and civilian vector control operations, may be suitable for controlling larval tree-hole mosquitoes, as it is capable of delivering broadcast applications of granular and liquid dispersible formulations of Bacillus thuringiensis var. israelensis (Bti) to a large area relatively quickly. We compared the application effectiveness of two granular (AllPro Sustain MGB and VectoBac GR) and two liquid (Aquabac XT and VectoBac WDG) formulations of Bti in containers placed on bare ground, placed beneath vegetative cover, and hung 1.5 or 3 m above the ground to simulate tree holes. Aedes aegypti (L.) larval mortality and Bti droplet and granule density data (when appropriate) were recorded for each formulation. Overall, granular formulations of Bti resulted in higher mortality rates in the simulated tree-hole habitats, whereas applications of granular and liquid formulations resulted in similar levels of larval mortality in containers placed on the ground in the open and beneath vegetation. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  5. Impacts of enhanced fertilizer applications on tropospheric ozone and crop damage over sub-Saharan Africa

    Science.gov (United States)

    Huang, Yaoxian; Hickman, Jonathan E.; Wu, Shiliang

    2018-05-01

    Fertilizer-induced nitrogen oxides (NOx) emissions in sub-Saharan Africa are expected to increase substantially in the coming decades, driven by increasing application of fertilizers to increase crop yields in an effort to attain food security across the continent. In many parts of sub-Saharan Africa, surface ozone (O3) is sensitive to increasing atmospheric concentrations of NOx. In this study, we employ the GEOS-Chem chemical transport model to conduct a preliminary investigation of the impacts on O3 air quality and the consequential crop damage associated with increasing fertilizer-induced NOx emissions in sub-Saharan Africa. Our simulation results, constrained by field NO flux measurements for the years 2011 and 2012 in response to a variety of fertilizer application rates in western Kenya, show that the enhancements in NO flux with fertilizer application rate of 150 kg N ha-1 can increase surface NOx and O3 concentrations by up to 0.36 and 2.8 ppbv respectively during the growing season. At the same time, accumulated O3 exposure during the crop growing season (expressed as AOT40 values) could increase by up to 496 ppb h, leading to crop yield decline of about 0.8% for O3-sensitive crops. Our results suggest that, when accounting for the consequential impacts on surface O3 air quality and crop damage over sub-Saharan Africa, agricultural intensification is possible without substantial impacts on crop productivity because the relatively small decline of crop yield resulting from O3 damage appears unlikely to outweigh the gain in crop yield from fertilization.

  6. Impact Compaction of a Granular Material

    Science.gov (United States)

    Fenton, Gregg; Asay, Blaine; Todd, Steve; Grady, Dennis

    2017-06-01

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Although, the mechanical behavior of granular materials have been studied extensively for several decades, the dynamic behavior of these materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This paper describes how an instrumented plunger impact system can be used to measure the compaction process for granular materials at high and controlled strain rates and subsequently used for computational modelling. The experimental technique relies on a gas-gun driven plunger system to generate a compaction wave through a volume of granular material. This volume of material has been redundantly instrumented along the bed length to track the progression of the compaction wave, and the piston displacement is measured with Photon Doppler Velocimetry (PDV). Using the gathered experimental data along with the initial material tap density, a granular material equation of state can be determined.

  7. The Application of Bio-organic Fertilizer on Physic nut Production

    International Nuclear Information System (INIS)

    Tumavip, Amnag; Piadiang, Nattaya

    2006-09-01

    The Application of bio-organic fertilizers on Physics nut production were conduction in an area of Agricultural Occupational Promotion and Development Center, Cholburi Province (Plant Cultural) Cholburi. The period of 3 months (August - November 2006), Physic nut production both with and without husk were on the field. Experimental design was RCBD with 5 treatments. Results revealed that no significant difference between treatments (P>0.05). physic nut applied with the microbial fertilizer (OAP) produced greater yields with husks (71.21 Kg/rai) and without husks( 24.30 kg/rai) than chemical treatment 45.18 and 17.22 kg/rai respectively.

  8. Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850-2015: application rate, timing, and fertilizer types

    Science.gov (United States)

    Cao, Peiyu; Lu, Chaoqun; Yu, Zhen

    2018-06-01

    A tremendous amount of anthropogenic nitrogen (N) fertilizer has been applied to agricultural lands to promote crop production in the US since the 1850s. However, inappropriate N management practices have caused numerous ecological and environmental problems which are difficult to quantify due to the paucity of spatially explicit time-series fertilizer use maps. Understanding and assessing N fertilizer management history could provide important implications for enhancing N use efficiency and reducing N loss. In this study, we therefore developed long-term gridded maps to depict crop-specific N fertilizer use rates, application timing, and the fractions of ammonium N (NH4+-N) and nitrate N (NO3--N) used across the contiguous US at a resolution of 5 km × 5 km during the period from 1850 to 2015. We found that N use rates in the US increased from 0.22 g N m-2 yr-1 in 1940 to 9.04 g N m-2 yr-1 in 2015. Geospatial analysis revealed that hotspots for N fertilizer use have shifted from the southeastern and eastern US to the Midwest, the Great Plains, and the Northwest over the past century. Specifically, corn in the Corn Belt region received the most intensive N input in spring, followed by the application of a large amount of N in fall, implying a high N loss risk in this region. Moreover, spatial-temporal fraction of NH4+-N and NO3--N varied largely among regions. Generally, farmers have increasingly favored ammonia N fertilizers over nitrate N fertilizers since the 1940s. The N fertilizer use data developed in this study could serve as an essential input for modeling communities to fully assess N addition impacts, and improve N management to alleviate environmental problems. Datasets used in this study are available at https://doi.org/10.1594/PANGAEA.883585" target="_blank">https://doi.org/10.1594/PANGAEA.883585.

  9. Nano Fertilizers

    Directory of Open Access Journals (Sweden)

    Hatice DAĞHAN

    2017-06-01

    Full Text Available Agricultural land is decreasing day by day due to erosion, environmental pollution, unconscious irrigation and fertilization. On the other hand, it is necessary to increase agricultural production in order to meet the needs of the developing industry as well as the nutritional needs of the growing population. In the recent years, nano fertilizers have begun to be produced to obtain the highest amount and quality of production from the unit area. Previous research shows that nano fertilizers cause an increase in the use efficiency of plant nutrients, reduce soil toxicity, minimize the potential adverse effects of excessive chemical fertilizer use, and reduce fertilizer application frequency. Nano fertilizers are important in agriculture to increase crop yield and nutrient use efficiency, and to reduce excessive use ofchemical fertilizers. The most important properties of these fertilizers are that they contain one or more of macro and micronutrients, they can be applied frequently in small amounts and are environmentally friendly. However, when applied at high doses, they exhibit decreasing effects on plant growth and crop yields, similar to chemical fertilizers. In this review, the definition, importan ce, and classification of nano fertilizers, their application in plant production, advantages and disadvantages and the results obtained in this field were discussed.

  10. Role of np fertilizer under different application methods on seed yield of sunflower

    International Nuclear Information System (INIS)

    Khan, R.U.; Khan, R.A.; Khan, R.A.; Muendal, H.

    2007-01-01

    The effects of different application methods of nitrogen and phophorus fertilizers were studied on the sunflower hybrid NK-212 during spring and kharif seasons at National Agricultural Research Centre, Islamabad. Nitrogen and phosphorus were applied at the rate 90 and 60 kg P 2 degree 5 ha-1 in a different proportions i.e. all broadcast and disked, 3/4 broadcast disked + 1/4 side banded, 1/2 broadcast disked + 1/2 side banded, 1/4 broadcast disked + 3/4 side banded and all side banded. Fertilizer applied in equal proportions of side banded and broadcast at the time of planting gave maximum (1525 and 1348 kg ha-1) seed yield and largest (14.3 cm and 10.15 cm) head diameter of sunflower in spring seasons during (1987 and 1988), and seed yield of 1206 kg ha-1 and 11.0 cm head diameter during kharif 1987. A significant increase in the 1000 seed weight was also observed in all the treatments receiving different split applications of N and P over all broadcast applied fertilizer. Plant height was not increased by split applications, with lowest height to be associated with most side banding of fertilizers. (author)

  11. Improving soil fertility through Azolla application in low land rice: A review

    Directory of Open Access Journals (Sweden)

    Purushottam Subedi

    2015-04-01

    Full Text Available The continuous usages of chemical fertilizers have harmful effects on soil organic matter reserves, soil health and environmental safety. The use of Bio-fertilizers like Azolla not only increases the rice productivity but also improves the long term soil fertility. Azolla is a fast growing aquatic pteridophyte which fixes atmospheric Nitrogen by forming a symbiotic association with the Blue-Green Algae, Anabaena azollae. Azolla is an efficient Nitrogen fixer. It is grown in lowland rice fields because flooded habitat is suitable for it. Under favorable field condition, it fixes atmospheric nitrogen at a rate exceeding that of the Legume-Rhizobium symbiotic relationship. It increases the rice yield equivalent to that produced by 30-60 kg N/ha. As green manure in water logged soil, it enhances the rapid mineralization of nitrogen. It reduces the NH3 volatilization losses through its influence on floodwater pH that leads to the conservation of urea-N in the system to improve the efficiency of N fertilizers. It significantly improves the physical and chemical properties of the soil including improvement in soil microbial activities. It helps in addition of Organic Matter and release of cations such as Magnesium, Calcium and Sodium. The total N, available P and exchangeable K in the soil and N-uptake by rice can be improved. Therefore, Azolla application is considered as a good practice for sustaining soil fertility and crop productivity irrespective of some limitations.

  12. Optimized Granularity Analysis of Maximum Power Point Trackers in Low Power Applications

    Science.gov (United States)

    2017-06-01

    CELL OPERATION Photovoltaic systems (solar panels) have become increasingly attractive as a sustainable, alternative energy source over the last...Energy Transfer of Directly Coupled DC System . Source: [10]. Further compounding this situation, the impedance of photovoltaic sources is constantly...Small-scale photovoltaic applications typically employ switching converters due to their small size and high efficiencies. The feedback mechanism used by

  13. Effect of time course application of nitrogen fertilizer on the N-fertilizer use efficiency, lint properties and seed cotton yield using 15N isotopic dilution technique

    International Nuclear Information System (INIS)

    Janat, M.; Khalifa, Kh

    2001-12-01

    Field experiment was carried out at Der El-Hajar research station during 1998 growing season to evaluate the effect of time course application of nitrogen fertilizer on N-recovery, seed cotton yield and lint properties using 15 N isotope dilution technique. Aleppo 40 variety was tested, irrigation scheduling was set up at 80% of field capacity. Phosphorus fertilizer was applied as TSP 46% before planting at a rate of 180 kg/ha. N fertilizer was applied as urea (46%) in four different applications follows: one application 180 kg N/ha before planting (T1), two split application 180 (90 + 90) kg N/ha (T2), three equally split applications 180 (60 + 60 + 60) kg N/ha (T3), and four equally split applications 180 (45 + 45 + 45 + 45) kg N/ha (T4). Labeled N-fertilizer (5.09 a.e%) was also applied as urea 46% to the subplots (1.0 m 2 each) of the corresponding treatments. All agricultural practices were carried out as the common practices locally employed. Soil samples were analyzed for CEC, ph, EC, OM, total N, available P, and CaCO 3 as outlined by our laboratory standard procedure. Plant samples were collected at physiological maturity and analyzed for 15 N enrichment to assess N recovery. Lint samples were analyzed for lint properties. the results showed no significant effect of the nitrogen fertilizer time course application on the tested parameters such as dry matter production, seed cotton yield, N uptake and lint properties. on the other hand the T2, T3 and T4 treatments where shown to have a positive significant response toward time course application relative to T1 treatment. (authors)

  14. Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation.

    Science.gov (United States)

    Suja, E; Nancharaiah, Y V; Venugopalan, V P

    2014-11-15

    Microbial granules cultivated in an aerobic bubble column sequencing batch reactor were used for reduction of Pd(II) and formation of biomass associated Pd(0) nanoparticles (Bio-Pd) for reductive transformation of organic and inorganic contaminants. Addition of Pd(II) to microbial granules incubated under fermentative conditions resulted in rapid formation of Bio-Pd. The reduction of soluble Pd(II) to biomass associated Pd(0) was predominantly mediated by H2 produced through fermentation. X-ray diffraction and scanning electron microscope analysis revealed that the produced Pd nanoparticles were associated with the microbial granules. The catalytic activity of Bio-Pd was determined using p-nitrophenol and Cr(VI) as model compounds. Reductive transformation of p-nitrophenol by Bio-Pd was ∼20 times higher in comparison to microbial granules without Pd. Complete reduction of up to 0.25 mM of Cr(VI) by Bio-Pd was achieved in 24 h. Bio-Pd synthesis using self-immobilized microbial granules is advantageous and obviates the need for nanoparticle encapsulation or use of barrier membranes for retaining Bio-Pd in practical applications. In short, microbial granules offer a dual purpose system for Bio-Pd production and retention, wherein in situ generated H2 serves as electron donor powering biotransformations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. THE CONTENT OF POLYPHENOLS IN FRUIT OF HIGHBUSH BLUEBERRY (VACCINIUM CORYMBOSUM L. RELATING TO DIFFERENT FERTILIZER APPLICATION

    Directory of Open Access Journals (Sweden)

    Michal Medvecký

    2015-02-01

    Full Text Available Six varieties of high blueberries (Vaccinium corymbosum L. grown on a plantation of research station in Krivá, that is located in the northern part of Slovakia, was examined to determine the content of polyphenols in the fruit depending on the three variants of fertilization. The first variant was realized with the application of organic fertilization, second one with mineral fertilizers and third variant was left without fertilization. The content of total polyphenols (TP was determined spectrophotometrically using Folin-Ciocalteau reagent. The total polyphenol content ranged from 2522.90 mg.kg-1 to 4960.20 mg.kg-1 in the variant with organic fertilization. In the variant with mineral fertilization the total polyphenol content ranged from 2278.25 mg.kg-1 to 3350.23 mg.kg-1. In the variant without fertilization was concentration of total polyphenols from 2503.63 mg.kg-1 to 3790.48 mg.kg-1. Statistical evaluation of the results confirmed a very weak correlation between polyphenols and one variety of different fertilization on the level of significance (p <0.05. Statistically significant effect on the level of significance (p <0.05 in Tukey's test was confirmed at the Patriot variety of organic and mineral fertilization and the mineral fertilization and control variant.

  16. The Rengen Grassland experiment: bryophytes biomass and element concentrations after 65 years of fertilizer application.

    Science.gov (United States)

    Hejcman, Michal; Száková, Jirina; Schellberg, Jürgen; Srek, Petr; Tlustos, Pavel; Balík, Jirí

    2010-07-01

    The Rengen Grassland Experiment in Germany, established in 1941, consists of the following fertilizer treatments applied under a two cut management: control, Ca, CaN, CaNP, CaNP-KCl, and CaNP-K(2)SO(4). The aim of this study was (1) to identify effects of fertilizer application on biomass and species composition of bryophytes and (2) to investigate the impact of fertilizer application on macro- (N, P, K, Ca, Mg), micro- (Cu, Fe, Mn, Zn), and toxic (As, Cd, Cr, Pb, Ni) element concentrations in bryophyte biomass. In June 2006, Rhytidiadelphus squarrosus was the only bryophyte species recorded in the control. In treatment Ca, R. squarrosus was the dominant bryophyte species whereas Brachythecium rutabulum occurred sporadically only in a single plot of that treatment. The latter was the only bryophyte species collected in CaN, CaNP, CaNP-KCl, and CaNP-K(2)SO(4) treatments. Dry matter accumulation of bryophytes was highest in the control (180 g m(-2)) followed by Ca (46 g m(-2)), CaNP (25 g m(-2)), CaNP-KCl (15 g m(-2)), CaNP-K(2)SO(4) (9 g m(-2)), and CaN (2 g m(-2)) treatments. A negative correlation between biomass production of bryophytes and dry matter production of vascular plants was revealed up to a threshold value of 400 g m(-2). Above this limit, biomass production of bryophytes remained obviously unaffected by further increase in biomass production of vascular plants. A significant effect of treatment on As, Cd, Cr, Fe, Mn, Ni, Pb, P, Ca, Mg, K, and N concentrations was revealed. Concentrations of these elements were a function of amount of elements supplied with fertilizers. Bryophytes seem to be promising bio-indicators not only for airborne deposition of toxic element but also for fertilizer introduced as well.

  17. [Effect of long-term application of NPK fertilizer on maize yield and yellow soil nutrients sustainability in Guizhou, China].

    Science.gov (United States)

    Liu, Yan Ling; Li, Yu; Zhang, Ya Rong; Huang, Xing Cheng; Zhang, Wen An; Jiang, Tai Ming

    2017-11-01

    A long-term fertilization field experiment was conducted to investigate the effect of nitrogen (N), phosphorus (P), and potassium (K) fertilizer on maize relative yield, yield-increasing effect and the changes of nutrients in yellow soil in Guizhou Province. Five fertilizer combinations were evaluated, including balanced fertilization (NPK) and nutrient deficiency treatments (N, NK, NP, and PK). The maize relative yield, contribution efficiency of N, P, K fertilizer application, sustainability index of soil N, P, K nutrients, and other indicators were measured. The results revealed that the balanced fertilization (NPK) significantly increased maize yield, and the average yield under each treatment ranked as: NPK>NP>NK>PK>CK. The contribution efficiency and agronomic efficiency of N, P, K fertilizer application was N>P>K. The fertilization dependence was ranked as: combined application of N, P and K>N>P>K. But in the lack of P treatment (NK), the maize relative yield significantly decreased at a speed of 1.4% per year, with the contribution efficiency and fertilization dependence of applied P significantly increasing at a speed of 2.3% per year and 1.4% per year, respectively. Over time, the effect of P fertilizer on maize yield gradually became equal to that of N fertilizer. The pH and soil organic matter content were the lowest in the P-lack treatment (NK), while they were higher in the N-lack treatment (PK). The application of chemical P significantly improved the sustainability index of soil P, but the application of chemical N and K did not significantly change the sustainability index of soil N and K nutrients compared to the N- and K-lack treatments, respectively. In summary, the use of balanced fertilizer application is critical for achieving high maize yield in typical yellow soil regions in Guizhou Province. P and N fertilizers are equally important for improving maize yield, and long-term application of unbalanced chemical fertilizer, especially the lack

  18. Organic and Inorganic Fertilizers Application on NPK Uptake and Production of Sweet Corn in Inceptisol Soil of Lowland Swamp Area

    Directory of Open Access Journals (Sweden)

    Marlina Neni

    2017-01-01

    Full Text Available This study objective was to determine the dose of organic and inorganic fertilizers which can increase N, P and K nutrients uptake as well as the growth and yield of sweet corn on inceptisol soil of lowland swamp. Inceptisol soil has low soil fertility and relatively low to moderate levels of organic matter content. Application of organic fertilizer on inceptisol soil of lowland swampis expected capable to increase N, P and K nutrients as well as yield of sweet corn. This research was conducted from April to July 2014 at Experimental Farm Area of Pulau Semambu Village, Indralaya Utara Subdistrict, Ogan Ilir District, South Sumatra Province. The method used in this research was randomized block design consisting treatments as follows: 75% inorganic fertilizer + 5 ton.ha−1organic fertilizer, 50% inorganic fertilizer + 5 ton.ha−1organic fertilizer, 25% inorganic fertilizer + 5 ton.ha−1 organic fertilizer, 0% inorganic fertilizer + 5 ton.ha−1organic fertilizer with six replications. The recommended dose of inorganic fertilizerswas 200 kg.ha−1 urea, 100 kg.ha−1 SP-36 and 100 kg. ha−1 KCl. The results showed that treatment of 75% of inorganic fertilizer + 5 ton.ha−1organic fertilizer had produced N, P and K nutrients uptake with magnitude of 1.850, 0.418 and 2.374 g.plant−1 respectively as well as good growth and yield of sweet corn with magnitude of 356.36 g. plant−1or 15.21 ton ha−1.

  19. Effects of Single and Combined Application of Organic and Biological Fertilizers on Quantitative and Qualitative Yield of Anisum (Pimpinella anisum

    Directory of Open Access Journals (Sweden)

    N Kamayestani

    2015-07-01

    Full Text Available In order to study the effects of single and combined applications of biofertilazer and organic fertilizers on quantitative and qualitative characteristics of anisum (Pimpinella anisum, an experiment was conducted based on a Randomized Complete Block Design with three replications and fifteen treatments at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2011 year. Treatments were: (1 mycorrhiza (Glomus intraradices, (2 mycorrhiza + cow manure, (3 mycorrhiza + vermicompost, (4 mycorrhiza+ compost, (5 mycorrhiza + chemical fertilizer, (6 biosulfur (Thiobacillus sp. + Bentonite, (7 biosulfur + chemical fertilizer, (8 biosulfur + cow manure, (9 biosulfur + vermicompost, (10 biosulfur+compost,11 (cow manure, (12 vermicompost, (13 chemical fertilizer (NPK, (14compost and (15 control. The results showed that application of fertilizer treatments had significant effect on most characteristics of anisum. The highest number of seed per umbelet (7.24, economic yield (1263.4kg/ha were obtained fram biosulfur treatment. The highest dry matter yield (4504.1 kg/ha resulted from combined application of biosulfur + chemical fertilizer and the highest harvest index (25.97% observed in biosulfur+cow manure. The combined application of mycorrhiza affected some qualification traits, as the highest number of umbel per plant (65.7, 1000 seed-weight (3.24 g and essential oil percentage (5.3% resulted from combined application of mycorrhiza+chemical fertilizer. In general, it can be concluded that application of organic and biological fertilizer particularly mycorrhiza and biosulfur had a significant effect on improving of quantitative and qualitative characteristics of anisum. Furthermore, the combined application of organic and biological fertilizer had higher positive effects than their single application.

  20. Factors affecting 137Cs bio- availability under the application of different fertilizing systems

    Science.gov (United States)

    Fedorkova, M. V.; Belova, N. I.

    2012-04-01

    Although it has been 25 years since the Chernobyl accident, it was generally found that radiocaesium remained bio-availability in some regions. Plant uptake of 137Cs is depended from quantity of exchangeable radionuclide and strongly influenced by soil properties. The addition of fertilizers to soil induces chemical and biological changes that influence the distribution of free ions the different phases (soil and soil solution). In this study we try to estimate influence of different soil conditions affecting the 137Cs bio-availability under the application of manure and inorganic fertilizers. Our research carried out in 2001-2008 years on contaminated after Chernobyl accident sod-podzolic soil during of prolonged field experiment. The experimental site was located in south-west of Bryansk region, Russia. Contamination density by 137Cs in the sampling point was equal to 475±30 kBq/m2. The sequence of crops in rotation was: 1) potato; 2) oats 3) lupine 4) winter rye. Three fertilizing systems were compared: organic - 80 tons per hectare of cow manure; inorganic fertilizing system - different rates of NPK (low, temperate and high) and mixed - 40 tons per hectare of cow manure + NPK. Main soil properties and chemical form of 137Cs and K (potassium) were detected. Radiocaesium activity was determined in soil and plant samples by gamma spectrometry, using a high purity Ge detectors. Overall efficiency was known to an accuracy of about 10-12%. Obtained results shows, that various fertilizing systems influence soil properties, chemical forms of 137Cs and K in soil and radionuclide soil-to-plant transfer in different ways. The highest reduction of exchangeable 137Cs in soil was found in case with application of organic fertilizers and also - temperate NPK rates. Part of exchangeable 137Cs is equal 6.8% (from total activity) in case of manure, 7.8% in case of inorganic fertilizers with control value - 10.2%. Caesium mobility in soil is affected by such soil properties as

  1. USA Nutrient managment forecasting via the "Fertilizer Forecaster": linking surface runnof, nutrient application and ecohydrology.

    Science.gov (United States)

    Drohan, Patrick; Buda, Anthony; Kleinman, Peter; Miller, Douglas; Lin, Henry; Beegle, Douglas; Knight, Paul

    2017-04-01

    USA and state nutrient management planning offers strategic guidance that strives to educate farmers and those involved in nutrient management to make wise management decisions. A goal of such programs is to manage hotspots of water quality degradation that threaten human and ecosystem health, water and food security. The guidance provided by nutrient management plans does not provide the day-to-day support necessary to make operational decisions, particularly when and where to apply nutrients over the short term. These short-term decisions on when and where to apply nutrients often make the difference between whether the nutrients impact water quality or are efficiently utilized by crops. Infiltrating rainfall events occurring shortly after broadcast nutrient applications are beneficial, given they will wash soluble nutrients into the soil where they are used by crops. Rainfall events that generate runoff shortly after nutrients are broadcast may wash off applied nutrients, and produce substantial nutrient losses from that site. We are developing a model and data based support tool for nutrient management, the Fertilizer Forecaster, which identifies the relative probability of runoff or infiltrating events in Pennsylvania (PA) landscapes in order to improve water quality. This tool will support field specific decisions by farmers and land managers on when and where to apply fertilizers and manures over 24, 48 and 72 hour periods. Our objectives are to: (1) monitor agricultural hillslopes in watersheds representing four of the five Physiographic Provinces of the Chesapeake Bay basin; (2) validate a high resolution mapping model that identifies soils prone to runoff; (3) develop an empirically based approach to relate state-of-the-art weather forecast variables to site-specific rainfall infiltration or runoff occurrence; (4) test the empirical forecasting model against alternative approaches to forecasting runoff occurrence; and (5) recruit farmers from the four

  2. Granular flows in constrained geometries

    Science.gov (United States)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  3. Traffic and Granular Flow '11

    CERN Document Server

    Buslaev, Alexander; Bugaev, Alexander; Yashina, Marina; Schadschneider, Andreas; Schreckenberg, Michael; TGF11

    2013-01-01

    This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike. It addresses new developments at the interface between physics, engineering and computational science. Complex systems, where many simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena.   The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic, granular matter, biological transport, transport networks, data acquisition, data analysis and technological applications. Different perspectives, i.e. modeling, simulations, experiments and phenomenological observations, are considered.

  4. Effects of re-application of nitrogen fertilizer on forest soil-water chemistry, with special reference to cadmium

    International Nuclear Information System (INIS)

    Hoegbom, Lars; Nohrstedt, Hans-Oerjan

    2000-09-01

    A greatly increased concentration of cadmium was found in soil water following the application of nitrogen fertilizer. Our study was conducted at an experimental site in the western part of central Sweden. Prior to this, the area had been used to study the effects of the repeated application of fertilizer, under different regimes, on forest production. In this experiment, we examined the residual effects of previous nitrogen fertilizer application regimes on soil-water chemistry, following a final, additional fertilizer application. Soil water was sampled using suction lysimeters installed at a depth of 50 cm. However, due to the failure of the lysimeters at two of the study plots, the differences between fertilizer regimes could not be evaluated. Instead, we focused on changes in the solubility of cadmium and aluminium caused by soil-water acidification due to the re-application of nitrogen fertilizer. Every fourth or eighth year, between 1981 and 1997, the study plots received 150 kg N ha -1 , in the form of ammonium nitrate (AN) and calcium ammonium nitrate (CAN). The effects of the final fertilizer application (CAN) were studied. Application of nitrogen fertilizer resulted in a rapid increase in NO 3 - concentration in soil-water, and a decrease in pH. The increased soil-water acidity resulted in some metals becoming more soluble and occurring in higher concentrations within the soil water. The increase in concentration of some toxic heavy metals, such as cadmium, was of concern. The highest measured cadmium concentration was 2.7 μg l -1 , compared to the government health limit of 5 μg l -1 for drinking water. The cadmium detected must originate from the soil since it was not present in the nitrogen fertilizer. Cadmium is highly toxic to both animals and plants, and knowledge of its occurrence, in relation to various silvicultural operations, is of great importance

  5. Granular-relational data mining how to mine relational data in the paradigm of granular computing ?

    CERN Document Server

    Hońko, Piotr

    2017-01-01

    This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing! This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining r...

  6. Reconstruction of spatially detailed global map of NH4+ and NO3- application in synthetic nitrogen fertilizer

    Science.gov (United States)

    Nishina, Kazuya; Ito, Akihiko; Hanasaki, Naota; Hayashi, Seiji

    2017-02-01

    Currently, available historical global N fertilizer map as an input data to global biogeochemical model is still limited and existing maps were not considered NH4+ and NO3- in the fertilizer application rates. This paper provides a method for constructing a new historical global nitrogen fertilizer application map (0.5° × 0.5° resolution) for the period 1961-2010 based on country-specific information from Food and Agriculture Organization statistics (FAOSTAT) and various global datasets. This new map incorporates the fraction of NH4+ (and NO3-) in N fertilizer inputs by utilizing fertilizer species information in FAOSTAT, in which species can be categorized as NH4+- and/or NO3--forming N fertilizers. During data processing, we applied a statistical data imputation method for the missing data (19 % of national N fertilizer consumption) in FAOSTAT. The multiple imputation method enabled us to fill gaps in the time-series data using plausible values using covariates information (year, population, GDP, and crop area). After the imputation, we downscaled the national consumption data to a gridded cropland map. Also, we applied the multiple imputation method to the available chemical fertilizer species consumption, allowing for the estimation of the NH4+ / NO3- ratio in national fertilizer consumption. In this study, the synthetic N fertilizer inputs in 2000 showed a general consistency with the existing N fertilizer map (Potter et al., 2010) in relation to the ranges of N fertilizer inputs. Globally, the estimated N fertilizer inputs based on the sum of filled data increased from 15 to 110 Tg-N during 1961-2010. On the other hand, the global NO3- input started to decline after the late 1980s and the fraction of NO3- in global N fertilizer decreased consistently from 35 to 13 % over a 50-year period. NH4+-forming fertilizers are dominant in most countries; however, the NH4+ / NO3- ratio in N fertilizer inputs shows clear differences temporally and geographically. This

  7. Evaluation of bio-fertilizer application to ameliorate the environment and crop production

    International Nuclear Information System (INIS)

    Nasir, A.; Khalid, M.U.; Anwar, S.; Arslan, C.

    2012-01-01

    An experiment was conducted during 2011-2012 to evaluate the effect of mechanically dried bio-slurry on cabbage growth, productivity, and soil health in terms of nutrients availability at field conditions. To achieve these objectives, a Golden Acre cabbage field was selected at University of Agriculture Faisalabad. The soil type was sandy loam and canal water was used for irrigation. Randomized complete block design was used in experiment with four treatments replicated four times. The bio-slurry was taken from Al-Hamd Exports at Sutyana road, Faisalabad. During the growing period of cabbage, data regarding bio metric features of cabbage crop was taken. The results showed 20-30% increase in plants density, plants height and root depth, and 10% reduction in unfold leaves per plant in bio-slurry treated plots. It was followed by the treatment in which bio-slurry was applied in combination with chemical fertilizers. The treatment with 100% chemical fertilizers showed least significant effect in improving these characteristics of the crop. The fertilization effect of bio-slurry was evaluated by measuring residual amount of NPK and organic matter (OM) in soil after harvesting of the crop. The bio-slurry treated plots showed better results as it reside 15% more amount of OM and NPK in the soil in relation with chemical fertilizer treated plots. A reduction of about 15% in EC of soil was also recorded in the plots where bio-slurry was applied. This showed that bio-slurry application on saline soil can reduce the salinity of soil. The cabbage yield was measured from each plot. It showed minimum yield 45 t/ha and maximum 79.25 t/ha from control and bio-slurry treated plots respectively. It was followed by chemical fertilizer treated plots as 68 t/ha. The results revealed that bio-slurry mobilize the nutrients in soil better than chemical fertilizers. Bio-slurry can be affectively used in contrast with chemical fertilizers and can be proved as an efficient soil conditioner

  8. Effects of liming and nitrogen fertilizer application on soil acidity and gaseous nitrogen oxide emissions in grassland systems

    NARCIS (Netherlands)

    Oenema, O.; Sapek, A.

    2000-01-01

    This book contains 10 articles on the EU research project COGANOG (Controlling Gaseous Nitrogen Oxide Emissions from Grassland Farming Systems in Europe). The papers present the results of studies on the effects of liming and N fertilizer application

  9. EnviroAtlas - Inorganic phosphorus fertilizer application for 2012 by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas national map displays the application rate of inorganic phosphorus (P) fertilizer on agricultural land in the conterminous United States (excluding...

  10. EnviroAtlas - Synthetic N fertilizer application to agricultural lands by 12-digit HUC in the Conterminous United States, 2006

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains data on the mean synthetic nitrogen (N) fertilizer application to cultivated crop and hay/pasture lands per 12-digit Hydrologic...

  11. Effect of Arbuscular Mycorrhizal Fungi and Organic Fertilizers Application on Yield Components of Two Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    A. Gholamalizadeh Ahangar

    2014-12-01

    Full Text Available This investigation was conducted in order to evaluate the direct effects of organic and bio - fertilizers on yield components of two native wheat cultivars, Bolani and cross - Bolani. The experiment conducted as a factorial in a completely randomized design with three replications. Treatment includes fertilizer factor: vermicompost (F1, vermicompost + compost (F2, vermicompost + mycorrhiza (F3, compost + vermicompost + mycorrhiza (F4, compost (F5, mycorrhiza + compost (F6, mycorrhiza (F7 and control (no fertilizer application F8 and cultivar factor includes two cultivar Bolani (C1 and cross - Bolani (C2. The results showed that the interaction effect of combined treatments (F7C2 of high yield (1.13 g.pot-1 obtained. The treatment combination (F7C2 of (0.355 was highest harvest index. The high correlation between weight per plant with plant height, spike length, grain yield and harvest index were observed. Generally the combined application of vermicompost and mycorrhiza cultivar cross - Bolani is more suitable for grain production.

  12. Advanced Granular System Modeling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spaceports of the future will utilize new granular materials in unique applications including insulation for cryogenic tanks and Lunar regolith processing for usable...

  13. [Nutrient use efficiency and yield-increasing effect of single basal application of rice specific controlled release fertilizer].

    Science.gov (United States)

    Chen, Jiansheng; Xu, Peizhi; Tang, Shuanhu; Zhang, Fabao; Xie, Chunsheng

    2005-10-01

    A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization.

  14. Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates.

    Science.gov (United States)

    Zhang, Zhiyong; Zhang, Xiaoke; Mahamood, Md; Zhang, Shuiqing; Huang, Shaomin; Liang, Wenju

    2016-08-09

    A long-term fertilization experiment was conducted to examine the effects of different fertilization practices on nematode community composition within aggregates in a wheat-maize rotation system. The study was a randomized complete block design with three replicates. The experiment involved the following four treatments: no fertilizer, inorganic N, P and K fertilizer (NPK), NPK plus manure (NPKM) and NPK plus maize straw (NPKS). Soil samples were taken at 0-20 cm depth during the wheat harvest stage. Based on our results, NPKS contributed to soil aggregation and moisture retention, with a positive effect on soil total nitrogen accumulation, particularly within small macroaggregates (0.25-1 mm) and microaggregates (fertilizer application effectively improved soil physicochemical properties and were also beneficial for nematode survival within small aggregate size fractions.

  15. Application of AmBe source neutron irradiator for determination of inorganic elements in commercial fertilizers

    International Nuclear Information System (INIS)

    Madi Filho, Tufic; Armelim, Maria Jose Aguirre; Fulas, Paulo Marcelo Marangon; Trevizam, Anderson Ricardo; Figueira, Rubens Cesar Lopes

    2005-01-01

    The rational use of fertilizers , for the soil fertility correction, contributes to the increase of agricultural production, using the same areas previously available. The quality of products could ne improved with reduced costs. Therefore, knowledge of the chemical characteristics of the correctives used is required to streamline the application and avoid excesses or deficiencies. The studied characteristics are generally limited to the essential nutrients for the nutrition of plants and animals, e.g.: Mn, Zn, P, K, Cu and those known toxic, such as: As, Cd, Hg and Pb. Neutron activation analysis (NAA) is a highly sensitive non destructive technique, for the determination of the elemental composition in samples. It has been particularly useful in the simultaneous determination of inorganic elements in complex samples of several kinds. Several analysis methods for activation are used, such as: comparative and absolute. Commercial fertilizers were analyzed applying the absolute and comparative methods. Using the absolute method, samples were submitted to neutron flux generated by an irradiator with two Am Be sources. The obtained results were compared with those obtained by the comparative method using neutrons generated in the IEA-R1 Reactor. (author)

  16. Application of nuclear technique to assess the optimization and benefits from bio and organic fertilization of some vegetables

    International Nuclear Information System (INIS)

    EL Sayed, A.F.A.A.

    2012-01-01

    Two field experiments were, conducted in the Plant Nutrition and Fertilization Unit, Soils and Water Department Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt, assessing application of N in totally organic or totally mineral or different mixtures with the rat of N (being fixed) with or without bio fertilizers carried out following design factorial complete block design with three replicates .In the first one, pea was planted and in the second cucumber was planted in the same plots. This study was planned to Determine the contribution of mineral, organic and bio fertilizers in supplying plant with nitrogen using nuclear technology 15 N and assess the optimization and benefits from bio and organic fertilization of some vegetables .Fertilization treatments indicated that the combination of 50% mineral fertilizer + 50% organic compost was superior over all other treatments. It means that half of the recommended dose of mineral fertilizer is enough to meet the requirement of pea and cucumber crops when supplemented with organic compost. This combination may have an environmental impact since it would reduce the risks of chemical fertilizers.

  17. Effect of time and doses of potassium application on uptake of fertilizer phosphorus by wheat in acid soils of Palampur

    International Nuclear Information System (INIS)

    Deb, D.L.; Mev Singh; Joshi, O.P.

    1974-01-01

    Under greenhouse conditions, application of potassium at tillering stage reduced K uptake, P uptake and fertilizer P uptake in grains, as compared to application at sowing in acid soils of Palampur; however, application at this stage increased the percent P dff in wheat grains. P was applied as 32 P-superphosphate. (author)

  18. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    Science.gov (United States)

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  19. Application of bokashi and sunn hemp (Crotalaria juncea L. to improve inorganic fertilizer efficiency on maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    A.I. Yuliana

    2015-10-01

    Full Text Available A field experiment was conducted lo learn about the effect of Bokashi and Sunn hemp (Crotalaria juncea L. on maize production and inorganic fertilizer use efficiency on maize. The experiment was conducted in Jatikerto, Malang; at the altitude of 303 m above sea level, in Alfisol soil type, the average daily temperature ranges 21-33oC, from June to October 2013. The experiment was conducted as factorial, designed in a randomized block design (RBD. The first factor was dose of inorganic fertilizer (100% ; 75% and 50% of recommendation dose. The second factor was the organic fertilizer (Without organic fertilizer20 t Bokashi/ ha, 20 t Sunn hemp/ha, 10 t Bokashi/ha + 10 t Sunn hemp/ha. The results showed that application of 20 t Bokashi/ha, 20 t Sunn hemp/ha, and combination of 10 t Bokashi/ha + 10 t Sunn hemp/ha, along with the application of inorganic fertilizer by dose of 100% increased the yields of maize for about 41.8%; 47.6% and 54.7% (10.73 t/ha; 11.17 t/ha, and 11.71 t/ha, respectively. The yield and nutrient use efficiency in the treatment dose of 100% inorganic fertilizer did not have any significant difference from the application of 20 t Bokashi /ha, 20 t Sunn hemp/ha, and 10 t Bokashi/ha + 10 t Sunn hemp/ha along with doses of inorganic fertilization 75% and 50%. Therefore, the organic fertilizer of 20 t Bokashi/ ha, 20 t Sunn hemp/ha, and combination of 10 t Bokashi/ha + 10 t Sunn hemp/ha could reduce the need of inorganic fertilizer for about 50%.

  20. Evaluation of the Effects of Various Fertilizers (N, P, K Application on Morphological and Growth Characteristics of Salvia leriifolia Benth

    Directory of Open Access Journals (Sweden)

    Masoud Amini

    2017-09-01

    . Moreover, application of 200 kg.ha-1 of net nitrogen led to highest cover crown diameter with average of 92.07 cm and led to increase the number of fertile branches with average of 31.75 per plant. The same trend as nitrogen observed for different levels of phosphorous. Application of 100 kg Phosphor resulted highest number of leaves with average of 140 leaf/plant. The highest plant height is also assigned to the group of 100 kg Phosphor fertilizer with average of 41.97 cm. Moreover application of this amount of fertilizer led to highest cover crown diameter (94.06 cm which also resulted in increase of the number of fertile branches (average: 33.21 branches per plant. The results of analysis of variance regarding potassium fertilizer show that its application has significant effect on all the measured parameters at 1% level. Application of 50 kg of potassium fertilizer, in comparison with no application, results in increase of the number of leaves (average: 122 per plant, plant height (average: 37.06 cm, cover crown diameter (average 78.13 cm and the number of fertile branches (average 26.55. The obtained results show that Bajestan ecotype of Nowruzak showed an acceptable adaptability to fertilizer application in Gonabad city which indicated the poorness of the soil. Conclusion As chemical fertilizers are among the main factors of soil fertilization, Nowruzak medicinal plant showed a normal response to highest amount of applied fertilizers, therefore it is justified to apply chemical fertilizers in cultivation of this plant in the field to increase the plant size which is the economically valuable trait

  1. The Effects of Biological Fertilizers, Chemical Fertilizers and Manure Application on Some Qualitative Characteristics of Vicia villosa Roth Forage under Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    R Kamaei

    2017-03-01

    % probability level. Results and Discussion The results showed that in vitro DM digestibility was significantly (P P > 0.5 effect on in vitro organic matter digestibility. The highest and the lowest in vitro OM digestibility values were observed in the Rhizobium + mycorrhiza (77.86% and control (66.48%, respectively. Similarly, the results of previous studies indicated that forage quality significantly improved by inoculation with mycorrhizal fungi fertilizer in comparison with control. There was a significant difference between experimental treatments for percentage of crude protein. All fertilizer treatments increased CP content of forages as compared to that control. The effect of M, M + V and M+NPK treatments on CP was similar and the highest CP was associated to M + These effects of fertilizer treatments may be related to increasing the nitrogen fixation and absorption capacity of plant. Although a negative correlation has been reported between CP and fiber content of forages, the results of our study showed a low non-significant impact of fertilizer treatments on fiber content of forage expressed as NDA and ADF. Moreover, the percentage of Ash for all fertilizer treatments was similar to control, except for Rhizobium + mycorrhiza treatment that showed a higher significant Ash content than control. In this experiment, a significant effect of fertilizer treatments was also observed for dry matter yield of forage. In comparison with control, the combination of mycorrhizal and Rhizobium increased forage dry matter yield by 37.89%. These results are in agreement with. Conclusions The use of biological and organic fertilizers improves availability of nutrients for plant without negative impact on soil and environment. In the present study, we showed an increase in qualitative and quantitative characteristics of Vicia villosa Roth forage by bio-fertilizers application under greenhouse condition. However, a combination of mycorrhiza and Rhizobium had the highest positive impact

  2. The Effect of Zinc Fertilizer Application on Grain Yield of Different Zinc-Efficient Spring and Winter Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    M. Malian

    2014-08-01

    Full Text Available These field trials were carried out to investigate the effect of various zinc (Zn fertilizer application treatments on grain yield of some spring (Isfahan and Neishabour and winter wheat cultivars (Mashhad and Jolge-e-Rokh with different Zn efficiency during 2009-2010 growth seasons. Five Zn fertilizer treatments were applied including: no added Zn (control, soil application of Zn-sulfate, and foliar spray of Zn-sulfate, Omex1, and Omex2. Omex1 and Omex2 contained 4 and 17% Zn, respectively. Foliar spray was performed at the anthesis stage. Both spring and winter wheat genotypes significantly differed in grain yield. The results showed that wheat genotypes largely varied in their grain yield response to different Zn application treatments. Some spring (Sholeh in Isfahan and winter (Sabalan in Jolg-e-Rokh wheat genotypes had greater response to Zn fertilization so that Zn addition increased grain yield of Sholeh by 48% and Sabalan by 17% as compared with no added Zn control. In contrast, Zn addition had no effect on grain yield of some other genotypes. Yield response of wheat genotypes to Zn application treatments significantly varied upon location. According to the results obtained from this study, the efficacy of Zn fertilizer treatments on grain yield of wheat is dependent on the genotype and location. Therefore, this concern should be considered in fertilizer recommendation programs that a specific Zn fertilizer treatment may not be recommended for all wheat cultivars and locations.

  3. Fertilizer nitrogen recovery by onion (Allium cepa) as influenced by N and S application in a sulphur deficient soil

    International Nuclear Information System (INIS)

    Sachdev, M.S.; Sachdev, P.; Mittal, R.B.; Luthra, V.K.

    1991-01-01

    A field experiment was conducted in a sulphur deficient sandy loam soil to evaluate the fertilizer N-utilization by onion (Allium cepa) using 15 N-labelled urea. The fresh bulb yield of onion significantly increased with the application of both nitrogen and sulphur. The recovery of fertilizer N by onion was 23.4 to 34.4 per cent at 60 kg N/ha and between 17.5 and 19.3 per cent at 120 kg/ha level. Application of nitrogen with sulphur at 20 kg S/ha through gypsum resulted in significant increase in per cent utilization of urea nitrogen. Nearly 57 to 68 per cent of the residual fertilizer N could be traced in soil after the harvest of onion crop, whereas, 9 to 14 per cent of the applied fertilizer N could not be accounted for. (author). 8 refs., 3 tabs., 2 figs

  4. Nitrogen fertilizer split-application for corn in no-till succession to black oats

    Directory of Open Access Journals (Sweden)

    Ceretta Carlos Alberto

    2002-01-01

    Full Text Available The studies of fertilization splitting are necessary specially for the grass succession black oat-corn where N immobilization is very common. Four experiments were carried out in commercial farms under no-tillage, in four counties - Itaara, Santo Ângelo, Júlio de Castilhos and Tupanciretã, all of Rio Grande do Sul, Brazil, with the objective of evaluating the splitting of N application in a corn/black oat crop rotation, during the 97/98 and 98/99 cropping seasons. The N was applied at three times -- pre-planted, starter and sidedressed. The pre-planted applied N for corn, corresponding to total or partial rates that would be sidedressed presented similar results in relation to the sidedress application, however, years of above average rainfall presented N deficiency for corn, reducing yield, which indicates that N application as starter or sidedress is recommended.

  5. Precision for Smallholder Farmers: A Small-Scale-Tailored Variable Rate Fertilizer Application Kit

    Directory of Open Access Journals (Sweden)

    Jelle Van Loon

    2018-03-01

    Full Text Available Precision agriculture technology at the hands of smallholder farmers in the developing world is often deemed far-fetched. Low-resource farmers, however, are the most susceptible to negative changes in the environment. Providing these farmers with the right tools to mitigate adversity and to gain greater control of the production process could unlock their potential and support rural communities to meet the increasing global food demand. In this study, a real-time variable rate fertilizer application system was developed and tested as an add-on kit to conventional farm machinery. In the context of low investment costs for smallholder farmers, high user-friendliness and easy installment were the main concerns for the system to be viable. The system used nitrogen (N-sensors to assess the plant nutrient status on the spot and subsequently adjust the amount of fertilizer deposited according to the plant’s needs. Test bench trials showed that the add-on kit performed well with basic operations, but more precision is required. Variability between N-sensors and metering systems, combined with power fluctuations, created inaccuracies in the resulting application rate. Nevertheless, this work is a stepping stone towards catalyzing the elaboration of more cutting-edge precision solutions to support small-scale farmers to become successful, high producing agro-entrepreneurs.

  6. Effects of Pig Manure Organic Fertilizer Application on Available Nutrient Content and Soil Aggregate Distribution in Fluvo-aquic Soil

    Directory of Open Access Journals (Sweden)

    SHI Wen-xuan

    2017-08-01

    Full Text Available This paper focuses on environmental risk caused by livestock manure disorderly discharged from integrated livestock and poultry industry. 2-year pot experiment was carried out to study the effects of pig manure organic fertilizer on fluvo-aquic soil organic carbon, available nutrient content and soil aggregate distribution, which designed in 5 levels of organic fertilizer application(0, 6.7, 13.3, 26.7, 40.0 g·kg-1 soil. The results showed that the organic carbon, alkali-hydrolyzable nitrogen, available P and available K contents in soil were enhanced with organic fertilizer application increasing, and the indicators of soil were increased significantly in second year, such as organic carbon content was 2.7%~54.0% higher than that of the first year, alkali-hydrolyzable nitrogen content was higher 6.7%~34.6%, available P content was higher 36.8%~159.5% and available K content was higher 20.3%~35.7%. There was a significant linear relationship between soil organic carbon content and external organic carbon input. Organic fertilizer application could significantly improve lettuce yield, and it had a significant effect. The soil micro-aggregate contents for 0.053~0.25 mm and 0.5 mm soil macro-aggregates were increased with organic fertilizer application increasing. Organic fertilizer application could promote soil macro-aggregates formation, when the pig manure organic fertilizer applied 40.0 g·kg-1 soil, the contents of >0.25 mm soil aggregates reached maximum, and also the mean weight diameter(MWD and geometric average diameter(GWD of soil aggregates were higher than that of other treatments, the soil agglomeration became more stronger and the soil structure became more stable.

  7. Lowland Rice Yield And Fertilizer Nitrogen Contribution Affected By Zeolite And Sesbania Green Manure Application

    International Nuclear Information System (INIS)

    Haryanto; Idawati and Las, Tamsil

    2000-01-01

    A pot experiment has been conducted in P3TIR greenhouse, pasar jumat, south jakarta to study nitrogen uptake and contribution of fertilizer for lowland rice affected by zeolite and sesbania green manure application. To study the N contribution of fertilizer, 15N isotope was used. The zeorea fertilizer was made from the mixture of zeolite and 15N labelled urea having 4.0% atom. Ten treatments of N fertilization were tried : zeorea I was applied once at transplanting (ZI IX), zeorea I was applied twice I.e at transplanting and at 30 days after transplanting - DAT (ZI 2X), zeorea I was applied at transplanting and at 30 DAT (ZI + ZII), zeorea II was applied once at transplanting (ZII IX), zeorea II was applied twice I.e at transplanting and at 30 DAT (ZII 2X), zeolit was applied twice I.e at transplanting and at 30 DAT (ZO 2X), half rate of urea was applied at transplanting and another half rate at 30 DAT ( U 1/2+1/2), sesbania green manure was applied at 30 DAT and zeorea II applied at transplanting (sesbania + ZII), one tate of urea was applied at transplanting (U IX), and half rate of urea was applied at transplanting and sesbania was applied at 30 DAT (sesbania + U 1/2). Result obtained from this experiment showed that the application of zeorea I at tran planting followed by zeorea II at 30 DAT resulted the highest yield of dry grain even though it contained nitrogen only 60% of the nitrogen content of the recommended rate. The highest nitrogen contribution of zeorea I.e 75.22 mg/pot was obtained by applying zeorea II at transplanting and at 30 DAT. Urea half dose (U 1/2) combined with sesbania green manure could be effectuated if given in zeorea from even more effective than urea full dose given at transplanting time (U IX). Impact of sesbania green manure seemed to be more positive if combined with zeolite

  8. Evaluation of sources, rates and methods of zinc fertilizer applications in flooded rice

    International Nuclear Information System (INIS)

    Sarkar, A.K.; Deb, D.L.

    1981-01-01

    A pot experiment was conducted using 65 Zn as tracer to evaluate the different sources, levels and methods of zinc fertilization in flooded rice. Results indicated that zinc sulphate was either at par or slightly superior to zincated urea from the point of view of yield and total zinc uptake by rice. The Zndff percent was found to be the highest with zincated urea and the lowest was observed with zinc oxide. 5 and 10 kg/ha levels of zinc were statistically at par in this regard. Among the different methods, surface application and thorough mixing with soil were comparable. Root dipping in 1 percent zinc oxide suspension and application of zinc in irrigation water also indicated high zinc absorption by the rice plant. (author)

  9. Impact of Fertilizer N Application on the Grey Water Footprint of Winter Wheat in a NW-European Temperate Climate

    Directory of Open Access Journals (Sweden)

    Holger Brueck

    2016-08-01

    Full Text Available Nutrient management is central in water footprint analyses as it exerts strong control over crop yield and potentially contributes to pollution of freshwater, the so-called grey water footprint. In the frame of grey water footprint accounting, two methods are suggested, the constant leaching fraction approach (10% of applied fertilizer N and the N surplus approach. We compared both approaches and expected that the N surplus approach gives lower estimates of N leaching (and fertilizer-induced freshwater pollution when the N surplus is small and higher N leaching estimates when the N surplus is high. We compared N fertilizer application at which the N balance = 0 with the N application at which profit is highest. We further expect pronounced differences in N surplus between farm sites and years, due to yield and soil fertility differences. N response trials were conducted at several locations over three years in Germany. Fertilizer-induced N surplus was calculated from the difference between applied N fertilizer and grain N removal. N fertilizer application at which N balance = 0 (NBal = 0 was lower than economic optimum N application rates (NEcon. N surplus at NEcon was linearly correlated with the additional N applied. Pooled over years and sites the median N surplus was 39 kg N ha−1. Differences between sites rather than between years dominated variation in fertilizer-induced N surplus. Estimated N leaching at NEcon was on average 9% of applied fertilizer N. The product water footprint was on average 180 m3 per ton of grain, but differences between sites were substantial with values varying between 0 and >400 m3 per ton. Yield and protein contents were lower at NBal = 0 compared to NEcon indicating a trade-off between freshwater protection, yield, wheat grain quality and economic optimum N application. Site-specific fertilizer strategies which consider soil type, crop development, annual field water balance, in-season nutrient dynamics and

  10. The use of labelled nitrogen for studying wheat fertilizer application under rain fed area

    International Nuclear Information System (INIS)

    Thabet, E.M.A.; Zapata, F.; Moutonnel, P.

    1999-01-01

    A Field experiment was conducted in the IAEA agricultural field in Seibersdorf, austria, during 1995 growing season. Wheat grains of Astrodur variety were planted in the field using seed drill at rate of 300 plants/m 2 . The experimental block has a size of 1.25 m.x 7.5 m. randomized complete block design with six replications was used. Each block include two fertilization rates (100 and 50 kg. N/ha.) and three different harvesting samples (67, 100 and 124 DAP). The applications were giver in two split applications. N 1 5 labelled fertilizer (2.59% atom excess) was only used for 100 kg. N/ha. Rainfall was measured along the season and then calculated as amount of cubic meters per hecater in different respective periods. The obtained results indicated that dry matter yield kg. /ha., water use efficiency (WUE), N-utilized % chlorophyll content and yield and yield components of wheat under rain fed area significantly increased for the application of the recommended nitrogen rate (100 kg. N/ha.) at different wheat growth stages as compared to nitrogen rat of 50 kg. N/ ha. It is obvious that the addition of nitrogen have a strong relation with water applied in rain fed area. So that the application of nitrogen showed split more than two times to avoid leaching and to be utilized by wheat under rain fed conditions. Moreover, the nitrogen applied should be not less than the recommended rate which was 100 kg. N/ha. as ammonium sulphate

  11. Effect of Fertilizer Application on Indigenous Medicinal Plant Andrographis paniculata Nees (Sega-gyi)

    Energy Technology Data Exchange (ETDEWEB)

    Win, Ni Ni; Myint, San; Wynn, Nyunt; Sein, Myint

    2011-12-15

    The experiments were carried out to assess the effect of fertilizer application on indigenous medicinal plant Andrographis paniculata Nees (Sega-gyi) on yield components such as plant heigh (cm), fresh weight of whole plant (g), dry weigth of whole plant (g), dry weigth of leave per plant (g), mineral elemental contents of the leaves (N, P, K, Ca and Mg) and medically active compound andrographolide of the leaves from the green-house experiment. Various methods applied in the growth of medicinal plant A. paniculata Nees (Sega-gyi), comprised the dripping (Dropwise) and the spraying methods of the prepared blue green algae (BGA) Spirulina, the composite mixture of prepared BGA+ soil, mineral fertilizer + soil and soil itself as control. In all the fertilizer treatments, the dripping (Dropwise) method using the BGA biofertilizer gave rise to the highest growth of 100 cm when the average fresh weigth of the whole plant was 440g. Andrographolide crystals were isolated, identified and confirmed by chromatographic techniques. A single standard HPLC peak by UV detection (225 nm) indication a retention time of 4.36 min and its melting point (232 C) were found to correspond to the literature values. Analytical results of the leaves of Sega-gyi by the dripping (Dropwise) method indicated the presence of 2.12% andrographolide and also the mineral elements with the composition of N (22.78), P (1.93), K (16.15), Ca (23.70) and Mg (4.85) mg/g. Although the mechanism of micro-algal plant growth regulatory action has not yet been studied, from this research work it was observed that the BGA biofertilizer promotes plant growth, improves the soil physical conditions, and also enhance the yield of medicinally active compound andrographolide.

  12. Effect of Fertilizer Application on Indigenous Medicinal Plant Andrographis paniculata Nees (Sega-gyi)

    International Nuclear Information System (INIS)

    Ni Ni Win; San Myint; Nyunt Wynn; Myint Sein

    2011-12-01

    The experiments were carried out to assess the effect of fertilizer application on indigenous medicinal plant Andrographis paniculata Nees (Sega-gyi) on yield components such as plant heigh (cm), fresh weight of whole plant (g), dry weigth of whole plant (g), dry weigth of leave per plant (g), mineral elemental contents of the leaves (N, P, K, Ca and Mg) and medically active compound andrographolide of the leaves from the green-house experiment. Various methods applied in the growth of medicinal plant A. paniculata Nees (Sega-gyi), comprised the dripping (Dropwise) and the spraying methods of the prepared blue green algae (BGA) Spirulina, the composite mixture of prepared BGA+ soil, mineral fertilizer + soil and soil itself as control. In all the fertilizer treatments, the dripping (Dropwise) method using the BGA biofertilizer gave rise to the highest growth of 100 cm when the average fresh weigth of the whole plant was 440g. Andrographolide crystals were isolated, identified and confirmed by chromatographic techniques. A single standard HPLC peak by UV detection (225 nm) indication a retention time of 4.36 min and its melting point (232 C) were found to correspond to the literature values. Analytical results of the leaves of Sega-gyi by the dripping (Dropwise) method indicated the presence of 2.12% andrographolide and also the mineral elements with the composition of N (22.78), P (1.93), K (16.15), Ca (23.70) and Mg (4.85) mg/g. Although the mechanism of micro-algal plant growth regulatory action has not yet been studied, from this research work it was observed that the BGA biofertilizer promotes plant growth, improves the soil physical conditions, and also enhance the yield of medicinally active compound andrographolide.

  13. Preparation and application of granular ZnO/Al2O3 catalyst for the removal of hazardous trichloroethylene

    International Nuclear Information System (INIS)

    Chen, J.-C.; Tang, C.-T.

    2007-01-01

    Trichloroethylene (TCE) is a volatile and nerve-toxic liquid, which is widely used in many industries as an organic solvent. Without proper treatment, it will be volatilized into the atmosphere easily and hazardous to the human health and the environment. This study tries to prepare granular ZnO/Al 2 O 3 catalyst by a modified oil-drop sol-gel process incorporated the incipient wetness impregnation method and estimates its performance on the catalytic decomposition of TCE. The effects of different preparation and operation conditions are also investigated. Experimental results show that the granular ZnO/Al 2 O 3 catalyst has good catalytic performance on TCE decomposition and the conversion of TCE is 98%. ZnO/Al 2 O 3 (N) catalyst has better performance than ZnO/Al 2 O 3 (O) at high temperature. Five percent of active metal concentration and 550 deg. C calcination temperature are the better and economic preparation conditions, and the optimum operation temperature and space velocity are 450 deg. C and 18,000 h -1 , respectively. The conversions of TCE are similar and all higher than 90% as the oxygen concentration in feed gas is higher than 5%. By Fourier transform infrared spectrography (FT-IR) analyses, the major reaction products in the catalytic decomposition of TCE are HCl and CO 2 . The Brunauer-Emmett-Teller (BET) surface areas of catalysts are significantly decreased as the calcination temperature is higher than 550 deg. C due to the sintering of catalyst materials, as well as the reaction temperature is higher than 150 deg. C due to the accumulations of reaction residues on the surfaces of catalysts. These results are also demonstrated by the results of scanning electron micrography (SEM) and energy disperse spectrography (EDS)

  14. Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils.

    Science.gov (United States)

    Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong

    2015-01-01

    The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment.

  15. Study on the Effect of Combined Application of Manure and Chemical Fertilizers on Some Properties of Thompson Novel Orange Juice

    Directory of Open Access Journals (Sweden)

    S. Shahsavani

    2016-02-01

    Full Text Available Introduction: Citrus are one of the important orchard fruit production that after banana is second in production at the world level and every year, Chemical fertilizers having most important role in increasing crops productions, but in long application of fertilizers cause soil destructions and polluting underground water. Also soils of dry regions are very poor in organic matter level. Nowadays in most countries, climatically condition and poor management cause poor organic matter content of soils. In Iran more than 60 percent of cultivated lands having less than 0.5 up to 1 percent organic matter. This may be due to intensive cultivation and poor managements For this reason if we have combine applications of manure and chemical fertilizers, the results would be much better. The aim of this research was to evaluate suitable ratio of manure and chemical fertilizer in order to reduce the chemical fertilizer use in citrus orchard in north of Iran. Materials and Methods: This experiment was conducted in one of the orchard at Sari district with low organic C. This research carried out on five years old citrus threes. This experiment carried out as factorial experiment on the base of complete randomized block design with 9 treatments and three replications. Treatments included three manure levels (0, 6 and 12 kg per tree and three levels of macro fertilizer including potassium sulphate, ammonium sulphate and super phosphate triple (o, 30 and 60 percent on the bases of soil test. Total treatment were 27 plots, (each plots were includes two threes.all treatments were applied at March. All analysis was done with standard methods. This experiment was done as factorial on the bases of complete randomized block design with 9 treatments and three replications. The treatments were as follows: T1: Zero percent chemical fertilizer and zero kg manure T2: 30 percent chemical fertilizer (potassium sulphate 50 kgha-1, ammonium sulphate 30 kg ha-1 and super

  16. Granular Gases: Probing the Boundaries of Hydrodynamics

    International Nuclear Information System (INIS)

    Goldhirsch, I.

    1999-01-01

    The dissipative nature of the particle interactions in granular systems renders granular gases mesoscopic and bearing some similarities to regular gases in the ''continuum transition regime'' where shear rates and/or thermal gradients are very large). The following properties of granular gases support the above claim: (i). Mean free times are of the same order as macroscopic time scales (inverse shear rates); (ii). Mean free paths can be macroscopic and comparable to the system's dimensions; (iii). Typical flows are supersonic; (iv). Shear rates are typically ''large''; (v). Stress fields are scale (resolution) dependent; (vi). Burnett and super-Burnett corrections to both the constitutive relations and the boundary conditions are of importance; (vii). Single particle distribution functions can be far from Gaussian. It is concluded that while hydrodynamic descriptions of granular gases are relevant, they are probing the boundaries of applicability of hydrodynamics and perhaps slightly beyond

  17. Heavy metals availability and soil fertility after land application of sewage sludge on dystroferric Red Latosol

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos Moreira

    2013-12-01

    Full Text Available Sewage sludge is the solid residue obtained from urban sewage treatment plants. It is possible to use the sludge in a sustainable way as fertilizer and as soil conditioner due to its high levels of organic matter and nutrients. Besides pathogens and volatile organic compounds, the residue may also contain heavy metals which may accumulate and contaminate crops and the food chain. The aim of this study was evaluates the changes in the fertility of dystrophic Red Latosol and in the availability of heavy metals following application of sewage sludge. It was assessed whether organic matter supplied to the soil as large amounts of sewage sludge would decrease availability of heavy metals in the soil due to of insoluble compounds formation. From this, an experiment was carried out in polyethylene pots using lettuce plant for test. Sewage sludge were applied to the soil in concentrations equivalent to 60, 120 and 180 t ha-1, and a control without sludge, in four replicates, in a completely randomized design. The results show that sewage sludge led to an increase of organic matter contents, of the cation exchange capacity (CEC and of nutrients found in the soil. It also improved plant growth up to a concentration of 120 t ha-1. Availability of heavy metals, however, was reduced in sludge concentrations starting with 120 t ha-1.

  18. Absorption and utilization of fertilizer-N and soil-N with mixed application of straw and urea by rice

    International Nuclear Information System (INIS)

    Zhang Xinwei; Liu Feng; Ye Shuya; Zhu Hongbin; Ye Chengxin

    1996-01-01

    The nitrogen absorption of mixed application of straw and urea by rice was studied by using 15 N isotope tracing technique. The results show that the sole application of straw would result in biological immobilization of available soil N. The insufficient N supply was the limiting factor for rice tiller and spikelets development. Mixed use of straw and urea obviously improved nitrogen supply from both fertilizer and soil, which in turn, promoted the yield of growing rice and increased the soil fertility and productivity of later crop

  19. Effect of cow manure and empty fruit bunches application treated with different fertilizers on growth and yield of chili (Capsicum annum)

    Science.gov (United States)

    Ghazali, Mohd Rashdan; Mutalib, Sahilah Abd.; Abdullah, Aminah

    2016-11-01

    Study on the comparison of cow manure (CM) and empty fruit bunches (EFB) compost application as planting medium was conducted using four different treatments of fertilizer (without fertilizer, chemical fertilizer, organic fertilizer, and both fertilizer) on growth and yield of chili (Capsicum annum). The experiment started on August until December 2014 which consisted of eight treatments and were laid in a completely randomized block design (CRBD) with three replications. Variety chili that was used was Cilibangi 3. The seed was planted inside the tray for one week and transferred into the polybag containing growth media consisted of soil, compost (CM or EFB compost) and sand with ratio 3:2:1. Treatments without fertilizer were acted as a control. Throughout the study, plant growth performance and yield were recorded. The highest height of the plants for CM compost was 100.8 cm using chemical fertilizer and have significant different between the groups. For EFB compost was 92.7 cm using also chemical fertilizer but no significant different between the groups. The highest fruits weight per plant for CM compost was 485.67 g treated with both fertilizers and for EFB compost was 420.17 g treated with chemical fertilizer. Analysis of variance (ANOVA) table stated that fruits weight per plant has significant different for both planting medium with the fertilizer treatment. For the highest total fruits per plant, CM compost recorded about average 55 fruits per plant using both fertilizers and EFB compost recorded around 45 fruit per plant using chemical fertilizer. There was significantly different for total fruits per plant for both planting medium with the fertilizer treatment according to the ANOVA table. For CM, the ripening time was around 102-112 days and for EFB compost was around 96-110 days. Thus, application of CM compost treated with both chemical and organic fertilizers demonstrated better growth and fruit yield. While EFB compost was better growth and fruit

  20. Effects of simulated root herbivory and fertilizer application on growth and biomass allocation in the clonal perennialSolidago canadensis.

    Science.gov (United States)

    Schmid, B; Miao, S L; Bazzaz, F A

    1990-08-01

    Compensatory growth in response to simulated belowground herbivory was studied in the old-field clonal perennialSolidago canadensis. We grew rootpruned plants and plants with intact root systems in soil with or without fertilizer. For individual current shoots (aerial shoot with rhizome and roots) and for whole clones the following predictions were tested: a) root removal is compensated by increased root growth, b) fertilizer application leads to increased allocation to aboveground plant organs and increased leaf turnover, c) effects of fertilizer application are reduced in rootpruned plants. When most roots (90%) were removed current shoots quickly restored equilibrium between above-and belowground parts by compensatory belowground growth whereas the whole clone responded with reduced aboveground growth. This suggests that parts of a clone which are shared by actively growing shoots act as a buffer that can be used as source of material for compensatory growth in response to herbivory. Current shoots increased aboveground mass and whole clones reduced belowground mass in response to fertilizer application, both leading to increased allocation to aboverground parts. Also with fertilizer application both root-pruned and not root-pruned plants increased leaf and shoot turnover. Unfertilized plants, whether rootpruned or not, showed practically no aboveground growth and very little leaf and shoot turnover. Effects of root removal were as severe or more severe under conditions of high as under conditions of low nutrients, suggesting that negative effects of belowground herbivory are not ameliorated by abundant nutrients. Root removal may negate some effects of fertilizer application on the growth of current shoots and whole clones.

  1. Effects of sewage sludge stabilization on fertilizer value and greenhouse gas emissions after soil application

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Nielsen, Martin P.; Scheutz, Charlotte

    2015-01-01

    was therefore to investigate the effect of sewage sludge stabilization techniques on the C and N mineralization and gaseous emissions from soil. A soil incubation was conducted to determine the rate of C and N mineralization and N2O and CH4 emissions of sewage sludge stabilized using different techniques....... Unstabilized sludge released up to 90% of their C content as CO2, part of which could be caused by release of CO2 from carbonates. Compared with this, sludge stabilization including anaerobic digestion and drying resulted in a reduction of the C mineralization rate of about 40%. Liming reduced C mineralization...... the value of the sludge as a fertilizer. Emissions of CH4 were also reduced through sludge stabilization and mainly occurred after application of easily degradable sludge types, which is likely to have enhanced the creation of anaerobic microsites. The stabilization processes also decreased emissions of N2O...

  2. Impact of humic acid and chemical fertilizer application on growth and grain yield of rainfed wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Khan, R.U.; Khan, M.S.

    2010-01-01

    The high cost of inorganic fertilizer, use of natural fertilizer resources for increasing crop production on sustainable basis has become imperative. Two field experiments were conducted to study the potential of humic acid (HA) as a low-cost natural fertilizer and to determine its effect on the yield of rainfed wheat crop (Triticum aestivum L. cv. Naseer) at the research farm of Arid Zone Research Institute, Dera Ismail Khan during two successive winter seasons, 2007-08 and 2008-09. The treatments consisted of HA alone (3 kg ha/sup -1/ or 1.5 kg ha/sup -1/) and in combination with full (60:40 kg ha/sup -1/) and half (30:20 kg ha/sup -1/) the recommended rates of NP fertilizers. Results showed that in the first growing season (2007-08), the combination of 3 kg ha/sup -1/ HA with half (30:20 kg ha-1) rate of NP produced the highest grain yield (1314 kg ha/sup -1/) and increased the yield by 46.9% over the control. In the second growing season (2008-09), application of 3 kg ha/sup -1/ HA alone produced significantly (P<0.05) higher grain yield (2999.9 kg ha/sup -1/) and increased the yield by 24% over the control and saved 100% cost of the chemical fertilizer. Results suggested that HA applied alone at 3 kg ha/sup -1/ or in combination with half (30:20 kg ha/sup -1/) rate of NP fertilizers appeared to be the most economical rate to obtain the maximum yield of wheat under the rainfed conditions of Dera Ismail Khan. HA has great potential as a low cost natural fertilizer to improve soil fertility on sustainable basis. (author)

  3. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression

    Science.gov (United States)

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-06-01

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation.

  4. HYPERELASTIC MODELS FOR GRANULAR MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse, Paul W; Corradini, Michael L

    2009-01-29

    A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent “granular elasticity” theory proposes a non-linear elastic model based on “Hertz contacts” between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of

  5. Granular gas dynamics

    CERN Document Server

    Brilliantov, Nikolai

    2003-01-01

    While there is not yet any general theory for granular materials, significant progress has been achieved for dilute systems, also called granular gases. The contributions in this book address both the kinetic approach one using the Boltzmann equation for dissipative gases as well as the less established hydrodynamic description. The last part of the book is devoted to driven granular gases and their analogy with molecular fluids. Care has been taken so as to present the material in a pedagogical and self-contained way and this volume will thus be particularly useful to nonspecialists and newcomers to the field.

  6. Distribution of uranium in soil components of agricultural fields after long-term application of phosphate fertilizers

    International Nuclear Information System (INIS)

    Yamaguchi, N.; Kawasaki, A.; Iiyama, I.

    2009-01-01

    Long-term application of phosphate fertilizers causes accumulation of U in the surface soil of agricultural fields. We investigated the soil constituents that contribute to the accumulation of U by using chemical extraction methods. Surface soil samples were obtained from upland fields, pastures, and paddy fields cultivated without any phosphate fertilizer (control site), with NPK fertilizer (NPK site), and with both NPK fertilizer and compost (NPK + compost site) for more than 20 years. In addition to the total U (U t ) concentration in soil, the concentrations of pyrophosphate- and acid oxalate-extractable U were determined as a measure of U associated with soil organic matter and poorly crystalline Fe/Al minerals in soil, respectively. The total, pyrophosphate-extractable, and acid oxalate-extractable U concentrations were higher in the soil obtained from the NPK and NPK + compost sites than in that obtained from the control site. The difference in the U concentrations between the NPK or NPK + compost site and the control site corresponded with the increased U concentration observed after the application of the phosphate fertilizer or both the fertilizer and compost. In the upland field and pasture soil, the increase in pyrophosphate-extractable U was 83-94% of that in U t . On the other hand, the increase in acid oxalate-extractable U was 44-58% of that in U t in the upland field and pasture soil, but it was almost equivalent to the increase in U t in the paddy soil with NPK. In conclusion, most of the phosphate fertilizer-derived U was either incorporated into the soil organic matter or poorly crystalline Fe/Al minerals in the surface soil of agricultural fields. Thus, soil organic matter is an important pool of U in upland field and pasture soil, whereas poorly crystalline Fe/Al minerals are important pools of U in paddy soil experiencing alternating changes in redox conditions

  7. Phosphorus loss to runoff water twenty-four hours after application of liquid swine manure or fertilizer.

    Science.gov (United States)

    Tabbara, Hadi

    2003-01-01

    Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.

  8. The Effects of Simultaneous Application of Different Organic and Biological Fertilizers on Quantitative and Qualitative Characteristics of Cucurbita pepo L.

    Directory of Open Access Journals (Sweden)

    M Jahan

    2013-08-01

    Full Text Available Understanding of relations and interactions between ecosystem’s components and plants is one of the main conditions for sustainable production of medicinal plants. To study the effect of simultaneous application of organic and biological fertilizers on yield and yield components of zucchini squash, a split plot arrangement of factors based on randomized complete block design with tree replications was used during 2009-10 growing season. The mainplot factor was the type of organic fertilizers, including 1-cow manure, 2-sheep manure, 3-chicken manure, 4-vermicompost and 5-control. The subplot factor was the biofertilizer (namely Nitragin, containing Azotobacter sp. , Azospirillum sp. and Pseudomonas sp., utilization. The results showed the positive but non significant effect of organic and biological fertilizers on yield and yield components of zucchini squash. Amongst the organic fertilizers, cow and chicken manure, have superiority compared the others. The highest seed oil and protein percent resulted in chicken manure, although there was not significant different between treatments due to seed oil percent. The positive effect of organic and biological fertilizers on seed yield was higher than fruit yield. Positive correlations found between fruit and seed yield, and between one fruit weight and one fruit seed weight (R2=0.72** and 0.56**, respectively. At a glance, cow manure solely application was better than its application with nitragin. Nitragin application has no significant effect on some traits, when utilized with sheep manure and vermicompost. The possibilities of antagonistic effect among organic and biological fertilizers needs to be more studied.

  9. Application for oxytetracycline wastewater pretreatment by Fenton iron mud based cathodic-anodic-electrolysis ceramic granular fillers.

    Science.gov (United States)

    Zhang, Feilong; Yue, Qinyan; Gao, Yuan; Gao, Baoyu; Xu, Xing; Ren, Zhongfei; Jin, Yang

    2017-09-01

    In this study, Fenton iron mud applied as main raw material of cathodic-anodic-electrolysis ceramic granular fillers (ICMF) in a continuous reactor, which were used to pretreat oxytetracycline (OTC) wastewater. The ICMF was characterized by Scanning Electron Microscope and Energy Dispersive Spectrometer analysis. The effects of pH value, hydraulic retention time, OTC concentrations and aeration on removal efficiency of total organic carbon (TOC) and OTC were studied. The degradation byproducts of OTC were analyzed by UV-2450, High Performance Liquid Chromatography and Liquid Chromatography-mass Spectrometry. The SEM images showed that the surface ICMF was porous. This system had a higher stability, and good removal efficiency of TOC of 80.5% and OTC of 98.5% under the optimal conditions, which were influent pH of 3, HRT of 4 h, and anaerobic condition. After running for 60 d, the removal efficiency of TOC was stable and the ICMF did not become hardened. The reactor was back washed by acid solution (pH: 1) in 20 d approximately. This paper provides useful information for approaching in wastewater pretreatment and recycling the Fenton iron mud. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Application of integrated ozone and granular activated carbon for decolorization and chemical oxygen demand reduction of vinasse from alcohol distilleries.

    Science.gov (United States)

    Hadavifar, Mojtaba; Younesi, Habibollah; Zinatizadeh, Ali Akbar; Mahdad, Faezeh; Li, Qin; Ghasemi, Zahra

    2016-04-01

    This study investigates the treatment of the distilleries vinasse using a hybrid process integrating ozone oxidation and granular activated carbons (GAC) in both batch and continuous operation mode. The batch-process studies have been carried out to optimize initial influent pH, GAC doses, the effect of the ozone (O3) and hydrogen peroxide (H2O2) concentrations on chemical oxygen demand (COD) and color removal of the distilleries vinasse. The continuous process was carried out on GAC and ozone treatment alone as well as the hybrid process comb both methods to investigate the synergism effectiveness of the two methods for distilleries vinasse COD reduction and color removal. In a continuous process, the Yan model described the experimental data better than the Thomas model. The efficiency of ozonation of the distilleries vinasse was more effective for color removal (74.4%) than COD removal (25%). O3/H2O2 process was not considerably more effective on COD and color removal. Moreover, O3/GAC process affected negatively on the removal efficiency by reducing COD and color from distilleries vinasse. The negative effect decreased by increasing pH value of the influent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Optimizing nitrogen fertilizer application to irrigated wheat. Results of a co-ordinated research project. 1994-1998

    International Nuclear Information System (INIS)

    2000-07-01

    This TECDOC summarizes the results of a Co-ordinated Research Project (CRP) on the Use of Nuclear Techniques for Optimizing Fertilizer Application under Irrigated Wheat to Increase the Efficient Use of Nitrogen Fertilizer and Consequently Reduce Environmental Pollution. The project was carried out between 1994 and 1998 through the technical co-ordination of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. Fourteen Member States of the IAEA and FAO carried out a series of field experiments aimed at improving irrigation water and fertilizer-N uptake efficiencies through integrated management of the complex Interactions involving inputs, soils, climate, and wheat cultivars. Its goals were: to investigate various aspects of fertilizer N uptake efficiency of wheat crops under irrigation through an interregional research network involving countries growing large areas of irrigated wheat; to use 15 N and the soil-moisture neutron probe to determine the fate of applied N, to follow water and nitrate movement in the soil, and to determine water balance and water-use efficiency in irrigated wheat cropping systems; to use the data generated to further develop and refine various relationships in the Ceres-Wheat computer simulation model; to use the knowledge generated to produce a N-rate-recommendation package to refine specific management strategies with respect to fertilizer applications and expected yields

  12. Impact of organic and inorganic fertilizers application on the phytochemical and antioxidant activity of Kacip Fatimah (Labisia pumila Benth).

    Science.gov (United States)

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E; Karimi, Ehsan; Ghasemzadeh, Ali

    2013-09-05

    A study was conducted to compare secondary metabolites and antioxidant activity of Labisia pumila Benth (Kacip Fatimah) in response to two sources of fertilizer [i.e., organic (chicken dung; 10% N:10% P₂O₅:10% K₂O) and inorganic fertilizer (NPK green; 15% N, 15% P₂O₅, 15% K₂O)] under different N rates of 0, 90, 180 and 270 kg N/ha. The experiment was arranged in a randomized complete block design replicated three times. At the end of 15 weeks, it was observed that the application of organic fertilizer enhanced the production of total phenolics, flavonoids, ascorbic acid, saponin and gluthathione content in L. pumila, compared to the use of inorganic fertilizer. The nitrate content was also reduced under organic fertilization. The application of nitrogen at 90 kg N/ha improved the production of secondary metabolites in Labisia pumila. Higher rates in excess of 90 kg N/ha reduced the level of secondary metabolites and antioxidant activity of this herb. The DPPH and FRAP activity was also highest at 90 kg N/ha. The results indicated that the use of chicken dung can enhance the production of secondary metabolites and improve antioxidant activity of this herb.

  13. Granular materials flow like complex fluids

    Science.gov (United States)

    Kou, Binquan; Cao, Yixin; Li, Jindong; Xia, Chengjie; Li, Zhifeng; Dong, Haipeng; Zhang, Ang; Zhang, Jie; Kob, Walter; Wang, Yujie

    2017-11-01

    Granular materials such as sand, powders and foams are ubiquitous in daily life and in industrial and geotechnical applications. These disordered systems form stable structures when unperturbed, but in the presence of external influences such as tapping or shear they `relax', becoming fluid in nature. It is often assumed that the relaxation dynamics of granular systems is similar to that of thermal glass-forming systems. However, so far it has not been possible to determine experimentally the dynamic properties of three-dimensional granular systems at the particle level. This lack of experimental data, combined with the fact that the motion of granular particles involves friction (whereas the motion of particles in thermal glass-forming systems does not), means that an accurate description of the relaxation dynamics of granular materials is lacking. Here we use X-ray tomography to determine the microscale relaxation dynamics of hard granular ellipsoids subject to an oscillatory shear. We find that the distribution of the displacements of the ellipsoids is well described by a Gumbel law (which is similar to a Gaussian distribution for small displacements but has a heavier tail for larger displacements), with a shape parameter that is independent of the amplitude of the shear strain and of the time. Despite this universality, the mean squared displacement of an individual ellipsoid follows a power law as a function of time, with an exponent that does depend on the strain amplitude and time. We argue that these results are related to microscale relaxation mechanisms that involve friction and memory effects (whereby the motion of an ellipsoid at a given point in time depends on its previous motion). Our observations demonstrate that, at the particle level, the dynamic behaviour of granular systems is qualitatively different from that of thermal glass-forming systems, and is instead more similar to that of complex fluids. We conclude that granular materials can relax

  14. A constitutive law for dense granular flows.

    Science.gov (United States)

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  15. Enteropathogenic bacterial contamination of a latosol following application of organic fertilizer

    Directory of Open Access Journals (Sweden)

    Pedro Alexandre Escosteguy

    2015-10-01

    Full Text Available Poultry manure is used as fertilizer in natura, but little is known about whether it contaminates the soil with pathogenic organisms. The aim of this study was to assess the effects of organic, organomineral and mineral fertilizers on soil contamination by enteric pathogens, using poultry manure as the organic fertilizer. Manure was applied in field experiments at rates of 7.0 ton. ha-1 (maize crop, 2008/2009, 8.0 ton. ha-1 (wheat crop, 2009 and 14 ton. ha-1 (maize crop, 2010/2011. Organomineral fertilizer was applied at the same rates but was comprised of 50% manure and 50% mineral fertilizer. At 30 and 70 days after fertilization, the organic fertilizer and the upper 0-5 cm layer of the soil were tested for the presence of helminth eggs and larvae and enteropathogenic bacteria. Fecal and non-fecal coliforms (Escherichia coli and Clostridium perfringes were found in the organic fertilizer, but neither Salmonella spp. nor enteroparasites were detected. The population of enteropathogenic bacteria in the soil was similar among the treatments for all crops at both evaluation times. The population of thermotolerant coliforms in the organic fertilizer was larger than the maximum level allowed in Brazil, but neither the organic or nor the organomineral fertilizer contaminated the soil.

  16. The comparison of the farmers' fertilizer application with the suggestions of extension organization in the indeterminate tomatoes farming. A case study of Tokat province - Turkey

    International Nuclear Information System (INIS)

    Kizilaslan, N.; Akca, H.

    1999-01-01

    In this study, whether farmers' fertilizer application is in harmony with fertilizer application suggested by farmers education and extension unit (FEEU) has been investigated. In addition, situation of contact of indeterminate tomatoes growers with extension staff has been examined. It has been determined that farmers have harmonized the suggestions of FEEU related to time of fertilization and application of fertilizer but not harmonized related to amount of fertilizer to be used. According to chi-square test, the relationship between educational level of farmers and the level of fertilizer use is not statistically significant. In addition, indeterminate tomatoes farmers have not had enough contact with extension staff. To use resources efficiently extension services should be directed to farmers more actively. Refs. 8 (author)

  17. Nitrogen availability, water-filled pore space, and N2O-N fluxes after biochar application and nitrogen fertilization

    NARCIS (Netherlands)

    Carvalho, Márcia Thaís De Melo; Madari, Beáta Emoke; Bastiaans, Lammert; Oort, Pepijn Adrianus Johannes Van; Leal, Wesley Gabriel De Oliveira; Souza, Diego Mendes De; Santos, Roberto Carlos Dos; Matsushige, Iva; Maia, Aline De Holanda Nunes; Heinemann, Alexandre Bryan; Meinke, Holger

    2016-01-01

    The objective of this work was to investigate the impact of the application of wood biochar, combined with N fertilizations, on N2O-N fluxes, nitrogen availability, and water-filled pore space (WFPS) of a clayey Oxisol under rice (wet season) and common bean (dry season) succession. Manual static

  18. Response of Sunflower (Helianthus annuus L.) to N-application and Bio fertilization with Assessment of Fertilizer N Recovery by 15N Versus Subtraction Methods

    International Nuclear Information System (INIS)

    Abdel-Salam, A. A.; Zahra, W.R.; Soliman, S. M.; Galal, Y.G.M.; Moursy, A.A.; Hekal, M.A.

    2015-01-01

    A factorial field experiment was conducted on sunflower (Helianthus annuus L.) grown on a sand soil (98% sand) supplied the different combinations of 4 N rates of 0, 105, 140 and 175 kg N ha -1 i.e. N 0 , N 1 , N 2 , and N 3 respectively - as (NH 4 ) 2 SO 4 and 4 bio fertilization inoculation (B) of none, Azotobacter chroococcum, Azospirillum brasilense and Bacillus megaterium. i.e. B 0 ,B 1 ,B 2 , and B 3 respectively. Labeled ammonium sulphate with 2% 15 N atom excess was used for 15 N assessment. All plots were supplied with 21 Mg compost +24 kg P +80 kg K ha - '1. Non-treated plants gave 0.534 Mg seeds ha -1 while the treated ones - especially those of N or N + bio fertilizers - gave increases of up to 403% (N 2 B). Main effect response patterns were: N: N 3 >N 2 >N 1 , for B: B 1 ≥B 3 ≥B 2 . Seed oil content in the N 0 B 0 treatment was 222 gkg -1 increased reaching as high as 445 gkg -1 by N 2 B 3 ; with N main effect of N 2 >N 3 >N 1 and B main effect of B 2 >B 3 >B 1 . Seed oil yield was 113 kg ha -1 by N 0 B 0 increased to as high as 1105 kg ha -1 by N 2 B 1 with main effects of N 2 >N 3 >N 1 and B 3 ≥B 2 >B 1 .Uptake of N (in total plant parts of roots + stems + leaves + discs + seeds) increased by N application; averages for non-N were 18.1 kg ha -1 18.5,14.7,17.4 by N 0 B 0 , N 0 B 1 , N 0 B 2 , and N 0 B 3 respectively; increased considerably by up to 667% (N 3 B 3 ) upon N application. Plants recovered a portion of fertilizer N of 19.6 to 40.9% by N 1 B 1 and N 2 B 1 respectively as determined by 15 N technique, but 27.7 to 59.6% respectively as calculated by subtraction of non-N from N treatments. The subtraction estimation considerably exceeded the 15 N determined ones by + 39.5% to as high as + 194.6% indicating a non-real estimation of recovered fertilizer-N in crops. Thus, in studies using non-tracer techniques, estimation of uptake of fertilizer N could be erroneous. The reason in the current study could most certainly be a greater

  19. Cadmium and zinc uptake by vegetable tissues after nine annual applications of phosphate fertilizer to soil

    International Nuclear Information System (INIS)

    Mortvedt, J.J.

    1984-01-01

    Plant uptake of heavy metals such as Cd and Zn applied to soil as contaminants in P fertilizers is of concern because of their possible entry into the human food chain. Concentrations in P fertilizers generally range from 1 to 50 mg kg/sup -1/ of Cd and 50 to 500 mg kg/sup -1/ of Zn, but much higher concentrations have been reported. Such wide ranges are due to variations in heavy metal contents of phosphate rock (PR) used to produce P fertilizers. Samples of vegetable tissues grown in New York on soil fertilized with triple superphosphate (TSP) for nine years of a 10-year experiment were analyzed for Cd and Zn. Results of this study show that plant availability of Cd and Zn contaminants in P fertilizers is rather low, even at high rates of P fertilization

  20. The effect of fertilizer applications on 137Cs uptake by different plant species and vegetation types

    International Nuclear Information System (INIS)

    Belli, M.; Sansone, U.; Ardiani, R.; Feoli, E.; Scimone, M.; Menegon, S.; Parente, G.

    1995-01-01

    A trial carried out in a greenhouse over a two-year period is discussed. The effects on 137 Cs concentration in plants, roots and soil have been investigated versus the grassland species composition (legume, grass and mixture) and eight combinations of mineral fertilizers (NPK). The results indicate: (a) the effect of K fertilizer in reducing 137 Cs plant absorption; (b) the effect of N fertilizer in favouring grass growth and radiocaesium absorption; (c) for all fertilizer combinations, a higher 137 Cs storage in the root system of the legumes and a lower 137 Cs absorption in the plants. (author)

  1. Changes in the Metagenome of Prokaryotic Community as an Indicator of Fertility of Arable Soddy-Podzolic Soils upon Fertilizer Application

    Science.gov (United States)

    Naliukhin, A. N.; Khamitova, S. M.; Glinushkin, A. P.; Avdeev, Yu. M.; Snetilova, V. S.; Laktionov, Yu. V.; Surov, V. V.; Siluyanova, O. V.; Belozerov, D. A.

    2018-03-01

    The influence of different systems of fertilization and liming on the changes in the taxonomic structure of prokaryotic community in arable soddy-podzolic soil (Albic Retisol (Loamic, Aric, Cutanic, Differentic, Ochric)) was studied in a stationary field experiment of Vologda State Dairy Farming Academy with the use of high-performance sequencing method of gene 16S rRNA. The 25-year-old fallow plot, in which the intensity of microbiological processes was close to that in the virgin soddy-podzolic soils, was used as a control. At the first stage, dominant phyla were identified: Proteobacteria (45.3-56.2%), Actinobacteria (13.6-20.4%), Bacteroidetes (7.2-19.3%), Acidobacteria (7.1-11.5%), and Verrucomicrobia (4.3-10.3%). Several groups of microorganisms-indicators, whose portion changes in the arable soil under the influence of liming, fertilizer application, and soil treatment in comparison with the control, were determined. The applied approach made it possible to relate the taxonomic structure of the soil microbial cenosis with external factors for assessing changes in the structure of soil microbial complex under the impact of different uses of the arable soil.

  2. PHYSICO-CHEMICAL EVALUATION OF AN EFFLUENT TREATED IN ANAEROBIC BIODIGESTER REGARDING ITS EFFICIENCE AND APPLICATION AS FERTILIZER

    OpenAIRE

    Lopes da Silva, Wilson Tadeu; de Novaes, Antonio Pereira; Kuroki, Vivian; de Almeida Martelli, Lilian Fernanda; Magnoni Junior, Lourenco

    2012-01-01

    PHYSICO-CHEMICAL EVALUATION OF AN EFFLUENT TREATED IN ANAEROBIC BIODIGESTER REGARDING ITS EFFICIENCE AND APPLICATION AS FERTILIZER. The use of biodigester for basic and environmental sanitation has large demand in Brazil. A biodigester was built to treat conjunctly the human and pig feces and urine, regarding to its future application in rural small towns. The results show that the biodigester can reduce 90% of COD and BOD and, up to 99.99% of thermotolerant coliforms. The treated effluent ha...

  3. Studies on the effects of application of different foliar fertilizer materials, crop residue and inter cropping on Banana plants

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yusuf Munim [Faculty of Agriculture, University of Khartoum, Khartoum (Sudan)

    1997-12-31

    Five separate experiments were conducted at university of Khartoum demonstration farm during 1993 to 1995 under both orchard and nursery conditions to evaluate the effect of foliar application of different fertilizers, use of crop residue and intercropping on banana (dwarf cavendish). In the first experiment, the effects of foliar application of different concentrations of potassium solution (38%) were studied. The results indicated that application of all concentrations resulted in greater increases in overall growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the second experiment, the effects of three different foliar fertilizers, namely, compound cryst, fetrilon comb-2 and x-garden were investigated. The results revealed that all fertilizers gave greater values of all growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the third experiment, the effect of four different fertilizer materials containing different combinations of NPK on growth parameters and nutrient elements contents of leaves of banana suckers grown under nursery conditions was evaluated. The results revealed that all fertilizer materials gave greater increases of growth parameters over the control as well as higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents. In the fourth experiment, the effect of different concentrations of N{sub 19}, P{sub 19}, K{sub 19} fertilizers on growth characteristics and nutrient elements contents of leaves of banana

  4. Studies on the effects of application of different foliar fertilizer materials, crop residue and inter cropping on Banana plants

    International Nuclear Information System (INIS)

    Hassan, Yusuf Munim

    1996-01-01

    Five separate experiments were conducted at university of Khartoum demonstration farm during 1993 to 1995 under both orchard and nursery conditions to evaluate the effect of foliar application of different fertilizers, use of crop residue and intercropping on banana (dwarf cavendish). In the first experiment, the effects of foliar application of different concentrations of potassium solution (38%) were studied. The results indicated that application of all concentrations resulted in greater increases in overall growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the second experiment, the effects of three different foliar fertilizers, namely, compound cryst, fetrilon comb-2 and x-garden were investigated. The results revealed that all fertilizers gave greater values of all growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the third experiment, the effect of four different fertilizer materials containing different combinations of NPK on growth parameters and nutrient elements contents of leaves of banana suckers grown under nursery conditions was evaluated. The results revealed that all fertilizer materials gave greater increases of growth parameters over the control as well as higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents. In the fourth experiment, the effect of different concentrations of N 19 , P 19 , K 19 fertilizers on growth characteristics and nutrient elements contents of leaves of banana suckers was

  5. Methane oxidation in an intensively cropped tropical rice field soil under long-term application of organic and mineral fertilizers.

    Science.gov (United States)

    Nayak, D R; Babu, Y Jagadeesh; Datta, A; Adhya, T K

    2007-01-01

    Methane (CH4) oxidation is the only known biological sink process for mitigating atmospheric and terrestrial emissions of CH4, a major greenhouse gas. Methane oxidation in an alluvial soil planted to rice (Oryza sativa L.) under long-term application of organic (compost with a C/N ratio of 21.71), and mineral fertilizers was measured in a field-cum-laboratory incubation study. Oxidation rates were quantified in terms of decrease in the concentration of CH4 in the headspace of incubation vessels and expressed as half-life (t(1)2) values. Methane oxidation rates significantly differed among the treatments and growth stages of the rice crop. Methane oxidation rates were high at the maximum tillering and maturity stages, whereas they were low at grain-filling stage. Methane oxidation was low (t(1)2) = 15.76 d) when provided with low concentration of CH4. On the contrary, high concentration of CH4 resulted in faster oxidation (t(1)2) = 6.67 d), suggesting the predominance of "low affinity oxidation" in rice fields. Methane oxidation was stimulated following the application of mineral fertilizers or compost implicating nutrient limitation as one of the factors affecting the process. Combined application of compost and mineral fertilizer, however, inhibited CH4 oxidation probably due to N immobilization by the added compost. The positive effect of mineral fertilizer on CH4 oxidation rate was evident only at high CH4 concentration (t(1)2 = 4.80 d), while at low CH4 concentration their was considerable suppression (t(1) = 17.60 d). Further research may reveal that long-term application of fertilizers, organic or inorganic, may not inhibit CH4 oxidation.

  6. Nitrous oxide emissions from a golf course fairway and rough following application of different nitrogen fertilizers

    Science.gov (United States)

    Nitrous oxide (N2O) is a potent greenhouse gas that destroys stratospheric ozone. There is limited research of golf course N2O emission and the effects of frequent fertilization and irrigation. Three enhanced efficiency nitrogen fertilizers (EENFs) were applied to a Colorado golf course fairway and ...

  7. Effect of Applying Chemical Fertilizers on Concentration of Cd, Pb and Zn in Agricultural Soils

    Directory of Open Access Journals (Sweden)

    Hossein Pourmoghadas

    2017-03-01

    Full Text Available Background &Objective:  Nowadays uncontrolled uses of chemical fertilizers which have many heavy metals such as Cadmium, Lead and Zinc in addition have economic problems, cause to serious damages in the environment. Therefore uncontrolled application of fertilizers can cause accumulation contaminants in soil, water sources and increasing in plants and human & animals’ food chain. The main objective of this research was to investigate the effects of chemical fertilizers application to increase heavy metals in agricultural soils at directions to prevent contamination in water sources, agricultural products and the best uses of chemical fertilizers. Methods: In this study, 20 soil samples and 5 useful chemical fertilizer samples were collected and investigated. After fertilizer and soil samples were prepared, digested and filtered, heavy metals were determined with using atomic absorption. Results: The results of this study showed that, Cd in Diammonum phosphate  fertilizer 1.25 times, Super phosphate triple 1.7 times and in Macro granular fertilizer 1.5 times were as much as maximum acceptable concentration in chemical fertilizers. Cadmium concentration in all of the Jarghoye (Isfahan agricultural soil samples 3 to 7 times and in the Mobarake village (Najaf abad agricultural soil samples 10 to 35 times were as much as maximum acceptable concentration in agricultural soils. But Pb and Zn concentration in all of the agricultural soil samples was less than the amount of maximum acceptable concentration. Conclusion: Phosphate chemical fertilizers were positive effects to increase concentration of Pb and Zn in agricultural soils. Therefore, application of the fertilizer must be more attention because of increasing heavy metals in the agriculture soils and probably increasing heavy metals in food chain.  

  8. Granular computing: perspectives and challenges.

    Science.gov (United States)

    Yao, JingTao; Vasilakos, Athanasios V; Pedrycz, Witold

    2013-12-01

    Granular computing, as a new and rapidly growing paradigm of information processing, has attracted many researchers and practitioners. Granular computing is an umbrella term to cover any theories, methodologies, techniques, and tools that make use of information granules in complex problem solving. The aim of this paper is to review foundations and schools of research and to elaborate on current developments in granular computing research. We first review some basic notions of granular computing. Classification and descriptions of various schools of research in granular computing are given. We also present and identify some research directions in granular computing.

  9. Effect of nitrogen fertilizer application timing on nitrogen use efficiency and grain yield of winter wheat in Ireland

    Directory of Open Access Journals (Sweden)

    Efretuei A.

    2016-06-01

    Full Text Available The objectives of this work were to determine the effects of initiating application of fertilizer nitrogen (N to winter wheat at different growth stages (GSs on grain yield and N use efficiency (NUE. A factorial experiment was carried out in two growing seasons (2011 and 2012 with five timings of first N application (GS 24/26 [tillering], GS 30, GS 31, GS 32 or GS 37 and an unfertilized control, two sowing densities (100 and 400 seeds/m2 and a cattle slurry treatment (with or without slurry. The latter was included to simulate variation in soil N supply (SNS. Delaying the first application of N from the tillering stage until GS 30 had no significant effect on grain yield in either year. Further delaying the initial N application until GS 31 caused a significant yield reduction in 2011, in comparison to GS 30 application, but not in 2012. Differences in efficiency of recovery and use of fertilizer N by the crop among the first three application timings were small. There was no evidence to support alteration in the timing of the first application of N in response to low plant density. Slurry application did not influence SNS, so the interaction between SNS and fertilizer N application timing could not be determined. It is concluded that in order to maximise yield and NUE, the first N application should be applied to winter wheat between late tillering and GS 30 and that delaying the first N until GS 31 can lead to yield reductions compared to the yield obtained with earlier application.

  10. Insights into the Regulation of Rhizosphere Bacterial Communities by Application of Bio-organic Fertilizer in Pseudostellaria heterophylla Monoculture Regime

    Directory of Open Access Journals (Sweden)

    Linkun Wu

    2016-11-01

    Full Text Available The biomass and quality of Pseudostellariae heterophylla suffers a significant decline under monoculture. Since rhizosphere microbiome plays crucial roles in soil health, deep pyrosequencing combined with qPCR was applied to characterize the composition and structure of soil bacterial community under monoculture and different amendments. The results showed compared with the first-year planted (FP, second-year monoculture of P. heterophylla (SP led to a significant decline in yield and resulted in a significant increase in Fusarium oxysporum but a decline in Burkholderia spp. Bio-organic fertilizer (MT formulated by combining antagonistic bacteria with organic matter could significantly promote the yield by regulating rhizosphere bacterial community. However, organic fertilizer (MO without antagonistic bacteria could not suppress Fusarium wilt. Multivariate statistics analysis showed a distinct separation between the healthy samples (FP and MT and the unhealthy samples (SP and MO, suggesting a strong relationship between soil microbial community and plant performance. Furthermore, we found the application of bio-organic fertilizer MT could significantly increase the bacterial community diversity and restructure microbial community with relatively fewer pathogenic F. oxysporum and more beneficial Burkholderia spp. In conclusion, the application of novel bio-organic fertilizer could effectively suppress Fusarium wilt by enriching the antagonistic bacteria and enhancing the bacterial diversity.

  11. Effects of nitrogen fertilizer application and solar radiation on the growth response of sorghum [Sorghum bicolor] seedlings to soil moisture

    International Nuclear Information System (INIS)

    Sumi, A.; Katayama, T.C.

    2000-01-01

    The effects of nitrogen fertilizer application and solar radiation on the growth response to soil moisture were examined in sorghum seedlings grown in culture boxes. The effects of soil moisture (f) and amount of nitrogen fertilizer application (g) on the increment of total dry matter weight of sorghum seedling (ΔW) were represented satisfactorily by the following reciprocal equation, 1/ΔW = A/(f - f 0 ) + B(g + g 0 )/(f - f 0 ) + C/[(f - f 0 ) (g + g 0 )] + D/(g + g 0 ) + E, where f 0 and g 0 were the uppermost value of unavailable soil moisture and the amount of nitrogen supplied from soil and seeds. A, B, C, D and E were coefficients. The effects of soil moisture (f) and solar radiation (S) on ΔW were expressed approximately by the following reciprocal equation, 1/ΔW = A/(S - S 0 ) + B/(f - f 0 ) + C(f - f 0 ) + D, where S 0 was the daily compensation point. These results indicated that the effects of solar radiation and soil moisture are additive, but the interaction between soil moisture and nitrogen fertilizer is not negligible. The transpiration efficiency was unaffected by soil moisture, nitrogen fertilizer and solar radiation

  12. Long-term application of bioorganic fertilizers improved soil biochemical properties and microbial communities of an apple orchard soil

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2016-11-01

    Full Text Available Soil biochemical properties and microbial communities are usually considered as important indicators of soil health because of their association with plant nutrition. In this study, we investigated the impact of long-term application of bioorganic fertilizer (BOF on soil biochemical properties and microbial communities in the apple orchard soil of the Loess Plateau. The experiment included three treatments: (1 control without fertilization (CK; (2 chemical fertilizer application (CF; and (3 bioorganic fertilizer application (BOF. The high throughput sequencing was used to examine the bacterial and fungal communities in apple orchard soil. The results showed that the BOF treatment significantly increased the apple yield during the experimental time (2009-2015. The application of BOF significantly increased the activities of catalase and invertase compared to those in CK and CF treatments. The high throughput sequencing data showed that the application of BOF changed the microbial community composition of all soil depths considered (0-20cm, 20-40cm, and 40-60cm, e.g., the relative abundance of bio-control bacteria (Xanthomonadales, Lysobacter, Pseudomonas and Bacillus, Proteobacteria, Bacteroidetes, Ohtaekwangia, Ilyonectria and Lecanicillium was increased while that of Acidobacteria, Chloroflexi, Gp4, Gp6 and Sphaerobacter was decreased. The increase in apple yield after the application of BOF might be due to increase in organic matter, total nitrogen and catalase and invertase activities of soil and change in the bacterial community composition by enriching Bacillus, Pseudomonas, Lysobacter and Ohtaekwangia. These results further enhance the understanding on how BOFs alter soil microbial community composition to stimulate soil productivity.

  13. Dryland Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Biosolids Applications

    Directory of Open Access Journals (Sweden)

    Richard T. Koenig

    2011-01-01

    Full Text Available Applications of biosolids were compared to inorganic nitrogen (N fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L. cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Biosolids produced 0 to 1400 kg ha−1 (0 to 47% higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the biosolids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dryland production systems. Grain protein content with biosolids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with biosolids. Results indicate the potential to improve dryland winter wheat yields with biosolids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when biosolids are applied immediately before planting.

  14. Foliar Application of Potassium Fertilizer to Reduce the Effects of Salinity in Potato

    Directory of Open Access Journals (Sweden)

    H Molahoseini

    2017-06-01

    Full Text Available Introduction The potato of commerce (Solanum tuberosum L. is an annual dicot species. It is an autotetraploid with 4x=48 chromosomes. In Iran the consumption per capita of potato is over the 35 kg. Potato production is usually done without reducing yield in the irrigation water salinity 1-2 dS m-1, but 4.2 dS m-1 salinity reduces yield by 26 percent. 10, 25 and 50 percent yield reduction have been reported in soil electrical conductivity 2.5, 3.8 and 5.9 dS m-1, respectively . Between the ability of plant species to maintain potassium levels and their tolerance to salinity is positive correlation and on this basis nutritional irregularity due to increased salinity can be compensated by increasing of potassium fertilizer. In tolerant plant species, during times of increased salinity, selective absorption of potassium increased. The ability of plants to maintain a certain level of K/Na within the cell is essential for salt tolerance and sometimes of these ratios is used as indicators of salinity tolerance. Potato yield in response to salt stress, according to a variety of uses, can be reduced from 20 to 85 percent. Harmful effects of salinity in the beginning stages of tubers and tuber growth stage are important, therefore, tuber number and tuber size are two important components of yield which may reduce in the effect of salinity. Accelerate the aging process of the shoot, unwanted earliness, are of the reasons for the reduction in tuber size. Materials and Methods A field experiment was conducted in the agricultural and natural resources research center (31° 32´ N, 51° 51´ E, Isfahan, Islamic Republic of Iran. According to twenty years statistics, rainfall and temperature means for experiment location were 110 mm and 25 °C, respectively. The experiment was conducted as a factorial in a completely randomized block design with four replications. The treatments were three levels of foliar K application (control, K sulphate 10 ppm, and 2.5 ppm

  15. Increase in fertilizer nitrogen use efficiency in lowland rice with application of dicyandiamide and pellet urea formulation

    International Nuclear Information System (INIS)

    Sachdev, M.S.; Sachdev, P.; Jain, Neeru

    2008-01-01

    Two greenhouse and one field experiment were conducted in a sandy clay loam Typic Ustochrept soil of the Indian Agricultural Research Institute farm using 15 N labeled urea and dicyandiamide (DCD). The results clearly revealed that application of DCD with urea resulted in significant increase in paddy yield and both total and fertilizer N uptake. The application of full dose of N as urea plus DCD in the form of 1.0 g pellets and given as basal gave the highest yield compared to that obtained with application of urea in two splits in the prilled form. The 15 N fertilizer balance data showed that maximum amount of unaccounted fertilizer 15 N was in the treatment where urea was applied in full dose in the prilled form as basal and it was least in the treatment where it was applied in the form of pellets of 1.0 g along with DCD. The ammonium N concentration in flood water was significantly higher in treatments where urea was applied in prilled form and with or without DCD. However urea application in the pellet form and particularly in combination with DCD reduced the ammonium concentration in floodwater appreciably. (author)

  16. [Effects of combined application of biochar and inorganic fertilizers on the available phosphorus content of upland red soil].

    Science.gov (United States)

    Jing, Yan; Chen, Xiao-min; Liu, Zu-xiang; Huang, Qian-ru; LiI, Qiu-xia; Chen, Chen; Lu, Shao-shan

    2013-04-01

    Aiming at the low content of available phosphorus in upland red soil of Southern China, this paper studied the effects of combined application of biochar and inorganic fertilizers on the available phosphorus and organic carbon contents and the pH of this soil. With the combined application of biochar and inorganic fertilizers, the soil physical and chemical properties improved to different degrees. As compared with the control, the soil pH and the soil organic carbon and available phosphorus contents at different growth stages of oil rape after the combined application of biochar and inorganic fertilizers all had an improvement, with the increments at bolting stage, flowering stage, and ripening stage being 16%, 24% and 26%, 23%, 34% and 38%, and 100%, 191% and 317% , respectively. The soil pH and the soil organic carbon and available phosphorus contents were increased with the increasing amount of applied biochar. Under-the application of biochar, the soil available phosphorus had a significant correlation with the soil pH and soil organic carbon content. This study could provide scientific basis to improve the phosphorus deficiency and the physical and chemical properties of upland red soil.

  17. Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field.

    Science.gov (United States)

    He, Tiehu; Liu, Deyan; Yuan, Junji; Luo, Jiafa; Lindsey, Stuart; Bolan, Nanthi; Ding, Weixin

    2018-07-01

    The effects of biochar combined with the urease inhibitor, hydroquinone, and nitrification inhibitor, dicyandiamide, on gaseous nitrogen (N 2 O, NO and NH 3 ) emissions and wheat yield were examined in a wheat crop cultivated in a rice-wheat rotation system in the Taihu Lake region of China. Eight treatments comprised N fertilizer at a conventional application rate of 150kgNha -1 (CN); N fertilizer at an optimal application rate of 125kgNha -1 (ON); ON+wheat-derived biochar at rates of 7.5 (ONB1) and 15tha -1 (ONB2); ON+nitrification and urease inhibitors (ONI); ONI+wheat-derived biochar at rates of 7.5 (ONIB1) and 15tha -1 (ONIB2); and, a control. The reduced N fertilizer application rate in the ON treatment decreased N 2 O, NO, and NH 3 emissions by 45.7%, 17.1%, and 12.3%, respectively, compared with the CN treatment. Biochar application increased soil organic carbon, total N, and pH, and also increased NH 3 and N 2 O emissions by 32.4-68.2% and 9.4-35.2%, respectively, compared with the ON treatment. In contrast, addition of urease and nitrification inhibitors decreased N 2 O, NO, and NH 3 emissions by 11.3%, 37.9%, and 38.5%, respectively. The combined application of biochar and inhibitors more effectively reduced N 2 O and NO emissions by 49.1-49.7% and 51.7-55.2%, respectively, compared with ON and decreased NH 3 emission by 33.4-35.2% compared with the ONB1 and ONB2 treatments. Compared with the ON treatment, biochar amendment, either alone or in combination with inhibitors, increased wheat yield and N use efficiency (NUE), while addition of inhibitors alone increased NUE but not wheat yield. We suggest that an optimal N fertilizer rate and combined application of inhibitors+biochar at a low application rate, instead of biochar application alone, could increase soil fertility and wheat yields, and mitigate gaseous N emissions. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Impact of granular drops

    KAUST Repository

    Marston, J. O.

    2013-07-15

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  19. Impact of granular drops

    KAUST Repository

    Marston, J. O.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T

    2013-01-01

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  20. 11th Traffic and Granular Flow Conference

    CERN Document Server

    Daamen, Winnie

    2016-01-01

    The Conference on Traffic and Granular Flow brings together international researchers from different fields ranging from physics to computer science and engineering to discuss the latest developments in traffic-related systems. Originally conceived to facilitate new ideas by considering the similarities of traffic and granular flow, TGF'15, organised by Delft University of Technology, now covers a broad range of topics related to driven particle and transport systems. Besides the classical topics of granular flow and highway traffic, its scope includes data transport (Internet traffic), pedestrian and evacuation dynamics, intercellular transport, swarm behaviour and the collective dynamics of other biological systems. Recent advances in modelling, computer simulation and phenomenology are presented, and prospects for applications, for example to traffic control, are discussed. The conference explores the interrelations between the above-mentioned fields and offers the opportunity to stimulate interdisciplinar...

  1. Relative efficiency of different methods of phosphorus (32P) application on fertilizer phosphorus uptake by maize (zea may L.)

    International Nuclear Information System (INIS)

    Chaudhary, M.L.; Gupta, A.P.

    1975-01-01

    A green house study was conducted for comparing four methods of phosphorus application (broad cast, below the seed, one side and both sides of the seeds) at the rate of 60 ppm in sierozem soil of H issar (Haryana). Maize crop was planted in 50 cm. bottomless bitumin drums for 70 days i.e. upto tasseling stage. The plant samples were collected at jointing and tasseling stages of plant growth. The results revealed that the highest dry matter yield, total and fertilizer phosphorus uptake was observed when the phosphorus was applied below the seed, followed by both side application of phosphorus. The least yield, total and fertilizer phosphorus uptake were recorded when the phosphorus was broadcast at the time of sowing. (author)

  2. Effect of Combined Application of Phosphate Solubilizing Bacteria and Phosphrous Fertilizer on Growth and Yield of Sesame

    Directory of Open Access Journals (Sweden)

    S. Nikmehr

    2016-02-01

    Full Text Available Introduction: Phosphorus (P is considered to be one of the most essential macro elements required for growth and development of plants, but, due to low solubility and fixation in soils, only a small fraction of phosphorus in soil (1 ppm or 0.1% is readily available to plants. chemical fertilizers are widely used in meeting the phosphorous need of crops. However, as the fertilizer production is dependent upon fossil energy sources, continuous use of chemical fertilizers has become a matter of great concern, not only because of the diminishing availability of costly inputs but environmental concerns also. Under this background, it has obviously brought the subject of mineral phosphate solubilization in the forefront. A group of soil microorganisms is recognized to be involved in microbial phosphate solubilization mechanisms through which insoluble forms of inorganic and organic phosphates convert into soluble forms (HPO4-2 or H2PO4-. Acidification of the medium, chelating, exchange reactions and production of various acids has been discussed as the key processes attributed to the conversion. Phosphate solubilizing bacteria (PSB are a group of plant growth promoting rhizobacteria (PGPR that convert unavailable forms of phosphorus to available forms and it helps to the growth and yield of plant. The use of plant growth promoting rhizobacteria (PGPR is considered one of the most important factors increasing sesame yields. Therefore, the aim of the present study was to investigate the interactive effects of PGPR and phosphorus fertilizer on some growth parameters and components of yield and also phosphorus and Zinc uptake in sesame. Materials and Methods: In order to investigation of the effect of combined application of phosphate solubilizing bacteria and phosphorus fertilizer on growth and yield of Sesame, a greenhouse experiment was conducted as factorial based on completely randomized design with three replications including five levels of

  3. Granular Cell Tumor

    African Journals Online (AJOL)

    1). Her packed cell volume was 40%, she was system, gastro-intestinal tract, brain, heart, and negative to human immunodeficiency virus. 2 female reproductive . ... histocytes and neurons at various times. They granules. The granules are probably of lysosmal were consequently termed granular cell origin and contain ...

  4. Aqua ammonia 15 N obtaining and application with vainness for sugar-cane fertilization

    International Nuclear Information System (INIS)

    Vitti, Andre Cesar; Trivellin, Paulo Cesar O.; Oliveira, Claudineia R. de; Bendassoli, Jose A.

    2000-01-01

    Nitrogen compounds marked with the isotope 15 N are continuously being used in agronomic studies and, when associated to the isotopic dilution technique, they constitute an important tool in clarifying the N cycle. At the Centro de Energia Nuclear na Agricultura (CENA/USP), it was obtained ( 15 NH 4 ) 2 SO 4 enhanced at 3,5% of 15 N atoms, by means of the ionic exchange chromatography technique, which made possible to produce aqua ammonia ( 15 NH 3 aq). Four repetitions were taken to the aqua ammonia production process to use the nitrogen compound in the field experiment. In each process 150g of ammonium sulfate enhanced at 3,5% of 15 N atoms was used, obtaining 31,0 ± 1,6 g of aqua ammonia on the average (80% yield), with the same enhancement. The incidence of isotopic dilution has not been observed during the procedure, what made the use of such methodology possible. After obtaining the aqua ammonia 15 N through this procedure, it was added to the vinasse (an equivalent to 50 m 3 ha -1 ) in doses that corresponded to 70 kg ha -1 of N-NH 3 aq. The mixture was applied to the sugar-cane straw on the soil's surface, aimed to the crop's fertilization. The compound's isotopic composition was analyzed by means of a spectrometer of masses ANCA-SL Europe Scientific, while the total-N volatilized, by the micro-Kjeldahl. Method. In accordance to the low NH 3 (6,4 ± 1,9 kg ha -1 ) volatilization results, it could be concluded that the application of vinasse and aqua ammonia mixture to the straw on the soil's surface was efficient, due to the vinasse's acid character, which allowed the NH 3 , in presence of the ion H + , to stay in the NH 4 + form in solution. (author)

  5. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils

    Science.gov (United States)

    Kader, Mohammed Abdul; Yeasmin, Sabina; Akter, Masuda; Sleutel, Steven

    2016-04-01

    Driving controllers of nitrogen (N) mineralization in paddy soils, especially under anaerobic soil conditions, remain elusive. The influence of exogenous organic matter (OM) and fertilizer application on the activities of five relevant enzymes (β-glucosaminidase, β-glucosidase, L-glutaminase, urease and arylamidase) was measured in two long-term field experiments. One 18-years field experiment was established on a weathered terrace soil with a rice-wheat crop rotation at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) having five OM treatments combined with two mineral N fertilizer levels. Another 30-years experiment was established on a young floodplain soil with rice-rice crop rotation at the Bangladesh Agricultural University (BAU) having eight mineral fertilizer treatments combined with organic manure. At BSMRAU, N fertilizer and OM amendments significantly increased all enzyme activities, suggesting them to be primarily determined by substrate availability. At BAU, non-responsiveness of β-glucosidase activity suggested little effect of the studied fertilizer and OM amendments on general soil microbial activity. Notwithstanding probably equal microbial demand for N, β-glucosaminidase and L-glutaminase activities differed significantly among the treatments (P>0.05) and followed strikingly opposite trends and correlations with soil organic N mineralization. So enzymatic pathways to acquire N differed by treatment at BAU, indicating differences in soil N quality and bio-availability. L-glutaminase activity was significantly positively correlated to the aerobic and anaerobic N mineralization rates at both field experiments. Combined with negative correlations between β-glucosaminidase activity and N mineralization rates, it appears that terminal amino acid NH2 hydrolysis was a rate-limiting step for soil N mineralization at BAU. Future investigations with joint quantification of polyphenol accumulation and binding of N, alongside an

  6. Effect of organic matter application on the fate of 15N-labeled ammonium fertilizer in an upland soil

    International Nuclear Information System (INIS)

    Nishio, T.; Oka, N.

    2003-01-01

    The effect of the application of organic matter on the fate of 15 N-labeled ammonium was investigated in a field. The organic materials incorporated into the experimental plots consisted of wheat straw, rape, pig compost, cow compost, plant manure. In May 2000, 10 g N m -2 of 15 N-labeled ammonium was applied to the field together with the organic materials, and maize and winter wheat were consecutively cultivated. The recovery of applied 15 N in soils and plants was determined after the harvest of each crop. Although only about 10% of the applied 15 N-labeled fertilizer remained in the 0-30 cm layer of the Control Plot and the Plant Manure Plot, more than 25% of the applied 15 N remained in the Pig Compost Plot. Amount and proportion of the immobilized 15 N to those of total N or microbial biomass N in soils were determined for the topsoil samples (0-10 cm layer). The amounts of both microbial biomass N and total immobilized 15 N in soil were highest in the Pig Compost Plot. Although the amount of microbial biomass N was comparable to the amount of immobilized 15 N-labeled fertilizer in soil, the amounts of 15 N-labeled fertilizer contained in the microbial biomass accounted for less than 10 % of the amount of total immobilized 15 N in soil. The ratio of the amount of 15 N-labeled fertilizer contained in biomass N to the total amount of biomass N was one order to magnitude higher than the ratio of the amount of immobilized 15 N-labeled fertilizer to the amount of total N in soil. No conspicuous changes in the amount of immobilized 15 N in soil were observed during the cultivation of winter wheat except for the Pig Compost Plot. No significant correlation was recognized between the amount of 15 N-labeled fertilizer contained in microbial biomass before wheat cultivation and that of 15 N-labeled fertilizer absorbed by wheat, indicating that microbial N immobilized during the growth period of the former crop (maize) was not a significant source of N for the latter

  7. Granular model, percolation-resistivity, ESR and elastic modulus of carbonaceous materials application to the babassu endocarp heat treated up to 22000C

    International Nuclear Information System (INIS)

    Emmerich, F.G.

    1987-01-01

    A microscopic model (granular model) is presented to study heat treated carbons. A granular structure is defined in the carbon matrix, composed of turbostratic graphite-like microcrystallites, cross-linkings and micropores. A general expression is developed to calculate the volume fraction X of the conducting phase of the granular structure as a function of structural parameters obtained from X-ray diffraction small angle X-ray scattering. The granular model and the percolation theory are used to explain the electrical resistivity behaviour with the heat treatment temperature (HTT), where X is the fundamental parameter. An electron spin resonance (ESR) study of the low and high HTT ranges is presented, including the transition range (700-1300 0 C). The elucitation of the spin center nature in this range and the liking with the two adjacent ranges has been pursued. An expression to calculate the elastic modulus (Young's modulus), based on the microscopic granular model with the fundamental participation of the cross-linkings, is derived to account for the behavior of the modulus with the HTT. The granular model with the expression of X, the percolation-resistivity theory, the ESR study, and the expression of the elastic modulus are applied to the babassu endocarp carbon heat treated up to 2200 0 C. This material can be classified as a tipical non-graphitic carbon, being useful to search the validity of the model and the proposed expressions. It is observed that the theoretical expressions describe with reasonable accuracy the respective experimental behaviours. The measurements of physical and chemical parameters of the babassu endocarp treated up to 2200 0 C area also included. (author) [pt

  8. Effect of Application of Nitrogen, Phosphorus and Organic Fertilizers on Yield and Yield Components of Bean (Phaseolus vulgaris L. in Lahijan, Northern Iran

    Directory of Open Access Journals (Sweden)

    K. Mansour Ghanaei Pashaki

    2017-02-01

    Full Text Available In order to study the effect of application of nitrogen, phosphorus and biologic fertilizers on yield and yield components of native bean, an experiment was conducted as factorial in randomized complete block design with three replications in Lahijan, northern Iran in 2013. Treatments consisted of chemical nitrogen fertilizer (0, 60 and 120 kg ha-1 urea, chemical phosphorus fertilizer (0, 40 and 80 kg ha-1 P2O5 and mixture of rhizobium, bacillus and pseudomonas biofertilizers (application and on application. The maximum and minimum seed yields (1556 kg ha-1and 451 kg ha-1 were obtained at the presence of 120 kg ha-1 urea with 80 kg ha-1 P2O5 and control (no fertilizers, respectively. The results showed that seed yield was significantly affected by interactions of nitrogen and phosphorus, and phosphorus with bio-fertilizers. The triple interaction effect of nitrogen, phosphorus and biofertilizers was significant on pod number per plant, seed number per pod, seed number per plant and 100 seed weight. The maximum pod number per plant, seed number per pod and 100 seed weight were found in interaction of 120 kg ha-1 urea and 40 kg ha-1 P2O5 with biological fertilizers. Overall, it seems that application of biological phosphorus with both N and P chemical fertilizers is more beneficial to bean; however, the present one-year study needs to be continued in years ahead to ascertain our results.

  9. A study of effect of fertilizer application methods on uptake of N and P by rape using tracer technique

    International Nuclear Information System (INIS)

    Zhang Qinzheng

    1995-01-01

    Pot experiments were conducted to investigate the effect of application method of urea and placement of phosphates on uptake and utilization of N and P from fertilizer by rape. 15 N-urea was applied at bolting and flowering stages by surface broadcast (B), 1% solution (J) and surface broadcast followed by watering (BJ). Recoveries of applied N from mature plants were 24.44%, 32.15% and 27.38% respectively, and utilization of urea-N by seeds were 13.11%, 21.77% and 15.94% respectively. 32 P-Ca(H 2 PO 4 ) 2 was applied at seedling stage and the labelled fertilizer was placed in band with 2 cm and 4 cm depth and hole with 4 cm depth, respectively. 32 P absorbed by plants 83 days after labelling were 7.04%, 8.24% and 6.56 respectively

  10. Increasing Growth and Yield of Upland Rice by Application of Vesicular Arbuscular Mycorrhizae and Potassium Fertilizer

    Directory of Open Access Journals (Sweden)

    Dedi Natawijaya

    2012-01-01

    Full Text Available Field experiment with a split plot design has been carried out in order to assess the growth characteristics andyields, and effectiveness of MVA upland rice which were given potassium fertilizer in two growing seasons. MVAinoculation consisted of three treatments (without MVA, Glomus sp. and Gigaspora sp. while potassium fertilizerconsisted of five levels (0, 12.5, 25, 37.5, and 50 kg ha-1 K. The results showed that plant growth variable which wasinoculated by MVA at any levels of K fertilizer was higher in the dry season than that in the wet season, whereas theopposite occurred for net assimilation rate. Potassium content of leaf tissue, shoot/root ratio, and grain weight perhill was determined and mutually dependent on genus MVA, dosages of K fertilizer, and growing season. Harvestindex and grain dry weight per hill were influenced by the growing season and the genus MVA but the effect did notdepend on each other. At all dosages of K fertilizer and any MVA genera, Gigaspora sp. inoculation was better thanthat of Glomus sp. Dry weight of grains per hill was affected by the contribution of grain content per hill, weight of1000 grains and number of productive seedlings per hill. The optimum dosage of K fertilizer in the dry season was32.4 kg ha-1 K with grain yield 3.12 Mg ha-1 for inoculation of Gigaspora sp., whereas the optimum dosage in the wetseason was 34.2 kg ha-1 K for the treatment Glomus sp. inoculation with Gigaspora sp. in the wet season did notreach dosages of optimum K fertilizer.

  11. A novel mobile dual-wavelength laser altimetry system for improved site-specific Nitrogen fertilizer applications

    Science.gov (United States)

    Eitel, J.; Magney, T. S.; Vierling, L. A.; Brown, T. T.; Huggins, D. R.

    2012-12-01

    Reducing fertilizer inputs while maintaining yield would increase farmer's profits and similarly lessen the adverse environmental effects of production agriculture. The development of technologies that allow precise, site-specific application of Nitrogen (N) fertilizer has thus been an important research goal over the past decades. Remote sensing of foliar crop properties and function with tractor-mountable optical sensors has thought to be useful to optimize N fertilizer applications. However, on-the-go sensing of foliar crop properties and function has proven difficult, particularly during early crop growth stages when fertilizer decisions are often made. This difficulty arises from the fact that the spectral signal measured by on-the-go sensors is dominated by soil reflectance during early crop growth stages. Here, we present the basic principles behind a novel, dual-wavelength, tractor mountable laser altimetry system that measures the laser return intensity of the reflected green and red laser light. The green (532 nm) and the red (660 nm) wavelength combination allows calculation of a modified Photochemical Reflectance Index (mPRI) that have shown to be sensitive to both crop function and foliar chemistry. The small field of view of the laser points (diameter: 4 mm) combined with its high sampling rate (1000 points sec-1) allows vegetation returns to be isolated from ground returns by using simple thresholds. First tests relating foliar N of winter wheat (Triticum aestivum L.) with laser derived mPRI are promising (r2 = 0.72). Further research is needed to test the relationship between laser derived spectral indices and crop function.

  12. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration

    Directory of Open Access Journals (Sweden)

    Sonia Chamizo

    2018-06-01

    Full Text Available Cyanobacteria are ubiquitous components of biocrust communities and the first colonizers of terrestrial ecosystems. They play multiple roles in the soil by fixing C and N and synthesizing exopolysaccharides, which increase soil fertility and water retention and improve soil structure and stability. Application of cyanobacteria as inoculants to promote biocrust development has been proposed as a novel biotechnological technique for restoring barren degraded areas and combating desertification processes in arid lands. However, previous to their widespread application under field conditions, research is needed to ensure the selection of the most suitable species. In this study, we inoculated two cyanobacterial species, Phormidium ambiguum (non N-fixing and Scytonema javanicum (N-fixing, on different textured soils (from silt loam to sandy, and analyzed cyanobacteria biocrust development and evolution of physicochemical soil properties for 3 months under laboratory conditions. Cyanobacteria inoculation led to biocrust formation in all soil types. Scanning electron microscope (SEM images showed contrasting structure of the biocrust induced by the two cyanobacteria. The one from P. ambiguum was characterized by thin filaments that enveloped soil particles and created a dense, entangled network, while the one from S. javanicum consisted of thicker filaments that grouped as bunches in between soil particles. Biocrust development, assessed by chlorophyll a content and crust spectral properties, was higher in S. javanicum-inoculated soils compared to P. ambiguum-inoculated soils. Either cyanobacteria inoculation did not increase soil hydrophobicity. S. javanicum promoted a higher increase in total organic C and total N content, while P. ambiguum was more effective in increasing total exopolysaccharide (EPS content and soil penetration resistance. The effects of cyanobacteria inoculation also differed among soil types and the highest improvement in soil

  13. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review.

    Science.gov (United States)

    Silva, R V; de Brito, J; Lynn, C J; Dhir, R K

    2017-10-01

    This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Controlling wave propagation through nonlinear engineered granular systems

    Science.gov (United States)

    Leonard, Andrea

    We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave

  15. Effects of cutting frequency and fertilizer-N application on growth ...

    African Journals Online (AJOL)

    N rates on growth and production of guinea grass (Panicum maximum Jacq). The experiment was conducted in Nsukka, Nigeria. Treatments comprised four levels of fertilizer N (0, 150, 300 and 450 kg N ha- 1) and four cutting intervals (3, 6, ...

  16. Application technique affects the potential of mineral concentrates from livestock manure to replace inorganic nitrogen fertilizer

    NARCIS (Netherlands)

    Klop, G.; Velthof, G.L.; Groenigen, van J.W.

    2012-01-01

    It has been suggested that mineral concentrates (MCs) produced from livestock manure might partly replace inorganic N fertilizers, thereby further closing the nitrogen (N) cycle. Here, we quantified nitrogen use efficiency (NUE) and N loss pathways associated with MCs, compared with inorganic

  17. Crown characteristics of juvenile loblolly pine 6 years after application of thinning and fertilization

    Science.gov (United States)

    Shufang Yu; Jim L. Chambers; Zhenmin Tang; James P. Barnett

    2003-01-01

    Total foliage dry mass and leaf area at the canopy hierarchical level of needle, shoot, branch and crown were measured in 48 trees harvested from a 14-year-old loblolly pine (Pinus taeda L.) plantation, six growing seasons after thinning and fertilization treatments. In the unthinned treatment, upper crown needles were heavier and had more leaf area...

  18. Reducing rice field algae and cyanobacteria abundance by altering phosphorus fertilizer applications

    Science.gov (United States)

    In California’s water seeded rice systems algal/cyanobacterial biomass can be a problem during rice establishment. Algal/cyanobacterial growth may be stimulated by phosphorus (P) additions in freshwater habitats, so we set up experiments to evaluate the effects of fertilizer P management on algal/cy...

  19. Foliar and soil application of 15N-labelled fertilizers in the cultivation of common bean and soybean

    International Nuclear Information System (INIS)

    Papanicolaou, E.P.; Skarlou, V.D.; Apostolakis, C.G.; Katranis, N.

    1979-01-01

    In two field experiments (one with beans and one with soybeans) during 1977, the influence of soil application of different nitrogen fertilizers and also of foliar application of the Hanway nutrient solution (N-P-K-S) on nitrogen fixation, grain yield and fertilizer utilization was studied. The nodule data for soybeans indicated that urea applied as starter, topdress or foliar spray adversely affected nodule number and weight. Starter (NH 4 ) 2 SO 4 had an effect similar to urea, while starter NH 4 NO 3 had slight or no adverse effect. Use of (NH 4 ) 2 SO 4 or NH 4 NO 3 in the Hanway solution had a strong adverse effect. Yield data of the soybean experiment indicated that urea, applied as starter or starter plus topdress, had no essential effect while foliar spray showed a clear adverse effect on the grain yield of soybean-nod. When (NH 4 ) 2 SO 4 or NH 4 NO 3 were used in the foliar spray, the adverse effect was more evident. Non-nod soybean showed slight yield response to topdress N and significant positive response to Hanway foliar spray. In the bean experiment some evidence of positive response to topdress N plus Hanway foliar spray was observed in the non-nod crop, but it was not significant. The utilization coefficient of the applied fertilizers varied with the treatments. The highest utilization coefficient (50-70%), for both experiments, was observed when urea was applied as foliar spray. Application of urea as starter gave low utilization while topdress application gave high utilization in the soybean experiment and low in that of common bean. Under the experimental conditions starter urea was better utilized than starter ammonium sulphate or nitrate. (author)

  20. Soil Chemical Properties and Nutrient Uptake of Cocoa as Affected by Application of Different Organic Matters and Phosphate Fertilizers

    Directory of Open Access Journals (Sweden)

    Sugiyanto Sugiyanto

    2008-07-01

    Full Text Available Effort repair of land quality better be done by simultan namely with application of organic matters and inorganic fertilization. The objective of this research is to study the effect of varied organic matters source and phosphate fertilizers on the chemicals soil characteristic and cocoa nutrient uptake. The experiment was laid experimentally in split-plot design and environmentally in randomized complete block design. The main plot was source of P consisted of, control, SP 36 and rock phosphate in dosage of 200 mg P2O5 per kg of air dry soil. Source of organic matter as sub-plot consisted of control (no organic matter, cow dung, cocoa pod husk compost and sugar cane filter cake, each in dosage of 2.5 and 5.0%. Result of this experiment showed application of cow dung, cocoa pod husk compost and sugar cane filter cake increased content of C, N, Ca exchangeable, Fe available, and pH in soil, and SP 36 increased availability of P in soil. Application of sugar cane filter cake increased N, K, Ca, Mg, and SO4 uptake but did not increase Cl uptake, application of cow dung in dosage 5% increased N, K, and Cl uptake and cocoa pod husk compost dosage 5% increased N and K uptake of cocoa. SP 36 increased Mg uptake of cocoa but rock phosphate did not increase it. They were not interaction between organic matters and phosphate fertilizers to nutrient uptake of cocoa. Nutrient soil content as affected by organic matters correlated with nutrient uptake of cocoa.Key words : soil chemical properties, nutrient uptake, cocoa, organic matter, phosphate fertlizers.

  1. Distrofia corneal granular

    Directory of Open Access Journals (Sweden)

    Alexeide de la C Castillo Pérez

    Full Text Available Las distrofias corneales constituyen un conjunto de enfermedades que presentan, en su mayoría, una baja incidencia y se caracterizan por acúmulo de material hialino o amiloide que disminuyen la transparencia corneal. La distrofia granular es una enfermedad autosómica dominante que presenta opacidades grises en el estroma superficial central de la córnea y se hacen visibles en la primera y segunda décadas de la vida, lo que provoca disminución de la visión más significativa cerca de los 40 años de edad. Presentamos dos casos clínicos de distrofia granular en pacientes hermanos de diferentes sexos, quienes acudieron a la consulta y refirieron visión nublada. El estudio de la historia familiar nos ayuda en el correcto diagnóstico y la biomicroscopia constituye el elemento más importante.

  2. Heavy Metal Leaching as Affected by Long-Time Organic Waste Fertilizer Application.

    Science.gov (United States)

    Lekfeldt, Jonas Duus Stevens; Holm, Peter E; Kjærgaard, Charlotte; Magid, Jakob

    2017-07-01

    The recycling of urban waste products as fertilizers in agriculture may introduce contaminants such as heavy metals into soil that may leach and contaminate groundwater. In the present study, we investigated the leaching of heavy metals from intact soil cores collected in the long-term agricultural field trial CRUCIAL. At the time of sampling, the equivalent of >100 yr of urban waste fertilizers following Danish legislation had been applied. The leaching of Cu was significantly increased in the treatments receiving organic waste products compared with the unfertilized control but remained below the permissible level following Danish drinking water guidelines. The leaching of Cu was controlled primarily by the topsoil Cu content and by the leaching of dissolved organic carbon (DOC) but at the same time significantly correlated with leaching of colloids in soils that had not received fertilizer or had received an organic fertilizer with a low concentration of Cu. The leaching of Zn, Cd, and Co was not significantly increased in urban waste-fertilized treatments. The leaching of Mo was elevated in accelerated waste treatments (both agricultural and urban), and the leaching of Mo was linked to the leaching of DOC. Since leaching of Cr and Pb was strongly linked to the level of colloid leaching, leaching of these metals was reduced in the urban waste treatments. Overall, the results presented should not raise concern regarding the agricultural use of urban waste products in agriculture as long as the relevant guidelines are followed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Application of intracytoplasmic sperm injection (ICSI) for fertilization and development in birds.

    Science.gov (United States)

    Shimada, Kiyoshi; Ono, Tamao; Mizushima, Shusei

    2014-01-15

    Intracytoplasmic sperm injection (ICSI) technology in birds has been hampered due to opacity of oocyte. We developed ICSI-assisted fertilization and gene transfer in quail. This paper reviews recent advances of our ICSI experiments. The oocyte retrieved from the oviduct and a quail sperm was injected into the oocyte under a stereomicroscope. The oocyte was cultured for 24h at 41°C under 5% CO2 in air. The fertilization and development was assessed by microscopic observation. The fertility rate ranged 12-18% and development varied from stage II to V in trials. To improve the fertility rate, phospholipase C (PLC) zeta was injected with a sperm. It was increased to 37-50%. Furthermore, injection of inositol trisphosphate increased to over 85%. Quail oocyte can be fertilized with chicken sperm and so can testicular elongated spermatid. To extend embryonic development, chicken eggshell was used as a surrogate culture at 37°C after the 24h incubation at 41°C under 5% CO2 in air. It survived up to 2days thereafter. Finally, gene transfer was attempted in quail egg. The sperm membrane was disrupted with Triton X-100 (TX-100) and was injected with PLCzeta cRNA and enhanced green fluorescent protein (EGFP) gene in oocyte. The GFP expression was evaluated at 24h incubation at 41°C under 5% CO2 in air in the embryos. While the expression was not detected in the control oocytes, the experimental treatment induced blastoderm development (44%) of the oocytes and 86% of blastoderm showed fluorescent emission. In addition, PCR analysis detected EGFP fragments in 50% of GFP-expressing blastoderm. Our ICSI method may be the first step toward the production of transgenic birds. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Nitrogen Fertilizer Sources and Application Timing Affects Wheat and Inter-Seeded Red Clover Yields on Claypan Soils

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2014-11-01

    Full Text Available Controlled-release N fertilizer, such as polymer-coated urea (PCU, may be a fall N management option for wheat (Triticum aestivum L. grown in poorly-drained claypan soils. Field research evaluated (1 urea release from fall-applied PCU in 2006 and 2007; (2 broadcast fall-spring split (25%:75% of N sources; and (3 a single fall (100% application of PCU, urea, urea plus NBPT (N-(n-butyl thiophosphoric triamide] (U + NBPT, ammonium nitrate (AN, or urea ammonium nitrate (UAN at 0, 56, 84, and 112 kg·N·ha−1 on wheat yield, wheat biomass, N uptake by wheat, and frost-seeded red clover (FSC (Trifolium pratense L. forage yield (2004–2007. PCU applied in fall released less than 30% urea by February. Urea released from PCU by harvest was 60% and 85% in 2006 and 2007, respectively. In poorly-drained soils, wheat yields ranked PCU > AN > U + NBPT > urea ≥ UAN over the rates evaluated for fall-only application. PCU was a viable fall-applied N source, with yields similar to or greater than urea or U + NBPT split-applied. Split-N applications of AN, urea, UAN, and U + NBPT generally resulted in greater wheat yields than a fall application. Enhanced efficiency fertilizers provide farmers with flexible options for maintaining high yielding production systems.

  5. Application of the neutron irradiator with AmBe sources for inorganic elements in commercial fertilizers determination

    International Nuclear Information System (INIS)

    Madi Filho, Tufic; Armelin, Maria Jose Aguirre; Fulas, Paulo Marcelo Marangon; Figueira, Rubens Cesar Lopes; Trevizam, Anderson Ricardo

    2005-01-01

    The rational use of fertilizers, for the soil fertility correction, contributes to the increase of agricultural production, using the same areas previously available. The quality of products could be improved with reduced costs. Therefore, knowledge of the chemical characteristics of the correctives used is required to streamline the application and avoid excesses or deficiencies. The studied characteristics are generally limited to the essential nutrients for the nutrition of plants and animals, e.g.: Mn, Zn, P, K, Cu and those known toxic, such as: As, Cd, Hg and Pb. Neutron activation analysis (NAA) is a highly sensitive non destructive technique, for the determination of the elemental composition in samples. It has been particularly useful in the simultaneous determination of inorganic elements in complex samples of several kinds. Several analysis methods for activation are used, such as: comparative and absolute. Commercial fertilizers were analyzed applying the absolute and comparative methods. Using the absolute method, samples were submitted to neutron flux generated by an Irradiator with two AmBe sources. The obtained results were compared with those obtained by the comparative method using neutrons generated in the IEA-R1 Reactor. (author)

  6. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa).

    Science.gov (United States)

    Zhang, Wujun; Wu, Longmei; Ding, Yanfeng; Yao, Xiong; Wu, Xiaoran; Weng, Fei; Li, Ganghua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2017-09-01

    Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.

  7. Variation of natural 15N abundance of crops and soils in Japan with special reference to the effect of soil conditions and fertilizer application

    International Nuclear Information System (INIS)

    Yoneyama, Tadakatsu; Kouno, Kazumi; Yazaki, Jinya.

    1990-01-01

    The natural 15 N abundance (δ 15 N) of the crops subjected to long-term fertilizer treatments under paddy and upland conditions in the different experimental stations throughout Japan were analyzed. The δ 15 N values of the grains of paddy rice which were +6.3 per mille on the average in the fields without application of chemical fertilizers decreased by the treatment with chemical fertilizers. The average δ 15 N values of the upland crops were lower than those of paddy rice without application of N fertilizers. The δ 15 N values of upland crops decreased with the dose of chemical fertilizer N, but increased with the application of composts containing animal feces. The pot experiments using three soils showed that the δ 15 N values of paddy rice were higher than those of upland rice and sorghum and that these values were comparable to the δ 15 N values of ammonium and nitrate produced in the incubated soils, respectively. The δ 15 N values of fertilizer N absorbed by paddy rice were higher than those of fertilizer N, whereas the δ 15 N values of the fertilizer N in upland rice and sorghum were increased in the alluvial soils but decreased in Andosols as compared to those of fertilizer N applied. The δ 15 N values of the Andosols in Japan showed small variations, with an average value of +6.5 per mille, whereas those of alluvial soils in Japan showed large variations with an average value lower than that of Andosols. (author)

  8. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  9. Influence of the time of application of 32P triple Superphosphate on the efficiency of the phosphate fertilization and the productivity of the potato (Solanum Tuberosum L.)

    International Nuclear Information System (INIS)

    Bastidas, O.G.; Alvarez, A.L.; Urquiaga, S.

    1986-01-01

    A study was performed on a soil derived from volcanic ash (Andic Humitropept), in Pasto (Narino), Colombia, to investigate the influence of additions of 100 and 200 Kg P 2 O 5 ha -1 , at two application times (planting and 30 days after emergence - DAE), on the fertilizer use efficiency and productivity of potato (Solanum tuberosum L.) cv. Pardo Pastusa. At planting the phosphorus was applied in a continuous row in the furrow, and at 30 DAE at one side of the plant row, and immediately covered with soil from both sides of the furrow. The fertilizer used was 32 P labelled triple superphosphate (143.59 μ Ci.g -1 p -1 . It was found that: a) the phosphorus fertilization significantly increased (P -1 ) and the accumulation (from 8 to 17.8 kg P ha -1 ) by the tubers, but there was no significant effect of the different rates or times of the fertilizer application; b) the accumulation of P by the plant accompanied the accumulation of plant dry matter; c) at 75 DAE the fraction of fertiliser P in the plant shoot in the treatment fertilized at 30 DAE (52.1%) was significantly higher than that fertilized at planting (21.8%), and this corresponded to a P fertilizer use efficiency of 2.4 and 0.82, respectively

  10. Granular metamaterials for vibration mitigation

    Science.gov (United States)

    Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.

    2013-09-01

    Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.

  11. Fracture surfaces of granular pastes.

    Science.gov (United States)

    Mohamed Abdelhaye, Y O; Chaouche, M; Van Damme, H

    2013-11-01

    Granular pastes are dense dispersions of non-colloidal grains in a simple or a complex fluid. Typical examples are the coating, gluing or sealing mortars used in building applications. We study the cohesive rupture of thick mortar layers in a simple pulling test where the paste is initially confined between two flat surfaces. After hardening, the morphology of the fracture surfaces was investigated, using either the box counting method to analyze fracture profiles perpendicular to the mean fracture plane, or the slit-island method to analyze the islands obtained by cutting the fracture surfaces at different heights, parallel to the mean fracture plane. The fracture surfaces were shown to exhibit scaling properties over several decades. However, contrary to what has been observed in the brittle or ductile fracture of solid materials, the islands were shown to be mass fractals. This was related to the extensive plastic flow involved in the fracture process.

  12. Response of Basil (Ocimum basilicum L. to Type and Amount of Organic Fertilizer Applications in Intercropping with Sesame (Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    Alaleh Mottaghian

    2016-03-01

    Full Text Available To investigate the effect of organic fertilizer applications on yield and competition indices of basil (Ocimum basilicum L. in different combinations of intercropping with sesame (Sesamum indicum L., an experiment was carried out in split plot based on randomized complete block design with three replicates in 2011. The main plots were six fertilizer treatments consisted of 20 and 40 Mg ha-1 of vermicompost and sewage sludge plus 50% recommended chemical fertilizer, chemical fertilizer alone (100 kg ha-1 of urea, triple super phosphate and potassium sulfate and control (no fertilizer application. Subplots were different planting ratios (sole cropping of basil and sesame, 75% + 25%, 50% + 50 %, 25% + 75% of basil+sesame. In this experiment, the 25% basil+75% sesame and 50% basil + 50%sesame under40 Mg. ha-1 of enriched sewage sludge application had the highest economical yield (up to 3097.47 kg ha-1 with a land equivalent ratio (up to 1.24. According to the aggressivity coefficient estimates of two plant species basil incombination of 25% basil + 75% sesame and sesame in 50% basil + 50% sesame and 75% basil + 25% sesame under organic fertilizer application would be dominant species competitave in ranges of 0.12 to 0.30 and 0.11 to 0.57, respectively.

  13. PHYSICAL ATTRIBUTES OF SOIL AFTER SWINE WASTEWATER APPLICATION AS COVER FERTILIZER ON MAIZE CROP AND BLACK OATS SEQUENCE

    Directory of Open Access Journals (Sweden)

    FÁBIO PALCZEWSKI PACHECO

    2017-01-01

    Full Text Available The rate of swine wastewater application (SW in agricultural production could result in the replacement of chemical fertilizers. However, SW destroys soil physical properties by decreasing pore bulk, which negatively affects both crop yield and development. In this context, this study aimed at monitoring the influence of swine wastewater as a cover fertilizer in maize and black oats in sequence on soil physical properties. Five application rates (0, 100, 200, 300 and 537 m3ha - 1 equivalent to 0, 11.2, 22.3, 33.5 and 60 kg ha-1 N, respectively, based on the average nitrogen concentration in SW were tested with four replications each. In the studied area, soil porosity, density, and water content, before maize sowing and at the end of the cycles of maize and black oats, were determined by the volumetric ring method. Data were submitted for regression analyses. There was a reduction in the macroporosity and total porosity of the soil when the SW application rate, before maize cultivation, was higher. The introduction of black oats helped to improve the physical quality of the soil and reduced the compaction of the surface layer from 0 to 15 cm and 100 to 300 m3 ha-1 SW rates.

  14. Mathematical models of granular matter

    CERN Document Server

    Mariano, Paolo; Giovine, Pasquale

    2008-01-01

    Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.

  15. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils.

    Science.gov (United States)

    Gimeno-García, E; Andreu, V; Boluda, R

    1996-01-01

    The concentrations of Cd, Co, Cu, Ni, Pb, Zn, Fe and Mn in different inorganic fertilizers (urea, calcium superphosphate, iron sulphate and copper sulphate) and in pesticides (two herbicides and one fungicide) are evaluated together with the contribution of these metals in soils from their use. The study was made in rice farming areas to the north of Albufera Natural Park (Valencia, Spain). The results obtained show that superphosphate is the fertilizer that contains the highest concentrations of Cd, Co, Cu and Zn as impurities. Copper sulphate and iron sulphate have the most significant concentrations of Pb, and are the only fertilizers in which Ni was detected. The three pesticides analysed show similar Cd contents and the highest levels of Fe, Mn, Zn, Pb and Ni are found in the herbicides. The most significant additions of heavy metals as impurities that soil receives from agricultural practices, are Mn, Zn, Co and Pb. Three contamination indexes have been applied to provide a basis for comparison of potential heavy metal toxicity. These results denote the potential toxicity of heavy metals in the studied soils.

  16. Applications of Fertilizer Cations Affect Cadmium and Zinc Concentrations in Soil Solutions and Uptake by Plants

    DEFF Research Database (Denmark)

    Lorenz, S. E.; Hamon, R. E.; McGrath, S. P.

    1994-01-01

    A pot experiment was conducted to study changes over time of Cd and Zn in soil solution and in plants. Radish was grown in a soil which had been contaminated with heavy metals prior to 1961. Constant amounts of a fertilizer solution (NH4N03, KN03) were added daily. Soil solution was obtained......-metal (Cd, Zn) ions in soil solutions and a decrease in soil pH, probably due to ion-exchange mechanisms and the dissolution of carbonates. Uptake of Cd and Zn into leaves was correlated with the mass flow of Cd (adjusted r2 = 0.798) and Zn (adjusted r2=0.859). Uptake of K, Ca and Mg by the plants...... at intervals by displacement with water. The cumulative additions of small amounts of fertilizers were made equal to the plants' requirements at the final harvest but were found to exceed them during most of the experiment. Excess fertilizers caused substantial increases of major (K, Ca, Mg) and heavy...

  17. Optimizing of Nitrogen, Phosphorus and Cattle Manure Fertilizers Application in Winter Wheat Production Using Response-Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    M. jahan

    2016-02-01

    Full Text Available Introduction It is estimated that up to 50 percent of applied nitrogen would drift from agricultural systems as gaseous compounds and other types of activated nitrogen (27 and 46. When applied in high amounts, up to 90% of phosphorous fertilizers could be fixed in soil together with metallic elements as insoluble forms leading to further phosphorus pollution (1. In many crops, low absorption efficiency of fertilizers is the main reason of losses through leaching, volatilization and diffusion of soluble chemical fertilizers which easily released to soil and air. It has been reported that between 18-41 percent of applied nitrogen retain in soil after crop harvesting (Fageria, 2014. Nitrogen losses happens in different ways as ammonium volatilization in lime soils (10-70%, denitrification (9-22% and leaching (14-40% (13. Chemical fertilizers are widely used by farmers due to low costs, easy availability and easy applicability. Chemical fertilizers increase the rate of organic matter decomposition in soil, thus increase the amount of greenhouse gasses such as N, CO2 released in air which aggravate global warning and climate change (2 This research was aimed to emphasize on optimizing of chemical and organic fertilizer use in winter wheat production in Iran, study the trend of change in different N, P and cattle manure levels and their effects on wheat characteristics and its changes trend also, comparison of the effectiveness of manure by chemical fertilizer related to NUE and yield increase of wheat. Materials and Methods By conducting Box-Behnken design, it is possible to obtain the most information from the least operational practices due to distribution of experimental points through treatments confined. The design points were defined based on low and high levels of N (0, 300 kg ha-1, P (0, 200 kg ha-1 and manure (0, 30 tones ha-1 as shown in Table 2. Manure was analyzed for N, P and K content (1.18% of N, 0.29% of P and 1.04% of K. The high and

  18. Productivity analysis of sesame (Sesamum indicum L.) production under organic and inorganic fertilizers applications in Doma Local Government Area, Nasarawa State, Nigeria

    OpenAIRE

    Umar, H. S.; Okoye, C. U.; Agwale, A. O

    2011-01-01

    The study assessed productivity levels of sesame farms under organic and inorganic fertilizers applications in Doma Local Government Area of Nasarawa State. Multi-stage random sampling was used in selecting 96 sesame farmers; made up of 48 organic and 48 inorganic fertilizers users. Data were collected through structured questionnaire and analyzed using Total Factor Productivity Analysis, OLS Regression Analysis and Gross Margin Analysis. Results show that sesame farmers who applied inorganic...

  19. Granular flow through an aperture: influence of the packing fraction

    OpenAIRE

    Alejandra Aguirre , Maria; De Schant , Rosario; Géminard , Jean-Christophe

    2014-01-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g. silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains a...

  20. Self-assembly and speed distributions of active granular particles

    Science.gov (United States)

    Sánchez, R.; Díaz-Leyva, P.

    2018-06-01

    The relationship between the dynamics of self-propelled systems and the self-assembly of structured clusters are studied via the experimental speed distributions of submonolayers of self-propelled granular particles. A distribution developed for non-self-propelled granular particles describes the speed distributions remarkably well, despite some of the assumptions behind its original derivation not being applicable. This is explained in terms of clustering and dissipation being the key phenomena governing this regime.

  1. Nitrification and N2O production processes in soil incubations after ammonium fertilizer application at high concentrations

    Science.gov (United States)

    Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Flessa, Heinz

    2016-04-01

    High concentrations of ammonium as they occur, e.g., after point-injection of ammonium fertilizer solution according to the CULTAN fertilization technique may retard nitrification. Potential advantages in comparison to conventional fertilization include a higher N efficiency of crops, reduced nitrate leaching, and lower N2O and N2 emissions. Dynamics of nitrification due to plant uptake and dilution processes, leading to decreasing ammonium concentrations in fertilizer depots, has only poorly been studied before. Furthermore, there is little information about the relative contribution of different N2O production processes under these conditions. To elucidate the process dynamics a laboratory incubation study was conducted. After fertilization with ammonium sulfate at 5 levels (from 0 to 5000 mg NH4+-N kg-1; 20mg NO3--N kg-1 each), sandy loam soil was incubated in dynamic soil microcosms for 21 days. N2O, CH4 and CO2 fluxes as well as isotope signatures of N2O and, at three dates, NO3- and NH4+ were measured. To identify N2O production processes, acetylene inhibition (0.01 vol.%), 15N tracer approaches, and isotopomer data (15N site preference and δ18O) were used. N2O emissions were highest at 450mg NH4+-N kg-1 and declined with further increasing concentrations. At 5000 mg NH4+-N kg-1 nitrification was completely inhibited. However, approximately 90% of N2O production was inhibited by acetylene application, and there was no change in the relative contribution of nitrification and denitrification to N2O production with N level. Applying the non-equilibrium technique to our 15N tracer data revealed heterogeneous distribution of denitrification in soil, with at least two distinct NO3- pools, and spatial separation of NO3- formation and consumption. In comparison with the acetylene inhibition and 15N tracer approaches the results of the isotopomer approach were reasonable and indicated substantial contribution of nitrifier-denitrification (10-40%) to total N2O

  2. [Effect of Long-term Fertilizer Application on the Stability of Organic Carbon in Particle Size Fractions of a Paddy Soil in Zhejiang Province, China].

    Science.gov (United States)

    Mao, Xia-li; Lu, Kou-ping; Sun, Tao; Zhang, Xiao-kai; He, Li-zhi; Wang, Hai-long

    2015-05-01

    Effects of chemical fertilizers and organic manure on the soil organic carbon (SOC) content in particle size fractions of paddy soil were investigated in a 17-year long-term fertilization field experiment in Zhejiang Province, China. The inherent chemical composition of silt- and clay-associated SOC was evaluated with solid-state 13C-NMR spectroscopy. Compared to CK (no fertilizer treatment), NPKRS (NPK fertilizers plus rice straw) , NPKOM (NPK fertilizers plus organic manure) , NPK (NPK fertilizers) and OM (organic manure alone) treatments significantly (P fertilizers alone, combined application of organic amendments and NPK fertilizers facilitated the storage of newly sequestered SOC in silt- and clay-sized fractions, which could be more conducive to the stability of SOC. Based on 13C-NMR spectra, both silt and clay fractions were composed of Alkyl-C, O-alkyl-C, Aromatic-C and carbonyl-C. Changes in the relative proportion of different C species were observed between silt and clay fractions: the clay fraction had relatively more Alkyl-C, carbonyl-C and less O-alkyl-C, Aromatic-C than those in the silt fraction. This might be ascribed to the fact that the organic matter complexed with clay was dominated by microbial products, whereas the silt appeared to be rich in aromatic residues derived from plants. The spectra also showed that the relative proportion of different C species was modified by fertilization practices. In comparison with organic amendments alone, the relative proportion of Alkyl-C was decreased by 9.1%-11.9% and 13.7%-19.9% under combined application of organic amendments and chemical fertilizers, for silt and clay, respectively, and that of O-alkyl-C was increased by 2.9%-6.3% and 13.4%-22.1%, respectively. These results indicated that NPKOM and NPKRS treatments reduced the decomposition rate of SOC. The aromaticity, hydrophobicity and, hence, chemical recalcitrance of silt- and clay-associated SOC in the NPK fertilizer treatments were lower than

  3. Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant Coriandrum sativum L.

    Science.gov (United States)

    Oliveira, Rui S; Ma, Ying; Rocha, Inês; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The widespread use of agrochemicals is detrimental to the environment and may exert harmful effects on human health. The consumer demand for organic food plants has been increasing. There is thus a rising need for alternatives to agrochemicals that can foster sustainable plant production. The aim of this study was to evaluate the potential use of an arbuscular mycorrhizal (AM) fungus as an alternative to application of chemical fertilizer for improving growth performance of the medicinal and aromatic plant Coriandrum sativum. Plants were inoculated with the AM fungus Rhizophagus irregularis BEG163 and/or supplemented with a commercial chemical fertilizer (Plant Marvel, Nutriculture Bent Special) in agricultural soil. Plant growth, nutrition, and development of AM fungus were assessed. Plants inoculated with R. irregularis and those supplemented with chemical fertilizer displayed significantly improved growth performances when compared with controls. There were no significant differences in total fresh weight between plants inoculated with R. irregularis or those supplemented with chemical fertilizer. Leaf chlorophyll a + b (82%), shoot nitrogen (44%), phosphorus (254%), and potassium (27%) concentrations increased in plants inoculated with R. irregularis compared to controls. Application of chemical fertilizer inhibited root mycorrhizal colonization and the length of the extraradical mycelium of R. irregularis. Inoculation with R. irregularis was equally or more efficient than application of chemical fertilizer in promoting growth and nutrition of C. sativum. AM fungi may thus contribute to improve biologically based production of food plants and reduce the dependence on agrochemicals in agriculture.

  4. Using a Time Granularity Table for Gradual Granular Data Aggregation

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Pedersen, Torben Bach

    2010-01-01

    solution for data reduction based on gradual granular data aggregation. With the gradual granular data aggregation mechanism, older data can be made coarse-grained while keeping the newest data fine-grained. For instance, when data is 3 months old aggregate to 1 minute level from 1 second level, when data...... and improve query performance, especially on resource-constrained systems with limited storage and query processing capabilities. A number of data reduction solutions have been developed, however an effective solution particularly based on gradual data reduction is missing. This paper presents an effective...... is 6 months old aggregate to 2 minutes level from 1 minute level and so on. The proposed solution introduces a time granularity based data structure, namely a relational time granularity table that enables long term storage of old data by maintaining it at different levels of granularity and effective...

  5. Effects of Single and Combined Application of Organic, Biological and Chemical Fertilizers on Quantitative and Qualitative Yield of Coriander (Coriandrum sativum

    Directory of Open Access Journals (Sweden)

    M. Aghhavani Shajari

    2016-07-01

    Full Text Available Introduction: Medicinal plants were one of the main natural resources of Iran from ancient times. Coriander (Coriandrum sativum L. is from Apiaceae family that it has cultivated extensively in the world. Management and environmental factors such as nutritional management has a significant impact on the quantity and quality of plants. Application of organic fertilizers in conventional farming systems is not common and most of the nutritional need of plants supply through chemical fertilizers for short period. Excessive and unbalanced use of fertilizers in the long period, reduce crop yield and soil biological activity, accumulation of nitrates and heavy metals, and finally cause negative environmental effects and increase the cost of production. The use of bio-fertilizers and organic matter are taken into consideration to reduce the use of chemical fertilizers and increase the quality of most crops. Stability and soil fertility through the use of organic fertilizers are important due to having most of the elements required by plants and beneficial effects on physical, chemical, biological and soil fertility. Therefore, the aim of this research was to evaluate the effects of organic, biological and chemical fertilizers on quality and quantity characteristics of coriander. Materials and Methods: In order to study the effects of single and combined applications of organic, biological and chemical fertilizers on quantitative and qualitative characteristics of Coriander (Coriandrum sativum, an experiment was conducted based on a randomized complete block design with three replications and 12 treatments at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in - 2011. Treatments included: (1 mycorrhizae (Glomus mosseae (2 biosulfur (Thiobacillus sp., (3 chemical fertilizer (NPK, (4 cow manure, 5( vermin compost, 6( mycorrhizae + chemical fertilizer, 7( mycorrhizae + cow manure, 8( mycorrhizae + vermicompost, 9( biosulfur

  6. Granular corneal dystrophy

    OpenAIRE

    Castillo Pérez, Alexeide de la C; Vilches Lescaille, Daysi; Noriega, Justo Luis; Martínez Balido, Daneel; León Balbón, Bárbaro Ramón; León Bernal, Danysleidi

    2015-01-01

    Las distrofias corneales constituyen un conjunto de enfermedades que presentan, en su mayoría, una baja incidencia y se caracterizan por acúmulo de material hialino o amiloide que disminuyen la transparencia corneal. La distrofia granular es una enfermedad autosómica dominante que presenta opacidades grises en el estroma superficial central de la córnea y se hacen visibles en la primera y segunda décadas de la vida, lo que provoca disminución de la visión más significativa cerca de los 40 año...

  7. Sinking a Granular Raft

    Science.gov (United States)

    Protière, Suzie; Josserand, Christophe; Aristoff, Jeffrey M.; Stone, Howard A.; Abkarian, Manouk

    2017-03-01

    We report experiments that yield new insights on the behavior of granular rafts at an oil-water interface. We show that these particle aggregates can float or sink depending on dimensionless parameters taking into account the particle densities and size and the densities of the two fluids. We characterize the raft shape and stability and propose a model to predict its shape and maximum length to remain afloat. Finally we find that wrinkles and folds appear along the raft due to compression by its own weight, which can trigger destabilization. These features are characteristics of an elastic instability, which we discuss, including the limitations of our model.

  8. N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil

    International Nuclear Information System (INIS)

    Signor, D; Cerri, C E P; Conant, R

    2013-01-01

    Among the main greenhouse gases (CO 2 , CH 4 and N 2 O), N 2 O has the highest global warming potential. N 2 O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N 2 O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (São Paulo state) and Goianésia (Goiás state). In Piracicaba, N 2 O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha −1 of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianésia, N 2 O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha −1 . This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N 2 O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies. (letter)

  9. Effects of Corn Straw Returning and Nitrogen Fertilizer Application Methods on N2O Emission from Wheat Growing Season

    Directory of Open Access Journals (Sweden)

    XU Yu

    2015-12-01

    Full Text Available Based on a wheat field experiment, the effect of four treatments such as no-straw returning (SN, straw returning (SR, control release fertilizer application(SRC and nitrogen drilling(SRR on N2O emission was studied using the static chamber method and the gas chromatographic technique. The results indicated that the wheat field was the sources of N2O emission. The N2O emission peaks followed each time of fertilizer application and irrigation, and usually continued for 1~2 weeks. N2O emissions accounted for more than 40% of total emissions during the N2O emission peak. The amount of N2O emission during three growing stage of wheat from high to low was arranged in turn pre-wintering period, post-wintering period and wintering period. N2O emission could be increased by straw returning. Compared with SN, N2O emission could be enhanced by 48.6% under SR. Both SRC and SRR could decrease the N2O emission, increase wheat yield and economic benefit, especially the latter. Nitrogen drilling is a good method for yield increment and N2O abatement.

  10. Carbon Balance in an Irrigated Corn Field after Inorganic Fertilizer or Manure Application

    Science.gov (United States)

    Lentz, R. D.; Lehrsch, G. A.

    2014-12-01

    Little is known about inorganic fertilizer or manure effects on organic carbon (OC) and inorganic C (IC) losses from a furrow irrigated field, particularly in the context of other system C gains or losses. In 2003 and 2004, we measured dissolved organic and inorganic C (DOC, DIC), particulate OC and IC (POC, PIC) concentrations in irrigation inflow, runoff, and percolation waters (6-7 irrigations/y); C inputs from soil amendments and crop biomass; harvested C; and gaseous C emissions from field plots cropped to silage corn (Zea mays L.) in southern Idaho. Annual treatments included: (M) 13 (y 1) and 34 Mg/ha (y 2) stockpiled dairy manure; (F) 78 (yr 1) and 195 kg N/ha (y 2) inorganic N fertilizer; or (NA) no amendment--control. The mean annual total C input into M plots averaged 16.1 Mg/ha, 1.4-times greater than that for NA (11.5 Mg/ha) or F (11.1 Mg/ha), while total C outputs for the three treatments were similar, averaging 11.8 Mg/ha. Thus, the manure plots ended each growing season with an average net gain of 3.8 Mg C/ha (a positive net C flux), while the control (-0.5 Mg C/ha) and fertilizer (-0.4 Mg C/ha) treatments finished the season with a net C loss. Atmospheric CO2 incorporated into the crop biomass contributed 96% of the mean annual C input to NA and F plots but only 68% to M plots. We conclude that nutrient amendments substantially influence the short-term carbon balance of our furrow-irrigated system. Amendments had both direct and indirect influences on individual C components, such as the losses of DIC and POC in runoff and DOC in percolation water, producing temporally complex outcomes which may depend on environmental conditions external to the field.

  11. Effects of liquid fertilizer application on the morphology and outplanting success of container longleaf pine seedlings

    Science.gov (United States)

    D. Paul Jackson; R. Kasten Dumroese; James P. Barnett; William B. Patterson

    2010-01-01

    Of a range of fertilization rates (0.5, 1.0, 2.0, 3.0, and 4.0 mg nitrogen (N) per seedling per week) applied for 20 weeks, the 2.0-N and 3.0-N seedlings produced good root collar diameter (RCD) growth (6.9 and 7.1 mm, respectively) and needle length ≤ 30 cm. Root collar development did not differ significantly in seedlings receiving the 4.0-mg-N treatment from those...

  12. Spreading of a granular droplet

    Science.gov (United States)

    Clement, Eric; Sanchez, Ivan; Raynaud, Franck; Lanuza, Jose; Andreotti, Bruno; Aranson, Igor

    2008-03-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the``granular droplet'') and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  13. [Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat].

    Science.gov (United States)

    Zhao, Jun; Dong, Shu-ting; Liu, Peng; Zhang, Ji-wang; Zhao, Bin

    2015-08-01

    A field experiment was conducted using the winter wheat (Triticum aestivum) variety Shimai 15. The source of organic nitrogen was cow manure, and four fertilization treatments were included, i.e., no N fertilizer application, single application of urea, single application of cow manure, and mixed application of urea and cow manure. The effects of different applications of inorganic and organic nitrogen on canopy apparent photosynthesis (CAP), photosynthetic rate of flag leaves (Pn), leaf area index (LAI), florescence parameters and grain yield of winter wheat were determined. The results showed that urea had the largest effect on the early growth period, as at this stage the CAP, Pn and LAI of the single application of urea were the highest, which was followed by the mixed application and the single application of cow manure. However, 10 days after anthesis, the single application of cow manure and the mixed application delayed the leaf senescence process when compared with the single application of urea. This could be due to the two treatments having higher anti-oxidant enzyme activity and promoting a longer green leaf duration, which could maintain a higher photosynthetic capability. What' s more, the mixed application had a better performance and got the highest grain yield. Consequently, the mixed application of organic and inorganic fertilizers could delay leaf senescence and maintain a better canopy structure and higher photosynthesis capability at the late grain filling stage, which resulted in a higher grain yield.

  14. SOIL CHEMICAL PROPERTIES AND GROWTH OF SUNFLOWER (HELIANTHUS ANNUUS L. AS AFFECTED BY THE APPLICATION OF ORGANIC FERTILIZERS AND INOCULATION WITH ARBUSCULAR MYCORRHIZAL FUNGI

    Directory of Open Access Journals (Sweden)

    Apolino José Nogueira da Silva

    2015-02-01

    Full Text Available The use of organic fertilizers and the inoculation of mycorrhizal fungi in the cultivation of oil crops is essential to reduce production costs and minimize negative impacts on natural resources. A field experiment was conducted in an Argissolo Amarelo (Ultisol with the aim of evaluating the effects of fertilizer application and inoculation of arbuscular mycorrhizal fungi on the growth attributes of sunflower (Helianthus annuus L. and on soil chemical properties. The experiment was conducted at the Federal University of Rio Grande do Norte, Brazil, using a randomized block design with three replicates in a 4 × 2 factorial arrangement consisting of four treatments in regard to application of organic fertilizer (liquid biofertilizer, cow urine, mineral fertilizer, and unfertilized control and two treatments in regard to arbuscular mycorrhizal fungi (with and without mycorrhizal fungi. The results showed that the physiological attributes of relative growth rate and leaf weight ratio were positively influenced by fertilization, compared to the control treatment, likely brought about by the supply of nutrients from the fertilizers applied. The growth and productivity attributes were positively affected by mycorrhization.

  15. Novel Fabrication of Biodegradable Superabsorbent Microspheres with Diffusion Barrier through Thermo-Chemical Modification and Their Potential Agriculture Applications for Water Holding and Sustained Release of Fertilizer.

    Science.gov (United States)

    Feng, Diejing; Bai, Bo; Wang, Honglun; Suo, Yourui

    2017-07-26

    Synergistic utilization of water and fertilizer has vital contribution to the modern production of agriculture. This work reports on a simple and facile strategy to prepare biodegradable yeast/sodium alginate/poly(vinyl alcohol) superabsorbent microspheres with a diffusion barrier merit by thermo-chemical modification route. The integrated performances, including water absorbency, water retention, water evaporation ratio, leaching loss control, sustained-release behaviors, and degradation in soil, were systematically investigated. The results revealed that the modified microspheres were a triumphant water and fertilizer manager to effectively hold water and control the unexpected leakage of fertilizer for sustained release. Therefore, this work provides a promising approach to ameliorate the utilization efficiency of water and fertilizer in potential agriculture applications.

  16. Response of Artemisia annua L. to shade and manure fertilizer application in lowland altitude

    Science.gov (United States)

    Permana, H. H.; Widyastuti, Y.; Samanhudi; Yunus, A.

    2018-03-01

    Artemisia is a plant producing artemisinin substance which is the main compound in the treatment of malaria. Artemisia comes from China, usually grows wild in native habitats in the plains with an altitude of 1,000-1,500 meters above the sea level. Artemisia development efforts in Indonesia hampered by limited land with the required altitude due to their competition with vegetable crops. Based on this reason, this research is conducted to observe the growth of artemisia planted in lowland with the help of shade and manure. This study aims to determine the level of shade and best manure on the growth of Artemisia. Research conducted at the Laboratory of the Faculty of Agriculture UNS Jumantono using nested design with two factors, shade as main factor and manure fertilizer as sub factor. The data analysis used F test with confidence level of 5%, if significant, then continued with DMRT (Duncan Multiple Range Test). The results showed the treatment of shade gave no difference in growth within 50% shade, 75% shade as well as without shade treatment. Goat manure fertilizer gave the highest result and able to increase plant height, number of branches, flower weight and root volume.

  17. Effect of split n fertilizer application on physio-agronomic traits of wheat (triticum aestivum l.) under rainfed conditions

    International Nuclear Information System (INIS)

    Sohail, M.; Hussain, I.; Din, R.U.; Haider, S.; Abbas, A.; Qamar, M.; Noman, M.

    2013-01-01

    Low soil fertility is one of the main wheat yield limiting factors under rainfed conditions. Farmers usually apply full N dose at seeding. However, winter showers during vegetative growth period provide an opportunity to apply N in split doses. Study was conducted to find out appropriate N rate and application method to enhance wheat productivity. -1 Three N rates i.e., 60, 90, and 120 kg ha and three application methods i.e. full basal N dose at planting and N application in two and three equal split doses at tiller formation and stem elongation stages. Maximum grain yield (5.20 t ha/sup -1/) was achieved when N was applied at the rate 120 kg ha in three equal split doses at planting, tiller formation and stem elongation stages. N application in 2 and 3 split doses resulted in 25 - 50% grain yield advantage at all N rates as compared to single basal N dose. Split N application was associated with significant increase (P<0.05) in spikes m, 1000 grain weight and dry matter production. Split N application was also linked with better flag leaf chlorophyll retention and cooler crop canopies during grain filling stages which showed positive association with grain yield. (author)

  18. Aerofractures in Confined Granular Media

    Science.gov (United States)

    Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.

    2015-04-01

    We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image

  19. Effect of late-season nitrogen fertilization on grain yield and on flour rheological quality and stability in common wheat, under different production situations

    Directory of Open Access Journals (Sweden)

    Massimo Blandino

    2016-06-01

    Full Text Available The increasing demand for a high and homogeneous technological quality of common wheat (Triticum aestivum L. points out the necessity of improving wheat with by a higher protein (GPC and gluten content, strength of dough (W and dough stability. Among the current crop practices, late-season nitrogen (N fertilization, from heading to flowering, is generally considered the practice that has the most effects on the storage proteins and technological quality of the grain. In order to explore the influence late-season N application can have on the dough properties and on the formation of homogeneous lots in more detail, a research was set up between 2007 and 2013, over 6 growing seasons at different sites in North West Italy using the Bologna cultivar in each of the trials. Three different late-season N fertilization strategies were compared: T1, control without a late distribution of N; T2, foliar N fertilization at flowering; T3, top-dress granular soil fertilization at the beginning of heading. A randomized complete block experimental design with four replicates was adopted. The grain yield, GPC, W and P/L indexes were analyzed. Moreover, the rheological and enzymatic properties of the samples were studied using a Mixolab® analyser (Chòpin Technologies, Paris, France. Grain yield was found to be unaffected by the fertilization treatments, while the late N application (T2, T3 significantly increased GPC. Only the granular N fertilization (T3 increased the W index compared to T1, while the P/L index was not affected by any of the fertilization strategies. Furthermore, the T3 strategy was always more effective in reducing the variability of the W index than the T2 and the T1 strategies. Water absorption and dough development time were higher in T3, than in T1, while intermediate results were reached for T2. The effect of late-season N fertilization was also significant on the starch behaviour of the dough, as an increase in starch gelatinization and

  20. N-15-aided field experiments on evaluation of different methods of application of new slow-release nitrogen fertilizer for rice

    International Nuclear Information System (INIS)

    Yamada, Y.

    1979-07-01

    A series of experiments with flooded rice were carried out at Fukuoka site to compare the efficiency of a single deep application of briquette urea (BU), a slow release fertilizer, with that of broadcasted and incorporated conventional urea fertilizer with 2 top dressings, to compare the response curve for BU and conventional urea application practice, and to observe the influence of different geometrical placement patterns of BU on growth and N-utilization by rice. 15 N-labelled fertilizers were used in this study which supplements the INPUTS (Increasing Productivity Under Tight Supplies) Project. Broadcasted and incorporated urea with 2 top dressings was inferior to deep basal application of briquette urea in respect of N uptake and grain yield of rice in the paddy soil. 46 and 69 Kg N/ha from BU as basal deep placement were equivalent to 69 and 92 Kg N/ha, respectively, from urea fertilizer applied as split broadcasting in respect of grain yield. Geometric pattern of placement as 1 placement/2 hills was superior to lower or higher number of placements of BU in respect of grain yield and N absorption by rice in this soil. At the optimum rate of N applied (60 - 90 Kg N/ha) the observed recovery of fertilizer N was 59% when briquette urea was applied in placement pattern of 1 placement/2 hills. With increased number of placements, namely, 1 placement/1 hill and decreased number of placements, namely, 1 placement/4 hills, recoveries of fertilizer N of 47.4% and 46.8%, respectively, were obtained. In comparison, the recovery of fertilizer N from split application method of conventional urea was only 14%

  1. The effect of nitrogen fertilizing and fungicide application on the yield and selected parameters of grain quality of winter wheat

    Directory of Open Access Journals (Sweden)

    Alena Bezdíčková

    2007-01-01

    Full Text Available In 2001–2004 an influence of gradually increased portions of nitrogen (100–130–160 kg/N.ha–1 applied on the wheat variety Ebi in combination with the modified fungicidal protection in the yield and the selected quality grain parameters were observed within the small-plot field trials. Nitrogenous fertilizers according to the amount of nitrogen contained were applied in 2–4 terms during vegetation in regeneration (55kg/N.ha–1, 1st production (45kg/N.ha–1, 2nd production (30kg/N.ha–1 and qualitative portion (30kg/N.ha–1. The fungicidal protection was based on the equal treatment in the phase of BBCH 37 and with regard to the varieties different treatment in the phase of BBCH 55. The dependence on the year was proved at all observed parameters. Higher intensity of nitrogenous fertilization had no decisive impact on the yields. From the point of view of increased yields, the second production nitrogenous fertilization had the strongest impact; it increased the grain yields by 0.084–0.461 t./ha–1. Higher intensity of nitrogenous fertilization positively influenced the baker’s grain quality. The increased portions of nitrogen decisively increased the volume of N-substances in all trial years. The second production nitrogenous fertilization increased the N-substances volume from 0.1 to 0.8%. Qualitative additional fertilization increased their volume from 0.26 to 1.38%. Higher N portions increased sedimentation in most cases. The falling number was not considerably influenced. The mechanical grain qualities (volume weight, number full grains, and GTW were relatively less influenced than the baker’s quality by the nitrogenous fertilization. The application of fungicides positively influenced not only the yields but also mechanical qualities of the grain, i.e. volume weight, thousand grains weight and portion of Full grains. On the contrary the baker’s quality was not decisively influenced. It was proved that the decisive

  2. Limited Dissolved Phosphorus Runoff Losses from Layered Double Hydroxide and Struvite Fertilizers in a Rainfall Simulation Study.

    Science.gov (United States)

    Everaert, Maarten; da Silva, Rodrigo C; Degryse, Fien; McLaughlin, Mike J; Smolders, Erik

    2018-03-01

    The enrichment of P in surface waters has been linked to P runoff from agricultural fields amended with fertilizers. Novel slow-release mineral fertilizers, such as struvite and P-exchanged layered double hydroxides (LDHs), have received increasing attention for P recycling from waste streams, and these fertilizers may potentially reduce the risk of runoff losses. Here, a rainfall simulation experiment was performed to evaluate P runoff associated with the application of recycled slow-release fertilizers relative to that of a soluble fertilizer. Monoammonium phosphate (MAP), struvite, and LDH granular fertilizers were broadcasted at equal total P doses on soil packed in trays (5% slope) and covered with perennial ryegrass ( L.). Four rainfall simulation events of 30 min were performed at 1, 5, 15, and 30 d after the fertilizer application. Runoff water from the trays was collected, filtered, and analyzed for dissolved P. For the MAP treatment, P runoff losses were high in the first two rain events and leveled off in later rain events. In total, 42% of the applied P in the MAP treatment was lost due to runoff. In the slow-release fertilizer treatments, P runoff losses were limited to 1.9 (struvite) and 2.4% (LDH) of the applied doses and were more similar over the different rain events. The use of these novel P fertilizer forms could be beneficial in areas with a high risk of surface water eutrophication and a history of intensive fertilization. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. The Effects of the Incubation of Hyaluronidase Applicated Oocytes Before ICSI on Fertilization, Embryo Development and Pregnancy Rates

    Directory of Open Access Journals (Sweden)

    Zeynep Coskun

    2007-03-01

    Full Text Available OBJECTIVE: Intracytoplasmic sperm injection (ICSI is one of the most important techniques used for the treatment of male infertility. Before ICSI oocytes have to be denuded from cumulus and corona cells using a combination of enzymatic and mechanical methods. In this study 40 IU/ml hyaluronidase has been used to denude the oocytes. The aim of this study is to investigate the effects of the incubation of hyaluronidase applicated oocytes before ICSI on fertilization, embryo development and pregnancy rates.\tMATERIALS-METHODS: Patients were randomly selected according to the days of the week. In 114 patient ( Group I oocytes were incubated in 37 C, %5 CO2 and %5 O2 for 30-60 minutes before ICSI. In 136 patient ( Group II ICSI is performed immediately after denudation. RESULTS: There was no statistical difference on fertilization rates and number of grade I embryo that were transferred between\ttwo groups. Although implantation rates were higher in group II that no incubation had been performed, there was no statistical difference between two groups.\tDISCUSSION: ICSI can be performed immediately after denudation with hyaluronidase.

  4. Laparoscopic application of PGE2 to re-establish oviducal patency and fertility in infertile mares: a preliminary study.

    Science.gov (United States)

    Allen, W R; Wilsher, S; Morris, L; Crowhurst, J S; Hillyer, M H; Neal, H N

    2006-09-01

    Mares are occasionally encountered that consistently fail to conceive when inseminated, naturally or artificially, with fertile stallion semen in the absence of any identifiable pathology of either the structure or function of their reproductive tract. Temporary blockage of the oviducts by accumulations of naturally occurring oviducal masses may be preventing oviducal transport of the embryo to the uterus. Mares, with known reproductive histories, that had exhibited inexplicable failure of conception were treated by laparoscopically guided administration of PGE2-laced triacetin gel directly onto the surface of their oviducts. Fifteen mares age 10-21 years that had exhibited inexplicable failure of conception during 1-4 years were treated, of which 14 (93%) conceived within the same or subsequent breeding season. The high success rate of this treatment supports the tentative diagnosis of oviducal obstruction in these mares and indicates that blockage of the mare's oviducts may occur in the form of a moveable accumulation of debris rather than from permanent fibrous adhesions resulting from salpingitis. This laparoscopic application of PGE2 to the oviducts constitutes a sound and practical method of restoring fertility in mares suffering oviducal obstruction and further studies involving the procedure are warranted.

  5. Leaching of Uranium from pit-water application to soil columns. Effect of vegetation, phosphate fertilizer and amendment

    International Nuclear Information System (INIS)

    Bonetto, Juan P.

    2006-01-01

    Pit-water accumulated in the San Rafael uranium (U) Mining and Processing Facility (CMFSR) poses a risk of contaminant dispersion and hinders mining labours in the flooded pits. Soil application of the pit-water may be a way of eliminating it through evapotranspiration, but it requires minimization of U migration to the subsurface water courses in order to be considered an adequate disposal practice. The pH > 7 and carbonate content of the soil may induce the formation of uranyl-carbonate complexes, which have high mobility in soils. Furthermore, its physical and chemical characteristics suggest low metal retention capabilities. A 30 cm long soil column experiment was carried out irrigating pit-water on CMFSR soil with the aim of knowing its U retention capacity, as well as the effect of a phosphate fertilizer, an organic amendment and of vegetation cover on such retention. It was concluded that soil alone was able to retain 60 % of the applied U mass in its first 3 centimeters, leaching 0,6 %. Plant presence enhanced U mobility. However, reduced leachate volume caused by higher evapotranspiration rates balanced this mobility, producing a decrease in the mass of leached U. Phosphate fertilizer incorporated to the soil increased U retention in tits upper centimeters. It also increased vegetation growth, and, accordingly, evapotranspiration in the columns. On the contrary, the use of ground plant material as soil amendment increased U migration. (author) [es

  6. Granular flow down a flexible inclined plane

    Directory of Open Access Journals (Sweden)

    Sonar Prasad

    2017-01-01

    Full Text Available Discrete and continuous systems are commonly studied individually, but seldom together. Indeed, granular flows are typically studied through flows over a rigid base. Here, we investigate the behaviour of granular flows over an inclined, flexible base. The flexible base is modeled as a rigid platform mounted on springs and has one degree of freedom. The base vibrations are introduced by the flow. We simulate such flows through a discrete element method and compare with experiments. We find that a flexible base increased the upper limit of the inclination up to which a steady flow is possible by at least 3 degrees. This stabilized zone may have important implications in applications such as conveyor belts and chutes.

  7. Inverse Problems and Data Fusion for crop production applications targeting optimal growth - Fertilization

    DEFF Research Database (Denmark)

    Kaur, Bipjeet; Owusu, Robert K. A.

    2015-01-01

    of the crop growth process based on information on soil quality, field seeding, spraying/fertilization and environmental information in general. Finally, references to software tools, which could form the basis for an open source platform for a planning and monitoring system for optimal crop growth......, such that the crop yield is optimized with respect to several parameters (e.g. high end user value and minimum environmental impact), thus obtaining a sustainable production. The growth process optimization is based on information, including sensor based measurements with sensor quality monitoring, from previous......This work in progress is a contribution to crop growth systems for planning and monitoring of farm activities and practices by farmers. The work outlines the initial findings related to modelling, simulation and visualization techniques for crop growth, specifically targeting the barley crop...

  8. Some long term effects on land application of sewage sludge on soil fertility

    International Nuclear Information System (INIS)

    McGrath, S.P.; Chaudri, A.M.; Giller, K.E.

    1997-01-01

    Metals may affect the growth of plants, soil microbial activity, and soil fertility in the long term. Less is known of the adverse long-term effects of metals on soil microorganisms than on crop yields, since the effects of metals added to soils in sewage sludge are difficult to assess, and few long-term experiments exist. This paper reviews evidence from controlled long-term field experiments with sewage sludges in the UK, Sweden, Germany and the USA. Adverse effects on microbial activity and populations of cyanobacteria (blue-green algae), Rhizobium leguminosarum bv. trifolii, mycorrhiza, and total microbial biomass have been detected, in some cases below the European Community's maximum allowable concentration limits for metals in sludge-treated soils. For example, N 2 -fixation by free- living heterotrophic bacteria was found to be inhibited at concentrations (mg kg -1 ) of 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr and 71 Pb. Fixation by free-living cyanobacteria was reduced by 50% at concentrations (mg kg -1 ) of 114 Zn, 33 Cu, 17 Ni, 2.9 Cd, 80 Cr and 40 Pb. Numbers of Rhizobium Leguminosarum bv. trifolii were decreased by several orders of magnitude at metal concentrations (mg kg -1 ) of 130-200 Zn, 27-48 Cu, 11-15 Ni, and 0.8-1.0 Cd. Important factors influencing the severity of toxicity are soil texture and pH; higher pH and clay and organic C contents decrease metal toxicity considerably. The evidence presented in this review of long-term field experiments suggests that adverse effects on microbial parameters occur at modest concentrations of metals in soils. It is concluded that prevention of adverse effects on soil microbial processes, and ultimately on soil fertility, should be a factor that influences soil-protection legislation. (author)

  9. Fertilization in northern forests

    DEFF Research Database (Denmark)

    Hedwall, Per Ola; Gong, Peichen; Ingerslev, Morten

    2014-01-01

    resources into food, health and industrial products and energy. Fertilization in Sweden and Finland is currently practiced by extensive fertilization regimens where nitrogen fertilizers are applied once, or up to three times, during a rotation period, mainly in mature forest. This type of fertilization...... gives, in most cases, a small and transient effect on the environment as well as a high rate of return to the forest owner with low-economic risk. The increase in biomass production, however, is relatively small and consequently the impact on the processing industry and the bioeconomy is limited. More...... in combination with present management systems and, almost instantly, enhances forest productivity. There may, however, be both economic and environmental constraints to large-scale applications of fertilizers in forest. Here we review the literature concerning biomass production of forests under different...

  10. Weed infestation of a winter wheat canopy under the conditions of application of different herbicide doses and foliar fertilization

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present study was carried out in the years 2006-2008 in the Bezek Experimental Farm (University of Life Sciences in Lublin. A two-factor field experiment was set up according to a randomized block design, in three replications. The experimental field was situated on medium heavy mixed rendzina developed from chalk rock with medium dusty loam granulometric composition. The soil was characterised by neutral pH, a very high content of P (342.1 and K (278.9 along with a very low level of magnesium (16.0 mg × kg-1 of soil and organic carbon (over 3.5%. The aim of this research was to compare the effect of three herbicide doses and two foliar fertilizers applied in a winter wheat canopy on weed infestation. The herbicides Mustang 306 SE 0.4 l × ha-1 and Attribut 70 WG 60 g × ha-1 were applied at full recommended doses as well as at doses reduced to 75% and 50%. Foliar fertilizers Insol 3 (1 1 × ha-1 and FoliCare (20 kg × ha-1 were applied at full recommended doses twice in the growing season BBCH* development stage 23-25* and 33-35*. The control was not treated with the herbicides and foliar fertilizers. The weed infestation level was determined by means of the quantitative gravimetric method at two dates: the first one 6 weeks after herbicide application and the second one - before harvest. The number of weed individuals was counted; species composition and air-dry biomass of aboveground parts were estimated from randomly selected areas of 1 m × 0.25 m at four sites on each plot. Galium aparine and Apera spica-venti plants were sampled for molecular analysis 6 weeks after herbicide application (the treatments with the full herbicide dose, a 50% dose and the control without herbicides. The density of weeds and weed air-dry weight were statistically analysed by means of variance analysis, and the mean values were estimated with Tukey's confidence intervals (p=0.05. It was found that the number of weeds and air-dry weight of weeds in the

  11. Large granular lymphocyte leukemia

    OpenAIRE

    Terra, Bruno; Maia, Amanda M.

    2010-01-01

    O presente estudo tem como objetivo o estabelecimento de fundamentação teórica atualizada baseada em revisão bibliográfica sobre a leucemia de grandes linfócitos granulares (LGLG), doença onco-hematológica, que, devido à sua relativa raridade, é pouco conhecida e subdiagnosticada. A LGLG é caracterizada pela proliferação clonal de linfócitos T ou NK na medula óssea e/ou no sangue periférico. Dentre as manifestações clínico-laboratoriais, podem ocorrer citopenias (anemia e/ou neutropenia e/ou ...

  12. Thermal conductivity of granular materials

    Energy Technology Data Exchange (ETDEWEB)

    Buyevich, Yu A

    1974-01-01

    Stationary heat transfer in a granular material consisting of a continuous medium containing spherical granules of other substances is considered under the assumption that the spatial distribution of granules is random. The effective thermal conductivity characterizing macroscopic heat transfer in such a material is expressed as a certain function of the conductivities and volume fractions of the medium and dispersed substances. For reasons of mathematical analogy, all the results obtained for the thermal conductivity are valid while computing the effective diffusivity of some admixture in granular materials as well as for evaluation of the effective electric conductivity or the mean dielectric and magnetic permeabilities of granular conductors and dielectrics. (23 refs.)

  13. The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant

    Science.gov (United States)

    Setiawati, Mieke Rochimi; Damayani, Maya; Herdiyantoro, Diyan; Suryatmana, Pujawati; Anggraini, Derisfha; Khumairah, Fiqriah Hanum

    2018-02-01

    The yield of rice plants is strongly influenced by N fertilizer. Nitrogen in rice plants has roles in vegetative growth, tiller formation and increasing yield through rice protein formation. Nitrogen supplied from organic fertilizers is better than inorganic fertilizers that may have environmental problem effects. Organic fertilizers from Azolla pinnata water fern contain higher N than other organic fertilizers. Symbiosis between A. pinnata and the N-fixing cyanobacteria results in high content of nitrogen, 3 to 5%. A. pinnata can be added to the rice field as organic fertilizer in form of fresh biomass or composted. Composted form can be ground into powder which passes through 100 mesh sieve. Preparation of compost powder of A. pinnata is done to reduce the constraints of voluminous application of organic fertilizers and to improve the efficiency of its use. The objective of this research was to compare the effect of the use of fresh A. pinnata and compost powder of A. pinnata on some soil and plant chemical properties and rice yield. The treatments applied were fresh A. pinnata at the dose of 0, 10 and 20 ton ha-1 and A. pinnata compost powder at 12.5 and 25 kg ha-1. The results showed that incorporation of fresh A. pinnata at 20 tons ha-1 and its compost powder at 25 kg ha-1 increased the available P of soil, plant P content and tiller number, but did not affect the content of organic-C, total soil N, plant N content and rice yield. This study suggested the benefits of A. pinnata compost powder technology in organic fertilization of soil to increase the nutrient content of soil and rice plants.

  14. Effect of Zeolite and Nitrogen Fertilizer Application under Water Deficit Stress Conditions on Agronomical and Physiological Traits of Rapeseed

    Directory of Open Access Journals (Sweden)

    A. Ghiasvand Ghiasi

    2014-08-01

    Full Text Available In order to evaluation of zeolite and nitrogen fertilizer application effect on agronomic and physilogical traits of rapeseed (cv RGS003 under water deficit stress conditions, an experiment was conducted in factorial based on randomized complete block design with three replications during 2010 in Qazvin region, Iran. In the where, the two levels of irrigation factor as the normal irrigation (irrigation after 80 mm evaporation from class A pan as control and irrigation cease from stem elongation stage till end of growth, nitrogen factor was at three levels (0, 75 and 150 kg.ha-1 and zeolite factor (0 and 10tons per hectare were studied. Results showed that drought stress decreased evaluated traits such as silique per plant (41%, grain per silique (26%, 1000 seed weight (33%, grain yield (52.5%, oil percent (14%, RWC (31.5% and chlorophyll content (35%. Non-application of nitrogen had adverse effects on total traits and reduced them. However, zeolite application at water deficit stress conditions had positive and significant effect on total traits except of oil percent and chlorophyll content, specially improved grain yield and oil yield. Based on the results of this experiment, application of zeolite (10ton/ha-1 through storage and maintenance of water and nutrients, reduced the intensity and harmful effects of stress in plants and enhances crop yield.

  15. Preparation of granular activated carbons from composite of powder activated carbon and modified β-zeolite and application to heavy metals removal.

    Science.gov (United States)

    Seyedein Ghannad, S M R; Lotfollahi, M N

    2018-03-01

    Heavy metals are continuously contaminating the surface and subsurface water. The adsorption process is an attractive alternative for removing the heavy metals because of its low cost, simple operation, high efficiency, and flexible design. In this study, influences of β-zeolite and Cu-modified β-zeolite on preparation of granular activated carbons (GACs) from a composite of powder activated carbon (PAC), methylcellulose as organic binder, bentonite as inorganic binder, and water were investigated. A number of granular samples were prepared by controlling the weight percentage of binder materials, PAC and zeolites as a reinforcing adsorbent. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction techniques were employed to characterize zeolite, modified zeolite and produced GAC. The produced GACs were used as the adsorbent for removal of Zn +2 , Cd 2+ and Pb 2+ ions from aqueous solutions. The results indicated that the adsorption of metals ions depended on the pH (5.5) and contact time (30 min). Maximum adsorption of 97.6% for Pb 2+ , 95.9% for Cd 2+ and 91.1% for Zn +2 occurred with a new kind of GAC made of Cu-modified β-zeolite. The Zn +2 , Cd 2+ and Pb 2+ ions sorption kinetics data were well described by a pseudo-second order model for all sorbents. The Langmuir and Freundlich isotherm models were applied to analyze the experimental equilibrium data.

  16. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    International Nuclear Information System (INIS)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-01-01

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments

  17. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping, E-mail: zongpingw@hust.edu.cn; Liu, Zizheng; Xiong, Ya

    2014-11-15

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.

  18. APPLICATIONS OF POTASSIUM FERTILIZER AND Bacillus sp. BIOPESTICIDE FOR INCREASING TOMATO RESISTANCE TO BACTERIAL WILT DISEASE

    Directory of Open Access Journals (Sweden)

    Nur Prihatiningsih

    2011-02-01

    Full Text Available Bacterial wilt on tomato caused by Ralstonia solanacearum is a crucial disease, because it can reduce yield until 50%. The aims of this research were: 1 to find out biopesticide formula for Bacillus sp.growth, 2 to test Bacillus sp. against R. solanacearum in vitro, 3 to test potassium fertilizer combined with Bacillus sp. for enhancing tomato resistance to the bacterial wilt disease. The research was conducted in 2 steps i.e to test the persistence of Bacillus sp. in biopesticide formula, and to test the best combination of both potassium and the Bacillus sp. biopesticide. The results showed that Bacillus B298 was the best isolate in its persistence on the biopesticide formula of organic growth medium+CaCO3+CMC 1%+mannitol 1%, and in inhibiting R. solanacearum. The best biopesticide formula for the Bacillus sp. persistence was growth organic media+ CaCO3+CMC 1%+mannitol 1%. Bacillus sp. was able to increase tomato resistance to the bacterial wilt disease from the category of susceptible to be tolerant and becoming resistant.

  19. The proximate determinants of fertility and birth intervals in Egypt: An application of calendar data

    Directory of Open Access Journals (Sweden)

    Andrew Hinde

    2007-01-01

    Full Text Available In this paper we use calendar data from the 2000 Egyptian Demographic and Health Survey (DHS to assess the determinants of birth interval length among women who are in union. We make use of the well-known model of the proximate determinants of fertility, and take advantage of the fact that the DHS calendar data provide month-by-month data on contraceptive use, breastfeeding and post-partum amenorrhoea, which are the most important proximate determinants among women in union. One aim of the analysis is to see whether the calendar data are sufficiently detailed to account for all variation among individual women in birth interval duration, in that once they are controlled, the effect of background social, economic and cultural variables is not statistically significant. The results suggest that this is indeed the case, especially after a random effect term to account for the unobserved proximate determinants is included in the model. Birth intervals are determined mainly by the use of modern methods of contraception (the IUD being more effective than the pill. Breastfeeding and post-partum amenorrhoea both inhibit conception, and the effect of breastfeeding remains even after the period of amenorrhoea has ended.

  20. Nitrogen Fertilizer and Straw Applications Affect Uptake of 13C,15N-Glycine by Soil Microorganisms in Wheat Growth Stages.

    Directory of Open Access Journals (Sweden)

    Lijie Yang

    Full Text Available This study investigated the influence of nitrogen (N fertilizer and straw on intact amino acid N uptake by soil microorganisms and the relationship between amino acid turnover and soil properties during the wheat growing season. A wheat pot experiment was carried out with three treatments: control (CK, N fertilizer (NF and N fertilizer plus rice straw (NS. We used stable isotope compound-specific analysis to determine the uptake of 13C,15N-glycine by soil microorganisms. In the NF treatment, microbial 13C,15N-glycine uptake was lower compared with CK, suggesting that inorganic N was the preferred N source for soil microorganisms. However, The application of straw with N fertilizer (in NS treatment increased microbial 13C,15N-glycine uptake even with the same amount of N fertilizer application. In this treatment, enzyme activities, soil microbial biomass C and microbial biomass N increased simultaneously because more C was available. Soil mineral N and plant N contents all decreased substantially. The increased uptake of intact 13C,15N-glycine in the NS treatment can be attributed to direct assimilation by soil microorganisms to satisfy the demand for N when inorganic N was consumed.

  1. of integrated application of farmyard manure, plant growth promoting rhizobacteria and chemical fertilizers on production of canola (Brassica napus L. in saline soil of Qum

    Directory of Open Access Journals (Sweden)

    H. Sabahi

    2016-04-01

    Full Text Available Canola (Brassica napus L. is one of the most important oil seed crops. In order to evaluate the effects of integrated fertilization (chemical, manure and biofertilizers on canola (B. napus variety Hyola 401 yield and uptake of mineral nutrients in saline soil and water, a field experiment was conducted in randomized complete blocks (RCBD arrangement with eight treatments in three replications in Qum Province, Iran. Treatments were: (1 Control, P%100 (Phosphorus %100, (2 P%75B1 (Phosphorus %75+ Barvar biofertilizer, (3 P%75B2 (Phosphorus %75+ Nitroxin biofertilizer, (4 P%75M (Phosphorus %75+ farmyard manure, (5 P%75B1M (Phosphorus %75+ Barvar + Farmyard manure, (6 P%75B2M (Phosphorus %75+ Nitroxin+ Farmyard manure, (7 P%100B1 (Phosphorus %100 + Barvar and (8 P%125B2 (Phosphorus %125+ Nitroxin. The results showed that the highest yield was obtained from P%75B1M. Difference between integrated fertilization of farmyard manure and other treatments was significant. Farmyard manure increased canola yield which was attributed to increase in availability of mineral nutrients, decreasing effects of salinity and toxic ions. Integrated application of 5 t. ha-1 of farmyard manure and %75 recommended chemical P increased yield and decreased fertilizer consumption. The results revealed that integrated applications of farmyard manure and chemical fertilizer and after that integrated use of bio- and chemical fertilizer are the best strategies to increase nutrient availability and improving canola yield in saline soil.

  2. Superconductivity in inhomogeneous granular metals

    International Nuclear Information System (INIS)

    McLean, W.L.

    1980-01-01

    A model of elongated metal ellipsoids imbedded in a granular metal is treated by an effective medium approach to explain the observed temperature dependence of the normal-state conductivity of superconducting granular aluminum. Josephson tunneling is thus still required to account for the superconductivity. The model predicts the same kind of contrasting behavior on opposite sides of the metal-insulator transition as is found in the recent scaling treatment of Anderson localization

  3. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb{sup 2+} from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, M. Shanika [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Silva, Rohini M. de, E-mail: rohini@chem.cmb.ac.lk [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Silva, K.M. Nalin de [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama (Sri Lanka)

    2015-10-01

    Highlights: • Synthesis of neat nano Hydroxyapatite using wet chemical precipitation methods. • This resulted rod like nanocrystals with a diameter around 50–80 nm. • Impregnation of of nano HAp onto the granular activated carbon (GAC) was achieved. • Materials were characterized using FT-IR, PXRD, and SEM. • Adsorption studies were conducted for Pb{sup 2+} ions. • The adsorption data were evaluated according to isotherm models. - Abstract: Synthesis of neat nano hydroxyapatite (HAp) was carried out using wet chemical precipitation methods at low temperature and this resulted rod like HAp nanocrystals with a diameter around 50–80 nm and length of about 250 nm. Impregnation of nano HAp onto the granular activated carbon (GAC) to prepare hydroxyapatite granular activated carbon nanocomposite (C-HAp) was carried out using in situ synthesis of nano HAp in the presence of GAC. The samples of neat nano HAp and C-HAp composite were characterized using Fourier-Transformed Infrared Spectroscopy (FT-IR), powder X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Detailed adsorption studies of neat nano HAp, C-HAp and neat GAC were conducted for Pb{sup 2+} ions at room temperature at different pH levels. The adsorption data for Pb{sup 2+} ions was evaluated according to both Langmuir and Freundlich adsorption isotherm models for both neat nano HAp and C-HAp separately at ambient temperature, 298 K. The equilibrium adsorption data were fitted well with Langmuir adsorption isotherm for neat nano HAp with an adsorption capacity in the range of 138–83 mg g{sup −1}. For C-HAp nanocomposite the adsorption data were well fitted with Freundlich model and the calculated adsorption capacity was in the range of 9–14 mg g{sup −1}. Leaching of Ca{sup 2+} ions by neat nano HAp and C-HAp were also analyzed as a function of pH. It was found that the leaching of Ca{sup 2+} was high in neat HAp than C-HAp. The leaching of Ca{sup 2+} by neat HAp and C

  4. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions

    International Nuclear Information System (INIS)

    Fernando, M. Shanika; Silva, Rohini M. de; Silva, K.M. Nalin de

    2015-01-01

    Highlights: • Synthesis of neat nano Hydroxyapatite using wet chemical precipitation methods. • This resulted rod like nanocrystals with a diameter around 50–80 nm. • Impregnation of of nano HAp onto the granular activated carbon (GAC) was achieved. • Materials were characterized using FT-IR, PXRD, and SEM. • Adsorption studies were conducted for Pb 2+ ions. • The adsorption data were evaluated according to isotherm models. - Abstract: Synthesis of neat nano hydroxyapatite (HAp) was carried out using wet chemical precipitation methods at low temperature and this resulted rod like HAp nanocrystals with a diameter around 50–80 nm and length of about 250 nm. Impregnation of nano HAp onto the granular activated carbon (GAC) to prepare hydroxyapatite granular activated carbon nanocomposite (C-HAp) was carried out using in situ synthesis of nano HAp in the presence of GAC. The samples of neat nano HAp and C-HAp composite were characterized using Fourier-Transformed Infrared Spectroscopy (FT-IR), powder X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Detailed adsorption studies of neat nano HAp, C-HAp and neat GAC were conducted for Pb 2+ ions at room temperature at different pH levels. The adsorption data for Pb 2+ ions was evaluated according to both Langmuir and Freundlich adsorption isotherm models for both neat nano HAp and C-HAp separately at ambient temperature, 298 K. The equilibrium adsorption data were fitted well with Langmuir adsorption isotherm for neat nano HAp with an adsorption capacity in the range of 138–83 mg g −1 . For C-HAp nanocomposite the adsorption data were well fitted with Freundlich model and the calculated adsorption capacity was in the range of 9–14 mg g −1 . Leaching of Ca 2+ ions by neat nano HAp and C-HAp were also analyzed as a function of pH. It was found that the leaching of Ca 2+ was high in neat HAp than C-HAp. The leaching of Ca 2+ by neat HAp and C-HAp during adsorption of Pb 2+ ions were also

  5. Rational Application of Fertilizer Nitrogen to Soil in Combination With Foliar Zn Spraying Improved Zn Nutritional Quality of Wheat Grains

    Directory of Open Access Journals (Sweden)

    Haiyong Xia

    2018-05-01

    Full Text Available To alleviate human zinc (Zn deficiency, it is worthy to develop rational agronomic managements to achieve high yielding and high resource-use efficiency wheat (Triticum aestivum L. grains biofortified with Zn. Effects of application of three rates of nitrogen (N fertilizer (75,200 and 275 kg·ha−1 to soil in combination with three foliar applications (deionized water, Zn alone, and a combination of Zn and sucrose on grain yield, yield components, grain Zn concentration, protein, phytic acid (PA, phosphorus (P, calcium (Ca, and carbon (C, as well as on Zn bioavailability, were investigated in four wheat cultivars (“Jinan 17,” “Jimai 20,” “Jimai 22,” and “Luyuan 502” under field conditions. Enhanced N increased Zn and protein concentrations as well as bioavailability; excessive N input did not result in further improvements. Zinc spraying was more effective than soil fertilizer N application, the spray of Zn (with or without sucrose increased grain Zn concentrations by 11.1–15.6 mg·kg−1 (27.1–38.1%, and increased grain Zn bioavailability, estimated using total daily absorbed Zn (TAZ and molar ratios of PA/Zn and PA × Ca/Zn, by 0.4–0.6 mg d−1 (28.6–42.9%, 23.1–27.4% and 24.0–28.0%, respectively. Remarkably, increases caused by ‘Zn + sucrose’ were higher than spraying Zn alone. Grain Zn bioavailability was more sensitive to the selection of cultivar than Zn concentrations. Among cultivars, the higher the grain yields and concentrations of antinutritional compounds, the lower the grain Zn nutritional quality would be. 200 kg N ha−1 application rate in combination with foliar spraying of “Zn + sucrose” maximized grain Zn concentrations of “Jinan 17,” “Jimai 20,” “Jimai 22,” and “Luyuan 502” to be 59.4, 56.9, 55.8, and 60.9 mg kg−1, respectively, achieving the target value for biofortification. Additionally, PA/Zn and PA × Ca/Zn of “Jinan 17,” “Jimai 20,” and “Luyuan 502” were

  6. Determine the Optimal Levels of Bio-fertilizers and Foliar Application of Iron on Yield and Quality Indices of Roselle (Hibiscus sabdariffa L.

    Directory of Open Access Journals (Sweden)

    zahra mir

    2018-02-01

    Full Text Available Introduction In conventional agricultural systems to obtain the highest performance continuous use of chemical fertilizers is inevitable. The health of the plant, soil and living matter depends on the rotation of food elements in the ecosystem. This cycle is disrupted as a result of the loss of soil fertility, its food imbalance and inappropriate cultivation practices. Bio-fertilizers are composed of beneficial microorganisms, each for a specific purpose, such as nitrogen fixation, release of phosphate ions, potassium, iron. It should be noted that most studies in the field for sour Roselle (Hibiscus sabdariffa are based on the use of various chemical fertilizers, but the reaction of this plant to bio-fertilizers and iron solubilization has not been considered. Therefore, this study aimed to investigate the effect of bio fertilizers and iron on yield and quality traits of Roselle in hot and dry weather conditions. Materials and Methods In order to investigate the effects of bio-fertilizers and foliar application iron on yield and quality indicators Roselle (Hibiscus sabdariffa experiment in Research field of Zabol University Agriculture Institute in 2015-2016 years was performed with split-plot based on completely randomized design and three replications. Treatments consisted of four levels of bio-fertilizers: control (without fertilizer, vermicompost, cow manure, seaweed and iron foliar applications include: lack of iron, foliar application at a rate of 3cc per thousand, 6cc per thousand was considered. As a source of bio-fertilizer treatments and foliar application iron levels were considered as sub plots. Before sowing Roselle seeds, vermicompost and manure were added to the soil and inoculation operation . Measurements were: economic yield, biological yield, harvest index, chlorophyll a, b and carotenoids, anthocyanins, carbohydrates and protein. Statistical analysis of data was done with SAS software version 9.1 and mean comparison with

  7. Ammonia and carbon dioxide emissions by stabilized conventional nitrogen fertilizers and controlled release in corn crop

    Directory of Open Access Journals (Sweden)

    Taylor Lima de Souza

    Full Text Available ABSTRACT The market of stabilized, slow and controlled release nitrogen (N fertilizers represents 1% of the world fertilizer consumption. On the other hand, the increase in availability, innovation and application of these technologies could lead to the improvement of N use efficiency in agroecossystems and to the reduction of environmental impacts. The objective of this study was to quantify agronomic efficiency relative index, ammonia volatilization, and CO2 emissions from conventional, stabilized and controlled release N fertilizers in corn summer crop. The experiment was carried out in a corn crop area located in Lavras, state of Minas Gerais, Brazil, without irrigation. All treatments were applied in topdressing at rate of 150 kg ha-1 N. N-NH3 losses from N fertilizers were: Granular urea (39% of the applied N = prilled urea (38% > urea coated with 16% S0 (32% = blend of urea + 7.9% S0 + polymers + conventional urea (32% > prilled urea incorporated at 0.02 m depth (24% > urea + 530 mg kg-1 of NBPT (8% = Hydrolyzed leather (9% > urea + thermoplastic resin (3% = ammonium sulfate (1% = ammonium nitrate (0.7%. Thermoplastic resin coated urea, ammonium nitrate and ammonium sulfate presented low values of cumulative CO2 emissions in corn crop. On the other hand, hydrolyzed leather promoted greater C-CO2 emission, when compared with other nitrogen fertilizers.

  8. IMPACT OF CONVENTIONAL AND ORGANIC FERTILIZER APPLICATION ON THE CONTENT OF MACRO- AND MICROELEMENTS IN THE FRUIT OF HIGHBUSH BLUEBERRY (VACCINIUM CORYMBOSUM L.

    Directory of Open Access Journals (Sweden)

    Michal Medvecký

    2014-02-01

    Full Text Available The aim of this study is to provide information on the content of micro- and macroelements in fruits of highbush blueberry (Vaccinium corymbosum L. cultivated using of different fertilizer application in conditions of northern Slovakia. The study was realised in the experimental station Kriva in Orava region. Six cultivars (Bluejay, Nelson, Bluecrop, Patriot, Berkeley and Brigitta of highbush blueberries (Vaccinium corymbosum L. were studied. Three variants of blueberry cultivation were investigated. The first one was the cultivation with mineral fertilizers application (30 kg N, 10 kg P and 30 kg K.ha -1, the second variant was realised with application of Hosticke organic fertilizer and the third (control variant of blueberry cultivation was realised without any fertilization. The content of macro- and microelements after previous microwave decomposition was in blueberries samples determined by AAS method (AAS Varian AA Spectr DUO 240FS/240Z/UltrAA . In our study the highest content of macroelements (Mg – 104.72 mg.kg-1, P – 156.24 mg.kg-1, Ca – 646.,79 mg.kg-1, Na – 320.32 mg.kg-1 and K – 1416.78 mg.kg-1 was determined in cv. Patriot in the control variant without any treatment and the lowest one in cv. Bluecrop in the variant with the mineral fertilization. The highest content of microelements (Fe – 156.60 mg.kg-1, Mn – 8.68 mg.kg-1, Zn – 1.081 mg.kg-1, Cu – 0.507 mg.kg-1 was detected in cv. Nelson in the variant with the mineral fertilization and the lowest one in cv. Bluecrop in the control variant without any treatment.

  9. Influence of conventional biochar and ageing biochar application to arable soil on soil fertility and plant yield

    Science.gov (United States)

    Dvořáčková, Helena; Záhora, Jaroslav; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    Biochar represents very controversial material which is product of pyrolysis. According to many studies biochar has positive effect on physical and chemical properties such as pH, conductivity, aggregates stability etc. Unfortunately biochar is product of combustion, so it can content toxic substance as are aromatic compound. These substances may have a negative effect on yield and microbial activities in soil. Our aim was eliminated concentration of toxic compound but preserved positive effect of biochar on soil properties. We was ageing/ activating of biochar in water environment and for soil inoculum we used native soil from landscape. Moreover two types of biochar was tested by pot experiment with seven variants, where conventional biochar from residual biomass and ageing biochar were applied in different doses: 10 t/ha, 20t/ha and 50 t/ha. Pots were placed in green house for 90 days and after the end of experiment the following parameters of soil fertility, health and quality were evaluated: content of soil organic matter, arbuscular mycorrhizal colonisation of Lactuca sativa L. roots, leaching of mineral nitrogen, changes in plant available nutrient content, EC and pH. Above all the total yield of indicator plant was observed. The significant (P plant yield and soil properties were found. The application of conventional biochar didn't have positive effect on plant yield in comparison with ageing biochar. The positive effect of ageing biochar addition on soil fertility was directly proportional to the dose which were applied - increasing in dose of ageing biochar resulted in increase of plant yield. Moreover the special experimental containers were used, where we was able to monitor the development of root in soil with and without addition of biochar (conventional or ageing). The positive influence of ageing biochar addition into soil on development of Lactuca sativa L. roots was observed.

  10. Soil fertility, nutrition and yield of maize and barley with gypsum application on soil surface in no-till

    Directory of Open Access Journals (Sweden)

    Leandro Michalovicz

    2014-10-01

    Full Text Available Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol, as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2- up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.

  11. Preparation and application of granular ZnO/Al{sub 2}O{sub 3} catalyst for the removal of hazardous trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.-C. [Department of Environmental Engineering, Hung-Kuang University, No. 34, Chung-Chie Road, Shalu, Taichung County, Taiwan 43302 (China)]. E-mail: jcchen@sunrise.hk.edu.tw; Tang, C.-T. [Department of Environmental Engineering, Hung-Kuang University, No. 34, Chung-Chie Road, Shalu, Taichung County, Taiwan 43302 (China)

    2007-04-02

    Trichloroethylene (TCE) is a volatile and nerve-toxic liquid, which is widely used in many industries as an organic solvent. Without proper treatment, it will be volatilized into the atmosphere easily and hazardous to the human health and the environment. This study tries to prepare granular ZnO/Al{sub 2}O{sub 3} catalyst by a modified oil-drop sol-gel process incorporated the incipient wetness impregnation method and estimates its performance on the catalytic decomposition of TCE. The effects of different preparation and operation conditions are also investigated. Experimental results show that the granular ZnO/Al{sub 2}O{sub 3} catalyst has good catalytic performance on TCE decomposition and the conversion of TCE is 98%. ZnO/Al{sub 2}O{sub 3}(N) catalyst has better performance than ZnO/Al{sub 2}O{sub 3}(O) at high temperature. Five percent of active metal concentration and 550 deg. C calcination temperature are the better and economic preparation conditions, and the optimum operation temperature and space velocity are 450 deg. C and 18,000 h{sup -1}, respectively. The conversions of TCE are similar and all higher than 90% as the oxygen concentration in feed gas is higher than 5%. By Fourier transform infrared spectrography (FT-IR) analyses, the major reaction products in the catalytic decomposition of TCE are HCl and CO{sub 2}. The Brunauer-Emmett-Teller (BET) surface areas of catalysts are significantly decreased as the calcination temperature is higher than 550 deg. C due to the sintering of catalyst materials, as well as the reaction temperature is higher than 150 deg. C due to the accumulations of reaction residues on the surfaces of catalysts. These results are also demonstrated by the results of scanning electron micrography (SEM) and energy disperse spectrography (EDS)

  12. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  13. The subtle danger of symmetry restrictions in time series regressions, with application to fertility models.

    Science.gov (United States)

    Haynes, S E

    1983-10-01

    It is widely known that linear restrictions involve bias. What is not known is that some linear restrictions are especially dangerous for hypothesis testing. For some, the expected value of the restricted coefficient does not lie between (among) the true unconstrained coefficients, which implies that the estimate is not a simple average of these coefficients. In this paper, the danger is examined regarding the additive linear restriction almost universally imposed in statistical research--the restriction of symmetry. Symmetry implies that the response of the dependent variable to a unit decrease in an expanatory variable is identical, but of opposite sign, to the response to a unit increase. The 1st section of the paper demonstrates theoretically that a coefficient restricted by symmetry (unlike coefficients embodying other additive restrictions) is not a simple average of the unconstrained coefficients because the relevant interacted variables are inversly correlated by definition. The next section shows that, under the restriction of symmetry, fertility in Finland from 1885-1925 appears to respond in a prolonged manner to infant mortality (significant and positive with a lag of 4-6 years), suggesting a response to expected deaths. However, unscontrained estimates indicate that this finding is spurious. When the restriction is relaxed, the dominant response is rapid (significant and positive with a lag of 1-2 years) and stronger for declines in mortality, supporting an aymmetric response to actual deaths. For 2 reasons, the danger of the symmetry restriction may be especially pervasive. 1st, unlike most other linear constraints, symmetry is passively imposed merely by ignoring the possibility of asymmetry. 2nd, modles in a wide range of fields--including macroeconomics (e.g., demand for money, consumption, and investment models, and the Phillips curve), international economics (e.g., intervention models of central banks), and labor economics (e.g., sticky wage

  14. The Effect of Organic and Bio Fertilizers on Maize (Zea mays, and HydroMax Adjuvants Application on Optimizing of Nicosulfuron Herbicide Efficacy

    Directory of Open Access Journals (Sweden)

    ebrahim Mamnoie

    2017-06-01

    Full Text Available In order to study the effect of adjuvant on nicosulfuron herbicide efficacy improvement in maize weed control under organic fertilizers application, field study was conducted during 2013- 2014 at research field of Ferdowsi University of Mashhad, Iran. Experiment was arranged in completely randomized design with factorial arrangement of treatments with 16 treatments and three replications. Factors in this experiment were application of organic fertilizers (cow manure and vermicompost and bio fertilizer mycorrhiza, and a plot without fertilizer as control, nicosulfuron dose at 40, and 80 g a.i ha-1 (Cruz®,4% SC with and without the adjuvant of HydroMax™. Common purslane (Portulaca oleracea, black nightshade (Solanum nigrum L., and redroot pigweed (Amaranthus retroflexus L were the dominant weeds in the experimental fields. Black nightshade and common purslane had the highest relative density 20 and 45 days after spraying (DAS. Results showed that application of hydromax adjuvant increased herbicide efficiency, significantly. However dry weight of common purslane, black nightshade and redroot pigweed decreased 84, 71, 86 and 71, 79, 100 %, when nicosulfuron applied at reduced dose (40 g a.i. ha-1 with adjuvant 20 and 45 DAS, respectively. On the other hand, seed yield and dry weight of maize increased 49 and 60 % respectively, when nicosulfuron applied at 40 g a.i. ha-1 with Hydromax pulse cow manure. 

  15. Impact of reduction dose, time and method of application of chemical fertilizer on mung bean under old alluvial soil, West Bengal, India

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-08-01

    Full Text Available Field experiments were conducted with mung bean (Vigna radiata L. Wilczek consecutively for three years (2009, 2010, and 2011 in the Crop Research and Seed Multiplication Farm, Burdwan University, West Bengal, India. In the first two years, varietals screening of mung bean under recommended dose of chemical fertilizer (20:40:20 were performed with five varieties with a local variety of mung bean during February to May of 2009. In the second year, one experiment was conducted with six different reduced dose of chemical fertilizer. In the third year, five different method and time of application of biofertilizer were applied to study the effects on agronomic traits and growth attributes of mung bean. The variety PDM-54 a significant higher seed yield along with other yield contributing factors, which was found to be superior to other varieties. In 2010, seed yield was found to be the best for 30% less nitrogenous and 25% less phosphate fertilizer along with recommended dose of chemical fertilizer. In 2011, the best yield was given by the treatment of basal @ 0.75 kg ha-1 + 1.5 kg ha-1 soil application after 21 days + 0.75 kg ha-1 as soil application + best dose of previous year.

  16. Integrated effects of reduction dose of nitrogen fertilizer and mode of biofertilizer application on soil health under mung bean cropping system

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-12-01

    Full Text Available To study the integrated effects of reduced dose of chemical fertilizer with different methods and times of application of Rhizobium biofertilizer on soil health and fertility under mung bean (Vigna radiata cropping, field experiments were carried out during three years (2009, 2010, and 2011 in West Bengal, India, in randomized block design. In the first year, varietal screening of mung bean under recommended dose of chemical fertilizer (20:40:20 were performed with five available varieties adapted to local climate. Reduced nitrogen fertilizer doses (20%, 30%, 40%, 50%, and 60% and the recommended dose, as well as the Rhizobium biofertilizer application (basal, soil, and spray, were done, and data were recorded for pH, electrical conductivity, organic carbon, total nitrogen, total phosphorus, total potassium, and bacterial population of soil, both before sowing and after harvesting. The results indicated significant improvement in the soil quality with gradual buildup of soil macronutrient status after harvesting of crop. Application of biofertilizer has contributed significantly towards higher soil organic matter, nitrogen, phosphorus, and potassium. The use of biofertilizer significantly improved soil bacterial population count in the soil thereby increasing the soil health.

  17. Effect of pigtail catheter application on obstetric outcomes in in vitro fertilization/intracytoplasmic sperm injection pregnancies following hyperstimulation syndrome.

    Science.gov (United States)

    Çağlar Aytaç, Pınar; Kalaycı, Hakan; Yetkinel, Selçuk; Alkaş, Didem; Yüksel Şimşek, Seda; Haydardedeoğlu, Bülent; Bulgan Kılıçdağ, Esra

    2017-06-01

    To evaluate the effects of percutaneous pigtail catheter drainage on the outcomes of intracytoplasmic sperm injection (ICSI) pregnancies following moderate or severe ovarian hyperstimulation syndrome (OHSS). This retrospective study included 189 patients hospitalized for OHSS following ICSI treatment in a tertiary in vitro fertilization unit between 2006 and 2014. Pigtail catheters were applied in 63 patients; the other 126 patients did not need that treatment. The obstetric reports of 173 patients could be accessed and were examined to investigate the pregnancy outcomes of those with and without catheters. No complications such as infection or vascular or intra-abdominal organ trauma were observed related to the pigtail application. There were no differences in abortus, preterm labor, gestational diabetes mellitus, and preeclampsia ratio between the pigtail and control groups (p>0.05). The rate of readmission to hospital for OHSS was lower in the pigtail group than in the control group although not statistically significant (p=0.08). Pigtail application is a safe and effective method for draining ascites in patients with OHSS after ICSI treatment. The use of pigtail catheters had no adverse effects on the perinatal outcomes of patients hospitalized with OHSS who became pregnant after ICSI treatment. In addition, the percutaneous drainage of ascites via a pigtail catheter helped prevent the readmission of patients with moderate or severe OHSS.

  18. Effect of Irrigation with Wastewater and Foliar Application of Complete Fertilizer on Forage Yield and Yield Components of Foxtail Millet (Setaria italica

    Directory of Open Access Journals (Sweden)

    A Ahmadi Aghtape

    2013-08-01

    Full Text Available In order to study effect of irrigation with wastewater and foliar application of complete fertilizer on forage yield and seed yield and yield components of foxtail millet (Setaria italica. A split plot experiment based on randomized complete block design with three replications was conducted at the Agriculture Institute of Zabol University in year 2009. Treatments included three levels of irrigation: Irrigation with well water at all stages of grows (control, Irrigation with wastewater and tap water alternately, Irrigation with wastewater for all growing stages, as the main plot and sprayed with three levels of complete fertilizer (NATBA-LIB: Non spraying (control, sprayed with 600 and 1200 gram of complete fertilizer in each hectare, as were the subplots. Results showed that irrigation with wastewater and complete fertilizer sprayed had significant effect on all traits except leaf to stem ratio. Furthermore, among the irrigation treatments, irrigation with wastewater in total growing period, and wastewater and tap water alternately lead to significant increase in grain yield, forage yield and yield components. Among the sprayed treatments, sprayed with 1200 gram of complete fertilizer had highest forage yield and grain.

  19. Hexachlorobenzene dechlorination as affected by organic fertilizer and urea applications in two rice planted paddy soils in a pot experiment

    International Nuclear Information System (INIS)

    Liu, C.Y.; Jiang, X.; Yang, X.L.; Song, Y.

    2010-01-01

    Reductive dechlorination is a crucial pathway for HCB degradation, the applications of organic materials and nitrogen can alter microbial activity and redox potential of soils, thus probably influence HCB dechlorination. To evaluate hexachlorobenzene (HCB) dechlorination as affected by organic fertilizer (OF) and urea applications in planted paddy soils, a pot experiment was conducted in two types of soils, Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). After 18 weeks of experiment, HCB residues decreased by 28.2-37.5% of the initial amounts in Ac, and 42.1-70.9% in An. The amounts of HCB metabolites showed that dechlorination rates in An were higher than in Ac, which was mainly attributed to the higher pH and dissolved organic carbon (DOC) content of An. Both in Ac and An, the additions of 1% and 2% OF had negative effect on HCB dechlorination, which was probably because excessive nitrogen in OF decreased degraders' activity and the degradation of organic carbon in OF accepted electrons. The application of 0.03% urea could enhance HCB dechlorination rates slightly, while 0.06% urea accelerated HCB dechlorination significantly both in Ac and An. It could be assumed that urea served as an electron donor and stimulated degraders to dechlorinate HCB. In addition, the methanogenic bacteria were involved in dechlorination process, and reductive dechlorination in planted paddy soil might be impeded for the aerenchyma and O 2 supply into the rhizosphere. Results indicated that soil types, rice root system, methanogenic bacteria, OF and urea applications all had great effects on dechlorination process.

  20. Fertilizer micro-dosing

    International Development Research Centre (IDRC) Digital Library (Canada)

    Localized application of small quantities of fertilizer (micro-dosing), combined with improved planting pits for rainwater harvesting, has generated greater profits and food security for women farmers in the Sahel. • Women are 25% more likely to use combined applications, and have expanded areas of food crops (cowpea,.

  1. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, Ashraf E.M.; King Saud University, Riyadh

    2008-01-01

    Full text: Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples were collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration were measured. The annual addition of these elements in soil due to soil fertilization were calculated and discussed. (author)

  2. Fertility desires and fertility outcomes.

    Science.gov (United States)

    Bracher, M; Santow, G

    1991-05-01

    An Australian 1-in-1000 national probability sample conducted in 1986 yielded 2547 women aged 20-59 who provided detailed life histories on marital unions, childbearing, and contraception. Age specific fertility rates, desired family size, differentials in desired family size, desired fertility and achieved fertility, and sequential family building are examined. The results indicate that the desired family size at 1st marriage has declined only slightly over the past 30 years. 3 children are generally desired, and ver few desire 2. The constance of fertility desires in contrasted with the fertilitydecline to below replacement levels. Several reasons are suggested for the desired family size: the desire is for a family size within the family tradition and modified by the desire to have 1 of each sex, the desire reflects less on intentions but more on normative pressure to become a parent. Marrying is self selecting on the desire for a traditional family of at least 2 children. There is a rising age at marriage as well as a decline in marriages. Desired family size exceeds completed fertility. Period factors and personal circumstances affect fertility intentions. Future inquires should explore the multiple factors relating to fertility, rather than in comparing fertility desires and actual fertility. The data collected on age specific fertility were comparable to official estimates. The fertility decline was evidenced in all groups except teenagers. The decline was nearly 50% for those 20-24 years between the 1050's-80's, 33% for ages 25-29. Marriage patterns explain this decline in part. Between 1971-76, women aged 20-25 were married 37 months out of 60 months in 1971-76 versus 25 out of 60 months in 1981-86. Within the 25 year age group, marital fertility has declined and unmarried fertility, which is low, has risen, Women in a marital union of any kind has remained stable. Fertility within de facto unions, which is lower than within marriage, is higher than

  3. Effect of the time of application of phosphorus fertilizer on yield and quality parameters of melon crop amended with winery waste compost.

    Science.gov (United States)

    Requejo Mariscal, María Isabel; Cartagena, María Carmen; Villena Gordo, Raquel; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2016-04-01

    In Spain, drip irrigation systems are widely used for horticultural crop production. In drip irrigation systems, emitter clogging has been identified as one of the most important concerns. Clogging is closely related to the quality of the irrigation water and the structure of the emitter flow path, and occurs as a result of multiple physical, biological and chemical factors. So, the use of acid fertilizers (e.g. phosphoric acid) in these systems is common to avoid the emitter clogging. Moreover, in this country the use of exhausted grape marc compost as source of nutrients and organic matter has been identified as a good management option of soil fertility, especially in grape-growing areas with a large generation of wastes from the wine and distillery industries. The purpose of this work was to study the effect of the time of application of phosphorus fertilizer with fertirrigation in a melon crop amended with winery waste compost on yield and quality parameters. During two years, the melon crop was grown under field conditions and beside the control treatment, three doses of compost were applied: 6.7, 13.3 and 20.0 t ha-1. All the compost treatments received 120 kg ha-1 of phosphorus fertilizer (phosphoric acid) for the season varying the time of application: The first year phosphorus application started after male and female flowering, and the second year the application started before flowering. Yield and quality parameters were evaluated to assess the suitability of these practices. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03. Keywords: Phosphorus fertilizer, exhausted grape marc compost, melon crop, yield and quality parameters.

  4. The Application Of Liquid Fertilizer Made Of Traditional Market Organic Wastes On Growth Of Setaria Grass (Setaria splendida Stapf

    Directory of Open Access Journals (Sweden)

    Hendarto Eko

    2018-01-01

    Full Text Available There are hugh amount of traditional market organic wastes that may polute the environment. In general, the wastes are utilized for compost making and liquid fertilizer as well for plant. The use of liquid fertilizer from organic wastes of traditional markets opens up opportunities for misplaced cultivation of Setaria grass (Setaria splendida Stapf, which is required by ruminant farms. This research was conducted to evaluate the best mixture of water to the fertilizer in term of its effectiveness on the variables and experimental method using Completely Randomized Design. The treatments were: 6 doses of mixtures namely 0, 10, 20, 30, 40 and 50 liters of water, each of which was mixed with 10 liters of liquid fertilizer. The variables measured were the height, the numbers of tillers, the numbers of leaves, and canopy. The results of the study showed that the doses of water in the fertilizer did not indicate any significant differences (P > 0.05 on all variables being studied, however, the linear equation showed that greater concentrations of water in the fertilizer tended to decrease the growth of Setaria grass. Suggested use of water on the liquid fertilizer mixture should be not greater than 30 l – 10 l fertilizer.

  5. The Application Of Liquid Fertilizer Made Of Traditional Market Organic Wastes On Growth Of Setaria Grass (Setaria splendida Stapf)

    Science.gov (United States)

    Hendarto, Eko; Suwarno

    2018-02-01

    There are hugh amount of traditional market organic wastes that may polute the environment. In general, the wastes are utilized for compost making and liquid fertilizer as well for plant. The use of liquid fertilizer from organic wastes of traditional markets opens up opportunities for misplaced cultivation of Setaria grass (Setaria splendida Stapf), which is required by ruminant farms. This research was conducted to evaluate the best mixture of water to the fertilizer in term of its effectiveness on the variables and experimental method using Completely Randomized Design. The treatments were: 6 doses of mixtures namely 0, 10, 20, 30, 40 and 50 liters of water, each of which was mixed with 10 liters of liquid fertilizer. The variables measured were the height, the numbers of tillers, the numbers of leaves, and canopy. The results of the study showed that the doses of water in the fertilizer did not indicate any significant differences (P > 0.05) on all variables being studied, however, the linear equation showed that greater concentrations of water in the fertilizer tended to decrease the growth of Setaria grass. Suggested use of water on the liquid fertilizer mixture should be not greater than 30 l - 10 l fertilizer.

  6. Effects of different mechanized soil fertilization methods on corn nutrient accumulation and yield

    Science.gov (United States)

    Shi, Qingwen; Bai, Chunming; Wang, Huixin; Wu, Di; Song, Qiaobo; Dong, Zengqi; Gao, Depeng; Dong, Qiping; Cheng, Xin; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Aim: Experiments for mechanized corn soil fertilization were conducted in Faku demonstration zone. On this basis, we studied effects on corn nutrient accumulation and yield traits at brown soil regions due to different mechanized soil fertilization measures. We also evaluated and optimized the regulation effects of mechanized soil fertilization for the purpose of crop yield increase and production efficiency improvement. Method: Based on the survey of soil background value in the demonstration zone, we collected plant samples during different corn growth periods to determine and make statistical analysis. Conclusions: Decomposed cow dung, when under mechanical broadcasting, was able to remarkably increase nitrogen and potassium accumulation content of corns at their ripe stage. Crushed stalk returning combined with deep tillage would remarkably increase phosphorus accumulation content of corn plants. When compared with top application, crushed stalk returning combined with deep tillage would remarkably increase corn thousand kernel weight (TKW). Mechanized broadcasting of granular organic fertilizer and crushed stalk returning combined with deep tillage, when compared with surface application, were able to boost corn yield in the in the demonstration zone.

  7. Effect of harvesting interval and n-fertilizer application on the gross ...

    African Journals Online (AJOL)

    There was a significant (P<0.05) increase in gross energy (GE) content by increasing N application and much more increase by increasing interval between harvests. For the three species, highest GE/kgN applied was obtained with 150kgN/ha-1 than with 0kgN/ha/yr or 450kgN/ha/yr. Harvesting frequencies and N ...

  8. Stems age, nitrogen fertilizer and salicylic acid application in cutting induction of noble dendrobium orchid of the Yamamoto series cultivars

    Directory of Open Access Journals (Sweden)

    Jeferson João Soccol

    2017-06-01

    Full Text Available Propagation of noble dendrobium orchid (Dendrobium nobile Lindl. by cutting was studied in two experiments. In the first experiment we evaluated the effect stem age on propagation success: mature stems - from already bloomed stems; and young stems – yet to bloom; and Nitrogen fertilizer application, from two sources: as Nitrate and Ammonium (respectively as Calcium Nitrate at concentrations of: 5.81 gL-1; 11.61 gL-1; 17.42 gL-1; and Urea at concentrations of 2.00 gL-1; 4.00 gL-1 and 6.00 gL-1 plus control treatments. We evaluated the following parameters: the number of cuttings stalks that launched shoots and/or roots, vigor, number of roots per plant and root length per plant. Factorial analysis of variance (stems age x source of Nitrogen; and age of stem x Nitrogen level was applied using a Generalized Linear Model (GLM approach. Where significant differences were observed, averages were compared using post-hoc tests (Tukey. Propagation success was higher using cuttings from mature stems (60.2%, a value 1.6 times higher than obtained with stem cuttings from young stems (38.0%. Application of Nitrogen, in both forms, did not influence any of the evaluated parameters. In the second experiment we treated cuttings from mature stems with Salicylic acid in 3 concentrations (0.10 mM; 0.50 mM; 1.00 mM and plus a control treatment. Evaluated parameters included proportion of cuttings stalks that launched shoots and/or roots, leaf length, root length, and number of roots per stem cutting. Factorial analysis of variance was applied with post-hoc tests. Application of 0.50 mM of Salicylic acid increased the proportion of cuttings stalks that launched shoots and/or roots by 20.5% relative to the control treatment.

  9. Influence of phosphorus and the application of split doses of nitrogen on the nitrogen fertilizer use efficiency of a potato crop

    International Nuclear Information System (INIS)

    Bastidas, O.G.; Urquiaga, S.

    1988-01-01

    The study was performed in an inceptisol at the ''San Jorge'' experimental station (altitude 2.900 m), Bogota, Colombia. The influence of phosphate and the application of split doses of nitrogen on the nitrogen fertilizer use efficiency of a potato crop. (Solanum tuberosum, L.) cv Tequendama, was evaluated. The phosphate was applied at levels of 100, 150 and 200 Kg P 2 O 5 ha -1 in the form of triple super phosphate. The nitrogen (100 Kg N. ha -1 ) was applied in split doses at seeding and 60 days after emergence (DAE) in the following proportions: 1/3: 2/3 or 1/2. The N source used was Urea labelled with 1.5 atom % 15 N excess. The results showed that: a) The maximum tuber yield (41 t.ha -1 ) was experience with 100 Kg P 2 O 5 Ha -1 and this was significantly higher than a zero phosphate control (24t. ha -1 ) even though the soluble soil phosphorus (Bray II) was high. b) The phosphate favoured the productivity of the crop and increased the N fertilizer use efficiency (% FUE) from 28 to 51%.c). The different splitting of the N fertilizer application had no detectable effect on yield % FUE. d) The tubers represented 76% of the total dry matter and contained 63% of the total nitrogen and fertilizer N accumulated by the crop

  10. Application of Glomus sp. and Pseudomonas diminuta Reduce the Use of Chemical Fertilizers in Production of Potato Grown on Different Soil Types

    Science.gov (United States)

    Nurbaity, A.; Sofyan, E. T.; Hamdani, J. S.

    2016-08-01

    The use of high chemical fertilizer rates in potato production has been applied on the farm in Indonesia. Application of biofertilizer consists of arbuscular mycorrhizal fungi has been tested to reduce the use of NPK rates in production of potato and to determine whether different soil types will have different response to this biofertilizer. A greenhouse experiment was conducted using mixtures of spores of Glomus sp. and inoculant of mycorrhizal helper bacteria Pseudomonas diminuta, applied at different rates of NPK fertilizer (0, 25, 50, 75 and 100% of recommended rates) and different soil types (Andisols and Inceptisols). Results of experiment showed that application of Glomus sp. and P. diminuta reduced the use of NPK up to 50%, where the growth (plant height and tuber number), N,P,K uptake and tuber yields of potato had similar effect to the highest recommendation rate of NPK fertilizer. Inceptisols in general had better response to the biofertiliser compared to Andisols. Findings from this experiment confirmed the evidences that biofertilizer could reduce the use of chemical fertilizer, and the widely distributed soil in Indonesia such as Inceptisols, is potential to be used as a medium for potato production.

  11. Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants

    Directory of Open Access Journals (Sweden)

    Zouheir Elouear

    2016-05-01

    Full Text Available In Jebel Ressas mining area (Southern of Tunisia, the dispersion of particles that contain Pb, Zn and Cd results in the contamination of the surrounding agricultural soils. These soils have high concentrations of Pb (970 mg kg−1, Zn (9641 mg kg−1 and Cd (53 mg kg−1. This glasshouse study examined the effect of application of fertilizers, i.e., organic fertilizer as local sheep manure and inorganic fertilizer as potassium chloride (KCl, on the growth, uptake and translocation of Cd, Pb, and Zn of alfalfa (Medicago sativa L. grown on a contaminated soil. Obtained results showed that alfalfa could tolerate high Cd, Pb, and Zn concentrations in soil and had very good growth performance. Regarding to biomass generation it was observed, in every case, that plant growth is not affected in the treated soil compared with blanks sown in an untreated control soil; improvement ranged from 80% for the KCl to 97% for sheep manure. Application of sheep manure increased electrical conductivity and reduced DTPA-extractable metal concentrations in the soils. But KCl fertilizer favored their accumulation in plants. So, KCl could be a useful amendment for phytoextraction of metals by accumulator species, while sheep manure can be very useful for phytostabilisation.

  12. Nitrogen fertilization efficiency with Urea (15N) in Brachiaria brizantha cv. Marandu associated with split application of ordinary superphosphate and potassium chloride

    International Nuclear Information System (INIS)

    Oliveira, P.P.A.; Trivelin, P.C.O.; Oliveira, W.S.

    2003-01-01

    In pastures, the evaluation of fertilization efficiency of urea-N is important since it is applied on a massive scale. Several studies report an enhancement of the fertilizers efficiency by associated applications of urea with potassium chloride (KCl) and ordinary superphosphate (OSP). In the recovery of degraded pastures or in intensive exploration systems, high quantities of KCl and OSP used as corrective fertilization are applied at the november, beginning of the rain season. Split applications of KCl and OSP could easily be associated with urea-N surface application without additional costs. An evaluation of this management was the objective of this experiment. The annual balance of 15 N application with urea was obtained in treatments where OSP and/or KCl were split, top-dressed in five applications associated with urea, or when both were applied together in November. Highest forage production was obtained when OSP was split, followed by split KCl, the unique application of both together, and finally both split. The recovery of urea-N in the aerial part and the soil-pasture system remained unaltered by the treatments. However, the recovery of plant crown and root system differed among the treatments and was positively correlated with forage production. Fertilizer-N recovery in the litter was favored by splitting KCl. Even though the total recovery of the system was not improved by the treatments, splitting of KCl and OSP are indicated for an increased recovery of urea-N in numerous plant structures, resulting in a higher forage production. (author)

  13. Effect of fertilizer application on Urtica dioica and its element concentrations in a cut grassland

    Science.gov (United States)

    Müllerová, Vladimíra; Hejcman, Michal; Hejcmanová, Pavla; Pavlů, Vilém

    2014-08-01

    Little is known about the effects of nutrient availability in cut grasslands on growth characteristics of Urtica dioica and its aboveground chemical composition (N, P, K, Ca, Mg, Cu, Fe, Mn and Zn). The effects of N, P and K application on the growth of U. dioica were studied over five years in a Dactylis glomerata grassland cut twice per year under unfertilized control, P, N, NP and NPK treatments (300, 80 and 200 kg of N, P and K ha-1 per year). Nitrogen application in the form of NH4NO3 over five years decreased the soil pH, while P and K application increased P and K availability in the soil. Over five years, cover of U. dioica increased from 1% initially to 7, 9, 58, 83 and 99% in the control, P, N, NP and NPK treatments, respectively. Concentrations of N, P and Ca in the aboveground biomass of U. dioica were very high in comparison to other species and concentrations of Cu, Fe, Mn and Zn were comparable with other grassland species. N and P limitation of U. dioica growth was expected if concentrations of N and P in the aboveground biomass were lower than 25 g N kg-1 and 4 g P kg-1 in the phenological stage of flowering. We concluded that two cuts per year are not sufficient to suppress expansion of U. dioica under high N, P and K availability. This probably explains why U. dioica survive also in frequently cut intensive grasslands under adequately high nutrient supply.

  14. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system.

    Science.gov (United States)

    Wei, Wei; Yang, Min; Liu, Yixiang; Huang, Huichuan; Ye, Chen; Zheng, Jianfen; Guo, Cunwu; Hao, Minwen; He, Xiahong; Zhu, Shusheng

    2018-08-15

    Replant failure caused by negative plant-soil feedback (NPFS) in agricultural ecosystems is a critical factor restricting the development of sustainable agriculture. Soil nutrient availability has the capacity to affect plant-soil feedback. Here, we used sanqi (Panax notoginseng), which is severely threatened by NPSF, as a model plant to decipher the overall effects of nitrogen (N) rates on NPSF and the underlying mechanism. We found that a high rate of N at 450kgNha -1 (450N) aggravated the NPSF through the accumulation of pathogens in the soil compared with the optimal 250N. The increased N rates resulted in a significant increase in the soil electrical conductivity and available nitrogen but a decrease in the soil pH and C/N ratio. GeoChip 5.0 data demonstrated that these changed soil properties caused the soil to undergo stress (acidification, salinization and carbon starvation), as indicated by the enriched soil microbial gene abundances related to stress response and nutrition cycling (N, C and S). Accordingly, increased N rates reduced the richness and diversity of soil fungi and bacteria and eventually caused a shift in soil microbes from a bacterial-dominant community to a fungal-dominant community. In particular, the high 450N treatment significantly suppressed the abundance of copiotrophic bacteria, including beneficial genera Bacillus and Pseudomonas, thus weakening the antagonistic activity of these bacteria against fungal pathogens. Moreover, 450N application significantly enriched the abundance of pathogen pathogenicity-related genes. Once sanqi plants were grown in this N-stressed soil, their host-specific fungal pathogen Fusarium oxysporum significantly accumulated, which aggravated the process of NPSF. This study suggested that over-application of nitrogen is not beneficial for disease management or the reduction of fungicide application in agricultural production. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Why granular media are thermal after all

    Science.gov (United States)

    Liu, Mario; Jiang, Yimin

    2017-06-01

    Two approaches exist to account for granular behavior. The thermal one considers the total entropy, which includes microscopic degrees of freedom such as phonons; the athermal one (as with the Edward entropy) takes grains as elementary. Granular solid hydrodynamics (GSH) belongs to the first, DEM, granular kinetic theory and athermal statistical mechanics (ASM) to the second. A careful discussion of their conceptual differences is given here. Three noteworthy insights or results are: (1) While DEM and granular kinetic theory are well justified to take grains as elementary, any athermal entropic consideration is bound to run into trouble. (2) Many general principles are taken as invalid in granular media. Yet within the thermal approach, energy conservation and fluctuation-dissipation theorem remain valid, granular temperatures equilibrate, and phase space is well explored in a grain at rest. Hence these are abnormalities of the athermal approximation, not of granular media as such. (3) GSH is a wide-ranged continuum mechanical description of granular dynamics.

  16. Demetalation of Fe, Mn, and Cu chelates and complexes: application to the NMR analysis of micronutrient fertilizers.

    Science.gov (United States)

    López-Rayo, Sandra; Lucena, Juan J; Laghi, Luca; Cremonini, Mauro A

    2011-12-28

    The application of nuclear magnetic resonance (NMR) for the quality control of fertilizers based on Fe(3+), Mn(2+), and Cu(2+) chelates and complexes is precluded by the strong paramagnetism of metals. Recently, a method based on the use of ferrocyanide has been described to remove iron from commercial iron chelates based on the o,o-EDDHA [ethylenediamine-N,N'bis(2-hydroxyphenylacetic)acid] chelating agent for their analysis and quantification by NMR. The present work extended that procedure to other paramagnetic ions, manganese and copper, and other chelating, EDTA (ethylenediaminetetraacetic acid), IDHA [N-(1,2-dicarboxyethyl)-d,l-aspartic acid], and complexing agents, gluconate and heptagluconate. Results showed that the removal of the paramagnetic ions was complete, allowing us to obtain (1)H NMR spectra characterized by narrow peaks. The quantification of the ligands by NMR and high-performance liquid chromatography showed that their complete recovery was granted. The NMR analysis enabled detection and quantification of unknown impurities without the need of pure compounds as internal standards.

  17. Dry land Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Bio solids Applications

    International Nuclear Information System (INIS)

    Koenig, R.T.; Cogger, C.G.; Bary, A.I.

    2011-01-01

    Applications of bio solids were compared to inorganic nitrogen (N) fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L.) cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Bio solids produced 0 to 1400 kg ha -1 (0 to 47%) higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the bio solids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dry land production systems. Grain protein content with bio solids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with bio solids. Results indicate the potential to improve dry land winter wheat yields with bio solids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when bio solids are applied immediately before planting.

  18. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation

    Directory of Open Access Journals (Sweden)

    Babbu Singh Brar

    2015-06-01

    Full Text Available Balanced and integrated use of organic and inorganic fertilizers may enhance the accumulation of soil organic matter and improves soil physical properties. A field experiment having randomized complete block design with four replications was conducted for 36 years at Punjab Agricultural University (PAU, Ludhiana, India to assess the effects of inorganic fertilizers and farmyard manure (FYM on soil organic carbon (SOC, soil physical properties and crop yields in a maize (Zea mays–wheat (Triticum aestivum rotation. Soil fertility management treatments included were non-treated control, 100% N, 50% NPK, 100% NP, 100% NPK, 150% NPK, 100% NPK + Zn, 100% NPK + W, 100% NPK (-S and 100% NPK + FYM. Soil pH, bulk density (BD, electrical conductivity (EC, cation exchange capacity, aggregate mean weight diameter (MWD and infiltration were measured 36 years after the initiation of experiment. Cumulative infiltration, infiltration rate and aggregate MWD were greater with integrated use of FYM along with 100% NPK compared to non-treated control. No significant differences were obtained among fertilizer treatments for BD and EC. The SOC pool was the lowest in control at 7.3 Mg ha−1 and increased to 11.6 Mg ha−1 with 100%NPK+FYM. Improved soil physical conditions and increase in SOC resulted in higher maize and wheat yields. Infiltration rate, aggregate MWD and crop yields were positively correlated with SOC. Continuous cropping and integrated use of organic and inorganic fertilizers increased soil C sequestration and crop yields. Balanced application of NPK fertilizers with FYM was best option for higher crop yields in maize–wheat rotation.

  19. 10th International Conference “Traffic and Granular Flow”

    CERN Document Server

    Boltes, Maik; Schadschneider, Andreas; Seyfried, Armin

    2015-01-01

    This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike, and addresses the latest developments at the intersection of physics, engineering and computational science. These involve complex systems, in which multiple simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena. The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic; granular matter; biological transport; transport networks; data acquisition; data analysis and technological applications. Different perspectives, i.e., modeling, simulations, experiments, and phenomenological observations are considered.    

  20. A new method for measurement of granular velocities

    International Nuclear Information System (INIS)

    Nyborg Andersen, B.

    1984-01-01

    A new, supplementary method to measure granular velocities is presented. The method utilizes the Doppler shift caused by the line of sight component of the solar rotation to cause a wavelength shift through spectral lines as function of heliocentric angle. By measuring the center-to-limb variation of the granular intensity fluctations at different wavelength positions in the lines, the velocities are found. To do this, assumptions regarding the geometrical structure of the velocity and intensity fields have to be made. Preliminary application of the method results in a steep velocity gradient suggesting zero velocity at a hight of 200 km above tau 500 = 1. Possible causes are discussed

  1. Electrokinetic copper and iron migration in anaerobic granular sludge

    NARCIS (Netherlands)

    Virkutyte, J.; Sillanpää, M.J.; Lens, P.N.L.

    2006-01-01

    The application of low-level direct electric current (0.15 mA cm¿2) as an electrokinetic technique to treat copper-contaminated mesophilic anaerobic granular sludge was investigated. The sludge was obtained from a full scale UASB reactor treating paper-mill wastewater and was artificially

  2. Impact of high saline wastewaters on anaerobic granular sludge functionalities

    NARCIS (Netherlands)

    Jeison, D.A.; Rio, del A.; Lier, van J.B.

    2008-01-01

    Three UASB reactors were operated at different salinity levels in order to assess the effects on the granular sludge properties. High levels of activity inhibition were observed at sodium concentrations over 7 g Na+/L, which resulted in low applicable organic loading rates and VFA accumulation in

  3. Suitable sources of nitrogen and potassium fertilizer for fertigation of northern highbush blueberry

    Science.gov (United States)

    Many blueberry growers are switching from broadcasting granular fertilizers to using fertigation through a drip irrigation system. Fertigation increases growth and production without increasing the need for more fertilizer. The objective of the present study was to evaluate different liquid sources ...

  4. Phosphate dynamics on the application of rice straw compost-biochar and phosphate fertilization in rice fields

    International Nuclear Information System (INIS)

    Ania Citraresmini; Taufiq Bachtiar

    2016-01-01

    Soil productivity is determined by soil characteristics itself, which consist of physical, chemical and biological character. The linkage between these three properties can be represented by a single indicator, namely the carbon content in the soil. One of the effects of soil organic matter fulfillment is the availability of soil nutrients, especially to the nutrient that limits the lowland rice production. In this case, P (phosphorus) nutrient become a limiting factor because their numbers are often in abundance but in a form that can not be used by plants. Experiments were carried out with the aim of studying the impact of straw compost application that integrates with Biochar, to the availability of P in lowland soil. The interaction of straw compost + Biochar with PSB inoculation and P sources, become the treatment that being tested in the experiment. Randomized Block Design with factorial pattern is applied as design experiment. As the first factor is the application dose of straw compost + Biochar, consists of 5 levels of treatment : 0; 1; 2; 3; 4 t ha -1 . Second factor is several sources of P, consist of 5 levels of treatment : without P sources (p 0 ); 100 kg ha -1 SP-36 fertilizer (p1); rock phosphate at the dose of 163 kg ha -1 (p 2 ); PSB inoculation at the inoculation dose of 2 kg ha -1 (p 3 ); and rock phosphate inoculated with PSB (p 4 ). The experiment done in the green house of PAIR-BATAN experimental station, Jakarta, on March-July 2014. Phosphorus dynamic as a result of the tested treatments, determined by using radioisotope 32 P technology at the activity of 30 mCi and described clearly on the plant P uptake data of Sidenuk rice plant variety. The experiment result showed that the treatments applied is causing significantly different response on the soil C-organic, the number of PSB populations, 32 P plant counting and plant P uptake derived from several P sources in the plant. (author)

  5. Intrauterine application of flavonoids in puerperal dairy cows: reproductive tract involution and fertility at high-altitude environments

    Directory of Open Access Journals (Sweden)

    Gutierrez-Reinoso MA

    2016-12-01

    Full Text Available The main objective of the present study was to evaluate the effects of postpartum intrauterine administration of flavonoids in order to hasten reproductive tract involution and to shorten the parturition-to-conception interval in dairy cows. A total of 40 Holstein cows (2nd-3rd lactation; BC: 3-3.5 were divided randomly into 4 groups [1 control group (T1 and 3 treatment groups (T2, T3 and T4]. Treatments consisted of one single intrauterine administration on day 10 postpartum of 90 mg (T2, 180 mg (T3 and 360 mg (T4 of ultrapure flavonoids (20 ml. Ultrasonographic measurements of different reproductive tract anatomical structures were scored from cervix (length, width and thickness, uterus (diameter and thickness and ovaries (length and width during the postpartum period (day 10, 15 and 21 postpartum. As fertility parameters rate of return to estrus, pregnancy rate and calving-to-conception interval were scored as well. Pregnancy status was performed using ultrasonography (day 35 post-insemination. There were multiple differences (p 0.05 in ovarian dimensions from T1, T2, T3 and T4 groups during the postpartum period after ultrasonographic analysis at day 10, 15 and 21. Return to estrus index, pregnancy rate and calving-to-conception interval differed between T1 and T2-T3-T4 groups (p 0.05. In conclusion, intrauterine application of flavonoids enhanced the cervical and uterine involution. Finally, although no significant differences among treatments, theintrauterine application of flavonoids improved the return to estrus index, pregnancy rate and calving-to-conception interval compared with non-treated dairy cows.

  6. Uniform shock waves in disordered granular matter

    NARCIS (Netherlands)

    Gómez, L.R.; Turner, A.M.; Vitelli, V.

    2012-01-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates

  7. Household Fertilizers Use and Soil Fertility Management Practices ...

    African Journals Online (AJOL)

    Household Fertilizers Use and Soil Fertility Management Practices in Vegetable Crops Production: The Case of Central Rift Valley of Ethiopia. ... rate, which could leads to pollution of the environment from over dose application and from runoff in to the water bodies and leaching in to the ground water with economic loss.

  8. Fertile ground? : soil fertility management and the African smallholder

    NARCIS (Netherlands)

    Misiko, M.

    2007-01-01

    Keywords: smallholder farmers, soil fertility, experimentation, "inconvenience", realist.The focus in this thesis is to form a view of how well soil fertility research performs within the ever shifting smallholder contexts. This study examined application of agro-ecological

  9. Organic Biochar Based Fertilization

    Science.gov (United States)

    Schmidt, Hans-Peter; Pandit, Bishnu Hari; Cornelissen, Gerard; Kammann, Claudia

    2017-04-01

    Biochar produced in cost-efficient flame curtain kilns (Kon-Tiki) was nutrient enriched either with cow urine or with dissolved mineral (NPK) fertilizer to produce biochar-based fertilizers containing between 60-100 kg N, 5-60 kg P2O5 and 60-100 kg K2O, respectively, per ton of biochar. In 21 field trials nutrient-enriched biochars were applied at rates of 0.5 to 2 t ha-1 into the root zone of 13 different annual and perennial crops. Treatments combining biochar, compost and organic or chemical fertilizer were evaluated; control treatments contained the same amounts of nutrients but without biochar. All nutrient-enriched biochar substrates improved yields compared to their respective no-biochar controls. Biochar enriched with dissolved NPK produced on average 20% ± 5.1% (N=4) higher yields than standard NPK fertilization without biochar. Cow urine-enriched biochar blended with compost resulted on average in 123% ± 76.7% (N=13) higher yields compared to the organic farmer practice with cow urine-blended compost and outcompeted NPK-enriched biochar (same nutrient dose) by 103% ± 12.4% (N=4) on average. 21 field trials robustly revealed that low-dosage root zone application of organic biochar-based fertilizers caused substantial yield increases in rather fertile silt loam soils compared to traditional organic fertilization and to mineral NPK- or NPK-biochar fertilization. This can likely be explained by the nutrient carrier effect of biochar causing a slow nutrient release behavior, more balanced nutrient fluxes and reduced nutrient losses especially when liquid organic nutrients are used for the biochar enrichment. The results promise new pathways for optimizing organic farming and improving on-farm nutrient cycling.

  10. Moessbauer Spectroscopy in the Characterization of waste product used like fertilizer in soil. Some Applications

    International Nuclear Information System (INIS)

    Furet, N. R.; Orihuela, D. L.; Hernandez

    2007-01-01

    At the present time, the use of industrial solid wastes is an important task, because a great effort that have been carried out to preserve the environmental and to obtain the high technologies. In this work, a characterization of a industrial waste product, on base of the monohydrous iron sulphate (FeSO 4 .1H 2 O) with a 15% approximately of free sulphuric acid, used like improvement of soil was carried out by Mossabuer spectroscopy. This waste product was used in a series of the experiences in parcels (where peaches, (Prunus persica), strawberries are cultivated) in the zone of Cartaya (Huelva, Spain). The characterisation of soil from the parcel before application of this product was carried out in order to analyse and compare with the final results by using the methods of the Moessbauer spectroscopy. High contents of Fe, S, and Zn at the studied product are observed . This elements are very important for plants. The pH in soil and Fe, Mn, and Zn contents in soil and leaf were determined. The knowledge of the main chemical-structural properties of this product, used like improvement of soil, will permit the study of the influence to) on the soil properly, b) on the peach leaves and c) on the foodstuff fruit. (Author)

  11. Effect of application of dairy manure, effluent and inorganic fertilizer on nitrogen leaching in clayey fluvo-aquic soil: A lysimeter study.

    Science.gov (United States)

    Fan, Jianling; Xiao, Jiao; Liu, Deyan; Ye, Guiping; Luo, Jiafa; Houlbrooke, David; Laurenson, Seth; Yan, Jing; Chen, Lvjun; Tian, Jinping; Ding, Weixin

    2017-08-15

    Dairy farm manure and effluent are applied to cropland in China to provide a source of plant nutrients, but there are concerns over its effect on nitrogen (N) leaching loss and groundwater quality. To investigate the effects of land application of dairy manure and effluent on potential N leaching loss, two lysimeter trials were set up in clayey fluvo-aquic soil in a winter wheat-summer maize rotation cropping system on the North China Plain. The solid dairy manure trial included control without N fertilization (CK), inorganic N fertilizer (SNPK), and fresh (RAW) and composted (COM) dairy manure. The liquid dairy effluent trial consisted of control without N fertilization (CF), inorganic N fertilizer (ENPK), and fresh (FDE) and stored (SDE) dairy effluent. The N application rate was 225kgNha -1 for inorganic N fertilizer, dairy manure, and effluent treatments in both seasons. Annual N leaching loss (ANLL) was highest in SNPK (53.02 and 16.21kgNha -1 in 2013/2014 and 2014/2015, respectively), which were 1.65- and 2.04-fold that of COM, and 1.59- and 1.26-fold that of RAW. In the effluent trial (2014/2015), ANLL for ENPK and SDE (16.22 and 16.86kgNha -1 , respectively) were significantly higher than CF and FDE (6.3 and 13.21kgNha -1 , respectively). NO 3 - contributed the most (34-92%) to total N leaching loss among all treatments, followed by dissolved organic N (14-57%). COM showed the lowest N leaching loss due to a reduction in NO 3 - loss. Yield-scaled N leaching in COM (0.35kgNMg -1 silage) was significantly (Pleaching loss while ensuring high crop yield in the North China Plain. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nitrogen Fertilization for Optimizing the Quality and Yield of Shade Grown Cuban Cigar Tobacco: Required Nitrogen Amounts, Application Schedules, Adequate Leaf Nitrogen Levels, and Early Season Diagnostic Tests

    Directory of Open Access Journals (Sweden)

    Borges A

    2014-12-01

    Full Text Available Nitrogen (N fertilizers have a decisive influence on the yield and quality of tobacco. Yield, percentage of plant N, wrapper leaf quality, and nicotine content are all important quality characteristics in tobacco growing. This work is an attempt to provide a tool for optimizing mineral N nutrition for Cuban cigar tobacco, using a strategy that links N supply with leaf N concentration and wrapper yield. Similar approaches developed worldwide have mainly involved Virginia and Burley tobacco types but not Cuban cigar tobacco. The objective of the current work is to identify the effects of fertilizer N levels and timing of application on each of the mentioned quality factors for shade grown Cuban cigar tobacco. Another purpose is to explore the usefulness of a quick method of assessing the N status of plants based on measuring leaf transmission at two different wavelengths (650 and 940 nm. The experiments were done in the main tobacco growing area of Cuba (Vueltabajo. In each experiment, nine separate treatments were used covering different levels and times of fertilizer N application. The same experiment was carried out in three different years (2005-2006, 2006-2007, 2007-2008 but as the results were similar only one set of data is described (2006-2007. The patterns of response to N fertilizer of all four quality measurements, including yield and wrapper leaf quality, were similar in the different replications of the experiments. The optimal fertilizer level was 140-190 kg N/ha (40% applied on days 8-10 after transplanting and 60% on days 18-20 after transplanting. The optimal N concentration of leaves taken at the central foliar level of the middle stalk position was 4.3-4.7% at harvest time. Leaf transmission measurements by means of the SPAD-502 Chlorophyll Meter in the early stages of growth were correlated with leaf chlorophyll and N concentration and provide an excellent guide for predicting Cuban cigar tobacco wrapper leaf yield.

  13. Application of mineral fertilizers in Bulgaria and their efficiency on the slightly leached chernozems of the Dobroudja region

    International Nuclear Information System (INIS)

    Nankova, M.; Kirchev, H.; Penchev, E.

    1999-01-01

    Over the past years the agriculture in Bulgaria is undergoing a process of reconstruction and structural changes. The utilization of mineral fertilizers has gradually increased since 1948 and reached its summit in 1981 when about 227 kg/ha NPK have been used. Nowadays these norms have been were and in 1996 they were only 35 kg/ha at the expense of applying N-fertilizers mainly in wheat. The efficiency of the applied nutrients was estimated on slightly leached chernozem in the period 1967-1997. The regular long term fertilization of N 120 P 60 K 0 had a favorable effect on grain yield in an agronomical and economic aspect (5070 kg/ha). The highest grain yield was received at fertilization with N 120 P 120 K 120 (5230 kg/ha). Refs. 4 (author)

  14. Benefits from Bio and organic fertilization by cucumber (Cucumis Sativus) with application of 15N stable isotope

    International Nuclear Information System (INIS)

    Galal, Y. G. M.; Soliman, S. M.; Ahmed, F. A.; El-Sherbiny, A. E. A.; Dahdouh, S. M.

    2012-12-01

    Benefits from bio and organic fertilizer were evaluated under cucumber (Cucumis Sativus) crop grown on sandy soil at a field scale. The experiment was conducted under drip irrigation system. Fertilization treatment indicated that the combination of 50% mineral fertilizer (MF) + 50% organic compost (OC) was superior over all other fertilization treatment when the fresh weight of cucumber biomass or fruits was considered. It means that half of the recommended dose of of mineral fertilizer is enough to meet the requirement of cucumber crop when supplemented with organic compost. Nitrogen derived from mineral fertilizer (Ndff) by cucumber at different plant growth stages was significantly affected by the rate of addition and enhanced with microbial inoculation. Arbuscular mycorrhizea (AMF) was superior over Azospirillum and Rhizobium inoculations. The enhancement of Ndff uptake by plants was more pronounced at the fruit stage than at vegetative, flowering and hay growth stages. The highest values of Ndfa were induced by Rhizobium at hay stage followed by fruit. Similar trend, but to different extents was noticed with AMF and Azospirillum inoculum s. Most of nitrogen derived from compost (Ndfc) was occurred by addition of 50% MF + 50% Oc. Rhizobium and AMF were more effective than Azospirilum. High quantities of Ndfc were recognized at hay stage compared to other growth stages.The efficient use of mineral fertilizer-N (%NUE) was increased by addition of half:half mineral and organic fertilizer. Similarly, it seems that microbial inoculation in general has a synergistic effect on enhancement of %NUE. Higher NUE occurred at hay growth stage than others. (Author)

  15. Acoustic waves in granular materials

    NARCIS (Netherlands)

    Mouraille, O.J.P.; Luding, Stefan

    2008-01-01

    Dynamic simulations with discrete elements are used to obtain more insight into the wave propagation in dense granular media. A small perturbation is created on one side of a dense, static packing and examined during its propagation until it arrives at the opposite side. The influence of

  16. The Effect of Limestone and Stabilized Nitrogen Fertilizers Application on Soil pH Value and on the Forage Production of Permanent Grassland

    Directory of Open Access Journals (Sweden)

    Pavel Ryant

    2016-01-01

    Full Text Available The changes of soil pH and dry forage yield of permanent grassland after application of dolomitic limestone and stabilized nitrogen fertilizers are described in this paper. The small‑plot experiment was located on semi‑natural grassland at Bohemian‑Moravian Highlands, near village Kameničky (Czech Republic, with poor and acidic soil. The experiment was divided into two blocks, within one of whose dolomitic limestone was applied in autumn 2013. In each block, 4 experimental treatments were applied: 1. control (untreated, 2. Urea, 3. Urea with inhibitor of urease, 4. Urea with inhibitor of nitrification. After liming, the pH/CaCl2 soil values increased in both the first as well as the second year after application. Fertilizing by urea, namely urea with inhibitors, did not significantly influence the pH/CaCl2 values. Dry forage productions in both years were comparable. In comparison to the untreated variants, significant increase in dry forage yield was achieved after application of urea and urea with urease inhibitors. The impact of stabilized fertilizers on the yield was not proven. In case of the limed variants, yield drop by 1.12 t/ha (average of both years was observed; the yield decrease may be connected with disturbance of production potential of the stable community of plant species that had been adapted to acidic locations.

  17. Granular boycott effect: How to mix granulates

    Science.gov (United States)

    Duran, J.; Mazozi, T.

    1999-11-01

    Granular material can display the basic features of the Boycott effect in sedimentation. A simple experiment shows that granular material falls faster in an inclined tube than in a vertical tube, in analogy with the Boycott effect. As long as the inclination of the tube is above the avalanche threshold, descent of granular material in the tube causes internal convection which in turn results in an efficient mixture of the granular components. By contrast, as in analogous experiments in two dimensions, a vertical fall of granular material occurs via successive block fragmentation, resulting in poor mixing.

  18. Effect of Plant Density, Rate and Split Application of Nitrogen Fertilizer on Quality Characteristics and Nitrogen Use Efficiency of Safflower under Weed Competition

    Directory of Open Access Journals (Sweden)

    M Fuladvand

    2015-09-01

    Full Text Available In order to evaluation of plant density, rate and method of nitrogen fertilizer split application on quality characteristics and nitrogen use efficiency of safflower (Sofeh variety under weed competition a field experiment was carried out in field research Yasouj University in 2013. This experiment was a factorial based on randomized complete block design with three replications. First factor was a two levels plant density (20 and 40 plants m-2 and second factor was nitrogen rate application on nine levels. That included; non nitrogen application and 75 and 150 kgN ha-1 nitrogen application that both used with four split method. Split methods were included; S1 (%50 in pre planting stage - %50 in stem elongation stage, S2 (%25 in pre planting stage - %75 in stem elongation stage, S3 (%25 in pre planting stage - %50 in stem elongation stage -%25 in flowering stage and S4 (%25 in pre planting stage - %25 in stem elongation stage - %25 in flowering stage. Also in this experiment, weed did not control. Results showed that whit increasing crop density, oil yield and protein grain yield increased by 20 percent and nitrogen utilization efficiency increased by 10 percent. The highest oil yield (50.25 g m-2 was obtained from 75 kg ha-1 nitrogen with three-stage split application (S4. Finally, results showed that increasing nitrogen fertilizer application decreased nitrogen utilization efficiency but three-stage split method application increased this trait.

  19. Granular computing and intelligent systems design with information granules of higher order and higher type

    CERN Document Server

    Pedrycz, Witold; Chen, Shyi-Ming

    2011-01-01

    Information granules are conceptual entities that aid the perception of complex phenomena. This book looks at granular computing techniques such as algorithmic pursuits and includes diverse applications and case studies from fields such as power engineering.

  20. Net Mineralization Response to Fertilizer Application and Site-Specific Setting in a No-Till Dryland Wheat Agroecosystem in the Pacific Northwest (USA)

    Science.gov (United States)

    Bruner, Emily A.; Brown, David J.; Carpenter-Boggs, Lynn

    2015-04-01

    Application of nitrogen (N) fertilizers is pivotal to maintaining agricultural productivity. Nutrient management is typically guided by a combined assessment of crop yield requirements, residual soil inorganic N concentration, and predicted N supply from organic matter. However, laboratory assays employed to forecast mineralization potential do not reflect in situ processes occurring in soils, processes that can vary spatially within a field. Furthermore, fertilizer application alters biogeochemical cycles through a variety of mechanisms including priming effects and microbial community alterations. This study investigates in-situ ammonification/nitrification rates utilizing mineralization cores as part of a five-year Site-Specific Climate-Friendly Farming (SCF) project. In-depth accounting of nitrate and ammonium production and flux was possible via a six bag mixed-bed ion exchange resin system. Soil cores (7.5 cm diameter by 15 cm deep) were isolated from the surrounding soil by three resin bags sealed in the top and bottom of individual plastic cylinders. Fifteen locations were selected across a commercial direct-seed wheat field based on statistical clustering of primary and secondary topographic variables. In each location surface soil-resin cores were installed in fertilized and unfertilized plots immediately after spring planting and removed before harvest. In situ ammonification/nitrification rates will be analyzed as a function of both fertilizer application and site-specific environmental characteristics as determined from soil moisture monitoring, soil characterization, and crop analysis at each measurement location. This site-specific information on N transformations and availability can then be used to guide site-specific crop management.

  1. Changes in Growth and Oil Yield Indices of Rapeseed (Brassica napus L., cv. Hyola 401 in Different Concentrations andTimes of Application of Supplementary Nitrogen Fertilizer

    Directory of Open Access Journals (Sweden)

    P. Tousi Kehal

    2013-03-01

    Full Text Available In order to investigate the effect of concentration and time of supplementary nitrogen fertilizer spray on growth indices of rapeseed (cv. Hyola 401, a field experiment was conducted at Rice Research Institute of Iran as a randomized complete blocks design with 16 treatments and 3 replications in 2008-2009. The treatments included concentration of nitrogen fertilizer (urea at two levels (5 and 10 ppm in seven levels of application time:1 spraying at 6-8- leaf stage, 2 beginning of stem elongation, 3 prior to flowering, 4 at 6-8- leaf stage + beginning of stem elongation, 5 at 6-8- leaf + prior to flowering, 6 beginning of stem elongation+ prior to flowering, and 7 at 6-8- leaf + beginning of stem elongation+ prior to flowering, which were compared with two control treatments (no fertilizer nitrogen and conventional soil fertilization. Results showed that significant difference was observed between spray treatments including concentration and times of nitrogen application, between controls and between controls with spray treatments, of grain and oil yield, crop growth rate (CGR, leaf area index (LAI and leaf area duration (LAD. Application of nitrogen (10 ppm at the beginning of stem elongation+ prior to flowering stages produced maximum grain yield (4221.7 kg/ha and oil yield (1771.1 kg/ha. Spray treatments produced maximum oil yield index (15.3% compared to controls. Maximum LAI (6.9 and 5.6 respectively, CGR (15.2 and 14.3 g/m2.10 GDD, respectively and LAD (1204 and 1029 cm2/10 GDD, respectively were also obtained from spray application of nitrogen (10 ppm at the beginning of stem elongation+ prior to flowering stages and at 6-8-leaf stage + beginning of stem elongation + prior to flowering. According to the results of the present investigation, it seems that foliar application of supplementary nitrogen fertilizer at the end growth stages (beginning of stem elongation and prior to flowering of rapeseed plants may help to enhance growth indices

  2. APPLICATIONS LIQUID ORGANIC FERTILIZER AND COMPOSITION OF PLANT MEDIA TO RESULT OF SELADA PLANTS (Lactuca sativa L

    Directory of Open Access Journals (Sweden)

    Sri Hidayati

    2017-12-01

    Full Text Available Abstract:           Lettuce (lactuca sativa is a vegetable that has a very high economic value. Where this plant can be grown in temperate and tropical regions, Lettuce production is still low, then this plant needs to be given fertilizer treatment. One of the fertilizer that can be used is liquid organic fertilizer. Liquid Organic Fertilizer has several benefits such as to encourage and increase the growth and yield of plants.             Objective: To know the effect of combination of planting media composition and liquid organic fertilizer to growth and yield of lettuce crop; To know the influence of plant plant composition on growth and yield of lettuce plant; To know the effect of liquid organic fertilizer on growth and yield of lettuce plant.            The experiment was conducted in experimental garden of Faculty of Agriculture Universitas Merdeka Surabaya Jl.Ketintang Madya VII / 2 Surabaya, with the space 0-20 meters above sea level.      This research is a pot experiment and is a two factor factorial research with Randomized Block Design (RAK, the first factor is Liquid Organic Fertilizer with 3 levels and the second factor is the composition of planting media with 4 levels. Where Factor I: liquid organic fertilizer consisting of: P1: 1 ml / plant; P2: 2 ml / plant; P3: 3 ml / plant, Factor II: planting medium consisting of 4 (four levels, namely: M1: soil + manure + rice husk: 2: 1: 1; M2: soil + manure + rice husk: 1: 1: 1; M3: ground + manure + sand: 2: 1: 1; M4: ground + manure + sand: 1: 1: 1, treatment repeated 3 times and each treatment there are 2 plant samples, so the number of plants as much 72 or 72 polybag.Based on the results of research conducted, it can be concluded as follows:1. POC concentration factor (P showed significant influence on all variables studied such as leaf number, plant length and wet weight of plant.2. The media composition factor (M showed a nonsignificant effect

  3. Gamma-ray and electrical resistivity measurements in soil with application of carbonatite and agricultural fertilizers in Distrito Federal

    International Nuclear Information System (INIS)

    Nascimento, Carlos Tadeu Carvalho do; Gaspar, Jose Carlos; Pires, Augusto Cesar Bittencourt; Ferreira, Francisco Jose Fonseca; Andrade, Leide Rovenia Miranda de

    2008-01-01

    EMBRAPA (Empresa Brasileira de Pesquisa Agropecuaria) and Brasilia University developed a research project about the viability of carbonatite rock as agricultural fertilizer. As an initial experiment, several mixtures of carbonatite, limestone, phosphorous and potassium compounds were added as fertilizers in an oxisol area (red-latosol, according with Brazilian System of Soil Classification), in Distrito Federal, central Brazil. The experiment area was divided in 56 plots (4 x 7m) and each plot received a fertilizer mixture. The purpose of this work was to verify if the addition of fertilizer mixture to the soil modified its radiometric and resistivity properties and if it is possible to identify this change. Gamma-ray and electrical resistivity measurements were obtained in an experimental area and in a natural savannah type vegetation area. The results showed that the fertilizer addition modified soil natural properties causing a small increase in K, U, Th levels and decreasing ten times electrical resistivity. A low contrast of radiation was observed between plots, and then it was not possible to differentiate the several treatments in base of gamma-ray measurements. Electrical resistivity was efficient to identify three groups of plots related to mixtures characteristics, respectively with phosphorous, potassium and limestone / carbonatite predominance. (author)

  4. A case study of a precision fertilizer application task generation for wheat based on classified hyperspectral data from UAV combined with farm history data

    Science.gov (United States)

    Kaivosoja, Jere; Pesonen, Liisa; Kleemola, Jouko; Pölönen, Ilkka; Salo, Heikki; Honkavaara, Eija; Saari, Heikki; Mäkynen, Jussi; Rajala, Ari

    2013-10-01

    Different remote sensing methods for detecting variations in agricultural fields have been studied in last two decades. There are already existing systems for planning and applying e.g. nitrogen fertilizers to the cereal crop fields. However, there are disadvantages such as high costs, adaptability, reliability, resolution aspects and final products dissemination. With an unmanned aerial vehicle (UAV) based airborne methods, data collection can be performed cost-efficiently with desired spatial and temporal resolutions, below clouds and under diverse weather conditions. A new Fabry-Perot interferometer based hyperspectral imaging technology implemented in an UAV has been introduced. In this research, we studied the possibilities of exploiting classified raster maps from hyperspectral data to produce a work task for a precision fertilizer application. The UAV flight campaign was performed in a wheat test field in Finland in the summer of 2012. Based on the campaign, we have classified raster maps estimating the biomass and nitrogen contents at approximately stage 34 in the Zadoks scale. We combined the classified maps with farm history data such as previous yield maps. Then we generalized the combined results and transformed it to a vectorized zonal task map suitable for farm machinery. We present the selected weights for each dataset in the processing chain and the resultant variable rate application (VRA) task. The additional fertilization according to the generated task was shown to be beneficial for the amount of yield. However, our study is indicating that there are still many uncertainties within the process chain.

  5. EFFICIENCY OF CONCOMITANT APPLICATION OF ORGANIC FERTILIZERS AND CULTURED INVERTEBRATES FOR INCREASING FISH PRODUCTIVITY IN NURSERY PONDS

    Directory of Open Access Journals (Sweden)

    A. Tuchapska

    2014-03-01

    the use of a complex of measures for enhancing the provision of their natural feeds, which included organic fertilizers, application of a stock culture of Daphnia magna and feeding of young-of-the-years with cultured zooplankton organisms. Practical Value. It was found high economic efficiency of measures aimed at improving provision of young-of-the-year carp with natural feeds, which serves as the basis of their wide implementation into production.

  6. Influence of application time for 32-P labelled triple superphosphate on the fertilizer use efficiency and productivity of potato. Influencia da epoca de aplicacao de 32-P superfosfato triplo na eficiencia da fertilizacao fosfatada e na produtividade da batata

    Energy Technology Data Exchange (ETDEWEB)

    Bastidas O, O G; Leon A, A [Instituto de Asuntos Nucleares, Bogota (Colombia); Urquiaga C, S [Empresa Brasileira de Pesquisa Agropecuaria, Seropedica, RJ (Brazil)

    1988-09-01

    A study was performed on a soil derived from volcanic ash (Andic Humitropept), in Pasto (Narino), Colombia, to investigate the influence of additions of 100 and 200 Kg P[sub 2] O[sub 5] ha[sup -1], at two application times (plating and 30 days after emergence - DAE), on the fertilizer use efficiency and productivity of potato (Solanum tuberosum L.) cv. Pardo Pastusa. At planting the phosphorus was applied in a continuous row in the furrow, and at 30 DAE at one side of the plant row, and immediately covered with soil from both sides of the furrow. The fertilizer used was 32 P labelled triple superphosphate (143.59 [mu] Ci.g P[sup -1]). It was found that: (a) the phosphorus fertilization significantly increased (P<0.05) the yield (from 19.9 to 37.7 t. ha[sup -1]) and the accumulation of P (from eight to 17.8 Kg P ha[sup -1]) by the tubers, but there was no significant effects of times of the fertilizer application; (b) the accumulation of P by the plant accompanied the accumulation of plant dry matter; (c) at 75 DAE the fraction of fertilizer P in the plant shoot in the treatment fertilizer at 30 DAE (52.1%) was significantly higher than that fertilized at planting (21.8%), and this corresponded to a P fertilizer use efficiency of 2.4 and 0.82%, respectively. (author).

  7. Effect of organic matter application and water regimes on the transformation of fertilizer nitrogen in a Philippine soil

    International Nuclear Information System (INIS)

    Yoshida, Tomio; Padre, B.C. Jr.

    1975-01-01

    Greenhouse experiments using the tracer technique showed that about 20 per cent of the fertilizer nitrogen added as basal to the Maahas clay soil was immobilized in submerged soils to which no organic material was added. The addition of organic matter to the soil increases the amount of nitrogen immobilized and the magnitude depends on the carbon to nitrogen ratio of the materials added. More fertilizer nitrogen was immobilized in the soils under upland and alternate wet-and-dry conditions than under submerged soil conditions. The uptake of fertilizer nitrogen by rice plants growing under submerged soil conditions ceased at the vegetative stage of growth because only a small amount of available nitrogen remains in the soil at this time, but the rice plant continued to absorb gradually untagged nitrogen from the soil throughout the reproductive stages of growth. Losses of fertilizer nitrogen were great under the alternate wet-and-dry conditions (submerged-upland). The loss of nitrogen from the soil-plant system was reduced by the addition of rice straw, which also reduced the uptake of fertilizer nitrogen but not the total dry matter production under the experimental conditions. Fertilizer nitrogen immobilized during the first crop remained mostly in the soil throughout the full period of the second crop. The total nitrogen uptake by rice plants was not affected by the soil moisture tension under the upland conditions used in the study but the movement of nitrogen from the leaves to the panicles during the reproductive stage seemed to decrease as the soil moisture tension increased. (auth.)

  8. Effect of Plant Growth Promoting Rhizobacteria on Yield and Yield Components of Garlic Medicinal Plant (Allium sativum L. under the Conditions of Different Organic and Chemical Fertilizers Application

    Directory of Open Access Journals (Sweden)

    Yaser Esmaeilian

    2018-03-01

    often underestimated. Garlic is easy to grow and can be grown year-round in mild climates. Garlic cloves are used for consumption (raw and cooked or for medicinal purposes. They have a pungent characteristic, spicy flavor that mellows and sweetens considerably with cooking. Materials and Methods: In order to evaluate the effect of biofertilizers and organic and chemical fertilizers on yield and yield components of garlic (Allium sativum L., a split plot experiment based on RCBD with three replications was conducted in 2015-2016 growing seasons, in Gonabad University, Iran. Main plot included different organic and chemical fertilizers (1- vermicompost, 2- cow manure, 3- chemical fertilizer and 4- control and sub plot included plant growth promoting rhizobacteria (nitroxin, biophosphorous and control. In order to determine physic-chemical properties of soil, sampling was performed at the depth of 0 to 30 cm. Before cultivation, 7 and 30 t.ha-1 vermicompost and cow manure were added to the soil, respectively. Nutrient requirement of garlic for nitrogen, phosphorous and potassium from the chemical source was considered 40, 50 and 60 kg.ha-1. For application of biofertilizers, bulblets inoculated with plant growth promoting rhizobacteria for 15 minutes. Distance in and between rows was considered 10 and 20 cm, respectively. Weeds were controlled manually three times. At the end of the growing season, economic yield, biological yield, plant height, shoot dry weight, bulb diameter, bulblet weight per plant, bulblet volume per plant and bulblet number per plant were measured. Analysis of data variance was performed by using SAS software (Ver 9.1. Results and Discussion: The results showed that simple effect of chemical fertilizer on bulb diameter was not significant but combined application of chemical fertilizer and biophosphorous increased bulb diameter as much as 18% compared to control. Combined application of nitroxin and cow manure increased bulblet weight per plant by 41

  9. Determination of the Titanium Contents in the Winter Oilseed Rape Plants (Brassica napus L. by the Application of Fertilizer Containing Titanium

    Directory of Open Access Journals (Sweden)

    Peter Kováčik

    2016-01-01

    Full Text Available In order to obtain the information about changes of titanium contents in the phytomass during the growing season of winter oilseed rape and about the titanium contents drawn by the rape yield during two farming years the small plot field trial was established. In the trial the fertilizer Mg-Titanit (MgTi containing 8.5 g of titanium in 1 liter was used. The experiment consisted of 5 treatments. 0 – control treatment without MgTi fertilizer; 2xTi0.2 – two applications of MgTi in the dose of 0.2 l/ha; 3xTi0.2 – three applications of MgTi in the dose of 0.2 l/ha; 2xTi0.4 – two applications of MgTi in the dose of 0.4 l/ha; 3xTi0.4 – three applications of MgTi in the dose of 0.4 l/ha. The fertilizer was applied in spring during two, or three different growth stages: BBCH 50, BBCH 59, BBCH 66. The first plant sampling was carried out shortly before the first application of fertilizer (BBCH 50. The second, third and fourth sampling was taken 2–3 weeks after the application of Mg-Titanitu (BBCH 59, BBCH 66, BBCH 71. The obtained results showed that the titanium content in the phytomass of rape was falling during the monitored period. The titanium content in the rape aboveground phytomass varied in the interval from 16.81 to 67.6 mg/kg and in the root in the interval from 56.6 to 258.81 mg/kg. The titanium application on plant leaves in the quantities from 3.4 to 10.2 g per hectare of soil did not have the unambiguous impact on the titanium content in the rape phytomass. In the yield of one tonne of seed and appropriate quantity of rape straw on average 20 grams of titanium was taken in.

  10. Application of granular activated carbon/MnFe2O4 composite immobilized on C. glutamicum MTCC 2745 to remove As(III) and As(V): Kinetic, mechanistic and thermodynamic studies

    Science.gov (United States)

    Podder, M. S.; Majumder, C. B.

    2016-01-01

    The main objective of the present study was to investigate the efficiency of Corynebacterium glutamicum MTCC 2745 immobilized on granular activated carbon/MnFe2O4 (GAC/MnFe2O4) composite to treat high concentration of arsenic bearing wastewater. Non-linear regression analysis was done for determining the best-fit kinetic model on the basis of three correlation coefficients and three error functions and also for predicting the parameters involved in kinetic models. The results showed that Fractal-like mixed 1,2 order model for As(III) and Brouser-Weron-Sototlongo as well as Fractal-like pseudo second order models for As(V) were proficient to provide realistic description of biosorption/bioaccumulation kinetic. Applicability of mechanistic models in the current study exhibited that the rate governing step in biosorption/bioaccumulation of both As(III) and As(V) was film diffusion rather than intraparticle diffusion. The evaluated thermodynamic parameters ΔG0, ΔH0 and ΔS0 revealed that biosorption/bioaccumulation of both As(III) and As(V) was feasible, spontaneous and exothermic under studied conditions.

  11. Bubbling in vibrated granular films.

    Science.gov (United States)

    Zamankhan, Piroz

    2011-02-01

    With the help of experiments, computer simulations, and a theoretical investigation, a general model is developed of the flow dynamics of dense granular media immersed in air in an intermediate regime where both collisional and frictional interactions may affect the flow behavior. The model is tested using the example of a system in which bubbles and solid structures are produced in granular films shaken vertically. Both experiments and large-scale, three-dimensional simulations of this system are performed. The experimental results are compared with the results of the simulation to verify the validity of the model. The data indicate evidence of formation of bubbles when peak acceleration relative to gravity exceeds a critical value Γ(b). The air-grain interfaces of bubblelike structures are found to exhibit fractal structure with dimension D=1.7±0.05.

  12. Strain localisation in granular media

    OpenAIRE

    Desrues , Jacques

    1984-01-01

    This study is devoted to strain localisation in Granular materials. Both experimental and theoretical results have been obtained.The first part of the thesis is a review of the methods and theories about rupture in sols mechanics and more generally, in solid mechanics. The classical framework of Shear Band analysis is presented, and the main results available for different classes of materials are discussed.The second part describes an experimental study of strain localisation in sand specime...

  13. Paediatric laryngeal granular cell tumour

    Directory of Open Access Journals (Sweden)

    Dauda Ayuba

    2009-01-01

    Full Text Available Granular cell tumour (GCT affecting the larynx is not common, especially in children. Most cases are apt to be confused with respiratory papilloma and may even be mistaken for a malignant neoplasia. We present a case of laryngeal GCT in a 12-year-old child to emphasize that the tumour should be regarded in the differential of growths affecting the larynx in children.

  14. The Effect of Application of Nitrogen Fertilizer and Nano-Organic Manure on Yield, Yield Components and Essential Oil of Fennel (Foeniculum vulgar Mill.

    Directory of Open Access Journals (Sweden)

    S Khoshpeyk

    2017-03-01

    Full Text Available Introduction Since discovery of food, clothing and shelter, human wanted to improve their physical sufferings, and using experience separated toxic plants from non – toxic ones and medicinal herbs from non – medicine. Medicinal herbs are agricultural products which have a very important role in the health of people in society. Among the medicinal herbs, fennel with scientific name (Foeniculum vulgare Mill. traditionally was used for treating problems such as Inflammation and Cramping. Now, one of the main objectives of the modern agriculture is decreasing the consumption of fertilizers and greater the use of organic fertilizers especially livestock fertilizers. The use of organic fertilizers in nano-dimensions can absorb the nutrients needed to plant. Better use of nano- technology for producing organic fertilizers, suitable for recruiting plant can help plants in variable environmental conditions and be effective in the growth, quantity and quality performance (Sumner, 2000. By the considering the same management of organic and chemical fertilizers consumption especially nano–organic fertilizers, is of great importance and necessitate further research and consideration in all kinds of plants, medical and aromatic herbs and plants in particular. Materials and Methods A factorial experiment, arranged in a randomized complete blocks design with three replications, was conducted in the Saffron Research Institute at Torbat - Heydarieh University in 2014. The geographical location of the experimental station was 35º 20´ N and 59º 13´ E with the altitude of 1450 m. Factors, including utilization of nano-organic fertilizer in four levels (zero, 10, 20 and 30 tons per hectare and nitrogen fertilizers application in four levels (0, 25 , 50 and 75 kg per hectare. Each experimental plot was 3 m long and 2 m wide and contained 4 rows with 50 cm distance. Seeds were directly sown by hand in late May. First irrigation was done 10 days after seedling

  15. Investigation of alpha emitters in fresh and powdered blood of fertile women: an in vitro application of CR-39 NTDs

    International Nuclear Information System (INIS)

    Salih, N.F.; University of Koya, Kurdistan; Jaafar, M.S.

    2014-01-01

    Blood samples were acquired from 60 women aged 20-44 years having decreased fertility, infertile or with uterine tumors in the Iraqi Kurdistan region. The concentrations of α emitters in fresh blood ranged from 0.0029 to 0.0088 ppm, whereas those in powdered blood ranged from 0.0036 ppm in Eiskan to 0.0096 ppm in Halabjay-Kon in Sulaymania. The α emitter concentrations in fresh blood ranged from 0.0029 to 0.0139 ppm, whereas those in powdered blood ranged from 0.0031 ppm in Shorsh to 0.0146 ppm in Sedakan in the Erbil Governorate. However, the concentrations of α emitters in the blood of women with decreased fertility were higher in the North than women from South Iraq. The difference significantly p < 0.001 revealed higher means of track density of fresh and powder blood in Erbil compared to Sulaymania. α are more damaging to the living tissue and exposure of the gonads leads to decreased fertility in women, most of data have been significant therefore, the result shown the radiation effect on women fertility. (author)

  16. Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers

    NARCIS (Netherlands)

    Suleiman, A.K.A.; Gonzatto, Rogerio; Aita, Celso; Lupatini, M.; Jacques, Rodrigo; Kuramae, E.E.; Antoniolli, Zaida; Roesch, Luiz

    2016-01-01

    In modern agriculture, mineral and organic fertilization account for most of the global anthropogenic N2O emissions. A strategy to prevent or to reduce emissions of greenhouse gases such as N2O is the use of nitrification inhibitors, which temporarily inhibit the microbial conversion of soil

  17. [Influences of long-term application of organic and inorganic fertilizers on the composition and abundance of nirS-type denitrifiers in black soil].

    Science.gov (United States)

    Yin, Chang; Fan, Fen-Liang; Li, Zhao-Jun; Song, A-Lin; Zhu, Ping; Peng, Chang; Liang, Yong-Chao

    2012-11-01

    The objectives of this study were to explore the effects of long-term organic and inorganic fertilizations on the composition and abundance of nirS-type denitrifiers in black soil. Soil samples were collected from 4 treatments (i. e. no fertilizer treatment, CK; organic manure treatment, OM; chemical fertilizer treatment (NPK) and combination of organic and chemical fertilizers treatment (MNPK)) in Gongzhuling Long-term Fertilization Experiment Station. Composition and abundance of nirS-type denitrifiers were analyzed with terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR (Q-PCR), respectively. Denitrification enzyme activity (DEA) and soil properties were also measured. Application of organic fertilizers (OM and MNPK) significantly increased the DEAs of black soil, with the DEAs in OM and MNPK being 5.92 and 6.03 times higher than that in CK treatment, respectively, whereas there was no significant difference between NPK and CK. OM and MNPK treatments increased the abundances of nirS-type denitrifiers by 2.73 and 3.83 times relative to that of CK treatment, respectively. The abundance of nirS-type denitrifiers in NPK treatment was not significantly different from that of CK. The T-RFLP analysis of nirS genes showed significant differences in community composition between organic and inorganic treatments, with the emergence of a 79 bp T-RF, a significant decrease in relative abundance of the 84 bp T-RF and a loss of the 99 bp T-RF in all organic treatments. Phylogenetic analysis indicated that the airS-type denitrifiers in the black soil were mainly composed of alpha, beta and gamma-Proteobacteria. The 79 bp-type denitrifiers inhabiting exclusively in organic treatments (OM and MNPK) were affiliated to Pseudomonadaceae in gamma-Proteobacteria and Burkholderiales in beta-Proteobacteria. The 84 bp-types were related to Burkholderiales and Rhodocyclales. Correlation analysis indicated that pH, concentrations of total nitrogen

  18. CONTAINER DISTRIBUTION AND SLOW RELEASE FERTILIZERS APPLICATION ALONG THE PRE-NURSERY INFLUENCING OIL PALM SEEDLINGS GROWTH

    Directory of Open Access Journals (Sweden)

    Paulo César Teixeira

    2009-09-01

    Full Text Available This research had as objective to verify the influence in growth, nutrition and dry matter partition in oil palm seedling by type and dosages of slow release fertilizers (SRF and percentage of tray occupation by plastic containers during pre-nursery. The experiment consisted of 16 treatments, in factorial scheme: two types of SRF (Osmocote® e Basacote mini, two dosages (0 and 3 kg/m3 and four schemes for the container distribution used to attain 100%, 66%, 50% and 25% of tray occupation. An additional treatment composed of 15 x 15 cm plastic bags filled with soil was added. Pre-germinated seeds of oil palm were put in plastic containers of 120 cm3 containing substratum and in plastic bags containing soil. After three months, the seedlings were transplanted to 40 x 40 cm plastic bags containing soil. At this time, height, diameter, dry matter and concentration of N, P, K, Ca and Mg were evaluated. After 10 months, seedlings were evaluated for height and diameter and after 16 months, seedlings had the height, diameter and dry matter weight evaluated. Addition of SRF was fundamental for seedlings development. Different percentages of tray occupation by containers during pre-nursery did not influence height and diameter of oil palm seedlings at 10 and 16 months old. The evaluation after 10 months showed that plants fertilized with Osmocote® were higher than those fertilized with Basacote mini. The evaluations after 16 months showed that plants fertilized during the pre-nursery had higher height, diameter and leaflets, leaf, aboveground and total dry matter than plants not fertilized.

  19. Rheological Behavior of Dense Assemblies of Granular Materials

    International Nuclear Information System (INIS)

    Sundaresan, Sankaran; Tardos, Gabriel I.; Subramaniam, Shankar

    2011-01-01

    Assemblies of granular materials behave differently when they are owing rapidly, from when they are slowly deforming. The behavior of rapidly owing granular materials, where the particle-particle interactions occur largely through binary collisions, is commonly related to the properties of the constituent particles through the kinetic theory of granular materials. The same cannot be said for slowly moving or static assemblies of granular materials, where enduring contacts between particles are prevalent. For instance, a continuum description of the yield characteristics of dense assemblies of particles in the quasistatic ow regime cannot be written explicitly on the basis of particle properties, even for cohesionless particles. Continuum models for this regime have been proposed and applied, but these models typically assume that the assembly is at incipient yield and they are expressed in terms of the yield function, which we do not yet know how to express in terms of particle-level properties. The description of the continuum rheology in the intermediate regime is even less understood. Yet, many practically important flows in nature and in a wide range of technological applications occur in the dense flow regime and at the transition between dilute and dense regimes; the lack of validated continuum rheological models for particle assemblies in these regimes limits predictive modeling of such flows. This research project is aimed at developing such rheological models.

  20. Influence of sulphur and multi-component fertilizer application on the content of Cu, Zn and Mn in different types of soil under maize

    Directory of Open Access Journals (Sweden)

    Barbara MURAWSKA

    2017-09-01

    Full Text Available The aim of the study was to determine the influence of the soil type and differential sulphur rates used with or without Basfoliar 36 Extra on the soil pH as well as the amount of available forms of copper, zinc and manganese based on the micro plots field experiment. Moreover, the relationship between the studied microelements was examined. The experiment was performed in two-factor design; the first-order factor was the soil type (Typic Hapludolls, Typic Hapludalfs, Typic Haplorthods, Typic Endoaquolls, while the second-order factor - fertilization with sulphur and compound fertilizer - Basfoliar 36 Extra. The plant tested was Rota cultivar maize. The use of sulphur and sulphur combined with Basfoliar 36 Extra changed the classification of the soils in terms of their pH. In the soils under study, as a result of the 10-years application of sulphur and/or foliar fertiliser with NPK fertilization as well as growing maize in monoculture showing a high uptake of macro- and micro-nutrients, there was reported a clear decrease in the content of zinc, copper and manganese, as compared with the initial content. With that in mind, one shall assume that growing maize in a 10-year monoculture is connected with an intensive use of soils, which can result in a clear deficit of the elements studied in soil.

  1. Granular neural networks, pattern recognition and bioinformatics

    CERN Document Server

    Pal, Sankar K; Ganivada, Avatharam

    2017-01-01

    This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinf...

  2. Thermal energy storage in granular deposits

    Science.gov (United States)

    Ratuszny, Paweł

    2017-10-01

    Energy storage technology is crucial for the development of the use of renewable energy sources. This is a substantial constraint, however it can, to some extent, be solved by storing energy in its various forms: electrical, mechanical, chemical and thermal. This article presents the results of research in thermal properties of granular deposits. Correlation between temperature changes in the stores over a period of time and their physical properties has been studied. The results of the research have practical application in designing thermal stores based on bulk materials and ground deposits. Furthermore, the research results are significant for regeneration of the lower ground sources for heat pumps and provide data for designing ground heat exchangers for ventilation systems.

  3. Comparative Study of Water and Nitrogen Fertilizer Application on Potato Crop under Fertigation and Surface Irrigating Systems by Using Labeled Nitrogen (15N)

    International Nuclear Information System (INIS)

    Abdullah Haidara, H. M.; Amin Alkirshi, A. H.; Saleh Husien, A.

    2007-01-01

    This research activity was conducted at Central Highland Research Station Farm-Dhamar, on potato Crop (Diamant cv.), during three seasons of 2000, 2001, and 2003.The objective of this activity was to study the Nitrogen Fertilizer Use Efficiency (WUE) which applied in different dosages with irrigation water (fertigation) and one dosage to the soil under surface irrigation, by using Labeled nitrogen fertilizer ( 15N ), comparing the quantity of irrigation water applied through Drip irrigation method and surface irrigation and its effect on WUE and yield of potato crop. The basic experiment was planted in randomized completely block design (RCBD) with five replications during 2000 season and six replication in 2001.and five treatments were tested (N1= 50kg N/ha, N2 =100kg N/ha, N3=150kg N/ha and N4=200kgN/ha as fertigated treatments under drip irrigation and Ns = 150kg N/ha as surface Nitrogen Application under surface irrigation. While in the 2003 season Verification trial was conducted with two replications, two treatments and RCB design. Results indicated that using Drip irrigation method in application of water saved 38% of irrigation water as compared to Surface irrigation. Fertigated treatments (N1, N2, N3 and N4) were, significantly superior to Surface Nitrogen Application treatment (NS), fertigated treatment (N3) gave the highest values of WUE which were 5.3, 6.4 and 6.1 kg/m3 for the three seasons (2000, 2001, 2003 respectively) with an average of 5.9 kg/m3 comparing to the surface Nitrogen Application treatment (NS) which gave the less yield per unit of water which was 3.8, 3.6 and 3.9 kg /m3 for the three seasons 2000, 2001 and 2003 respectively with an average of 3.7 kg/m3.The Average yield of potato tubers for (N3) treatment in the three seasons was 30 .3 t/ha comparing to the (NS) treatment, which gave an average of 29,5t/ha.The fertigatetd treatment (N1) recorded the highest efficient use of nitrogen Fertilizer followed by (N3) compare to the surface

  4. Granular packing as model glass formers

    International Nuclear Information System (INIS)

    Wang Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories. (paper)

  5. Isotope studies on rice fertilization

    International Nuclear Information System (INIS)

    1978-01-01

    The aim of the report is to provide practical information on the efficient utilization of nitrogen fertilizers in rice production. Results obtained from field investigations during the years 1970 to 1974 in ten countries (Bangladesh, Burma, Indonesia, Republic of Korea, Sri Lanka, Taiwan, Thailand, Vietnam, India, Philippines), using 15 N-labelled nitrogen fertilizers (ammonium sulfate, urea) are given. The experiments, which were conducted both during the dry and wet seasons, included comparison of varieties, effect of placement, source and time of nitrogen fertilizer application on the yield and quality of rice. The data from the project is presented in table form. In most of the experiments, the addition of nitrogen increased the rice grain yield. The role of soil nitrogen vs. fertilizer nitrogen is compared, and it is concluded that the physiological growth stage at which fertilizer-derived nitrogen is absorbed is of great importance

  6. The Effect of Nitrogen Fertilizer Application on Wild Oat (Avena ludoviciana L. Competition Ability with Winter Wheat (Triticum asetivum L. in Kermanshah Climate Condition

    Directory of Open Access Journals (Sweden)

    A Jalilian

    2017-12-01

    complete block design with four replications. Treatments included amounts of 30, 60, 100, and 120 % of wheat demand to nitrogen fertilizer as a main plot and wild oat plant density of 0, 25, 50, 75 and 100 in m-2 as a subplot. Fertilizer applications were based on soil test recommendations at the rates of 250 kg ha-1 urea and 100 kg ha1 super phosphate triple. All phosphate and 1/3 of urea fertilizer were applied at planting, and 2/3 of urea was applied later. The experimental farm was ploughed using a mold board plough and then it was disked twice before sowing. Wheat and wild oat seeds were planted on November 20. Wheat plant density was 400 plants m-2. The experimental plot includes 10 planting row of three meters length with 25 cm row spacing. Wild oat seeds were collected from surrounding farms and pocket companies. In order to breaking wild oat seed dormancy was used KNO3 2% about 24 hours. Irrigation was done using a surface method based on plant demand. Analysis of variance was conducted by SAS software (version 9.4. Also, post-anova analysis performed to slicing interaction of nitrogen fertilizer application and wild oat plant density. The comparison of means was done based on LSD at 5% level. Results and Discussion The results showed that number of spike per square meter (24%, number of grain in spike (31%, 1000 grains weight (19.4%, grain yield (49.82%, wheat total dry weight (54.1% and wild oat total dry weight (54.2% improved by increasing of Nitrogen fertilizer application from 30 to 120 % wheat demand. Also number of spike per square meter (12.8%, number of grain per spike (23.5%, 1000 grains weight (21.8%, grain yield (38.9%, and wheat total dry weight (27.7% decreased by increasing of wild oat plant density from zero to 100 plant per square meter. The results of interaction of nitrogen fertilizer application and wild oat plant density showed that the extent of wild oat damage on yield and yield components of wheat were increased with the increasing of

  7. The Effects of Fungicide, Soil Fumigant, Bio-Organic Fertilizer and Their Combined Application on Chrysanthemum Fusarium Wilt Controlling, Soil Enzyme Activities and Microbial Properties

    Directory of Open Access Journals (Sweden)

    Shuang Zhao

    2016-04-01

    Full Text Available Sustained monoculture often leads to a decline in soil quality, in particular to the build-up of pathogen populations, a problem that is conventionally addressed by the use of either fungicide and/or soil fumigation. This practice is no longer considered to be either environmentally sustainable or safe. While the application of organic fertilizer is seen as a means of combating declining soil fertility, it has also been suggested as providing some control over certain soil-borne plant pathogens. Here, a greenhouse comparison was made of the Fusarium wilt control efficacy of various treatments given to a soil in which chrysanthemum had been produced continuously for many years. The treatments comprised the fungicide carbendazim (MBC, the soil fumigant dazomet (DAZ, the incorporation of a Paenibacillus polymyxa SQR21 (P. polymyxa SQR21, fungal antagonist enhanced bio-organic fertilizer (BOF, and applications of BOF combined with either MBC or DAZ. Data suggest that all the treatments evaluated show good control over Fusarium wilt. The MBC and DAZ treatments were effective in suppressing the disease, but led to significant decrease in urease activity and no enhancement of catalase activity in the rhizosphere soils. BOF including treatments showed significant enhancement in soil enzyme activities and microbial communities compared to the MBC and DAZ, evidenced by differences in bacterial/fungi (B/F ratios, Shannon–Wiener indexes and urease, catalase and sucrase activities in the rhizosphere soil of chrysanthemum. Of all the treatments evaluated, DAZ/BOF application not only greatly suppressed Fusarium wilt and enhanced soil enzyme activities and microbial communities but also promoted the quality of chrysanthemum obviously. Our findings suggest that combined BOF with DAZ could more effectively control Fusarium wilt disease of chrysanthemum.

  8. Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate.

    Science.gov (United States)

    Tahir, Muhammad; Khalid, Umaira; Ijaz, Muhammad; Shah, Ghulam Mustafa; Naeem, Muhammad Asif; Shahid, Muhammad; Mahmood, Khalid; Ahmad, Naveed; Kareem, Fazal

    2018-04-24

    This study was aimed to investigate the effect of bio-organic phosphate either alone or in combination with phosphorus solubilizing bacteria strain (Bacillus MWT-14) on the growth and productivity of two wheat cultivars (Galaxy-2013 and Punjab-2011) along with recommended (150-100NPkgha -1 ) and half dose (75-50NPkgha -1 ) of fertilizers. The combined application of bio-organic phosphate and the phosphorous solubilizing bacteria strain at either fertilizer level significantly improved the growth, yield parameters and productivity of both wheat cultivars compared to non-inoculated control treatments. The cultivar Punjab-2011 produced the higher chlorophyll contents, crop growth rate, and the straw yield at half dose of NP fertilizer; while Galaxy-2013, with the combined application of bio-organic phosphate and phosphorous solubilizing bacteria under recommended NP fertilizer dose. Combined over both NP fertilizer levels, the combined use of bio-organic phosphate and phosphorous solubilizing bacteria enhanced the grain yield of cultivar Galaxy-2013 by 54.3% and that of cultivar Punjab-2011 by 83.3%. The combined application of bio-organic phosphate and phosphorous solubilizing bacteria also increased the population of phosphorous solubilizing bacteria, the soil organic matter and phosphorous contents in the soil. In conclusion, the combined application of bio-organic phosphate and phosphorous solubilizing bacteria offers an eco-friendly option to harvest the better wheat yield with low fertilizer input under arid climate. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Impact of Power-Management Granularity on The Energy-Quality Trade-off for Soft And Hard Real-Time Applications

    NARCIS (Netherlands)

    Milutinovic, A.; Goossens, Kees; Smit, Gerardus Johannes Maria

    2008-01-01

    In this paper we introduce the concepts of work of tokens (e.g. video frames) in an application, and slack arising from variations in work. Slack is used for dynamic voltage and frequency scaling in combination with a conservative power-management policy that never misses deadlines, for hard

  10. Rate and time of nitrogen fertilizer application on the growth, nitrogen remobilization and yield of soyabean (Glycine max(L) Merrill)

    International Nuclear Information System (INIS)

    Bebeley, J. F.; Sarkodie-Addo; Duku, S.

    2015-01-01

    Two field experiments were conducted in 2012 at the plantation Crop section of the Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, to investigate the effect N availability on nodulation, nitrogen fixation, N remobilization and grain yield of soybean. The design used in both studies was a 3 x 4 factorial arranged in randomized complete block design. Each treatment was replicated three times. The factors studied were rate and time of N fertilizer application. The N rate were 0, 20, 40 and 60kg N/ha and the time of application were early vegetative and early flowering phases. Anidaso, an improved soybean variety of 110 days maturity was used. Following land preparation, seeds were planted at the beginning of the rains at a spacing of 50 x 5cm. All required cultural practices were observed. Data collected were nodule number per plant and nodule dry weight, number of pods per plant, number of seeds per pod, 100 seeds weight, total nitrogen fixed, harvest index, grain yield and remobilized N. The total nitrogen difference method was used in determining the amount of N 2 fixed by the soybean and the micro kjeldahl method was used in determining the total plant N. The results indicated that nodulation was not significantly (p>0.05) affected by N rate and time of N application. However Nitrogen fixation was significantly (p<0.05 in affected time of N application in the minor season. Harvest index was significantly affected time of N application in the major season. Grain yield was also significantly affected by time of N application in both seasons. The results indicate that if farmers would apply N fertilizer to soybean at the vegetative growth phase, there would be increase in yield. The study also demonstrate that N remobilization occurs in soybean during grain filling although rate and time of application used did not significantly (p>0.05) affect N remobilization. (au)

  11. Quantifying the effects of green waste compost application, water content and nitrogen fertilization on nitrous oxide emissions in 10 agricultural soils.

    Science.gov (United States)

    Zhu, Xia; Silva, Lucas C R; Doane, Timothy A; Wu, Ning; Horwath, William R

    2013-01-01

    Common management practices, such as the application of green waste compost, soil moisture manipulation, and nitrogen fertilization, affect nitrous oxide (NO) emissions from agricultural soils. To expand our understanding of how soils interact with these controls, we studied their effects in 10 agricultural soils. Application of compost slightly increased NO emissions in soils with low initial levels of inorganic N and low background emission. For soils in which compost caused a decrease in emission, this decrease was larger than any of the observed increases in the other soils. The five most important factors driving emission across all soils, in order of increasing importance, were native dissolved organic carbon (DOC), treatment-induced change in DOC, native inorganic N, change in pH, and soil iron (Fe). Notable was the prominence of Fe as a regulator of NO emission. In general, compost is a viable amendment, considering the agronomic benefits it provides against the risk of producing a small increase in NO emissions. However, if soil properties and conditions are taken into account, management can recognize the potential effect of compost and thereby reduce NO emissions from susceptible soils, particularly by avoiding application of compost under wet conditions and together with ammonium fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. EFFICIENCY OF CONCOMITANT APPLICATION OF ORGANIC FERTILIZERS AND CULTURED INVERTEBRATES FOR INCREASING FISH PRODUCTIVITY IN NURSERY PONDS

    OpenAIRE

    A. Tuchapska

    2014-01-01

    Purpose. To study the fisheries and biological indicators of young-of-the-year carp when applying fertilizer in ponds, introducing stock cultures of Daphnia magna (Straus) and feeding of young-of-the-year with cultured zooplankton organisms and to evaluate the effectiveness of measures for enhancing the provision of young-of-the-year carp with natural feeds. Methodology. Stock culture of Daphnia magna was added into experimental ponds, 65 kg/ha of zooplankton, which were cultured in a pon...

  13. Influence of Nitrogen Fertilizer and Vermicompost Application on Flower Yield and Essential Oil of Chamomile (Matricaria Chamomile L.)

    OpenAIRE

    Mohammad Reza Haj Seyed Hadi; Mohsen Abarghooei Fallah; Mohammad Taghi Darzi

    2015-01-01

       This study was performed to assess the effects of nitrogen fertilizer and vermicompost on qualitative and quantitative yield of chamomile (Matricaria chamomilla L.). It was conducted at the Research Fields of Ran Company located in Firouzkouh, Iran, in 2013. Treatments were consisted of 1) Control, 2) 100% nitrogen from urea, 3) 100% nitrogen from ammonium nitrate, 4) 75% nitrogen from urea and 25% from vermicompost, 5) 75% nitrogen from ammonium nitrate and 25% from vermicompost, 6) 50% n...

  14. Application of a nanofibrous composite membrane to the fertilizer-driven forward osmosis process for irrigation water use.

    Science.gov (United States)

    An, Hee-Kyung; Lee, Chang-Gu; Park, Seong-Jik

    2017-11-01

    In this study, we fabricated a nanofibrous composite (NFC) membrane as a substrate to produce forward osmosis (FO) membranes, and we also assessed the use of liquid fertilizer as a draw solution for the FO process in order to produce agricultural irrigation water. Commercial cellulose triacetate (CTA) and thin-film composite (TFC) FO membranes were included in this study. Under FO tests, the NFC, CTA, and TFC membranes achieved initial osmotic water flux values of 35.31, 6.85, and 3.31 L/m 2 ·h and final osmotic water flux values of 12.62, 6.31, and 3.85 L/m 2  h, respectively. The reason for the high osmotic water flux of the NFC membrane is because its nanofiber layer has low tortuosity, high porosity, and a low thickness, resulting in a reduction in the internal concentration polarization phenomenon. When liquid fertilizer was used as the draw solution, the water flux values in the FO experiments for the NFC, CTA, and TFC membranes were 15.54, 5.46, and 2.54 L/m 2  h. Finally, our results revealed that the FO process using liquid fertilizer as a draw solution can be applied to produce agricultural irrigation water from brackish water and the newly fabricated NFC membrane can be applied to the FO process.

  15. Dynamics of crater formations in immersed granular materials

    Science.gov (United States)

    Varas, G.; Vidal, V.; Géminard, J.

    2009-12-01

    Craters are part of the widespread phenomena observed in nature. Among the main applications to natural phenomena, aside from meteorite impact craters, are the formation and growth of volcanic edifices, by successive ejecta emplacement and/or erosion. The time evolution and dynamics play a crucial role here, as the competition between volcanic-jet mass-flux (degassing and ejecta) and crater-size evolution may control directly the eruptive regime. Crater morphology in dry granular material has been extensively studied, both experimentally and theoretically. Most of these studies investigate the final, steady crater shape resulting from the collision of solid bodies with the material surface and scaling laws are derived. In immersed granular material, craters generated by an underwater vortex ring, or underwater impact craters generated by landslide, have been reported. In a previous experimental study, Gostiaux et al. [Gran. Matt., 2002] have investigated the dynamics of air flowing through an immersed granular layer. They reported that, depending on the flow rate, the system exhibits two qualitatively different regimes: At small flow rate, the bubbling regime during which bubbles escape the granular layer independently one from another; At large flow rate, the open-channel regime which corresponds to the formation of a channel crossing the whole thickness of the granular bed through which air escapes almost continuously. At intermediate flow rate, a spontaneous alternation between these two regimes is observed. Here, we report the dynamics of crater formations at the free surface of an immersed granular bed, locally crossed by an ascending gas flow. We reproduce the experimental conditions of Gostiaux et al. (2002) in two dimensions: In a vertical Hele-Shaw cell, the crater consists of two sand piles which develop around the location of the gas emission. We observe that the typical size of the crater increases logarithmically with time, independently of the gas

  16. [Effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions and their global warming potentials in paddy fields with double-rice cropping].

    Science.gov (United States)

    Wang, Cong; Shen, Jian-Lin; Zheng, Liang; Liu, Jie-Yun; Qin, Hong-Ling; Li, Yong; Wu, Jin-Shui

    2014-08-01

    A field experiment was carried out to study the effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions, which were measured using the static chamber/gas chromatography method, and their global warming potentials in typical paddy fields with double-rice cropping in Hunan province. The results showed that the combined applications of pig manure and chemical fertilizers did not change the seasonal patterns of CH4 and N2O emissions from paddy soils, but significantly changed the magnitudes of CH4 and N2O fluxes in rice growing seasons as compared with sole application of chemical fertilizers. During the two rice growing seasons, the cumulative CH4 emissions for the pig manure and chemical nitrogen (N) fertilizer each contributing to 50% of the total applied N (1/2N + PM) treatment were higher than those for the treatments of no N fertilizer (ON), half amount of chemical N fertilizer (1/2N) and 100% chemical N fertilizer (N) by 54.83%, 33.85% and 43.30%, respectively (P global warming potential (GWP) in both rice growing seasons, which contributed more than 99% to the integrated GWP of CH4 and N2O emissions for all the four treatments. Both GWP and yield-scaled GWP for the treatment of 1/2N + PM were significantly higher than the other three treatments. The yield-scaled GWP for the treatment of 1/2N + PM was higher than those for the N, 1/2N and ON treatments by 58.21%, 26.82% and 20. 63%, respectively. Therefore, combined applications of pig manure and chemical fertilizers in paddy fields would increase the GWP of CH4 and N2O emissions during rice growing seasons and this effect should be considered in regional greenhouse gases emissions inventory.

  17. The Granular Blasius Problem: High inertial number granular flows

    Science.gov (United States)

    Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie

    2017-11-01

    The classical Blasius problem considers the formation of a boundary layer through the change at x = 0 from a free-slip to a no-slip boundary beneath an otherwise steady uniform flow. Discrete particle model (DPM) simulations of granular gravity currents show that a similar phenomenon exists for a steady flow over a uniformly sloped surface that is smooth upstream (allowing slip) but rough downstream (imposing a no-slip condition). The boundary layer is a region of high shear rate and therefore high inertial number I; its dynamics are governed by the asymptotic behaviour of the granular rheology as I -> ∞ . The μ(I) rheology asserts that dμ / dI = O(1 /I2) as I -> ∞ , but current experimental evidence is insufficient to confirm this. We show that `generalised μ(I) rheologies', with different behaviours as I -> ∞ , all permit the formation of a boundary layer. We give approximate solutions for the velocity profile under each rheology. The change in boundary condition considered here mimics more complex topography in which shear stress increases in the streamwise direction (e.g. a curved slope). Such a system would be of interest in avalanche modelling. EPSRC studentship (Tsang) and Royal Society Dorothy Hodgkin Fellowship (Vriend).

  18. Effect of the efficiency of N by use of different forms of fertilizer application in ground, evaluated by means of the isotopic technique and the N absorbed by the cultivation

    International Nuclear Information System (INIS)

    Delgado, Rodolfo; Ramirez, Ricardo; Urquiaga, Segundo

    1997-01-01

    The determination of the efficiency in the use of nitrogen fertilizers, constitutes one of the important aspects that should be considered in the process of the appropriated element doses recommendation. The form of fertilizer placement is a very important aspect that affects the efficiency, and its evaluation is the main objective of the present work, by means of the Direct Method with the use of N 1 5, and the Indirect Method by means of the N-absorbed by fertilized plants and no fertilized ones. The study was carried out in a Fluventic Haplustoll soil, located in San Carlos, Cojedes State, where three forms of fertilizer placement were evaluated : 1) broadcasting application and incorporation with harrows pass (V/R); 2) broadcasting application and incorporation with disc harrows pass (V/B); 3) application band fertilizer (B); 4) without fertilization; parcels of 200 m2 were sown with corn (Zea mayz), and received an application equivalent to 120 Kg N/ha, in the form of urea. In each of the fertilized parcels, three microparcels of 2,56 m2 were settled down where the normal urea was substituted by enriched urea with N 1 5 to 3% exc. During the crop cycle, the contents N-mineral extracted with KCl(2M) were evaluated and finally the production of dry matter, grain, and the contents of N-total and N 1 5. It was found that the efficiency in the N-fertilizer recovery, by means of the Direct Method, fluctuated between 18.8 and 23,7%, although the grain production was high, fluctuating between 6541 and 6007 kg/ha, suggesting little use of N-fertilizer although a significant use or the soil N. On the other hand, one observes that the processes of mineralization/inmobilization are affected by the application of N, highlighting the importance of their knowledge to improve the efficiency of the use of N-fertilizer and the N coming from soils [es

  19. Effects of mineral and organic fertilizers on crop productivity and ...

    African Journals Online (AJOL)

    Other two fields grown with the same crops without fertilizer application served as control treatment. In addition, a greenhouse experiment was run to ... It was concluded that biophysical factors (field location and initial soil fertility status) greatly influenced crop yield and fertilizer. Keywords: Bean, maize, fertilizer response, ...

  20. Theoretical model of granular compaction

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Naim, E. [Los Alamos National Lab., NM (United States); Knight, J.B. [Princeton Univ., NJ (United States). Dept. of Physics; Nowak, E.R. [Univ. of Illinois, Urbana, IL (United States). Dept. of Physics]|[Univ. of Chicago, IL (United States). James Franck Inst.; Jaeger, H.M.; Nagel, S.R. [Univ. of Chicago, IL (United States). James Franck Inst.

    1997-11-01

    Experimental studies show that the density of a vibrated granular material evolves from a low density initial state into a higher density final steady state. The relaxation towards the final density follows an inverse logarithmic law. As the system approaches its final state, a growing number of beads have to be rearranged to enable a local density increase. A free volume argument shows that this number grows as N = {rho}/(1 {minus} {rho}). The time scale associated with such events increases exponentially e{sup {minus}N}, and as a result a logarithmically slow approach to the final state is found {rho} {infinity} {minus}{rho}(t) {approx_equal} 1/lnt.

  1. Study on the runout of granular columns with SPH methods.

    OpenAIRE

    He, Xuzhen; Liang, Dongfang

    2015-01-01

    Landslides are catastrophic geophysical phenomena, which may cause heavy fatality and property losses. Hence, it is of vital importance to understand their mechanisms and evaluate their travel distance, so that appropriate measures can be taken to mitigate their risk. This paper reports on an application of the incompressible Smoothed Particle Hydrodynamics (SPH) method to the simulation of the collapse of granular columns onto the planes of different slopes, which is similar to dry landslide...

  2. Zinc fertilization of flooded rice

    International Nuclear Information System (INIS)

    1981-02-01

    Local scientists studied Zn fertilization of flooded rice soils in Bangladesh, India, Indonesia, the Republic of Korea, Egypt, the Philippines, Thailand and Turkey. Diagnosis of Zn deficiency was carried out for submerged rice soils. Soil maps were prepared, designating areas as low, medium and high in Zn, based on Zn extraction with DTPA and HCl solutions and on rice leaf analysis. The effectiveness of various Zn fertilizer sources and methods of application in field and greenhouse experiments was measured, using 65 Zn. The percent Zn derived from fertilizer was shown to be a much more sensitive measure of efficiency than yield or total uptake

  3. Influence of water management and fertilizer application on "1"3"7Cs and "1"3"3Cs uptake in paddy rice fields

    International Nuclear Information System (INIS)

    Wakabayashi, Shokichi; Itoh, Sumio; Kihou, Nobuharu; Matsunami, Hisaya; Hachinohe, Mayumi; Hamamatsu, Shioka; Takahashi, Shigeru

    2016-01-01

    Cesium-137 derived from the Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident contaminated large areas of agricultural land in Eastern Japan. Previous studies before the accident have indicated that flooding enhances radiocesium uptake in rice fields. We investigated the influence of water management in combination with fertilizers on "1"3"7Cs concentrations in rice plants at two fields in southern Ibaraki Prefecture. Stable Cs ("1"3"3Cs) in the plants was also determined as an analogue for predicting "1"3"7Cs behavior after long-term aging of soil "1"3"7Cs. The experimental periods comprised 3 y starting from 2012 in one field, and 2 y from 2013 in another field. These fields were divided into three water management sections: a long-flooding section without midsummer drainage, and medial-flooding, and short-flooding sections with one- or two-week midsummer drainage and earlier end of flooding than the long-flooding section. Six or four types of fertilizer subsections (most differing only in potassium application) were nested in each water management section. Generally, the long-flooding treatment led to higher "1"3"7Cs and "1"3"3Cs concentrations in both straw and brown rice than medial- and short-flooding treatments, although there were some notable exceptions in the first experimental year at each site. Effects of differing potassium fertilizer treatments were cumulative; the effects on "1"3"7Cs and "1"3"3Cs concentrations in rice plants were not obvious in 2012 and 2013, but in 2014, these concentrations were highest where potassium fertilizer had been absent and lowest where basal dressings of K had been tripled. The relationship between "1"3"7Cs and "1"3"3Cs in rice plants was not correlative in the first experimental year at each site, but correlation became evident in the subsequent year(s). This study demonstrates a novel finding that omitting midsummer drainage and/or delaying drainage during the grain-filling period

  4. Immobilization of metal-humic acid complexes in anaerobic granular sludge for their application as solid-phase redox mediators in the biotransformation of iopromide in UASB reactors.

    Science.gov (United States)

    Cruz-Zavala, Aracely S; Pat-Espadas, Aurora M; Rangel-Mendez, J Rene; Chazaro-Ruiz, Luis F; Ascacio-Valdes, Juan A; Aguilar, Cristobal N; Cervantes, Francisco J

    2016-05-01

    Metal-humic acid complexes were synthesized and immobilized by a granulation process in anaerobic sludge for their application as solid-phase redox mediators (RM) in the biotransformation of iopromide. Characterization of Ca- and Fe-humic acid complexes revealed electron accepting capacities of 0.472 and 0.556milli-equivalentsg(-1), respectively. Once immobilized, metal-humic acid complexes significantly increased the biotransformation of iopromide in upflow anaerobic sludge blanket (UASB) reactors. Control UASB reactor (without humic material) achieved 31.6% of iopromide removal, while 80% was removed in UASB reactors supplied with each metal-humic acid complex. Further analyses indicated multiple transformation reactions taking place in iopromide including deiodination, N-dealkylation, decarboxylation and deacetylation. This is the first successful application of immobilized RM, which does not require a supporting material to maintain the solid-phase RM in long term operation of bioreactors. The proposed redox catalyst could be suitable for enhancing the redox conversion of different recalcitrant pollutants present in industrial effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, A.E.M.

    2008-01-01

    Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples where collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration, in ppm, were measured. The annual addition of these elements in soil due to fertilization were calculated and discussed. (author)(tk)

  6. Storage and discharge of a granular fluid

    NARCIS (Netherlands)

    Pacheco-Martinez, Hector; van Gerner, H.J.; Ruiz-Suarez, J.C.

    2008-01-01

    Experiments and computational simulations are carried out to study the behavior of a granular column in a silo whose walls are able to vibrate horizontally. The column is brought to a steady fluidized state and it behaves similar to a hydrostatic system. We study the dynamics of the granular

  7. Characterization of Unbound Granular Materials for Pavements

    NARCIS (Netherlands)

    Araya, A.A.

    2011-01-01

    This research is focused on the characterization of the mechanical behavior of unbound granular road base materials (UGMs). An extensive laboratory investigation is described, in which various methods for determination of the mechanical properties of granular materials are examined for their

  8. Periurethral granular cell tumor: a case report

    International Nuclear Information System (INIS)

    Kim, Jeong Kon; Choi, Hyo Gyeong; Cho, Kyoung Sik

    1998-01-01

    Granular cell tumors are uncommon soft tissue tumors which arise as solitary or multiple masses. Lesions commonly arise in the head, neck, and chest wall, but can occur in any part of the body. To our knowledge, periurethral granular cell tumor has not been previously reported. We report one such case

  9. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  10. Changes in soil N fractions and utilization of recently immobilized fertilizer N by wheat as influenced by application of some organic chemicals in rice-wheat sequence

    International Nuclear Information System (INIS)

    Patel, K.P.; Jain, J.M.

    1993-01-01

    Effect of two organic chemicals viz., 2,4-dinitrophenyl hydrazone (C 1 ) and naphthyl ethylene diamine (C 2 ) was studied by their application alone and together (Csub(1+2) at the rate of 10 ppm by growing wheat on a loamy soil (Typic ustochrept) containing recently immobilized fertilizes N of 15 N - urea applied at 60, 120 and 180 ppm N to preceding rice under greenhouse conditions of a rice-wheat sequence. The application of C 1 and C 2 alone; and their combined application (Csub(1+2) produced 12, 15 and 18 per cent higher wheat grain yield over no-chemical application i.e. Co (3.50 g/pot). The chemicals also showed their beneficial effect on utilization of recently immobilized fertilizer N, as was evidenced by significantly higher 15 N recovery values in wheat with C 1 , C 2 and Csub(1+2)(2.84, 3.63 and 3.54 per cent, respectively) than that of Co (2.29 per cent). The soil N fractions were affected by chemical application during wheat as total hydrolyzable N, hydrolyzable unidentified N and hydrolyzable ammonia N registered a decrease in the presence of chemicals whereas the contents of acid insoluble N and amino acid N fractions were found to be increased compared to respective contents after rice, and inorganic N showed a continuous decrease irrespective of the treatments. Amino acid N and hydrolyzable ammonia N were found to be dominant fractions whereas amino sugar N contributed minimum towards total hydrolyzable N at all stages of rice-wheat sequence. (author). 11 refs., 4 tabs

  11. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain

    International Nuclear Information System (INIS)

    Ju, X.T.; Kou, C.L.; Christie, P.; Dou, Z.X.; Zhang, F.S.

    2007-01-01

    Effects of excessive fertilizer and manure applications on the soil environment were compared in greenhouse vegetable systems shifted from wheat-maize rotations 5-15 years previously and in wheat-maize rotations. N, P and K surpluses to the greenhouses were 4328, 1337 and 1466 kg ha -1 year -1 , respectively compared to 346, 65 and -163 kg ha -1 year -1 to wheat-maize fields. Subsequently, substantial mineral N and available P and K accumulated in the soil and leaching occurred down the soil profile in the greenhouses. Soil pH under vegetables was significantly lower than in the wheat-maize fields, while the EC was significantly higher in the vegetable soils. The mean Cd concentration in the vegetable soils was 2.8 times that in the wheat-maize rotations. Due to excessive fertilizer application in greenhouse vegetable production in northeast China, excessive salt and nitrate concentrations may accumulate and soil quality may deteriorate faster than in conventional wheat-maize rotations. - Extremely high nutrient inputs to intensively managed vegetable crops in northeast China may lead to very serious degradation of soil and water quality

  12. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Ju, X.T. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)]. E-mail: juxt@cau.edu.cn; Kou, C.L. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Institute of Soil and Fertilization, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 (China); Christie, P. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Agricultural and Environmental Science Department, Queen' s University Belfast, Newforge Lane, Belfast BT9 5PX (United Kingdom); Dou, Z.X. [Center for Animal Health and Productivity, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348 (United States); Zhang, F.S. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)

    2007-01-15

    Effects of excessive fertilizer and manure applications on the soil environment were compared in greenhouse vegetable systems shifted from wheat-maize rotations 5-15 years previously and in wheat-maize rotations. N, P and K surpluses to the greenhouses were 4328, 1337 and 1466 kg ha{sup -1} year{sup -1}, respectively compared to 346, 65 and -163 kg ha{sup -1} year{sup -1} to wheat-maize fields. Subsequently, substantial mineral N and available P and K accumulated in the soil and leaching occurred down the soil profile in the greenhouses. Soil pH under vegetables was significantly lower than in the wheat-maize fields, while the EC was significantly higher in the vegetable soils. The mean Cd concentration in the vegetable soils was 2.8 times that in the wheat-maize rotations. Due to excessive fertilizer application in greenhouse vegetable production in northeast China, excessive salt and nitrate concentrations may accumulate and soil quality may deteriorate faster than in conventional wheat-maize rotations. - Extremely high nutrient inputs to intensively managed vegetable crops in northeast China may lead to very serious degradation of soil and water quality.

  13. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    Science.gov (United States)

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Traffic and Granular Flow ’03

    CERN Document Server

    Luding, Stefan; Bovy, Piet; Schreckenberg, Michael; Wolf, Dietrich

    2005-01-01

    These proceedings are the fifth in the series Traffic and Granular Flow, and we hope they will be as useful a reference as their predecessors. Both the realistic modelling of granular media and traffic flow present important challenges at the borderline between physics and engineering, and enormous progress has been made since 1995, when this series started. Still the research on these topics is thriving, so that this book again contains many new results. Some highlights addressed at this conference were the influence of long range electric and magnetic forces and ambient fluids on granular media, new precise traffic measurements, and experiments on the complex decision making of drivers. No doubt the “hot topics” addressed in granular matter research have diverged from those in traffic since the days when the obvious analogies between traffic jams on highways and dissipative clustering in granular flow intrigued both c- munities alike. However, now just this diversity became a stimulating feature of the ...

  15. Traffic and Granular Flow’05

    CERN Document Server

    Pöschel, Thorsten; Kühne, Reinhart; Schreckenberg, Michael; Wolf, Dietrich

    2007-01-01

    The conference series Tra?c and Granular Flow has been established in 1995 and has since then been held biannually. At that time, the investigation of granular materials and tra?c was still somewhat exotic and was just starting to become popular among physicists. Originally the idea behind this conference series was to facilitate the c- vergence of the two ?elds, inspired by the similarities of certain phenomena and the use of similar theoretical methods. However, in recent years it has become clear that probably the di?erences between the two systems are much more interesting than the similarities. Nevertheless, the importance of various interrelations among these ?elds is still growing. The workshop continues to o?er an opportunity to stimulate this interdisciplinary research. Over the years the spectrum of topics has become much broader and has included also problems related to topics ranging from social dynamics to - ology. The conference manages to bring together people with rather di?erent background, r...

  16. Centrifuge modelling of granular flows

    Science.gov (United States)

    Cabrera, Miguel Angel; Wu, Wei

    2015-04-01

    A common characteristic of mass flows like debris flows, rock avalanches and mudflows is that gravity is their main driving force. Gravity defines the intensity and duration of the main interactions between particles and their surrounding media (particle-particle, particle-fluid, fluid-fluid). At the same time, gravity delimits the occurrence of phase separation, inverse segregation, and mass consolidation, among other phenomena. Therefore, in the understanding of the flow physics it is important to account for the scaling of gravity in scaled models. In this research, a centrifuge model is developed to model free surface granular flows down an incline at controlled gravity conditions. Gravity is controlled by the action of an induced inertial acceleration field resulting from the rotation of the model in a geotechnical centrifuge. The characteristics of the induced inertial acceleration field during flow are discussed and validated via experimental data. Flow heights, velocity fields, basal pressure and impact forces are measured for a range of channel inclinations and gravity conditions. Preliminary results enlighten the flow characteristics at variable gravity conditions and open a discussion on the simulation of large scale processes at a laboratory scale. Further analysis on the flow physics brings valuable information for the validation of granular flows rheology.

  17. Variations in yield and gluten proteins in durum wheat varieties under late-season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment.

    Science.gov (United States)

    Visioli, Giovanna; Bonas, Urbana; Dal Cortivo, Cristian; Pasini, Gabriella; Marmiroli, Nelson; Mosca, Giuliano; Vamerali, Teofilo

    2018-04-01

    With the increasing demand for high-quality foodstuffs and concern for environmental sustainability, late-season nitrogen (N) foliar fertilization of common wheat is now an important and widespread practice. This study investigated the effects of late-season foliar versus soil N fertilization on yield and protein content of four varieties of durum wheat, Aureo, Ariosto, Biensur and Liberdur, in a three-year field trial in northern Italy. Variations in low-molecular-weight glutenins (LMW-GS), high-molecular-weight glutenins (HMW-GS) and gliadins were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It was found that N applied to the canopy did not improve protein rate compared with N application to the soil (general mean 138 mg g -1 ), but moderately increased productivity in the high-yielding varieties Liberdur and Biensur (three-year means 7.23 vs 7.13 and 7.53 vs 7.09 t ha -1 respectively). Technological quality was mainly related to variety choice, Aureo and Ariosto having higher protein rates and glutenin/gliadin ratios. Also found was a strong 'variety × N application method' interaction in the proportions of protein subunits within each class, particularly LMW-GS and gliadins. A promising result was the higher N uptake efficiency, although as apparent balance, combined with higher HMW/LMW-GS ratio in var. Biensur. Late-season foliar N fertilization allows N fertilizer saving, potentially providing environmental benefits in the rainy climate of the northern Mediterranean area, and also leads to variety-dependent up-regulation of essential LMW-GS and gliadins. Variety choice is a key factor in obtaining high technological quality, although it is currently associated with modest grain yield. This study provides evidence of high quality in the specific high-yielding variety Biensur, suggesting its potential as a mono-varietal semolina for pasta production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Study on the placement of phosphorus fertilizer to improve fertilizer utilization by lowland rice

    International Nuclear Information System (INIS)

    Sisworo, W.H.; Riswantoro; Mardjo, M.

    1976-01-01

    An experiment for studying the placement of phosphorus fertilizer was carried out in the glass house by using 32 P-labelled superphosphate. The specific activity of the labelled fertilizer used was 0,25 mCi/g P 2 O 5 . Three placement methods were studied: (1) Hill placement: Fertilizer was burried at a distance of 5cm from the plants at the depth of 5 cm, (2) Surface placement: Fertilizer was spread on the surface, and (3) Soil mixed application: Fertilizer was mixed with the soil at the depth of 5 cm. Superphosphate was applied at the rates of 0, 30, 60, 90, and 120 kg P 25 /ha. Results obtained from the experiment showed that the dry matter production was significantly affected by the methods of placement of phosphorus fertilizer. Soil mixed placement gave the lowest yield of dry plant material. It differed significantly from the two other methods of placement. However, there was no significant difference between hill and surface placement. The placement of phosphorus fertilizer significantly affected the total uptake of phosphorus nutrient, uptake fertilizer phosphorus, and the percentage of fertilizer utilization. Surface placement gave the highest utilization of fertilizer when supplied at rates higher than 60 kg P 2 O 5 /ha. At low rate applications, hill placement was the best, but, at rates higher than 60 kg P 2 O 5 /ha the percentage of fertilizer utilization decreased. Soil mixed application was the least efficient fertilizer utilization. (author)

  19. Fertilizers in cereals crops. Effect of fertilization in grain quality

    International Nuclear Information System (INIS)

    Melaj, Mariana

    1997-01-01

    In the last years the yields of the maize cultivation in the Pampeana production region have constantly increased, foreseeing higher increases of yield in the next years. Such increase is due, between other motives, to the use of hybrids of higher potential yield. There is a direct relation between the yield potential of a genotype and the nutrients demand, fact that constitutes one of the geneticists concerns. Maize hybrids reach its maximum expression when the plant is cultivated in good supplied soils with balanced quantities of nutrients that in several cases are reached with the practice of fertilization. The quantitative and qualitative vegetal response to the use of phosphate fertilizers depend of soils, of the environmental conditions, of fertilizer and the way of its application as well as of the maize hybrid that was used. To direct the practice of fertilization towards the reposition of the soil nutrients extracted by genotypes of high yield without producing excesses that increase costs and put in danger the environment, it is necessary to know the real coefficient used by the plants of the phosphorus available in the soils. The isotopic methodology allows to distinguish the phosphorus coming from two nutrient sources: soil and fertilizer, even in the juvenile phase of vegetal development and to evaluate the efficiency of fertilizers in plant nutrition. The objective of the present work was to evaluate the use of phosphorus coming from one of the phosphorus source available (soil, fertilizer), that should allow to increase and make more specific the knowledge's level of the different maize hybrids. This is obtained by determination of the grade of use of nutrient (of the soil) and of the nutrient of fertilizers, evaluating the qualitative and quantitative responses to fertilization

  20. Oscillatory Dynamics of One-Dimensional Homogeneous Granular Chains

    Science.gov (United States)

    Starosvetsky, Yuli; Jayaprakash, K. R.; Hasan, Md. Arif; Vakakis, Alexander F.

    The acoustics of the homogeneous granular chains has been studied extensively both numerically and experimentally in the references cited in the previous chapters. This chapter focuses on the oscillatory behavior of finite dimensional homogeneous granular chains. It is well known that normal vibration modes are the building blocks of the vibrations of linear systems due to the applicability of the principle of superposition. One the other hand, nonlinear theory is deprived of such a general superposition principle (although special cases of nonlinear superpositions do exist), but nonlinear normal modes ‒ NNMs still play an important role in the forced and resonance dynamics of these systems. In their basic definition [1], NNMs were defined as time-periodic nonlinear oscillations of discrete or continuous dynamical systems where all coordinates (degrees-of-freedom) oscillate in-unison with the same frequency; further extensions of this definition have been considered to account for NNMs of systems with internal resonances [2]...

  1. Modeling compaction-induced energy dissipation of granular HMX

    Energy Technology Data Exchange (ETDEWEB)

    Gonthier, K.A. [Lamar Univ., Beaumont, TX (US). Dept. of Mechanical Engineering; Menikoff, R.; Son, S.F.; Asay, B.W. [Los Alamos National Lab., NM (US)

    1998-12-31

    A thermodynamically consistent model is developed for the compaction of granular solids. The model is an extension of the single phase limit of two-phase continuum models used to describe Deflagration-to-Detonation Transition (DDT) experiments. The focus is on the energetics and dissipation of the compaction process. Changes in volume fraction are partitioned into reversible and irreversible components. Unlike conventional DDT models, the model is applicable from the quasi-static to dynamic compaction regimes for elastic, plastic, or brittle materials. When applied to the compaction of granular HMX (a brittle material), the model predicts results commensurate with experiments including stress relaxation, hysteresis, and energy dissipation. The model provides a suitable starting point for the development of thermal energy localization sub-scale models based on compaction-induced dissipation.

  2. Are Nitrogen Fertilizers Deleterious to Soil Health?

    Directory of Open Access Journals (Sweden)

    Bijay- Singh

    2018-04-01

    Full Text Available Soil is one of the most important natural resources and medium for plant growth. Anthropogenic interventions such as tillage, irrigation, and fertilizer application can affect the health of the soil. Use of fertilizer nitrogen (N for crop production influences soil health primarily through changes in organic matter content, microbial life, and acidity in the soil. Soil organic matter (SOM constitutes the storehouse of soil N. Studies with 15N-labelled fertilizers show that in a cropping season, plants take more N from the soil than from the fertilizer. A large number of long-term field experiments prove that optimum fertilizer N application to crops neither resulted in loss of organic matter nor adversely affected microbial activity in the soil. Fertilizer N, when applied at or below the level at which maximum yields are achieved, resulted in the build-up of SOM and microbial biomass by promoting plant growth and increasing the amount of litter and root biomass added to soil. Only when fertilizer N was applied at rates more than the optimum, increased residual inorganic N accelerated the loss of SOM through its mineralization. Soil microbial life was also adversely affected at very high fertilizers rates. Optimum fertilizer use on agricultural crops reduces soil erosion but repeated application of high fertilizer N doses may lead to soil acidity, a negative soil health trait. Site-specific management strategies based on principles of synchronization of N demand by crops with N supply from all sources including soil and fertilizer could ensure high yields, along with maintenance of soil health. Balanced application of different nutrients and integrated nutrient management based on organic manures and mineral fertilizers also contributed to soil health maintenance and improvement. Thus, fertilizer N, when applied as per the need of the field crops in a balanced proportion with other nutrients and along with organic manures, if available with the

  3. Fertility Clinic Success Rates

    Science.gov (United States)

    ... Defects ART and Autism 2013 Assisted Reproductive Technology Fertility Clinic Success Rates Report Recommend on Facebook Tweet ... Additional Information About ART in the United States. Fertility Clinic Tables Introduction to Fertility Clinic Tables [PDF - ...

  4. Fertility and Population Policy

    OpenAIRE

    Ouedraogo, Abdoulaye; Tosun, Mehmet S.; Yang, Jingjing

    2018-01-01

    There have been significant changes in both the fertility rates and fertility perception since 1970s. In this paper, we examine the relationship between government policies towards fertility and the fertility trends. Total fertility rate, defined as the number of children per woman, is used as the main fertility trend variable. We use panel data from the United Nations World Population Policies database, and the World Bank World Development Indicators for the period 1976 through 2013. We find...

  5. [Effects of fertilizer application on water consumption characteristics and yield of potato cultured under ridge-furrow and whole filed plastic mulching in rain-fed area.

    Science.gov (United States)

    Yu, Xian Feng; Zhang, Xu Cheng; Wang, Hong Li; Ma, Yi Fan; Hou, Hui Zhi; Fang, Yan Jie

    2016-03-01

    Chemical fertilizer reduction and organic manure substitution are the useful methods to increase potato water-and nutrient use efficiency, which is cultured under ridge-furrow and whole soil surface mulched by plastic film in semiarid rain-fed area. A 4-year field experiment was carried out from 2011 to 2014 with three treatments: 1) traditional chemical fertilizer application (F), 2) chemical nitrogen fertilizer reduced by 25% and dressing at flowering stage (DF), and 3) chemical nitrogen fertilizer reduced by 50% and organic manure substitution (OF). The soil moisture and potato yield were investigated, and seasonal water consumption, water use efficiency (WUE) were calculated to study the regulations of different nutrient management methods on potato water use process, as well as its effects on potato tuber yield and WUE. The results showed that soil water storage in potato flowering stage was the highest under DF treatment, but there were no significant difference among these three treatments. The depth of soil water depletion in DF and OF showed an increasing trend at post-flowering stage. Potato water consumption decreased significantly at pre-flowering stage, but increased by 36.2%, 23.2%, 24.8% and 19.0% respectively at post-flowering stage in 2011-2014 under DF treatment, as compared with those under F treatment. OF treatment increased potato water consumption by 20.7% and 16.3% than that under F treatment at post-flowering stage from 2011 to 2012, respectively, but exerted no significant effect at pre-flowering stage. Compared with F, DF increased potato tuber yield averagely by 2595.1 kg·hm -2 from 2012 to 2014 and significantly increased the WUE by 14.4% and 6.3% in 2013 and 2014, respectively; OF significantly increased potato tuber yield averagely by 2945 kg·hm -2 tuber yield in 4 experimental years and WUE was significantly higher than that under F from 2012 to 2014. It was indicated that both DF and OF could regulate water consumption between pre

  6. Shear failure of granular materials

    Science.gov (United States)

    Degiuli, Eric; Balmforth, Neil; McElwaine, Jim; Schoof, Christian; Hewitt, Ian

    2012-02-01

    Connecting the macroscopic behavior of granular materials with the microstructure remains a great challenge. Recent work connects these scales with a discrete calculus [1]. In this work we generalize this formalism from monodisperse packings of disks to 2D assemblies of arbitrarily shaped grains. In particular, we derive Airy's expression for a symmetric, divergence-free stress tensor. Using these tools, we derive, from first-principles and in a mean-field approximation, the entropy of frictional force configurations in the Force Network Ensemble. As a macroscopic consequence of the Coulomb friction condition at contacts, we predict shear failure at a critical shear stress, in accordance with the Mohr-Coulomb failure condition well known in engineering. Results are compared with numerical simulations, and the dependence on the microscopic geometric configuration is discussed. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  7. Mechanics of a granular skin

    Science.gov (United States)

    Karmakar, Somnath; Sane, Anit; Bhattacharya, S.; Ghosh, Shankar

    2017-04-01

    Magic sand, a hydrophobic toy granular material, is widely used in popular science instructions because of its nonintuitive mechanical properties. A detailed study of the failure of an underwater column of magic sand shows that these properties can be traced to a single phenomenon: the system self-generates a cohesive skin that encapsulates the material inside. The skin, consisting of pinned air-water-grain interfaces, shows multiscale mechanical properties: they range from contact-line dynamics in the intragrain roughness scale, to plastic flow at the grain scale, all the way to sample-scale mechanical responses. With decreasing rigidity of the skin, the failure mode transforms from brittle to ductile (both of which are collective in nature) to a complete disintegration at the single-grain scale.

  8. Statistical and visual probing of evolving granular assemblies

    International Nuclear Information System (INIS)

    Smith, Laurence M.

    2002-01-01

    The majority of processes in the chemical and allied industries involve the storage and conveyancing of granular material, the physics of which is still not particularly well understood. Whilst some non-invasive techniques have been developed, much experimental work unfortunately interferes with the fields being investigated. For this reason and in conjunction with increasing computing power, there has been an increase in simulation based studies. Granular dynamics simulations, being based upon inter-particle interaction laws, give the potential to investigate assemblies at the 'micro-level' and have been successful in modelling process conditions in a number of granular flow situations. To date, most analyses of these simulations are essentially static in nature involving 'time snapshots'. However, in a granular dynamics simulation there is a wealth of data available on a time referenced basis which has the potential to allow a quantitative analysis of the dynamics of assembly evolution. This dissertation describes the development and application of a toolkit for post-simulation analysis. However, the utilities within the toolkit would be equally applicable to large experimental data sets should such data sets exist. The application of the toolset focuses largely on the dynamics of heap evolution in both 2D and 3D with some supportive 3D work on hopper discharge. A major part of the work involves the application of time series techniques (including the wavelet transform) in the context of variable coupling during avalanching. Segregation by self-diffusion receives particular attention and a new mechanism is proposed by which segregation by particle size takes place in the boundary layer of a low impact feed heap displaying a clear velocity gradient during discrete avalanching. Periodic lateral surging is shown to enforce mixing for a high impact feed, a phenomenon which appears to switch off below a certain feed impact. Segregation by self-diffusion is also shown

  9. Alleviation of Water Stress Effects on MR220 Rice by Application of Periodical Water Stress and Potassium Fertilization

    Directory of Open Access Journals (Sweden)

    Nurul Amalina Mohd Zain

    2014-02-01

    Full Text Available The use of periodical water stress and potassium fertilization may enhance rice tolerance to drought stress and improve the crop’s instantaneous water use efficiency without much yield reduction. This study was conducted to assess the effects of different periodical water stress combined with potassium fertilization regimes on growth, yield, leaf gas exchanges and biochemical changes in rice grown in pots and compare them with standard local rice grower practices. Five treatments including (1 standard local grower’s practice (control, 80CF = 80 kg K2O/ha + control flooding; (2 120PW15 = 120 kg K2O/ha + periodical water stress for 15 days; (3 120DS15V = 120 kg K2O/ha + drought stress for 15 days during the vegetative stage; (4 120DS25V = 120 kg K2O/ha + drought stress for 25 days and (5 120DS15R = 120 kg K2O/ha + drought stress for 15 days during the reproductive stage, were evaluated in this experiment. Control and 120PW15 treatments were stopped at 100 DAS, and continuously saturated conditions were applied until harvest. It was found that rice under 120PW15 treatment showed tolerance to drought stress evidenced by increased water use efficiency, peroxidase (POX, catalase (CAT and proline levels, maximum efficiency of photosystem II (fv/fm and lower minimal fluorescence (fo, compared to other treatments. Path coefficient analysis revealed that most of parameters contribute directly rather than indirectly to rice yield. In this experiment, there were four factors that are directly involved with rice yield: grain soluble sugar, photosynthesis, water use efficiency and total chlorophyll content. The residual factors affecting rice yield are observed to be quite low in the experiment (0.350, confirming that rice yield was mostly influenced by the parameters measured during the study.

  10. Influence of Nitrogen Fertilizer and Vermicompost Application on Flower Yield and Essential Oil of Chamomile (Matricaria Chamomile L.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Haj Seyed Hadi

    2015-07-01

    Full Text Available    This study was performed to assess the effects of nitrogen fertilizer and vermicompost on qualitative and quantitative yield of chamomile (Matricaria chamomilla L.. It was conducted at the Research Fields of Ran Company located in Firouzkouh, Iran, in 2013. Treatments were consisted of 1 Control, 2 100% nitrogen from urea, 3 100% nitrogen from ammonium nitrate, 4 75% nitrogen from urea and 25% from vermicompost, 5 75% nitrogen from ammonium nitrate and 25% from vermicompost, 6 50% nitrogen from urea and 25% from vermicompost , 7 50% nitrogen from ammonium nitrate and 25% from vermicompost, 8 25% nitrogen from urea and 25% from vermicompost, 9 25% nitrogen from ammonium nitrate and 25% from vermicompost, and 10 100% nitrogen from vermicompost. The maximum plant height (67.03 cm and plant weight (93.21 g/plant were obtained at N2 treatment (200 kg ha-1 urea. N5 treatment (202.5 kg ha-1 ammonium nitrate + 1.5 ton vermicompost ha-1 caused maximum flower diameter. The highest fresh flower yield (7539.45 kg ha-1, dry flower yield (1715.93 kg ha-1 and essential oil yield (6.95 kg ha-1 obtained in plots, which received 135 kg ha-1 nitrate ammonium + 3 ton vermicompost ha-1. It seems using biofertilizers such as vermicompost could enhance quantitative and qualitative characteristics of chamomile. Moreover, by substituting chemical fertilizers by biofertilizers, ecosystem health and quality of life will increase which it is the most important goals of sustainable developments. 

  11. Storage and discharge of a granular fluid.

    Science.gov (United States)

    Pacheco-Martinez, Hector; van Gerner, Henk Jan; Ruiz-Suárez, J C

    2008-02-01

    Experiments and computational simulations are carried out to study the behavior of a granular column in a silo whose walls are able to vibrate horizontally. The column is brought to a steady fluidized state and it behaves similar to a hydrostatic system. We study the dynamics of the granular discharge through openings at the bottom of the silo in order to search for a Torricelli-like behavior. We show that the flow rate scales with the wall induced shear rate, and at high rates, the granular bed indeed discharges similar to a viscous fluid.

  12. Energy decay in a granular gas collapse

    International Nuclear Information System (INIS)

    Almazán, Lidia; Serero, Dan; Pöschel, Thorsten; Salueña, Clara

    2017-01-01

    An inelastic hard ball bouncing repeatedly off the ground comes to rest in finite time by performing an infinite number of collisions. Similarly, a granular gas under the influence of external gravity, condenses at the bottom of the confinement due to inelastic collisions. By means of hydrodynamical simulations, we find that the condensation process of a granular gas reveals a similar dynamics as the bouncing ball. Our result is in agreement with both experiments and particle simulations, but disagrees with earlier simplified hydrodynamical description. Analyzing the result in detail, we find that the adequate modeling of pressure plays a key role in continuum modeling of granular matter. (paper)

  13. On inconsistency in frictional granular systems

    Science.gov (United States)

    Alart, Pierre; Renouf, Mathieu

    2018-04-01

    Numerical simulation of granular systems is often based on a discrete element method. The nonsmooth contact dynamics approach can be used to solve a broad range of granular problems, especially involving rigid bodies. However, difficulties could be encountered and hamper successful completion of some simulations. The slow convergence of the nonsmooth solver may sometimes be attributed to an ill-conditioned system, but the convergence may also fail. The prime aim of the present study was to identify situations that hamper the consistency of the mathematical problem to solve. Some simple granular systems were investigated in detail while reviewing and applying the related theoretical results. A practical alternative is briefly analyzed and tested.

  14. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  15. The increase of the fertility of soils using the liquid organic fertilizers and fertilizers based on sugar-beet wastes.

    Science.gov (United States)

    Vyborova, Oxana

    2010-05-01

    physical, physicochemical properties of soils, its air, water and thermal rate. Humic acids with mineral and organomineral particles of soil form the soil absorbent complex. The inclusion of humic fertilizers promotes the process when humic substances form a very valuable water-stable clumpy-granular structure, which improves water-carrying and water-holding capacity, its air permeability by agglutination of mineral particles with each other. The soils, where humic fertilizers are carried in soils regularly, are more stable for influence of chemical polluting substances (for example, radioactive nuclides, heavy metals, pesticides) than poor soils. The inclusion of humic fertilizers is very important in period of urbanization and cropping on the plough-lands not far from a big industrial area. The lignitic materials tie together the detrimental compounds formed the insoluble complex in soil solution. The detrimental compounds don't go into plants, subsoil waters and atmosphere. The lignitic watering of soils (in concentration from 0.1 to 0.01%) increases biological activity of soil in a man-caused zones and it promotes to stability of plants to detrimental emission of enterprises. Today the problem of processing of sugar-beet industry is very important. In the result of storing sugar-beet wastes the pollution of environment is occurred, examples of this pollution are gassing, salinization of soils and ground waters by filtrational sediments. One of these wastes is defecation sludge. The defecation sludge consists of CaCO3, organic matter, nitrogen, phosphorus, potassium and microelements. The technology of receiving N-Ca fertilizer based on defecate was developed because of impossibility of using this waste in pure form. For available data, using of these fertilizers improves the soil fertility and degree of pollution by heavy metals don't exceed an acceptance limits.

  16. Analytical and Computational Modeling of Mechanical Waves in Microscale Granular Crystals: Nonlinearity and Rotational Dynamics

    Science.gov (United States)

    Wallen, Samuel P.

    Granular media are one of the most common, yet least understood forms of matter on earth. The difficulties in understanding the physics of granular media stem from the fact that they are typically heterogeneous and highly disordered, and the grains interact via nonlinear contact forces. Historically, one approach to reducing these complexities and gaining new insight has been the study of granular crystals, which are ordered arrays of similarly-shaped particles (typically spheres) in Hertzian contact. Using this setting, past works explored the rich nonlinear dynamics stemming from contact forces, and proposed avenues where such granular crystals could form designer, dynamically responsive materials, which yield beneficial functionality in dynamic regimes. In recent years, the combination of self-assembly fabrication methods and laser ultrasonic experimental characterization have enabled the study of granular crystals at microscale. While our intuition may suggest that these microscale granular crystals are simply scaled-down versions of their macroscale counterparts, in fact, the relevant physics change drastically; for example, short-range adhesive forces between particles, which are negligible at macroscale, are several orders of magnitude stronger than gravity at microscale. In this thesis, we present recent advances in analytical and computational modeling of microscale granular crystals, in particular concerning the interplay of nonlinearity, shear interactions, and particle rotations, which have previously been either absent, or included separately at macroscale. Drawing inspiration from past works on phononic crystals and nonlinear lattices, we explore problems involving locally-resonant metamaterials, nonlinear localized modes, amplitude-dependent energy partition, and other rich dynamical phenomena. This work enhances our understanding of microscale granular media, which may find applicability in fields such as ultrasonic wave tailoring, signal processing

  17. Fertility preservation 2

    Science.gov (United States)

    De Vos, Michel; Smitz, Johan; Woodruff, Teresa K

    2014-01-01

    Enhanced long-term survival rates of young women with cancer and advances in reproductive medicine and cryobiology have culminated in an increased interest in fertility preservation methods in girls and young women with cancer. Present data suggest that young patients with cancer should be referred for fertility preservation counselling quickly to help with their coping process. Although the clinical application of novel developments, including oocyte vitrification and oocyte maturation in vitro, has resulted in reasonable success rates in assisted reproduction programmes, experience with these techniques in the setting of fertility preservation is in its infancy. It is hoped that these and other approaches, some of which are still regarded as experimental (eg, ovarian tissue cryopreservation, pharmacological protection against gonadotoxic agents, in-vitro follicle growth, and follicle transplantation) will be optimised and become established within the next decade. Unravelling the complex mechanisms of activation and suppression of follicle growth will not only expand the care of thousands of women diagnosed with cancer, but also inform the care of millions of women confronted with reduced reproductive fitness because of ageing. PMID:25283571

  18. Impact of the Application Technique on Nitrogen Gas Emissions and Nitrogen Budgets in Case of Energy Maize Fertilized with Biogas Residues

    Science.gov (United States)

    Andres, Monique; Fränzke, Manuel; Schuster, Carola; Kreuter, Thomas; Augustin, Jürgen

    2014-05-01

    Despite an increasing cultivation of energy maize fertilized with ammonia-rich biogas residues (BR), little is known about the impact of the application technique on gaseous nitrogen (N) losses as well as N budgets, indicative of N use efficiency. To contribute to closing this knowledge gap we conducted a field experiment supplemented by a laboratory incubation study. The field experiment was carried out in Dedelow, located in the Northeastern German Lowlands and characterized by well-drained loamy sand (haplic luvisol). Two treatments with different application technique for BR fertilization - i) trail hoses and ii) injection - were compared to an unfertilized control (0% N). Seventy percent of the applied N-BR was assumed to be plant-available. In 2013, biweekly nitrous oxide (N2O) measurements were conducted during the time period between BR application and maize harvest (18.04.-11.09.2013; 147 days) using non-flow-through non-steady-state chamber measurements. To quantify soil Nmin status, soil samples were taken from 0-30 cm soil depth in the spring (before fertilization) and autumn (after maize harvest). Immediately after BR application, ammonia (NH3) volatilization was measured intensively using the open dynamic chamber Dräger-Tube method. Export of N due to harvest was determined via plant N content (Nharvest). Based on the measured N gas fluxes, N soil and plant parameters, soil N budgets were calculated using a simple difference approach. Values of N output (Nharvest, NN2O_cum and NNH3_cum) are subtracted from N input values (Nfertilizer and Nmin_autumnminus Nmin_spring). In order to correctly interpret N budgets, other N fluxes must be integrated into the budget calculation. Apart from soil-based mobilization and immobilization turnover processes and nitrate leaching, this applies specifically to N2 losses due to denitrification. Therefore, we measured the N2 emissions from laboratory-incubated undisturbed soil cores (250 cm3) by means of the helium

  19. Jamming and chaotic dynamics in different granular systems

    Science.gov (United States)

    Maghsoodi, Homayoon; Luijten, Erik

    Although common in nature and industry, the jamming transition has long eluded a concrete, mechanistic explanation. Recently, Banigan et al. (Nat. Phys. 9, 288-292, 2013) proposed a method for characterizing this transition in a granular system in terms of the system's chaotic properties, as quantified by the largest Lyapunov exponent. They demonstrated that in a two-dimensional shear cell the jamming transition coincides with the bulk density at which the system's largest Lyapunov exponent changes sign, indicating a transition between chaotic and non-chaotic regimes. To examine the applicability of this observation to realistic granular systems, we study a model that includes frictional forces within an expanded phase space. Furthermore, we test the generality of the relation between chaos and jamming by investigating the relationship between jamming and the chaotic properties of several other granular systems, notably sheared systems (Howell, D., Behringer R. P., Veje C., Phys. Rev. Lett. 82, 5241-5244, 1999) and systems with a free boundary. Finally, we quantify correlations between the largest Lyapunov vector and collective rearrangements of the system to demonstrate the predictive capabilities enabled by adopting this perspective of jamming.

  20. Investigations on a hybrid positron source with a granular converter

    Energy Technology Data Exchange (ETDEWEB)

    Artru, X. [Institut de Physique Nucleaire de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Chaikovska, I. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France); Chehab, R., E-mail: chehab@lal.in2p3.fr [Institut de Physique Nucleaire de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Chevallier, M. [Institut de Physique Nucleaire de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Dadoun, O. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France); Furukawa, K. [Accelerator Laboratory (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Guler, H. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France); Kamitani, T.; Miyahara, F.; Satoh, M. [Accelerator Laboratory (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Sievers, P. [CERN, Geneva (Switzerland); Suwada, T.; Umemori, K. [Accelerator Laboratory (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Variola, A. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France)

    2015-07-15

    Promising results obtained with crystal targets for positron production led to the elaboration of a hybrid source made of an axially oriented tungsten crystal, as a radiator, and an amorphous tungsten converter. If the converter is granular, made of small spheres, the heat dissipation is greatly enhanced and the thermal shocks reduced, allowing the consideration of such device for the future linear colliders. A positron source of this kind is investigated. Previous simulations have shown very promising results for the yield as for the energy deposition and the PEDD (Peak Energy Deposition Density). Here, we present detailed simulations made in this granular converter with emphasis on the energy deposition density, which is a critical parameter as learned from the breakdown of the SLC target. A test on the KEKB linac is foreseen; it will allow a determination of the energy deposited and the PEDD in the converter through temperature measurements. Four granular converters, made of W spheres of mm radius have been built at LAL-Orsay; they will be installed at KEK and compared to compact converters. A description of the experimental layout at KEK is provided. Applications to future linear colliders as CLIC and ILC are considered.

  1. Improving usability and pregnancy rates of a fertility monitor by an additional mobile application: results of a retrospective efficacy study of Daysy and DaysyView app.

    Science.gov (United States)

    Koch, Martin C; Lermann, Johannes; van de Roemer, Niels; Renner, Simone K; Burghaus, Stefanie; Hackl, Janina; Dittrich, Ralf; Kehl, Sven; Oppelt, Patricia G; Hildebrandt, Thomas; Hack, Caroline C; Pöhls, Uwe G; Renner, Stefan P; Thiel, Falk C

    2018-03-02

    Daysy is a fertility monitor that uses the fertility awareness method by tracking and analyzing the individual menstrual cycle. In addition, Daysy can be connected to the application DaysyView to transfer stored personal data from Daysy to a smartphone or tablet (IOS, Android). This combination is interesting because as it is shown in various studies, the use of apps is increasing patients´ focus on their disease or their health behavior. The aim of this study was to investigate if by the additional use of an App and thereby improved usability of the medical device, it is possible to enhance the typical-use related as well as the method-related pregnancy rates. In the resultant group of 125 women (2076 cycles in total), 2 women indicated that they had been unintentionally pregnant during the use of the device, giving a typical-use related Pearl-Index of 1.3. Counting only the pregnancies which occurred as a result of unprotected intercourse during the infertile (green) phase, we found 1 pregnancy, giving a method-related Pearl-Index of 0.6. Calculating the pregnancy rate resulting from continuous use and unprotected intercourse exclusively on green days, gives a perfect-use Pearl-Index of 0.8. It seems that combining a specific biosensor-embedded device (Daysy), which gives the method a very high repeatable accuracy, and a mobile application (DaysyView) which leads to higher user engagement, results in higher overall usability of the method.

  2. Effects of Combined Application of Biogas Slurry and Chemical Fertilizer on Soil Aggregation and C/N Distribution in an Ultisol

    Science.gov (United States)

    Zheng, Xuebo; Fan, Jianbo; Xu, Lei; Zhou, Jing

    2017-01-01

    Unreasonable use of chemical fertilizer (CF) on agricultural soil leads to massive losses of soil organic carbon (SOC) and total nitrogen (TN) in tropical and subtropical areas, where soil conditions are unfavorable for aggregate formation. This study evaluated the effects of combined application of biogas slurry (BS) plus CF on soil aggregation and aggregate—associated C/N concentration and storage in an Ultisol. Six treatments included: no fertilizer (T1), CF only (T2), partial (15% (T3), 30% (T4) and 45% (T5)) substitution of TN with BS and BS only (T6). Soil mechanical—stable aggregates (MSAs) formation and stability as well as MSAs—associated C/N concentration and storage were observed in different aggregate sizes (>5, 5–2, 2–1, 1.0–0.5, 0.50–0.25 and 5 mm significantly increased with BS substitution (T5), while the proportions of MSAs 1.0–0.5 mm, MSAs 0.50–0.25 mm and MSAs 0.5 mm that constituted 72–82% of MSAs. Stepwise regression analysis showed that MSAs >5 mm, SOC in MSAs >5 mm and TN in MSAs >5 mm were the dominant variables affecting aggregate stability. Meanwhile SOC in MSAs <0.25 mm and TN in MSAs 2–1 mm were independent variables affecting SOC and TN concentrations in bulk soils. Therefore, certain rate of combined application of BS plus CF is an effective, eco—friendly way to improve soil quality in an Ultisol. PMID:28125647

  3. Spatial correlations in compressible granular flows

    NARCIS (Netherlands)

    van Noije, T.P.C.; Ernst, M.H.; Brito, R.

    The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time increases, the structure factor of density fluctuations develops a maximum, which

  4. Resistance capability of microaerobic granular sludge for ...

    African Journals Online (AJOL)

    enoh

    2012-02-08

    Feb 8, 2012 ... The resistance capability to pH shock of microaerobic granular sludge for pentachlorophenol (PCP) ... process with chlorine gas in pulp and paper, leather and spinning ... nitrifying bacteria in the aerobic zone, and then trans-.

  5. Microbiological aspects of granular methanogenic sludge

    NARCIS (Netherlands)

    Dolfing, J.

    1987-01-01

    The settling characteristics of anaerobic sludge are enhanced by the formation of microbial conglomerates. Various types of conglomerates having different structures, were distinguished in the present study, viz. granules, pellets and flocs (chapter 1). Granular methanogenic sludge, often

  6. NMR Measurements of Granular Flow and Compaction

    Science.gov (United States)

    Fukushima, Eiichi

    1998-03-01

    Nuclear magnetic resonance (NMR) can be used to measure statistical distributions of granular flow velocity and fluctuations of velocity, as well as spatial distributions of particulate concentration, flow velocity, its fluctuations, and other parameters that may be derived from these. All measurements have been of protons in liquid-containing particles such as mustard seeds or pharmaceutical pills. Our favorite geometry has been the slowly rotating partially filled rotating drum with granular flow taking place along the free surface of the particles. All the above-mentioned parameters have been studied as well as a spatial distribution of particulate diffusion coefficients, energy dissipation due to collisions, as well as segregation of non-uniform mixtures of granular material. Finally, we describe some motions of granular material under periodic vibrations.

  7. Uniform shock waves in disordered granular matter.

    Science.gov (United States)

    Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo

    2012-10-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.

  8. Kinetic Theory of Granular Gases

    Energy Technology Data Exchange (ETDEWEB)

    Trizac, Emmanuel [Center of Theoretical Biological Physics, UC San Diego, La Jolla, CA 92093-0374 (United States); Laboratoire de Physique Theorique et Modeles Statistiques, Campus Universitaire, 91405 Orsay (France)

    2005-11-25

    Granular gases are composed of macroscopic bodies kept in motion by an external energy source such as a violent shaking. The behaviour of such systems is quantitatively different from that of ordinary molecular gases: due to the size of the constituents, external fields have a stronger effect on the dynamics and, more importantly, the kinetic energy of the gas is no longer a conserved quantity. The key role of the inelasticity of collisions has been correctly appreciated for about fifteen years, and the ensuing consequences in terms of phase behaviour or transport properties studied in an increasing and now vast body of literature. The purpose of this book is to help the newcomer to the field in acquiring the essential theoretical tools together with some numerical techniques. As emphasized by the authors-who were among the pioneers in the domain- the content could be covered in a one semester course for advanced undergraduates, or it could be incorporated in a more general course dealing with the statistical mechanics of dissipative systems. The book is self-contained, clear, and avoids mathematical complications. In order to elucidate the main physical ideas, heuristic points of views are sometimes preferred to a more rigorous route that would lead to a longer discussion. The 28 chapters are short; they offer exercises and worked examples, solved at the end of the book. Each part is supplemented with a relevant foreword and a useful summary including take-home messages. The editorial work is of good quality, with very few typographical errors. In spite of the title, kinetic theory stricto sensu is not the crux of the matter covered. The authors discuss the consequences of the molecular chaos assumption both at the individual particle level and in terms of collective behaviour. The first part of the book addresses the mechanics of grain collisions. It is emphasized that considering the coefficient of restitution {epsilon} -a central quantity governing the

  9. Kinetic Theory of Granular Gases

    International Nuclear Information System (INIS)

    Trizac, Emmanuel

    2005-01-01

    Granular gases are composed of macroscopic bodies kept in motion by an external energy source such as a violent shaking. The behaviour of such systems is quantitatively different from that of ordinary molecular gases: due to the size of the constituents, external fields have a stronger effect on the dynamics and, more importantly, the kinetic energy of the gas is no longer a conserved quantity. The key role of the inelasticity of collisions has been correctly appreciated for about fifteen years, and the ensuing consequences in terms of phase behaviour or transport properties studied in an increasing and now vast body of literature. The purpose of this book is to help the newcomer to the field in acquiring the essential theoretical tools together with some numerical techniques. As emphasized by the authors-who were among the pioneers in the domain- the content could be covered in a one semester course for advanced undergraduates, or it could be incorporated in a more general course dealing with the statistical mechanics of dissipative systems. The book is self-contained, clear, and avoids mathematical complications. In order to elucidate the main physical ideas, heuristic points of views are sometimes preferred to a more rigorous route that would lead to a longer discussion. The 28 chapters are short; they offer exercises and worked examples, solved at the end of the book. Each part is supplemented with a relevant foreword and a useful summary including take-home messages. The editorial work is of good quality, with very few typographical errors. In spite of the title, kinetic theory stricto sensu is not the crux of the matter covered. The authors discuss the consequences of the molecular chaos assumption both at the individual particle level and in terms of collective behaviour. The first part of the book addresses the mechanics of grain collisions. It is emphasized that considering the coefficient of restitution ε -a central quantity governing the inelasticity of

  10. Evaluation of crop residue retention, compost and inorganic fertilizer ...

    African Journals Online (AJOL)

    Soil fertility depletion is a serious problem in the highlands of Ethiopia. ... The design was randomized complete block with three replications. ... were obtained from the applications of the recommended nitrogen and phosphorus (NP) fertilizer ...

  11. A theoretical and numerical study of the flow of granular materials down an inclined plane. [Quarterly progress report, January--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, K.R.

    1995-09-01

    The mechanics of the flowing granular materials such as coal, agricultural products, fertilizers, dry chemicals, metal ores, etc. have received a great deal of attention as it has relevance to several important technological problems. Despite wide interest and more than five decades of experimental and theoretical investigations, most aspects of the behavior of flowing granular materials are still not well understood. So Experiments have to be devised which quantify and describe the non-linear behavior of the granular materials, and theories developed which can explain the experimentally observed facts. Here we carry out a systematic numerical study of the flow of granular materials down an inclined plane using the models that stem from both the continuum theory approach and the kinetic theory approach. We also look at the existence of solutions, multiplicity and stability of solutions to the governing equations.

  12. Small-signal analysis of granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The small-signal ac response of granular n-type semiconductors is calculated analytically using the drift-diffusion theory when electronic trapping at grain boundaries is present. An electrical equivalent circuit (EEC) model of a granular n-type semiconductor is presented. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is very good in a broad frequency range at low dc bias voltages.

  13. Small-signal analysis of granular semiconductors

    International Nuclear Information System (INIS)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey

    2010-01-01

    The small-signal ac response of granular n-type semiconductors is calculated analytically using the drift-diffusion theory when electronic trapping at grain boundaries is present. An electrical equivalent circuit (EEC) model of a granular n-type semiconductor is presented. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is very good in a broad frequency range at low dc bias voltages.

  14. Granular cell tumor: An uncommon benign neoplasm

    Directory of Open Access Journals (Sweden)

    Tirthankar Gayen

    2015-01-01

    Full Text Available Granular cell tumor is a distinctly rare neoplasm of neural sheath origin. It mainly presents as a solitary asymptomatic swelling in the oral cavity, skin, and rarely internal organs in the middle age. Histopathology is characteristic, showing polyhedral cells containing numerous fine eosinophilic granules with indistinct cell margins. We present a case of granular cell tumor on the back of a 48-year-old woman which was painful, mimicking an adnexal tumor.

  15. Efficacy of granular deltamethrin against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidade) nymphs.

    Science.gov (United States)

    Schulze, T L; Jordan, R A; Hung, R W; Taylor, R C; Markowski, D; Chomsky, M S

    2001-03-01

    A single barrier application of granular deltamethrin to the woodland edges of a forested residential community in late spring significantly reduced the abundance of Ixodes scapularis Say nymphs. The application also suppressed the population of Amblyomma americanum (L.) nymphs, which recently became established in the study area. The efficacy of deltamethrin is compared with other commonly used acaricides.

  16. Hadron showers in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Benjamin

    2010-11-15

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  17. Hadron showers in a highly granular calorimeter

    International Nuclear Information System (INIS)

    Lutz, Benjamin

    2010-11-01

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  18. Effects of Vermi-compost Fertilizer Application and Foliar Spraying on Yield and Yield Component of Isabgol (Plantago ovate L. Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Asghar Rahimi

    2017-12-01

    Full Text Available Introduction Vermi-compost is the ability of some species of earthworms to consume and break down a wide range of organic residues such as sewage sludge, animal wastes, crop residues and industrial refuse. Vermi-composts are usually more stable than their parent materials with increased availability of nutrients and improved physicochemical and microbiological properties. Aerial compost tea contains high populations of live microorganism consisting of rhizobactria, trichoderma and pseudomonas species which increase the growth and yield of the plant. Acid humic is the main humic substance and the important ingredient of soil organic matter (humus which causes increase of yield and quality of crop. The aim of this research is evaluating the effect of vermi-compost and foliar application of compost tea and acid humic on yield, yield component and mucilage content of isabgol. Vermiwash as the extract of vermi-compost is liquid organic fertilizer obtained from unit of vermiculture and vermi-compost as drainage. It is used as a foliar spraying on the leaf. Vermiwash stimulate and increase the yield of crop products and foliar application of vermiwash can be caused of plant resistance to different factors and can prevent leaf necrosis. Material and Methods In order to study the effect of vermi-compost and foliar application of tea compost and acid humic on growth indices of isabgol (Plantago ovata, an experiment was conducted as a factorial based on complete randomized design with three replications in agricultural research farm at Vali-e-Asr University of Rafsanjan. Treatments were included application of vermi-compost (0 (control, 4, 8, 12 and 16 t.ha-1 and 3 levels of foliar application (distilled water as control, acid humic and compost tea. Samples for evaluating of yield, yield components and mucilage content were taken from 1 m2 area of each treatment. Tea compost solution prepared using mix of vermi-compost, acid humic, yeast and alga extract

  19. Microfluidics of soft granular gels

    Science.gov (United States)

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  20. Soil fertility decline: definitions and assessment

    NARCIS (Netherlands)

    Hartemink, A.E.

    2006-01-01

    In permanent agricultural systems, soil fertility is maintained through applications of manure, other organic materials, inorganic fertilizers, lime, the inclusion of legumes in the cropping systems, or a combination of these. In many parts of the world the availability, use, and profitability of

  1. Dynamic Deformation and Collapse of Granular Columns

    Science.gov (United States)

    Uenishi, K.; Tsuji, K.; Doi, S.

    2009-12-01

    Large dynamic deformation of granular materials may be found in nature not only in the failure of slopes and cliffs — due to earthquakes, rock avalanches, debris flows and landslides — but also in earthquake faulting itself. Granular surface flows often consist of solid grains and intergranular fluid, but the effect of the fluid may be usually negligible because the volumetric concentration of grains is in many cases high enough for interparticle forces to dominate momentum transport. Therefore, the investigation of dry granular flow of a mass might assist in further understanding of the above mentioned geophysical events. Here, utilizing a high-speed digital video camera system, we perform a simple yet fully-controlled series of laboratory experiments related to the collapse of granular columns. We record, at an interval of some microseconds, the dynamic transient granular mass flow initiated by abrupt release of a tube that contains dry granular materials. The acrylic tube is partially filled with glass beads and has a cross-section of either a fully- or semi-cylindrical shape. Upon sudden removal of the tube, the granular solid may fragment under the action of its own weight and the particles spread on a rigid horizontal plane. This study is essentially the extension of the previous ones by Lajeunesse et al. (Phys. Fluids 2004) and Uenishi and Tsuji (JPGU 2008), but the striped layers of particles in a semi-cylindrical tube, newly introduced in this contribution, allow us to observe the precise particle movement inside the granular column: The development of slip lines inside the column and the movement of particles against each other can be clearly identified. The major controlling parameters of the spreading dynamics are the initial aspect ratio of the granular (semi-)cylindrical column, the frictional properties of the horizontal plane (substrate) and the size of beads. We show the influence of each parameter on the average flow velocity and final radius

  2. Soil fertility and plant nutrition

    International Nuclear Information System (INIS)

    Menzel, R.G.; Smith, S.J.

    1984-01-01

    The applications of isotopic and related techniques, including autoradiography, radiation absorption, radiation scattering and activation analysis, in investigations on soil fertility and plant nutrition are discussed. The unique information that can be obtained with isotopes and radiation techniques is indicated. The advantages and disadvantages of these techniques are discussed in relation to other methods of obtaining similar information. (U.K.)

  3. Response of three soils in the derived savanna zone of southwestern Nigeria to combined application of organic and inorganic fertilizer as affecting phosphorus fractions

    Directory of Open Access Journals (Sweden)

    Abigail O. Ojo

    2018-04-01

    Full Text Available Phosphorus inputs to the soil are primarily from the application of fertilizer P and organic resources. A ten week incubation study was carried out to determine the effects of organic and inorganic P sources on phosphorus fractions in three derived savanna soils. Poultry manure was applied at 0, 0.75g, 1.5g, 2.25g and 3g per 300g weight of soil while single superphosphate was applied at 0.0023g, 0.0046g, 0.0069g and 0.0092g per 300g of soil. Sampling was done at two weeks interval. At 0 week of the incubation study, Ekiti series had the largest amount of P fractions i.e. Fe-P, Al-P, residual P, reductant soluble P, occluded P, organic P and occluded P while Ca-P was high in Apomu series. However, increases in Fe-P, Al-P, Ca-P and organic P were observed in the three soil series evaluated and poultry manure was notably effective in reducing P occlusion. In conclusion, it was observed that irrespective of the soil series at different stages of the incubation studies, poultry manure and the combined application of poultry manure and Single superphosphate was highly effective in increasing P fractions.

  4. [Effects of different amounts of phosphate fertilizers on copper, zinc transfer in red soil under the application of KH2PO4].

    Science.gov (United States)

    Guo, Liang; Li, Zhong-wu; Huang, Bin; Wang, Yan; Zhang, Yan

    2014-09-01

    In order to study the effects of different phosphate addition amounts on migration and transformation of heavy metals (Cu, Zn) in soil, an indoor leaching experiment using soil columns was carry out to study the leaching behavior of Cu and Zn. The KH2PO4 was chosen as the fertilizer application at the doses of 5 mg.kg-1, 15 mg.kg-1 and 25 mg.kg-1. The results showed that KH2PO4, could reduce the leachate pH, but different phosphate amounts had little effect on leachate pH, pH in leachate kept rising in the whole leaching process. With the application of KH2PO4, Cu migration was mainly in the surface layer while Zn migrated into deeper soil. Concentrations of Cu, Zn in deep soil leachate were low indicating that it was harmless to the shallow groundwater. After leaching, heavy metals mainly existed in the residual form in soil, the proportion of residual form of Cu was around 60% and the proportion of residual form of Zn was around 40%. High concentration of KH2PO4 helps the transformation of Zn from residual organic combination state to exchange state.

  5. New superconductors from granular to high T$_{c}$

    CERN Document Server

    Deutscher, Guy

    2018-01-01

    How new are the high Tc superconductors, as compared to the conventional low Tc ones? In what sense are these oxides different from regular metals in their normal state? How different is the mechanism for high Tc superconductivity from the well-known electron-phonon interaction that explains so well superconductivity in metals and alloys? What are the implications of the new features of the high Tc oxides for their practical applications? This interesting book aims to provide some answers to those questions, drawing particularly on similarities between the high Tc oxides and granular superconductors, which also present a short coherence length, a small superfluid density and an inhomogeneous structure.

  6. New superconductors from granular to high T$_{c}$

    CERN Document Server

    Deutscher, Guy

    2006-01-01

    How new are the high Tc superconductors, as compared to the conventional low Tc ones? In what sense are these oxides different from regular metals in their normal state? How different is the mechanism for high Tc superconductivity from the well-known electron-phonon interaction that explains so well superconductivity in metals and alloys? What are the implications of the new features of the high Tc oxides for their practical applications? This book aims to give some answers to those questions, drawing particularly on similarities between the high Tc oxides and granular superconductors, which also present a maximum of their critical temperature near the metal-insulator transition.

  7. Pressure-Dependent Friction on Granular Slopes Close to Avalanche

    Science.gov (United States)

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-01

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  8. Pressure-Dependent Friction on Granular Slopes Close to Avalanche.

    Science.gov (United States)

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-04

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  9. Deep 16S rRNA Pyrosequencing Reveals a Bacterial Community Associated with Banana Fusarium Wilt Disease Suppression Induced by Bio-Organic Fertilizer Application

    Science.gov (United States)

    Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

  10. Granular Materials and Risks In ISRU

    Science.gov (United States)

    Behringer, Robert P.; Wilkinson, R. Allen

    2004-01-01

    Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to execute these operations on the Moon and Mars as we do on Earth. We discuss how little these processes are understood and point out the nature of trial-and-error practices that are used in today's massive over-design. Nevertheless, such designs have a high failure rate. Implementation and extensive incremental scaling up of industrial processes are routine because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, what some of the basic issues are, and what understanding is needed to greatly reduce the risks. This talk will focus on a particular class of granular flow issues, those that pertain to dense materials, their physics, and the failure problems associated with them. In particular, key issues where basic predictability is lacking include stability of soils for the support of vehicles and facilities, ability to control the flow of dense materials (jamming and flooding/unjamming at the wrong time), the ability to predict stress profiles (hence create reliable designs) for containers such as bunkers or silos. In particular, stress fluctuations, which are not accounted for in standard granular design models, can be very large as granular materials flows, and one result is frequent catastrophic failure of granular devices.

  11. Collapse of tall granular columns in fluid

    Science.gov (United States)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  12. Cattle Fever Tick, Rhipicephalus (Boophilus) microplus, (Acari: Ixodidae): potential control on pastures by the application of urea fertilizer

    Science.gov (United States)

    The southern cattle fever tick, Rhipicephalus (Boophilus) microplus, spends as much as 80–90% of its life cycle as a larva questing for a host. Standard control methods are limited to on-host applications, leaving a need for methods directed at the pasture infesting stages. Reports from Brazil indic...

  13. Influence of long-term fertilization on soil physicochemical properties in a brown soil

    Science.gov (United States)

    Li, Dongdong; Luo, Peiyu; Han, Xiaori; Yang, Jinfeng

    2018-01-01

    This study aims to explore the influence on soil physicochemical properties under a 38-y long-term fertilization in a brown soil. Soil samples (0-20 cm)were taken from the six treatments of the long-term fertilization trial in October 2016:no fertilizer (CK), N1(mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M2), M2N1P (pig manure, mineral nitrogen and phosphate fertilizer).The results showed thatthe long-term application of chemical fertilizers reduced soil pH value, while the application of organic fertilizers increased pH value. Fertilization significantly increased the content of AHN, TN and SOM. Compared with the CK treatment and chemical fertilizer treatments, organic fertilizer treatments significantly increased the content of AP and TP. The content of AK and TK were no significant difference in different treatment.

  14. A socio-economic survey among cocoa farmers on fertilizer ...

    African Journals Online (AJOL)

    A socio-economic survey was conducted in some districts of the six cocoa growing regions of Ghana to provide information for adjustment of government's fertilizer use policy on cocoa farms. The study's objectives were to determine the proportion of farmers applying fertilizer to their farms, investigate the fertilizer application ...

  15. Wet granular matter a truly complex fluid

    CERN Document Server

    Herminghaus, Stephan

    2013-01-01

    This is a monograph written for the young and advanced researcher who is entering the field of wet granular matter and keen to understand the basic physical principles governing this state of soft matter. It treats wet granulates as an instance of a ternary system, consisting of the grains, a primary, and a secondary fluid. After addressing wetting phenomena in general and outlining the basic facts on dry granular systems, a chapter on basic mechanisms and their effects is dedicated to every region of the ternary phase diagram. Effects of grain shape and roughness are considered as well. Rather than addressing engineering aspects such as existing books on this topic do, the book aims to provide a generalized framework suitable for those who want to understand these systems on a more fundamental basis. Readership: For the young and advanced researcher entering the field of wet granular matter.

  16. Granular Silo collapse: an experimental study

    Science.gov (United States)

    Clement, Eric; Gutierriez, Gustavo; Boltenhagen, Philippe; Lanuza, Jose

    2008-03-01

    We present an experimental work that develop some basic insight into the pre-buckling behavior and the buckling transition toward plastic collapse of a granular silo. We study different patterns of deformation generated on thin paper cylindrical shells during granular discharge. We study the collapse threshold for different bed height, flow rates and grain sizes. We compare the patterns that appear during the discharge of spherical beads, with those obtained in the axially compressed cylindrical shells. When the height of the granular column is close to the collapse threshold, we describe a ladder like pattern that rises around the cylinder surface in a spiral path of diamond shaped localizations, and develops into a plastic collapsing fold that grows around the collapsing silo.

  17. Statistical mechanics of dense granular media

    International Nuclear Information System (INIS)

    Coniglio, A; Fierro, A; Nicodemi, M; Ciamarra, M Pica; Tarzia, M

    2005-01-01

    We discuss some recent results on the statistical mechanics approach to dense granular media. In particular, by analytical mean field investigation we derive the phase diagram of monodisperse and bidisperse granular assemblies. We show that 'jamming' corresponds to a phase transition from a 'fluid' to a 'glassy' phase, observed when crystallization is avoided. The nature of such a 'glassy' phase turns out to be the same as found in mean field models for glass formers. This gives quantitative evidence for the idea of a unified description of the 'jamming' transition in granular media and thermal systems, such as glasses. We also discuss mixing/segregation transitions in binary mixtures and their connections to phase separation and 'geometric' effects

  18. Male Fertility Issues

    Science.gov (United States)

    Fertility issues are common in boys and men getting cancer treatment. Fertility preservation options include sperm banking, testicular shielding, testicular sperm extraction (TESE), and testicular tissue freezing. Support and clinical trials are listed.

  19. 76 FR 8774 - Granular Polytetrafluoroethylene Resin From Japan

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-386 (Third Review)] Granular Polytetrafluoroethylene Resin From Japan AGENCY: United States International Trade Commission. ACTION: Termination of five... revocation of the antidumping duty order on granular polytetrafluoroethylene resin from Japan would be likely...

  20. Surface instabilities in shock loaded granular media

    Science.gov (United States)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to

  1. In situ grain fracture mechanics during uniaxial compaction of granular solids

    Science.gov (United States)

    Hurley, R. C.; Lind, J.; Pagan, D. C.; Akin, M. C.; Herbold, E. B.

    2018-03-01

    Grain fracture and crushing are known to influence the macroscopic mechanical behavior of granular materials and be influenced by factors such as grain composition, morphology, and microstructure. In this paper, we investigate grain fracture and crushing by combining synchrotron x-ray computed tomography and three-dimensional x-ray diffraction to study two granular samples undergoing uniaxial compaction. Our measurements provide details of grain kinematics, contacts, average intra-granular stresses, inter-particle forces, and intra-grain crystal and fracture plane orientations. Our analyses elucidate the complex nature of fracture and crushing, showing that: (1) the average stress states of grains prior to fracture vary widely in their relation to global and local trends; (2) fractured grains experience inter-particle forces and stored energies that are statistically higher than intact grains prior to fracture; (3) fracture plane orientations are primarily controlled by average intra-granular stress and contact fabric rather than the orientation of the crystal lattice; (4) the creation of new surfaces during fracture accounts for a very small portion of the energy dissipated during compaction; (5) mixing brittle and ductile grain materials alters the grain-scale fracture response. The results highlight an application of combined x-ray measurements for non-destructive in situ analysis of granular solids and provide details about grain fracture that have important implications for theory and modeling.

  2. Evaluating the influence of plant growth-promoting rhizobacteria as a bio-fertilizer under different fertility sources

    Science.gov (United States)

    Chemical fertilizers are being extensively used to satisfy the increasing demand for food. However, utilization of chemical fertilizers can be costly and over application for ensuring crop productivity may lead to environmental problems. As a result, interest in using bio-fertilizers to improve soil...

  3. Rapid penetration into granular media visualizing the fundamental physics of rapid earth penetration

    CERN Document Server

    Iskander, Magued

    2015-01-01

    Rapid Penetration into Granular Media: Visualizing the Fundamental Physics of Rapid Earth Penetration introduces readers to the variety of methods and techniques used to visualize, observe, and model the rapid penetration of natural and man-made projectiles into earth materials. It provides seasoned practitioners with a standard reference that showcases the topic's most recent developments in research and application. The text compiles the findings of new research developments on the subject, outlines the fundamental physics of rapid penetration into granular media, and assembles a com

  4. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  5. Anisotropy in cohesive, frictional granular media

    International Nuclear Information System (INIS)

    Luding, Stefan

    2005-01-01

    The modelling of cohesive, frictional granular materials with a discrete particle molecular dynamics is reviewed. From the structure of the quasi-static granular solid, the fabric, stress, and stiffness tensors are determined, including both normal and tangential forces. The influence of the material properties on the flow behaviour is also reported, including relations between the microscopic attractive force and the macroscopic cohesion as well as the dependence of the macroscopic friction on the microscopic contact friction coefficient. Related to the dynamics, the anisotropy of both structure and stress are exponentially approaching the maximum

  6. International Workshop on Traffic and Granular Flow

    CERN Document Server

    Herrmann, Hans; Schreckenberg, Michael; Wolf, Dietrich; Social, Traffic and Granular Dynamics

    2000-01-01

    "Are there common phenomena and laws in the dynamic behavior of granular materials, traffic, and socio-economic systems?" The answers given at the international workshop "Traffic and Granular Flow '99" are presented in this volume. From a physical standpoint, all these systems can be treated as (self)-driven many-particle systems with strong fluctuations, showing multistability, phase transitions, non-linear waves, etc. The great interest in these systems is due to several unexpected new discoveries and their practical relevance for solving some fundamental problems of today's societies. This includes intelligent measures for traffic flow optimization and methods from "econophysics" for stabilizing (stock) markets.

  7. Granular contact dynamics using mathematical programming methods

    DEFF Research Database (Denmark)

    Krabbenhoft, K.; Lyamin, A. V.; Huang, J.

    2012-01-01

    granular contact dynamics formulation uses an implicit time discretization, thus allowing for large time steps. Moreover, in the limit of an infinite time step, the general dynamic formulation reduces to a static formulation that is useful in simulating common quasi-static problems such as triaxial tests...... is developed and it is concluded that the associated sliding rule, in the context of granular contact dynamics, may be viewed as an artifact of the time discretization and that the use of an associated flow rule at the particle scale level generally is physically acceptable. (C) 2012 Elsevier Ltd. All rights...

  8. Tracing Thermal Creep Through Granular Media

    Science.gov (United States)

    Steinpilz, Tobias; Teiser, Jens; Koester, Marc; Schywek, Mathias; Wurm, Gerhard

    2017-08-01

    A temperature gradient within a granular medium at low ambient pressure drives a gas flow through the medium by thermal creep. We measured the resulting air flow for a sample of glass beads with particle diameters between 290 μ m and 420 μ m for random close packing. Ambient pressure was varied between 1 Pa and 1000 Pa. The gas flow was quantified by means of tracer particles during parabolic flights. The flow varies systematically with pressure between 0.2 cm/s and 6 cm/s. The measured flow velocities are in quantitative agreement to model calculations that treat the granular medium as a collection of linear capillaries.

  9. Granular cells Tumor in the gastrointestinal tract

    International Nuclear Information System (INIS)

    Castano LL, Rodrigo; Gaitan B, Maria H; Juliao E, Fabian

    2005-01-01

    Granular cells tumors are ubiquitous lesions in the gastrointestinal tract, are rare and asymptomatic and they are generally an incidental discovery at gastroduodenoscopy or colonoscopy. In the gastrointestinal tract they are more frequently located in the esophagus, right colon and rectum, stomach, appendix, small intestine or biliopancreatic tract. This article describes three patients with four tumors of granular cells in rectum, esophagus (2 lesions) and appendix. It becomes special emphasis in their neural origin, their benign behavior that justifies the endoscopic resections or limited surgical excisions and the necessity of a pursuit for the possibility, although little, of malignant transformation

  10. Response Of Guava Trees (Psidium Guajava To Soil Applications Of Mineral And Organic Fertilisers And Biofertilisers Under Conditions Of Low Fertile Soil

    Directory of Open Access Journals (Sweden)

    Shukla Sushil Kumar

    2014-12-01

    Full Text Available The goal of this study was to assess the influence of different organic fertilisers - vermicompost, mulching, Azotobacter, phosphate solubilising microbes (PSM and Trichoderma harzianum added each year to mineral fertilisers containing NPK and to farmyard manure (FYM on leaf nutrient status, tree growth, fruit yield and quality of guava grown in low fertile soil. The results revealed that vermicompost, bio-fertilisers and organic mulching resulted in yield and fruit quality boosters, as compared to application of NPK and FYM as the only organic fertiliser. Significant differences in plant height, canopy spread and stem girth of guava plants were obtained in combination, where Azotobacter, T. harzianum, PSM and organic mulching were applied. The leaf nutrient contents (N, P, K, Ca, Mg, Fe, Cu, Mn and Zn were within sufficient ranges. Fruit yields and quality were highest in combination, where vermicompost, Azotobacter, T. harzianum, PSM and organic mulching was applied. Fruit quality parameters viz. soluble solid concentration, titratable acidity, total sugars and ascorbic acid showed positive correlation with the available macro- and micronutrients in the soil.

  11. Cancer and fertility: strategies to preserve fertility.

    Science.gov (United States)

    Diedrich, K; Fauser, B C J M; Devroey, P

    2011-03-01

    Fertility preservation is a key component of cancer management in young people. The Fourth Evian Annual Reproduction Workshop Meeting was held in April 2009 to discuss cancer and fertility in young adults. Specialists in oncology, assisted reproduction, embryology and clinical genetics presented published data and ongoing research on cancer and fertility, with particular focus on strategies to preserve fertility. This report is based on the expert presentations and group discussions, supplemented with publications from literature searches and the authors' knowledge. Fertility preservation should be considered for all young people undergoing potentially gonadotoxic cancer treatment. A variety of options are required to facilitate safe and effective fertility preservation for individual patients. Sperm banking is a simple and low-cost intervention. Embryo cryopreservation is the only established method of female fertility preservation. Oocyte cryopreservation offers a useful option for women without a male partner. Emergency ovarian stimulation and cryopreservation of ovarian tissue (followed by tissue transplantation or in-vitro maturation of oocytes) are experimental techniques for women who require urgent cancer treatment. Further prospective studies are required to validate cryopreservation of oocytes and ovarian tissue, in-vitro maturation of oocytes and new vitrification techniques and to identify any long-term sequelae of slow freezing of embryos. Copyright © 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  12. Optimization of Application of Nitrogen Fertilizers for Growth and Yield of Forage Sorghum under Low-Input and Conventional Farming Systems

    Directory of Open Access Journals (Sweden)

    M. Pourazizi

    2013-10-01

    Full Text Available In order to maintain sustainable agriculture and prevent excessive use of chemical fertilizers, supplying part of the plant needs by organic fertilizers is necessary. In this respect, effects of nitrogen (N source and rate on yield and yield components of forage sorghum was evaluated as a factorial experiment arranged in randomized complete blocks design with three replications at the Research Farm of Shahrekord University in 2010. Treatments consisted of three N sources (urea fertilizer, cow manure and equal combination of urea fertilizer + cow manure and three N levels 80, 160 and 240 kg/ha N, equivalent to 174, 348 and 522 kg/ha urea and 26.2, 52.5 and 78.7 Mg/ha of cow manure and equal combination of urea fertilizer + cow manure at each nitrogen level, respectively. The results showed that increase of N utilization, with increase in leaf, stem and panicle weights and stem diameter, caused a linear increase of forage yield in urea fertilizer and cow manure treatments and a quadratic increase in the combined fertilizer. The highest leaf, stem and panicle weight (600, 3789 and 823 g/m2 and also fresh forage yield (44 Mg/ha were observed in 240 kg/ha N treatment in combined treatment. But, there was no significant difference in forage yield between this treatment and the 160 kg/ha N treatment. Overall, the results indicated that the potential of sorghum production can be increased by conjunctive use of animal manure and chemical fertilizers, even in low levels of these fertilizers, or low-input agriculture.

  13. Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil.

    Directory of Open Access Journals (Sweden)

    Jingjing Chen

    Full Text Available Carbon (C sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N dynamics. Treatments included biochar addition (CHAR, NO CHAR and amendment (COMPOST, UREA, NO FERT. The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.

  14. Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil.

    Science.gov (United States)

    Chen, Jingjing; Kim, Hyunjin; Yoo, Gayoung

    2015-01-01

    Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (COMPOST, UREA, NO FERT). The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.

  15. Continuum modelling of segregating tridisperse granular chute flow

    Science.gov (United States)

    Deng, Zhekai; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2018-03-01

    Segregation and mixing of size multidisperse granular materials remain challenging problems in many industrial applications. In this paper, we apply a continuum-based model that captures the effects of segregation, diffusion and advection for size tridisperse granular flow in quasi-two-dimensional chute flow. The model uses the kinematics of the flow and other physical parameters such as the diffusion coefficient and the percolation length scale, quantities that can be determined directly from experiment, simulation or theory and that are not arbitrarily adjustable. The predictions from the model are consistent with experimentally validated discrete element method (DEM) simulations over a wide range of flow conditions and particle sizes. The degree of segregation depends on the Péclet number, Pe, defined as the ratio of the segregation rate to the diffusion rate, the relative segregation strength κij between particle species i and j, and a characteristic length L, which is determined by the strength of segregation between smallest and largest particles. A parametric study of particle size, κij, Pe and L demonstrates how particle segregation patterns depend on the interplay of advection, segregation and diffusion. Finally, the segregation pattern is also affected by the velocity profile and the degree of basal slip at the chute surface. The model is applicable to different flow geometries, and should be easily adapted to segregation driven by other particle properties such as density and shape.

  16. Physical modelling of granular flows at multiple-scales and stress levels

    Science.gov (United States)

    Take, Andy; Bowman, Elisabeth; Bryant, Sarah

    2015-04-01

    The rheology of dry granular flows is an area of significant focus within the granular physics, geoscience, and geotechnical engineering research communities. Studies performed to better understand granular flows in manufacturing, materials processing or bulk handling applications have typically focused on the behavior of steady, continuous flows. As a result, much of the research on relating the fundamental interaction of particles to the rheological or constitutive behaviour of granular flows has been performed under (usually) steady-state conditions and low stress levels. However, landslides, which are the primary focus of the geoscience and geotechnical engineering communities, are by nature unsteady flows defined by a finite source volume and at flow depths much larger than typically possible in laboratory experiments. The objective of this paper is to report initial findings of experimental studies currently being conducted using a new large-scale landslide flume (8 m long, 2 m wide slope inclined at 30° with a 35 m long horizontal base section) and at elevated particle self-weight in a 10 m diameter geotechnical centrifuge to investigate the granular flow behavior at multiple-scales and stress levels. The transparent sidewalls of the two flumes used in the experimental investigation permit the combination of observations of particle-scale interaction (using high-speed imaging through transparent vertical sidewalls at over 1000 frames per second) with observations of the distal reach of the landslide debris. These observations are used to investigate the applicability of rheological models developed for steady state flows (e.g. the dimensionless inertial number) in landslide applications and the robustness of depth-averaged approaches to modelling dry granular flow at multiple scales. These observations indicate that the dimensionless inertial number calculated for the flow may be of limited utility except perhaps to define a general state (e.g. liquid

  17. Investigation of the effects of slow-release fertilizer and struvite in biodegradation in filter drains and potential application of treated water in irrigation of road verges.

    Science.gov (United States)

    Theophilus, Stephen C; Mbanaso, Fredrick U; Nnadi, Ernest O; Onyedeke, Kingsley T

    2017-11-14

    Filter drains are usually laid along the margins of highways. Highway runoffs are polluted with hydrocarbons and high levels of total dissolved solids. Therefore, effective pollution removal mechanism is necessary in order to avoid contamination of surrounding soils and groundwater. Biodegradation is amongst pollution removal mechanisms in filter drains, but it is a relatively slow process which is dependent on wide range of factors including the type of pollutant and availability of nutrients. This paper reports on a study conducted to investigate the impact of slow-release fertilizer and struvite in enhancement of biodegradation of hydrocarbon in filter drains. Filter drain models incorporated with geotextile were challenged with cumulative oil loading of 178 mg/m 2 /week with a view to comparing the efficiency of these two nutrient sources under high oil pollution loading and realistic rainfall conditions of 13 mm/week. Nutrients and street dust were applied at one-off rate of 17 g/m 2 and 1.55 g/rig to provide nutrient enhancement and simulate field conditions respectively. The impact of the nutrients was studied by monitoring bacterial and fungal growth using nutrient agar, Rose Bengal Agar media and CO2 evolution. EC, pH, heavy metals, TPH, elemental analysis and SAR were used to investigate water quality of effluent of filter drains for potential application as irrigation fluid for trees and flowers planted on road verges. The results show that nutrient application encouraged microbial activities and enhanced biodegradation rates with differences in type of nutrient applied. Also, it was observed that incorporation of geotextiles in filter drains improved pollution retention efficiency and there is a potential opportunity for utilization of struvite in SuDS systems as sustainable nutrient source.

  18. Implementation and application of a method for quantifying metals and non-metals in drainage water from soils fertilized with phosphogypsum

    International Nuclear Information System (INIS)

    Silva, Camila Goncalves Bof

    2010-01-01

    Phosphogypsum is a waste generated in phosphoric acid production by the 'wet process'. The immense amount of phosphogypsum yearly produced (around 150 million tons) is receiving attention from environmental protection agencies all over the word, given its potential of contamination. In Brazil, this material has been used for many decades, especially for agricultural application on cropland. Although the phosphogypsum is mainly composed of dehydrated calcium sulfate, it can have high levels of impurities, such as metals (Cd, Cr, Cu, Pb), non-metals (As and Se) and radioactive elements from natural series of 232 Th and 238 U. Therefore, its continuous application as an agricultural agent can result not just in soil contamination, but also contamination of the surface and groundwater due to the runoff and infiltration process. The concern associated with the contamination of aquatic environments increases; when water is used for human consumption, requiring progressive adoption of more restrictive limits. However, some of the conventional analytical techniques used to determine the maximum limit of contaminants in water have detection limits above the maximum limits established by the environmental legislation. This work was aimed to evaluate the mobility of metals and non-metals in soils and, consequently, the contamination of drainage water through greenhouse-scale leaching and transport of toxic elements from soils fertilized with phosphogypsum. Hence, methods were studied and implemented for determination of metals (Cd, Cr, Cu and Pb) using Furnace Graphite Atomic Absorption Spectrometry (GF AAS), as well as for non-metals (As and Se) using Inductively Coupled Plasma Mass Spectrometry (lCP-MS). Effects of different chemical modifiers on the determination of Cd, Cr, Cu and Pb concentration by GF AAS were also investigated. In general, it was observed that the metal and non-metal concentration were below than the actual detection limit of the equipment for all

  19. Effect of N fertilizer and foliar-applied Fe fertilizer at various ...

    African Journals Online (AJOL)

    DrSohrabi

    2012-05-17

    May 17, 2012 ... yield component and chemical composition of soybean. (Glycine ... fertilizer are the main source of meeting the nitrogen (N) ... influence grain yield and protein concentration (Haq and .... The data were analyzed using the Statistical Analysis System ... application and interaction of Fe and N fertilizers had no.

  20. The effects of 15N-fertilizer on the yields of wheat

    International Nuclear Information System (INIS)

    Zhou Dechao

    1985-01-01

    By using 15 N-fertilizer, the effects of increasing yield and the utilization of nitrogen of N-fertilizer applied at different periods and by different methods on wheat were studied. The results were as follows: The utilization of N-fertilizer by winter wheat is dependent on the fertilizer of soil before or after winter. Strong seedlings were obtained in the high fertility soils and the application of N-fertilizer in spring is recommended. In soils of low fertility, however, application of a part of N-fertilizer before winter is recommded in order to get strong seedlings. Application of a part of N-fertilizer as base manure for spring wheat is more advantageous. Deep application of N-fertilizer losses less NH 3 than surface broadcast does

  1. Effect of application timing and grass height on the nitrogen fertilizer replacement value of cattle slurry applied with a trailing-shoe application system

    NARCIS (Netherlands)

    Lalor, S.T.J.; Schroder, J.J.; Lantinga, E.A.; Schulte, R.P.O.

    2014-01-01

    This study investigated the effect of using a trailing-shoe system to apply cattle slurry, under different conditions of grass height (low [LG]: freshly cut sward [4–5 cm height] vs. high [HG]: application delayed by 7–19 d and applied to taller grass sward [4–11 cm] height) and month of application

  2. Granular Gas in a Periodic Lattice

    Science.gov (United States)

    Dorbolo, S.; Brandenbourger, M.; Damanet, F.; Dister, H.; Ludewig, F.; Terwagne, D.; Lumay, G.; Vandewalle, N.

    2011-01-01

    Glass beads are placed in the compartments of a horizontal square grid. This grid is then vertically shaken. According to the reduced acceleration [image omitted] of the system, the granular material exhibits various behaviours. By counting the number of beads in each compartment after shaking, it is possible to define three regimes. At low…

  3. Pion showers in highly granular calorimeters

    Indian Academy of Sciences (India)

    New results on properties of hadron showers created by pion beam at 8–80 GeV in high granular electromagnetic and hadron calorimeters are presented. Data were used for the first time to investigate the separation of the neutral and charged hadron showers. The result is important to verify the prediction of the PFA ...

  4. Anomalous infrared absorption in granular superconductors

    International Nuclear Information System (INIS)

    Carr, G.L.; Garland, J.C.; Tanner, D.B.

    1983-01-01

    Granular superconductors are shown to have a far-infrared absorption that is larger when the samples are superconducting than when they are normal. By constrast, theoretical models for these materials predict that when the samples become superconducting, the absorption should decrease

  5. Vortex jamming in superconductors and granular rheology

    International Nuclear Information System (INIS)

    Yoshino, Hajime; Nogawa, Tomoaki; Kim, Bongsoo

    2009-01-01

    We demonstrate that a highly frustrated anisotropic Josephson junction array (JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings along the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i.e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress versus shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as exotic fragile vortex matter: it behaves as a superconductor (vortex glass) in one direction, whereas it is a normal conductor (vortex liquid) in the other direction even at zero temperature. Furthermore, we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields-the rheology of soft materials and superconductivity.

  6. Random packing of colloids and granular matter

    NARCIS (Netherlands)

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials

  7. Deposition and shaking of dry granular piles

    NARCIS (Netherlands)

    Hasan, M.

    2003-01-01

    A friction force model describing reversible stick-slip transition during contact has been developed with the special purpose to simulate the deposition of granular material. A test with a mass on a conveyor belt kept in position by a spring shows that a numerical simulation of the dynamics of such

  8. ENGINEERING BULLETIN: GRANULAR ACTIVATED CARBON TREATMENT

    Science.gov (United States)

    Granular activated carbon (GAC) treatment is a physicochemical process that removes a wide variety of contaminants by adsorbing them from liquid and gas streams [1, p. 6-3]. This treatment is most commonly used to separate organic contaminants from water or air; however, it can b...