WorldWideScience

Sample records for grains straw residue

  1. Bioethanol production from rice straw residues

    Elsayed B. Belal

    2013-01-01

    Full Text Available A rice straw -cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 ºC, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L-1.

  2. Behavior of 14C-BHC residues in rice grain

    Lee, S.R.; Kim, Y.H.

    1981-01-01

    γ-(U- 14 C)-BHC was applied to rice plants grown in a pot and its fate in the growth, polishing and oil-extraction processes of the grain was investigated. The 14 C-activity was absorbed and translocated widely in the plant and the recovery of applied 14 C-activity in the straw and grain was about 2.8%, of which 9.4% was found in the brown rice. The % partitioning of 14 C-residues in bran and polished rice was 12:88 and that in oil and oilcake was 37:63. Characterization of 14 C-residues the presence of γ-BHC, pentachlorocyclohexene, trichlorobenzene and hydrophilic metabolites, whose proportions were different in the straw and grain. (Author)

  3. Pelletizing of rice straws: A potential solid fuel from agricultural residues

    Puad, E.; Wan Asma, I; Shaharuddin, H.; Mahanim, S.; Rafidah, J.

    2010-01-01

    Full text: Rice straw is the dry stalks of rice plants, after the grain and chaff have been removed. More than 1 million tonnes of rice straw are produced in MADA in the northern region of Peninsular Malaysia annually. Burning in the open air is the common technique of disposal that contribute to air pollution. In this paper, a technique to convert these residues into solid fuel through pelletizing is presented. The pellets are manufactured from rice straw and sawdust in a disc pelletizer. The pellet properties are quite good with good resistance to mechanical disintegration. The pellets have densities between 1000 and 1200 kg/ m 3 . Overall, converting rice straw into pellets has increased its energy and reduced moisture content to a minimum of 8 % and 30 % respectively. The gross calorific value is about 15.6 MJ/ kg which is lower to sawdust pellet. The garnering of knowledge in the pelletization process provides a path to increase the use of this resource. Rice straw pellets can become an important renewable energy source in the future. (author)

  4. Cycling of grain legume residue nitrogen

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initial...... management methods in order to conserve grain legume residue N sources within the soil-plant system....

  5. Grain and straw for whole plant: implications for crop management and genetic improvement strategies

    Schiere, J.B.; Joshi, A.L.; Seetharam, A.; Oosting, S.J.; Goodchild, A.V.; Deinum, B.; Keulen, van, H.

    2004-01-01

    Straws and stovers are often called `by-products` of grain production even though they are increasingly important, e.g. for animal feed, thatching, soil improvement, mushroom production and industrial use. As a result, plant breeders, agronomists, economists and animal nutritionists have to pay more attention than before to the total value of crops, i.e. whole plant value in which straws and grain both play a part. This paper reviews literature about the technical potential of breeding and/or...

  6. Integration of first and second generation biofuels: Fermentative hydrogen production from wheat grain and straw

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2013-01-01

    Integrating of lignocellulose-based and starch-rich biomass-based hydrogen production was investigated by mixing wheat straw hydrolysate with a wheat grain hydrolysate for improved fermentation. Enzymatic pretreatment and hydrolysis of wheat grains led to a hydrolysate with a sugar concentration of

  7. Development of multi-functional combine harvester with grain harvesting and straw baling

    Tang, Z.; Li, Y.; Cheng, C.

    2017-01-01

    The decomposition and burning of straw results in serious environmental pollution, and research is needed to improve strategies for straw collection to reduce pollution. This work presents an integrated design of multi-functional rice combine harvester that allows grain harvesting and straw baling. This multi-functional combine harvester could reduce the energy consumption required for rice harvesting and simplify the process of harvesting and baling. The transmission schematic, matching parameters and the rotation speed of threshing cylinder and square baler were designed and checked. Then the evaluation of grain threshing and straw baling were tested on a transverse threshing cylinders device tes rig and straw square bales compression test rig. The test results indicated that, with a feeding rate of 3.0 kg/s, the remaining straw flow rate at the discharge outlet was only 1.22 kg/s, which indicates a variable mass threshing process by the transverse threshing cylinder. Then the optimal diameter, length and rotating speed of multi-functional combine harvester transverse threshing cylinder were 554 mm, 1590 mm, and 850 r/min, respectively. The straw bale compression rotating speed of crank compression slider and piston was 95 r/min. Field trials by the multi-functional combine harvester formed bales with height×width×length of 40×50×54-63 cm, bale mass of 22.5 to 26.0 kg and bale density 206 to 216 kg/m3. This multi-functional combine harvester could be used for stem crops (such as rice, wheat and soybean) grain harvesting and straw square baling, which could reduce labor cost and power consumption.

  8. Development of multi-functional combine harvester with grain harvesting and straw baling

    Tang, Z.; Li, Y.; Cheng, C.

    2017-09-01

    The decomposition and burning of straw results in serious environmental pollution, and research is needed to improve strategies for straw collection to reduce pollution. This work presents an integrated design of multi-functional rice combine harvester that allows grain harvesting and straw baling. This multi-functional combine harvester could reduce the energy consumption required for rice harvesting and simplify the process of harvesting and baling. The transmission schematic, matching parameters and the rotation speed of threshing cylinder and square baler were designed and checked. Then the evaluation of grain threshing and straw baling were tested on a transverse threshing cylinders device tes rig and straw square bales compression test rig. The test results indicated that, with a feeding rate of 3.0 kg/s, the remaining straw flow rate at the discharge outlet was only 1.22 kg/s, which indicates a variable mass threshing process by the transverse threshing cylinder. Then the optimal diameter, length and rotating speed of multi-functional combine harvester transverse threshing cylinder were 554 mm, 1590 mm, and 850 r/min, respectively. The straw bale compression rotating speed of crank compression slider and piston was 95 r/min. Field trials by the multi-functional combine harvester formed bales with height×width×length of 40×50×54-63 cm, bale mass of 22.5 to 26.0 kg and bale density 206 to 216 kg/m3. This multi-functional combine harvester could be used for stem crops (such as rice, wheat and soybean) grain harvesting and straw square baling, which could reduce labor cost and power consumption.

  9. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.

    Biswas, Bijoy; Pandey, Nidhi; Bisht, Yashasvi; Singh, Rawel; Kumar, Jitendra; Bhaskar, Thallada

    2017-08-01

    Pyrolysis studies on conventional biomass were carried out in fixed bed reactor at different temperatures 300, 350, 400 and 450°C. Agricultural residues such as corn cob, wheat straw, rice straw and rice husk showed that the optimum temperatures for these residues are 450, 400, 400 and 450°C respectively. The maximum bio-oil yield in case of corn cob, wheat straw, rice straw and rice husk are 47.3, 36.7, 28.4 and 38.1wt% respectively. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. All bio-oils contents were mainly composed of oxygenated hydrocarbons. The higher area percentages of phenolic compounds were observed in the corn cob bio-oil than other bio-oils. From FT-IR and 1 H NMR spectra showed a high percentage of aliphatic functional groups for all bio-oils and distribution of products is different due to differences in the composition of agricultural biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Toxicity potential of residual ethylene oxide on fresh or frozen embryos maintained in plastic straws.

    Schiewe, M C; Schmidt, P M; Pontbriand, D; Wildt, D E

    1988-01-01

    The toxic effects of residual ethylene oxide (EtO), a frequently used gas-sterilant, on embryos either frozen for long-term purposes or stored acutely for 30 min to 9 hr in a fresh condition in 0.25-ml straw containers were evaluated. In Experiment 1, fresh embryos were frozen (using conventional technology) in straws previously aerated for 0 hr to 8 mo after EtO sterilization. With the exception of the 8-mo group in which survival and quality ratings were depressed, embryo viability was not affected significantly by short-term prefreeze and post-thaw exposure to EtO residues. Experiment 2 was conducted to analyze the influence of prefreeze exposure to EtO residues on embryo development in vitro for embryos temporarily stored in previously sterilized straws aerated for different intervals. Compared to non-EtO-sterilized control straws, the development, quality, and viability of embryos exposed to EtO-treated straws were compromised (p less than 0.05) as the aeration interval decreased and the exposure interval increased. The combined results of both experiments indicate that EtO-treated straws can be used to cryopreserve gametes efficiently, but only if the aeration interval is greater than or equal to 72 hr and the prefreeze duration of exposure is less than or equal to 3 hr.

  11. Thermal decomposition characteristics of microwave liquefied rape straw residues using thermogravimetric analysis

    Xingyan Huang; Cornelis F. De Hoop; Jiulong Xie; Chung-Yun Hse; Jinqiu Qi; Yuzhu Chen; Feng Li

    2017-01-01

    The thermal decomposition characteristics of microwave liquefied rape straw residues with respect to liquefaction condition and pyrolysis conversion were investigated using a thermogravimetric (TG) analyzer at the heating rates of 5, 20, 50 °C min-1. The hemicellulose decomposition peak was absent at the derivative thermogravimetric analysis (DTG...

  12. Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes.

    Gyalai-Korpos, Miklós; Mangel, Réka; Alvira, Pablo; Dienes, Dóra; Ballesteros, Mercedes; Réczey, Kati

    2011-07-01

    Pretreatment is a necessary step in the biomass-to-ethanol conversion process. The side stream of the pretreatment step is the liquid fraction, also referred to as the hydrolyzate, which arises after the separation of the pretreated solid and is composed of valuable carbohydrates along with compounds that are potentially toxic to microbes (mainly furfural, acetic acid, and formic acid). The aim of our study was to utilize the liquid fraction from steam-exploded wheat straw as a carbon source for cellulase production by Trichoderma reesei RUT C30. Results showed that without detoxification, the fungus failed to utilize any dilution of the hydrolyzate; however, after a two-step detoxification process, it was able to grow on a fourfold dilution of the treated liquid fraction. Supplementation of the fourfold-diluted, treated liquid fraction with washed pretreated wheat straw or ground wheat grain led to enhanced cellulase (filter paper) activity. Produced enzymes were tested in hydrolysis of washed pretreated wheat straw. Supplementation with ground wheat grain provided a more efficient enzyme mixture for the hydrolysis by means of the near-doubled β-glucosidase activity obtained.

  13. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of low doses of X-rays on grain and straw yield of Setaria italica

    Joshi, R.K.; Bhattacharya, S.; Fendrik, I.

    1976-01-01

    Dry or pre-soaked seeds were irradiated with 250-1,500 R/h of X-rays at a dose rate of 1,000 R/h and sown into pots. Till harvest normal cultural practices were employed. A stimulation of grain and straw yield was only obtained by irradiation of dry seeds. Irradiation of pre-soaked seeds was ineffective or somewhat harmful. The absence of any effects in post-soaked seeds indicated that early hydration of seeds after irradiation results in a stabilization of the damage. (MG) [de

  15. Adding distiller's grains and molasses on fermentation quality of rice straw silages

    XianJun Yuan

    Full Text Available ABSTRACT: Ensilage is a simple and low-cost strategy to enable long term preservation and environmentally friendly utilization of agricultural by-products, such as straws and distiller's grains (DG for ruminants. Effect of mixing different proportions of DG and rice straw (i.e. 0, 10, 20 or 30% of DG with or without 5% molasses addition on fermentation and chemical variables of silages was evaluated. The study was conducted as a randomized blocks design in a 4 × 2 factorial arrangement, with three replications, using laboratory silos of 1L capacity (n=24. Despite a significant interaction (P<0.01 between DG and molasses addition was observed for most variables, in general the increased addition of DG linearly decreased the pH value, acetic acid (AA, butyric acid (BA and ammonia N concentration (P<0.01, and increased the lactic acid (LA concentration (P<0.01. Exception was the propionic acid concentration which linearly decreased without molasses addition and linearly increased with molasses addition at increased proportion of DG (P<0.01. In both silages with or without molasses the addition of DG increased the dry matter, water soluble carbohydrates and crude protein (P<0.01, and decreased the NDF content (P<0.01. Based on the perspective of maximum utilization of rice straw, the mixture of 10% of DG associated to 5% molasses at ensilage process is recommended.

  16. A two-stage bioprocess for hydrogen and methane production from rice straw bioethanol residues.

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Wu, Chao-Wei; Chung, Man-Chien

    2012-06-01

    This study evaluates a two-stage bioprocess for recovering hydrogen and methane while treating organic residues of fermentative bioethanol from rice straw. The obtained results indicate that controlling a proper volumetric loading rate, substrate-to-biomass ratio, or F/M ratio is important to maximizing biohydrogen production from rice straw bioethanol residues. Clostridium tyrobutyricum, the identified major hydrogen-producing bacteria enriched in the hydrogen bioreactor, is likely utilizing lactate and acetate for biohydrogen production. The occurrence of acetogenesis during biohydrogen fermentation may reduce the B/A ratio and lead to a lower hydrogen production. Organic residues remained in the effluent of hydrogen bioreactor can be effectively converted to methane with a rate of 2.8 mmol CH(4)/gVSS/h at VLR of 4.6 kg COD/m(3)/d. Finally, approximately 75% of COD in rice straw bioethanol residues can be removed and among that 1.3% and 66.1% of COD can be recovered in the forms of hydrogen and methane, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Potential of energetic utilization of grains residual biomass; Potencial de utilizacao energetica de biomassa residual de graos

    Mourad, Anna L. [Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil). Centro de Tecnologia de Embalagem], e-mail: anna@ital.sp.gov.br; Ambrogi, Vinicius S.; Guerra, Sinclair M.G. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica], e-mail: ambrogi@fem.unicamp.br, e-mail: sguerra@fem.unicamp.br

    2004-07-01

    The biomass resulting from the rejected parts of grains, as straw and peel of rice, corn, wheat, soy, all great cultivations in the country, has potential to be takes advantage as energy. It was considered that the contribution of this residual biomass is near of 167,8 million GJ/year, value that could be added to the use already established of the cane bagasse for energy purpose (658 million GJ, in 2001). This energy can be used for drying of these same grains (energy expense estimate of 67 million GJ), currently obtained from oil. It can also substitute the fuel oil used in the agricultural section, in the industries of food and beverage, ceramic and textile (sections that consumed 67.822 GJ in 2001). In Sao Paulo state the regions with greater potential to install biomass plants are located in Assis, Avare and Itapeva EDR (regional development office). (author)

  18. Determination of pesticide residues in cereal grains

    Fuzesi, I.; Susan, M.

    2005-01-01

    The applicability of the TLC for determination of pesticide residues in cereal grains was studied using corn, rice and wheat as representative commodities and atrazine, captan, chlorpyrifos, chlortoluron, diazinon, diuron, fenitrothion, metoxuron, prochloraz, triforine as representative compounds. Following the extraction with ethyl acetate the efficiency of extraction was tested with Bio-Rad SX-3 gel, GPC, silica gel, florisil and RP-18 reverse phase silica cartridge. The GPC alone or in combination with silica or florisil cleanup were the most suitable for cleanup of the extracts. The TLC elution characteristics of 131 pesticide active ingredients were tested with eight elution systems. The detectability of the selected compounds was determined with six detection methods including two chemical and four bioassay procedures. In addition to the basic methods, the non-toxic Penicillium cyclopium fungi spore inhibition was introduced and it was found very sensitive for some fungicide compounds. The minimum detectable quantities of the tested compounds ranged from 1 ng to 100 ng. The average recoveries from rice and wheat ranged from 78% to 89%, and the limits of quantitation, LOQ, were between 0.01 and 0.2 mg/kg for the selected ten compounds. (author)

  19. Dilute alkali and hydrogen peroxide treatment of microwave liquefied rape straw residue for the extraction of cellulose nanocrystals

    Xingyan Huang; Cornelis F. De Hoop; Feng Li; Jiulong Xie; Chung-Yun Hse; Jinqiu Qi; Yongze Jiang; Yuzhu Chen

    2017-01-01

    Microwave-assisted liquefaction of rape straw in methanol was conducted to collect the liquefied residues for the extraction of cellulose nanocrystals (CNCs).The liquefied residue with content of 23.44% from 180∘C/7.5 min was used to fibrillate CNCs with dilute alkali (2% NaOH) and hydrogen peroxide (5% H2O2...

  20. Prokaryote community dynamics in anaerobic co-digestion of swine manure, rice straw and industrial clay residuals.

    Jiménez, Janet; Theuerl, Susanne; Bergmann, Ingo; Klocke, Michael; Guerra, Gilda; Romero-Romero, Osvaldo

    The aim of this study was to analyze the effect of the addition of rice straw and clay residuals on the prokaryote methane-producing community structure in a semi-continuously stirred tank reactor fed with swine manure. Molecular techniques, including terminal restriction fragment length polymorphism and a comparative nucleotide sequence analyses of the prokaryotic 16S rRNA genes, were performed. The results showed a positive effect of clay addition on methane yield during the co-digestion of swine manure and rice straw. At the digestion of swine manure, the bacterial phylum Firmicutes and the archaeal family Methanosarcinaceae, particularly Methanosarcina species, were predominant. During the co-digestion of swine manure and rice straw the microbial community changed, and with the addition of clay residual, the phylum Bacteroidetes predominated. The new nutritional conditions resulted in a shift in the archaeal family Methanosarcinaceae community as acetoclastic Methanosaeta species became dominant.

  1. Feeding potential of summer grain crop residues for woolled sheep ...

    of 80:20 for the first collection on maize residues. Schoonraad (1985) did not pick up the cobs, so much more grain was available. Crude protein content. Changes in percentage crude protein in oesophageal samples are shown in Figure 2. With all crops, CP content of oesophageal samples was initially high but decreased ...

  2. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains.

    Holme, Inger Baeksted; Dionisio, Giuseppe; Madsen, Claus Krogh; Brinch-Pedersen, Henrik

    2017-04-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T 2 -generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature grains as feed to increase the release of bio-available phosphate and minerals bound to the phytate of the grains; secondly, the utilization of the powdered straw either directly or phytase extracted hereof as a supplement to high phytate feed or food; and finally, the use of the stubble to be ploughed into the soil for mobilizing phytate-bound phosphate for plant growth. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains

    Holme, Inger; Dionisio, Giuseppe; Madsen, Claus Krogh

    2017-01-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains......, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T2-generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase...... activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature...

  4. The barley straw residues avoid high erosion rates in persimmon plantations. Eastern Spain

    Cerdà, Artemi; González Pelayo, Óscar; Giménez-Morera, Antonio; Jordán, Antonio; Novara, Agata; Pereira, Paulo; Mataix-Solera, Jorge

    2015-04-01

    the bare control plots to 47 gr in the straw covered plots, which resulted in a low erosion rate when the soil is covered with straw (0.23 Mg ha-1 y-1), but extremely high when the soil is not covered (5.07 Mg ha-1 y-1). The results show also a delayed runoff generation due to the effect of the straw. From ponding to surface runoff the bare plots last 198 seconds, but under straw covered soils the time is 506 seconds. Moreover, when runoff is found on the soil surface the time to reach the plot outlet is much delayed under the straw cover, as range from 156 seconds on the bare plots to 406 to the straw covered plots. The management of the agriculture soils in many parts of the Planet is triggering land degradation (Borelli et al., 2013; Haregeweyn et al., 2013; Zhao et al., 2013). The most intense soil erosion rates use to affect agriculture land (Cerdà et al., 2009), and in Eastern Spain it was found that citrus orchards are being seeing as one of the crops with the highest erosion rates due to the managements that avoid the catch crops, weeds or litter, and this is also found in China (Cerdà and Jurgensen, 2008; 2009; Cerdà et al., 2009a; 2009b; Cerdà et al., 2011; 2012) and in China (Wu et al., 1997; Xu et al., 2010; Wang et al., 2011; Wu et al., 2011; Liu et al., 2011; Lü et al., 2011; Xu et al., 2012). The worse land managements found in many of the citrus plantations results in soil degradation too (Lu et al., 1997; Lü et al., 2012; Xu et al., 2012) and we can confirm here that the new Persimmon plantations are triggering the same effect and it is necessary to develop new strategies to reduce the soil losses. The use of cover crops to reduce the soil losses (Lavigne et al., 2012; Le Bellec et al., 2012) and the use of residues such as dried citrus peel has been found successful, but also it is well know the effect of the litter it is a key cover to avoid soil erosion. Meginnis (1935) was one of the pioneers on the research of the cover of litter to avoid

  5. Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan

    Matsumura, Yukihiko; Minowa, Tomoaki; Yamamoto, Hiromi

    2005-01-01

    This paper discusses the use of agricultural residue in Japan as an energy resource, based on the amounts produced and availability. The main agricultural residues in Japan are rice straw and rice husk. Based on a scenario wherein these residues are collected as is the rice product, we evaluate the size, cost, and CO 2 emission for power generation. Rice residue has a production potential of 12 Mt-dry year -1 , and 1.7 kt of rice straw is collected for each storage location. As this is too small an amount even for the smallest scale of power plant available, 2-month operation per year is assumed. Assuming a steam boiler and turbine with an efficiency of 7%, power generation from rice straw biomass can supply 3.8 billion(kW)h of electricity per year, or 0.47% of the total electricity demand in Japan. The electricity generated from this source costs as much as 25 JPY (kW h) -1 (0.21 US$ (kW h) -1 , 1 US$=120 JPY), more than double the current price of electricity. With heat recovery at 80% efficiency, the simultaneous heat supplied via cogeneration reaches 10% of that supplied by heavy oil in Japan. Further cost incentives will be required if the rice residue utilization is to be introduced. It will also be important to develop effective technologies to achieve high efficiency even in small-scale processes. If Japanese technologies enable the effective use of agricultural residue abroad as a result of Japanese effort from the years after 2010, the resulting reduction of greenhouse gas emission can be counted under the framework of the Kyoto Protocol

  6. Comparison of various pretreatments for ethanol production enhancement from solid residue after rumen fluid digestion of rice straw.

    Zhang, Haibo; Zhang, Panyue; Ye, Jie; Wu, Yan; Liu, Jianbo; Fang, Wei; Xu, Dong; Wang, Bei; Yan, Li; Zeng, Guangming

    2018-01-01

    The rumen digested residue of rice straw contains high residual carbohydrates, which makes it a potential cellulosic ethanol feedstock. This study evaluated the feasibility and effectiveness of applying microwave assisted alkali (MAP), ultrasound assisted alkali (UAP), and ball milling pretreatment (BMP) to enhance ethanol production from two digested residues (2.5%-DR and 10%-DR) after rumen fluid digestion of rice straw at 2.5% and 10.0% solid content. Results revealed that 2.5%-DR and 10%-DR had a cellulose content of 36.4% and 41.7%, respectively. MAP and UAP improved enzymatic hydrolysis of digested residue by removing the lignin and hemicellulose, while BMP by decreasing the particle size and crystallinity. BMP was concluded as the suitable pretreatment, resulting in an ethanol yield of 116.65 and 147.42mgg -1 for 2.5%-DR and 10%-DR, respectively. The integrated system including BMP for digested residue at 2.5% solid content achieved a maximum energy output of 7010kJkg -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of straw mulch residues of previous crop oats on the weed population in direct seeded faba bean in Organic Farming

    Massucati, Luiz Felipe Perrone

    2014-02-01

    Full Text Available Under conditions of Organic Farming, we investigated whether direct seeding of faba bean (Vicia faba L. into straw mulch from residues of precrop oats used for weed control enables at least occasional/opportunistic direct seeding in Organic Agriculture. Eight field trials were carried out at different study sites in North Rhine-Westphalia, Germany, in 2008-2009 and 2009-2010. Direct seeding (DS was performed into mulch layers of 0,4 and 6 t ha-1 of straw residues applied to the remaining stubble, simulating different yield levels of the precrop oats. LBS was used as a reference treatment, where straw was harvested, stubble tillage performed and seedbed prepared in fall and oil radish (Raphanus sativus grown as winter cover crop. Mouldboard ploughing combined with conventional seedbed preparation was performed in early spring to V. faba. Compared with LBS, straw mulch with subsequent direct seeding suppressed especially dicotyledonous annuals significantly. DS treatments with straw reduced the abundance of this group by 81 and 85% compared with LBS. Straw mulch resulted in effective suppression of photosensitive weeds such as Matricaria spp. and late germinating Chenopodium album. Grasses and perennial species occurred independent of the amount of straw. Compared with DS, the abundance of these weeds was reduced by 64 and 82% in LBS treatment. The shoot dry matter production of faba bean was retarded by DS compared with LBS, but significant yield losses could be avoided with straw residues of at least 4 t ha-1. Sufficient amount of straw of from the previous crop is a key criterion to facilitate organic no-till farming of faba bean in a suitable crop sequence when pressure of perennials and grasses is low.

  8. Growth performance, behaviour, forestomach development and meat quality of veal calves provided with barley grain or ground wheat straw for welfare purpose

    Igino Andrighetto

    2010-01-01

    Full Text Available Two different feeding plans for veal calves were compared in the study: a traditional liquid diet supplemented with 250  g/calf/d of barley grain or with 250 g/calf/d of ground wheat straw. The two solid feeds had different chemical composi-  tion but a similar particle size obtained by grinding the straw in a mill with an 8-mm mesh screen. Twenty-four Polish  Friesian male calves were used in the study and they were housed in individual wooden stalls (0.83 x 1.80 m. The health  status of all the calves was satisfactory for the entire fattening period and no specific medical treatment was required  during the trial. Calves fed wheat straw showed a greater intake of solid feed (196 vs. 139 g/d; P  average daily gain (1288 vs. 1203 g/d; P  not affected by the type of solid feed and no milk refusal episodes were detected. The haemoglobin concentration was  similar in calves receiving the two feeding treatments despite the higher iron intake provided by the wheat straw through-  out the fattening period (2.12 vs. 1.15 g; P  calves’ metabolism. Feeding behaviour was affected by the provision of solid feeds. Eating and chewing were prolonged  in calves receiving ground wheat straw and the same solid feed reduced the frequency of oral stereotypies at the end of  the fattening period. At the slaughterhouse, no differences were observed between the feeding treatments as regards  carcass weight and dressing percentage. The calves fed ground wheat straw had a heavier weight of the empty omasum  (518 vs. 341 g; P  fed barley grain. The incidence of abomasal erosions, ulcers and scars was similar in both treatments; however the index  of abomasal damage, which considers the number and the seriousness of different type of lesions, was higher in calves  receiving barley grain. Therefore, the grinding of straw particles, as opposed to barley grain, can reduce the abrasive-  ness of roughage at the abomasum level. Visual evaluation of the

  9. 40 CFR 180.521 - Fumigants for grain-mill machinery; tolerances for residues.

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Fumigants for grain-mill machinery... Tolerances § 180.521 Fumigants for grain-mill machinery; tolerances for residues. (a) General. Fumigants may be safely used in or on grain-mill machinery in accordance with the following prescribed conditions...

  10. Enzymatic hydrolyses of pretreated eucalyptus residues, wheat straw or olive tree pruning, and their mixtures towards flexible sugar-based biorefineries

    Silva-Fernandes, Talita; Marques, Susana; Rodrigues, Rita C. L. B.

    2016-01-01

    Eucalyptus residues, wheat straw, and olive tree pruning are lignocellulosic materials largely available in Southern Europe and have high potential to be used solely or in mixtures in sugar-based biorefineries for the production of biofuels and other bio-based products. Enzymatic hydrolysis...

  11. Lignocellulosic residues for production of electricity, biogas or second generation biofuel: A case study of technical and sustainable potential of rice straw in Mali

    Nygaard, Ivan; Dembelé, Filifing; Daou, Ibrahima

    2016-01-01

    Biomass from agricultural residues, especially lignocellulosic biomass, is not only seen as a sustainable biomass source for the production of electricity, but increasingly as a resource for the production of biogas and second generation biofuel in developing countries. Based on empirical research...... in an irrigated rice-growing area, Office du Niger, in Mali, this article builds scenarios for the sustainable potential of rice straw. The paper concludes that there is great uncertainty regarding the size of the sustainable resources of rice straw available for energy, but that the most likely scenario...

  12. Surplus electricity production in sugarcane mills using residual bagasse and straw as fuel

    Alves, Moises; Ponce, Gustavo H.S.F.; Silva, Maria Aparecida; Ensinas, Adriano V.

    2015-01-01

    The cogeneration system is one of the most important parts of sugarcane mills which use the bagasse as fuel. In the recent years, modern equipments and energy efficiency measures made possible to the sugarcane industry, the production of surplus electricity which become, besides the sugar and ethanol, a third product from the same renewable source, the sugarcane. This work analyses the surplus electric power systems for three different schemes of cogeneration system in the sugarcane industry through the simulator Thermoflow"®. The analysis is made considering both the available bagasse and sugarcane straw recovery as fuel in three different scenarios for the industrial process energy requirements. The results show that the CEST (Condensing Extraction Steam Turbine) system can have a surplus of electricity of up to four times higher than the BPST (Backpressure Steam Turbine) system. The system CEST can have an increase in surplus power above 23% and 102% for the rate of 10% and 50% of cane straw recovery in the field respectively. The BPST-C (Backpressure and Condensing Turbines) system can produce similar values of surplus electricity when compared with the system CEST, but may represent an opportunity of flexible operation of the cogeneration systems in harvest and off-seasons. - Highlights: • At least three cogeneration system options are available in sugarcane mills. • Nowadays, only steam-based cycle cogeneration systems are used in sugarcane mills. • BPST system is limited to 70 e kWh/t cane of surplus electricity production. • CEST system increases the surplus electricity up to four times than the BPST. • Operation during off-season of the BPST-C system is an advantage for this option.

  13. Effect of texture and grain size on the residual stress of nanocrystalline thin films

    Cao, Lei; Sengupta, Arkaprabha; Pantuso, Daniel; Koslowski, Marisol

    2017-10-01

    Residual stresses develop in thin film interconnects mainly as a result of deposition conditions and multiple thermal loading cycles during the manufacturing flow. Understanding the relation between the distribution of residual stress and the interconnect microstructure is of key importance to manage the nucleation and growth of defects that can lead to failure under reliability testing and use conditions. Dislocation dynamics simulations are performed in nanocrystalline copper subjected to cyclic loading to quantify the distribution of residual stresses as a function of grain misorientation and grain size distribution. The outcomes of this work help to evaluate the effect of microstructure in thin films failure by identifying potential voiding sites. Furthermore, the simulations show how dislocation structures are influenced by texture and grain size distribution that affect the residual stress. For example, when dislocation loops reach the opposite grain boundary during loading, these dislocations remain locked during unloading.

  14. Experimental determination and theoretical analysis of local residual stress at grain scale

    Basu, Indranil; Ocelík, Václav; De Hosson, Jeff Th M.

    2017-01-01

    Grain/phase boundaries contribute significantly to build up of residual stresses, owing to varied plastic/thermal response of different grain orientations or phases during thermomechanical treatment. Hence, accurate quantification of such local scale stress gradients in commercial components is

  15. Insecticide residues in stored grains in Sonora, Mexico: quantification and toxicity testing.

    Aldana-Madrid, M L; Valdez-Hurtado, S; Vargas-Valdez, N D; Salazar-Lopez, N J; Silveira-Gramont, M I; Loarca-Piña, F G; Rodríguez-Olibarria, G; Wong-Corral, F J; Borboa-Flores, J; Burgos-Hernández, A

    2008-02-01

    Food safety has acquired great attention by food importer and exporters. Food rejection or acceptance across international borders is based on the compliance with international food regulations. Due to the lack of recent data on pesticide residues in Mexican grains, this study focused on detecting and quantifying insecticide residues in stored wheat, corn, chickpeas, and beans, as well as to determine their mutagenic potential. Grains were sampled from primary storage sites in Sonora, Mexico. Malathion, chlorpyrifos, deltamethrin, cypermethrin, 4,4-DDE, 4,4-DDD and 4,4-DDT were analyzed in 135 samples. Grain samples were not mutagenic and most pesticide levels were within regulation limits.

  16. Digestibility and performance of steers fed low-quality crop residues treated with calcium oxide to partially replace corn in distillers grains finishing diets.

    Shreck, A L; Nuttelman, B L; Harding, J L; Griffin, W A; Erickson, G E; Klopfenstein, T J; Cecava, M J

    2015-02-01

    Two studies were conducted to identify methods for treating crop residues to improve digestibility and value in finishing diets based on corn grain and corn wet distillers grain with solubles (WDGS). In Exp. 1, 336 yearling steers (initial BW 356 ± 11.5 kg) were used in a 2 × 3 + 1 factorial arrangement of treatments with 6 pens per treatment. Factors were 3 crop residues (corn cobs, wheat straw, and corn stover) and 2 treatments where crop residues were either fed (20% diet DM) in their native form (NT) or alkaline treated with 5% CaO (DM basis) and hydrated to 50% DM before anaerobic storage (AT). Intakes were not affected by diet (F test; P = 0.30). An interaction between chemical treatment and residue (P 0.10) was observed between control (46% corn; DM basis) and AT (31% corn; DM basis) for DM digestibility (70.7% vs. 73.7%) or OM digestibility (72.1% vs. 77.0%). Dry matter intakes were not different between treated and untreated diets (P = 0.38), but lower (P < 0.01) NDF intake was observed for treated diets (3.1 vs. 3.5 kg/d), suggesting that CaO treatment was effective in solubilizing some carbohydrate. These data suggest that 15% replacement of corn and 10% untreated residue with treated forage result in a nutrient supply of OM similar to that of the control. The improvements in total tract fiber digestibility that occurred when treated forages were fed may have been related to increased digestibility of recoverable NDF and not to increased ruminal pH. Feeding chemically treated crop residues and WDGS is an effective strategy for replacing a portion of corn grain and roughage in feedlot diets.

  17. A study on the neoasozine residues in rice grain by neutron activation method

    Kim, Y.H.; Lee, K.J.; Lee, S.R.

    1981-01-01

    Residues of neoasozine in rice grain were determined by neutron activation and colorimetric techniques. Twice application of the chemical before flowering did not lead to any increased residue level while 4-times application resulted in significant increase in the residue level up to 0.54 - 0.75 mg As 2 O 3 /kg. The partition ratio of arsenic residues into polished rice grain and bran was 73 : 27 in 100 % polishing while most of the residues in the bran was transferred to oil cake fraction during solvent extraction, reaching up to 2.9 mg As 2 O 3 /kg. The neutron activation technique was advantageous because of its high sensitivity and the smaller sample amounts required for analysis. (author)

  18. The effect of elevated CO2 and N on decomposition of wheat straw and alfalfa residues in calcareous and non calcareous soils

    S. Razavi Darbar

    2016-04-01

    Full Text Available Incorporation of plant residue in soils is considered as an important agricultural practice for maintaining soil fertility in sustainable agricultural system. CO2 levels, nitrogen fertilization and plant residues are factors which highly affect decomposition of added organic matter to soil. In this research controlled chambers were used to investigate the effects of elevated atmospheric CO2 concentrations (350 vs. 760 CO2 ppm under two N fertilization levels (0 vs. 500 kg N ha-1 and two replicates on decomposition of wheat and alfalfa residues in two calcareous (32.66 % CaCO3 and non calcareous soils (3.4 % CaCO3 at 6 times (0, 10, 20, 40, 60 and 90 under laboratory condition. Soil moistures were adjusted at 70% of field capacity. The results showed that elevated CO2 significantly increased decomposition of residues in both calcareous and non calcareous soils. In the samples that received N fertilizer, decomposition of wheat straw and alfalfa residues increased in both soils. From the obtained results, we concluded that in all treatments the amount of decomposition of wheat straw and alfalfa residues in calcareous soil were higher than non calcareous soils.

  19. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    Cara, Irina Gabriela, E-mail: coroirina@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania); Trincă, Lucia Carmen, E-mail: lctrinca@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Trofin, Alina Elena, E-mail: aetrofin@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Cazacu, Ana, E-mail: anagarlea@gmail.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Ţopa, Denis, E-mail: topadennis@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania); Peptu, Cătălina Anişoara, E-mail: catipeptu@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 D. Mangeron Street, 700050 Iasi (Romania); Jităreanu, Gerard, E-mail: gerardj@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania)

    2015-12-15

    Highlights: • Surface characteristics of activated straw (wheat, corn, soybean) were assessed. • Modification methods to enhance materials sorption were presented. • Adsorption mechanism of metribuzin was revealed and discussed. - Abstract: Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  20. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    Cara, Irina Gabriela; Trincă, Lucia Carmen; Trofin, Alina Elena; Cazacu, Ana; Ţopa, Denis; Peptu, Cătălina Anişoara; Jităreanu, Gerard

    2015-01-01

    Highlights: • Surface characteristics of activated straw (wheat, corn, soybean) were assessed. • Modification methods to enhance materials sorption were presented. • Adsorption mechanism of metribuzin was revealed and discussed. - Abstract: Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  1. Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides.

    Lozowicka, B; Kaczynski, P; Paritova, Capital A Cyrillic Е; Kuzembekova, G B; Abzhalieva, A B; Sarsembayeva, N B; Alihan, K

    2014-02-01

    This paper presents the first study of pesticide residue results in grain from Kazakhstan. A total of 80 samples: barley, oat, rye, and wheat were collected and tested in the accredited laboratory. Among 180 pesticides, 10 active substances were detected. Banned pesticides, such as DDTs, γ-HCH, aldrin and diazinon were found in cereal grain. Chlorpyrifos methyl and pirimiphos methyl were the most frequently detected residues. No residues were found in 77.5% of the samples, 13.75% contained pesticide residues at or below MRLs, and 8.75% above MRLs. The greatest percentage of samples with residues (29%) was noted for wheat, and the lowest for rye (20%). Obtained data were used to estimate potential health risks associated with exposure to these pesticides. The highest estimated daily intakes (EDIs) were as follows: 789% of the ADI for aldrin (wheat) and 49.8% of the ADI for pirimiphos methyl (wheat and rye). The acute risk from aldrin and tebuconazole in wheat was 315.9% and 98.7% ARfD, respectively. The results show that despite the highest EDIs of pesticide residues in cereals, the current situation could not be considered a serious public health problem. Nevertheless, an investigation into continuous monitoring of pesticide residues in grain is recommended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Characterization of 140 Japanese and world rice collections cultivated in Nihonmatsu-city in Fukushima in terms of radiocesium activity concentrations in seed grains and straws to explore rice cultivars with low radiocesium accumulation

    Katsuhiro Kojima; Djedidi Salem

    2017-01-01

    We studied varietal difference in radiocesium accumulation by using Japanese and World rice collection for future development of low accumulation varieties. As a result, the radiocesium activity concentration varied by 12- and 22-fold in seed grains and straws, respectively. When we examined the seed grain to straw ratio of radiocesium activity concentration, paddy rice cultivars of Japonica sub-species showed a lower result than Indica and Javanica paddy rice cultivars. These observations suggest that the Japonica paddy rice cultivars may have the property of repressing radioactive cesium translocation to edible parts. (author)

  3. Forage Quality and Grazing Performance of Beef Cattle Grazing Brown Mid-rib Grain Sorghum Residue

    Residue from two grain sorghum hybrids, the control AWheatland x RTx430 (CON) and its near-isogenic hybrid containing the brown mid-rib gene bmr12 (BMR), were compared in a 2 year study. Forty-eight steers (236 ± 23 kg) in each year were assigned randomly to 2.12 ha paddocks (6 steers/paddock) cont...

  4. Evaluating Lignin-Rich Residues from Biochemical Ethanol Production of Wheat Straw and Olive Tree Pruning by FTIR and 2D-NMR

    José I. Santos

    2015-01-01

    Full Text Available Lignin-rich residues from the cellulose-based industry are traditionally incinerated for internal energy use. The future biorefineries that convert cellulosic biomass into biofuels will generate more lignin than necessary for internal energy use, and therefore value-added products from lignin could be produced. In this context, a good understanding of lignin is necessary prior to its valorization. The present study focused on the characterization of lignin-rich residues from biochemical ethanol production, including steam explosion, saccharification, and fermentation, of wheat straw and olive tree pruning. In addition to the composition and purity, the lignin structures (S/G ratio, interunit linkages were investigated by spectroscopy techniques such as FTIR and 2D-NMR. Together with the high lignin content, both residues contained significant amounts of carbohydrates, mainly glucose and protein. Wheat straw lignin showed a very low S/G ratio associated with p-hydroxycinnamates (p-coumarate and ferulate, whereas a strong predominance of S over G units was observed for olive tree pruning lignin. The main interunit linkages present in both lignins were β-O-4′ ethers followed by resinols and phenylcoumarans. These structural characteristics determine the use of these lignins in respect to their valorization.

  5. H2O grain size and the amount of dust in Mars' residual North polar cap

    Kieffer, H.H.

    1990-01-01

    In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author

  6. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    N/A

    2004-09-30

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. They investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) an efficient combine-based threshing system for separating the intermodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  7. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    Hess, J.R

    2005-01-31

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. We investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) An efficient combine-based threshing system for separating the internodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  8. Attempt of an answer on the question: What burns better, grain or straw?; Versuch einer Antwort auf die Frage ''Was brennt besser, Getreide oder Stroh?''

    Grimm, F. [Grimm GmbH und Co. KG, Amberg (Germany)

    2007-07-01

    Just in times in which fossil fuels become more scarcely and in which the prices of fuel oil and natural oil increase, alternative fuels for thermal utilization are discovered once again. Under this aspect, within the scope of the 3rd symposium ''Processes and materials for energy technologies'', held between 20th and 21st June, 2007, at the ATZ Entwicklungszentrum in Sulzbach-Rosenberg (Federal Republic of Germany), the author reports on a project for the new development of an adapted firing equipment and exhaust technology for the fuels grain and straw. Grain and straw are compared with respect to operational safety, emission of carbon monoxide and nitrogen oxides as well as emission of dust. Grain is the better combustion material according to the operational safety. It can be utilized energetically without further rework.

  9. Solid-state fermentation of rice straw residues for its use as growing medium in ornamental nurseries

    Belal, Elsayed B.; El-Mahrouk, M. E.

    2010-11-01

    This work was conducted at a private nursery in Kafr El-Sheikh governorate to investigate the bioconversion of rice straw into a soil-like substrate (SLS) by Phanerochaete chrysosporium and Trichoderma hazianum and the possibility of using rice straw compost in ornamental nurseries as a partial or total replacement of coconut peat (CP) and vermiculite (V) in the growing medium. The results showed that rice straw could be treated better by aerobic fermentation. The authors used five mixtures as follows: (1) Control (CP+V at 1:1 v/v), (2) SLS (100%), (3) SLS+CP (1:1 v/v), (4) SLS+V (1:1 v/v), and (5) SLS+CP+V (1:1:1 v/v/v). Data were recorded as seedling height, no. of leaves, shoot fresh and dry weights, root length and root fresh and dry weights in order to assess the quality of both transplants of Althea rosea (hollyhock) and Calendula officinalis (scotch marigold). Hollyhock seedlings grown in medium containing a mixture of SLS+CP+V displayed quality traits similar to those recorded from the control treatment, while scotch marigold seedlings in the same medium followed the control medium in quality.

  10. Role of grain boundary nature and residual strain in controlling sensitisation of type 304 stainless steel

    Ahmedabadi, Parag M.; Kain, Vivekanand; Dangi, Bhupinder Kumar; Samajdar, I.

    2013-01-01

    Highlights: ► Low-level of residual strain improved resistance to sensitisation. ► High fraction of special boundaries did not always reduce sensitisation. ► Area attacked during the EPR test correlated well with degree of sensitisation. ► Volume loss during the EPR test also correlated well with degree of sensitisation. - Abstract: The effects of residual strain and grain boundary character distribution on sensitisation of type 304 stainless steel at 525 °C were evaluated using electrochemical potentiokinetic reactivation (EPR) technique. The results indicated that a very low level of residual strain and a high fraction of annealing twins significantly improved the resistance to sensitisation. Image analysis indicated that the fraction of area attacked during the EPR test correlated well with the EPR data. The volume loss, calculated using atomic force microscopic examinations, during the EPR tests also correlated well with the EPR results.

  11. Pesticide residue analysis of soil, water, and grain of IPM basmati rice.

    Arora, Sumitra; Mukherji, Irani; Kumar, Aman; Tanwar, R K

    2014-12-01

    The main aim of the present investigations was to compare the pesticide load in integrated pest management (IPM) with non-IPM crops of rice fields. The harvest samples of Basmati rice grain, soil, and irrigation water, from IPM and non-IPM field trials, at villages in northern India, were analyzed using multi-pesticide residue method. The field experiments were conducted for three consecutive years (2008-2011) for the successful validation of the modules, synthesized for Basmati rice, at these locations. Residues of tricyclazole, propiconazole, hexconazole, lambda cyhalothrin, pretilachlor chlorpyrifos, DDVP, carbendazim, and imidacloprid were analyzed from two locations, Dudhli village of Dehradun, Uttrakhand and Saboli and Aterna village of Sonepat, Haryana. The pesticide residues were observed below detectable limit (BDL) (water samples (2008-09). Residues of tricyclazole and carbendazim, analyzed from same locations, revealed pesticide residues as BDL (water samples (2009-2010). The residues of tricyclazole, propioconazole, chlorpyrifos, hexaconazole, pretilachlor, and λ-cyhalothrin were also found as BDL (water samples (<0.001-0.05 μg/L) (2010-2011).

  12. Ash from Straw and Grain - Chemical Composition, Physical Properties and Technique for Spreading; Aska fraan halm och spannmaal - kemisk sammansaettning, fysikaliska egenskaper och spridningsteknik

    Marmolin, Christina; Ugander, Joakim; Gruvaeus, Ingemar; Lundin, Gunnar

    2008-07-01

    Ash is a inorganic solid material with physical properties that are highly dependent upon how well the combustion has progressed and where in the furnace the ash is produced (fly ash or bottom ash). Ash samples from 23 heating plants fuelled by mainly grain but also straw were analysed with respect to their content of plant nutrients, heavy metals and organic pollutants such as polyaromatic hydrocarbons (AH), the largest group of carcinogens known today. Overall, the ash samples showed a high content of crop nutrients on a level comparable with artificial fertiliser, with a content of 10% phosphorus (P), 10% potassium (K) and 4% magnesium (Mg). The liming effect was relatively low. The analysis of ash from oats showed consistently low levels of heavy metals and PAH, while 70% of the phosphorus present was in the form of readily soluble phosphate. Ash from barley and wheat grain and oilseed rape and wheat straw showed similar results to those for oats. Ash from straw contained lower levels of phosphorus, which was expected. The low levels of heavy metals and PAH did not impose any restrictions on the use of the ash as a crop fertiliser. However, the plant availability of phosphorus in ash from rape straw needs further investigation. The ash samples contained no undesirable substances that could affect the recycling of ash from grain or straw. The fly ash contained higher levels of heavy metals than the bottom ash but not to such extent that the two fractions would have to be handled separately. Uniform distribution of the ash and relatively low application rates per hectare are prerequisites for a high use efficiency of the crop nutrients available. Doses of ash should not exceed a rate of 1-2 tons/hectare at any one time since that would lead to excessive amounts of phosphorus and potassium in the soil profile. In a long-term perspective, applying an amount of ash equivalent to the amount of grain removed is the most appropriate strategy. For example, five tons of

  13. Agricultural residues as fuel for producer gas generation. Report from a test series with coconut shells, coconut husks, wheat straw and sugar cane

    Hoeglund, C

    1981-08-01

    This paper reports on results from a series of tests with four different types of agricultural residues as fuel for producer gas generation. The fuels are coconut shells, coconut husks, pelletized wheat straw and pressed sugar cane. The tests were made with a 73 Hp agricultural tractor diesel engine equipped with a standard gasifier developed for wood chips in Sweden, and run on a testbed at the Swedish National Machinery Testing Institute. The engine was operated on approximately 10 per cent diesel oil and 90 per cent producer gas. The gas composition, its calorific value and temperature, the pressure drop and the engine power were monitored. Detailed elementary analysis of the fuel and gas were carried out. Observations were also made regarding the important aspects of bridging and slagging in the gasifier. The tests confirmed that coconut shells make an excellent fuel for producer gas generation. After 8 hours of running no problems with slags and bridging were experienced. Coconut husks showed no bridging but some slag formation. The gasifier operated satisfactorily for this fuel. Pelletized wheat straw and pressed sugar cane appeared unsuitable as fuel in the unmodified test gasifier (Type F 300) due to slag formation. It is important to note, however, that the present results are not optimal for any of the fuel used, the gasifier being designed for wood-chips and not for the test-fuels used. Tests using appropriately modified gasifiers are planned for the future.

  14. Residual Stress Measurement of Coarse Crystal Grain in Aluminium Casting Alloy by Neutron Diffraction

    Nishida, Masayuki; Watanabe, Yoshitaka; Hanabusa, Takao

    2009-01-01

    Full text: Neutron stress measurement can detect strain and stress information in deep region because of large penetration ability of neutron beams. The present paper describes procedure and results in the residual stress measurement of aluminium casting alloy by neutron diffraction. Usually, the aluminium casting alloy includes the large crystal grains. The existence of large crystal grains makes it difficult to estimate the residual stresses in highly accuracy. In this study, the modified three axial method using Hook's equation was employed for neutron stress measurement. These stress measurements were performed under the two kinds of new techniques. One is a rocking curve method to calculate the principal strains in three directions. The peak profiles which appear discretely on rocking curves were translated to principle stresses by the Bragg law and the basic elastic theory. Another is the consideration of measurement positions and the edge effect in the neutron irradiated area (volume gage). The edge effect generates the errors of 2θ-peak position in the neutron stress measurement. In this study, the edge effect was investigated in detail by a small bit of copper single crystal. The copper bit was moved and scanned on three dimensionally within the gage volume. Furthermore, the average strains of symmetrical positions are measure by the sample turning at 180 degrees, because the error distributions of the 2θ-peak position followed to positions inside the gage volume. Form these results of this study, the residual stresses in aluminium casting alloy which includes the large crystal grains were possible to estimate by neutron stress measurement with the rocking curve method and the correction of the edge effect. (author)

  15. Fine-grained leukocyte classification with deep residual learning for microscopic images.

    Qin, Feiwei; Gao, Nannan; Peng, Yong; Wu, Zizhao; Shen, Shuying; Grudtsin, Artur

    2018-08-01

    Leukocyte classification and cytometry have wide applications in medical domain, previous researches usually exploit machine learning techniques to classify leukocytes automatically. However, constrained by the past development of machine learning techniques, for example, extracting distinctive features from raw microscopic images are difficult, the widely used SVM classifier only has relative few parameters to tune, these methods cannot efficiently handle fine-grained classification cases when the white blood cells have up to 40 categories. Based on deep learning theory, a systematic study is conducted on finer leukocyte classification in this paper. A deep residual neural network based leukocyte classifier is constructed at first, which can imitate the domain expert's cell recognition process, and extract salient features robustly and automatically. Then the deep neural network classifier's topology is adjusted according to the prior knowledge of white blood cell test. After that the microscopic image dataset with almost one hundred thousand labeled leukocytes belonging to 40 categories is built, and combined training strategies are adopted to make the designed classifier has good generalization ability. The proposed deep residual neural network based classifier was tested on microscopic image dataset with 40 leukocyte categories. It achieves top-1 accuracy of 77.80%, top-5 accuracy of 98.75% during the training procedure. The average accuracy on the test set is nearly 76.84%. This paper presents a fine-grained leukocyte classification method for microscopic images, based on deep residual learning theory and medical domain knowledge. Experimental results validate the feasibility and effectiveness of our approach. Extended experiments support that the fine-grained leukocyte classifier could be used in real medical applications, assist doctors in diagnosing diseases, reduce human power significantly. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Residual efficacy of cypermethrin and pirimiphos-methyl against Sitotroga cerealella (Olivier in wheat grain

    Pražić-Golić Marijana

    2017-01-01

    Full Text Available Residual efficacy of EC formulations of two insecticides: cypermethrin supplemented with the synergist piperonyl butoxide, and pirimiphos-methyl, against adults of the Angoumois grain moth, Sitotroga cerealella (Olivier, was investigated in the laboratory (at 25±1°C and 55-60% r.h. by applying water solutions of products based either on cypermethrin (1.6 mg a.i./kg of wheat grain or pirimiphos-methyl (4 mg a.i./kg of wheat grain to wheat grain. Insect mortality on deposits of different age: 0, 7, 14, 30, 60, 90, 120, 150 and 180 days was estimated after 2, 7 and 14 days of insect exposure to treated wheat. After 2 day exposure, cypermethrin caused mortality of up to 46% on all deposits (age 0-180 days. After 7 days of exposure, high efficacy (94-100% was found only on deposits that were up to 90 days old, while the mortality of S. cerealella adults on all deposits following 14 days of exposure was 98-100%, and it was probably additionally enhanced by natural mortality. Pirimiphos-methyl was 98-100% effective after 2 days of exposure to deposits that were up to 30 days old, while it achieved maximum efficacy (100% after 7 days of insect exposure to deposits aging for up to 150 days, and 94% efficacy on 180 days old deposits. After 14 days of adult exposure to all deposit ages, there were no surviving insects (efficacy 100%. The results show that pirimiphos-methyl was more effective against S. cerealella adults and had a longer residual activity than cypermethrin.

  17. Grain size influence on residual stresses in alumina/zirconia composites

    Sergo, V.; Sbaizero, O.; Pezzotti, G.; Nishida, T.

    1998-01-01

    The grain size (GS) and volume fraction of alumina have been systematically varied in composites with a zirconia matrix and the corresponding residual stresses have been assessed by means of piezospectroscopy. The compressive stress in alumina depends on the volume fraction and it is well predicted by a stochastic model based on information theory. No dependence with GS has been detected, except at the highest volume content (20% vol. alumina). Conversely the stress distribution is independent from the volume fraction and depends on GS: intermediate values of GS exhibit the wider stress distribution. The tensile stress in zirconia shows no clear correlation with the volume fraction and increases with increasing zirconia GS. This latter behavior has been compared with a model based on diffusion relaxation of stresses. The model reproduces correctly the stress change due to different alumina contents, but it diverges from the experimental data at smaller GSs, overestimating the residual stress. It is suggested that grain boundary sliding may also contribute to the relaxation of stresses

  18. Microstructural sensitivity of 316H austenitic stainless steel: Residual stress relaxation and grain boundary fracture

    Chen, B., E-mail: b.chen@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Flewitt, P.E.J. [Interface Analysis Centre, University of Bristol, 121 St Michael' s Hill, Bristol BS2 8BS (United Kingdom); H.H. Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom)

    2010-10-25

    Research highlights: {yields} Triaxial residual macro-stresses have been measured by neutron diffraction. {yields} Rates of stress relaxation are shown to be a function of the microstructure. {yields} Quantification of M{sub 23}C{sub 6} precipitation was undertaken by a novel approach. {yields} Intergranular M{sub 23}C{sub 6} precipitation promotes the potential to intergranular fracture. {yields} Phosphorous segregation further enhances the potential to intergranular fracture. - Abstract: The present work considers the role of thermo-mechanical history on the generation and relaxation of residual stresses, typical of those encountered in Type 316H austenitic stainless steel thick section weldments. A series of thermo-mechanical pre-treatments have been developed and applied to simulate the critical microstructures observed within the heat affected zone of the thick section parent material. The through thickness distributions of the residual macro-stresses in cylindrical specimens have been measured by neutron diffraction and then the rates of the relaxation are shown to be a function of microstructure. The susceptibility to intergranular brittle fracture at a temperature of -196 deg. C is shown to be a function of M{sub 23}C{sub 6} carbide precipitates and phosphorous segregation at the grain boundaries. Finally, the link of the present study to the understanding of the reheat cracking is briefly discussed.

  19. Possibilities for sustainable biorefineries based on agricultural residues – A case study of potential straw-based ethanol production in Sweden

    Ekman, Anna; Wallberg, Ola; Joelsson, Elisabeth; Börjesson, Pål

    2013-01-01

    Highlights: ► Biorefineries can produce ethanol, biogas, heat and power efficiently with profit. ► Location of plant is decided by raw material supply in the region. ► Increased production of high value compounds affects profitability. ► Energy efficiency is increased by availability of heat sinks. ► Several locations may be suitable for construction of a biorefinery plant. -- Abstract: This study presents a survey of the most important techno-economic factors for the implementation of biorefineries based on agricultural residues, in the form of straw, and biochemical conversion into ethanol and biogas, together with production of electricity and heat. The paper suggests locations where the necessary conditions can be met in Sweden. The requirements identified are regional availability of feedstock, the possibility to integrate with external heat sinks, appropriate process design and the scale of the plant. The scale of the plant should be adapted to the potential, regional, raw-material supply, but still be large enough to give economies of scale. The integration with heat sinks proved to be most important to achieve high energy-efficiency, but it was of somewhat less importance for the profitability. Development of pentose fermentation, leading to higher ethanol yields, was important to gain high profitability. Promising locations were identified in the county of Östergötland where integration with an existing 1st generation ethanol plant and district heating systems (DHSs) is possible, and in the county of Skåne where both a significant, potential straw supply and integration potential with DHSs are available.

  20. Degradation of bifenthrin and pirimiphos-methyl residues in stored wheat grains (Triticum aestivum L.) by ozonation.

    Savi, Geovana D; Piacentini, Karim C; Bortolotto, Tiago; Scussel, Vildes M

    2016-07-15

    Pesticide insecticides are used on wheat grains in storage units but their efficiency is hindered by persistent residues in the grains. Therefore, this study aims to evaluate the effectiveness of ozone (O3) gas treatment on the degradation of residual bifenthrin and pirimiphos-methyl insecticides commonly used in storage wheat grains, as well as to evaluate degradation of their by-products. The residues of bifenthrin decreased after 180 min of exposure in a concentration of 60 μmol/mol (a 37.5 ± 7.4% reduction) with 20% moisture content and 0.9 water activity. On the other hand, under the same experimental conditions, the pirimiphos-methyl residues significantly decreased in the wheat grains (71.1 ± 8.6%) after 30 min of exposure. After O3 gas treatment, three by-products of pirimiphos-methyl (m/z=306.1) containing different molecular mass to charge ratios (m/z=278.1, 301.1 and 319.2) were identified by LC-MS. O3 is a strong oxidizer that has shown the potential to reduce pesticide residues in stored grain in order to ensure food quality and safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Enhancing nutritional contents of Lentinus sajor-caju using residual biogas slurry waste of detoxified mahua cake mixed with wheat straw

    Aditi Gupta

    2016-10-01

    Full Text Available Residual biogas slurries (BGS of detoxified mahua cake (DMC and cow dung (CD were used as supplements to enhance the yield and nutritional quality of Lentinus sajor-caju on wheat straw (WS. Supplementation with 20% BGS gave a maximum yield of 1155 gkg-1 fruit bodies, furnishing an increase of 95.1% over WS control. Significant increase (p≤0.05 in protein content (29.6-38.9%, sugars (29.1-32.3% and minerals (N, P, K, Fe, Zn was observed in the fruit bodies. Principle component analysis (PCA was performed to see the pattern of correlation within a set of observed variables and how these different variables varied in different treatments. PC1 and PC2 represented 90% of total variation in the observed variables. Moisture (%, lignin (%, celluloses (% and C/N ratio were closely correlated in comparison to Fe, N and saponins. PCA of amino acids revealed that, PC1 and PC2 represented 74% of total variation in the data set. HPLC confirmed the absence of any saponin residues (characteristic toxins of mahua cake in fruit bodies and mushroom spent. FTIR studies showed significant degradation of celluloses (22.2-32.4%, hemicelluloses (14.1-23.1% and lignin (27.4-39.23% in the spent, along with an increase in nutrition content. The study provided a simple, cost effective approach to improve the yield and nutritional quality of Lentinus sajor-caju by resourceful utilization of BGS.

  2. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang-Huai-Hai Valley

    Zhiqiang Tao; Congfeng Li; Jingjing Li; Zaisong Ding; Jie Xu; Xuefang Sun; Peilu Zhou; Ming Zhao

    2015-01-01

    A two-year field experiment (2012–2013) was conducted to investigate the effects of two tillage methods and five maize straw mulching patterns on the yield, water consumption, and water use efficiency (WUE) of spring maize (Zea mays L.) in the northern Huang–Huai–Hai valley of China. Compared to rotary tillage, subsoil tillage resulted in decreases in water consumption by 6.3–7.8% and increases in maize yield by 644.5–673.9 kg ha−1, soil water content by 2.9–3.0%, and WUE by 12.7–15.2%. Chopped straw mulching led to higher yield, soil water content, and WUE as well as lower water consumption than prostrate whole straw mulching. Mulching with 50%chopped straw had the largest positive effects on maize yield, soil water content, and WUE among the five mulching treatments. Tillage had greater influence on maize yield than straw mulching, whereas straw mulching had greater influence on soil water content, water consumption, and WUE than tillage. These results suggest that 50%chopped straw mulching with subsoil tillage is beneficial in spring maize production aiming at high yield and high WUE in the Huang–Huai–Hai valley.

  3. Structural and chemical analysis of process residue from biochemical conversion of wheat straw (Triticum aestivum L.) to ethanol

    Hansen, Mads Anders Tengstedt; Jørgensen, Henning; Laursen, Kristian Holst

    2013-01-01

    Biochemical conversion of lignocellulose to fermentable carbohydrates for ethanol production is now being implemented in large-scale industrial production. Applying hydrothermal pretreatment and enzymatic hydrolysis for the conversion process, a residue containing substantial amounts of lignin...

  4. Residual-stress-induced grain growth of twinned grains and its effect on formability of magnesium alloy sheet at room temperature

    Kim, Se-Jong [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Kim, Daeyong, E-mail: daeyong@kims.re.kr [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Lee, Keunho; Cho, Hoon-Hwe; Han, Heung Nam [Department of Materials Science and Engineering and RIAM, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-11-15

    A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth of twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.

  5. Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue.

    Huang, Chen; Ragauskas, Arthur J; Wu, Xinxing; Huang, Yang; Zhou, Xuelian; He, Juan; Huang, Caoxing; Lai, Chenhuan; Li, Xin; Yong, Qiang

    2018-02-01

    A novel bio-refinery sequence yielding varieties of co-products was developed using straw pulping solid residue. This process utilizes neutral sulfite pretreatment which under optimal conditions (160 °C and 3% (w/v) sulfite charge) provides 64.3% delignification while retaining 90% of cellulose and 67.3% of xylan. The pretreated solids exhibited excellent enzymatic digestibility, with saccharification yields of 86.9% and 81.1% for cellulose and xylan, respectively. After pretreatment, the process of semi-simultaneous saccharification and fermentation (S-SSF) and bio-catalysis was investigated. The results revealed that decreased ethanol yields were achieved when solid loading increased from 5% to 30%. An acceptable ethanol yield of 76.8% was obtained at 20% solid loading. After fermentation, bio-catalysis of xylose remaining in fermentation broth resulted in near 100% xylonic acid (XA) yield at varied solid loadings. To complete the co-product portfolio, oxidation ammoniation of the dissolved lignin successfully transformed it into biodegradable slow-release nitrogen fertilizer with excellent agricultural properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Rice straw as a renewable energy source in India, Thailand, and the Philippines: Overall potential and limitations for energy contribution and greenhouse gas mitigation

    Gadde, Butchaiah; Menke, Christoph; Wassmann, Reiner

    2009-01-01

    abstract: Rice is a widely grown crop in the South and South-East Asia that leaves substantial quantity of straw in the field. The aim of this paper is to assess the quantity of rice straw produced, estimate Greenhouse Gas (GHG) emissions based on its current uses, and assess its possible energy potential and related GHG emissions mitigation potential. Updated statistics on rough rice production are used in this study in combination with the literature values on Straw-to-Grain Ratio (SGR) to quantify the amount of rice straw produced in the three countries of focus. It is estimated that 97.19, 21.86, and 10.68 Mt of rice straw residue are produced in India, Thailand, and the Philippines, respectively. In India, 23% of rice straw residue produced is surplus and is either left in the field as uncollected or to a large extent open-field burnt. About 48% of this residue produced is subjected to open-field burning in Thailand, and in the Philippines it is 95%. The GHG emissions contribution through open-field burning of rice straw in India, Thailand, and the Philippines are 0.05%, 0.18%, and 0.56%, and the mitigated GHG emissions when generated electricity is used would be 0.75%, 1.81%, and 4.31%, respectively, when compared to the total country GHG emissions.

  7. A cost-effective screening method for pesticide residue analysis in fruits, vegetables, and cereal grains.

    Ambrus, A; Füzesi, I; Susán, M; Dobi, D; Lantos, J; Zakar, F; Korsós, I; Oláh, J; Beke, B B; Katavics, L

    2005-01-01

    This paper reports the results of studies performed to investigate the potential of applying thin layer chromatography (TLC) detection in combination with selected extraction and cleanup methods, for providing an alternative cost-effective analytical procedure for screening and confirmation of pesticide residues in plant commodities. The extraction was carried out with ethyl acetate and an on-line extraction method applying an acetone-dichloromethane mixture. The extracts were cleaned up with SX-3 gel, an adsorbent mixture of active carbon, magnesia, and diatomaceous earth, and on silica micro cartridges. The Rf values of 118 pesticides were tested in eleven elution systems with UV, and eight biotest methods and chemical detection reagents. Cabbage, green peas, orange, and tomatoes were selected as representative sample matrices for fruits and vegetables, while maize, rice, and wheat represented cereal grains. As an internal quality control measure, marker compounds were applied on each plate to verify the proper elution and detection conditions. The Rf values varied in the different elution systems. The best separation (widest Rf range) was achieved with silica gel (SG)--ethyl acetate (0.05-0.7), SG--benzene, (0.02-0.7) and reverse phase RP-18 F-254S layer with acetone: methanol: water/30:30:30 (v/v) (0.1-0.8). The relative standard deviation of Rf values (CV(Rf)) within laboratory reproducibility was generally less than 20%, except below 0.2 Rf, where the CVRf rapidly increased with decreasing Rf values. The fungi spore inhibition, chloroplast inhibition, and enzyme inhibition were found most suitable for detection of pesticides primarily for confirming their identity or screening for known substances. Their use for determination of pesticide residues in samples of unknown origin is not recommended.

  8. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2007-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding accelerated by residual stress of multi pass welding and surface hardening. (author)

  9. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2008-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to multi-pass welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  10. Silicon in cereal straw

    Murozuka, Emiko

    Silicon (Si) is known to be a beneficial element for plants. However, when plant residues are to be used as feedstock for second generation bioenergy, Si may reduce the suitability of the biomass for biochemical or thermal conversion technologies. The objective of this PhD study was to investigate......, a mutant in Si influx transporter BdLsi1 was identified. BdLsi1 belongs to the major intrinsic protein family. The mutant BdLsi1 protein had an amino acid change from proline to serine in the highly conserved NPA motif. The mutation caused a defect in channeling of Si as well as other substrates...... such as germanium and arsenite. The Si concentration in the mutant plant was significantly reduced by more than 80 %. Rice mutants defective in Si transporters OsLsi1 and OsLsi2 also showed significantly lower straw Si concentration. It is concluded that the quality of straw biomass for bioenergy purposes can...

  11. Effect of Tillage Systems with Corn Residue on Grain Yield of Rapeseed in Moghan Region

    J Taghinazhad

    2014-09-01

    Full Text Available This study carried out to evaluate the effect of different tillage systems on rapeseed yield (hayola 401 planted in corn residues. This experiment was done in Moghan region with clay soils during 2009-2012. Different seedbed preparation methods include MT: moldboard + disk tillage (conventional tillage was included, SCT: Stem Crusher + chisel + disk tandem harrow, STT: Stem Crusher + double-disc, CT: chisel + disk tillage and DD: two heavy disks. The experiment was conducted in a randomized complete block design with four replications. The results showed that soil bulk density in the 0-10 cm layer was not significant in different tillage treatments, but it was significantly higher than the conventional tillage in 10-20 cm depth. However, penetration resistance in 10-30 cm under DD was significantly higher than other treatments, but it was not significant in 0-10 cm layer among all tillage treatments. Thus, Comparison of the soil bulk density, penetration resistance, and plant establishment showed that the reduced tillage in canola seedbed preparation was effective. Besides, the surveys indicated that there was a significant different between MWD after primary and secondary tillage. The mean diameter weighted under SCT and DD, were 1.19 and 1.24 cm, respectively had the best status. The highest value and the worst status of this parameter observed for MT which was 1.92 cm. The highest rate of grain yield obtained by application of treatment SCT, and it was 2563.8 kg ha-1, The SCT treatment can be recommended as an effective canola bed preparation due to its significant saving in time and cost after corn harvesting.

  12. Mycotoxin and fungicide residues in wheat grains from fungicide-treated plants measured by a validated LC-MS method.

    da Luz, Suzane Rickes; Pazdiora, Paulo Cesar; Dallagnol, Leandro José; Dors, Giniani Carla; Chaves, Fábio Clasen

    2017-04-01

    Wheat (Triticum aestivum) is an annual crop, cultivated in the winter and spring and susceptible to several pathogens, especially fungi, which are managed with fungicides. It is also one of the most consumed cereals, and can be contaminated by mycotoxins and fungicides. The objective of this study was to validate an analytical method by LC-MS for simultaneous determination of mycotoxins and fungicide residues in wheat grains susceptible to fusarium head blight treated with fungicides, and to evaluate the relationship between fungicide application and mycotoxin production. All parameters of the validated analytical method were within AOAC and ANVISA limits. Deoxynivalenol was the prevalent mycotoxin in wheat grain and epoxiconazole was the fungicide residue found in the highest concentration. All fungicidal treatments induced an increase in AFB2 production when compared to the control (without application). AFB1 and deoxynivalenol, on the contrary, were reduced in all fungicide treatments compared to the control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. MASS BALANCE OF SILICA IN STRAW FROM THE PERSPECTIVE OF SILICA REDUCTION IN STRAW PULP

    Celil Atik,

    2012-06-01

    Full Text Available The high silica content of wheat straw is an important limiting factor for straw pulping. High silica content complicates processing and black liquor recovery, wears out factory installations, and lowers paper quality. Each section of wheat straw has different cells and chemical compositions and thus different silica content. In this work, the silica content of balled straw samples were examined according to their physical components, including internodes, nodes, leaves (sheath and blade, rachis, grain, other plant bodies, and other plant spikes. Mass distribution of silica was determined by a dry ashing method. Half (50.90% of the silica comes from leaves, and its mechanical separation will reduce the silica content in wheat straw pulp significantly. Destroying silica bodies by sonication will increase the strength properties of straw pulp.

  14. Turnover of grain legume N rhizodeposits and effect of rhizodeposition on the turnover of crop residues

    Mayer, J.; Buegger, F.; Jensen, E.S.

    2004-01-01

    The turnover of N derived from rhizodeposition of faba bean (Vicia faba L.), pea (Pisum sativum L.) and white lupin (Lupinus albus L.) and the effects of the rhizodeposition on the subsequent C and N turnover of its crop residues were investigated in an incubation experiment (168 days, 15 degrees....... In the experiment the turnover of C and N was compared in soils with and without previous growth of three legumes and with and without incorporation of crop residues. After 168 days, 21% (lupin), 26% (faba bean) and 27% (pea) of rhizodeposition N was mineralised in the treatments without crop residues. A smaller...... amount of 15-17% was present as microbial biomass and between 30 and 55% of mineralised rhizodeposition N was present as microbial residue pool, which consists of microbial exoenzymes, mucous substances and dead microbial biomass. The effect of rhizodeposition on the C and N turnover of crop residues...

  15. Mapping residual organics and carbonate at grain boundaries and in the amorphous interphase in mouse incisor enamel

    Lyle M Gordon

    2015-03-01

    Full Text Available Dental enamel has evolved to resist the most grueling conditions of mechanical stress, fatigue, and wear. Adding insult to injury, it is exposed to the frequently corrosive environment of the oral cavity. While its hierarchical structure is unrivaled in its mechanical resilience, heterogeneity in the distribution of magnesium ions and the presence of Mg-substituted amorphous calcium phosphate (Mg-ACP as an intergranular phase have recently been shown to increase the susceptibility of mouse enamel to acid attack. Herein we investigate the distribution of two important constituents of enamel, residual organic matter and inorganic carbonate. We find that organics, carbonate, and possibly water show distinct distribution patterns in the mouse enamel crystallites, at simple grain boundaries, and in the amorphous interphase at multiple grain boundaries. This has implications for the resistance to acid corrosion, mechanical properties, and the mechanism by which enamel crystals grow during amelogenesis.

  16. Multi-pesticides residue analysis of grains using modified magnetic nanoparticle adsorbent for facile and efficient cleanup.

    Liu, Zhenzhen; Qi, Peipei; Wang, Xiangyun; Wang, Zhiwei; Xu, Xiahong; Chen, Wenxue; Wu, Liyu; Zhang, Hu; Wang, Qiang; Wang, Xinquan

    2017-09-01

    A facile, rapid sample pretreatment method was developed based on magnetic nanoparticles for multi-pesticides residue analysis of grains. Magnetite (Fe 3 O 4 ) nanoparticles modified with 3-(N,N-diethylamino)propyltrimethoxysilane (Fe 3 O 4 -PSA) and commercial C18 were selected as the cleanup adsorbents to remove the target interferences of the matrix, such as fatty acids and non-polar compounds. Rice was used as the representative grain sample for method optimization. The amount of Fe 3 O 4 -PSA and C18 were systematically investigated for selecting the suitable purification conditions, and the simultaneous determination of 50 pesticides and 8 related metabolites in rice was established by liquid chromatography-tandem mass spectrometry. Under the optimal conditions, the method validation was performed including linearity, sensitivity, matrix effect, recovery and precision, which all satisfy the requirement for pesticides residue analysis. Compared to the conventional QuEChERS method with non-magnetic material as cleanup adsorbent, the present method can save 30% of the pretreatment time, giving the high throughput analysis possible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Potentials and economic viability of small grain residue use as a source of energy in Serbia

    Zekic, Vladislav; Rodic, Vesna; Jovanovic, Milenko [University of Novi Sad, Faculty of Agriculture, Department of Agricultural Economics and Rural Sociology, Trg Dositeja Obradovica 8, 21000 Novi Sad, Vojvodina (RS)

    2010-12-15

    One of the numerous challenges awaiting Serbia in the process of European integration is the increase in use of renewable sources of energy. The reason for such an increase is not merely a formal acceptance of European goals but the high energy import dependence, a relatively developed agricultural sector, with insufficiently exploited potentials of biomass, accompanied by an ever-growing awareness of the need for establishing long-lasting sustainable development. Serbia has a relatively undeveloped livestock sector which can absorb a limited portion of the biomass produced. Additionally, insufficient awareness on the part of farmers and the preconception of the low cost-effectiveness of biomass utilisation for the purpose of energy production are factors which, unsurprisingly, contribute to the current practice of burning the largest portion of the biomass produced on site, which is economically and ecologically unacceptable. This paper analyses the amounts of biomass available in Serbia and the prospects of its economically viable utilisation. The cost analysis conducted indicates that the energy obtained from small rectangular straw bales (the most widespread way of utilisation), is less costly by 28%, than the energy obtained from coal, whereas the energy obtained from round bales is cheaper by 34%. Sensitivity analysis has shown that the results obtained are relatively resistant to price changes in the most important inputs. The sensitivity is higher towards the efficiency of the machinery used; therefore, insistent efforts should be made for creating conditions where the introduction of more up-to-date technical solutions, already existing in developed countries, will become feasible. (author)

  18. Relative availability of crop residue-N in rice cultivation

    Sirwando, H; Abdullah, N.

    1988-01-01

    The use of plant residues for soil amendment will reduce the use of chemical fertilizers. The experiment to study the uptake of N from various plant residues by rice crop. Three kinds of plant residue of soybean labelled with 15-N. Four levels of urea (0, 15, 30, 40 kg N/ha) were applied to aluvial soil from Pusakanegara. The factorial experiment was conducted in fully randomize design, with plant residues as the main treatment, and rate of urea as substreatment. The results obtained from this experiment showed that plant dry weight, N content of grain, straw, and the whole plant of Atomita I rice treated with soybean strow seens to be higher than those treated with the straw of rice or corn. (author). 6 refs.; 7 tabs

  19. Influência da cobertura morta no comportamento dos herbicidas imazaquin e clomazone The influence of straw mulch on the behaviour of the residual herbicides imazaquin and clomazone

    Benedito N. Rodrigues

    1993-01-01

    Full Text Available Experimentos de campo e bioensaios em casa-de-vegetação foram realizados para se estudar a influência da cobertura morta de trigo (Triticum aestivum L. no comportamento dos herbicidas imazaquin {ácido 2-[4,5 dihidro-4-metil-4-(1-metiletil-5-oxo-1H-imidazol-2-ilo]-3-quinolinacarboxílico} e clomazone {2-[(2-clorofenilmetil]-4,4-dimetil-3-isoxazolidinona}, aplicados em pré-emergência na cultura da soja [Glycine max (L. Merril], no sistema de plantio direto. O clomazone mostrou evidências de ter sido interceptado pela cobertura morta. A presença da cobertura morta não influiu na retenção do imazaquin, sendo este lixiviado da palha para o solo com as chuvas que ocorreram após a aplicação.Field experiments and glass house bioassays were conducted to determine the influence of winter wheat (Triticum aestivum L. straw mulch on the behaviour of the herbicides imazaquin {2-[4,5-dihydro-4-methyl-4-(1-ethyl-5-oxo-1H-imidazol-2-yl]-3-quinolinecarboxylic acid} and clomazone {2-[(2-chlorophenylmethyl]-4,4-dimethyl-3- isoxazolidinone}, wich had been applied to pre-emergence soybean (Glycine maxin a no-till system. There was evidence that clomazone had been intecepted by the straw whilst imazaquin was leached into the soil by rain.

  20. Grain yield and crop N offtake in response to residual fertilizer N in long-term field experiments

    Petersen, Jens; Thomsen, Ingrid Kaag; Mattsson, L.

    2010-01-01

    in four long-term (>35 yr) field experiments, we measured the response of barley (grain yield and N offtake at crop maturity) to six rates (0, 30, 60, 90, 120 and 150 kg N/ha) of mineral fertilizer N (Nnew) applied in subplots replacing the customary long-term plot treatments of fertilizer inputs (Nprev......). Rates of Nprev above 50-100 kg N/ha had no consistent effect on the soil N content, but this was up to 20% greater than that in unfertilized treatments. Long-term unfertilized plots should not be used as control to test the residual value of N in modern agriculture with large production potentials....... Although the effect of mineral Nprev on grain yield and N offtake could be substituted by Nnew within a range of previous inputs, the value of Nprev was not eliminated irrespective of Nnew rate. Provided a sufficient supply of plant nutrients other than N, the use-efficiency of Nnew did not change...

  1. Enzymatic hydrolysis of pretreated soybean straw

    Xu Zhong; Wang Qunhui; Jiang Zhaohua; Yang Xuexin; Ji Yongzhen

    2007-01-01

    In order to produce lactic acid, from agricultural residues such as soybean straw, which is a raw material for biodegradable plastic production, it is necessary to decompose the soybean straw into soluble sugars. Enzymatic hydrolysis is one of the methods in common use, while pretreatment is the effective way to increase the hydrolysis rate. The optimal conditions of pretreatment using ammonia and enzymatic hydrolysis of soybean straw were determined. Compared with the untreated straw, cellulose in straw pretreated by ammonia liquor (10%) soaking for 24 h at room temperature increased 70.27%, whereas hemicellulose and lignin in pretreated straw decreased to 41.45% and 30.16%, respectively. The results of infrared spectra (IR), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis also showed that the structure and the surface of the straw were changed through pretreatment that is in favor of the following enzymatic hydrolysis. maximum enzymatic hydrolysis rate of 51.22% was achieved at a substrate concentration of 5% (w/v) at 50 deg. C and pH 4.8 using cellulase (50 fpu/g of substrate) for 36 h

  2. Prototype ATLAS straw tracker

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  3. Influences of residual oxygen impurities, cubic indium oxide grains and indium oxy-nitride alloy grains in hexagonal InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy

    Yodo, T.; Nakamura, T.; Kouyama, T.; Harada, Y.

    2005-01-01

    We investigated the influences of residual oxygen (O) impurities, cubic indium oxide (β-In 2 O 3 ) grains and indium oxy-nitride (InON) alloy grains in 200 nm-thick hexagonal (α)-InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy. Although β-In 2 O 3 grains with wide band-gap energy were formed in In film by N 2 annealing, they were not easily formed in N 2 -annealed InN films. Even if they were not detected in N 2 -annealed InN films, the as-grown films still contained residual O impurities with concentrations of less than 0.5% ([O]≤0.5%). Although [O]∝1% could be estimated by investigating In 2 O 3 grains formed in N 2 -annealed InN films, [O]≤0.5% could not be measured by it. However, we found that they can be qualitatively measured by investigating In 2 O 3 grains formed by H 2 annealing with higher reactivity with InN and O 2 , using X-ray diffraction and PL spectroscopy. In this paper, we discuss the formation mechanism of InON alloy grains in InN films. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Effect of Additions on Ensiling and Microbial Community of Senesced Wheat Straw

    David N. Thompson; Joni M. Barnes; Tracy P. Houghton

    2005-04-01

    Crop residues collected during or after grain harvest are available once per year and must be stored for extended periods. The combination of air, high moisture, and high microbial loads leads to shrinkage during storage and risk of spontaneous ignition. Ensiling is a wet preservation method that could be used to store these residues stably. To economically adapt ensiling to biomass that is harvested after it has senesced, the need for nutrient, moisture, and microbial additions must be determined. We tested the ensiling of senesced wheat straw in sealed columns for 83 d. The straw was inoculated with Lactobacillus plantarum and amended with several levels of water and free sugars. The ability to stabilize the straw polysaccharides was strongly influenced by both moisture and free sugars. Without the addition of sugar, the pH increased from 5.2 to as much as 9.1, depending on moisture level, and losses of 22% of the cellulose and 21% of the hemicellulose were observed. By contrast, when sufficient sugars were added and interstitial water was maintained, a final pH of 4.0 was attainable, with correspondingly low (<5%) losses of cellulose and hemicellulose. The results show that ensiling should be considered a promising method for stable storage of wet biorefinery feedstocks.

  5. Cereal straw management: a trade-off between energy and agronomic fate

    Massimo Monteleone

    2015-06-01

    Full Text Available Climate change mitigation is the most important driving force for bioenergy development. Consequently, the environmental design of bioenergy value chains should address the actual savings of both primary energy demand and greenhouse gases (GHG emissions. According to the EU Renewable Energy Directive (2009/28/EC, no direct impacts and no GHG emissions should be attributed to crop residues (like cereal straws when they are removed from agricultural land for the purpose of bioenergy utilisation. The carbon neutral assumption applied to crop residues is, however, a rough simplification. Crop residues, indeed, should not be viewed simply as a waste to be disposed, because they play a critical role in sustaining soil organic matter and therefore have an inherent C-capturing value. Moreover, considering straws as an energy feedstock, its status of co-product is clearly recognised and its availability could be obtained according to different cropping systems, corresponding to different primary energy costs and GHG emissions. This paper highlights some hidden features in the assessment of agricultural energy and carbon balance, still very difficult to be detected and accounted for. Although they are frequently disregarded, these features (such as long term dynamic trend of soil organic carbon and annual nitrous oxide emissions from the soil should be carefully considered in assembling the energy and emission balance. By using a crop simulation model, the long-term soil organic matter and annual N2O soil emissions were estimated. Consequently, a comprehensive energy and GHG balance was determined in accordance with the life cycle assessment methodology. Contrasting methods of straw management and wheat cultivation were compared: straw retention vs removal from the soil; conventional vs conservation tillage; wheat cropping system as a single-crop or in rotation. The resulting carbon footprint of straws has different magnitudes with respect to the several

  6. Large-scale evaluation of dynamically important residues in proteins predicted by the perturbation analysis of a coarse-grained elastic model

    Tekpinar Mustafa

    2009-07-01

    Full Text Available Abstract Backgrounds It is increasingly recognized that protein functions often require intricate conformational dynamics, which involves a network of key amino acid residues that couple spatially separated functional sites. Tremendous efforts have been made to identify these key residues by experimental and computational means. Results We have performed a large-scale evaluation of the predictions of dynamically important residues by a variety of computational protocols including three based on the perturbation and correlation analysis of a coarse-grained elastic model. This study is performed for two lists of test cases with >500 pairs of protein structures. The dynamically important residues predicted by the perturbation and correlation analysis are found to be strongly or moderately conserved in >67% of test cases. They form a sparse network of residues which are clustered both in 3D space and along protein sequence. Their overall conservation is attributed to their dynamic role rather than ligand binding or high network connectivity. Conclusion By modeling how the protein structural fluctuations respond to residue-position-specific perturbations, our highly efficient perturbation and correlation analysis can be used to dissect the functional conformational changes in various proteins with a residue level of detail. The predictions of dynamically important residues serve as promising targets for mutational and functional studies.

  7. Dissipation and Residue Level of Thifluzamide in Rice Field Ecosystem

    Weitao Chen

    2015-01-01

    Full Text Available An efficient modified QuEChERS method combined with high performance liquid chromatography-tandem mass spectrometry detection (HPLC-MS/MS was established and evaluated for the residue analysis of thifluzamide in rice grain, husk, straw, seedling, paddy water, and soil. Thifluzamide residues were extracted with acetonitrile, cleaned up with primary secondary amine (PSA, and then determined by HPLC-MS/MS. The fortified recoveries were 76%–106% with RSDs of 3%–13%. The results of the supervised field trials at two experiment sites showed that thifluzamide dissipated rapidly in paddy fields, and the half-lives in paddy water, soil, and rice seedling were 0.3–0.6 d, 1.8–3.6 d, and 4.3–13.9 d, respectively. At harvest time, when the preharvest interval (PHI was set as 21 d, the final residues of thifluzamide in rice grains were below the maximum residue limit (MRL of 0.5 mg/kg set by Japan, whereas the final residues in rice husk and straw were still high (the highest value reached 1.36 mg/kg in rice husk and 0.83 mg/kg in rice straw. The results indicated that the highest residue in rice grain was 0.23 mg/kg when PHI was 21 d, and only 6.9–11.0% of acute risk quotient of thifluzamide was occupied by the dietary daily intake in Chinese population consuming rice.

  8. Characterization of protein and carbohydrate mid-IR spectral features in crop residues

    Xin, Hangshu; Zhang, Yonggen; Wang, Mingjun; Li, Zhongyu; Wang, Zhibo; Yu, Peiqiang

    2014-08-01

    To the best of our knowledge, a few studies have been conducted on inherent structure spectral traits related to biopolymers of crop residues. The objective of this study was to characterize protein and carbohydrate structure spectral features of three field crop residues (rice straw, wheat straw and millet straw) in comparison with two crop vines (peanut vine and pea vine) by using Fourier transform infrared spectroscopy (FTIR) technique with attenuated total reflectance (ATR). Also, multivariate analyses were performed on spectral data sets within the regions mainly related to protein and carbohydrate in this study. The results showed that spectral differences existed in mid-IR peak intensities that are mainly related to protein and carbohydrate among these crop residue samples. With regard to protein spectral profile, peanut vine showed the greatest mid-IR band intensities that are related to protein amide and protein secondary structures, followed by pea vine and the rest three field crop straws. The crop vines had 48-134% higher spectral band intensity than the grain straws in spectral features associated with protein. Similar trends were also found in the bands that are mainly related to structural carbohydrates (such as cellulosic compounds). However, the field crop residues had higher peak intensity in total carbohydrates region than the crop vines. Furthermore, spectral ratios varied among the residue samples, indicating that these five crop residues had different internal structural conformation. However, multivariate spectral analyses showed that structural similarities still exhibited among crop residues in the regions associated with protein biopolymers and carbohydrate. Further study is needed to find out whether there is any relationship between spectroscopic information and nutrition supply in various kinds of crop residue when fed to animals.

  9. Review of straw chambers

    Toki, W.H.

    1990-03-01

    This is a review of straw chambers used in the HRS, MAC, Mark III, CLEO, AMY, and TPC e + e - experiments. The straws are 6--8 mm in diameter, operate at 1--4 atmospheres and obtain resolutions of 45--100 microns. The designs and constructions are summarized and possible improvements discussed

  10. Heating with straw. Cost structure of the agricultural heat production; Heizen mit Stroh. Kostenstruktur der landwirtschaftlichen Waermeerzeugung

    Dietze, Matthias; Heilmann, Hubert [Landesforschungsanstalt fuer Landwirtschaft und Fischerei Mecklenburg-Vorpommern, Guelzow (Germany). Inst. fuer Pflanzenproduktion und Betriebswirtschaft

    2012-07-01

    In the present investigation the economy of straw heating is compared to an oil heating for pigs and poultry farms. High requirements in terms of the raw material and the high workloads during grain harvest make an appropriate mechanization necessary. The costs of the straw salvage vary between 50 and 100 Euro per ton. They depend on the grade of machine utilization, the transport distance, necessary investments in stockroom and the price for plant nutrients. Related to the energy content the costs amount on 1,25 to 2,5 Eurocent per kilowatt-hour. The energetically use of agricultural residuals has a great economical potential. But most important is to achieve a positive humus balance. (orig.)

  11. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lin, Chi-Ming; Chen, Erh-Chiang; Kuo, Che-Wei; Wu, Weite, E-mail: wwu@dragon.nchu.edu.tw

    2014-05-01

    The textures and crystallographic orientations beneath the treatment area in AA 6061 aluminum alloy after vibratory stress relief (VSR) process were investigated by combining the electron backscatter diffraction analysis of the misoriented low- or high-angle boundaries, the (inverse) pole figures, the line scans and the various grain orientations. The relaxation effect caused by compressive residual stress in the intermediate region is superior to that of tensile residual stress on both sides of the cantilever by means of X-ray diffraction techniques. The residual stress relaxation that occurs due to vibrational stress excitation accompanies the “orientation of banding” disintegration, the decreases in the dislocation density, the strain energy, and the fraction of low-angle boundaries within each type of grain orientation, such as Copper {112} 〈111〉, S {123} 〈634〉, Goss {110} 〈001〉, and Brass {110} 〈112〉, excepting the Cube (or near-Cube) {100} 〈001〉 grain orientation. The maintained invariance in the Cube texture can be attributed to the maximum number of active primary slip systems, resulting in an interaction that results from hindered slip on intersecting families of the planes.

  12. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lin, Chi-Ming; Chen, Erh-Chiang; Kuo, Che-Wei; Wu, Weite

    2014-01-01

    The textures and crystallographic orientations beneath the treatment area in AA 6061 aluminum alloy after vibratory stress relief (VSR) process were investigated by combining the electron backscatter diffraction analysis of the misoriented low- or high-angle boundaries, the (inverse) pole figures, the line scans and the various grain orientations. The relaxation effect caused by compressive residual stress in the intermediate region is superior to that of tensile residual stress on both sides of the cantilever by means of X-ray diffraction techniques. The residual stress relaxation that occurs due to vibrational stress excitation accompanies the “orientation of banding” disintegration, the decreases in the dislocation density, the strain energy, and the fraction of low-angle boundaries within each type of grain orientation, such as Copper {112} 〈111〉, S {123} 〈634〉, Goss {110} 〈001〉, and Brass {110} 〈112〉, excepting the Cube (or near-Cube) {100} 〈001〉 grain orientation. The maintained invariance in the Cube texture can be attributed to the maximum number of active primary slip systems, resulting in an interaction that results from hindered slip on intersecting families of the planes

  13. Obtaining of Peracetic Cellulose from Oat Straw for Paper Manufacturing

    Tetyana V. Zelenchuk

    2017-10-01

    Full Text Available Background. Development of technology for obtaining peracetic pulp from oat straw and its use in the production of one of the paper mass types. Objective. Determination of peracetic cooking technological parameters’ optimal values for oat straw peracetic cellulose quality indicators. Methods. The oat straw cooking was carried out with peracetic acid at 95 ± 1 °C from 90 to 180 min for hydromodulus 8:1 and 7:1, using a sodium tungstate catalyst. To determine the oat straw peracetic cellulose mechanical indexes, laboratory samples of paper weighing 70 g/m2 were made. Results. Technological parameters’ optimum values (temperature, cooking duration, hydromodulus, hydrogen peroxide and acetic acid concentration for the oat straw delignification process were established. It is shown that the sodium tungstate catalyst addition to the cooking solution at a rate of up to 1 % of the plant raw material weight helps to reduce the lignin content in cellulose to 15 %. A diagram of the cellulose yield dependence on its residual lignin content for various methods of non-wood plant material species delignification is constructed. The high efficiency of the peracetic method for obtaining cellulose from non-wood plant raw materials, in particular from oat straw, has been confirmed. It is determined that the obtained peracetic cellulose from oat straw has high mechanical indexes. Conclusions. Oat straw peracetic cellulose can be used for the production of paper and cardboard mass types, in particular wrapping paper.

  14. The Last Straw

    McFarlane, K.W.

    2002-01-01

    On 4 December 2002 at Hampton University, we completed processing the 'straws' for the Barrel TRT. The straws are plastic tubes 4 mm in diameter and 1.44 m long. More than 52 thousand straws will be used to build the drift tube detectors in the Barrel TRT. The picture shows some members of the Hampton production team ceremonially cutting the last straw to its final precise length. The production team, responsible for processing 64 thousand straws, included Jacquelyn Hodges, Carolyn Griffin, Princess Wilkins, Aida Kelly, Alan Fry, and (not pictured) Chuck Long, Nedra Peeples, and Hilda Williams. The straws have a cosmopolitan history. First, plastic film from a U.S. company was shipped to Russia to be coated with conductive materials and adhesive. The coated film was slit into long ribbons and sent to the UK to be wound into tubes. The tubes were then sent to two ATLAS collaborators in Russia, PNPI (Gatchina) and JINR (Dubna), where they were reinforced with carbon fibres to make them stiff and accuratel...

  15. Evaluating residues from batai trees (Paraserianthes falcataria) as alternative sources of nitrogen for grain corn (zeas mays l.) in the humid tropics

    Zaharah, A.R.; Chintu, R.; Ghizan, S.

    2002-01-01

    The use of chemical fertilizers for mitigating N deficiency is unsustainable in many tropical areas because of economic constraints and possible deleterious effects on environmental quality. Although organic inputs such as green manures and litter from legumes have shown some potential for improving soil N status, the synchrony of N release from these residues with crop demand needs to be seriously addressed. The potential of above- and below-ground residues of Batai (Paraserianthes falcataria) to improve soil N availability and uptake by corn in an Ultisol (Bungor series) was evaluated under field and controlled conditions. The effect of residue quality on the kinetics of N release and accumulation in the soil was studied in field and laboratory incubation studies, whilst N uptake by grain corn was quantified using direct and indirect 1 5 N isotope labeling techniques. Treatments consist of fresh leaves, roots and 1:1 mixture of roots and leaves of Batai. Residue quality in terms of lignin + polyphenol-to-N ratio, and N mineralization was in the order roots 3 -N leaching occurred between 30 and 60 days after treatment (DAT). Significant amounts of Ca, Mg and K were also leached beyond 20 cm after 60 days. Both 15 N-labeling methods showed that N recovery in corn was much higher in the root than the leaf treatments. However, integrating Batai residues with an inorganic N source could be a more effective management strategy for improving N use efficiency and mitigating soil acidity. (Author)

  16. 2nd international expert meeting straw power; 2. Internationale Fachtagung Strohenergie

    NONE

    2012-06-15

    Within the 2nd Guelzow expert discussions at 29th to 30th March, 2012 in Berlin (Federal Republic of Germany), the following lectures were held: (1) Promotion of the utilisation of straw in Germany (A. Schuette); (2) The significance of straw in the heat and power generation in EU-27 member states in 2020 and in 2030 under consideration of the costs and sustainability criteria (C. Panoutsou); (3) State of he art of the energetic utilization of hay goods in Europe (D. Thraen); (4) Incineration technological characterisation of straw based on analysis data as well as measured data of large-scale installations (I. Obernberger); (5) Energetic utilization of hay goods in Germany (T. Hering); (6) Actual state of the art towards establishing the first German straw thermal power station (R. Knieper); (7) Straw thermal power plants at agricultural sow farms and poultry farms (H. Heilmann); (8) Country report power from straw in Denmark (A. Evald); (9) Country report power from straw in Poland (J. Antonowicz); (10) Country report power from straw in China (J. Zhang); (11) Energetic utilisation of straw in Czechia (D. Andert); (12) Mobile pelletization of straw (S. Auth); (13) Experiences with the straw thermal power plant from Vattenfall (N. Kirkegaard); (14) Available straw potentials in Germany (potential, straw provision costs) (C. Weiser); (15) Standardization of hay good and test fuels - Classification and development of product standards (M. Englisch); (16) Measures of reduction of emissions at hay good incinerators (V. Lenz); (17) Fermentation of straw - State of the art and perspectives (G. Reinhold); (18) Cellulosis - Ethanol from agricultural residues - Sustainable biofuels (A. Hartmair); (19) Syngas by fermentation of straw (N. Dahmen); (20) Construction using straw (D. Scharmer).

  17. Calcium addition in straw gasification

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...... in the char conversion process. Comprehensive global equilibrium calculations predicted important characteristics of the inorganic ash residue. Equilibrium calculations predict the formation of liquid salt if sufficient amounts of Ca are added and according to experiments as well as calculations calcium binds...

  18. CARACTHERIZATION OF BIOMASS ENERGY AND CARBONIZATION OF COFFEE GRAINS (Coffea arabica, L AND (Cedrelinga catenaeformis, DUKE WOOD RESIDUES

    Ailton Teixeira do Vale

    2007-12-01

    Full Text Available Brazil produces annually two million tons of coffee s husks from farms or industrial processing units. This wastematerial can be used for energy production; currently it is mainly used in agricultural practices as field straw cover up. This paperdeals with coffee s (Coffea arabica, L husks biomass energy characteristics, including wood carbonization. As a reference, the samestudy was performed with a wood species regularly used for building construction named Cedrorana (Cedrelinga catenaeformis,Duke. Coffee s husks was obtained from a farm 150 km far from Brasilia city and cedrorana sawdust from a local saw mill. Thispaper presents results from energy and biomass variables like moisture content, bulk density, lower and superior heating power, ashcontent, fixed carbon, volatile matter and volumetric energy. It has also studied carbonization, charcoal, pyroligneous licqor and noncondensablegases. A comparison between Coffee s husk with 0% moisture content and Cedrorana sawdust portrays the followingresults: bulk density 144.41 kg/m3, fixed carbon 10.31%, superior heating power 4.57 kWh (or 16.46 MJ or 3.933 Mcal/kg, charcoalcontent 40,64% and heating value per cubic meter 2,179 MJ/m3

  19. Dissipation and residue of bifenthrin in wheat under field conditions.

    You, Xiangwei; Jiang, Naiwen; Liu, Fengmao; Liu, Congyun; Wang, Suli

    2013-02-01

    Field trials were carried out to investigate the dissipation and residue levels of bifenthrin in wheat. After extraction with acetonitrile, the samples were cleaned up by dispersive solid-phase extraction and detected by gas chromatography-mass spectrometry. The half-lives of bifenthrin in wheat seedlings ranged from 2.4 to 10.5 days. At harvest time, the terminal residues of bifenthrin were below the maximum residue limit (0.5 mg/kg) set by Codex Alimentarius Committee or European Union in wheat grain, which suggested that the use of this pesticide was safe for humans. However, the relatively high residue levels of bifenthrin in wheat straw should be paid attention to.

  20. Soil bacterial community shifts associated with sugarcane straw removal

    Pimentel, Laisa; Gumiere, Thiago; Andreote, Fernando; Cerri, Carlos

    2017-04-01

    In Brazil, the adoption of the mechanical unburned sugarcane harvest potentially increase the quantity of residue left in the field after harvesting. Economically, this material has a high potential for second generation ethanol (2G) production. However, crop residues have an essential role in diverse properties and processes in the soil. The greater part of the uncertainties about straw removal for 2G ethanol production is based on its effects in soil microbial community. In this sense, it is important to identify the main impacts of sugarcane straw removal on soil microbial community. Therefore, we conducted a field study, during one year, in Valparaíso (São Paulo state - Brazil) to evaluate the effects of straw decomposition on soil bacterial community. Specifically, we wanted: i) to compare the rates of straw removal and ii) to evaluate the effects of straw decomposition on soil bacterial groups over one year. The experiment was in a randomized block design with treatments arranged in strip plot. The treatments are different rates of sugarcane straw removal, namely: no removal, 50, 75 and 100% of straw removal. Soil sampling was carried out at 0, 4, 8 and 12 months after the sugarcane harvest (August 2015). Total DNA was extracted from soil using the PowersoilTM DNA Isolation kit. And the abundance of bacterial in each soil sample was estimated via quantification of 16S rRNA gene. The composition of the bacterial communities was estimated via terminal restriction fragment length polymorphism (T-RFLP) analysis, and the T-RF sizes were performed on a 3500 Genetic Analyzer. Finally, the results were examined with GeneMapper 4.1 software. There was bacterial community shifts through the time and among the rates of sugarcane straw removal. Bacterial community was firstly determined by the time scale, which explained 29.16% of total variation. Rates of straw removal explained 11.55% of shifts on bacterial community. Distribution through the time is an important

  1. Microbial Activity and Silica Degradation in Rice Straw

    Kim, Esther Jin-kyung

    Abundantly available agricultural residues like rice straw have the potential to be feedstocks for bioethanol production. Developing optimized conditions for rice straw deconstruction is a key step toward utilizing the biomass to its full potential. One challenge associated with conversion of rice straw to bioenergy is its high silica content as high silica erodes machinery. Another obstacle is the availability of enzymes that hydrolyze polymers in rice straw under industrially relevant conditions. Microbial communities that colonize compost may be a source of enzymes for bioconversion of lignocellulose to products because composting systems operate under thermophilic and high solids conditions that have been shown to be commercially relevant. Compost microbial communities enriched on rice straw could provide insight into a more targeted source of enzymes for the breakdown of rice straw polysaccharides and silica. Because rice straw is low in nitrogen it is important to understand the impact of nitrogen concentrations on the production of enzyme activity by the microbial community. This study aims to address this issue by developing a method to measure microbial silica-degrading activity and measure the effect of nitrogen amendment to rice straw on microbial activity and extracted enzyme activity during a high-solids, thermophilic incubation. An assay was developed to measure silica-degrading enzyme or silicase activity. This process included identifying methods of enzyme extraction from rice straw, identifying a model substrate for the assay, and optimizing measurement techniques. Rice straw incubations were conducted with five different levels of nitrogen added to the biomass. Microbial activity was measured by respiration and enzyme activity. A microbial community analysis was performed to understand the shift in community structure with different treatments. With increased levels of nitrogen, respiration and cellulose and hemicellulose degrading activity

  2. Greenhouse gas emission analysis of an Egyptian rice straw biomass-to-energy chain

    Poppens, R.P.; Bakker, R.

    2012-01-01

    A common practice in Egypt has been the burning of rice straw, as a measure to prepare agricultural land for follow-up crops. This practice has caused significant greenhouse gas emissions, in addition to aerial pollution. By using straw residue for the production of pellets and shipping these

  3. Power from triticale straw

    Dassanayake, M.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the feasibility of using triticale straw for production of electricity in Canada. Triticale is a manmade hybrid of wheat and rye and it has a high potential of growth in Canada. The cost ($/MWh) of producing electricity from triticale straw was estimated using a data intensive techno-economic model. The study also determined the optimum size of a biomass power plant (MW) which is a trade-off between capital cost of the plant and transportation cost of biomass. Cost curves were also developed in order to evaluate the impact of scale on power production costs. The location of the power plant and the future expansion of triticale were among the factors considered in the techno-economic mode. The scope of the work included all the processes beginning with the collection of straw to the conversion to electricity through direct combustion at the power plant. According to the preliminary results, the cost of producing power from triticale straw is higher than coal-based electricity production in western Canada.

  4. Building a Straw Bridge

    Teaching Science, 2015

    2015-01-01

    This project is for a team of students (groups of two or three are ideal) to design and construct a model of a single-span bridge, using plastic drinking straws as the building material. All steps of the design, construction, testing and critiquing stages should be recorded by students in a journal. Students may like to include labelled diagrams,…

  5. Using a decision support system to optimize production of agricultural crop residue Biofeedstock

    Hoskinson, Reed L.; Rope, Ronald C.; Fink, Raymond K.

    2007-01-01

    For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability of the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw. In this paper we report the results of 2 yr of field research testing and enhancing the DSS4Ag's ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock. For both years, the DSS4Ag reduced the cost and amount of fertilizers used and increased grower profit, while reducing the biomass produced. The DSS4Ag results show that when a biorefinery infrastructure is in place and growers have a strong market for their straw it is not economically advantageous to increase fertilization in order to try to produce more straw. This suggests that other solutions, such as single-pass selective harvest, must be implemented to meet national goals for the amount of biomass that will be available for collection and use for bioenergy. (author)

  6. A hierarchical coarse-grained (all-atom to all residue) approach to peptides (P1, P2) binding with a graphene sheet

    Pandey, Ras; Kuang, Zhifeng; Farmer, Barry; Kim, Sang; Naik, Rajesh

    2012-02-01

    Recently, Kim et al. [1] have found that peptides P1: HSSYWYAFNNKT and P2: EPLQLKM bind selectively to graphene surfaces and edges respectively which are critical in modulating both the mechanical as well as electronic transport properties of graphene. Such distinctions in binding sites (edge versus surface) observed in electron micrographs were verified by computer simulation by an all-atomic model that captures the pi-pi bonding. We propose a hierarchical approach that involves input from the all-atom Molecular Dynamics (MD) study (with atomistic detail) into a coarse-grained Monte Carlo simulation to extend this study further to a larger scale. The binding energy of a free amino acid with the graphene sheet from all-atom simulation is used in the interaction parameter for the coarse-grained approach. Peptide chain executes its stochastic motion with the Metropolis algorithm. We investigate a number of local and global physical quantities and find that peptide P1 is likely to bind more strongly to graphene sheet than P2 and that it is anchored by three residues ^4Y^5W^6Y. [1] S.N. Kim et al J. Am. Chem. Soc. 133, 14480 (2011).

  7. In situ rumen degradability characteristics of rice straw, soybean ...

    In situ rumen degradability characteristics of rice straw, soybean curd residue and peppermint (Mentha piperita) in Hanwoo steer (Bos Taurus coreanae). Byong Tae Jeon, KyoungHoon Kim, Sung Jin Kim, Na Yeon Kim, Jae Hyun Park, Dong Hyun Kim, Mi Rae Oh, Sang Ho Moon ...

  8. Use of rice straw ash as substitute of feldspar in triaxial porcelain

    Alvaro Guzman, A.; Silverio Delvasto, A.; Enrique Sanchez, V.; Vicente Amigo, B.

    2013-01-01

    The substitution of raw materials for processing high energy consumption materials by agricultural and agro-industrial wastes causes a positive impacts on the environment preservation. One of these residues is rice straw, which according to FAO estimation, its annual production is about 600 million tons. In this research was studied the use of rice straw ash as substitute of the use of feldspar in the white ware production. Clay-feldspar-quartz porcelains are referred to as triaxial white ware. Specimens of semidry triaxial mixtures, where feldspar was substituted for different percentages of CTA, were prepared by uniaxial pressing, followed by drying and sintering. Physical and mechanical properties of sintered bodies were evaluated. The porosity and the compressive strength of the fired pieces do increase with additions of up to 75% of CTA in substitution of feldspar. Their mineralogical phases were determined by DRX and SEM; grains of quartz, and needles of primary and secondary mullite were identified in a vitreous phase. It was concluded that feldspar can be substituted positively by CTA in white ware pastes. (Author) 22 refs.

  9. 40 CFR 180.142 - 2,4-D; tolerances for residues.

    2010-07-01

    ... following food commodities: Commodity Parts per million Rice, wild, grain 0.05 (d) Indirect or inadvertent... Rice, grain 0.5 Rice, hulls 2.0 Rice, straw 10 Rye, bran 4.0 Rye, forage 25 Rye, grain 2.0 Rye, straw...

  10. Crop residue recycling for economic and environmental sustainability: The case of India

    Devi Saroj

    2017-09-01

    Full Text Available India is one of the key producers of food grain, oilseed, sugarcane and other agricultural products. Agricultural crops generate considerable amounts of leftover residues, with increases in food production crop residues also increasing. These leftover residues exhibit not only resource loss but also a missed opportunity to improve a farmer’s income. The use of crop residues in various fields are being explored by researchers across the world in areas such as textile composite non-woven making processes, power generation, biogas production, animal feed, compost and manures, etc. The increasing trend in addition of bio-energy cogeneration plants, increasing demand for animal feedstock and increasing trend for organic agriculture indicates a competitive opportunity forcrop residue in Agriculture. It is to be noted that the use of this left over residue isoften not mutually exclusive which makes measurement of its economic value more difficult.For example, straw can be used as animal bedding and thereafter as a crop fertilizer. In view of this, the main aim of this paper envisaged to know about how much crop residue is left unutilized and how best they can be utilized for alternative purposes for environmental stewardship and sustainability. In this context, an attempt has been made to estimate the total crop residue across the states and its economic value though data available from various government sources and a SWOT analysis performed for possible alternative uses of residue in India. This paper also discusses the successful case studies of India and global level of use of crop residues in economic activities. Over all 516 Mtonnes of crop residue was produced in 2014-15 in India among which cereals were the largest producer of crop residue followed by sugarcane. The energy potential from paddy rice straw crop residue was estimated as 486,955 megawatt for 2014-15 and similarly for coarse cereals it was 226,200megawatt.

  11. Pen-mate directed behaviour in ad libitum fed pigs given different quantities and frequencies of straw

    Williams, Charlotte Amdi; Lahrmann, H. P.; Oxholm, L. C.

    2015-01-01

    Straw stimulates explorative behaviour and is therefore attractive to pigs. Further, it can be effective in reducing negative pen-mate directed behaviours. Under most commercial conditions, straw can only be used in limited amounts as it can be difficult to handle in most vacuum slurry systems...... as a control treatment, against which the other treatments (quantities T25 and T50) and frequencies of straw allocations (T2×50 and T4×25) were tested. Three focal pigs per pen were randomly chosen and observed for 15 min per hour where tail-in-mouth, ear-in-mouth, aggression and other pen-mate directed...... behaviour were recorded. In addition, residual straw in the pens was assessed using four categories ranging from straw in a thin layer; little straw; few straws; and soiled straw. Pigs were active for about 30% of the registered time, but overall no differences in total pen-mate directed behaviour (tail...

  12. The kinetics of glucose production from rice straw by Aspergillus niger

    In this investigation, glucose was produced from rice straw using cells of Aspergillus niger, isolated from maize grain. Glucose yield was found to increase from 43 to 87% as the rice straw particle size decreased from 425 to 75 ìm, while the optimal temperature and pH were found within the range of 45 - 50°C and 4.5 - 5 ...

  13. Gamma and electron radiation effects on straw

    Leonhardt, J.W.; Baer, M.; Huebner, G.

    1983-01-01

    Gamma and electron radiation effects on wheat straw, oat straw, barley straw and rye straw are reported. In vitro and in vivo studies show that the digestibility of these agricultural rough materials can be increased up to 80% and more at high doses. The increase of the digestibility is connected with a depolymerisation of cellulose and hemicellulose. (author)

  14. Effect of straw application on nitrogen uptake and growth of rice

    Haryanto; Idawati.

    1990-01-01

    A pot experiment has been conducted to know the effect of straw application on the efficiency of nitrogen uptake and growth rice plant. The rice straw was applied at different time i.e. 0, 1, 2, 3 and 4 weeks before tranplanting. Soil without rice straw was used as control. Thirty gram of rice straw having 3.61 percent of N-15 atom excess was incorporated into 6 kg of latosol soil originated from Pasar jumat, in which Atomoita I, a lowland rice variety, was planted. Urea was given once at the tranplanting time. The result showed that the longer the time of the rice straw application prior to the transplanting time, the higher the N-straw uptake efficiency in the rice plant at any different stages. The highest efficiency was 6.14 percent, reached with straw applicaions at 4 weeks before tranplanting. Compared to the control, straw applications 2 weeks or more before tranplanting resulted in higher grain production, while application at or before 2 weeks of tranplanting produced lower production. (authors). 9 refs.; 5 tabs

  15. Cinética de secagem de farinha de grãos residuais de urucum Drying kinetics of residual grain flour of annato

    Dyego da C. Santos

    2013-02-01

    Full Text Available O processo de extração do corante bixina produz enorme quantidade de grãos residuais de urucum que vem sendo descartada em grande parte pelas indústrias. Objetivou-se, neste trabalho, desidratar farinhas de grãos residuais de urucum, com e sem a camada de óleo proveniente do processo de extração dos pigmentos em estufa com circulação forçada de ar nas temperaturas de 40, 50, 60 e 70 ºC e ajustar os modelos matemáticos de Aproximação da Difusão, Dois Termos, Midilli, Page e Thompson aos dados experimentais. As farinhas de grãos residuais de urucum com teor de água inicial de aproximadamente 20% b.u. foram desidratadas até teor de água final de aproximadamente 5% b.u. Como critério de avaliação do ajuste dos modelos matemáticos utilizaram-se o coeficiente de determinação e o desvio quadrático médio. Verificou-se que as amostras de farinha com óleo demandaram maior intervalo de tempo para atingir o teor de água de 5% b.u., em comparação com as amostras de farinha sem óleo. Todos os modelos estudados representaram satisfatoriamente a cinética de secagem das farinhas com e sem óleo, com coeficientes de determinação superiores a 0,95 e valores de desvios quadráticos médios inferiores a 1,0.The process of extracting the bixin colorant produces a large amount of residual annatto seeds that, in most cases, has been discarded by the industries. The objective of this study was to dehydrate residual grain flour of annato, with and without the oil layer originated of the extraction process of the pigments in an oven with forced air circulation at 40, 50, 60 and 70 ºC temperature and to adjust the mathematical models of the Diffusion Approximation, Two Terms, Midilli, Page and Thompson to the experimental data. Residual grain flour of annato with water content approximately 20% w.b. was dried to the final water content of about 5% w.b. As a criterion for evaluating the adjustment of mathematical models the coefficient

  16. Straw detector: 1 - Vacuum: 0

    Katarina Anthony

    2012-01-01

    The NA62 straw tracker is using pioneering CERN technology to measure charged particles from very rare kaon decays. For the first time, a large straw tracker with a 4.4 m2 coverage will be placed directly into an experiment’s vacuum tank, allowing physicists to measure the direction and momentum of charged particles with extreme precision. NA62 measurements using this technique will help physicists take a clear look at the kaon decay rate, which might be influenced by particles and processes that are not included in the Standard Model.   Straw ends are glued to an aluminium frame, a crucial step in the assembly of a module. The ends are then visually inspected before a leak test is performed.  “Although straw detectors have been around since the 1980s, what makes the NA62 straw trackers different is that they can work under vacuum,” explains Hans Danielsson from the PH-DT group leading the NA62 straw project. Straw detectors are basically small drift cha...

  17. The Effect of Crop Residue and Different NPK Fertilizer Rates on yield Components and Yield of Wheat

    fatemeh khamadi

    2017-08-01

    Full Text Available Introduction Integrated nutrient management involving crop residue/green manures and chemical fertilizer is potential alternative to provide a balanced supply of nutrients, enhance soil quality and thereby sustain higher productivity. The present experiment was undertaken to evaluate the effect of different crop residue management practices and NPK levels on yield components and yield of wheat. Materials and methods Field experiments were conducted during 2012-2014 at department of agronomy, Chamran University. Experiment was laid out in a randomized block designs in split plot arrangement. With three replications. Crop residues were assigned to main plot consistent CR1: wheat residue; CR2: rape residue; CR3: barley residue; CR4: barley residue + vetch; CR5: wheat straw + mungbean; CR6: vetch residue; CR7: mungbean residue; CR8: No residue incorporation as main plot and three NPK fertilizer rates: F1: (180N-120P-100K kg.ha-1; F2: (140N-90P-80K kg.ha-1; F3: (90N-60P-40K kg.ha-1 as sub plots. Twelve hills were collected at physiological maturity for measuring yield components from surrounding area of grain yield harvest area. Yield components, viz. number of spike per m2, seed per spike, 1000- grain weight, plant height were measured. Grain and straw yields were recorded from the central 5 m2 grain yield harvest area of each treatment and harvest index was calculated. Data were subjected to analysis by SAS and mean companions were performed using the Duncan multiple range test producer. Also, graphs were drawn in Excel software. Results and discussion The result of analysis variance showed significant difference between crop residues for evaluated traits. The result indicated that the highest biological and grain yield was obtained when wheat treated with CR5: wheat straw + mungbean (green manure and CR4: barley straw + vetch (green manure. Biological and grain yield increased 31 and 26% respectively by CR5 comparing with control. The highest

  18. Effects of Crop Straw Returning with Lime on Activity of Cu, Zn, Pb and Cd in Paddy Soil

    NI Zhong-ying

    2017-05-01

    Full Text Available Crop straw returning is an important measure for increasing soil carbon fixation and soil fertility in China, but it also may result in some risk of raising activity of heavy metals in the soil. In order to understand the effects of different sources of crop straw on heavy metals activity in soil with different pollution levels, and to take appropriate measures to prevent the activation of heavy metals in the soil, both pot and field experiments were carried out to study the effects of crop straw returning with lime on activity of Cu, Zn, Pb and Cd in paddy soil. The experiments were carried out in the soils with both light and heavy pollution of heavy metals. In the pot experiment, three straws, including rice straw with heavy pollution of heavy metals, rice straw with light pollution of heavy metals, and rape straw with light pollution of heavy metals, were tested. Two dosages of lime(0 kg·hm-2 and 750 kg·hm-2were applied. Field experiment had three treatments, ie., control without application of straw and lime, straw returning and straw returning + lime. Soil available heavy metals, accumulation of heavy metals in rice grain, and chemical forms of soil heavy metals were dynamical monitored. The results showed that crop straw returning increased significantly the concentrations of dissolved organic carbon and water soluble heavy metals in paddy soils at the early stage of experiment (in first 20 days. The increase in water soluble heavy metals in the soil with heavy pollution of heavy metals was most obvious as compared with the control treatment. After 60th day of the experiment, the effects of straw returning on the activity of heavy metals in the soil decreased gradually with the time, and became no obvious. The concentrations of water soluble heavy metals in the soil treated with rape straw was generally lower than that of rice straw, while those in the soil treated with heavy pollution of rice straw was higher than low pollution of rice

  19. Investigation of rye straw ash sintering characteristics and the effect of additives

    Wang, Liang; Skreiberg, Øyvind; Becidan, Michael; Li, Hailong

    2016-01-01

    Highlights: • Rye straw ash has a high sintering tendency at elevated temperatures. • Addition of additive increases melting temperature of the rye straw ash. • Kaolin addition leads to formation of silicates binding K in the ash. • Calcite and Ca-sludge promotes formation of silicates and phosphates in the ash. • Calcite addition restrains attaching and accumulation of rye straw ash melts. - Abstract: The understanding of ash sintering during combustion of agricultural residues is far from complete, because of the high heterogeneity of the content and composition of ash forming matters and the complex transformation of them. In order to make agricultural residues competitive fuels on the energy market, further research efforts are needed to investigate agricultural residues’ ash sintering behavior and propose relevant anti-sintering measures. The aim of this work was to investigate the ash characteristics of rye straw and effects of additives. Three additives were studied regarding their abilities to prevent and abate rye straw ash sintering. Standard ash fusion characterization and laboratory-scale sintering tests were performed on ashes from mixtures of rye straw and additives produced at 550 °C. Ash residues from sintering tests at higher temperatures were analyzed using a combination of X-ray diffraction (XRD) and scanning electron microscopy–energy dispersive X-ray spectrometry (SEM–EDX). High sintering and melting tendency of the rye straw ash at elevated temperatures was observed. Severe sintering of the rye straw ash was attributed to the formation and fusion of low temperature K–silicates and K–phosphates with high K/Ca ratios. Among the three additives, calcite served the best one to mitigate sintering of the rye straw ash. Ca from the calcite promoted formation of high temperature silicates and calcium rich K–phosphates. In addition, calcite may hinder aggregating of ash melts and further formation of large ash slag. Therefore

  20. Integrated economic and environmental analysis of agricultural straw reuse in edible fungi industry

    Wencong Lu

    2018-04-01

    Full Text Available Background China currently faces severe environmental pollution caused by burning agricultural straw; thus, resource utilization of these straws has become an urgent policy and practical objective for the Chinese government. Methods This study develops a bio-economic model, namely, “straw resource utilization for fungi in China (SRUFIC,” on the basis of a field survey of an edible fungi plant in Zhejiang, China, to investigate an integrated economic and environmental performance of straw reuse in fungi production. Five scenarios, which cover changes in the production scale, wage level, and price fluctuations of the main product and inputs, are simulated. Results Results reveal that (1 the pilot plant potentially provides enhanced economic benefits and disposes added agricultural residues by adjusting its production strategy; (2 the economic performance is most sensitive to fungi price fluctuations, whereas the environmental performance is more sensitive to production scale and price of fungi than other factors; (3 expanding the production scale can be the most efficient means of improving the performance of a plant economically and environmentally. Discussion Overall, agricultural straw reuse in the edible fungi industry can not only reduce the environmental risk derived from burning abandoned straws but also introduce economic benefits. Thus, the straw reuse in the fungi industry should be practiced in China, and specific economic incentive policies, such as price support or subsidies, must be implemented to promote the utilization of agricultural straws in the fungi industry.

  1. An Inclusive Investigation on Conceivable Performance of Rice Straw Incinerated Electricity Generation

    Bhattacharjee, Subhadeep; Mohanta, Subhajit

    2018-03-01

    Biomass energy is one of the potential renewable energy sources which occupy 77% of the available natural resources of the world. In India, agro residues constitute a major part of the total annual production of the biomass resource. Rice is the major crop in India that leaves substantial quantity of straw in the field. 34% of rice straw residue produced in the country is surplus and is either left in the field as uncollected or to a large extent open-field burnt. Thus, the unutilized rice straw is found promising for heat and power generation either through incineration (direct combustion) or thermo chemical conversion. This present work envisages the comprehensive performative evaluation of a rice straw supported biomass incineration power plant mainly through plant performance characterization, plant economics, and co-firing issues with emission analysis.

  2. Energetic utilization and recycling of straw; Energetische und stoffliche Verwertung von Stroh

    Schuech, Andrea; Engler, Nils; Weissbach, Gunter; Nelles, Michael [Rostock Univ. (Germany). Lehrstuhl Abfall- und Stoffstromwirtschaft

    2013-10-01

    Worldwide arising significant emissions caused by the burning of rice straw on the field. The combined energetic and material utilization of rice straw offers the production possibility of various usable bioenergy and the closing of nutrient cycles by the return of the conversion residues. Thereby the soil quality can be improved and an important contribution to climate protection and resource conservation be realized. In the German-Egyptian project CEMUWA, the options of material and energetic use of rice straw are investigated. It is used as substrate for plant cultivation and for the production of ethanol, butanol and biogas. In this paper first results are presented. (orig.)

  3. Use of rice straw ash as substitute of feldspar in triaxial porcelain

    Guzmán, Álvaro; Delvasto, Silvio; Sánchez, Enrique; Amigó Borrás, Vicente

    2013-01-01

    [EN] The substitution of raw materials for processing high energy consumption materials by agricultural and agro-industrial wastes causes a positive impacts on the environment preservation. One of these residues is rice straw, which according to FAO estimation, its annual production is about 600 million tons. In this research was studied the use of rice straw ash (RSA) as substitute of the use of feldspar in the whiteware production. Clay-feldspar-quartz porcelains are referred to...

  4. Fermentation Quality and Additives: A Case of Rice Straw Silage

    Yusuff Oladosu

    2016-01-01

    Full Text Available Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw.

  5. Fermentation Quality and Additives: A Case of Rice Straw Silage.

    Oladosu, Yusuff; Rafii, Mohd Y; Abdullah, Norhani; Magaji, Usman; Hussin, Ghazali; Ramli, Asfaliza; Miah, Gous

    2016-01-01

    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw.

  6. Registration of 'Linkert' spring wheat with good straw strength and field resistance to the Ug99 family of stem rust races

    Straw strength is one of the most important criteria for spring wheat cultivar selection in the north central U.S. ‘Linkert’ (PI 672164) hard red spring wheat was released by the University of Minnesota Agricultural Experiment Station in 2013 and has very good straw strength, high grain protein con...

  7. Allelopathic Effect of Wheat and Barley Residues on Yield and Yield Components of Cowpea (Vigna sinensis L. and Weeds Control

    M Shahbyki

    2018-02-01

    residue at a rate of 4 and 8 ton ha-1 significantly decreased weed density than non-weeding treatment. Seed number per pod, biological and grain yield of cowpea significantly increased in the soil incorporation with wheat residue at a rate of 8 ton ha-1 compared to control. Our results showed that weeding and soil incorporation with wheat residue at a rate of 8 ton ha-1 increased cowpea yield by 78.23 and 80.79% compared to no weeding treatment, respectively. Wheat is a potent source of bioactive phytotoxic compounds representing three main classes as phenolic (hydroxybenzoic, vanillic, pcoumaric, syringic and ferulic acids being most frequently reported and transferulic and trans-pcoumaric acids being the dominant acids, cyclic hydroxamic acids (a class of alkaloids and short chain fatty acids. It is reported that wheat extract compounds can interfere with basic processes of receiver plants as photosynthesis, cell division, respiration and protein synthesis and indirectly provoke other forms of stresses. Thus, these compounds can reduce weed germination and growth. Another important effect of these allelochemicals is the activation of cellular antioxidant system in response to uncontrolled production and accumulation of reactive oxygen species. The reason for increase in grain yield was the control of weeds and probably the allelopathic effects of crop water extracts promoted the wheat growth which ultimately increases grain yield. Conclusions The present study concluded that wheat phytotoxins in straw inhibited germination and seedling growth of weeds, and the inhibition was concentration-dependent. Also wheat straw added to soil increased yield and some traits of cowpea. In general, the results showed that wheat straw can reduce weed suppression and can improve characteristics of plant, moreover, decreased environment risks of chemical inputs and ensure sustainability of production in long time.

  8. 40 CFR 180.253 - Methomyl; tolerances for residues.

    2010-07-01

    ..., grain 1 Oat, hay 10 Oat, straw 10 Onion, green 3 Orange, sweet 2 Parsley, leaves 6 Pea 5 Pea, field...), kale, lettuce, mustard greens, parsley, spinach, Swiss chard, turnip, greens (tops), and watercress] 0...

  9. Effect of gamma irradiation on the nutritive value of some Syrian agricultural residues

    Al-Masri, M.R.; Zarkawi, Moutaz

    1992-03-01

    An experiment was carried out to study the effects of doses of gamma irradiation on the nutritive value of cottonwood, wheat straw, barley straw, lentils straw, maize straw, and maize cobs, as an attempt to improve the nutritive value of these residues in order to utilize theme in animal diets. Ground samples of six residues were irradiated by 137 Cs gamma source (Gammator) at doses of 0, 1, 10, 40, 50, and 100 kilo gray (KGy) under identical conditions of temperature and humidity, and analysed for dry matter, crude ash, crude protein, crude fat, crude fibre, Neutral Detergent Fibre (NDF), Acid Detergent Fibre (ADF), and Acid detergent Lignin (ADL). The results indicate that gamma irradiation has no effect on crude protein whereas decreased crude fat content. Gamma irradiation has a pronounced effect on decreasing crude fibre contents especially at the highest dose (100 KGy) reaching (%): 30, 21, 15, 17, 21 and 16 for cottonwood, wheat straw, barley straw, lentils straw, maize straw, and maize cobs respectively with increases in NFE values. NDF decreased by 19.7%, 13%, and 11.5% for wheat straw and maize straw respectively, by 9.3% for maize cobs and barley straw and by 6.6% for cottonwood. The reductions in ADF values were: 8% for cottonwood, 7.3% for maize straw and maize cobs, and 5.7% for wheat straw and barley straw. Gamma irradiation lowered ADL content by 29% for maize cobs, 17.2% for barley straw and by 20.8% and 7.4 for wheat straw and cottonwood respectively. Gamma irradiation (100 KGy) has no effect on ADF, ADL, and cellulose for lentils straw and on hemicellulose for cottonwood. (author). 24 refs., 20 tabs., 2 figs

  10. The FINUDA straw tube detector

    Zia, A; Bertani, M; Bianco, S; Fabbri, Franco Luigi; Gianotti, P; Giardoni, M; Lucherini, V; Mecozzi, A; Pace, E; Passamonti, L; Qaiser, N; Russo, V; Tomassini, S; Sarwar, S; Serdyouk, V

    2001-01-01

    An array of 2424 2.6- m-long, 15- mm-diameter mylar straw tubes, arranged in two axial and four stereo layers, has been assembled at National Laboratories of Frascati of INFN for the FINUDA experiment. The array covers a cylindrical tracking surface of 18 m sup 2 and provides coordinate measurement in the drift direction and along the wire with a resolution of the order of 100 and 300 mu m, respectively. The array has finished the commissioning phase and tests with cosmic rays are underway. The status straw tubes array and a very preliminary result from cosmic rays test are summarized in this work.

  11. The FINUDA straw tube detector

    Zia, A.; Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F.L.; Gianotti, P.; Giardoni, M.; Lucherini, V.; Mecozzi, A.; Pace, E.; Passamonti, L.; Qaiser, N.; Russo, V.; Tomassini, S.; Sarwar, S.; Serdyouk, V.

    2001-01-01

    An array of 2424 2.6- m-long, 15- mm-diameter mylar straw tubes, arranged in two axial and four stereo layers, has been assembled at National Laboratories of Frascati of INFN for the FINUDA experiment. The array covers a cylindrical tracking surface of 18 m 2 and provides coordinate measurement in the drift direction and along the wire with a resolution of the order of 100 and 300 μm, respectively. The array has finished the commissioning phase and tests with cosmic rays are underway. The status straw tubes array and a very preliminary result from cosmic rays test are summarized in this work

  12. The FINUDA straw tube detector

    Zia, A.; Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F. L.; Gianotti, P.; Giardoni, M.; Lucherini, V.; Mecozzi, A.; Pace, E.; Passamonti, L.; Qaiser, N.; Russo, V.; Tomassini, S.; Sarwar, S.; Serdyouk, V.

    2001-04-01

    An array of 2424 2.6- m-long, 15- mm-diameter mylar straw tubes, arranged in two axial and four stereo layers, has been assembled at National Laboratories of Frascati of INFN for the FINUDA experiment. The array covers a cylindrical tracking surface of 18 m 2 and provides coordinate measurement in the drift direction and along the wire with a resolution of the order of 100 and 300 μm, respectively. The array has finished the commissioning phase and tests with cosmic rays are underway. The status straw tubes array and a very preliminary result from cosmic rays test are summarized in this work.

  13. Genetic variation in degradability of wheat straw and potential for improvement through plant breeding

    Jensen, Jacob Wagner; Magid, Jakob; Hansen-Møller, Jens

    2011-01-01

    contemporary gene pool. The cultivars were grown at two different locations to assess the potential for breeding for improved degradability. The straws exhibited much variation in degradability ranging from 258 g kg1 to 407 g kg1 of dry matter. The heritability for degradability was estimated to 29% indicating...... a reasonable potential for response to selection. Inclusion of height as a regression-term, indicated that only a minor part of genetic differences are directly related to plant height and that improvements in degradability may be achieved without unacceptable changes in straw length. Finally, a lack...... of correlation between degradability and grain yield indicated that straw degradability may be improved through breeding without serious negative effect on grain yield....

  14. Anaerobic co-digestion of canola straw and buffalo dung: optimization of methane production in batch experiments

    Sahito, A.R.; Brohi, K.M.

    2014-01-01

    In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability). The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO/sub 3/ gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size. (author)

  15. Anaerobic Co-Digestion of Canola Straw and Buffalo Dung: Optimization of Methane Production in Batch Experiments

    Abdul Razaque Sahito

    2014-01-01

    Full Text Available In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops' residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability. The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO3 / gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size.

  16. Influence of pesticides contamination on the emission of PCDD/PCDF to the land from open burning of corn straws

    Zhang Tingting; Huang Jun; Deng Shubo; Yu Gang

    2011-01-01

    Open burning of crop residues has been identified as an important emission source of PCDD/PCDF to the environment. This paper presents the first known data on the emission of PCDD/PCDF to the land considering the influence of pesticides applied in crops planting. Emission factor for PCDD/PCDF to the land from open burning of corn straw with pesticides contamination ranged from 0.07 to 0.57 ng WHO 2005 -TEQ/kg straw burned with a mean value of 0.24 ng WHO 2005 -TEQ/kg straw burned and median value of 0.20 ng WHO 2005 -TEQ/kg straw burned, respectively. The concentration was 35 to 270 times higher than that without additional pesticide contaminated. Initial observation was that emission factor for PCDD/PCDF from open burning of crop residues was overestimated in the former UNEP Dioxin Toolkit. Pesticides contamination should be considered in some hotpots where special and over dosed pesticides has been sprayed especially in developing countries. - Highlights: → Pesticides applied on the corn straws would influence the emission of PCDD/PCDF in the open burning process of the straws. → Contaminated straw released 35 to 270 times higher PCDD/PCDF than that without. → Pesticides contamination should be included in hotpots about PCDD/PCDF emission. - Influence of pesticides contamination on the emission of PCDD/PCDF from open burning of crop residues is of great importance for the Dioxin Toolkit update.

  17. Effect of rice straw on the degradation of 14C-parathion in flooded alluvial soil

    Rajaram, K.P.; Sethunathan, N.

    1975-01-01

    Organic matter, either native or applied, influences the persistence of soil-applied pesticides. The effect of rice straw on the metabolism of parathion in an alluvial soil under flooded condition was investigated. Residues were extracted from the soil at periodic intervals after application of ethoxy 14 C-parathion to rice straw amended and unamended soil employing chloroform-diethyl ether. The radioactivity in the solvent and water fractions were estimated. The activity in the solvent phase decreased more rapidly in the rice straw amended than in unamended soil indicating enhanced degradation of parathion by rice straw amendment. The autoradiograph of thin layer chromatograms of solvent phase revealed the rapid formation of aminoparathion and an unidentified metabolite possessing P-S bond and ethoxy label in amended soil within 3 days. A polar unidentified metabolite was detected in the water phase of the unamended soil at 14 days. (author)

  18. Ammoniated maJze residue for the fattening of lambs

    blems involved with caustic soda treatment of straw, other alkalis have enjoyed attention recently. Ammonia is ... Ammoniation of this maize residue increased its in vitro organic matter digestibility from 55,8 to 67,0V0 and its .... AM- monium hydroxide treatment of wheat straw. J. Anim.Sci. 49,802. S.-Afr. Tydskr. Veek. 1983, l3(l)

  19. Life-cycle assessment of straw use in bio-ethanol production: A case study based on biophysical modelling

    Gabrielle, Benoit; Gagnaire, Nathalie

    2008-01-01

    Cereal straw, a by-product in the production of agricultural crops, is considered as a potentially large source of energy supply with an estimated value of 47 x 10 18 J worldwide. However, there is some debate regarding the actual amounts of straw which could be removed from arable soils without jeopardizing their quality, as well as the potential trade-offs in the overall straw-to-energy chain compared to the use of fossil energy sources. Here, we used a deterministic model of C and N dynamics in soil-crop systems to simulate the effect of straw removal under various sets of soil, climate and crop management conditions in northeastern France. Model results in terms of nitrate leaching, soil C variations, nitrous oxide and ammonia emissions were subsequently inputted into the life-cycle assessment (LCA) of a particular bio-energy chain in which straw was used to generate heat and power in a plant producing bio-ethanol from wheat grains. Straw removal had little influence on simulated environmental emissions in the field, and straw incorporation in soil resulted in a sequestration of only 5-10% of its C in the long term (30 years). The LCA concluded to significant benefits of straw use for energy in terms of global warming and use of non-renewable energy. Only the eutrophication and atmospheric acidification impact categories were slightly unfavourable to straw use in some cases, with a difference of 8% at most relative to straw incorporation. These results based on a novel methodology thereby confirm the environmental benefits of substituting fossil energy with straw. (author)

  20. Effects of straw mulching on soil evaporation during the soil thawing ...

    26

    Keywords: straw mulching, soil water evaporation, soil thawing period, freezing depth, soil liquid water content. 1. Introduction. The Songnen Plain, located in northeastern China, has 594×104 ha of cultivated land area and a grain yield of 395×108 kg. It is one of the most important food production bases in China (Yan et al.

  1. Life cycle assessment of rice straw-based power generation in Malaysia

    Shafie, S.M.; Masjuki, H.H.; Mahlia, T.M.I.

    2014-01-01

    This paper presents an application of LCA (Life Cycle Assessment) with a view to analyzing the environment aspects of rice straw-based power generation in Malaysia. It also compares rice straw-based power generation with that of coal and natural gas. GHG (Greenhouse gas) emission savings were calculated. It finds that rice straw power generation can save GHG (greenhouse gas) emissions of about 1.79 kg CO 2 -eq/kWh compared to coal-based and 1.05 kg CO 2 -eq/kWh with natural gas based power generation. While the development of rice straw-based power generation in Malaysia is still in its early stage, these paddy residues offer a large potential to generate electricity because of their availability. Rice straw power plants not only could solve the problem of removing rice straw from fields without open burning, but also could reduce GHG emissions that contribute to climate change, acidification, and eutrophication, among other environmental problems. - Highlights: • Overall rice straw preparations contribute 224.48 g CO 2 -eq/kg rice straw. • The most constraints due to GHG (greenhouse gas) emission is from transportation. • Distance collection centre to plant less than 110 km to obtains minimum emissions. • Rice straw can save GHG emissions 1.79 kg CO 2 -eq/kWh compared to coal power. • GHG saving 1.05 kg CO 2 -eq/kWh compared to natural gas based power generation

  2. Environmental performance of straw-based pulp making: A life cycle perspective.

    Sun, Mingxing; Wang, Yutao; Shi, Lei

    2018-03-01

    Agricultural straw-based pulp making plays a vital role in pulp and paper industry, especially in forest deficient countries such as China. However, the environmental performance of straw-based pulp has scarcely been studied. A life cycle assessment on wheat straw-based pulp making in China was conducted to fill of the gaps in comprehensive environmental assessments of agricultural straw-based pulp making. On average, the global warming potential (GWP), GWP excluding biogenic carbon, acidification potential and eutrophication potential of wheat straw based pulp making are 2299kg CO 2 -eq, 4550kg CO 2 -eq, 16.43kg SO 2 -eq and 2.56kg Phosphate-eq respectively. The dominant factors contributing to environmental impacts are coal consumption, electricity consumption, and chemical (NaOH, ClO 2 ) input. Chemical input decrease and energy recovery increase reduce the total environmental impacts dramatically. Compared with wood-based and recycled pulp making, wheat straw-based pulp making has higher environmental impacts, which are mainly due to higher energy and chemical requirements. However, the environmental impacts of wheat straw-based pulp making are lower than hemp and flax based pulp making from previous studies. It is also noteworthy that biogenic carbon emission is significant in bio industries. If carbon sequestration is taken into account in pulp making industry, wheat straw-based pulp making is a net emitter rather than a net absorber of carbon dioxide. Since wheat straw-based pulp making provides an alternative for agricultural residue management, its evaluation framework should be expanded to further reveal its environmental benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Straw Appliqué Technique

    User

    2010-10-17

    Oct 17, 2010 ... colours. This combination make up the costumed part; and the exposed part of the skin; ... Bits of different geometric shapes, sizes, and tones are combined to create the forms from the ... Acrylic, Poster//Water-colour and Pastel. ... (Enenajor 2004) where all aspects of the work is filled with straw medium.

  4. Mechanical support for straw tubes

    Joestlein, H.

    1990-01-01

    A design is proposed for mounting a large number of straw tubes to form an SSC central tracking chamber. The assembly is precise and of very low mass. The fabrication is modular and can be carried out with a minimum of tooling and instrumentation. Testing of modules is possible prior to the final assembly. 4 figs

  5. Dissipation and Residues of Dichlorprop-P and Bentazone in Wheat-Field Ecosystem

    Xiaoxiao Feng

    2016-05-01

    Full Text Available Dichlorprop-P and bentazone have been widely used in the prevention and control of weeds in wheat field ecosystems. There is a concern that pesticide residues and metabolites remain on or in the wheat. Thus, the study of the determination and monitoring of their residues in wheat has important significance. A rapid, simple and reliable QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe method was modified, developed and validated for the determination of dichlorprop-P, bentazone and its metabolites (6-hydroxy-bentazone and 8-hydroxy-bentazone in wheat (wheat plants, wheat straw and grains of wheat using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS. The average recoveries of this method ranged from 72.9% to 108.7%, and the limits of quantification (LOQs were 2.5–12 μg/kg. The dissipation and final residue of four compounds in three provinces (Shandong, Jiangsu and Heilongjiang in China were studied. The trial results showed that the half-lives of dichlorprop-P and bentazone were 1.9–2.5 days and 0.5–2.4 days in wheat plants, respectively. The terminal residues in grains of wheat and wheat straw at harvest were all much below the maximum residue limit (MRL of 0.2 mg/kg for dichlorprop-P and 0.1 mg/kg for bentazone established by the European Union (EU, Regulation No. 396/2005.

  6. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation.

    Wang, Yan-Su; Wu, Tian-Hao; Yang, Yao; Zhu, Cen-Ling; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-01-01

    This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3-42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography-mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment.

  7. Determining nutrients degradation kinetics of chickpea (Cicer arietinum straw using nylon bag technique in sheep

    A. Mirzaei-Aghsaghali

    2012-05-01

    Full Text Available Straw a by-product from grain legume crops is produced in large quantities in Iran. Straw is constant component of ruminant diets on small holder farms; however, there is little information about its nutritive value. Accordingly experiment was conducted to determine the chemical composition and ruminal organic matter (OM and crude protein (CP degradability of chickpea straw using nylon bags (in situ technique. Replicated samples were incubated at 0, 2, 4, 8, 12, 24, 48 and 72 hours in three rumen canulated Ghezel rams with 50±3 kg body weight. Dry matter (DM, CP, ether extract (EE, OM, crude fiber (CF and nitrogen free extract (NFE content of chickpea straws were 92.2, 6.1, 5.5, 92.0, 34.3 and 46.2%, respectively. The soluble fraction (a of the OM and CP of chickpea straw was 17.5 and 40.8% and potential degradability (a+b of OM and CP was 56.7 and 72.0%, respectively. Effective degradability at different passage rates (2, 5 and 8% per hours for OM was 51.0 44.9 and 40.7% and for CP were 68.4, 64.3 and 61.3%, respectively. In conclusion, based on chemical composition and degradation characteristics, chickpea straw could have moderate nutritive value for ruminants.

  8. 40 CFR 180.515 - Carfentrazone-ethyl; tolerances for residues.

    2010-07-01

    ..., group 16, except rice; straw 0.10 Grain, cereal, group 15 0.10 Grain, cereal, group 15 (except rice... 0.10 Rice, grain 1.3 Rice, hulls 3.5 Rice, straw 1.0 Rye, bran 0.80 Rye, flour 0.80 Safflower, seed 0.10 Salal 0.10 Sapodilla 0.10 Sapote, black 0.10 Sapote, mamey 0.10 Sheep, fat 0.10 Sheep, meat 0...

  9. Fermentation Kinetic of Maize Straw-Gliricidia Feed Mixture Supplemented by Fermentable Carbohydrate Measured by In Vitro Gas Production

    Yulistiani, D.; Nurhayati

    2018-02-01

    Utilization of crop by-products such as maize straw mixed with legume is expected to be able to overcome the limitation of forage availability during dry season and have similar nutritional value with grass. Addition of fermentable carbohydrate in this diet can be improved fermentability and reduced methane production. The objective of this study was to evaluate supplementation of ground corn grain or rice bran as fermentable carbohydrate in maize straw-gliricidiamixture. Treatment diets evaluated were: Maize straw + gliricidialeaf meal (Control/RO); Control + 10% ground maize grain (ROC); Control + 10% rice bran (RORB). Maize straw was chopped and ground then mixed with gliricidia leaf meal at ratio 60:40% DM. Maize straw-gliricidia mixture then supplemented either with ground corn grain or rice bran at 10% of DM basal diet (control). Sample was incubated for 48 hours, gas production was recorded at 4, 8,12, 16, 24, 36 and 48 hours. Study was conducted in randomized complete design. Results of the study showed that supplementation of fermentable carbohydrate from corn grain or rice bran was able to increased (Pfermentation and reduced methane production.

  10. Elaboration of a Platform for Increasing Straw Combustion in Sweden, based on Danish Experiences

    Hinge, Joergen (Danish Technological Inst. (Denmark))

    2009-05-15

    corrosion in boilers seem to have been overcome by using the resistant 'TP 347' material in superheaters. Fluidized bed technology has a number of potential advantages, among these: reduced NOx-formation; very flexible to different fuel mixtures. However, it is not considered a viable technology for straw combustion for two main reasons. The low ash melting point of straw may result in the melted ash particles making the sand particles in the fluid bed stick together, thereby preventing the sand particles from staying fluidized. Therefore, the amount of straw in a coal/straw fuel mixture can be maximum 50%. And whereas 100% of other types of biomass--for instance wood chips--can be used, a 50-50% mixture of wood chips and straw is not applicable. Therefore coal and straw have to be co-combusted in a fluidized bed boiler. Besides coal and straw ash, the mixed ash product from this combustion contains limestone residues and desulphurization products. This mixed ash product cannot be utilized as fertilizer or other known purposes, and therefore it has to be landfilled. A system with the combination of a separate straw boiler and a wood-chip fired superheater has been developed in order to prevent the 'usual' problems with corrosion of straw-fired boilers running at temperatures above 500 deg C by keeping the temperature at 470 deg C. However, after several years of experience with use of new materials for straw-fired boilers, it is no longer considered a problem to operate these at 540 deg C. Therefore, the construction with a combination of two separate boilers will probably not be repeated. And then raise the temperature of the steam to app. 540 deg C in the wood chip-fired superheater. Co-firing of coal and straw (max. 20% straw) in a 'conventional' suspension fired coal boiler will by far be the most feasible solution due to of low investments. If it is not relevant to establish co-firing of coal and straw, a separate boiler with vibrating

  11. Study on the Potential of Rice Straws as a Supplementary Fuel in Very Small Power Plants in Thailand

    Penwadee Cheewaphongphan; Agapol Junpen; Orachorn Kamnoet; Savitri Garivait

    2018-01-01

    Agricultural residue is a major raw material for renewable energy production, particularly heat production, in Thailand. Meanwhile, the process-based residue, such as bagasse, rice husk, wood residue, palm fiber, palm shell, and saw dust, is used as a fuel for energy production in the agro-industry. Hence, this study is intended to assess the net potential and capacity of alternative agricultural residues, specifically rice straws, to serve as the supplementary fuel for very small power plant...

  12. Degradation of 14C - DDT in soils under moist and flooded conditions with rice straw and green manure amendments

    Dubey, S.; Dubey, P.S.; Kale, S.P.; Murthy, N.B.K.

    2001-01-01

    Degradation of 14 C - DDT in moist and flooded soils was studied with rice straw and green manure amendments for 100 days. The mineralization of DDT was not significantly influenced by any of the treatments. Rice straw and green manure in flooded soil brought about decrease in extractable 14 C - residues with concomitant increase in soil bound residues. DDT has a very short residence in flooded soils though radiocarbon was more in extractable residues. DDD is the major degradation product in flooded soils. (author)

  13. Nutritive value of wheat straw treated with gaseous or liquid ammonia trough nylon bag and in vitro gas production techniques

    Samad Sadeghi; Reza Valizadeh; Abasali naserian; Abdolmansoor Tahmasebi

    2016-01-01

    Introduction Feed shortage is the most important characteristic of Iranian animal industry. Increased costs of livestock production have caused the Iranian producers to reduce feed costs mainly by inclusion low quality crop residues into ruminants diets. It is estimated that around 20 million tons wheat straw produced in Iran every year. Both the digestibility and crude protein content of wheat straw are typically low. Since 1900, a wide variety of chemical treatments have been tested for the...

  14. Analysis of straw row in the image to control the trajectory of the agricultural combine harvester

    Shkanaev, Aleksandr Yurievich; Polevoy, Dmitry Valerevich; Panchenko, Aleksei Vladimirovich; Krokhina, Darya Alekseevna; Nailevish, Sadekov Rinat

    2018-04-01

    The paper proposes a solution to the automatic operation of the combine harvester along the straw rows by means of the images from the camera, installed in the cab of the harvester. The U-Net is used to recognize straw rows in the image. The edges of the row are approximated in the segmented image by the curved lines and further converted into the harvester coordinate system for the automatic operating system. The "new" network architecture and approaches to the row approximation has improved the quality of the recognition task and the processing speed of the frames up to 96% and 7.5 fps, respectively. Keywords: Grain harvester,

  15. Efficient Hydrolysis of Rice Straw into Xylose and Glucose by a Two-step Process

    YAN Lu-lu

    2016-07-01

    Full Text Available The hydrolysis of rice straw into xylose and glucose in dilute sulfuric acid aqueous solution was studied with a two-step process in batch autoclave reactor. The results showed that compared with the traditional one-step acid hydrolysis, both xylose and glucose could be produced in high yields from rice straw by using the two-step acid hydrolysis process. The effects of reaction temperature, reaction time, the amount of rice straw and acid concentration on the hydrolysis of rice straw were systematically studied, and showed that except initial rice straw loading amount, the other parameters had remarkable influence on the products distribution and yields. In the first-step of the hydrolysis process, a high xylose yield of 162.6 g·kg-1 was obtained at 140℃ after 120 min reaction time. When the solid residues from the first step were subjected to a second-step hydrolysis, a glucose yield as high as 216.5 g·kg-1 could be achieved at 180℃ after 120 min. This work provides a promising strategy for the efficient and value-added utilization of agricultural wastes such as rice straw.

  16. Changes of Field Incurred Chlorpyrifos and Its Toxic Metabolite Residues in Rice during Food Processing from-RAC-to-Consumption

    Zhang, Zhiyong; Jiang, Wayne W.; Jian, Qiu; Song, Wencheng; Zheng, Zuntao; Wang, Donglan; Liu, Xianjin

    2015-01-01

    The objectives of this study were to determine the effects of food processing on field incurred residues levels of chlorpyrifos and its metabolite 3,5,6-Trichloro-2-pyridinol (TCP) in rice. The chlorpyrifos and TCP were found to be 1.27 and 0.093 mg kg-1 in straw and 0.41 and 0.073 mg kg-1 in grain, respectively. It is observed that the sunlight for 2 hours does not decrease the chlorpyrifos and TCP residues in grain significantly. Their residues in rice were reduced by up to 50% by hulling. The cooking reduced the chlorpyrifos and TCP in rice to undetectable level (below 0.01 mg kg-1). Processing factors (PFs) of chlorpyrifos and TCP residues in rice during food processing were similar. Various factors have impacts on the fates of chlorpyrifos and TCP residues and the important steps to reduce their residues in rice were hulling and cooking. The results can contribute to assure the consumer of a safe wholesome food supply. PMID:25608031

  17. Production of ethanol from wheat straw

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  18. Decomposition of Rice Straw and Corn Straw Under Aerobic and Anaerobic Conditions

    WANG Jing

    2017-01-01

    Full Text Available Decomposition dynamics of rice straw and corn straw at aerobic and anaerobic condition were investigated under the simulated condition in the lab. Results showed that two stages, i.e. the rapid decomposition stage from 0 to 3 months, and the slow one between 3 and 12 months, of decomposition dynamics of rice straw and corn straw were found under anaerobic and aerobic incubation condition, and more than 55%of rice straw and corn mass was lost at the initial 3 months incubation period. The half times(t1/2of rice straw and corn straw mass lost under aerobic condition were 59.2 d and 52.9 d, which were short than those(72.6 d and 79.9 dunder the anaerobic condition, respectively. Carbon release constants from rice straw and corn straw under aerobic condition were 0.61 and 0.60 per month, which were higher than those (0.55 and 0.57 per monthunder anaerobic condition. The nitrogen release from crop straw followed the same rule as the carbon release from straw. The constants of nitrogen released from rice straw and corn straw under aerobic condition were 0.25 and 2.36 per month, which were higher than those(0.16 and 2.32 per monthunder anaerobic condition. The losses of cellulose, hemicelluloses and lignin from rice straw and corn straw under aerobic condition were also higher than those under anaerobic condition. In summary, the aerobic environment increases de composition and release of organic and inorganic substances from crop straw.

  19. Study on the Potential of Rice Straws as a Supplementary Fuel in Very Small Power Plants in Thailand

    Penwadee Cheewaphongphan

    2018-01-01

    Full Text Available Agricultural residue is a major raw material for renewable energy production, particularly heat production, in Thailand. Meanwhile, the process-based residue, such as bagasse, rice husk, wood residue, palm fiber, palm shell, and saw dust, is used as a fuel for energy production in the agro-industry. Hence, this study is intended to assess the net potential and capacity of alternative agricultural residues, specifically rice straws, to serve as the supplementary fuel for very small power plants (VSPPs in Thailand. According to the results obtained during the crop season of 2015/2016, approximately 26 Mt of rice straws were generated upon the harvesting process. The net potential of rice straws, including those that were burned and those that were left in the fields, was only about 15% or 3.85 Mt, which could be used for heat and electricity production at 1331 kilotons of oil equivalent (ktoe or 457 MWe. As agro-residues vary by seasonality, the peak season of rice straws was in November, where approximately 1.64 Mt (43% were generated, followed by December, at 1.32 Mt (34%. On the basis of the results, rice straw has the potential to serve as a fuel supply for VSPPs at 14.2%, 21.6%, 26.3%, and 29.0% for the radii of compilation at 24, 36, 48 km and 60 km, respectively.

  20. Bio-composites made from pine straw

    Cheng Piao; Todd F. Shupe; Chung Y. Hse; Jamie Tang

    2004-01-01

    Pine straw is renewable natural resource that is under-utilized. The objective of this study was to evaluate the physical and mechanical performances of pine straw composites. Three panel density levels (0.8, 0.9, 1.0 g/cm2) and two resin content levels (1% pMDI + 4% UF, 2% pMDI + 4% UF) were selected as treatments. For the pine-straw-bamboo-...

  1. Tocopherol isomer pattern in serum and stool of human following consumption of black currant seed press residue administered in whole grain bread.

    Helbig, Dorit; Wagner, Andreas; Schubert, Rainer; Jahreis, Gerhard

    2009-12-01

    Serum gamma-tocopherol is thought to be associated with human health. The dietary influence of tocopherol and fibre-rich black currant seed press residue on serum and stool tocopherol concentration was investigated in a controlled human intervention study. Thirty-six women consumed bread enriched with black currant press residue (4 weeks). The resultant faecal and serum tocopherol concentrations were compared with those after a period consuming control bread without press residue and a normal baseline diet. Fibre intake and excretion, antioxidant capacity (TEAC), and vitamin C concentrations in serum and urine were also determined. Samples were obtained with a 5-day standardised diet at the end of each period. The press residue bread lead to significantly increased beta-, gamma-, delta- and total tocopherol intake, serum alpha-, beta-, gamma- and total tocopherol concentration (with and without lipid adjustment), fibre intake and urinary vitamin C concentration compared to control bread (Pconsumption could be due to a presumed interruption of the enzymatic tocopherol degradation mechanism by bread constituents.

  2. Use of rice straw ash as substitute of feldspar in triaxial porcelain; Cenizas del tamo de arroz como substituto del feldespato en la fabricacion de ceramica blanca

    Alvaro Guzman, A.; Silverio Delvasto, A.; Enrique Sanchez, V.; Vicente Amigo, B.

    2013-02-01

    The substitution of raw materials for processing high energy consumption materials by agricultural and agro-industrial wastes causes a positive impacts on the environment preservation. One of these residues is rice straw, which according to FAO estimation, its annual production is about 600 million tons. In this research was studied the use of rice straw ash as substitute of the use of feldspar in the white ware production. Clay-feldspar-quartz porcelains are referred to as triaxial white ware. Specimens of semidry triaxial mixtures, where feldspar was substituted for different percentages of CTA, were prepared by uniaxial pressing, followed by drying and sintering. Physical and mechanical properties of sintered bodies were evaluated. The porosity and the compressive strength of the fired pieces do increase with additions of up to 75% of CTA in substitution of feldspar. Their mineralogical phases were determined by DRX and SEM; grains of quartz, and needles of primary and secondary mullite were identified in a vitreous phase. It was concluded that feldspar can be substituted positively by CTA in white ware pastes. (Author) 22 refs.

  3. Acidic Pretreatment of Wheat Straw in Decanol for the Production of Surfactant, Lignin and Glucose

    Boris Estrine

    2011-12-01

    Full Text Available Wheat straw is an abundant residue of agriculture which is increasingly being considered as feedstock for the production of fuels, energy and chemicals. The acidic decanol-based pre-treatment of wheat straw has been investigated in this work. Wheat straw hemicellulose has been efficiently converted during a single step operation into decyl pentoside surfactants and the remaining material has been preserved keeping all its promises as potential feedstock for fuels or value added platform chemicals such as hydroxymethylfurfural (HMF. The enzymatic digestibility of the cellulose contained in the straw residue has been evaluated and the lignin prepared from the material characterized. Wheat-based surfactants thus obtained have exhibited superior surface properties compared to fossil-based polyethoxylates decyl alcohol or alkyl oligoglucosides, some of which are largely used surfactants. In view of the growing importance of renewable resource-based molecules in the chemical industry, this approach may open a new avenue for the conversion of wheat straw into various chemicals.

  4. Enzymatic hydrolsis of pretreated rice straw

    Vlasenko, E.Y.; Shoemaker, S.P. [California Inst. of Food and Agricultural Research, Davis, CA (United States); Ding, H. [California Univ., Davis (Canada). Dept. of Food Science and Technology; Labavitch, J.M. [California Univ., Davis, CA (United States). Dept. of Pomology

    1997-02-01

    California rice straw is being evaluated as a feedstock for production of power and fuel. This paper examines the initial steps in the process: pretreatment of rice straw and enzymatic hydrolysis of the polysaccharides in the pretreated material to soluble sugars. Rice straw was subjected to three distinct pretreatment procedures: acid-catalyzed steam explosion (Swan Biomass Company), acid hydrolysis (U.S. DOE National Renewable Energy Laboratory), and ammonia fiber explosion or AFEX (Texas A and M University). Standard conditions for each pretreatment were used, but none was optimized for rice straw specifically. Six commercial cellulases, products of Genencor International (USA), Novo (Denmark), Iogen (Canada) and Fermtech (Russia) were used for hydrolysis. The Swan- and the acid-pretreatments effectively removed hemicellulose from rice straw, providing high yields of fermentable sugars. The AFEX-pretreatment was distinctly different from other pretreatments in that it did not significantly solubilize hemicellulose. All three pretreatment procedures substantially increased enzymatic digestibility of rice straw. Three commercial Trichoderma-reesei-derived enzyme preparations: Cellulase 100L (Iogen), Spezyme CP (Genencor), and Al (Fermtech), were more active on pretreated rice straw compared than others tested. Conditions for hydrolysis of rice straw using Cellulase 100L were evaluated. The supplementation of this enzyme preparation with cellobiase (Novozyme 188) significantly improved the parameters of hydrolysis for the Swan- and the acid-pretreated materials, but did not affect the hydrolysis of the AFEX-pretreated rice straw. (Author)

  5. Opportunities and barriers to straw construction

    White, Caroline Meyer; Howard, Thomas J.; Lenau, Torben Anker

    2012-01-01

    produced to support communication between clients and the consultants and facilitate the straw build design and decision making process. The intended audiences for the design guide are clients of small scale construction projects, architects, engineers, builders of straw construction, homeowner...... construction, and a series of qualitative interviews with a variety of stakeholders from previous straw build housing projects, results were gathered to find the most influential motives, barriers and considerations for straw build housing construction. Based on this empirical data, a design guide has been...

  6. Residual phosphate fertilization and Azospirillum brasilense in the common bean in succession to maize intercropped with Marandu grass

    Lourdes Dickmann

    Full Text Available ABSTRACT One of the alternatives for achieving sustainable agriculture and a reduction in production costs, especially with phosphate fertilisers, is to inoculate seeds with bacteria of the genus Azospirillum. The aim of this study therefore, was to evaluate residual phosphate fertilisation and Azospirillum brasilense, together with the contribution of straw from maize intercropped with Marandu grass, on leaf nutritional content, yield components and winter bean yield. The experiment was carried out on the Teaching and Research Farm, of the School of Engineering at UNESP, located in Selvíria in the State of Mato Grosso do Sul, in a typic clayey dystrophic Red Latosol. The experimental design was of randomised blocks with four replications in a 5 x 2 factorial scheme. The treatments consisted of beans sown on straw from maize intercropped with Marandu grass on areas that had received five levels of P2O5 in the form of MAP, applied during an initial cultivation of black oats (0, 30, 60, 120 and 240 kg ha-1, both with and without inoculation of the oat and maize which preceded the beans with Azospirillum brasilense. Leaf nutrient content, leaf chlorophyll index (ICF, yield components and bean productivity were all evaluated. Inoculation with Azospirillum brasilense of the black oat and maize seeds improved the nutritional status of the plants, but had a negative effect on grain yield. Fertilisation of the oat crop with phosphorus had a positive residual effect on the beans, with increases in yield components and grain yield.

  7. Synthesis of magnetic wheat straw for arsenic adsorption

    Tian, Ye; Wu, Min; Lin, Xiaobo; Huang, Pei; Huang, Yong

    2011-01-01

    Highlights: → This work provides a way for fabricating low-cost arsenic adsorbents using agro- or plant-residues. → The introduction of wheat straw template highly enhances the arsenic adsorption of Fe 3 O 4 . → This magnetic adsorbent can be separated and collected by magnetic control easily and rapidly. → This adsorbent can be regenerated. → - Abstract: Magnetic wheat straw (MWS) with different Fe 3 O 4 content was synthesized by using in-situ co-precipitation method. It was characterized by powder X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). This material can be used for arsenic adsorption from water, and can be easily separated by applied magnetic field. The introduction of wheat straw template highly enhanced the arsenic adsorption of Fe 3 O 4 . Among three adsorption isotherm models examined, the data fitted Langmuir model better. Fe 3 O 4 content and initial pH value influenced its adsorption behavior. Higher Fe 3 O 4 content corresponded to a higher adsorption capacity. In the pH range of 3-11, As(V) adsorption was decreased with increasing of pH; As(III) adsorption had the highest capacity at pH 7-9. Moreover, by using 0.1 mol L -1 NaOH aqueous solution, it could be regenerated. This work provided an efficient way for making use of agricultural waste.

  8. Nitrogen derived from fertilization and straw for plant cane nutrition

    Vitti, Andre Cesar; Faroni, Carlos Eduardo

    2011-01-01

    The objective of this work was to evaluate the recovery, by plant cane, of the nitrogen ( 15 N) from urea and from sugarcane (Saccharum spp.) crop residues - straw and root system - incorporated into the soil. The experiment was settled in 2005/2006 with the sugarcane cultivar SP81 3250. At planting, microplots of 2 m length and 1.5 m width were installed, and N applications were done with 80 kg ha-1 N (urea with 5.05% in 15 N atoms) and 14 Mg ha -1 crop residues - 9 Mg ha -1 of sugarcane straw and 5 Mg ha -1 of root system, labeled with 15 N (1.07 and 0.81% in 15 N atoms, respectively). The total N accumulation by plants was determined during the crop cycle. Although the N use by shoot from crop residue mineralization (PA and SR) increased significantly over time, this source hardly contributed to crop nutrition. The recovery of the 15 N-urea, 15 N-SS and 15 N-RS by plant cane was 30.3 +- 3.7%, 13.9 +- 4.5% and 6.4 +- 0.9%, respectively, representing 15.9, 4.7 and 1.4% of total nitrogen uptake by shoot. (author)

  9. Loss of ammonia from nitrogen fertilizers applied to maize and soybean straw

    Letícia de Abreu Faria

    2013-08-01

    Full Text Available In Brazilian agriculture, urea is the most commonly used nitrogen (N source, in spite of having the disadvantage of losing considerable amounts of N by ammonia-N volatilization. The objectives of this study were to evaluate: N lossby ammonia volatilization from: [urea coated with copper sulfate and boric acid], [urea coated with zeolite], [urea+ammonium sulfate], [urea coated with copper sulfate and boric acid+ammonium sulfate], [common urea] and [ammonium nitrate]; and the effect of these N source son the maize yield in terms of amount and quality. The treatments were applied to the surface of a soil under no-tillage maize, in two growing seasons. The first season (2009/2010 was after a maize crop (maize straw left on the soil surface and the second cycle (2012/2011 after a soybean crop. Due to the weather conditions during the experiments, the volatilization of ammonia-N was highest in the first four days after application of the N sources. Of all urea sources, under volatilization-favorable conditions, the loss of ammonia from urea coated with copper sulfate and boric acid was lowest, while under high rainfall, the losses from the different urea sources was similar, i.e., an adequate rainfall was favorablet o reduce volatilization. The ammonia volatilization losses were greatest in the first four days after application. Maize grain yield differed due to N application and in the treatments, but this was only observed with cultivation of maize crop residues in 2009/2010. The combination of ammonium+urea coated with copper sulfate and boric acid optimized grain yield compared to the other urea treatments. The crude protein concentration in maize was not influenced by the technologies of urea coating.

  10. Effects of incorporated straw on dye tracer infiltration

    Kasteel, R.; Garnier, P.; Vachier, P.; Coquet, Y.

    2003-04-01

    Crop residue incorporation by conventional tillage increases the heterogeneity in the soil surface layer due to the soil tillage itself and to the presence of a zone with a high density of vegetal residues. The objective of this work was to quantify the effect of incorporated straw on the transport behaviour of the dye Brilliant Blue. We used an image analysis technique to calculate the Brilliant Blue concentration from the spectral signature (i.e. RGB values) using a calibration relationship. This method was already successfully applied in soils without organic matter and in this study we want to extend it to soils that contain fresh organic matter. The experiment took place in a loamy bare soil in the north of France at Mons-en-Chaussée in May, 2002. The soil was ploughed under dry conditions to 30 cm depth and straw was incorporated at the content of 10 Tonnes of C/ha. The infiltration experiment was carried out using an infiltrometer of 25 cm diameter at the head potential of -1 cm of water. First, water was infiltrated followed by the dye solution. The day after the infiltration, the soil was cut in horizontal sections of 50 times 50 cm. In total, 15 cross-section were photographed which were separated by a vertical distance of about 2 or 3 cm. Samples of soil and small pieces of straw were taken from the soil surface in order to measure the Brilliant Blue concentration for the calibration procedure. The volumetric water content and bulk density were measured with small cylindrical samples. After geometrical and illumination corrections of the images, we separated the soil from the straw and established a separate second-order polynomial calibration function for both relating the Brilliant Blue content to the spectral signature in each pixel. In this way we obtained spatially highly resolved concentration patterns of the dye tracer. The dye concentration distribution was found to be very heterogeneous in the soil at the local scale. In the plough layer, dye

  11. 76 FR 76674 - Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various...

    2011-12-08

    ... purified by solid phase extraction (graphitized carbon black for alfalfa, snap bean pods with seed, and... rice): grain, cereal at 0.01 ppm; grain, cereal, forage at 0.05 ppm; grain, cereal, hay at 0.05 ppm..., except rice; forage at 8.0 ppm; grain, cereal, forage, fodder and straw, group 16, except rice; hay...

  12. Possibilities and evaluation of straw pretreatment

    Knudsen, Niels Ole; Jensen, Peter Arendt; Sander, Bo

    1998-01-01

    Biomass utilisation by cofiring of straw in a pulverised coal fire boiler is economically attractive compared to dedicated straw fired plants. However, the high content of potassium and chloride impedes utilisation of the fly ash, deactivates the de NOx catalysts in the flue gas cleaning system...

  13. Using rice straw to manufacture ceramic bricks

    Gorbunov German Ivanovich

    2014-12-01

    Full Text Available In the article, the co-authors offer their advanced and efficient methodologies for the recycling of the rice straw, as well as the novel approaches to the ceramic brick quality improvement through the application of the rice straw as the combustible additive and through the formation of amorphous silica in the course of the rice straw combustion. The co-authors provide characteristics of the raw materials, production techniques used to manufacture ceramic bricks, and their basic properties in the article. The co-authors describe the simulated process of formation of amorphous silica. The process in question has two independent steps (or options: 1 rice straw combustion and ash formation outside the oven (in the oxidizing medium, and further application of ash as the additive in the process of burning clay mixtures; 2 adding pre-treated rice straw as the combustible additive into the clay mixture, and its further burning in compliance with the pre-set temperature mode. The findings have proven that the most rational pre-requisite of the rice straw application in the manufacturing of ceramic bricks consists in feeding milled straw into the clay mixture to be followed by molding, drying and burning. Brick samples are highly porous, and they also demonstrate sufficient compressive strength. The co-authors have also identified optimal values of rice straw and ash content in the mixtures under research.

  14. Pelletizing properties of torrefied wheat straw

    Stelte, Wolfgang; Nielsen, Niels Peter; Hansen, Hans Ove

    2013-01-01

    of wheat straw have been analyzed. Laboratory equipment has been used to investigate the pelletizing properties of wheat straw torrefied at temperatures between 150 and 300 °C. IR spectroscopy and chemical analyses have shown that high torrefaction temperatures change the chemical properties of the wheat...

  15. Straw Combustion in a Grate Furnace

    Lans, Robert Pieter Van Der

    1998-01-01

    Fixed-bed combustion of straw has been conducted in a 15 cm diameter and 137 cm long cylindrical reactor. Air, which could be preheated, was introduced through the bottom plate. The straw was ignited at the top with a radiation heater. After ignition, when a self-sustaining reaction front...

  16. Sugarcane straw harvest effects on soil quality and plant growth: preliminary data synthesis of a multi-local project running in Brazil

    Cherubin, Maurício; Cerri, Carlos E. P.; Feigl, Brigitte J.; Cerri, Carlos C.

    2017-04-01

    Brazil is the largest sugarcane producer in the world, and consequently, it is one of major players in the bioenergy production sector. Despite that, growing demands for bioenergies have raised the interest of Brazilian sugarcane industry to harvest the sugarcane straw left on the field for cellulosic ethanol production and/or bioelectricity cogeneration. However, crop residues have a key role in the soil, affecting directly or indirectly multiple soil functions and related ecosystem services. Therefore, indiscriminate straw harvest could jeopardize soil quality, decreasing its capacity to sustain plant productivity over time. In order to evaluate the potential impacts of sugarcane straw harvest on soil quality and plant growth, we are conducting since 2014 a multi-local project across central-southern Brazil, the main core of sugarcane production in the world. A wide range of soil chemical, physical and biological parameters, as well as, plant biomass production has been quantified under increasing straw harvest intensities. Our preliminary findings have showed that short-term straw harvest management did not affect total organic C stocks; however, high straw harvest led to significant reduction in labile C forms (e.g., microbial biomass C and N), and abundance of microbial communities as well. Sugarcane straw harvest affects soil nutrient cycling, since significant amount of nutrients are removed annually by straw, especially in top (green) leaves. In addition, our data show that straw acts as a thermal insulator, decreasing soil temperature amplitude and keeping soil moisture for a longer time. Straw harvest management did not affect sugarcane yields in the first two crop seasons. Based on this first synthesis of the project, we conclude that short-term sugarcane straw harvest led to soil changes, especially in more sensitive and dynamic properties, which did not affect the plant yield. However, long-term impacts should be monitored towards a better

  17. A scanning electron microscopy study of ash, char, deposits and fuels from straw combustion and co-combustion of coal and straw

    Sund Soerensen, H.

    1998-07-01

    The SEM-study of samples from straw combustion and co-combustion of straw and coal have yielded a reference selection of representative images that will be useful for future comparison. The sample material encompassed potential fuels (wheat straw and grain), bottom ash, fly ash and deposits from straw combustion as well as fuels (coal and wheat straw), chars, bottom ash, fly ash and deposits from straw + coal co-combustion. Additionally, a variety of laboratory ashes were studied. SEM and CCSEM analysis of the samples have given a broad view of the inorganic components of straw and of the distribution of elements between individual ash particles and deposits. The CCSEM technique does, however, not detect dispersed inorganic elements in biomass, so to get a more complete visualization of the distribution of inorganic elements additional analyses must be performed, for example progressive leaching. In contrast, the CCSEM technique is efficient in characterizing the distribution of elements in ash particles and between ash fractions and deposits. The data for bottom ashes and fly ashes have indicated that binding of potassium to silicates occurs to a significant extent. The silicates can either be in the form of alumino-silicates or quartz (in co-combustion) or be present as straw-derived amorphous silica (in straw combustion). This process is important for two reasons. One is that potasium lowers the melting point of silica in the fly ash, potentially leading to troublesome deposits by particle impaction and sticking to heat transfer surfaces. The other is that the reaction between potassium and silica in the bottom ash binds part of the potassium meaning that it is not available for reaction with chlorine or sulphur to form KCl or K{sub 2}SO{sub 4}. Both phases are potentially troublesome because they can condense of surfaces to form a sticky layer onto which fly ash particles can adhere and by inducing corrosion beneath the deposit. It appears that in the studied

  18. Giant grains

    Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.

    1976-01-01

    Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)

  19. Genetic control of a transition from black to straw-white seed hull in rice domestication.

    Zhu, Bo-Feng; Si, Lizhen; Wang, Zixuan; Zhou, Yan; Zhu, Jinjie; Shangguan, Yingying; Lu, Danfeng; Fan, Danlin; Li, Canyang; Lin, Hongxuan; Qian, Qian; Sang, Tao; Zhou, Bo; Minobe, Yuzo; Han, Bin

    2011-03-01

    The genetic mechanism involved in a transition from the black-colored seed hull of the ancestral wild rice (Oryza rufipogon and Oryza nivara) to the straw-white seed hull of cultivated rice (Oryza sativa) during grain ripening remains unknown. We report that the black hull of O. rufipogon was controlled by the Black hull4 (Bh4) gene, which was fine-mapped to an 8.8-kb region on rice chromosome 4 using a cross between O. rufipogon W1943 (black hull) and O. sativa indica cv Guangluai 4 (straw-white hull). Bh4 encodes an amino acid transporter. A 22-bp deletion within exon 3 of the bh4 variant disrupted the Bh4 function, leading to the straw-white hull in cultivated rice. Transgenic study indicated that Bh4 could restore the black pigment on hulls in cv Guangluai 4 and Kasalath. Bh4 sequence alignment of all taxa with the outgroup Oryza barthii showed that the wild rice maintained comparable levels of nucleotide diversity that were about 70 times higher than those in the cultivated rice. The results from the maximum likelihood Hudson-Kreitman-Aguade test suggested that the significant reduction in nucleotide diversity in rice cultivars could be caused by artificial selection. We propose that the straw-white hull was selected as an important visual phenotype of nonshattered grains during rice domestication.

  20. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid.

    Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua

    2016-11-01

    Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Nitrogen fertilization affects silicon concentration, cell wall composition and biofuel potential of wheat straw

    Murozuka, Emiko; Laursen, Kristian Holst; Lindedam, Jane

    2014-01-01

    Nitrogen is an essential input factor required for plant growth and biomass production. However, very limited information is available on how nitrogen fertilization affects the quality of crop residues to be used as lignocellulosic feedstock. In the present study, straw of winter wheat plants grown...... linearly from 0.32% to 0.71% over the range of nitrogen treatments. Cellulose and hemicellulose were not affected by the nitrogen supply while lignin peaked at medium rates of nitrogen application. The nitrogen treatments had a distinct influence on the silicon concentration, which decreased from 2.5% to 1.......5% of the straw dry matter when the nitrogen supply increased from 48 to 192kgha-1. No further decline in Si occurred at higher rates of nitrogen application. The most abundant metals in the straw were potassium and calcium and their concentrations almost doubled over the range of nitrogen supplies. The enzymatic...

  2. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Growth and Productivity of Response of Hybrid Rice to Application of Animal Manures, Plant Residues and Phosphorus

    Dr. Amanullah

    2016-10-01

    Full Text Available The objective of this research was to evaluate the impact of organic sources (animal manures vs. plant residues at the rate of 10 t ha-1 each on the productivity profitability of small land rice (Oryza sativa L. grower under different levels of phosphorus (0, 30, 60 and 90 kg P ha-1 fertilization. Two separate field experiments were conducted. In experiment (1, impact of three animal manures sources (cattle, sheep & poultry manures and P levels was studied along with one control plot (no animal manure and P applied as check was investigated. In experiment (2, three plant residues sources (peach leaves, garlic residues & wheat straw and P levels was studied along with one control plot (no plant residues and P applied as check. Both the experiments were carried out on small land farmer field at District Swabi, Khyber Pakhtunkhwa Province (Northwest Pakistan during summer 2015. The results revealed that in both experiments the control plot had significantly (p≤0.05 less productivity than the average of all treated plots with organic sources and P level. The increase in P levels in both experiments (animal manure vs. plant residues had resulted in higher rice productivity (90 = 60 > 30 > 0 kg P ha-1. In the experiment under animal manures, application of poultry manure increased rice productivity as compared with sheep and cattle manures (poultry > sheep > cattle manures. In the experiment under plant residues, application of peach leaves or garlic resides had higher rice productivity over wheat straw (peach leaves = garlic residues > wheat straw. On the average, the rice grown under animal manures produced about 20% higher grain yield than the rice grown under crop residues. We concluded from this study that application of 90 kg P ha-1 along with combined application of animal manures especially poultry manure could increase rice productivity. We conclude from this study that application of 90 kg P ha-1 along with combined application of animal

  4. The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips

    Kuijk, van Sandra J.A.; Sonnenberg, Anton S.M.; Baars, Johan J.P.; Hendriks, Wouter H.; Cone, John W.

    2016-01-01

    Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains (0.5, 1.5 or 3.0 % per g

  5. Nutritional evaluation of treated canola straw for ruminants using in ...

    The results show that organic matter digestibility (OMD) and metabolizable energy (ME) for treated canola straw were significantly higher than that of untreated canola straw (control) (p<0.001). Gas productions at 24 h for untreated canola straw (control) and treated canola straw were 20.03 and 27.07 ml, respectively.

  6. Adsorption, immobilization and activity of cellulase in soil: the impacts of maize straw and its humification

    Ali Akbar Safari Sinegani

    2013-12-01

    Full Text Available The present work aimed to study some aspects of sorption and immobilization of cellulase molecules on soil components by the analysis of the reactions of cellulase in a soil treated with different levels of maize residue and incubated for 90 days. The analysis of variance showed that the effects of the treatments of maize straw, incubation time and their interaction on cellulase adsorption, desorption and immobilization were statistically significant. The adsorption and immobilization capacities of soil by application of maize straw increased significantly. However they decreased with decreasing the soil organic matter (SOM after 45 days of incubation. The desorption of adsorbed cellulase molecules from the soil by washing with distilled water depended on the SOM contents and its humification. The binding strength of cellulase molecule with fresh miaze straw was significantly stronger than that with humified maize straw. The immobilized cellulase activity, particularly its specific activity increased significantly by increasing the OC contents in the soil treated with maize straw.

  7. Energy and environmental impact analysis of rice cultivation and straw management in northern Thailand.

    Yodkhum, Sanwasan; Sampattagul, Sate; Gheewala, Shabbir H

    2018-04-17

    Rice cultivation and energy use for rice production can produce the environmental impacts, especially related to greenhouse gas (GHG) emissions. Also, rice straw open burning by farmers generally practiced after harvesting stage in Thailand for removing the residues in the rice field is associated with emissions of air pollutants, especially particulate matter formation that affects human health and global climate. This study assessed the environmental burdens, consisting of GHG emissions, energy use, and particulate matter formation (PM10), from rice cultivation in Thailand by life cycle assessment (LCA) and compared the environmental burdens of rice straw management scenarios: open burning, incorporation into soil, and direct combustion for electricity generation. The data were collected from the rice production cooperative in Chiang Mai province, northern Thailand, via onsite records and face-to-face questionnaires in 2016. The environmental impacts were evaluated from cradle-to-farm gate. The results showed that the total GHG emissions were 0.64 kg CO 2 -eq per kilogram of paddy rice, the total energy use was 1.80 MJ per kilogram of paddy rice and the PM10 emissions were 0.42 g PM10-eq per kilogram of paddy rice. The results of rice straw management scenarios showed that rice straw open burning had the highest GHG and PM10 emissions. However, rice straw utilization by incorporation into soil and direct combustion for electricity generation could reduce these impacts substantially.

  8. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p sewage sludge under mesophilic and thermophilic conditions.

  9. Simultaneous harvesting of straw and chaff for energy purposes : influence on bale density, yield, field drying process and combustion characteristics

    Lundin, G. [JTI Swedish Inst. of Agricultural and Environmental Engineering, Uppsala (Sweden); Ronnback, M. [SP Technical Research Inst. of Sweden, Boras (Sweden)

    2010-07-01

    The potential to increase the productivity of fuel straw harvest and transportation was examined. When harvesting straw for energy purposes, only the long fraction is currently collected. However, technological improvements have now rendered it possible to harvest chaff, thus increasing the amount of harvest residues and bale density. The purpose of this study was to determine how harvest yield, bale density, field-drying behaviour and combustion characteristics are affected by the simultaneous harvest of straw and chaff. Field experiments were conducted in 2009 for long- and short-stalked winter wheat crops. Combine harvesting was carried out with 2 different types of combine harvesters. A high-density baler was used to bale the crop residues. Mixing chaff in with the straw swath by combine harvesting gave a lower initial moisture content compared with straw only. The density and the weight of each bale were not affected by the treatments. However, the added chaff increased the total yield of crop residues by 14 per cent, indicating that about half of the biologically available chaff was harvested. Although mixing in chaff increased the ash content by 1 percentage unit, there was no considerable change in net calorific value or ash melting behaviour.

  10. Lead accumulation in the straw mushroom, Volvariella volvacea, from lead contaminated rice straw and stubble.

    Kumhomkul, Thapakorn; Panich-pat, Thanawan

    2013-08-01

    Straw mushrooms were grown on lead contaminated rice straw and stubble. Study materials were dried, acid digested, and analyzed for lead using flame atomic absorption spectrophotometry. The results showed the highest lead concentration in substrate was 445.350 mg kg⁻¹ in Treatment 3 (T3) and the lowest was BD (below detection) in Treatment 1 (T1). The maximum lead content in straw mushrooms was 5.072 mg kg⁻¹ dw in pileus of T3 and the minimum lead content in straw mushrooms was BD in egg and mature (stalk and pileus) stage of T1. The lead concentration in straw mushrooms was affected by the age of the mycelium and the morphology of mushrooms. Mushrooms' lead uptake produced the highest accumulation in the cell wall. Some lead concentrations in straw mushrooms exceeded the EU standard (>3 mg kg⁻¹ dw).

  11. Dust-Firing of Straw and Additives

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming

    2011-01-01

    In the present work, the ash chemistry and deposition behavior during straw dust-firing were studied by performing experiments in an entrained flow reactor. The effect of using spent bleaching earth (SBE) as an additive in straw combustion was also investigated by comparing with kaolinite. During...... dust-firing of straw, the large (>∼2.5 μm) fly ash particles generated were primarily molten or partially molten spherical particles rich in K, Si, and Ca, supplemented by Si-rich flake-shaped particles. The smaller fly ash particles (...

  12. Analysis and simulation of straw fuel logistics

    Nilsson, Daniel [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Agricultural Engineering

    1998-12-31

    Straw is a renewable biomass that has a considerable potential to be used as fuel in rural districts. This bulky fuel is, however, produced over large areas and must be collected during a limited amount of days and taken to the storages before being ultimately transported to heating plants. Thus, a well thought-out and cost-effective harvesting and handling system is necessary to provide a satisfactory fuel at competitive costs. Moreover, high-quality non-renewable fuels are used in these operations. To be sustainable, the energy content of these fuels should not exceed the energy extracted from the straw. The objective of this study is to analyze straw as fuel in district heating plants with respect to environmental and energy aspects, and to improve the performance and reduce the costs of straw handling. Energy, exergy and emergy analyses were used to assess straw as fuel from an energy point of view. The energy analysis showed that the energy balance is 12:1 when direct and indirect energy requirements are considered. The exergy analysis demonstrated that the conversion step is ineffective, whereas the emergy analysis indicated that large amounts of energy have been used in the past to form the straw fuel (the net emergy yield ratio is 1.1). A dynamic simulation model, called SHAM (Straw HAndling Model), has also been developed to investigate handling of straw from the fields to the plant. The primary aim is to analyze the performance of various machinery chains and management strategies in order to reduce the handling costs and energy needs. The model, which is based on discrete event simulation, takes both weather and geographical conditions into account. The model has been applied to three regions in Sweden (Svaloev, Vara and Enkoeping) in order to investigate the prerequisites for straw harvest at these locations. The simulations showed that straw has the best chances to become a competitive fuel in south Sweden. It was also demonstrated that costs can be

  13. Oyster mushroom cultivation with rice and wheat straw.

    Zhang, Ruihong; Li, Xiujin; Fadel, J G

    2002-05-01

    Cultivation of the oyster mushroom, Pleurotus sajor-caju, on rice and wheat straw without nutrient supplementation was investigated. The effects of straw size reduction method and particle size, spawn inoculation level, and type of substrate (rice straw versus wheat straw) on mushroom yield, biological efficiency, bioconversion efficiency, and substrate degradation were determined. Two size reduction methods, grinding and chopping, were compared. The ground straw yielded higher mushroom growth rate and yield than the chopped straw. The growth cycles of mushrooms with the ground substrate were five days shorter than with the chopped straw for a similar particle size. However, it was found that when the straw was ground into particles that were too small, the mushroom yield decreased. With the three spawn levels tested (12%, 16% and 18%), the 12% level resulted in significantly lower mushroom yield than the other two levels. Comparing rice straw with wheat straw, rice straw yielded about 10% more mushrooms than wheat straw under the same cultivation conditions. The dry matter loss of the substrate after mushroom growth varied from 30.1% to 44.3%. The straw fiber remaining after fungal utilization was not as degradable as the original straw fiber, indicating that the fungal fermentation did not improve the feed value of the straw.

  14. Comparative studies of the pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa.

    Naihao Ye

    Full Text Available Seaweed has attracted considerable attention as a potential biofuel feedstock. The pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa were studied and compared using heating rates of 10, 30 and 50°C min(-1 under an inert atmosphere. The activation energy, and pre-exponential factors were calculated by the Flynn-Wall-Ozawa (FWO, Kissinger-Akahira-Sunose (KAS and Popescu methods. The kinetic mechanism was deduced by the Popescu method. The results indicate that there are three stages to the pyrolysis; dehydration, primary devolatilization and residual decomposition. There were significant differences in average activation energy, thermal stability, final residuals and reaction rates between the two materials. The primary devolatilization stage of U. pertusa can be described by the Avramic-Erofeev equation (n=3, whereas that of maize straw can be described by the Mampel Power Law (n=2. The average activation energy of maize straw and U. pertusa were 153.0 and 148.7 KJ mol(-1, respectively. The pyrolysis process of U.pertusa would be easier than maize straw. And co-firing of the two biomass may be require less external heat input and improve process stability. There were minor kinetic compensation effects between the pre-exponential factors and the activation energy.

  15. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines

    Gadde, Butchaiah; Bonnet, Sebastien; Menke, Christoph; Garivait, Savitri

    2009-01-01

    Rice is a widely grown crop in Asia. China (30%) and India (21%) contribute to about half of the world's total rice production. In this study, three major rice-producing countries in Asia are considered, India, Thailand and the Philippines (the later two contributing 4% and 2% of the world's rice production). Rice straw is one of the main field based residues produced along with this commodity and its applications vary widely in the region. Although rice production practises vary from one country to another, open burning of straw is a common practice in these countries. In this study, an approach was followed aiming at (a) determining the quantity of rice straw being subject to open field burning in those countries, (b) congregating pollutant specific emissions factors for rice straw burning, and (c) quantifying the resulting air pollutant emissions. Uncertainties in the results obtained as compared to a global approach are also discussed. - This research work contributes to enhance scientific knowledge for estimating air pollutant emissions from open burning of crop residues and improve emission results accuracy.

  16. Comparative studies of the pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa.

    Ye, Naihao; Li, Demao; Chen, Limei; Zhang, Xiaowen; Xu, Dong

    2010-09-10

    Seaweed has attracted considerable attention as a potential biofuel feedstock. The pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa were studied and compared using heating rates of 10, 30 and 50°C min(-1) under an inert atmosphere. The activation energy, and pre-exponential factors were calculated by the Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Popescu methods. The kinetic mechanism was deduced by the Popescu method. The results indicate that there are three stages to the pyrolysis; dehydration, primary devolatilization and residual decomposition. There were significant differences in average activation energy, thermal stability, final residuals and reaction rates between the two materials. The primary devolatilization stage of U. pertusa can be described by the Avramic-Erofeev equation (n=3), whereas that of maize straw can be described by the Mampel Power Law (n=2). The average activation energy of maize straw and U. pertusa were 153.0 and 148.7 KJ mol(-1), respectively. The pyrolysis process of U.pertusa would be easier than maize straw. And co-firing of the two biomass may be require less external heat input and improve process stability. There were minor kinetic compensation effects between the pre-exponential factors and the activation energy.

  17. The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: an incubation study

    Hansen, Veronika; Müller-Stöver, Dorette; Munkholm, Lars Juhl

    2016-01-01

    Annual removal of crop residues may lead to depletion of soil organic carbon and soil degradation. Gasification biochar (GB), the carbon-rich byproduct of gasification of biomass such as straw and wood chips, may be used for maintaining the soil organic carbon content and counteract soil degradat......Annual removal of crop residues may lead to depletion of soil organic carbon and soil degradation. Gasification biochar (GB), the carbon-rich byproduct of gasification of biomass such as straw and wood chips, may be used for maintaining the soil organic carbon content and counteract soil......, the addition of straw resulted in a high soil respiration rate, and about 80% of the added carbonwas respired at the end of the incubation. However, the addition of straw increased aggregate stability and decreased clay dispersibility. Results from Fourier transformed infrared photoacoustic spectroscopy...

  18. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields

    Liu, Gang; Yu, Haiyang [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Jing [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Xu, Hua, E-mail: hxu@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Wu, Qinyan; Yang, Jinghui; Zhuang, Yiqing [Zhenjiang Institute of Agricultural Science of Hilly Regions in Jiangsu, Jurong 212400 (China)

    2015-06-15

    Incorporation of straw together with microbial inoculant (a microorganism agent, accelerating straw decomposition) is being increasingly adopted in rice cultivation, thus its effect on greenhouse gas (GHG) emissions merits serious attention. A 3-year field experiment was conducted from 2010 to 2012 to investigate combined effect of straw and microbial inoculant on methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) in a rice field in Jurong, Jiangsu Province, China. The experiment was designed to have treatment NPK (N, P and K fertilizers only), treatment NPKS (NPK plus wheat straw), treatment NPKSR (NPKS plus Ruilaite microbial inoculant) and treatment NPKSJ (NPKS plus Jinkuizi microbial inoculant). Results show that compared to NPK, NPKS increased seasonal CH{sub 4} emission by 280–1370%, while decreasing N{sub 2}O emission by 7–13%. When compared with NPKS, NPKSR and NPKSJ increased seasonal CH{sub 4} emission by 7–13% and 6–12%, respectively, whereas reduced N{sub 2}O emission by 10–27% and 9–24%, respectively. The higher CH{sub 4} emission could be attributed to the higher soil CH{sub 4} production potential triggered by the combined application of straw and microbial inoculant, and the lower N{sub 2}O emission to the decreased inorganic N content. As a whole, the benefit of lower N{sub 2}O emission was completely offset by increased CH{sub 4} emission, resulting in a higher GWP for NPKSR (5–12%) and NPKSJ (5–11%) relative to NPKS. Due to NPKSR and NPKSJ increased rice grain yield by 3–6% and 2–4% compared to NPKS, the GHGI values for NPKS, NPKSR and NPKSJ were comparable. These findings suggest that incorporating straw together with microbial inoculant would not influence the radiative forcing of rice production in the terms of per unit of rice grain yield relative to the incorporation of straw alone. - Highlights: • This paper presents 3-year measurements of CH

  19. Biomass supply from alternative cellulosic crops and crop residues: A spatially explicit bioeconomic modeling approach

    Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.; Izaurralde, César R.; Manowitz, David H.; Zhang, Xuesong

    2011-01-01

    This paper introduces a spatially-explicit bioeconomic model for the study of potential cellulosic biomass supply. For biomass crops to begin to replace current crops, farmers must earn more from them than from current crops. Using weather, topographic and soil data, the terrestrial ecosystem model, EPIC, dynamically simulates multiple cropping systems that vary by crop rotation, tillage, fertilization and residue removal rate. EPIC generates predicted crop yield and environmental outcomes over multiple watersheds. These EPIC results are used to parameterize a regional profit-maximization mathematical programming model that identifies profitable cropping system choices. The bioeconomic model is calibrated to 2007–09 crop production in a 9-county region of southwest Michigan. A simulation of biomass supply in response to rising biomass prices shows that cellulosic residues from corn stover and wheat straw begin to be supplied at minimum delivered biomass:corn grain price ratios of 0.15 and 0.18, respectively. At the mean corn price of $162.6/Mg ($4.13 per bushel) at commercial moisture content during 2007–2009, these ratios correspond to stover and straw prices of $24 and $29 per dry Mg. Perennial bioenergy crops begin to be supplied at price levels 2–3 times higher. Average biomass transport costs to the biorefinery plant range from $6 to $20/Mg compared to conventional crop production practices in the area, biomass supply from annual crop residues increased greenhouse gas emissions and reduced water quality through increased nutrient loss. By contrast, perennial cellulosic biomass crop production reduced greenhouse gas emissions and improved water quality. -- Highlights: ► A new bioeconomic model predicts biomass supply and its environmental impacts. ► The model captures the opportunity cost of switching to new cellulosic crops. ► Biomass from crop residues is supplied at lower biomass price than cellulosic crops. ► Biomass from cellulosic crops has

  20. Utilization of straw for Bihudung production

    Tietjen, C

    1955-01-01

    Surplus straw unwanted for farmyard-manure preparation is best utilized for the production of manure gas. In the German Bihugas process, anaerobic fermentation of wheat straw, alone or mixed with beet leaves, at 31/sup 0/ for 22 to 36 days produces about 15 cu m gas of 44 to 46% CO/sub 2/ content/100 kg material. The decomposition product supplies an organic manure of favorable C/N ratio, generally <20 : 1.

  1. Rice straw incorporated just before soil flooding increases acetic acid formation and decreases available nitrogen

    Ronaldir Knoblauch

    2014-02-01

    Full Text Available Incorporation of rice straw into the soil just before flooding for water-seeded rice can immobilize mineral nitrogen (N and lead to the production of acetic acid harmful to the rice seedlings, which negatively affects grain yield. This study aimed to evaluate the formation of organic acids and variation in pH and to quantify the mineral N concentration in the soil as a function of different times of incorporation of rice straw or of ashes from burning the straw before flooding. The experiment was carried out in a greenhouse using an Inceptisol (Typic Haplaquept soil. The treatments were as follows: control (no straw or ash; incorporation of ashes from previous straw burning; rice straw incorporated to drained soil 60 days before flooding; straw incorporated 30 days before flooding; straw incorporated 15 days before flooding and straw incorporated on the day of flooding. Experimental units were plastic buckets with 6.0 kg of soil. The buckets remained flooded throughout the trial period without rice plants. Soil samples were collected every seven days, beginning one day before flooding until the 13th week of flooding for determination of mineral N- ammonium (NH4+ and nitrate (NO3-. Soil solution pH and concentration of organic acids (acetic, propionic and butyric were determined. All NO3- there was before flooding was lost in approximately two weeks of flooding, in all treatments. There was sigmoidal behavior for NH4+ formation in all treatments, i.e., ammonium ion concentration began to rise shortly after soil flooding, slightly decreased and then went up again. On the 91st day of flooding, the NH4+ concentrations in soil was 56 mg kg-1 in the control treatment, 72 mg kg-1 for the 60-day treatment, 73 mg kg-1 for the 30-day treatment and 53 mg kg-1 for the ash incorporation treatment. These ammonium concentrations correspond to 84, 108, 110 and 80 kg ha-1 of N-NH4+, respectively. When the straw was incorporated on the day of flooding or 15 days

  2. Radiotracer study of the fate and persistence of organic fungicides used as seed dressing on grain. Part of a coordinated programme of isotopic tracer aided studies of foreign chemical residues in food

    Raghu, K.

    1976-12-01

    Radiotracer-aided studies were made of the fate and persistence of Thiram, used as a seed dresser and Ziram used as a foliar spray and their effects on soil fertility and plant growth. Thiram applied as a seed dresser had no inhibitory effect on (a) seedling height and rhizosphere microflora of barley, (b) soil microflora, (c) nodulation of cowpea plants. The uptake of 35 S radioactivity at 20-day stage was 0.3% of the total applied as 35 S thiram. Thiram as such was not present in barley or maize plants at any of the growth stages up to grain formulation but was converted into DDC-glucoside, DDC-alamine, fungicide X and TTCA. The quantity of these decreased in barley and maize with time and were in negligible amounts at grain stage. The sulphur from thiram found its way into sulphur-containing metabolites like protein, amino acids, sulfolipids, etc. Ziram, a foliar spray fungicide was also converted into DDC-conjugates and the amounts of residue were negligible at harvest time both in rice and groundnut. Thiram degraded more rapidly in unsterilized soils than in sterilized soil, thus indicating biodegradation. The fungicide is more persistent in sandy than in laterite and alluvial soils. Microbial degradation of thiram was shown by comparing persistence of 35 S thiram in sterilized and unsterilized soils. A Pseudomonas sp. isolated from soil was capable of degrading thiram and ziram and DDC-aminobutyric acid was the major polar metabolite. The appearance of similar degradation products with these dialkyl dithiocarbamates indicated that they have some common metabolic pathway

  3. Developments for the TOF Straw Tracker

    Ucar, A.

    2006-07-01

    COSY-TOF is a very large acceptance spectrometer for charged particles using precise information on track geometry and time of flight of reaction products. It is an external detector system at the Cooler Synchrotron and storage ring COSY in Juelich. In order to improve the performance of the COSY-TOF, a new tracking detector ''Straw Tracker'' is being constructed which combines very low mass, operation in vacuum, very good resolution, high sampling density and very high acceptance. A comparison of pp{yields}d{pi}{sup +} data and a simulation using the straw tracker with geometry alone indicates big improvements with the new tracker. In order to investigate the straw tracker properties a small tracking hodoscope ''cosmic ray test facility'' was constructed in advance. It is made of two crossed hodoscopes consisting of 128 straw tubes arranged in 4 double planes. For the first time Juelich straws have been used for 3 dimensional reconstruction of cosmic ray tracks. In this illuminating field the space dependent response of scintillators and a straw tube were studied. (orig.)

  4. Developments for the TOF Straw Tracker

    Ucar, A.

    2006-01-01

    COSY-TOF is a very large acceptance spectrometer for charged particles using precise information on track geometry and time of flight of reaction products. It is an external detector system at the Cooler Synchrotron and storage ring COSY in Juelich. In order to improve the performance of the COSY-TOF, a new tracking detector ''Straw Tracker'' is being constructed which combines very low mass, operation in vacuum, very good resolution, high sampling density and very high acceptance. A comparison of pp→dπ + data and a simulation using the straw tracker with geometry alone indicates big improvements with the new tracker. In order to investigate the straw tracker properties a small tracking hodoscope ''cosmic ray test facility'' was constructed in advance. It is made of two crossed hodoscopes consisting of 128 straw tubes arranged in 4 double planes. For the first time Juelich straws have been used for 3 dimensional reconstruction of cosmic ray tracks. In this illuminating field the space dependent response of scintillators and a straw tube were studied. (orig.)

  5. Sustainability of bioethanol production from wheat with recycled residues as evaluated by Emergy assessment

    Coppola, F.; Bastianoni, S.; Østergård, Hanne

    2009-01-01

    , were considered. Material and energy flows were assessed to evaluate the bioethanol yield, the production efficiency in terms of Emergy used compared to energy produced (transformity), and the environmental load (ELR) in terms of use of non-renewable resources. These three indicators varied among......An Emergy assessment study of 24 bioethanol production scenarios was carried out for the comparison of bioethanol production using winter wheat grains and/or straw as feedstock and conversion technologies based on starch (1st generation) and/or lignocellulose (2nd generation). An integrated biomass...... utilization system (IBUS) was used for combining the two kinds of feedstock. The crop was cultivated under four combinations of Danish soil conditions (sand or sandy loam) and crop managements (organic or conventional). For each of the production processes, two scenarios, with or without recycling of residues...

  6. Anaerobic biodegradability and methane potential of crop residue co-digested with buffalo dung

    Sahito, A.R.; Mahar, R.B.; Brohi, K.M.

    2013-01-01

    ABD (Anaerobic Biodegradability) and BMP (Biochemical Methane Potential) of banana plant waste, canola straw, cotton stalks, rice straw, sugarcane trash and wheat straw co-digested with buffalo dung was evaluated through AMPTS (Automatic Methane Potential Test System). The substrates were analyzed for moisture, TS (Total Solids) and VS (Volatile Solids), ultimate analysis (CHONS), pH and TA (Total Alkalinity). The BMP/sub observed/ during incubation of 30 days at the temperature of 37+-0.2+-degree C was 322 Nml CH4/g VSadd for wheat straw followed by 260, 170, 149, 142 and 138 Nml CH4/gVS/sub add/ for canola straw, rice straw, cotton stalks, banana plant waste and sugarcane trash respectively, whereas the maximum theoretical BMP was 481 Nml CH/sub 4//gVS/sub add/ for cotton stalks, followed by 473, 473, 446, 432 and 385 Nml CH/sub 4//gVS/sub add/ for wheat straw, banana plant waste, canola straw, rice straw and sugarcane trash respectively. The percentage ABD values were in the range of 68-30%. In addition to this, the effect of lignin content in the crop residue was evaluated on the ABD. The results of this study indicate that, the co-digestion of the crop residues with buffalo dung is feasible for production of renewable methane. (author)

  7. Anaerobic Biodegradability and Methane Potential of Crop Residue Co-Digested with Buffalo Dung

    Abdul Razaque Sahito

    2013-07-01

    Full Text Available ABD (Anaerobic Biodegradability and BMP (Biochemical Methane Potential of banana plant waste, canola straw, cotton stalks, rice straw, sugarcane trash and wheat straw co-digested with buffalo dung was evaluated through AMPTS (Automatic Methane Potential Test System. The substrates were analyzed for moisture, TS (Total Solids and VS (Volatile Solids, ultimate analysis (CHONS, pH and TA (Total Alkalinity. The BMPobserved during incubation of 30 days at the temperature of 37±0.2°C was 322 Nml CH4/g VSadd for wheat straw followed by 260, 170, 149, 142 and 138 Nml CH4/gVSadd for canola straw, rice straw, cotton stalks, banana plant waste and sugarcane trash respectively, whereas the maximum theoretical BMP was 481 Nml CH4/gVSadd for cotton stalks, followed by 473, 473, 446, 432 and 385 Nml CH4/gVSadd for wheat straw, banana plant waste, canola straw, rice straw and sugarcane trash respectively. The percentage ABD values were in the range of 68-30%. In addition to this, the effect of lignin content in the crop residue was evaluated on the ABD. The results of this study indicate that, the co-digestion of the crop residues with buffalo dung is feasible for production of renewable methane

  8. 40 CFR 180.176 - Mancozeb; tolerances for residues.

    2010-07-01

    ... Asparagus (negligible residue) 0.1 Banana 4.0 Banana, pulp 0.5 Barley, bran 20 Barley, flour 20 Barley..., straw 25 Onion, bulb 0.5 Papaya (whole fruit with no residue present in the edible pulp after the peel...

  9. One step conversion of wheat straw to sugars by simultaneous ball milling, mild acid, and fungus Penicillium simplicissimum treatment.

    Yuan, Li; Chen, Zhenhua; Zhu, Yonghua; Liu, Xuanming; Liao, Hongdong; Chen, Ding

    2012-05-01

    Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.

  10. Effect of wheat-maize straw return on the fate of nitrate in groundwater in the Huaihe River Basin, China.

    Li, Rongfu; Ruan, Xiaohong; Bai, Ying; Ma, Tianhai; Liu, Congqiang

    2017-08-15

    Straw return is becoming a routine practice in disposing of crop residues worldwide. However, the potential effect of such operation on the chemistry of local groundwater is not well documented. Here, shallow groundwater in an area where wheat-maize straw return is practiced was analyzed, and the seasonal changes in the nitrate concentration and the isotope compositions of NO 3 - and H 2 O were determined along two flow paths. Measured δD and δ 18 O in waters indicated that the groundwater was mainly recharged by atmospheric precipitation, while measured δ 15 N and δ 18 O in nitrate suggested that the sources for groundwater NO 3 - included urea fertilizer, soil nitrogen, and sewage/manure. Reduced NO 3 - concentrations coincided with an enrichment of organic matter in the groundwater of the straw return area, revealing an environmental condition that facilitates nitrate reduction, whereas increased δ 15 N-NO 3 - and δ 18 O-NO 3 - along the flow path suggested the occurrence of denitrification. Further analyses showed that, compared to the cases in the absence of straw return, as much as 80% and 90% of groundwater nitrate was removed in low and high water seasons in the straw return area, pointing to a potential positive effect of straw return to groundwater quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Changes in digestible energy values of some agricultural residues treated with gamma irradiation

    Al-Masri, M.R.; Zarkawi, M.

    1999-01-01

    The effects of different doses of gamma irradiation (0, 5, 20, 50, 100 and 150 kGy) on gross energy (GE), in vitro apparent organic matter digestibility (IVOMD) and digestible energy (IVDE), have been evaluated in barley straw, sorghum straw, wheat chaffs and maize cobs. The results indicate that, there were significant (P<0.05) increases in IVOMD and IVDE values, especially, at the dose of 150 kGy. The increases in IVOMD were 22, 21 and 23% for barley straw, sorghum straw and wheat chaffs, respectively; whereas, such an increase was 12% for maize cobs. Digestible energy values increased over the control by 1165, 1621, 1540 and 1130 kJ/kg dry matter for barley straw, sorghum straw, wheat chaffs and maize cobs, respectively. There was no significant effect of gamma irradiation on GE values for the studied agricultural residues

  12. Changes in digestible energy values of some agricultural residues treated with gamma irradiation

    Al-Masri, M.R.; Zarkawi, M.

    1997-07-01

    The effects of different doses of gamma irradiation (0, 5, 20, 50, 100, 150 kGy) on gross energy (GE), in vitro organic matter digestibility (IVOMD) and digestible energy (IVDE), have been evaluated in barley straw, sorghum straw, wheat chaffs, and maize cobs. The results indicate that , there were significant increase in IVOMD and IVDE values, especially, at the dose of 150 kGy. compared with the control, the increase in IVOMD were 22, 21 and 23% for barley straw, sorghum straw, and wheat chaffs, respectively; whereas, the increase was only 12% for maize cobs. Digestible energy values increased by 1165, 1621, 1540, and 1130 MJ/kg dry matter, for barley straw, sorghum straw, wheat chaffs, and maize cobs, respectively. There was no significant effect of gamma irradiation on GE values for the studied agricultural residues. (author)

  13. Changes in digestible energy values of some agricultural residues treated with gamma irradiation

    Al-Masri, M.R.; Zarkawi, M.

    1999-01-01

    The effects of different doses of gamma irradiation (0, 5, 100 and 150 kGy) on gross energy (GE), in vitro apparent organic matter digestibility (IVOMD) and digestible energy (IVDE), have been evaluated in barley straw, sorghum straw, wheat chaffs and maize cobs. The results indicate that, there were significant increases in IVOMD and IVDE values, especially, at the dose of 150 kGy. The increases in IVOMD were 22, 21 and 23% for barley straw, sorghum straw, and wheat chaffs, respectively; whereas, such an increase was 12% for maize cobs. Digestible energy values increased over the control by 1165, 1621, 1540 and 1130 kJ/kg dry matter for barley straw, sorghum straw, wheat chaffs and maize cobs, respectively. There was no significant effect of gamma irradiation on GE values for the studied agricultural residues. (authors)

  14. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid

  15. Properties and Possible Applications for Lignin Streams Obtained from Rice Straw Processing

    Mussatto, Solange I.

    This study aimed to evaluate the chemical and physical properties of lignin streams recovered from rice straw processing and to study the extraction of antioxidant phenolic compounds from these materials. The evaluated samples included two different cellulignin fermentation residues (FR’s) and an......This study aimed to evaluate the chemical and physical properties of lignin streams recovered from rice straw processing and to study the extraction of antioxidant phenolic compounds from these materials. The evaluated samples included two different cellulignin fermentation residues (FR......’s) and an acid-precipitated lignin from alkaline-deacetylated black liquor (DBLL). For comparison, a standard lignin sample (Kraft lignin, from Sigma-Aldrich) was also assayed. Besides providing a better understanding about such materials, the obtained results made also possible to propose some potential...

  16. Effect of coated urea and non-coated urea on grain yield, N uptake and N distribution in different parts of maize

    Ren Yi; Li Guihua; Zhao Linping; Zhang Shuxiang

    2011-01-01

    In order to regulate nitrogen metabolism with nitrogen application rate and to increase nitrogen use efficiency, an isotopic method was used to compare grain yield, biomass and nitrogen use efficiency of coated urea (CU) to those of non-coated urea (U) at the N application rates of 0, 100, 150 and 225 kg/hm 2 . Results showed that CU significantly increased maize N uptake from 15 N fertilizer and aboveground biomass. The nitrogen use efficiency ( 15 NUE) of CU was 13.3-21.4% greater than that of U. There was a significant different of fertilizer 15 N uptake between CU and U in maize parts. And N uptake of CU treatment followed the order of seed > leaves > straws > cob > husk, while N uptake of U treatment was in the order of seed > straws > leaves > cob > husk. The N uptake of maize parts by both CU and U followed the same order when non-isotopic method was applied. No significant variations were observed among treatments in N uptake, Nitrogen Harvest Index and grain yield. The reason maybe that low soil temperatures (< 10 ℃) from the fourth week of October to next April reduced N uptake of winter wheat, therefore, residual NO3-N in cultivated soil layer was high after harvest. Thus, maize N uptake was more dependent on the shoot growth potential than fertilizer amount and types under high amount of available nitrogen. (authors)

  17. Cereal straw management: a trade-off between energy and agronomic fate

    Massimo Monteleone; Pasquale Garofalo; Anna Rita Bernadette Cammerino; Angela Libutti

    2015-01-01

    Climate change mitigation is the most important driving force for bioenergy development. Consequently, the environmental design of bioenergy value chains should address the actual savings of both primary energy demand and greenhouse gases (GHG) emissions. According to the EU Renewable Energy Directive (2009/28/EC), no direct impacts and no GHG emissions should be attributed to crop residues (like cereal straws) when they are removed from agricultural land for the purpose of bioenergy utilisat...

  18. Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions

    Fushimi, Akihiro; Saitoh, Katsumi; Hayashi, Kentaro; Ono, Keisuke; Fujitani, Yuji; Villalobos, Ana M.; Shelton, Brandon R.; Takami, Akinori; Tanabe, Kiyoshi; Schauer, James J.

    2017-08-01

    Open burning of crop residue is a major source of atmospheric fine particle emissions. We burned crop residues (rice straws, barley straws, wheat straws, and rice husks produced in Japan) in an outdoor chamber and measured particle mass, composition (elemental carbon: EC, organic carbon: OC, ions, elements, and organic species), and oxidative potential in the exhausts. The fine particulate emission factors from the literature were within the range of our values for rice straws but were 1.4-1.9 and 0.34-0.44 times higher than our measured values for barley straw and wheat straw, respectively. For rice husks and wheat straws, which typically lead to combustion conditions that are relatively mild, the EC content of the particles was less than 5%. Levoglucosan seems more suitable as a biomass burning marker than K+, since levoglucosan/OC ratios were more stable than K+/particulate mass ratios among crop species. Stigmasterol and β-sitosterol could also be used as markers of biomass burning with levoglucosan or instead of levoglucosan. Correlation analysis between chemical composition and combustion condition suggests that hot or flaming combustions enhance EC, K+, Cl- and polycyclic aromatic hydrocarbons emissions, while low-temperature or smoldering combustions enhance levoglucosan and water-soluble organic carbon emissions. Oxidative potential, measured with macrophage-based reactive oxygen species (ROS) assay and dithiothreitol (DTT) assay, of open burning fine particles per particulate mass as well as fine particulate emission factors were the highest for wheat straws and second highest for rice husks and rice straws. Oxidative potential per particulate mass was in the lower range of vehicle exhaust and atmosphere. These results suggest that the contribution of open burning is relatively small to the oxidative potential of atmospheric particles. In addition, oxidative potential (both ROS and DTT activities) correlated well with water-insoluble organic species

  19. Co-digestion of ley crop silage, straw and manure

    Nordberg, Aa; Edstroem, M [Swedish Inst. of Agricultural Engineering, Uppsala (Sweden)

    1997-08-01

    Anaerobic co-digestion of ley crop silage, wheat straw and liquid manure with liquid recirculation was investigated in laboratory- and pilot scale. An organic loading rate of 6.0 g Vs L{sup -1} d{sup -1} was obtained when 20% of liquid manure (TS-basis) was added, whereas an organic loading rate of 2.5 g VS L{sup -1} d{sup -1} was obtained when the manure was replaced with a trace element solution. The methane yield varied between 0.28 and 0.32 L g VS{sup -1}, with the value being lowest for a mixture containing 60% silage, 20% straw and 20% manure (TS-basis), and highest for 100% ley crop silage. The concentration of ammonia-N was maintained at ca 2 g L{sup -1} by adjusting the C:N-ratio with straw. To achieve good mixing characteristics with a reasonable energy input at TS-concentrations around 10%, the particle sizes of straw and silage had to be reduced with a meat mincer. The digester effluent was dewatered, resulting in a solid phase that could be composted without having to add amendments or bulking agents, and a liquid phase containing 7-8% TS (mainly soluble and suspended solids). The liquid phase, which should be used as an organic fertilizer, contained up to 90% of the N and 74% of the P present in the residues. Calculations of the costs for a full-scale plant showed that a biogas price of SEK 0.125 MJ{sup -1} (0.45 k Wh{sup -1}) is necessary to balance the costs of a 1-MW plant. An increase in plant size to 4 MW together with an increase in compost price from SEK 100 tonnes{sup -1} to SEK 370 tonnes{sup -1} and a 20% rise in the methane yield through post-digestion (20%) would decrease the price to SEK 0.061 MJ{sup -1} (0.22 kWh{sup -1}). (au) 15 refs.

  20. Logistics Mode and Network Planning for Recycle of Crop Straw Resources

    Zhou, Lingyun; Gu, Weidong; Zhang, Qing

    2013-01-01

    To realize the straw biomass industrialized development, it should speed up building crop straw resource recycle logistics network, increasing straw recycle efficiency, and reducing straw utilization cost. On the basis of studying straw recycle process, this paper presents innovative concept and property of straw recycle logistics network, analyses design thinking of straw recycle logistics network, and works out straw recycle logistics mode and network topological structure. Finally, it come...

  1. Relationship between Water and Carbon Utilization under Different Straw Mulching and Plant Density of Summer Maize in North China Plain

    Liu, Quanru; Du, Shoujian; Yin, Honglian; Wang, Juan

    2018-03-01

    To explore the relationship between water and carbon utilization and key factors to keep high water use efficiency (WUE), a 2-yr experiment was conduct by covering 0 and 0.6 kg m-2 straw to the surface of soil with plant densities of 1.0 × 105, 7.5 × 104, and 5.5 × 104 plants ha-1 in North China Plain during summer maize growing seasons of the 2012 and 2013. Results showed that straw mulching not only increased grain yield (GY), WUE, and carbon efficient ratio (CER) but also inhibited CO2 emission significantly. WUE positively correlated with CER, GY and negative correlated with evapotranspiration (ET) and CO2 emission. CER had the larger direct effect on WUE compared with ET and CO2 emission. The results indicate that straw mulching management in summer maize growing seasons could make sense for inhibiting CO2 emission.

  2. Carbon footprint of grain production in China.

    Zhang, Dan; Shen, Jianbo; Zhang, Fusuo; Li, Yu'e; Zhang, Weifeng

    2017-06-29

    Due to the increasing environmental impact of food production, carbon footprint as an indicator can guide farmland management. This study established a method and estimated the carbon footprint of grain production in China based on life cycle analysis (LCA). The results showed that grain production has a high carbon footprint in 2013, i.e., 4052 kg ce/ha or 0.48 kg ce/kg for maize, 5455 kg ce/ha or 0.75 kg ce/kg for wheat and 11881 kg ce/ha or 1.60 kg ce/kg for rice. These footprints are higher than that of other countries, such as the United States, Canada and India. The most important factors governing carbon emissions were the application of nitrogen fertiliser (8-49%), straw burning (0-70%), energy consumption by machinery (6-40%), energy consumption for irrigation (0-44%) and CH 4 emissions from rice paddies (15-73%). The most important carbon sequestration factors included returning of crop straw (41-90%), chemical nitrogen fertiliser application (10-59%) and no-till farming practices (0-10%). Different factors dominated in different crop systems in different regions. To identity site-specific key factors and take countermeasures could significantly lower carbon footprint, e.g., ban straw burning in northeast and south China, stopping continuous flooding irrigation in wheat and rice production system.

  3. Interstellar grains

    Hoyle, F.; Wickramasinghe, N.C.

    1980-11-01

    Interstellar extinction of starlight was observed and plotted as a function of inverse wavelength. Agreement with the calculated effects of the particle distribution is shown. The main kinds of grain distinguished are: (1) graphite spheres of radius 0.02 microns, making up 10% of the total grain mass (2) small dielectric spheres of radius 0.04 microns making up 25% and (3) hollow dielectric cylinders containing metallic iron, with diameters of 2/3 microns making up 45%. The remaining 20% consists of other metals, metal oxides, and polysiloxanes. Absorption factor evidence suggests that the main dielectric component of the grains is organic material.

  4. Radiation disinfection of rice-straw products

    Ito, Hitoshi; Ishigaki, Isao; Ohki, Yumi.

    1991-01-01

    For the quarantine treatment of rice-straw products from foreign countries, irradiation effects of gamma-rays and electron beams on plant pathogenic microorganisms especially on fungi were investigated. The total aerobic bacteria in rice-straw was determined to be 3x10 7 - 3x10 8 per gram which consisted mainly of Pseudomonas, Flavobacterium, Arthrobacter and Erwinia. The principal bacteria in rice-straw could be eliminated with 5 kGy of gamma irradiation. Deinococcus proteolyticus and Pseudomonas radiora were the main survivors at 5 to 12 kGy of irradiation. Saprophytic fungus which belongs to Dimorphospora also survived up to 8 kGy of irradiation. The D 10 values of 26 strains of fungi isolated from rice-straw were 1.1 to 2.5 times higher in the dry condition compared to the values when irradiated in 0.067 M phosphate buffer solution. The induction dose in the dry condition also increased from 1.5 to 10 times than that in the wet condition. In the case of electron beam irradiation of fungi under dry conditions, D 10 values were about 1.3 times higher than that of gamma irradiation. From this study, the dose necessary to reduce the plant pathogenic fungi in rice-straw at a level below 10 -4 per gram was estimated to be as 7-8 kGy for gamma-irradiation and 10 kGy for electron beam irradiation. (author)

  5. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    Arvaniti, E

    2010-12-15

    Agricultural residues from rapeseed biodiesel industry (rapeseed cake, rape straw, crude glycerol), which represent the 82%wt. of the oilseed rape, currently have only low-grade applications in the market. For this, a scenario was built on exploiting qualities of rapeseed biodiesel residues for forming added-value products, and expanding and upgrading an existing biodiesel plant, to an oilseed rape biorefinery by 2020 in European ground. Selection of products was based on a technological feasibility study given the time frame, while priority was given to Low-Value-High-Volume readily marketed products, like production of energy and feed. Products selected except rapeseed biodiesel, were ethanol, biogas, enzymes energy, chemical building blocks, and superior quality animal fodder. The production lines were analyzed and prospects for 2020 were projected on a critical basis. Particular merit was given to two products, ethanol from cellulose, and cellulolytic enzymes from rape straw. Cellulosic ethanol from rape straw was optimized for all production steps, i.e. for thermo-chemical pretreatment, enzyme hydrolysis, and fermentation of C6 sugars. Thermo-chemical pretreatment was studied with Wet oxidation technique at different conditions of temperature, reaction time, and oxygen pressure, but also factors like pre-soaking straw in warm water, or recycling liquid were also studied. Wet oxidation has been extensively tested in the past for different substrates, and gives promising results with indicators that are important for cellulosic ethanol production; C6 sugars recovery, high digestibility for enzymes, and limited formed degradation products. Here, optimal pretreatment conditions for rape straw were first presoaking rape straw at 80 deg. C for 20 minutes, and then wet-oxidize with 12 bar of oxygen at 205 deg. C for 3 minutes. Recovery of cellulose and hemicellulose under these conditions was 105% and 106% respectively, while recovery of lignin was 86%. When this

  6. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    Arvaniti, E.

    2010-12-15

    Agricultural residues from rapeseed biodiesel industry (rapeseed cake, rape straw, crude glycerol), which represent the 82%wt. of the oilseed rape, currently have only low-grade applications in the market. For this, a scenario was built on exploiting qualities of rapeseed biodiesel residues for forming added-value products, and expanding and upgrading an existing biodiesel plant, to an oilseed rape biorefinery by 2020 in European ground. Selection of products was based on a technological feasibility study given the time frame, while priority was given to Low-Value-High-Volume readily marketed products, like production of energy and feed. Products selected except rapeseed biodiesel, were ethanol, biogas, enzymes energy, chemical building blocks, and superior quality animal fodder. The production lines were analyzed and prospects for 2020 were projected on a critical basis. Particular merit was given to two products, ethanol from cellulose, and cellulolytic enzymes from rape straw. Cellulosic ethanol from rape straw was optimized for all production steps, i.e. for thermo-chemical pretreatment, enzyme hydrolysis, and fermentation of C6 sugars. Thermo-chemical pretreatment was studied with Wet oxidation technique at different conditions of temperature, reaction time, and oxygen pressure, but also factors like pre-soaking straw in warm water, or recycling liquid were also studied. Wet oxidation has been extensively tested in the past for different substrates, and gives promising results with indicators that are important for cellulosic ethanol production; C6 sugars recovery, high digestibility for enzymes, and limited formed degradation products. Here, optimal pretreatment conditions for rape straw were first presoaking rape straw at 80 deg. C for 20 minutes, and then wet-oxidize with 12 bar of oxygen at 205 deg. C for 3 minutes. Recovery of cellulose and hemicellulose under these conditions was 105% and 106% respectively, while recovery of lignin was 86%. When this

  7. Intrinsic kinetics and devolatilization of wheat straw during torrefaction

    Shang, Lei; Ahrenfeldt, Jesper; Holm, Jens Kai

    2013-01-01

    analyzer by coupling with a mass spectrometer. The kinetic parameters obtained by applying a two-step reaction in series model and taking initial dynamic heating period into account can accurately describe the experimental results with different heating programs. Activation energies and pre......-exponential parameters obtained for the two steps are: 71.0 and 76.6 kJ mol−1, 3.48 × 104 and 4.34 × 103 s−1, respectively. The model and these parameters were also proven to be able to predict the residual mass of wheat straw in a batch scale torrefaction reactor. By analyzing the gas products in situ, the formation...... of water, carbon monoxide, formic acid, formaldehyde, methanol, acetic acid, carbon dioxide, methyl chloride, traces of hydrogen sulfide and carbonyl sulfide were found at torrefaction temperatures of 250 and 300 °C. --------------------------------------------------------------------------------...

  8. Some characteristics of the long straw drift tubes

    Bychkov, V.N.; Kekelidze, G.D.; Ivanov, A.B.; Livinskij, V.V.; Lobastov, S.P.; Lysan, V.M.; Mishin, S.V.; Peshekhonov, V.D.

    1998-01-01

    This article represents the construction and testing of the long straw drift tubes of different types. The diameter and the length of each straw were equal to 15 mm and 3 m respectively. The cathode resistance of these straws has a small value, i.e. about 100 Ohm/m. Thus, they do not have a large attenuation length. Installation of the spacers reduces the effective straw length by 0.5 % per meter, at least

  9. Straw insulated buildings. Nature building materials; Strohgedaemmte Gebaeude. Naturbaustoffe

    NONE

    2013-06-01

    Straw is one of the major agricultural by-products and is mainly used as litter in animal husbandry and to compensate the balance of humus. A relatively recent development is the use of straw bales for the construction of buildings. The brochure under consideration documents the technical development of straw construction in Germany. Possibilities of the use of straw in single family homes up to commercial buildings are described.

  10. Plasma-Assisted Pretreatment of Wheat Straw

    Schultz-Jensen, Nadja; Leipold, Frank; Bindslev, Henrik

    2011-01-01

    O3 generated in a plasma at atmospheric pressure and room temperature, fed with dried air (or oxygen-enriched dried air), has been used for the degradation of lignin in wheat straw to optimize the enzymatic hydrolysis and to get more fermentable sugars. A fixed bed reactor was used combined...... with a CO2 detector and an online technique for O3 measurement in the fed and exhaust gas allowing continuous measurement of the consumption of O3. This rendered it possible for us to determine the progress of the pretreatment in real time (online analysis). The process time can be adjusted to produce wheat...... straw with desired lignin content because of the online analysis. The O3 consumption of wheat straw and its polymeric components, i.e., cellulose, hemicellulose, and lignin, as well as a mixture of these, dry as well as with 50% water, were studied. Furthermore, the process parameters dry matter content...

  11. Straw for energy production. Technology - Environment - Economy

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  12. Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system.

    Yang, Haishui; Xu, Mingmin; Koide, Roger T; Liu, Qian; Dai, Yajun; Liu, Ling; Bian, Xinmin

    2016-03-15

    Crop residue management and nitrogen loss are two important environmental problems in the rice-wheat rotation system in China. This study investigated the effects of burial of straw on water percolation, nitrogen loss by leaching, crop growth and yield. Greenhouse mesocosm experiments were conducted over the course of three simulated cropping seasons in a rice1-wheat-rice2 rotation. Greater amounts of straw resulted in more water percolation, irrespective of crop season. Burial at 20 and 35 cm significantly reduced, but burial at 50 cm increased nitrogen leaching. Straw at 500 kg ha(-1) reduced, but at 1000 kg ha(-1) and at 1500 kg ha(-1) straw increased nitrogen leaching in three consecutive crop rotations. In addition, straw at 500 kg ha(-1) buried at 35 cm significantly increased yield and its components for both crops. This study suggests that N losses via leaching from the rice-wheat rotation may be reduced by the burial of the appropriate amount of straw at the appropriate depth. Greater amounts of buried straw, however, may promote nitrogen leaching and negatively affect crop growth and yields. Complementary field experiments must be performed to make specific agronomic recommendations. © 2015 Society of Chemical Industry.

  13. Improvement of Rice Straw for Ruminant Feed Through Unconventional Alkali Treatment and Supplementation of Various Protein Sources

    SNO Suwandyastuti

    2010-05-01

    Full Text Available Various chemical treatments were conducted to increase the utilization of rice straw as feed for ruminant animals. Various sources of protein, minerals and energy should be added to improve the nutritive value of feeds. Two experiments were conducted in this study. The objective of the first experiments was to study the effect of chemical treatment on the ruminal fermentation products in cattle. Unconventional alkali treatment made from filtrate of a 10% rice hulls ash solution enriched with urea and minerals (treatment 1 increased volatile fatty acid (VFA production, ammonia nitrogen (NH3-N and rumen microbial protein synthesis (MPS. The maximum values of NH3-N production and rumen microbial protein synthesis were reached at 4 hours after incubation, while VFA was reached at 6 hours. The second experiment was conducted to study the increase of nutritive value of rice straw previously treated in experiment 1 through supplementation with various protein sources. Protein sources from the residues of vegetative oil production such as coconut, peanut and soybean showed higher responses compared to soy-sauce making residue and tofu making residue. The protein effluent production was highest (2.19 g/d at a VFA/NH3-N ration of 37.74 (r = 0.912. It can be recommended that protein sources from agro-industrial wastes can be used to increase the nutritive value and utilization of rice straw as ruminant feed. (Animal Production 12(2: 82-85 (2010Key Words: rice straw, rumen, fermentation

  14. An Uncoventional Approach for a Straw Tube-Microstrip Detector

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.

    2004-01-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported on as well.

  15. Design and performance of a straw tube drift chamber

    Oh, S. H.; Wesson, D. K.; Cooke, J.; Goshaw, A. T.; Robertson, W. J.; Walker, W. D.

    1991-06-01

    The design and performance of the straw drift chambers used in E735 is reported. The chambers are constructed from 2.5 cm radius aluminized mylar straw tubes with wall thickness less than 0.2 mm. Also, presented are the results of tests with 2 mm radius straw tubes. The small tube has a direct detector application at the Superconducting Super Collider.

  16. The effect of long or chopped straw on pig behaviour.

    Lahrmann, H P; Oxholm, L C; Steinmetz, H; Nielsen, M B F; D'Eath, R B

    2015-05-01

    In the EU, pigs must have permanent access to manipulable materials such as straw, rope, wood, etc. Long straw can fulfil this function, but can increase labour requirements for cleaning pens, and result in problems with blocked slatted floors and slurry systems. Chopped straw might be more practical, but what is the effect on pigs' behaviour of using chopped straw instead of long straw? Commercial pigs in 1/3 slatted, 2/3 solid pens of 15 pigs were provided with either 100 g/pig per day of long straw (20 pens) or of chopped straw (19 pens). Behavioural observations were made of three focal pigs per pen (one from each of small, medium and large weight tertiles) for one full day between 0600 and 2300 h at each of ~40 and ~80 kg. The time spent rooting/investigating overall (709 s/pig per hour at 40 kg to 533 s/pig per hour at 80 kg), or directed to the straw/solid floor (497 s/pig per hour at 40 kg to 343 s/pig per hour at 80 kg), was not affected by straw length but reduced with age. Time spent investigating other pigs (83 s/pig per hour at 40 kg), the slatted floor (57 s/pig per hour) or pen fixtures (21 s/pig per hour) was not affected by age or straw length. Aggressive behaviour was infrequent, but lasted about twice as long in pens with chopped straw (2.3 s/pig per hour at 40 kg) compared with pens with long straw (1.0 s/pig per hour at 40 kg, P=0.060). There were no significant effects of straw length on tail or ear lesions, but shoulders were significantly more likely to have minor scratches with chopped straw (P=0.031), which may reflect the higher levels of aggression. Smaller pigs showed more rooting/investigatory behaviour, and in particular directed towards the straw/solid floor and the slatted floor than their larger pen-mates. Females exhibited more straw and pen fixture-directed behaviour than males. There were no effects of pig size or sex on behaviour directed towards other pigs. In summary, pigs spent similar amounts of time interacting with straw

  17. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide

    Kahr, Heike; Steindl, Daniel; Wimberger, Julia; Schürz, Daniel; Jäger, Alexander

    2013-04-01

    from straw. We also evaluated the production of world's most important grains (wheat, corn, rice, sugar cain) and we calculated the worldwide production of the relevant lignocellulosic residues. On the basis of our labs scale experiments on bioethanol production, the possible lignocellulosic bioethanol production word wide was determined.

  18. Effect of Interplanting with Zero Tillage and Straw Manure on Rice Growth and Rice Quality

    Shi-ping LIU

    2007-09-01

    Full Text Available The interplanting with zero-tillage of rice, i.e. direct sowing rice 10–20 days before wheat harvesting, and remaining about 30-cm high stubble after cutting wheat or rice with no tillage, is a new cultivation technology in wheat-rice rotation system. To study the effects of interplanting with zero tillage and straw manure on rice growth and quality, an experiment was conducted in a wheat-rotation rotation system. Four treatments, i.e. ZIS (Zero-tillage, straw manure and rice interplanting, ZI (Zero-tillage, no straw manure and rice interplanting, PTS (Plowing tillage, straw manure and rice transplanting, and PT (Plowing tillage, no straw manure and rice transplanting, were used. ZIS reduced plant height, leaf area per plant and the biomass of rice plants, but the biomass accumulation of rice at the late stage was quicker than that under conventional transplanting cultivation. In the first year (2002, there was no significant difference in rice yield among the four treatments. However, rice yield decreased in interplanting with zero-tillage in the second year (2003. Compared with the transplanting treatments, the number of filled grains per panicle decreased but 1000-grain weight increased in interplanting with zero-tillage, which were the main factors resulting in higher yield. Interplanting with zero-tillage improved the milling and appearance qualities of rice. The rates of milled and head rice increased while chalky rice rate and chalkiness decreased in interplanting with zero-tillage. Zero-tillage and interplanting also affected rice nutritional and cooking qualities. In 2002, ZIS showed raised protein content, decreased amylose content, softer gel consistency, resulting in improved rice quality. In 2003, zero-tillage and interplanting decreased protein content and showed similar amylose content as compared with transplanting treatments. Moreover, protein content in PTS was obviously increased in comparison with the other three treatments

  19. Direct ethanol conversion of pretreated straw by Fusarium oxysporum

    Christakopoulos, P.; Koullas, D.P.; Kekos, D.; Koukios, E.G.; Macris, B.J. (National Technical Univ., Athens (GR). Dept. of Chemical Engineering)

    1991-01-01

    Factors affecting the direct conversion of alkali pretreated straw to ethanol by Fusarium oxysporum F3 were investigated and the alkali level used for pretreatment and the degree of delignification of straw were found to be the most important. A linear correlation between ethanol yield and both the degree of straw delignification and the alkali level was observed. At optimum delignified straw concentration (4% w/v), a maximum ethanol yield of 0.275 g ethanol g{sup -1} of straw was obtained corresponding to 67.8% of the theoretical yield. (author).

  20. Straw quality for its combustion in a straw-fired power plant

    Hernandez Allica, J.; Blanco, F.; Garbisu, C. [NEIKER, Instituto Vasco de Investigacion y Desarrollo Agrario, Derio (Spain); Mitre, A.J.; Gonzalez Bustamante, J.A. [IBERDROLA Ingenieria y Consultoria, Bilbao (Spain); Itoiz, C. [Energia Hidroelectrica de Navarra, Pamplona (Spain); Alkorta, I. [Universidad del Pais Vasco, Bilbao (Spain). Facultad de Ciencias

    2001-07-01

    ENERGIA HIDROELECTRICA DE NAVARRA, S.A. (Navarra, Spain) is erecting a 25 MW power generation plant using straw for electricity generation. Cereal straws have proved to be difficult to burn in most existing combustion systems. During the last two years, a study has been carried out in Navarra to investigate the possibilities of improving the fuel quality of straw by a reduction in its K{sup +} and Cl{sup -} contents. The simple leaching of K{sup +} and Cl{sup -} with water by exposure to natural rainfall in the field resulted in considerable reductions of these two elements. A reduction in the K{sup +} content of the cereal plants caused by exposure to natural rainfall has been observed during plant ripening (before crop harvesting). Some varieties of straw show lower initial K{sup +} contents, making them more suitable for this purpose. There seems to be no clear correlation between the relative decrease in K{sup +} content and the amount of accumulated rainfall. Our results have also shown a very close correlation between K{sup +} content and electrical conductivity. The simplicity of this latter measurement makes this parameter a very interesting option to test the straw quality directly in the field. Structural components of the straw were not decomposed during the time when we left the straw in the field. Finally, the Cl{sup -} content in straw was increased when the Cl{sup -} dose from the fertiliser was increased. On the other hand, the content of K{sup +} was not influenced by the applied amount of K{sup +} fertiliser. (Author)

  1. 40 CFR 180.589 - Boscalid; tolerances for residues.

    2010-07-01

    ..., dried shelled, except soybean, subgroup 6C, except cowpea, field pea and grain lupin 2.5 Pea and bean, succulent shelled, subgroup 6B, except cowpea 0.6 Peanut 0.05 Peanut, meal 0.15 Peanut, refined oil 0.15... Cotton, undelinted seed 0.05 Cowpea, seed 0.1 Flax, seed 3.5 Grain, cereal, forage, fodder and straw...

  2. 40 CFR 180.507 - Azoxystrobin; tolerances for residues.

    2010-07-01

    ....0 Rambutan 2.0 Rapeseed, Indian 0.5 Rapeseed, seed 0.5 Rice, grain 5.0 Rice, hulls 20 Rice, straw 12 Rice, wild, grain 5.0 Safflower, seed 0.5 Salal 3.0 Sapodilla 2.0 Sapote, black 2.0 Sapote, mamey 2.0... Soybean, hulls 1.0 Soybean, seed 0.5 Spanish lime 2.0 Spearmint, tops 30 Spice Subgroup 19B, except black...

  3. Trichoderma Reesei single cell protein production from rice straw pulp in solid state fermentation

    Zaki, M.; Said, S. D.

    2018-04-01

    The dependency on fish meal as a major protein source for animal feed can lead toit priceinstability in line with the increasing in meat production and consumption in Indonesia. In order todeal with this problem, an effort to produce an alternative protein sources production is needed. This scenario is possible due to the abundantavailability of agricultural residues such as rice straw whichcould be utilized as substrate for production of single cell proteins as an alternative proteinsource. This work investigated the potential utilization of rice straw pulp and urea mixture as substrate for the production of local Trichoderma reesei single cell protein in solid state fermentation system. Some parameters have been analyzed to evaluate the effect of ratio of rice straw pulp to urea on mixed single cell protein biomass (mixed SCP biomass) composition, such as total crude protein (analyzed by kjedhal method) and lignin content (TAPPI method).The results showed that crude protein content in mixed SCP biomassincreases with the increasing in fermentation time, otherwise it decreases with the increasing insubstrate carbon to nitrogen (C/N) ratio. Residual lignin content in mixed SCP biomass decreases from 7% to 0.63% during fermentationproceeded of 21 days. The highest crude protein content in mixed SCP biomasswas obtained at substrate C/N ratio 20:1 of 25%.

  4. Straw Rockets Are out of This World

    Gillman, Joan

    2013-01-01

    To capture students' excitement and engage their interest in rocketships and visiting planets in the solar system, the author designed lessons that give students the opportunity to experience the joys and challenges of developing straw rockets, and then observing which design can travel the longest distance. The lessons are appropriate for…

  5. Dehalogenation and decolorization of wheat straw- basedbleachery ...

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... Differences in the persistence of various bleachery effluent lignins against attack by white-rot fungi. Biotechnol. Lett. 14: 869-874. Nonwood (2000). Biological Materials for Nonwood Products, Upgrading straw into pulp, pulp and polymeric material. available at http://www.nf-2000.org/secure/Eclair/F141.htm.

  6. Experimental study of methanic fermentation of straw

    Dopter, P; Beerens, H

    1952-12-03

    The amount of liquid manure obtainable was a limiting factor in methanic fermentation of wheat straw. An equal volume of 0.2% aqueous solution of Na formate could be substituted for 90% of the normal requirements of liquid manure. This shortened the preliminary stages of cellulosic fermentation when no methane was produced and slightly increased the subsequent yield of methane.

  7. In Situ Flash Pyrolysis of Straw

    Bech, Niels

    In-Situ Flash Pyrolysis of Straw Ph.D. dissertation by Niels Bech Submitted: April 2007. Supervisors: Professor Kim Dam-Johansen, Associate Professor Peter Arendt Jensen Erfaringerne med forbrænding af halm opnået gennem et årti har vist, at en proces der kan koncentrere energien på marken, fjerne...

  8. Producing ergosterol from corn straw hydrolysates using ...

    Ergosterol is an economically important metabolite produced by Saccharomyces cerevisiae. In this study, the production of ergosterol by the strain using corn straw as an inexpensive carbon source was investigated. The total yield of ergosterol was determined by both the biomass and ergosterol content in yeast cells which ...

  9. Cross-talk in straw tube chambers

    Marzec, J. E-mail: janusz.marzec@ire.pw.edu.pl

    2003-05-11

    An analytical model of the signal transmission between neighboring straw tubes with resistive cathodes (cross-talk) is presented. The dependence of the cross-talk level on the cathode resistance, tube length, particle detection point, the distance of the tube from the shielding planes, and termination of the tube ends is analyzed.

  10. Cross-talk in straw tube chambers

    Marzec, J.

    2003-01-01

    An analytical model of the signal transmission between neighboring straw tubes with resistive cathodes (cross-talk) is presented. The dependence of the cross-talk level on the cathode resistance, tube length, particle detection point, the distance of the tube from the shielding planes, and termination of the tube ends is analyzed

  11. Prospects of rice straw as a raw material for paper making.

    Kaur, Daljeet; Bhardwaj, Nishi Kant; Lohchab, Rajesh Kumar

    2017-02-01

    Pulp and paper mills are indispensable for any nation as far as the growth of the nation is concerned. Due to fast growth in population, urbanization and industrialization, the demand and consumption of paper has increased tremendously. These put high load on our natural resources and force the industry to look for alternative raw material. Rice straw is a lignocellulosic material abundantly available in wood short countries like China, India, Bangladesh, etc. and can be used as raw material for this industry. Open burning of rice straw releases noxious green house gases to the air and poses serious threats to global air chemistry and human health. So, it is a dual benefit option (for farmers and industries) to use rice straw as a raw material in pulp and paper industry. Organosolv pulping using acids are the prominent choices of researchers to convert this residue into valuable pulp but in developed countries only. Developing world favours the soda and soda-AQ processes as these are economical. As a virtue of less lignin content in comparison to wood, rice straw requires less harsh conditions for cooking and can be easily pulped. Bleaching is a crucial step of paper making but also responsible for causing water pollution. Many studies revealed that during the process more than 500 chlorinated compounds are released that are highly toxic, bioaccumulative and carcinogenic in nature. Most of the industries over the globe switch on to the elemental chlorine free short sequence bleaching methods using chlorine dioxide, hypochlorite and hydrogen peroxide. This paper presented the effective need of ecofriendly, economically reliable pulping and bleaching sequences in case of rice straw to eliminate the problems of chlorinated compounds in wastewater of paper mills. Such approach of using waste as a raw material with its environmentally safe processing for making paper can prove to be valuable towards sustainable growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Manufacturing and process optimization of porous rice straw board

    Liu, Dejun; Dong, Bing; Bai, Xuewei; Gao, Wei; Gong, Yuanjuan

    2018-03-01

    Development and utilization of straw resources and the production of straw board can dramatically reduce straw waste and environmental pollution associated with straw burning in China. However, the straw board production faces several challenges, such as improving the physical and mechanical properties, as well as eliminating its formaldehyde content. The recent research was to develop a new straw board compound adhesive containing both inorganic (MgSO4, MgCO3, active silicon and ALSiO4) and organic (bean gum and modified Methyl DiphenylDiisocyanate, MDI) gelling materials, to devise a new high frequency straw board hot pressing technique and to optimize the straw board production parameters. The results indicated that the key hot pressing parameters leading to porous straw board with optimal physical and mechanical properties. These parameters are as follows: an adhesive containing a 4:1 ratio of inorganic-to-organic gelled material, the percentage of adhesive in the total mass of preload straw materials is 40%, a hot-pressing temperature in the range of 120 °C to 140 °C, and a high frequency hot pressing for 10 times at a pressure of 30 MPa. Finally, the present work demonstrated that porous straw board fabricated under optimal manufacturing condition is an environmentally friendly and renewable materials, thereby meeting national standard of medium density fiberboard (MDF) with potential applications in the building industry.

  13. Numerical modeling of straw combustion in a fixed bed

    Zhou, Haosheng; Jensen, Anker; Glarborg, Peter

    2005-01-01

    . The straw combustion processes include moisture evaporation, straw pyrolysis, gas combustion, and char combustion. The model provides detailed information of the structure of the ignition flame front. Simulated gas species concentrations at the bed surface, ignition flame front rate, and bed temperature......Straw is being used as main renewable energy source in grate boilers in Denmark. For optimizing operating conditions and design parameters, a one-dimensional unsteady heterogeneous mathematical model has been developed and experiments have been carried out for straw combustion in a fixed bed...... are in good agreement with measurements at different operating conditions such as primary air-flow rate, pre-heating of the primary air, oxygen concentration, moisture content in straw, and bulk density of the straw in the fixed bed. A parametric study indicates that the effective heat conductivity, straw...

  14. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties: Rice straw as a feedstock for biofuels

    Satlewal, Alok [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Joint Inst. for Biological Sciences, Biosciences Division; Indian Oil Corporation Ltd, Faridabad (India), Dept. of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre; Agrawal, Ruchi [Indian Oil Corporation Ltd, Faridabad (India), Dept. of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre; Bhagia, Samarthya [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Das, Parthapratim [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Ragauskas, Arthur J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering

    2017-10-17

    The surplus availability of rice straw, its limited usage and environment pollution caused by inefficient burning has fostered research for its valorization to biofuels. This review elucidates the current status of rice straw potential around the globe along with recent advances in revealing the critical factors responsible for its recalcitrance and chemical properties. The role and accumulation of high silica content in rice straw has been elucidated with its impact on enzymatic hydrolysis in a biorefinery environment. The correlation of different pretreatment approaches in modifying the physiochemical properties of rice straw and improving the enzymatic accessibility has also been discussed. This study highlights new challenges, resolutions and opportunities for rice straw based biorefineries.

  15. Radiation disinfection of rice-straw products

    Ito, Hitoshi; Ishigaki, Isao (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Ohki, Yumi

    1991-11-01

    For the quarantine treatment of rice-straw products from foreign countries, irradiation effects of gamma-rays and electron beams on plant pathogenic microorganisms especially on fungi were investigated. The total aerobic bacteria in rice-straw was determined to be 3x10{sup 7} - 3x10{sup 8} per gram which consisted mainly of Pseudomonas, Flavobacterium, Arthrobacter and Erwinia. The principal bacteria in rice-straw could be eliminated with 5 kGy of gamma irradiation. Deinococcus proteolyticus and Pseudomonas radiora were the main survivors at 5 to 12 kGy of irradiation. Saprophytic fungus which belongs to Dimorphospora also survived up to 8 kGy of irradiation. The D{sub 10} values of 26 strains of fungi isolated from rice-straw were 1.1 to 2.5 times higher in the dry condition compared to the values when irradiated in 0.067 M phosphate buffer solution. The induction dose in the dry condition also increased from 1.5 to 10 times than that in the wet condition. In the case of electron beam irradiation of fungi under dry conditions, D{sub 10} values were about 1.3 times higher than that of gamma irradiation. From this study, the dose necessary to reduce the plant pathogenic fungi in rice-straw at a level below 10{sup -4} per gram was estimated to be as 7-8 kGy for gamma-irradiation and 10 kGy for electron beam irradiation. (author).

  16. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    Anja Schmidt

    Full Text Available Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  17. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  18. Effect of tillage and crop residues management on mungbean (vigna radiata (L.) wilczek) crop yield, nitrogen fixation and water use efficiency in rainfed areas

    Mohammad, W.; Shehzadi, S.; Shah, S.M.; Shah, Z.

    2010-01-01

    A field experiment was conducted to study the effect of crop residues and tillage practices on BNF, WUE and yield of mungbean (Vigna radiata (L.) Wilczek) under semi arid rainfed conditions at the Livestock Research Station, Surezai, Peshawar in North West Frontier Province (NWFP) of Pakistan. The experiment comprised of two tillage i) conventional tillage (T1) and ii) no-tillage (T0) and two residues i) wheat crop residues retained (+) and ii) wheat crop residues removed (-) treatments. Basal doses of N at the rate of 20: P at the rate of 60 kg ha-1 were applied to mungbean at sowing time in the form of urea and single super phosphate respectively. Labelled urea having 5% 15N atom excess was applied at the rate of 20 kg N ha-1 as aqueous solution in micro plots (1m2) in each treatment plot to assess BNF by mungbean. Similarly, maize and sorghum were grown as reference crops and were fertilized with 15N labelled urea as aqueous solution having 1% 15N atom excess at the rate of 90 kg N ha/sup -1/. The results obtained showed that mungbean yield (grain/straw) and WUE were improved in notillage treatment as compared to tillage treatment. Maximum mungbean grain yield (1224 kg ha/sup -1/) and WUE (6.61kg ha/sup -1 mm/sup -1/) were obtained in no-tillage (+ residues) treatment. The N concentration in mungbean straw and grain was not significantly influenced by tillage or crop residue treatments. The amount of fertilizer-N taken up by straw and grain of mungbean was higher under no-tillage with residues-retained treatment but the differences were not significant. The major proportion of N (60.03 to 76.51%) was derived by mungbean crop from atmospheric N2 fixation, the remaining (19.6 to 35.91%) was taken up from the soil and a small proportion (3.89 to 5.89%) was derived from the applied fertilizer in different treatments. The maximum amount of N fixed by mungbean (82.59 kg ha/sup -1/) was derived in no-tillage with wheat residue-retained treatment. By using sorghum as

  19. Environmentally Friendly Utilization of Wheat Straw Ash in Cement-Based Composites

    Shazim Ali Memon

    2018-04-01

    Full Text Available The open burning of biomass residue constitutes a major portion of biomass burning and leads to air pollution, smog, and health hazards. Various alternatives have been suggested for open burning of crop residue; however, each of them has few inherent drawbacks. This research suggests an alternative method to dispose wheat straw, i.e., to calcine it in a controlled environment and use the resulting ash as a replacement of cement by some percentage in cement-based composites. When wheat straw, an agricultural product, is burned, it is very rich in SiO2, which has a pozzolanic character. However, the pozzolanic character is sensitive to calcination temperature and grinding conditions. According to the authors’ best knowledge, until now, no systematic study has been devised to assess the most favorable conditions of burning and grinding for pozzolanic activity of wheat straw ash (WSA. Hence, a systematic experimental program was designed. In Phase I, calcination of WS was carried out at 500 °C, 600 °C, 700 °C, and 800 °C for 2 h. The resulting ashes were tested for color change, weight loss, XRD, XRF, Chapelle activity, Fratini, and pozzolanic activity index (PAI tests. From test results, it was found that beyond 600 °C, the amorphous silica transformed into crystalline silica. The WSA calcined at 600 °C was found to satisfy Chapelle and Fratini tests requirements, as well as the PAI requirement of ASTM at 28 days. Therefore, WSA produced at 600 °C (WSA600 showed the best pozzolanic performance. In Phase II, WSA600 was ground for various intervals (15–240 min. These ground ashes were tested for SEM, Blaine fineness, Chapelle activity, Fratini, and PAI tests. From test results, it was observed that after 120 min of grinding, there was an increase of 48% in Blaine surface area, with a consequence that WSA-replaced cement cubes achieved a compressive strength almost similar to that of the control mix. Conclusively, wheat straw calcined at

  20. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China

    Sun, Liying; Wu, Zhen; Ma, Yuchun; Liu, Yinglie; Xiong, Zhengqin

    2018-05-01

    Ammonia is a vital component of the nitrogen (N) cycle of terrestrial ecosystems in terms of volatilization and deposition. Here, a field experiment was undertaken to simultaneously investigate the effects of rice straw and urea incorporation on ammonia volatilization, atmospheric N deposition, yields and agronomic nitrogen use efficiency (NUE) under a rice-wheat system in China. The experiment involved four treatments: control (0 N, 0 straw), NS0 (250 kg N ha-1 season-1, 0 straw), NS1 (250 kg N ha-1 season-1, 3 t ha-1 yr-1 straw), and NS2 (250 kg N ha-1 season-1, 6 t ha-1 yr-1 straw) in the rice-wheat annual rotation system. The results indicated that the NS0, NS1 and NS2 treatments emitted cumulative ammonia of 14.0%, 16.4%, and 19.2%, respectively in the rice season and 7.6%, 11.1%, and 12.3%, respectively in the wheat season among the total urea-N application. Compared to the NS0 treatment, the NS1 and NS2 treatments significantly increased the cumulative ammonia emissions by 15.5% (p NH4+-N deposition accounted for 56.1% of the total inorganic N deposition during the whole rice-wheat system. The bulk NH4+-N deposition during the period of fertilization contributed 73.9% and 5.7% to the total NH4+-N deposition in the rice and wheat season, respectively. Overall, straw incorporation increased ammonia volatilization, not affecting the crop grain yield or NUE. The seasonal variation in NH4+-N bulk deposition was closely related to N fertilizer application.

  1. Reinforcement of the bio-gas conversion from pyrolysis of wheat straw by hot caustic pre-extraction.

    Zhang, Lilong; Chen, Keli; He, Liang; Peng, Lincai

    2018-01-01

    Pyrolysis has attracted growing interest as a versatile means to convert biomass into valuable products. Wheat straw has been considered to be a promising biomass resource due to its low price and easy availability. However, most of the products obtained from wheat straw pyrolysis are usually of low quality. Hot soda extraction has the advantage of selective dissolution of lignin whilst retaining the carbohydrates. This can selectively convert biomass into high-quality desired products and suppress the formation of undesirable products. The aim of this study was to investigate the pyrolysis properties of wheat straw under different hot caustic pretreatment conditions. Compared with the untreated straw, a greater amount of gas was released and fewer residues were retained in the extracted wheat straw, which was caused by an increase in porosity. When the NaOH loading was 14%, the average pore size of the extracted straw increased by 12% and the cumulative pore volume increased by 157% compared with the untreated straw. The extracted straw obtained from the 14% NaOH extraction was clearly selective for pyrolysis products. On one hand, many lignin pyrolysis products disappeared, and only four main lignin-unit-pyrolysis products were retained. On the other hand, polysaccharide pyrolysis products were enriched. Both propanone and furfural have outstanding peak intensities that could account for approximately 30% of the total pyrolysis products. However, with the excessive addition of NaOH (i.e. > 22% w/w) during pretreatment, the conversion of bio-gas products decreased. Thermogravimetric and low-temperature nitrogen-adsorption analysis showed that the pore structure had been seriously destroyed, leading to the closing of the release paths of the bio-gas and thus increasing the re-polymerisation of small bio-gas molecules. After suitable extraction (14% NaOH loading extraction), a considerable amount (25%) of the soluble components dissolved out of the straw. This

  2. Bioprocessing of wheat straw into nutritionally rich and digested cattle feed

    Shrivastava, Bhuvnesh; Jain, Kavish Kumar; Kalra, Anup; Kuhad, Ramesh Chander

    2014-01-01

    Wheat straw was fermented by Crinipellis sp. RCK-1, a lignin degrading fungus, under solid state fermentation conditions. The fungus degraded 18.38% lignin at the expense of 10.37% cellulose within 9 days. However, when wheat straw fermented for different duration was evaluated in vitro, the 5 day fungal fermented wheat straw called here “Biotech Feed” was found to possess 36.74% organic matter digestibility (OMD) and 5.38 (MJ/Kg Dry matter) metabolizable energy (ME). The Biotech Feed was also observed to be significantly enriched with essential amino acids and fungal protein by fungal fermentation, eventually increasing its nutritional value. The Biotech Feed upon in vitro analysis showed potential to replace 50% grain from concentrate mixture. Further, the calves fed on Biotech Feed based diets exhibited significantly higher (pintake (DMI: 3.74 Kg/d), dry matter digestibility (DMD: 57.82%), total digestible nutrients (TDN: 54.76%) and comparatively gained 50 g more daily body weight. PMID:25269679

  3. Biosorption of nickel with barley straw.

    Thevannan, Ayyasamy; Mungroo, Rubeena; Niu, Catherine Hui

    2010-03-01

    Wastewater containing nickel sulphate generated from a nickel plating industry is of great concern. In the present work, biosorption of nickel by barley straw from nickel sulphate solution was investigated. Nickel uptake at room temperature (23+/-0.5 degrees C) was very sensitive to solution pH, showing a better uptake value at a pH of 4.85+/-0.10 among the tested values. The nickel biosorption isotherm fitted well the Langmuir equation. When the ionic strength (IS) of the solution was increased from less than 0.02-0.6M, nickel uptake was reduced to 12% of that obtained at IS of less than 0.02 M. Barley straw showed a higher nickel uptake (0.61 mmol/g) than acid washed crab shells (0.04 mmol/g), demonstrating its potential as an adsorbent for removal of nickel. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Management of crop residues for sustainable crop production. Results of a co-ordinated research project 1996-2001

    2003-05-01

    management practice. More than 30% of N was lost from crop residues. When N was applied as crop residues, its retention in the soil was higher than for fertilizer N, but its recovery by plants was poor, as mentioned above. These results highlight the importance of investigating fertilizer-management practices to minimize the losses, especially during the early part of the cropping season. Application of straw resulted in increases in grain yields of rice and wheat of about 10% in experiments conducted in China. However, in general, addition of straw did not increase crop yields in other locations. This is encouraging, as initial immobilization of N due to application of high inputs of carbon through residues did not exhibit negative effects on crop yields. The experiments in India demonstrated simple practices, using wheat and rice residues, to produce compost as an alternative to stubble burning. Such practices can have important implications apart from the desired maintenance of soil organic matter and improving plant growth. For example, approximately 12 million tonnes of rice and wheat straw are burnt annually in Punjab, India, causing atmospheric pollution and producing over 28 million tonnes of carbon dioxide, a greenhouse gas. In addition, various gaseous forms of N are emitted during burning, representing a loss of $17 million in fertilizer equivalents and significant pollution of the environment by nitrous oxide. The results obtained from crop-residue application studies are of importance for residue-management practices. There is an increasing need for such information as in many countries new legislation has been introduced to ban the on-site burning of crop residues, for environmental reasons. Moreover, this CRP demonstrated the use of 15 N techniques for investigating the fate of N in crop residues and fertilizers under different management practices and cropping systems, which will be useful for other related CRPs on agroforestry, rainfed and rice

  5. Economy of straw-fired heating plants

    1991-10-01

    The aim was to produce a detailed survey of the economical aspects of the operation of individual Danish straw-fired heating plants and to compare the results. It is hoped the operators of these plants will thus be encouraged to work together when atttempting to solve problems in this respect and that the gathered information could be used by consultants. The collected data from the survey is presented in the form of tables and graphs. (AB)

  6. Grain alcohol study: summary

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentation demand; the optimizaton of value of agricultural crops; and the efficiencies of combining related industries. Ahydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grain can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural- environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  7. Grain alcohol study: summary

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (Ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentaton demand; the optimization of value of agricultureal crops; and the efficiencies of combining related industries. Anhydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grains can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural-environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  8. Methane and compost from straw. Final report

    Rijkens, B A

    1982-01-01

    A concept is developed in which the farmer collects the straw and ferments it anaerobically to compost and methane at the farm. The methane can be used for heating and for production of mechanical energy, while the compost can be returned to the land at any suitable moment. This way of processing conserves part of the energy, present in the straw, that would otherwise be lost by the field-burning or the ploughing-in. In the meantime it solves the field-burning and environmental problems and it provides the possibility to recycle the organic matter in the humus, as well as all the fertilizing compounds K, P, Mg and nitrogen. There are indications that the arable land will need a restocking with humus that has been lost during many years of (modern) farming, leading to loss in structure and production capacity. This study collects the global technical and economical data, enabling us to indicate under which circumstances and local conditions the methane and compost concept would be feasible and would be an alternative to field-burning, ploughing-in or to the purely energetic use of the straw.

  9. Opportunities and barriers to straw construction

    White, Caroline Meyer; Howard, Thomas J.; Lenau, Torben Anker

    2012-01-01

    During the past decades the building industry has had a great focus on energy consumption during the use phase of a building, but currently a more holistic view of the entire lifecycle of a building is starting to emerge. With this follows a greater interest in which building materials and techni......During the past decades the building industry has had a great focus on energy consumption during the use phase of a building, but currently a more holistic view of the entire lifecycle of a building is starting to emerge. With this follows a greater interest in which building materials...... and techniques of construction are considered. At the same time the request for a living environment free from toxins and allergenic substances, providing the basis for stress-free living and working conditions is increasingly demanded by clients for newly built homes. Since straw built houses supply a possible...... construction, and a series of qualitative interviews with a variety of stakeholders from previous straw build housing projects, results were gathered to find the most influential motives, barriers and considerations for straw build housing construction. Based on this empirical data, a design guide has been...

  10. Economic benefit analysis of cultivating Pleurotus ostreatus with rape straw

    Guan, Qinlan; Gong, Mingfu; Tang, Mei

    2018-04-01

    The cultivation of Pleurotus ostreatus with rape straw not only can save the cultivation cost of P. ostreatus, but also can reuse the resources and protect the environment. By adding different proportion of rape straw to the cultivation material of P. ostreatus, the reasonable amount of rape straw was selected and the economic benefit of P. ostreatus cultivated with the optimum amount of rape straw was analyzed. The results showed that adding 10% to 40% rape straw to the cultivation material of P. ostreatus did not affect the yield and biological conversion rate of P. ostreatus, and the ratio of production and investment of the amount of rape straw in the range of 10% to 50% was higher than of cottonseed husk alone as the main material of the formula.

  11. Estimation and change tendency of rape straw resource in Leshan

    Guan, Qinlan; Gong, Mingfu

    2018-04-01

    Rape straw in Leshan area are rape stalks, including stems, leaves and pods after removing rapeseed. Leshan area is one of the main rape planting areas in Sichuan Province and rape planting area is large. Each year will produce a lot of rape straw. Based on the analysis of the trend of rapeseed planting area and rapeseed yield from 2008 to 2014, the change trend of rape straw resources in Leshan from 2008 to 2014 was analyzed and the decision-making reference was provided for resource utilization of rape straw. The results showed that the amount of rape straw resources in Leshan was very large, which was more than 100,000 tons per year, which was increasing year by year. By 2014, the amount of rape straw resources in Leshan was close to 200,000 tons.

  12. Evaluation of Some Organic Residues on the Availability of Nutrients to wheat Plants Using '15N Isotope

    Omar, M.A.I.; Ismail, M.M.; El-akel, E.A.; Abdel Aziz, A.H.A.; Abdel-Wadood, A.

    2008-01-01

    The experiment was carried out in pots under greenhouse conditions to evaluate chicken manure and rice straw either individually or combined with mineral fertilizer rates on wheat plant grown in sandy soils. Organic materials were mixed with 5 kg soil pot 1 . 15 N-labeled ammonium sulfate was added after thinned wheat plants. Basal recommended dose of P and K were applied. The treatments were arranged in a completely randomized block design At harvest, the dry weight of straw and grains were recorded. Also Ndff, Ndfs and FUE were calculated. The obtained results showed that the application of organic and inorganic nitrogen fertilizer was significantly improved the yield of wheat straw and grains and have the order of ammonium sulfate (AS) > chicken manure (CM) > rice straw (RS). The effect was more pronounced when both CM and RS were applied in combined with labelled ammonium sulfate at the rates of (25% + 75%) and (50% + 50%). Fertilizer use efficiency (%FUE) was in the range of 3.9% to 13% in straw and 7.9% to 35.3% in grains. N derived from fertilizer (Ndff) by either straw or grains was ranged from 25.32 - 48.90% dependent on N fertilization forms and rates. Results indicated the importance of organic-N as a supplemental source for nitrogen and other elements which may be useful for enhancement of plant growth as well as saving the environment from pollution

  13. Nitrogen Released From Organic Residues Using 15N

    Galal, Y.G.M.; Gadalla, A.M.; Abdel Aziz, H.A.; Abdel Salam, A.A.; El-Degwy, S.M.A.

    2008-01-01

    Incubation technique was followed under laboratory condition to evaluate and determine the rate of organic residues decomposition as well as N released in media. Rice straw, soybean straw, and leuceana cutting residue were used. These materials were incubated on virgin sandy soil up to 90 days intervals. Cups with mixture of sand and organic residues were inoculated with fungi, bacteria and mixture of them. Un inoculated treatment was also included. Results showed that N released from the different organic materials was significant at 30 days of incubation. It seems that presence of Azotobacter was associated with enhanced demand on soluble N at this stage. Superiority of leucaena over the other two sources of rice straw and soybean straw occurred particularly during the 15 to 30.day period. In greenhouse experiment, the results indicated that N derived from organic materials was high and easily released from compost as mediated materials comparing to leucaena as undigested raw materials. In the same time, barley had more benefits from organic residues than lupine crop

  14. Experimental investigation of pyrolysis process of corn straw

    Lei Wang; Shengqiang Shen; Shuhua Yang; Xinguang Shi

    2010-01-01

    The present paper was performed to analyze the pyrolysis process of corn straw. Based on the thermogravimetric analysis, the component of pyrolysis gas of corn straw was tested using the gas chromatograph analyzer. Experimental results showed that, as the reaction temperature increases, the component of H 2 and CH 4 increases, whereas the component of CO and CO 2 decreases. Finally, the mechanism of pyrolysis process of corn straw was revealed from the point of view of the molecular structure...

  15. Design and performance of a straw tube drift chamber

    Oh, S.H.; Wesson, D.K.; Cooke, J.; Goshaw, A.T.; Robertson, W.J.; Walker, W.D.

    1991-01-01

    The design and performance of the straw drift chambers used in E735 is reported. The chambers are constructed from 2.5 cm radius aluminized mylar straw tubes with wall thickness less than 0.2 mm. Also, presented are the results of tests with 2 mm radius straw tubes. The small tube has a direct detector application at the Superconducting Super Collider. (orig.)

  16. Soil Carbon Changes in Transitional Grain Crop Production Systems in South Dakota

    Woodard, H. J.

    2004-12-01

    Corn-C (Zea Mays L.), soybean-S (Glycine max L.) and spring wheat-W (Triticum aestivum L.) crops were seeded as a component of either a C-S, S-W, or C-S-W crop rotation on silt-loam textured soils ranging from 3.0-5.0% organic matter. Conservation tillage(chisel plow-field cultivator) was applied to half of the plots. The other plots were direct seeded as a no-till (zero-tillage) treatment. Grain yield and surface crop residues were weighed from each treatment plot. Crop residue (stover and straw) was removed from half of the plots. After four years, soil samples were removed at various increments of depth and soil organic carbon (C) and nitrogen (N) was measured. The ranking of crop residue weights occurred by the order corn>>soybean>wheat. Surface residue accumulation was also greatest with residue treatments that were returned to the plots, those rotations in which maize was a component, and those without tillage. Mean soil organic carbon levels in the 0-7.5cm depth decreased from 3.41% to 3.19% (- 0.22%) with conventional tillage (chisel plow/field cultivator) as compared to a decrease from 3.19% to 3.05% (-0.14%) in plots without tillage over a four year period. Organic carbon in the 0-7.5cm depth decreased from 3.21% to 3.01% (- 0.20%) after residue removed as compared to a decrease from 3.39% to 3.23% (-0.17%) in plots without tillage applied after four years. The soil C:N ratio (0-7.5cm) decreased from 10.63 to 10.37 (-0.26 (unitless)) in the tilled plots over a four-year period. Soil C:N ratio at the 0-7.5cm depth decreased from 10.72 to 10.04 (-0.68) in the no-till plots over a four year period. Differences in the soil C:N ratio comparing residue removed and residue returned were similar (-0.51 vs. -0.43 respectively). These soils are highly buffered for organic carbon changes. Many cropping cycles are required to determine how soil carbon storage is significantly impacted by production systems.

  17. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity

    Hansen, Veronika; Müller-Stöver, Dorette Sophie; Imparato, Valentina

    2017-01-01

    Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study investig......Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study...... investigated the impact of traditional straw incorporation vs. straw removal for thermal gasification bioenergy production and the application of straw gasification biochar (GB) on soil quality and crop production. Two rates of GB were applied over three successive years in which the field was cropped...... long-term effects and to identify the optimum balance between straw removal and biochar application rate....

  18. Degradation of Tetracyclines in Pig Manure by Composting with Rice Straw

    Chai, Rushan; Huang, Lidong; Li, Lingling; Gielen, Gerty; Wang, Hailong; Zhang, Yongsong

    2016-01-01

    A holistic approach was followed for utilizing tetracyclines (TCs)-contaminated pig manure, by composting this with rice straw in a greenhouse for CO2 fertilization and composted residue application. After composting, the composted residues can be applied to cropland as a supplemental source of synthetic fertilizers. The objective of this study was to determine the effect of pig manure-rice straw composting on the degradation of TCs in pig manure. The results showed that greenhouse composting significantly accelerated the degradation of TCs. Contents (150 mg·kg−1) of oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC) in the composting feedstock could be completely removed within 42 days for OTC and TC, and 14 days for CTC. However, in the control samples incubated at 25 °C in the dark, concentrations of OTC, TC and CTC only decreased 64.7%, 66.7% and 73.3%, respectively, after 49 days. The degradation rates of TCs in the composting feedstock were in the order of CTC > TC > OTC. During the composting process, CTC dissipated rapidly with the time required for 50% degradation (DT50) and 90% degradation (DT90) of 2.4 and 7.9 days, but OTC was more persistent with DT50 and DT90 values of 5.5 and 18.4 days. On the basis of the results obtained in this study, it could be concluded that pig manure-rice straw composting in a greenhouse can help to accelerate the degradation of TCs in pig manure and make composted residues safer for field application. This technology could be an acceptable practice for greenhouse farmers to utilize TCs-contaminated pig manure. PMID:26927136

  19. Biological upgrading of wheat straw through solid-state fermentation with Streptomyces cyaneus

    Berrocal, M.; Hernandez, M.; Perez-Leblie, M.I.; Arias, M.E. [Universidad de Alcala de Henares, Madrid (Spain). Dept. de Microbiologia y Parasitologia; Ball, A.S. [Essex Univ., Colchester (United Kingdom). Dept. of Biological Sciences; Huerta, S. [Universidad Autonoma Metropolitana Iztapalapa, Mexico (Mexico). Dept. de Biotecnologia; Barrasa, J.M. [Universidad de Alcala de Henares, Madrid (Spain). Dept. de Biologia Vegetal

    2000-07-01

    The biological upgrading of wheat straw with Streptomyces cyaneus was examined through the analysis of chemical and structural changes of the transformed substrate during solid-state fermentation. Analysis of enzymes produced during the growth of S. cyaneus showed that phenol oxidase was the predominant enzyme. The reduction in Klason lignin content (16.4%) in the transformed substrate indicated the ability of this strain to delignify lignocellulose residues and suggests a role for phenol oxidase in the bacterial delignification process. Microscopic examination of the transformed substrate showed that the initial attack occurred at the less lignified cell walls (phloem and parenchyma), while xylem and sclerenchyma were slowly degraded. The pattern of degradation of sclerenchymatic tissues by S. cyaneus showed delamination between primary and secondary walls and between S{sub 1} and S{sub 2} due to partial removal of lignin. In the later stages of the decay a disorganization of the secondary walls was detected on account of fibrillation of this layer. A comparison of the properties of the pulp from wheat straw transformed by S. cyaneus with untreated wheat straw showed that pretreatment improved the characteristics that determine the quality of pulp. This was indicated by an increase in pulp brightness and by a decrease in the kappa number. These changes occurred without significantly affecting the viscosity, a measure of the quality of the cellulose fibres. These results support the potential application of this organism or its oxidative enzymes in biopulping. (orig.)

  20. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of fertilizer prepared from human feces and straw on germination, growth and development of wheat

    Liu, Dianlei; Xie, Beizhen; Dong, Chen; Liu, Guanghui; Hu, Dawei; Qin, Youcai; Li, Hongyan; Liu, Hong

    2018-04-01

    Solid waste treatment is one of the most important rate-limiting steps in the material circulation and energy flow of Bioregenerative Life Support System (BLSS). In our previous work, an efficient and controllable solid waste bio-convertor has been built and a solid waste degradation efficiency of 41.0% has been reached during a 105-d BLSS experiment. However, the fermented residues should be further utilized to fulfill the closure of the system. One solution might be to use the residues as the fertilizer for plant cultivation. Thus in this study, substrates were prepared using different ratios of the fermented residues to the vermiculite. And the influences of different ratios of the fermented residues on the seed germination, growth, photosynthetic characteristics and antioxidant capacity of wheat were studied. The results showed that the optimal rate of the fermented residue was 5%. With this ratio, the seed germination reached 97.3% with the root length, shoot length and biomass production as 59 mm, 52 mm and 150 mg, respectively, at the 4th day. Besides, the highest straw height of 25.1 cm was obtained at the 21st day. The salinity adversely affected the growth and some relevant metabolic processes of wheat. The Group-40% led to the lowest seed germination of 34.7% and the minimum straw height of 15 cm. This inhibition might be caused by the high Na content of 2118 mg/kg in the fermented residues. Chlorophyll b was more sensitive to the mineral nutrition stress and affects the wheat photosynthetic characteristics. Higher reactive oxygen species levels and reduced antioxidant enzymes may contribute, directly and/or indirectly, to the decline in the observed pigment contents in wheat.

  2. Investigation of additives for preventing ash fouling and sintering during barley straw combustion

    Wang, Liang; Skreiberg, Øyvind; Becidan, Michael

    2014-01-01

    Formation of potassium chloride reduces ash sintering temperature and causes fouling deposits in biomass combustion applications. In the present work, the capacity of two mineral additives zeolite 24A and kaolin to capture KCl were investigated. A series of thermogravimetric experiments were carried out to measure fractions of KCl retained in the two additives as function of reaction temperature and heating time. The residues from additive-KCl mixtures after heating treatment were analyzed by X-ray diffractometry (XRD). When heated at 900 °C for 1 h, the overall KCl capturing efficiencies of the two additives were 60% and 45% for zeolite 24A and kaolin respectively, which slightly decreased to 50% and 43% as the heating time increased to 12 h. At 1000 °C, the fractions of KCl captured by zeolite 24A and kaolin significantly decreased from 50% and 40% to 26% and 17%, as the KCl-additive mixtures were heated for 1 and 12 h, respectively. The decrease in of the overall KCl capturing efficiencies is mainly attributed to reduction of surface areas and chemically active compounds of the two additives with increasing temperature and heating time. The XRD analysis results showed that both zeolite 24A and kaolin can react with KCl to form different potassium aluminium silicates. It indicates that chemical reactions play an important role in the overall capturing process. The effects of zeolite 24A and kaolin on sintering behaviors of the barley straw ash were also investigated. The residues from sintering tests were analyzed by a combination of X-Ray diffractometry (XRD) and scanning electron microscopy equipped with energy dispersive X-Ray analysis (SEM-EDX). The barley straw ash melted intensively at elevated temperatures. Together with XRD analysis, the SEM-EDX analysis results revealed that severe melting of the barley straw ash was due to formation and fusion of low temperature melting potassium silicates. Addition of kaolin and zeolite 24A significantly

  3. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure trea...

  4. Barriers and drivers towards the incorporation of crop residue in the soil. Analysis of Italian farmers’ opinion with the theory of planned behaviour

    Luca Bechini

    2015-12-01

    Full Text Available Despite the benefits arising from incorporating crop residue in the soil, some farmers decide to burn or sell it. The objective of the work described in this paper was to quantify the adoption of crop residue incorporation by Italian farmers, and to identify the barriers and drivers that they perceive towards this agricultural management practice. We applied a behavioural approach, based on the theory of planned behaviour. In agriculture, this theory can be used to study individual farmer beliefs to understand the intention to adopt agricultural management practices. Based on preliminary semi-structured interviews with 24 farmers, we have prepared and disseminated a structured questionnaire in dairy farms in the plain of northern Italy, in arable farms in the plain of northern, central, and southern Italy, and in arable farms in the hill of central and southern Italy. The questionnaire contained questions to reveal subjective beliefs of the farmers on the outcomes of incorporating crop residue, and on the referents and control factors that might influence adoption. We have received 315 filled questionnaires from 16 regions and 54 provinces. The survey has identified major drivers and barriers towards the incorporation of crop residue in the soil. The main drivers were the expected improvement of soil quality (higher soil organic matter, improved structure and fertility, the expected increase of grain protein concentration in the following wheat crop, the availability of adequate machinery, the prohibition of burning crop residue, and the knowledge that incorporation is important (which emphasizes the importance of an effective advisory service. The main barriers were the costs of incorporation, the need to increase the use of nitrogen fertiliser when straw is incorporated, and the problems to sow the following crop in the presence of residue. While on the basis of the preliminary interviews we expected that the possibility to sell the straw and

  5. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  6. Fungal diversity of rice straw for meju fermentation.

    Kim, Dae-Ho; Kim, Seon-Hwa; Kwon, Soon-Wo; Lee, Jong-Kyu; Hong, Seung-Beom

    2013-12-01

    Rice straw is closely associated with meju fermentation and it is generally known that the rice straw provides meju with many kinds of microorganisms. In order to elucidate the origin of meju fungi, the fungal diversity of rice straw was examined. Rice straw was collected from 12 Jang factories where meju are produced, and were incubated under nine different conditions by altering the media (MEA, DRBC, and DG18), and temperature (15°C, 25°C, and 35°C). In total, 937 strains were isolated and identified as belonging to 39 genera and 103 species. Among these, Aspergillus, Cladosporium, Eurotium, Fusarium, and Penicillium were the dominant genera. Fusarium asiaticum (56.3%), Cladosporium cladosporioides (48.6%), Aspergillus tubingensis (37.5%), A. oryzae (31.9%), Eurotium repens (27.1%), and E. chevalieri (25.0%) were frequently isolated from the rice straw obtained from many factories. Twelve genera and 40 species of fungi that were isolated in the rice straw in this study were also isolated from meju. Specifically, A. oryzae, C. cladosporioides, E. chevalieri, E. repens, F. asiaticum, and Penicillium polonicum (11.8%), which are abundant species in meju, were also isolated frequently from rice straw. C. cladosporioides, F. asiaticum, and P. polonicum, which are abundant in the low temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at 15°C and 25°C, whereas A. oryzae, E. repens, and E. chevalieri, which are abundant in the high temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at 25°C and 35°C. This suggests that the mycobiota of rice straw has a large influence in the mycobiota of meju. The influence of fungi on the rice straw as feed and silage for livestock, and as plant pathogens for rice, are discussed as well.

  7. Cryopreservation of boar semen in mini- and maxi-straws.

    Bwanga, C O; de Braganca, M M; Einarsson, S; Rodriguez-Martinez, H

    1990-10-01

    Split ejaculates from four boars were frozen with a programmable freezing machine, in mini- (0.25 ml) and maxi- (5 ml) plastic straws with an extender at either acidic (6.3) or alkaline (7.4) pH. Glycerol (3%) was used as cryoprotectant. The freezing of the semen was monitored by way of thermocouples placed in the straws. Post-thaw motility and acrosome integrity were evaluated; the latter using phase contrast microscopy, eosin-nigrosin stain and electron microscopy. Post-thaw sperm motility was significantly higher when semen was frozen in mini-straws than in maxi-straws. For the mini-straws, the motility was better when semen was exposed to an acidic environment during freezing, but this beneficial effect of the low extracellular pH was not evident when maxi-straws were thawed. The motility of the spermatozoa diminished significantly during the thermoresistance test (0 h and 2 h time) at 37 degrees C in a similar way for both straws and extracellular pH's. The freezing procedure, no matter the extracellular pH, did not cause major acrosomal damages, but significantly more normal apical ridges were present in the mini-straws than in the maxi-straws. This in vitro evaluation indicated that the freezing method employed was better for mini- than for maxi-straws since the freezing of the 5 ml volumes was not homogeneous, due to the large section area between the surface and the core of the straw.

  8. Nutritive value of wheat straw treated with gaseous or liquid ammonia trough nylon bag and in vitro gas production techniques

    Samad Sadeghi

    2016-04-01

    Full Text Available Introduction Feed shortage is the most important characteristic of Iranian animal industry. Increased costs of livestock production have caused the Iranian producers to reduce feed costs mainly by inclusion low quality crop residues into ruminants diets. It is estimated that around 20 million tons wheat straw produced in Iran every year. Both the digestibility and crude protein content of wheat straw are typically low. Since 1900, a wide variety of chemical treatments have been tested for their potential to improve the feeding value of wheat straw. Upgrading of wheat straw by ammoniation has been known for a long time, but application of this method of wheat straw treatment has received the least attention in the area (Khorasan Province, Iran. Therefore, the object of the present study was to evaluate the effect of gaseous and liquid ammonia on nutritive value of wheat straw through in vitro techniques. Material and Methods One kg dry wheat straw was placed into the plastic cylinders with dimension of 1 m (diameter and 1.8 m (height and 0.8 mm (thickness. Gaseous and liquid commercial ammonia was injected or added to the wrapped straw at the rate of 2, 4 and 6 percent. The treatment time was 1 month at room temperature (20-25 ºC. At the end of treatment period the cylinders were opened and the ammoniated straw exposed to the air for 4 days. The treated straws were sampled for the subsequent analyses. Dry matter degradability of the samples was done by using nylon bags (10x20 cm with pore size of 40 micron. About 2 g ground samples (2 mm were placed into the nylon bags and incubated in rumen of 4 permanently fistulated steers for 3, 6, 12, 24, 36, 48, 72, 96 and 120 hrs. The experimental steers were fed by the ordinary diet containing 65% forage and 35% concentrate twice daily. The Menke and Steingass method was followed for the in vitro gas production method. Result and discussion Crude protein (CP content of the treated wheat straw samples

  9. The Effect of Crop Residue Application to Soil Fauna Community and Mungbean Growth (Vigna radata

    SUGIYARTO

    2000-01-01

    Full Text Available Litterbag experiment was carried out to determine the effect of crop residue application to soil fauna community and mungbean growth. The experiment arranged in randomized complete design with triplicate. The four treatment application of crotalarian, rice straw and banana’s aerial stem residues as well as without residue application as control. Soil fauna community and mungbean growth measured at 8 weeks after mungbean sown. Soil fauna extracted by modified Barless-Tullgren extractor apparatus. Height and dry weight of mungbean measured as crop growth parameters. The results indicated that the soil fauna densities and diversities as well as the growth of mungbean tended to increase by the application of crop residues. The effect of the treatment decreasing in the following order: banana’s aerial stem residue > crotalarian residue > rice straw > without residue application. There were high correlation between mungbean growth and soil fauna diversities.© 2001 Jurusan Biologi FMIPA UNS SurakartaKey words:

  10. Wheat nitrogen fertilizer residues on an ultisol from the IX Region

    Rouanet M, Juan Luis; Pino N, Ines; Nario M, Adriana; Jobet, Claudio; Parada V, Ana Maria; Videla L, Ximena

    2005-01-01

    The soil nitrogen fertilizer residue is a relevant issue on a wheat production system at the IX Region of Chile, due to the high level of yield and use of resources, having an environmental impact from the use of fertilizer economy. The N-soil residue, not absorb by the plant, can be leach and contaminate the groundwater with nitrates or be redistributed by erosion. The application of isotopic techniques, using fertilizer labeled with 15 N, providing the quantitative information of the fate of this nutrient in the plant-soil system, important in the rate formulation based on the nitrogen use efficiency and in the benefit/cost relation. An assay was carried out in an Ultisol Metrenco Soil (Family fine, mixed, mesic, Typic Paleudults) at Pumalal locality. A Kumpa wheat variety was used, with a control treatment and five N rates applied as Urea labeled with 10% 15 N a.e., split in four times during the crop growth cycle. Total N (Kjeldhal) and 15 N optical emission spectrometer were determined in grain and straw samples harvested in February. Before to the next sow on may, soil sample were taken with an 3 cm diameter hugger (0-20; 20-40 and 40-60 cm depth). The samples were air dried, sieved and analyzed for total N and 15 N. The parameters determined for each depth were: N total (%), 15 N a.e. to obtain the plant-soil system N fertilizer recovery and its N residues in the soil profile. The wheat yield obtained was related with a cubic model using the N fertilizer rate applied (R 2 =0.75). The highest yield for the grain, 9.8 Mg ha -1 , was obtained applying 197 k ha -1 of N, with 45% of 15 N recovered by the grain. Nevertheless, the soil-crop system obtained a high 15 N recovery (>88%), in the soil remained 32-60% as N residue, being not used by the plant during the growth period. Between 27-54% of the 15 N total residue was found at the 0-20 cm soil depth, portion that is susceptible of distribution by erosion, implied in the use of fertilizer economy. Around 4

  11. Grain boundary corrosion of copper canister material

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters

  12. Estimating bioenergy potentials of common African agricultural residues

    Thomsen, Sune Tjalfe; Kádár, Zsófia; Schmidt, Jens Ejbye

    , North America or Brazil. For that reason, it is difficult to estimate bioenergy potentials in the African region. As a part of an on‐going research collaboration investigating production of 2g biofuels in Ghana, this study have analysed 13 common African agricultural residues: yam peelings, cassava...... peelings, cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches (EFB). This was done to establish detailed compositional mass balances, enabling estimations of accurate bioenergy...

  13. Utilization of corn residues for production of the polysaccharide schizophyllan

    Abundant corn residues include fiber from wet milling operations and distillers' dried grains from dry grind ethanol plants. Biorefineries of the future will utilize such residues for the production of valuable bioproducts, particularly those traditionally produced from fossil fuels. Schizophyllan...

  14. (DDT) and hexachlorohexane (HCH) pesticide residues in foodstuffs ...

    Dichloro-diphenyl-trichloro-ethane (DDT) and hexachlorohexane (HCH) pesticide residues in foodstuffs from markets in Ile-Ife, Nigeria. ... International Journal of Biological and Chemical Sciences ... Keywords: Dichlorodiphenyltrichloroethane, hexachlorocyclohexane, pesticide, residue, cowpea grain, yam chip.

  15. Recovery of nitrogen by spring barley following incorporation of 15N-labelled straw and catch crop material

    Thomsen, I.K.; Jensen, E.S.

    1994-01-01

    The recovery by spring barley (Hordeum vulgare L.) of nitrogen mineralized from N-15-labelled straw and ryegrass material was followed for 3 years in the field. The effects of separate and combined applications of straw and ryegrass were studied using cross-labelling with N-15. Reference plots re...... mineral fertilizer was in the second and third barley crop similar to the recovery of N from incorporated plant residues.......The recovery by spring barley (Hordeum vulgare L.) of nitrogen mineralized from N-15-labelled straw and ryegrass material was followed for 3 years in the field. The effects of separate and combined applications of straw and ryegrass were studied using cross-labelling with N-15. Reference plots...... receiving (NH4NO3)-N-15-N-15 were included. Plant samples were taken every second week until maturity during the first growing season and at maturity in the two following years. Incorporation of plant material had no significant influence on the above-ground dry matter yield of the barley. The barley...

  16. Preparation and Properties of Nanocellulose from Organosolv Straw Pulp

    Barbash, V. A.; Yaschenko, O. V.; Shniruk, O. M.

    2017-03-01

    The object of this work is to present a study of nanocellulose preparation from organosolv straw pulp (OSP) and its properties. OSP was obtained through thermal treatment in the system of isobutyl alcohol-H2O-KOH-hydrazine followed by processing in the mixture of acetic acid and hydrogen peroxide for bleaching and removal of residual non-cellulosic components. We have obtained nanocellulose from OSP through acid hydrolysis with lower consumption of sulfuric acid and followed by ultrasound treatment. The structural change and crystallinity degree of OSP and nanocellulose were studied by means of SEM and XRD techniques. It has been established that nanocellulose has a density up to 1.3 g/cm3, transparency up to 70%, crystallinity degree 72.5%. The TEM and AFM methods shown that nanocellulose have diameter of particles in the range from 10 to 40 nm. Thermogravimetric analysis confirmed that nanocellulose films have more dense structure and smaller mass loss in the temperature range 220-260 °C compared with OSP. The obtained nanocellulose films had high Young's modulus up to 11.45 GPa and tensile strength up to 42.3 MPa. The properties of obtained nanocellulose from OSP exhibit great potential in its application for the preparation of new nanocomposite materials.

  17. WHEAT STRAW CONVERSION BY ENZYMATIC SYSTEM OF GANODERMA LUCIDUM

    Mirjana Stajic

    2010-09-01

    Full Text Available The purpose of this study was to resolve the question of whether various nitrogen sources and concentrations affect characteristics of selected G. lucidum ligninolytic enzymes participating in wheat straw fermentation. This is the first study reporting the presence of versatile peroxidase activity in crude extract of G. lucidum culture, as well as isoforms profile of Mn-oxidizing peroxidases. NH4NO3 was the optimum nitrogen source for laccase and Mn-dependent peroxidase activity, while peptone was the optimum one for versatile peroxidase activity. Four bands with laccase activity were obtained by native PAGE and IEF separations from medium enriched with inorganic nitrogen source, and only two bands from medium containing organic source. Medium composition was not shown to affect isoenzyme patterns of Mn-oxidizing peroxidases. Four isoforms of Mn-dependent peroxidase and three of versatile peroxidase were obtained on native PAGE. By IEF separation, five isoforms of Mn-dependent peroxidase and only two of versatile peroxidase were observed. The results demonstrated that G. lucidum has potential for mineralization and transformation of various agricultural residues and should take more significant participation in large-scale biotechnological processes.

  18. Selected parameters of maize straw briquettes combustion

    Kraszkiewicz Artur

    2018-01-01

    Full Text Available An analysis of the process of burning briquettes made of maize straw was performed. A number of traits have been evaluated, including physical characteristics of the fuel through parameters describing combustion kinetics as well as products and combustion efficiency. The study was conducted in a grate boiler, during which the differentiating factor was the air velocity flowing to the boiler. It was observed that the obtained values of the considered parameters were different, particularly temperature of the flue gas and the amount of CO and SO2 in the flue gas.

  19. Operating properties of straw-tube

    Alekseev, G.D.; Bonyushkin, Yu.E.; Korytov, A.V.; Malyshev, V.L.

    1990-01-01

    The initial results of the study of thin-wall mylar tubes (called straws) made under the laboratory conditions are presented. The maximal avalanche charge allowing the reliable detector operation is ∼ 10 pC, the spatial accuracy σ x near the anode wire at 3 atm of pure isobutane is ≅ 45 μm. The good separation of charge signals from electrons and X-rays was obtained with the Xe:iso-C 4 H 10 = 94:6 gas mixture. Tubes 5 mm in diameter withstand the pressure of 8-12 atm. 11 refs.; 5 figs

  20. Thermal transitions of the amorphous polymers in wheat straw

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2011-01-01

    The thermal transitions of the amorphous polymers in wheat straw were investigated using dynamic mechanical thermal analysis (DMTA). The study included both natural and solvent extracted wheat straw, in moist (8–9% water content) and dry conditions, and was compared to spruce samples. Under...

  1. Coffee Stirrers and Drinking Straws as Disposable Spatulas

    Turano, Morgan A.; Lobuono, Cinzia; Kirschenbaum, Louis J.

    2015-01-01

    Although metal spatulas are damaged through everyday use and become discolored and corroded by chemical exposure, plastic drinking straws are inexpensive, sterile, and disposable, reducing the risk of cross-contamination during laboratory procedures. Drinking straws are also useful because they come in a variety of sizes; narrow sample containers…

  2. Emergy Evaluation of Different Straw Reuse Technologies in Northeast China

    Xiaoxian Zhang

    2015-08-01

    Full Text Available Open burning of straw in China has degraded agricultural environments and has become a contributor to air pollution. Development of efficient straw-reuse technologies not only can yield economic benefits but also can protect the environment and can provide greater benefit to society. Thus, the overall benefits of straw-reuse technologies must be considered when making regional development planning and enterprise technology decisions. In addition, agricultural areas in China cross several climatic zones and have different weather characteristics and cultural conditions. In the present study, we assessed five types of straw-reuse technologies (straw-biogas production, -briquetting, -based power generation, -gasification, and -bioethanol production, using emergy analysis, in northeast China. Within each type, five individual cases were investigated, and the highest-performing cases were used for comparison across technologies. Emergy indices for comprehensive benefits for each category, namely, EYR, ELR, and ESI were calculated. Calculated indices suggest that straw-briquetting and -biogas production are the most beneficial technologies in terms of economy, environmental impact, and sustainability compared to straw-based power generation, -gasification, and -bioethanol production technologies. These two technologies can thus be considered the most suitable for straw reuse in China.

  3. Decomposition characteristics of maize ( Zea mays . L.) straw with ...

    Decomposition of maize straw incorporated into soil with various nitrogen amended carbon to nitrogen (C/N) ratios under a range of moisture was studied through a laboratory incubation trial. The experiment was set up to simulate the most suitable C/N ratio for straw carbon (C) decomposition and sequestering in the soil.

  4. Nutritional evaluation of treated canola straw for ruminants using in ...

    Administrator

    2011-10-19

    Oct 19, 2011 ... value of molasses treated with canola straw using in vitro gas production technique with Taleshi native ... As straw is poorly fermented, it has low rates of ... Gas production was measured as the volume of gas in the calibrated syringes and was recorded before incubation and 2, 4, 6, 8, 12, 24,. 48, 72 and 96 ...

  5. ADVANTAGES AND DISADVANTAGES OF STRAW-BALE BUILDING

    Larisa Brojan

    2014-06-01

    Full Text Available This paper is focused on general properties of straw bale as a building material which has been proven by buildings throughout the world to be an appropriate material choice. Still, there are many hesitations about using this alternative building material. The building techniques are relatively easy to learn and the performance of straw bale structures has a high value in terms of several aspects as long as general requirements are followed. The primary benefit of straw bale as a building material is its low embodied energy. It also has high thermal and sound insulation properties. Many previous research studies on straw bale building have been focused on structural stability, fire resistance and assessing moisture content in straw bales which is one of the major issues. Therefore, special attention needs to be devoted to details to insure proper building safety. Render selection is especially crucial and an extremely important step in straw bale building, not only in matters concerning moisture but also structural capacity and fire protection. A major disadvantage of straw bale construction is its lack of material research. The paper is divided into three parts in which advantages and disadvantages of such a building are discussed. In the third part, results are presented for a survey in which correspondents emphasized the advantages and disadvantages of living in a straw bale building.

  6. Significance of Herbaspirillum seropedicae inoculation and/or straw amendment on growth and dinitrogen fixation of wheat using 15N-dilution method.

    el-Komy, H M; Saad, O A; Hetta, A M

    2003-01-01

    The effect of Herbaspirillum seropedicae inoculation and/or maize straw (0, 5 and 10 Mg/hm2) amendment on the growth and N2 fixation of wheat was determined in pot experiments using 15N-dilution method. Inoculation resulted in accumulation of fixed nitrogen, and % N from atmosphere being 24.6 and 26.5% in wheat shoot and grain, respectively. Straw amendment reduced % Natm to 16.1 and 20.2% at high straw level (10 Mg/hm2). Rational nitrogen fertilization (180 kg N/hm2) completely inhibited N2 fixation by H. seropedicae inoculation. Bacterial inoculation increased dry shoot and grain yield up to 23 and 31%, respectively. The highest levels of shoot and grain dry mass (46.5 and 42.4%) were obtained by N-fertilization in both inoculated and uninoculated plants. Total shoot and grain N-yield increased irrespective of organic matter amendment by inoculation up to 9 and 25%, respectively. N-fertilized plants recorded a maximum increase in N-yield (57 and 51%). H. seropedicae was reisolated from inoculated wheat histosphere after harvesting (90 d from sowing). Neither organic matter nor mineral nitrogen applications had any marked effect on bacterial total counts colonizing wheat histosphere. Moreover, no symptoms of mottled stripe disease were observed on leaves and stems of inoculated plants.

  7. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management

    Jin, X.; Filley, T. R.

    2017-12-01

    Management of crop residues using plastic film mulching (PFM) has the potential to improve soil health by accelerating nutrient cycling and facilitating stable C pool production; however, a key aspect of this process—microbial immobilization of residue C—is poorly understood, especially under PFM when combined with different fertilization treatments. A 360-day in situ 13C-tracing technique was used to analyze the contribution and dynamics of microbial biomass C (MBC) to soil organic C (SOC) after 13C-labelled maize straw residue was applied to micro-plot topsoil in a cultivated maize (Zea mays L.) field under 27-year PFM and four fertilization treatments. Over the course of the experiment, MBC content was significantly (P<0.05) higher in treatments of manure (M) and manure plus nitrogen (MN) compared to the no-fertilization (CK) and nitrogen (N) treatments, regardless of PFM. Compared to no PFM controls, PFM enhanced the decomposition of maize straw during summer (Day 60) in the M and MN treatments, exhibiting increases of 93.0% and 28.6% in straw-derived 13C-MBC and 80.4% and 82.9% in 13C-MBC/13C-SOC, respectively. Overall, both PFM and organic manure treatments improved soil fertility through microbe-mediated incorporation of C derived from newly-added maize straw. Our results indicate that microbial growth and activity are affected by the utilization of different C sources and most dramatically during early seasonal transition.

  8. Effect of increasing amounts of straw on pigs’ explorative behaviour

    Jensen, Margit Bak; Herskin, Mette S.; Forkman, Björn

    2015-01-01

    According to European legislation, pigs must have permanent access to sufficient quantity of materialto enable manipulation activities. However, few studies have quantified how much straw is needed tofulfil the requirements of growing pigs. We investigated the effect of increasing amount of straw...... on pigs’manipulation of the straw, and hypothesised that after a certain point increasing straw amount will nolonger increase oral manipulation further. From 30 to 80 kg live weight, pigs were housed in 90 groups of18 pigs in pens (5.48 m × 2.48 m) with partly slatted concrete floor and daily provided...... with the percentage ofpigs manipulating straw simultaneously. This was recorded in three 1-h intervals (1 h before and 1 h afterstraw allocation in the morning, as well as from 17 to 18 h in the afternoon). With increasing quantity ofstraw provided, we found a curvilinear (P increase in the time spent in oral...

  9. PADI ASIC for straw tube read-out

    Pietraszko, Jerzy; Traeger, Michael; Fruehauf, Jochen; Schmidt, Christian [GSI, Darmstadt (Germany); Ciobanu, Mircea [ISS, Bucharest (Romania); Collaboration: CBM-Collaboration

    2016-07-01

    A prototype of the CBM MUCH straw tube detector consisting of six individual straws of 6mm inner diameter and 220 mm length filled with Ar/CO{sub 2} gas mixture has been tested at the COSY accelerator in Juelich. The straw tubes were connected to the FEET-PADI6-HDa PCB equipped with PADI-6 fast amplifier/discriminator ASIC. As a reference counter in this measurement the scCVD diamond detector has been used delivering excellent timing, time resolution below 100 ps (sigma), and very precise position information, below 50 μm. The demonstrated position resolution of about 160 μm of the straw tube read out with PADI-6 ASIC confirms the capability of the PADI chip and puts this development as a very attractive readout option for straw tubes and wire chambers.

  10. Hydration properties of briquetted wheat straw biomass feedstock

    Zhang, Heng; Fredriksson, Maria; Mravec, Jozef

    2017-01-01

    Biomass densification elevates the bulk density of the biomass, providing assistance in biomass handling, transportation, and storage. However, the density and the chemical/physical properties of the lignocellulosic biomass are affected. This study examined the changes introduced by a briquetting...... process with the aim of subsequent processing for 2nd generation bioethanol production. The hydration properties of the unprocessed and briquetted wheat straw were characterized for water absorption via low field nuclear magnetic resonance and sorption balance measurements. The water was absorbed more...... rapidly and was more constrained in the briquetted straw compared to the unprocessed straw, potentially due to the smaller fiber size and less intracellular air of the briquetted straw. However, for the unprocessed and briquetted wheat straw there was no difference between the hygroscopic sorption...

  11. Utilization of straw in district heating and CHP plants

    Nikolaisen, L.

    1993-01-01

    In Denmark 64 straw-fired district heating plants and 6 decentral CHP plants have been built since 1980 which are completely or partly straw-fired. The annual straw consumption in the district heating plants is 275,000 tons and in the decentral plants about 200,000 tons. The size of the district heating plants amounts to 0.5 MW - 10 MW and that of the CHP plants to 7 MW - 67 MW heat flow rate. Either whole bales or cut/scarified straw is used for firing. Hesston bales of about 450 kg control the market. The Centre of Biomass Technology is an activity supported 100 % by the Danish Energy Agency with the purpose of increasing the use of straw and wood in the energy supply (orig.)

  12. Pulverized straw combustion in a low-NOx multifuel burner

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen

    2010-01-01

    A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles...... and to determine the relative importance of different modeling choices for straw combustion. Investigated modeling choices encompass the particle size and shape distribution, the modification of particle motion and heating due to the departure from the spherical ideal, the devolatilization rate of straw......, the influence of inlet boundary conditions and the effect of particles on the carrier phase turbulence. It is concluded that straw combustion is associated with a significantly longer flame and smaller recirculation zones compared to coal combustion for the present air flow specifications. The particle size...

  13. Crop residues as raw materials for biorefinery systems - A LCA case study

    Cherubini, Francesco; Ulgiati, Sergio

    2010-01-01

    Our strong dependence on fossil fuels results from the intensive use and consumption of petroleum derivatives which, combined with diminishing oil resources, causes environmental and political concerns. The utilization of agricultural residues as raw materials in a biorefinery is a promising alternative to fossil resources for production of energy carriers and chemicals, thus mitigating climate change and enhancing energy security. This paper focuses on a biorefinery concept which produces bioethanol, bioenergy and biochemicals from two types of agricultural residues, corn stover and wheat straw. These biorefinery systems are investigated using a Life Cycle Assessment (LCA) approach, which takes into account all the input and output flows occurring along the production chain. This approach can be applied to almost all the other patterns that convert lignocellulosic residues into bioenergy and biochemicals. The analysis elaborates on land use change aspects, i.e. the effects of crop residue removal (like decrease in grain yields, change in soil N 2 O emissions and decrease of soil organic carbon). The biorefinery systems are compared with the respective fossil reference systems producing the same amount of products/services from fossils instead of biomass. Since climate change mitigation and energy security are the two most important driving forces for biorefinery development, the assessment focuses on greenhouse gas (GHG) emissions and cumulative primary energy demand, but other environmental categories are evaluated as well. Results show that the use of crop residues in a biorefinery saves GHG emissions and reduces fossil energy demand. For instance, GHG emissions are reduced by about 50% and more than 80% of non-renewable energy is saved. Land use change effects have a strong influence in the final GHG balance (about 50%), and their uncertainty is discussed in a sensitivity analysis. Concerning the investigation of the other impact categories, biorefinery systems

  14. Straw particle size in calf starters: Effects on digestive system development and rumen fermentation.

    Suarez-Mena, F X; Heinrichs, A J; Jones, C M; Hill, T M; Quigley, J D

    2016-01-01

    Two trials were conducted to determine effects of straw particle size in calf starter on rumen fermentation and development in calves. Holstein calves (n=17 in trial 1; n=25 in trial 2) were housed in individual pens; bedding (wood shavings) was covered with landscape fabric to completely avoid consumption of bedding. Milk replacer was fed at 12% of birth body weight per day and water offered free choice. Calves were randomly assigned to 4 treatments differing in geometric mean particle length (Xgm) of straw comprising 5% of starter dry matter. Straw was provided within the pellet at manufacture (PS; 0.82 mm Xgm) or mixed with the pellet at time of feeding at Xgm of 3.04 (SS), 7.10 (MS), or 12.7 (LS) mm. Calves (n=12; 3/treatment) in trial 1 were fitted with a rumen cannula by wk 2 of age. A fixed amount of starter that was adjusted with age and orts were fed through the cannula in cannulated calves. Calves were euthanized 6 wk after starter was offered (9 and 7 wk of age for trials 1 and 2, respectively). Rumen digesta pH linearly decreased with age, whereas volatile fatty acid concentration increased with age. Overall pH had a cubic trend with SS lower than that of PS and MS. Molar proportion of acetate decreased with age whereas propionate proportion increased. Overall molar proportions of volatile fatty acids were not affected by diet. Fecal Xgm was not different in spite of changes in diet particle size and rumen digesta of PS being greater than SS, MS, and LS at slaughter. Fecal pH and starch concentration were not affected by diet; however, pH decreased whereas starch content increased with age. Weight of stomach compartments, rumen papillae length and width, and rumen wall thickness did not differ between diets. Omasum weight as a percentage of body weight at harvest linearly decreased as straw particle size increased. Under the conditions of this study, modifying straw particle length in starter grain resulted in minimal rumen fermentation parameter

  15. Genetic Control of a Transition from Black to Straw-White Seed Hull in Rice Domestication1[C][W][OA

    Zhu, Bo-Feng; Si, Lizhen; Wang, Zixuan; Jingjie Zhu, Yan Zhou; Shangguan, Yingying; Lu, Danfeng; Fan, Danlin; Li, Canyang; Lin, Hongxuan; Qian, Qian; Sang, Tao; Zhou, Bo; Minobe, Yuzo; Han, Bin

    2011-01-01

    The genetic mechanism involved in a transition from the black-colored seed hull of the ancestral wild rice (Oryza rufipogon and Oryza nivara) to the straw-white seed hull of cultivated rice (Oryza sativa) during grain ripening remains unknown. We report that the black hull of O. rufipogon was controlled by the Black hull4 (Bh4) gene, which was fine-mapped to an 8.8-kb region on rice chromosome 4 using a cross between O. rufipogon W1943 (black hull) and O. sativa indica cv Guangluai 4 (straw-white hull). Bh4 encodes an amino acid transporter. A 22-bp deletion within exon 3 of the bh4 variant disrupted the Bh4 function, leading to the straw-white hull in cultivated rice. Transgenic study indicated that Bh4 could restore the black pigment on hulls in cv Guangluai 4 and Kasalath. Bh4 sequence alignment of all taxa with the outgroup Oryza barthii showed that the wild rice maintained comparable levels of nucleotide diversity that were about 70 times higher than those in the cultivated rice. The results from the maximum likelihood Hudson-Kreitman-Aguade test suggested that the significant reduction in nucleotide diversity in rice cultivars could be caused by artificial selection. We propose that the straw-white hull was selected as an important visual phenotype of nonshattered grains during rice domestication. PMID:21263038

  16. Evaluation of certain crop residues for carbohydrate and protein fractions by cornell net carbohydrate and protein system

    Venkateswarulu Swarna

    2015-06-01

    Full Text Available Four locally available crop residues viz., jowar stover (JS, maize stover (MS, red gram straw (RGS and black gram straw (BGS were evaluated for carbohydrate and protein fractions using Cornell Net Carbohydrate and Protein (CNCP system. Lignin (% NDF was higher in legume straws as compared to cereal stovers while Non-structural carbohydrates (NSC (% DM followed the reverse trend. The carbohydrate fractions A and B1 were higher in BGS while B2 was higher in MS as compared to other crop residues. The unavailable cell wall fraction (C was higher in legume straws when compared to cereal stovers. Among protein fractions, B1 was higher in legume straws when compared to cereal stovers while B2 was higher in cereal stovers as compared to legume straws. Fraction B3 largely, bypass protein was highest in MS as compared to other crop residues. Acid detergent insoluble crude protein (ADICP (% CP or unavailable protein fraction C was lowest in MS and highest in BGS. It is concluded that MS is superior in nutritional value for feeding ruminants as compared to other crop residues.

  17. Production of Biocellulosic Ethanol from Wheat Straw

    Ismail

    2012-01-01

    Full Text Available Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses.Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

  18. Gathering straw energy balance for co-generation in sugarcane mills; Balanco energetico do recolhimento da palha para cogeracao de energia em usinas de cana-de-acucar

    Veiga, Joao Paulo Soto; Bizzo, Waldir Antonio; Carvalho, Danilo Jose; Berton, Rafael Piatto [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica; Linero, Francisco Antonio Barba [Centro de Tecnologia Canavieira (CTC), Piracicaba, SP (Brazil)], E-mails: jpsveiga@fem.unicamp.br, bizzo@fem.unicamp.br, linero@ctc.com.br, liar@fem.unicamp.br, rpberton@fem.unicamp.br

    2012-11-01

    With the requirement and expansion of sugarcane harvest without burning the straw in the field of began to be seen as a potential fuel for co-generation sugarcane mills together bagasse. This study examined the productivity and three ways of gathering and transportation of straw in order to determine the potential energy available in biomass residues and their respective energy consumption on gathering and transport operations. To this were determined parameters for the production of waste per hectare, minimum quantity to be left in the field for maintenance of soil organic carbon and erosion reducing, the amount of straw recovered and milled at the mill, material humidity and diesel and electricity consumption of each step to obtain the final balance of energy recovered. (author)

  19. Effect of pH, temperature and moisture content during composting of rice straw burning at different temperature with food waste and effective microorganisms

    Zakarya Irnis Azura

    2018-01-01

    Full Text Available Rice straw is considered as one of the most important agricultural residues and represented as one of the major by-products from rice production process. Normally, rice straw that produced after harvesting season been directly burned on-farm. Conversion of rice straw into value added compost will improve the productivity of plant, reduction of pollution towards environment and reduction of local pollution due to open burning activity. The objective of this study was to evaluate the performance of composting rice straw ash (RSA with food waste (FW and effective microorganisms (EM in term of the compost quality (pH, temperature, moisture content. RSA was prepared by burning the raw rice straw at three different temperature of 300°C, 400°C and 500°C for one hour. EM used during the composting process was prepared by mixing of brown sugar, ‘tempe’ and water that can be used after one week of fermentation process. There are four treatments of RSA-compost; RSA (300°C, RSA (400°C, RSA (500°C and control (raw rice straw with the same amount of compost medium; 1kg black soil, 0.5kg RSA, 3L EM and 1kg FW. The composting process happens for 30 days. During the composting process, all the parameters of RSA-compost obtained in a range like; pH value 8-10, temperature 20-50°C and moisture content 40-60%. The result showed that all compost quality of rice straw ash compost obtained in an acceptable range for final compost to establish.

  20. Effect of pH, temperature and moisture content during composting of rice straw burning at different temperature with food waste and effective microorganisms

    Azura Zakarya, Irnis; Baya Khalib, Siti Noor; Ramzi, Norhasykin Mohd

    2018-03-01

    Rice straw is considered as one of the most important agricultural residues and represented as one of the major by-products from rice production process. Normally, rice straw that produced after harvesting season been directly burned on-farm. Conversion of rice straw into value added compost will improve the productivity of plant, reduction of pollution towards environment and reduction of local pollution due to open burning activity. The objective of this study was to evaluate the performance of composting rice straw ash (RSA) with food waste (FW) and effective microorganisms (EM) in term of the compost quality (pH, temperature, moisture content). RSA was prepared by burning the raw rice straw at three different temperature of 300°C, 400°C and 500°C for one hour. EM used during the composting process was prepared by mixing of brown sugar, `tempe' and water that can be used after one week of fermentation process. There are four treatments of RSA-compost; RSA (300°C), RSA (400°C), RSA (500°C) and control (raw rice straw) with the same amount of compost medium; 1kg black soil, 0.5kg RSA, 3L EM and 1kg FW. The composting process happens for 30 days. During the composting process, all the parameters of RSA-compost obtained in a range like; pH value 8-10, temperature 20-50°C and moisture content 40-60%. The result showed that all compost quality of rice straw ash compost obtained in an acceptable range for final compost to establish.

  1. Residual biomass potential of commercial and pre-commercial sugarcane cultivars

    Marcos Guimarães de Andrade Landell

    2013-10-01

    Full Text Available Sugarcane (Saccharum spp. is an efficient and sustainable alternative for energy generation compared to non-renewable sources. Currently, during the mechanized harvest process, the straw left in the field can be used in part for the second generation ethanol and increasing the electric energy production. Thus, this study aimed to provide information on the potential for residual biomass cultivars of sugarcane cropping system. This study provides the following information: yield of straw, depending on the calculated leaf area index and the number of tillers per linear meter; primary energy production of several sugarcane genotypes; contribution of dry tops and leaves; biomass yield; and evaluation of fiber, cellulose, hemicellulose and lignin. Preliminary results obtained by researchers of the State of São Paulo, Brazil, and reCviews related studies are presented. The results suggest that the production of sugarcane straw content varies according to the cultivars; the greater mass of sugarcane straw is in the top leaves and that the potential for the crude energy production of sugarcane per area unit can be increased using fiber-rich species or species that produce more straw. The straw indexes was shown to be a good indicator and allow the estimation of straw volumes generated in a sugarcane crop. The cellulose, hemicellulose and lignin composition in sugarcane is distinct among varieties. Therefore, it is possible to develop distinct biomass materials for energy production and for the development of sugarcane mills using biochemical processes and thermal routes.

  2. Effects of location and year on grain yield and its components in wheat genotypes developed from seed irradiation treatment

    Amer, I.M.; El-Rassas, H.N.; Abdel-Aleem, M.M.

    1994-01-01

    Eight mutant lines derived from gamma ray treatments and their parental cultivar sokha 69 of bread wheat were evaluated for grain yield per feddan, straw yield per feddan, harvest index, spike length, spike yield and weight of 1000-kernels at two locations (El-Fayoum and Inshas) in two seasons, 1991/92 and 1992/93. Significant effects of location on yield and yield components were found and the year significantly affects all the studied traits except grain yield per feddan. A significant location genotype interaction was detected for spike length, 1000-kernel weight and straw yield per feddan. In addition, year genotype interaction was significant in weight of 1000-kernels, straw yield per feddan and harvest index. The statistical analysis showed a significant difference among genotypes over all environments for spike length, 1000-kernel weight, straw yield per feddan and harvest index. However, these did not reflect significant effect on grain yield per feddan over all environments because it has a highly compensation ability. Meanwhile, mutant L 1 2 -1 exhibited significantly higher straw yield than sokha 69, when averaged over two seasons at El-Fayoum. Mutant L 1 9 -1 gave higher weight of 1000-kernels, spike length and harvest index than the other genotypes at low-yielding location (Inshas). It seems to be stable over a wide range of environments. 3 tabs

  3. TG-FTIR Study of the Influence of potassium Chloride on Wheat Straw Pyrolysis

    Jensen, Anker; Dam-Johansen, Kim; Wójtowicz, M.A.

    1998-01-01

    of products into char, tar and gas. In this work, a combination of thermogravimetry and evolved gas analysis by Fourier transform infrared analysis (TG-FTIR) has been applied to study the influence of potassium chloride (KCl) on wheat straw pyrolysis. Raw straw, washed straw and washed straw impregnated...

  4. The potential of animal manure, straw and grass for European biogas production in 2030

    Meyer, A. K.P.; Ehimen, E. A.; Holm-Nielsen, J. B.

    2016-01-01

    Biogas is a diverse energy source, suitable as a flexible and storable energy form. In the European Union (EU), biogas is expected to play an important role in reaching the energy policy targets. The sustainability of substrates used for biogas production has however been under a critical...... discussion. The aim of this study was to project and map the potentials of sustainable biomasses in 2030 in the EU. The investigated types of residual biomass were animal manure, straw from cereal production, and excess grass from both rotational and permanent grasslands and meadows. In total the energy...... potential from the investigated resources was projected to range from 39.3-66.9 Mtoe, depending on the availability of the residues. In the perspectives of the energy political targets, the projected energy potential could cover 2.3-3.9% of the total EU energy consumption in 2030 or 8.4-14.3% of the total...

  5. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production.

    Rahnama, Nooshin; Foo, Hooi Ling; Abdul Rahman, Nor Aini; Ariff, Arbakariya; Md Shah, Umi Kalsom

    2014-12-12

    Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial application of cellulases. Therefore, the use of local microbial enzymes has been suggested. Trichoderma harzianum strains are potential CMCase and β-glucosidase producers. However, few researches have been reported on cellulase production by T. harzianum and the subsequent use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a considerable concentration is required. Biomass recalcitrance is also a bottleneck in the bioconversion of agricultural residues to value-added products. An effective pretreatment could be of central significance in the bioconversion of biomass to biofuels. Rice straw pretreated using various concentrations of NaOH was subjected to enzymatic hydrolysis. The saccharification of rice straw pretreated with 2% (w/v) NaOH using crude cellulase from local T. harzianum SNRS3 resulted in the production of 29.87 g/L reducing sugar and a yield of 0.6 g/g substrate. The use of rice straw hydrolysate as carbon source for biobutanol fermentation by Clostridium acetobutylicum ATCC 824 resulted in an ABE yield, ABE productivity, and biobutanol yield of 0.27 g/g glucose, 0.04 g/L/h and 0.16 g/g glucose, respectively. As a potential β-glucosidase producer, T. harzianum SNRS3 used in this study was able to produce β-glucosidase at the activity of 173.71 U/g substrate. However, for cellulose hydrolysis to be efficient, Filter Paper Activity at a considerable concentration is also required to initiate the

  6. ASSESSMENT OF THE BIODIVERSITY OF SAMPLES USED FOR ISOLATION OF MICROBIAL STRAINS CAPABLE OF CONVERTING STRAW DESTINED AS A SUBSTRATE FOR BIOGAS PLANT

    Krystyna Cybulska

    2016-01-01

    Full Text Available In biogas plants, almost any type of organic matter can be used as a substrate to produce biogas. To make the process of methane fermentation more effective, these materials are pretreated. This applies in particular to a group of difficult substrates. Straw, due to its hemicellulose structure and saturation, is hardly fermented by biogas reactor microorganisms. The methods of post-harvest residue preparation for anaerobic digestion being applied so far are expensive, while their application has a negative effect on methanoegenic bacteria. Therefore, the microorganisms being able to degrade straw hemicellulose structure, utilisation of which could precede the proper fermentation process, have been searched for. This paper presents the results of microbial biodiversity analysis in the environmental samples being lupin, cereal, rape and maize straw as well as hay and haylage at different degradation stages. The analysis of biodiversity will help at a further stage of study to isolate active microbial strains showing cellulolytic, hemicellulolytic or ligninolytic activity which are desirable in the process of straw biodegradation. Analysis of the microbial count was performed by the method of deep inoculation on different microbiological culture media. The conducted tests include determination of the number of fungi, bacteria and actinomycetes. The results obtained confirm the usefulness of the analysed samples for isolation of microbial strains capable of converting straw preceding the biogas production.

  7. Study of straw chamber lifetime with argon ethane

    Adler, J.; Bolton, T.; Bunnell, K.; Cheu, E.; Grab, C.; Mazaheri, G.; Odian, A.; Pitman, D.; Stockhausen, W.; Toki, W.; Wadley, W.; Wood, C.; Mir, R.

    1989-01-01

    We present detailed laboratory measurements of the lifetime of a small test chamber, simulating the Mark III straw vertex chamber conditions. The tests were carried out with an argon-ethane 50/50 gas mixture at 3 atm absolute pressure and 3.9 kV applied to the wires. After the accumulation of ≅ 0.02 C/cm on a single straw, continuous discharges began. The addition of alcohol or water vapor to the gas mixture was found to extend the lifetime of the straws. Continuous flow of the gas mixture with water vapor through the straws prolonged the lifetime significantly. We present results on the effects of changing the gas mixture inside the straws at regular time intervals. Adding a small percentage of water vapor to the argon-ethane gas and flowing the gas mixture in the straws can improve the lifetime by more than an order of magnitude. An accumulated charge of 1.0 C/cm on a single straw has been obtained. (orig.)

  8. Tracking with Straw Tubes in the PANDA Experiment

    Bragadireanu M.

    2014-03-01

    Full Text Available The PANDA spectrometer will be built at the FAIR facility at Darmstadt (Germany to perform accurate tests of the strong interaction through ¯pp and ¯pA annihilation studies. The charged particle tracking at PANDA will be done using both solid state and gaseous detectors. Among the latter, two straw tube detector systems will be built [1]. The cylindrical, central straw tube tracker features a high spatial and momentum resolution for a wide range of particle momenta from about 8 GeV/c down to a few 100 MeV/c, together with particle identification in the momentum region below about 1 GeV/c by measuring the specific energy-loss. A new technique, based on self-supporting straw double layers with intrinsic wire tension developed for the COSY-TOF straw tracker [2], has been adopted for the PANDA trackers. The development of the readout electronics for the straw tubes is ongoing. Prototypes have been produced and used to instrument straw tube modules that have been tested with cosmic rays and proton beams. Design issues of the PANDA straw tubes, together with the results of the prototype tests are presented.

  9. Effect of vitrification on number of inner cell mass in mouse blastocysts in conventional straw, closed pulled straw, open pulled straw and cryoloop carriers

    Ghasem, S.; Negar, K.

    2013-01-01

    Objective: To compare the effect of using open and closed carriers on count of inner cell mass in vitrified mouse blastocyst after warming. Methods: The experimental study was conducted at Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, from April to September 2010. Forty female NMRI (Naval Medical Research Institute, USA) mice were injected with pregnant mares serum gonadotropin and human chorionic gonadotropin in order to induce super ovulation. Following the latter injection, two or three females were caged with the same-breed male mice. The presence of vaginal plug was examined the following morning. To collect blastocyst embryos, the pregnant females were sacrificed by cervical dislocation at 88-90 hours after the injection and dissected. Blastocysts were collected in phosphate-buffered saline and allocated to four groups: vitrification in conventional straw, closed pulled straw, open pulled straw and cryoloop. The vitrification solution was ethylene glycol, Ficol and sucrose (EFS) 20% and 40%. After storage for 1 month in liquid nitrogen, the blastocysts were thawed in 0.5 M sucrose then cultured in M16 medium. After 6 hours of culture, the number of expanded blastocysts was recorded and stained by double-dye technique. After staining, the number of total cell and inner cell mass was calculated. Results: The re-expansion rate of blastocysts in the cryoloop group (n=90; 78.26%) was significantly higher (p<0.05) than open pulled straw (n=83; 69.16%), closed pulled straw (n=68; 54.83%) and conventional straws (n=63; 51.21%) groups. Significant differences (p<0.05) in the number of inner cell mass in blastocysts vitrified in open pulled straws, closed straws and cryoloop with blastocysts cryopreserved in conventional straws. Conclusion: The re-expansion rate and total cell number of mouse blastocysts vitrified using open system had a better result compared with the closed system. The value of cryoloop and open pulled straws as carriers in

  10. Environmental performance of crop residues as an energy source for electricity production

    Nguyen, T Lan T; Hermansen, John Erik; Mogensen, Lisbeth

    2013-01-01

    This paper aims to address the question, “What is the environmental performance of crop residues as an alternative energy source to fossil fuels, and whether and how can it be improved?”. In order to address the issue, we compare electricity production from wheat straw to that from coal and natural...... gas. The results on the environmental performance of straw for energy utilization and the two fossil fuel references are displayed first for different midpoint categories and then aggregated into a single score. The midpoint impact assessment shows that substitution of straw either for coal...... or for natural gas reduces global warming, non-renewable energy use, human toxicity and ecotoxicity, but increases eutrophication, respiratory inorganics, acidification and photochemical ozone. The results at the aggregate level show that the use of straw biomass for conversion to energy scores better than...

  11. 40 CFR 180.635 - Spinetoram; tolerances for residues.

    2010-07-01

    ..., stover 10 Grain, cereal, straw, group 16, except rice 1.0 Grape 0.50 Grape, raisin 0.70 Guava 0.30 Herb... 0.30 Star fruit 0.30 Strawberry 1.0 Sugar apple 0.30 Ti, leaves 10 Vegetable, bulb, group 3, except..., fruiting, group 8 0.40 Vegetable, leafy, except Brassica, group 4 8.0 Vegetable, leaves of root and tuber...

  12. 40 CFR 180.417 - Triclopyr; tolerances for residues.

    2010-07-01

    ..., liver 0.5 Cattle, meat 0.05 Cattle, meat byproducts, except kidney and liver 0.05 Goat, fat 0.05 Goat, kidney 0.5 Goat, liver 0.5 Goat, meat 0.05 Goat, meat byproducts, except kidney and liver 0.05 Hog, fat 0..., meat 0.1 Poultry, meat byproducts, except kidney 0.1 Rice, grain 0.3 Rice, straw 10.0 Shellfish 3.5 (2...

  13. 40 CFR 180.369 - Difenzoquat; tolerances for residues.

    2010-07-01

    ... million Barley, bran 0.25 Barley, grain 0.05 Barley, straw 5.0 Cattle, fat 0.05 Cattle, meat 0.05 Cattle, meat byproducts 0.05 Goat, fat 0.05 Goat, meat 0.05 Goat, meat byproducts 0.05 Hog, fat 0.05 Hog, meat 0.05 Hog, meat byproducts 0.05 Horse, fat 0.05 Horse, meat 0.05 Horse, meat byproducts 0.05 Poultry...

  14. 40 CFR 180.475 - Difenoconazole; tolerances for residues.

    2010-07-01

    ..., wet pomace 4.5 Banana1 0.2 Barley, grain 0.1 Barley, hay 0.05 Barley, straw 0.05 Beet, sugar 0.3 Beet, sugar, dried pulp 1.9 Brassica, head and stem, subgroup 5A 1.9 Brassica, leafy green, subgroup 5B 35...-205375, 1-[2-chloro-4-(4-chloro-phenoxy)phenyl]-2-[1,2,4]triazol-1-yl-ethanol, in the following...

  15. 40 CFR 180.459 - Triasulfuron; tolerances for residues.

    2010-07-01

    ..., meat 0.1 Horse, fat 0.1 Horse, kidney 0.5 Horse, meat byproducts, except kidney 0.1 Horse, meat 0.1..., grain 0.02 Barley, straw 2.0 Cattle, fat 0.1 Cattle, kidney 0.5 Cattle, meat byproducts, except kidney 0.1 Cattle, meat 0.1 Goat, fat 0.1 Goat, kidney 0.5 Goat, meat byproducts, except kidney 0.1 Goat...

  16. A study on the production of agricultural residues in Italy

    Di Blasi, C.; Tanzi, V.; Lanzetta, M. [Universita degli Studi di Napoli Federico II, Dip di Ingegneria Chimica, Napoli (Italy)

    1997-12-01

    The Italian production of agricultural residues has been evaluated with a view to energy recovery through gasification. Two main categories of residues have been identified: the first, (A) is associated with the growing and collection of products with a nutritional value, whereas the second (B) includes the residues associated with the subsequent processing in order to obtain final products for commercialization. Category A, which comprises three further sub-categories: straw (A1); woody residues (A2); and stems and leaves (residues from vegetables, tobacco, sugar beet, (A3)), results in about 16.5 mt yr. The average amount of straw (A1) is 11 mt/yr, of which about 60% is waste to be eliminated. Woody residues (A2) (mainly pruning off-cuts from vineyards and olive groves) are about 3.5 mt/yr (85% unused). Category A3 amounts to about 2 mt/yr (90% unused). Straw is available mainly in the northern part of the country, whereas the other two sub-categories are widely distributed in central and southern regions. The yields of category B are estimated at 4 mt/yr, of which more than 3 mt/yr are waste products from grape and olive processing. Other residues, such as rice, sunflower and soya-bean husks (about 0.65 mt/yr), almond and nut shells and fruit stones (about 0.2 mt/yr), although not widely available on a national scale, can be significant on a local basis. The total amount of unused agricultural residues is about 14.5 mt/yr, which, if completely exploited through gasification, can contribute as much as 7-10% to the current national electricity needs. The regions of Veneto, Puglia, Friuli, Lombardia and Emilia Romagna appear to be good candidates for electricity production, given the significant surface concentration of unused residues (105-55 t km{sup 2}). (author)

  17. Testing the effect of different enzyme blends on increasing the biogas yield of straw and digested manure fibers

    Njoku, Stephen Ikechukwu; Jurado, Esperanza; Malmgren-Hansen, Bjørn

    In this study, enzymatic treatment was tested to increase the biogas yield of wheat straw (WS) and digested manure fibers (DMF) in the Re-Injection Loop Concept, which combines anaerobic digestion with solid separation to enhance the biogas yield per ton of manure by: 1. Digestion of the easily d...... degradable fraction of manure in the biogas process. 2. Separation of the residual recalcitrant digested fiber fraction project. 3. Ultrasound and/or enzymatic treatment of the digested fiber fraction. 4. Recirculation of the treated fiber fraction into the reactor.......In this study, enzymatic treatment was tested to increase the biogas yield of wheat straw (WS) and digested manure fibers (DMF) in the Re-Injection Loop Concept, which combines anaerobic digestion with solid separation to enhance the biogas yield per ton of manure by: 1. Digestion of the easily...

  18. Performance of long straw tubes using dimethyl ether

    Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F.L.; Gianotti, P.; Giardoni, M.; Guaraldo, C.; Lanaro, A.; Lucherini, V.; Mecozzi, A.; Passamonti, L.; Russo, V.; Sarwar, S.

    1995-01-01

    A cylindrical tracking detector with an inner radius of one meter employing straw tubes is being envisaged for the FINUDA experiment aimed at hyper-nuclear physics at DAΦNE, the Frascati φ-factory. A prototype using several 10 mm and 20 mm diameter, two meter long aluminized mylar straws has been assembled and tested with a one GeV/c pion beam. While operating with dimethyl ether, gas gain, space resolution, and device systematics have been studied. A simple method of correction for systematics due to straw eccentricity has been developed and, once applied, a space resolution better than 40 μm can be reached. (orig.)

  19. Study on the Pretreating Approaches for the Potato Straws

    An Yumin; Wang Jukui; Huang Ye; Xu Xiaomei

    2016-01-01

    This paper proposes an approach to pretreat the potato straws. Specifically, potato straws are handled using various kinds of chemical solutions, including HCI, H2SO4, NaOH and NaOH+H2O2, under different concentrations. For each kind of solution, particular indicators, such as the cellulose content as well as scarification ratio of the treated straws, are studied in the paper. Based on orthogonal experiments, the best pretreatment effect is obtained by using the solution of 4% NaOH under temp...

  20. The straw tube technology for the LHCb outer tracking system

    Bachmann, S; Bagaturia, I; Deppe, H; Eisele, F; Haas, T; Hajduk, L; Langenegger, U; Michalowski, J; Nawrot, A; Polok, G; Pellegrino, A; Schuijlenburg, H; Schwierz, R; Sluijk, T; Spelt, J

    2004-01-01

    For the outer tracking system of the LHCb spectrometer 53.760 straws of 2.5 m length will be used. They are arranged in detector modules of 5 m length and 0.34 m width. The envisaged spatial resolution over the entire active area is 200$mu$m resulting in stringent requirements on the accuracy for the module construction. In this paper we discuss the optimisation of the straws, design and construction of detector modules. The long term operation properties of straws in two different counting g...

  1. 40 CFR 180.434 - Propiconazole; tolerances for residues.

    2010-07-01

    ...: Commodity Parts per million Cranberry 1.0 Rice, wild, grain 0.5 (d) Indirect or inadvertent residues... 4.5 Pineapple, process residue 7.0 Pistachio 0.1 Rice, bran 15 Rice, grain 7.0 Rice, hulls 20 Rice...

  2. Prospects in straw disintegration for biogas production.

    Maroušek, Josef

    2013-10-01

    The pretreatment methods for enhancing biogas production from oat straw under study include hot maceration, steam explosion, and pressure shockwaves. The micropore area (9, 55, and 64 m(2) g(-1)) inhibitor formations (0, 15, and 0 mL L(-1)) as well as the overall methane yields (67, 179, and 255 CH4 VS t(-1)) were robustly analyzed. It was confirmed that the operating conditions of the steam explosion must be precisely tailored to the substrate. Furthermore, it was beneficial to prepend the hot maceration before the steam explosion and the pressure shockwaves. The second alternative may give increased methane yields (246 in comparison to 273 CH4 VS t(-1)); however, the application of pressure shockwaves still faces limitations for deployment on a commercial scale.

  3. Straw combustion on slow-moving grates

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking......-column’’ approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions...... indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared...

  4. Use and co-combustion of straw in Denmark

    Poulsen, J S [SK Power, Ballerup (Denmark)

    1997-12-31

    Coal has in more decades been the backbone of the Danish energy production. As a consequence of a political wish to utilize domestic fuel and reduce the massive use of coal and the CO{sub 2} emission, straw has since 1989 been used in Denmark at small-scale combined heat and power plants. All straw-fired combined heat and power plants in Denmark are owned by the power stations. Furthermore some district heating plants owned by the municipalities, consumers or privately owned, also use straw as a fuel, as in the middle of the eighties it was prohibited to use coal as fuel in district heating plants. Different rules of subsidies and duties made natural gas or biomass the most competitive fuel for the district heating plants. For various other reasons there are also some oil-fired district heating plants in operation. Today five straw-fired combined heat and power plants in Denmark are in commercial operation. Three of these plants exclusively use straw as a fuel, one uses both straw, wood chips and natural gas, and one straw and coal. These five combined heat and power plants, having a total annual consumption of straw of approx. 200 000 tonnes, supply district heating to five medium-sized towns. On 14 June 1993 an agreement was made in the Danish Parliament ordering the power stations to reach an annual volume input of 1.2 mill. tonnes of straw and 0.2 mill. tonnes of wood chips in year 2000. Therefore two new plants are under construction and co-combustion with straw is being installed at an existing coal-fired power station. In addition, two large plants are under consideration. With the two plants under construction and with the co-combustion plant, the straw consumption is expected to increase to 430 000 tons of straw per year. These two plants will start operations in 1995 and 1997 respectively. All the operating straw-fired combined heat and power stations show an economic loss. Besides the price of fuel, this is due to the efficiency of the plants, which with

  5. Use and co-combustion of straw in Denmark

    Poulsen, J.S. [SK Power, Ballerup (Denmark)

    1996-12-31

    Coal has in more decades been the backbone of the Danish energy production. As a consequence of a political wish to utilize domestic fuel and reduce the massive use of coal and the CO{sub 2} emission, straw has since 1989 been used in Denmark at small-scale combined heat and power plants. All straw-fired combined heat and power plants in Denmark are owned by the power stations. Furthermore some district heating plants owned by the municipalities, consumers or privately owned, also use straw as a fuel, as in the middle of the eighties it was prohibited to use coal as fuel in district heating plants. Different rules of subsidies and duties made natural gas or biomass the most competitive fuel for the district heating plants. For various other reasons there are also some oil-fired district heating plants in operation. Today five straw-fired combined heat and power plants in Denmark are in commercial operation. Three of these plants exclusively use straw as a fuel, one uses both straw, wood chips and natural gas, and one straw and coal. These five combined heat and power plants, having a total annual consumption of straw of approx. 200 000 tonnes, supply district heating to five medium-sized towns. On 14 June 1993 an agreement was made in the Danish Parliament ordering the power stations to reach an annual volume input of 1.2 mill. tonnes of straw and 0.2 mill. tonnes of wood chips in year 2000. Therefore two new plants are under construction and co-combustion with straw is being installed at an existing coal-fired power station. In addition, two large plants are under consideration. With the two plants under construction and with the co-combustion plant, the straw consumption is expected to increase to 430 000 tons of straw per year. These two plants will start operations in 1995 and 1997 respectively. All the operating straw-fired combined heat and power stations show an economic loss. Besides the price of fuel, this is due to the efficiency of the plants, which with

  6. Residual stresses

    Sahotra, I.M.

    2006-01-01

    The principal effect of unloading a material strained into the plastic range is to create a permanent set (plastic deformation), which if restricted somehow, gives rise to a system of self-balancing within the same member or reaction balanced by other members of the structure., known as residual stresses. These stresses stay there as locked-in stresses, in the body or a part of it in the absence of any external loading. Residual stresses are induced during hot-rolling and welding differential cooling, cold-forming and extruding: cold straightening and spot heating, fabrication and forced fitting of components constraining the structure to a particular geometry. The areas which cool more quickly develop residual compressive stresses, while the slower cooling areas develop residual tensile stresses, and a self-balancing or reaction balanced system of residual stresses is formed. The phenomenon of residual stresses is the most challenging in its application in surface modification techniques determining endurance mechanism against fracture and fatigue failures. This paper discusses the mechanism of residual stresses, that how the residual stresses are fanned and what their behavior is under the action of external forces. Such as in the case of a circular bar under limit torque, rectangular beam under limt moment, reclaiming of shafts welds and peening etc. (author)

  7. 40 CFR 180.430 - Fenoxaprop-ethyl; tolerances for residues.

    2010-07-01

    ..., meat 0.05 Hog, fat 0.05 Hog, meat byproducts 0.05 Hog, meat 0.05 Horse, fat 0.05 Horse, meat byproducts 0.05 Horse, meat 0.05 Milk 0.02 Peanut 0.05 Peanut, hulls 0.05 Rice, grain 0.05 Sheep, fat 0.05...: Commodity Parts per million Barley, grain 0.05 Barley, straw 0.1 Cattle, fat 0.05 Cattle, meat byproducts 0...

  8. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    Administrator

    2007-02-19

    Feb 19, 2007 ... Key words: Agaricus bisporus, wheat straw, waste tea leaves, wheat chaff, pin head formation, compost temperature .... kg then filled into plastic bags as 7 kg wet weight basis. ..... substrate environment for mushroom growing.

  9. Discussion on the electronic problems of straw vertex detector

    Xi Deming

    1992-01-01

    The measurement of the characteristic time of the output waveform of straw vertex detector, the design of its high resolution and high counting rate readout system and the problems of the charge and time calibrations are discussed

  10. Lignin derivatives from desilicated rice straw soda black liquor

    El-Taraboulsi, M A; Nasser, M M

    1979-01-01

    Carboxymethyl lignin, cyanoethyl lignin, carboxyethyl lignin, and aminopropyl lignin were prepared from alkali lignin of rice straw black liquor (after disilication by storage for 1 wk to 1 yr) and used as sizes for paper, drilling fluid additives and flocculants.

  11. Corrosion Investigations in Straw-Fired Power Plants in Denmark

    Montgomery, Melanie; Frandsen, Flemming; Karlsson, A

    2001-01-01

    of accelerated corrosion. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A series of field tests have been undertaken in the various straw-fired power plants in Denmark, namely the Masnedø, Rudkøbing and Ensted CHP plants. Three types......In Denmark, straw and other types of biomass are used for generating energy in power plants. Straw has the advantage that it is a "carbon dioxide neutral fuel" and therefore environmentally acceptable. Straw combustion is associated with corrosion problems which are not encountered in coal-fired...... of exposure were undertaken to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, b) the exposure of test tubes in a test superheater, and c) the exposure of test tubes in existing superheaters. Thus both austenitic steels and ferritic steels were exposed in the steam...

  12. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    Cultivation of Agaricus bisporus on wheat straw and waste tea leaves based composts and locally available casing materials Part III: Dry matter, protein, and carbohydrate contents of Agaricus bisporus.

  13. Yield response of mushroom ( Agaricus bisporus ) on wheat straw ...

    Yield response of mushroom ( Agaricus bisporus ) on wheat straw and waste tea leaves based composts using supplements of some locally available peats and their mixture with some secondary casing materials.

  14. Numerical investigation of ash deposition in straw-fired boilers

    Kær, Søren Knudsen

    in the design phase of straw-fired boilers. Some of the primary model outputs include improved heat transfer rate predictions and detailed information about local deposit formation rates. This information is essential when boiler availability and efficiency is to be estimated. A stand-alone program has been...... accumulation rates encountered during straw combustion in grate-fired boilers. The sub-models have been based on information about the combustion and deposition properties of straw gathered from the literature and combined into a single Computational Fluid Dynamics (CFD) based analysis tool which can aid...... transfer mechanisms have a pronounced influence on the combustion pattern. The combined set of sub-models has been evaluated using the straw-fired boiler at Masnedø CHP plant as a test case. The predicted grate combustion and KCl release patterns are in qualitative agreement with experimental findings...

  15. Bioconversion process of rice straw by thermotolerant cellulolytic ...

    Administrator

    2011-09-26

    state fermentation for bioethanol production is a focus of current attention. ... Optimization of fermentation conditions showed highest cellulolytic enzymes ... using dilute acid pretreated rice straw hydrolysate with initial soluble ...

  16. Ash transformation during co-firing coal and straw

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2007-01-01

    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... and coal co-firing. Reasonable agreement in fly ash compositions regarding total K and fraction of water soluble K was obtained between co-firing in an entrained flow reactor and full-scale plants. Capture of potassium and subsequent release of HCl can be achieved by sulphation with SO2 and more...

  17. Grain Handling and Storage.

    Harris, Troy G.; Minor, John

    This text for a secondary- or postecondary-level course in grain handling and storage contains ten chapters. Chapter titles are (1) Introduction to Grain Handling and Storage, (2) Elevator Safety, (3) Grain Grading and Seed Identification, (4) Moisture Control, (5) Insect and Rodent Control, (6) Grain Inventory Control, (7) Elevator Maintenance,…

  18. Grain Grading and Handling.

    Rendleman, Matt; Legacy, James

    This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…

  19. Residual stresses

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  20. Prospects of whole grain crops of wheat, rye and triticale under different fertilizer regimes for energy production

    Jørgensen, Johannes Ravn; Deleuran, Lise Christina; Wollenweber, Bernd

    2007-01-01

    is an advantage for biomass for energy purposes. The mineral content of the grain fraction changed only little between years and locations. By contrast, large variations in the analysed ions in the straw fraction between years and locations were observed. The use of K fertilizers resulted in a significantly...

  1. Atividade residual de (imazethapyr+imazapic para sorgo granífero (Sorghum bicolor semeado em rotação com o arroz irrigado Field persistence of (imazethapyr+imazapic to grain sorghum (Sorghum bicolor planted in rotation after irrigated rice

    J.J.O Pinto

    2009-12-01

    áveis ao sorgo cultivado em safra subsequente ao arroz.The objective of this research was to evaluate the field persistence of the herbicide Only (imazethapyr+imazapic, to grain sorghum, planted in rotation after one, two or three years of Clearfield® (CL rice. The field study was carried out at Universidade Federal de Pelotas, Capão do Leão, state of Rio Grande do Sul. Clearfield rice was established as the main crop, Italian ryegrass as a succession crop and grain sorghum, as a rotation crop after CL rice. Except for the first rice crop, all the other cultures were planted as no-till rice. Ryegrass plants were burned down in every experiment using glyphosate (760 g a.e. ha-1. The experimental design was a factorial with treatments arranged in a complete randomized design, with four replications, where factor A was the number of CL rice seasons and B was the herbicide rate. The rice cultivar was IRGA 422 CL, and the herbicide treatments were Only (imazethapyr+imazapic at 0; (75+25; (112.5+37.5 and (150+50 g ha-1. Adjuvant Dash was added to the herbicide at 0.5% v/v. The experiments were labeled as A1, A2 or A3, respectively, for one, two or three years of CL rice. Grain sorghum, cv. BR 304, was planted as a bioindicator of herbicide residue. The following parameters were evaluated: plant population, plant height; above ground biomass, 1000-grain weight and grain yield. As for grain sorghum plant height and 1000-seed weight, an interaction was observed between the different environments (years of CL rice and herbicide rate (imazethapyr+imazapic. For the other parameters, only effect for herbicide rat was detected. The results suggested that all grain sorghum parameters were affected by the herbicides (imazethapyr+ imazapic in the soil. Grain sorghum injury increased with herbicide rate. In conclusion, grain sorghum, planted in rotation with rice is affected by the residue of the herbicide Only (imazethapyr+imazapic applied to Clearfield® rice.

  2. Multichannel prototype of coordinate detector based on segmented straws

    Gusakov, Yu.V.; Davkov, V.I.; Davkov, K.I.; Zhukov, I.A.; Lutsenko, V.M.; Myalkovskij, V.V.; Peshekhonov, V.D.; Savenkov, A.A.

    2010-01-01

    The design and assembly technology of a detector prototype based on segmented straws is considered. The granularity of the prototype is 4 cm 2 . The prototype has a sensitive area of 400 x 200 mm, and contains two straw planes displaced against each other by 2 mm. The number of registration channels is 360. Preliminary results of the bench study of the prototype are presented

  3. Straw fired district heating plants in Denmark. Facts and figures

    1996-05-01

    A series of analyses and comparisons of technical, operational and financial and environmental conditions relating to straw-fired district heating and cogeneration plants in Denmark during the period of May 1993 to June 1995. The report provides an insight into the potentials of straw as a source of energy, particularly in the case of countries where the cultivation of cereals represents a major part of the agricultural economy. (AB)

  4. Additives on in vitro ruminal fermentation characteristics of rice straw

    Vanessa Peripolli

    Full Text Available ABSTRACT The objective of this study was to evaluate the effects of mineral and protein-energy (MPES, exogenous fibrolytic enzyme supplements (ES, combination of MPES + ES, and straw without supplement (WS on digestibility, fermentation kinetic parameters, cumulative gas production, methane, CO2 production, and volatile fatty acid concentration of rice straw of low and high nutritional value, estimated by in vitro techniques. The experimental design was randomized and factorial 2 × 4: two straws (low and high nutritional value incubated with four supplements (MPES, ES, MPES + ES, and WS and their interactions. Four experimental periods were used, totaling four replications per treatment over time. Data were analyzed by PROC MIXED of SAS. The in vitro dry matter and organic matter digestibilities of the rice straw with high nutritional value was improved by MPES, while the combination of MPES + ES supplements inhibited the digestibility of this straw. Dietary carbohydrate and nitrogen increased through MPES and MPES + ES supplements resulted in an increase in NH3-N concentration and a decrease in CO2 production due to the microbial mass formation. However, this increase was not enough to improve organic matter degradability parameters, cummulative gas production, gas production kinetics, and acetate:propionate ratio and reduce methane emissions. The straw with high nutritional value showed greater content of nitrogen fraction a, effective degradability, cummulative gas production, and methane and CO2 productions comparing with low-nutritional value straw. The use of MPES and MPES + ES supplements can be used as strategy to mitigate CO2 in ruminant production systems that use rice straw.

  5. High precision straw tube chamber with cathode readout

    Bychkov, V.N.; Golutvin, I.A.; Ershov, Yu.V.

    1992-01-01

    The high precision straw chamber with cathode readout was constructed and investigated. The 10 mm straws were made of aluminized mylar strip with transparent longitudinal window. The X coordinate information has been taken from the cathode strips as induced charges and investigated via centroid method. The spatial resolution σ=120 μm has been obtained with signal/noise ratio about 60. The possible ways for improving the signal/noise ratio have been described. 7 refs.; 8 figs

  6. A high precision straw tube chamber with cathode readout

    Bychkov, V.N.; Golutvin, I.A.; Ershov, Yu.V.; Zubarev, E.V.; Ivanov, A.B.; Lysiakov, V.N.; Makhankov, A.V.; Movchan, S.A.; Peshekhonov, V.D.; Preda, T.

    1993-01-01

    The high precision straw chamber with cathode readout was constructed and investigated. The 10 mm diameter straws were made of aluminized Mylar with transparent longitudinal window. The X-coordinate information has been taken from cathode strips as induced charges and investigated with the centroid method. The spatial resolution σ x =103 μm was obtained at a signal-to-noise ratio of about 70. The possible ways to improve the signal-to-noise ratio are discussed. (orig.)

  7. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.

    Teeravivattanakit, Thitiporn; Baramee, Sirilak; Phitsuwan, Paripok; Sornyotha, Somphit; Waeonukul, Rattiya; Pason, Patthra; Tachaapaikoon, Chakrit; Poomputsa, Kanokwan; Kosugi, Akihiko; Sakka, Kazuo; Ratanakhanokchai, Khanok

    2017-11-15

    Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by Paenibacillus curdlanolyticus B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the Clostridium thermocellum endoglucanase CtCel9R and Thermoanaerobacter brockii β-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment. IMPORTANCE Ongoing research is focused on improving "green" pretreatment technologies in order to reduce energy demands and environmental impact and to develop an economically feasible biorefinery. The present study showed that PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/β-xylosidase/arabinoxylan arabinofuranohydrolase from P. curdlanolyticus B-6, was capable of conversion of xylan in lignocellulosic biomass such as untreated rice straw to xylose in one step without chemical pretreatment. It

  8. Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau

    Lin, Wen; Liu, Wenzhao; Xue, Qingwu

    2016-12-01

    To compare the soil water balance, yield and water use efficiency (WUE) of spring maize under different mulching types in the Loess Plateau, a 7-year field experiment was conducted in the Changwu region of the Loess Plateau. Three treatments were used in this experiment: straw mulch (SM), plastic film mulch (PM) and conventional covering without mulch (CK). Results show that the soil water change of dryland spring maize was as deep as 300 cm depth and hence 300 cm is recommended as the minimum depth when measure the soil water in this region. Water use (ET) did not differ significantly among the treatments. However, grain yield was significantly higher in PM compared with CK. WUE was significantly higher in PM than in CK for most years of the experiment. Although ET tended to be higher in PM than in the other treatments (without significance), the evaporation of water in the fallow period also decreased. Thus, PM is sustainable with respect to soil water balance. The 7-year experiment and the supplemental experiment thus confirmed that straw mulching at the seedling stage may lead to yield reduction and this effect can be mitigated by delaying the straw application to three-leaf stage.

  9. Biodegradation of wheat straw by different isolates of Trichoderma spp.

    A.R. Astaraei

    2016-04-01

    Full Text Available Efficient use of agricultural wastes due to their recycling and possible production of cost effective materials, have economic and ecological advantages. A biological method used for degrading agricultural wastes is a new method for improving the digestibility of these materials and favoring the ease of degradation by other microorganisms. This research was carried out to study the possible biodegradation of wheat straw by different species and isolates of Trichoderma fungi. Two weeks after inoculation of wheat straw by different isolates, oven drying in 75◦C, the samples were weighted and (Acid Detergent Fiber ADF and NDF (Neutral Detergent Fiber reductions of each sample under influence of fungal growth were compared with their controls. The results showed that biodegradation of wheat straw were closely related to fungi species and also its isolates. The Reductions in NDF and ADF of wheat straw by T. reesei and T. longibrachiatum were more pronounced compared to others, although T. reesei was superior in ADF of wheat straw reduction. It is concluded that for improving in digestibility and also shortening the timing of composting process, it is recommended to treat the wheat straw with Trichoderma fungi and especially with T. reesei and T. longibrachiatum that performed well and had excellent efficiencies.

  10. Plant growth inhibitors isolated from sugarcane (Saccharum officinarum) straw.

    Sampietro, Diego Alejandro; Vattuone, Marta Amelia; Isla, María Ines

    2006-07-01

    Several compounds related with plant defense and pharmacological activities have been isolated from sugarcane. Straw phytotoxins and their possible mechanisms of growth inhibition are largely unknown. A bioassay-guided fractionation of the phytotoxic constituents leachated from a sugarcane straw led to the isolation of trans-ferulic (trans-FA), cis-ferulic (cis-FA), vanillic (VA) and syringic (SA) acids. The straw leachates and their identified constituents significantly inhibited root growth of lettuce and four weeds. VA was more phytotoxic to root elongation than FA and SA. The identified phenolic compounds significantly increased leakage of root cell constituents, inhibited dehydrogenase activity and reduced chlorophyll content in lettuce. VA and FA inhibited mitotic index while SA increased cell division. Additive (VA-FA and FA-SA) and synergistic (VA-SA) interactions on root growth were observed at the response level of EC(25). Although the isolated compounds differed in their relative phytotoxic activities, the observed physiological responses suggest that they have a common mode of action. HPLC analysis indicated that sugarcane straw can potentially release 1.43 (ratio 2:1, trans:cis), 1.14 and 0.14mmolkg(-1) (straw dry weight) of FA, VA and SA, respectively. As phenolic acids are often found spatially concentrated in the top soil layers under plant straws, further studies are needed to establish the impact of these compounds in natural settings.

  11. Wheat straw lignin degradation induction to aromatics by por Aspergillus spp. and Penicillium chrysogenum

    Baltierra-Trejo Eduardo

    2016-02-01

    Full Text Available Wheat straw is a recalcitrant agricultural waste; incineration of this material represents an important environmental impact. Different reports have been made regarding the use of the structural components of wheat straw, i.e. cellulose, hemicellulose and lignin; however, lignin has been less exploited because it is largely considered the recalcitrant part. Residual wheat straw lignin (REWSLI has a potential biotech-nological value if depolymerization is attained to produce aromatics. Ligninolytic mitosporic fungus represent an alternative where very little research has been done, even though they are capable of depol-ymerize REWSLI in simple nutritional conditions in relatively short periods, when compared to basidio-mycetes. The aim of this research was to study the depolymerization activity of Aspergillus spp and Penicillium spp on semipurified REWSLI as the sole carbon source to produce aromatics. The depoly-merization capacity was determined by the activity of the laccase, lignin peroxidase and manganese peroxidase enzymes. The generated aromatics derived from the REWSLI depolymerization were identi-fied by gas chromatography. Obtained results revealed that Penicillium chrysogenum depolymerized the lignin material by 34.8% during the 28-day experimentation period. Laccase activity showed the largest activity with 111 U L-1 in a seven-day period, this enzyme induction was detected in a smaller period than that required by basidiomycetes to induce it. Moreover, the enzymatic activity was produced with-out the addition of an extra carbon source as metabolic inductor. Aspergillus spp and Penicillium spp generated guaiacol, vanillin, and hydroxybenzoic, vanillinic, syringic and ferulic acid with a maximum weekly production of 3.5, 3.3, 3.2, 3.3, 10.1 and 21.9 mg mL-1, respectively.

  12. Evaluation of Alkali-Pretreated Soybean Straw for Lignocellulosic Bioethanol Production

    Seonghun Kim

    2018-01-01

    Full Text Available Soybean straw is a renewable resource in agricultural residues that can be used for lignocellulosic bioethanol production. To enhance enzymatic digestibility and fermentability, the biomass was prepared with an alkali-thermal pretreatment (sodium hydroxide, 121°C, 60 min. The delignification yield was 34.1~53%, in proportion to the amount of sodium hydroxide, from 0.5 to 3.0 M. The lignin and hemicellulose contents of the pretreated biomass were reduced by the pretreatment process, whereas the proportion of cellulose was increased. Under optimal condition, the pretreated biomass consisted of 74.0±0.1% cellulose, 10.3±0.1% hemicellulose, and 10.1±0.6% lignin. During enzymatic saccharification using Cellic® CTec2 cellulase, 10% (w/v of pretreated soybean straw was hydrolyzed completely and converted to 67.3±2.1 g/L glucose and 9.4±0.5 g/L xylose with a 90.9% yield efficiency. Simultaneous saccharification and fermentation of the pretreated biomass by Saccharomyces cerevisiae W303-1A produced 30.5±1.2 g/L ethanol in 0.5 L fermented medium containing 10% (w/v pretreated biomass after 72 h. The ethanol productivity was 0.305 g ethanol/g dry biomass and 0.45 g ethanol/g glucose after fermentation, with a low concentration of organic acid metabolites. Also, 82% of fermentable sugar was used by the yeast for ethanol fermentation. These results show that the combination of alkaline pretreatment and biomass hydrolysate is useful for enhancing bioethanol productivity using delignified soybean straw.

  13. Combined effect of grain solarisation and oiling on the development ...

    Prof. Adipala Ekwamu

    Uganda Journal of Agricultural Sciences, 2012, 13 (2): 117-126 ... 2National Agricultural Research Organisation, P. O Box 295 Entebbe, Kampala, Uganda ... Combined oiling and solarisation provides residual grain protection to maize against.

  14. Straw-to-soil or straw-to-energy? An optimal trade off in a long term sustainability perspective

    Monteleone, Massimo; Cammerino, Anna Rita Bernadette; Garofalo, Pasquale; Delivand, Mitra Kami

    2015-01-01

    Highlights: • Energy balance and GHG savings of a straw-to-electricity value chain were determined. • An “expanded” LCA was performed, from farm field to electricity delivery. • Both direct and indirect factors of land use change have been considered in the analysis. • No-tillage and crop rotation significantly improved the system performance. • A win–win, sustainable solution for the energy use of straw has been identified. - Abstract: This study examined some management strategies of wheat cultivation system and its sustainability in using straw as an energy feedstock. According to the EU regulatory framework on biofuels, no GHG emissions should be assigned to straws when they are used for energy. Given this relevance in the current energy policy, it is advisable to include all possible marginal effects related to land use, resource utilization and management changes in the comparison of different biomass options. Coherently, an expanded life cycle assessment (LCA) was applied to include the upstream cultivation phase and to make a comparison between “straw to soil” and “straw to energy”. Different crop management conditions in Southern Italy were simulated, by using the CropSyst model, to estimate the long-term soil organic carbon and annual N 2 O soil emissions. Three wheat cropping systems were considered: the conventional single wheat system without straw removal (W0) and with partial straw removal (W1), together with a no-tillage “wheat-wheat-herbage” rotation system with partial straw removal (W2). The results of the simulations were integrated in the LCA to compare fossil energy consumption and greenhouse gas (GHG) emissions of straw-to-electricity with respect to the fossil-based electricity system. The “improved” rotational wheat cropping system (W2) gave the best performance in terms both of GHG savings and fossil displacement, thus stressing that straw use for energy generation in parallel with the optimization of the

  15. Determining In Vitro Gas Production Kinetics and Methane Production of Wheat Straw and Soybean Straw Pelleted with Different Additives

    GÜLEÇYÜZ, Emre; KILIÇ, Ünal

    2018-01-01

    In this study, it was aimed todetermine the effects of pelletting on the invitro gas productions (IVGP), invitro digestibilities and methane productions of wheat straw and soy strawpelletted with different additives such as molasses, guar meal and sepolite. Inthe study, 2x2x4 factorial experimental design was used and total 16 groups (2straws (wheat-soybean), 2 different sepiolite applications (absent-present) and4 additives (control, guar meal,molasses and guar meal +molasses) wereformed.The...

  16. Nitrous oxide emissions from sugarcane straw left on the soil surface in Brazil

    Galdos, M. V.; Cerri, C. E.; Carvalho, J. L.; Cerri, C. C.

    2012-12-01

    In Brazil, the largest exporter of ethanol from sugarcane in the world, burning the dry leaves and tops in order to facilitate the harvest and transportation of the stalks is still a common practice. Burning plant residues causes emissions of greenhouse gases (GHGs) such as CO2, CH4 and N2O, besides the release of charcoal particles into the atmosphere. Due to a combination of pressure from changes in the public opinion and economical reasons, in Brazil sugarcane harvest is changing from a burned into an unburned system. Since manual harvest of sugarcane without burning is not economically feasible, mechanical harvesters have been developed that can take the stalk and leave the residues on the field, forming a mulch, in a system called green cane management. It is expected that 80% of the cane harvested in the main producing regions in Brazil will be harvested without burning by 2014. The conversion from burning sugarcane to green management of sugarcane will have impacts on the biogeochemical cycling of carbon and nitrogen in the plant soil system. The green cane management results in the deposition of large amounts of plant litter on the soil surface after harvest, ranging from 10 to 20 tons per hectare, which impact the whole production process of sugarcane, influencing yields, fertilizer management and application, soil erosion, soil organic matter dynamics as well as greenhouse gas emissions (CO2, N2O, CH4). From a GHG perspective, the conservation of sugarcane residues prevents emissions from the burning process, may promote carbon sequestration in soils and releases nitrogen during the decomposition process replacing the need for, and GHG emissions from, fossil fuel based nitrogen fertilizer sources. Measurements of soil C and N stocks and associated greenhouse gas emissions from the burned and unburned sugarcane systems and in the sugarcane expansion areas are still scarce. Therefore, the main objective of this work was to quantify the nitrous oxide

  17. Effect of Rice Straw Extract and Alkali Lignin on the Corrosion Inhibition of Carbon Steel

    Rabiahtul Zulkafli; Norinsan Kamil Othman; Irman Abdul Rahman; Azman Jalar

    2014-01-01

    A paddy residue based corrosion inhibitor was prepared by treating finely powdered rice straw with aqueous ethanol under acid catalyst (0.01 M H 2 SO 4 ). Commercial alkali lignin was obtained from Sigma-Aldrich. Prior to the corrosion test, the extraction yield and alkali lignin was characterized via FTIR to determine the functional group. The effect of paddy residue extract and commercial alkali lignin on the corrosion inhibition of carbon steel in 1 M HCl was investigated through the weight loss method, potentiodynamic polarization technique and scanning electron microscopy (SEM). The corrosion inhibition efficiency of the extract and alkali lignin at different immersion times (3 h, 24 h and 42 h) was evaluated. The results show that the paddy waste extract exhibited lesser weight loss of carbon steel in the acidic medium in comparison to the commercial alkali lignin, suggesting that the paddy residue extract is more effective than the commercial alkali lignin in terms of its corrosion inhibition properties. The results obtained proves that the extract from paddy residue could serve as an effective inhibitor for carbon steel in acidic mediums. (author)

  18. Ecology and IPM of Insects at Grain Elevators

    Cost-effectiveness of insect pest management depends upon its integration with other elevator operations. Successful integration may require consideration of insect ecology. Field infestation has not been observed for grain received at elevators. Grain may be infested during harvest by residual inse...

  19. Ethanol from Cellulosic Biomass with Emphasis of Wheat Straw Utilization. Analysis of Strategies for Process Development

    Alexander Dimitrov Kroumov

    2015-12-01

    Full Text Available The "Green and Blue Technologies Strategies in HORIZON 2020" has increased the attention of scientific society on global utilization of renewable energy sources. Agricultural residues can be a valuable source of energy because of drastically growing human needs for food. The goal of this review is to show the current state of art on utilization of wheat straw as a substrate for ethanol production. The specifics of wheat straw composition and the chemical and thermodynamic properties of its components pre-determined the application of unit operations and engineering strategies for hydrolysis of the substrate and further its fermentation. Modeling of this two processes is crucially important for optimal overall process development and scale up. The authors gave much attention on main hydrolisis products as a glucose and xylose (C6 and C5 sugars, respectivelly and on the specifics of their metabolization by ethanol producing microorganisms. The microbial physiology reacting on C6 and C5 sugars and mathematical aproaches describing these phenomena are discussing, as well.

  20. Structural Changes of Lignin from Wheat Straw by Steam Explosion and Ethanol Pretreatments

    Cheng Pan

    2016-06-01

    Full Text Available Effects of the pretreatment of wheat straw by steam explosion and ethanol were evaluated relative to the structural changes of lignin from the pretreated pulp. The lignin from steam explosion pulp (LS, lignin from steam blasting residual liquid (LL, lignin from ethanol pretreatment pulp (LE, lignin from black liquor (LB, and lignin from wheat straw (LW were separated, and the structural characteristics of the lignin fractions were compared based on analyses of Fourier transform-infrared, ultraviolet, thermogravimetric, and 1H and 13C nuclear magnetic resonance spectra. The proportions of the three structural units in all lignin fractions clearly changed during the pretreatment process because of inter-conversion reactions. The conjugated structure of lignin was destroyed in the pretreatment process and was also affected by the alkali extraction process. The alcoholic hydroxyl links on the aliphatic side chain were partly transformed into carbonyl groups during ethanol pretreatment. Demethoxylation occurred in all lignin fractions during the ethanol pretreatment and steam explosion process. The thermal stability of the LB fraction was relatively high because of the condensation reaction.

  1. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production

    Ye Sun; Jay J Cheng [North Carolina State Univ., Dept. of Biological and Agricultural Engineering, Raleigh, NC (United States)

    2005-09-01

    Ethanol production from lignocellulosic materials provides an alternative energy production system. Rye and bermudagrass that are used in hog farms for nutrient uptake from swine wastewater have the potential for fuel ethanol production because they have a relative high cellulose and hemicellulose content. Dilute sulfuric acid pretreatment of rye straw and bermudagrass before enzymatic hydrolysis of cellulose was investigated in this study. The biomass at a solid loading rate of 10% was pretreated at 121 deg C with different sulfuric acid concentrations (0.6, 0.9, 1.2 and 1.5%, w/w) and residence times (30, 60, and 90 min). Total reducing sugars, arabinose, galactose, glucose, and xylose in the prehydrolyzate were analyzed. In addition, the solid residues were hydrolyzed by cellulases to investigate the enzymatic digestibility. With the increasing acid concentration and residence time, the amount of arabinose and galactose in the filtrates increased. The glucose concentration in the prehydrolyzate of rye straw was not significantly influenced by the sulfuric acid concentration and residence time, but it increased in the prehydrolyzate of bermudagrass with the increase of pretreatment severity. The xylose concentration in the filtrates increased with the increase of sulfuric acid concentration and residence time. Most of the arabinan, galactan and xylan in the biomass were hydrolyzed during the acid pretreatment. Cellulose remaining in the pretreated feedstock was highly digestible by cellulases from Trichoderma reesei. (Author)

  2. Ethanol production from rape straw by a two-stage pretreatment under mild conditions.

    Romero, Inmaculada; López-Linares, Juan C; Delgado, Yaimé; Cara, Cristóbal; Castro, Eulogio

    2015-08-01

    The growing interest on rape oil as raw material for biodiesel production has resulted in an increasing availability of rape straw, an agricultural residue that is an attractive renewable source for the production of second-generation bioethanol. Pretreatment is one of the key steps in such a conversion process. In this work, a sequential two-stage pretreatment with dilute sulfuric acid (130 °C, 60 min, 2% w/v H2SO4) followed by H2O2 (1-5% w/v) in alkaline medium (NaOH) at low temperature (60, 90 °C) and at different pretreatment times (30-90 min) was investigated. The first-acid stage allows the solubilisation of hemicellulose fraction into fermentable sugars. The second-alkaline peroxide stage allows the delignification of the solid material whilst the cellulose remaining in rape straw turned highly digestible by cellulases. Simultaneous saccharification and fermentation with 15% (w/v) delignified substrate at 90 °C, 5% H2O2 for 60 min, led to a maximum ethanol production of 53 g/L and a yield of 85% of the theoretical.

  3. [Effects of Phosphate Rock and Decomposed Rice Straw Application on Lead Immobilization in a Contaminated Soil].

    Tang, Fan; Hu, Hong-qing; Su, Xiao-juan; Fu, Qing-ling; Zhu, Jun

    2015-08-01

    The soils treated with phosphate rock (PR) and oxalic acid activated phosphate rock (APR) mixed with decomposed rice straw were incubated in different moisture conditions for 60 days to study the effect on the basic property of the soil and on the speciation variation of Pb. The results showed that all these three types of immobilizing materials increased the pH, the Olsen-P, the exchangeable Ca and the soil cation exchange capacity, and APR showed more obvious effect; the pH and the exchangeable Ca of soil in the flooding treatment were higher than those in normal water treatment (70%), but the Olsen-P of soil in normal water treatment was a little bit more. These materials reduced exchangeable Ph fraction, and converted it into unavailable fraction. But the APR was better than raw PR in immobilizing lead, and the exchangeable Pb fraction was reduced by 40.3% and 24.2%, compared with the control, respectively, and the immobilization effect was positively correlated with the dosage. Decomposed rice straw could transform the exchangeable Ph fraction in soil into organic-bound fraction, while the flooding treatment changed it into the Fe-Mn oxide-bound and residue fractions.

  4. Treatment of Lignin and Waste residues by Flash Pyrolysis

    Jensen, Peter Arendt; Trinh, Ngoc Trung; Dam-Johansen, Kim

    pyrolysis properties were compared with the pyrolysis properti es of wood and straw. The PCR treatment of sewage sludge provides an oil that can be used for energy pur poses and a solid residue rich in in organic nutrients that may be used as fertilizer product. By fast pyroly sis of lignin from the IBUS...... be operated at low rotational speed was constructed. The new rotor systems should make it easier to make an up-scaling of the process....

  5. Fermentation of straw and Co. by means of up flow hydrolysis; Vergaerung von Stroh and Co durch Aufstromhydrolyse

    Lehmann, Thilo [LEHMANN Maschinenbau GmbH, Poehl (Germany)

    2013-10-01

    The sustainability of biogas production and biogas utilization is determined by the price trend of the substrate, the development of new substrates and the improvement of the energetic utilization ratio of the applied substrates. Up till now, highly lignocellulosic substrates/residues like straw were considered as ''not or limited usable'' for the biogas production. Reasons are the high lignin content, the distinct pith structure with cavities and layers of fat and, thereof, a quasi-hydrophobic consistency of these substrates. This is even after the crushing of the structures often demonstrated by the formation of floating layers and ''rope formation'' in the fermenter, which is often a co-criterion for their use. Substrates such as straw and the like accumulate annually in large quantities, and are often plough back as humus forming. The fact is: decomposition of these biomasses in the fields extracts nutrients from the cultivated crops. This leads either to considerable crop losses or expensive additional nutrient. In contrast, the use of straw in anaerobic digestion seems sensible. The nutrients and organic matter, which was not converted into biogas in the fermentation process, are available again as a high quality and metered digestate after fermentation for fertilization. (orig.)

  6. Commercialization Development of Crop Straw Gasification Technologies in China

    Zhengfeng Zhang

    2014-12-01

    Full Text Available Crop straw gasification technologies are the most promising biomass gasification technologies and have great potential to be further developed in China. However, the commercialization development of gasification technology in China is slow. In this paper, the technical reliability and practicability of crop straw gasification technologies, the economic feasibility of gas supply stations, the economic feasibility of crop straw gasification equipment manufacture enterprises and the social acceptability of crop straw gasification technologies are analyzed. The results show that presently both the atmospheric oxidation gasification technology and the carbonization pyrolysis gasification technology in China are mature and practical, and can provide fuel gas for households. However, there are still a series of problems associated with these technologies that need to be solved for the commercialization development, such as the high tar and CO content of the fuel gas. The economic feasibility of the gas supply stations is different in China. Parts of gas supply stations are unprofitable due to high initial investment, the low fuel gas price and the small numbers of consumers. In addition, the commercialization development of crop straw gasification equipment manufacture enterprises is hindered for the low market demand for gasification equipment which is related to the fund support from the government. The acceptance of the crop straw gasification technologies from both the government and the farmers in China may be a driving force of further commercialization development of the gasification technologies. Then, the crop straw gasification technologies in China have reached at the stage of pre-commercialization. At this stage, the gasification technologies are basically mature and have met many requirements of commercialization, however, some incentives are needed to encourage their further development.

  7. Straw and energy crops- analysis of economy, energy and environment

    Parsby, M.

    1996-01-01

    The purpose of the biomass agreement of 14 June 1993 was to increase the use of biomass fuels in the Danish power plants to 1.2 million tons straw and 200 000 wood chips. Contribution from straw combustion should reach 25 PJ in year 2000. However biomass cultivation can endanger the governmental policy of pesticide and nitrogen reduction in agriculture. In the worst harvest years straw quantity can be reduced to 70 % of the normal level, while in good years there would occur a 3-4 fold excess of straw. Supply depends in a decisive degree on the offered price as the indirect cost can vary much (wet straw, delayed sawing, lost fertilizer value etc.). Potential for energy crops can be based on ca 300 000 ha present fallow agricultural areas. Cost is higher than that for straw, the most probable plants are elephant grass, willow, rape, sugar beets, winter cereals. Cost is lower for perennial plants, but at least 10-12 years are necessary for such crops to become profitable. Generally the biofuel crops are more expensive than crops for immediate combustion. Expenses for energy crops will decrease with time per ton dry matter, but ground rent for soils previously fallow has to be taken into account. A reduced nitrogen fertilization will reduce the economic profits quite essentially due to smaller harvests. Pesticide consumption will not have to grow as straw and elephant grass do not require any larger quantities (unless very large areas of one crop are cultivated).(EG) 92 refs

  8. Solid residues

    Mulder, E.; Duin, P.J. van; Grootenboer, G.J.

    1995-01-01

    A summary is presented of the many investigations that have been done on solid residues of atmospheric fluid bed combustion (AFBC). These residues are bed ash, cyclone ash and bag filter ash. Physical and chemical properties are discussed and then the various uses of residues (in fillers, bricks, gravel, and for recovery of aluminium) are summarised. Toxicological properties of fly ash and stack ash are discussed as are risks of pneumoconiosis for workers handling fly ash, and contamination of water by ashes. On the basis of present information it is concluded that risks to public health from exposure to emissions of coal fly ash from AFBC appear small or negligible as are health risk to workers in the coal fly ash processing industry. 35 refs., 5 figs., 12 tabs

  9. A novel micro-straw for cryopreservation of small number of human spermatozoon

    Feng Liu

    2017-01-01

    Full Text Available Cryopreservation of few spermatozoa is still a major challenge for male fertility preservation. This study reports use a new micro-straw (LSL straw for freezing few spermatozoa for intracytoplasmic sperm injection (ICSI. Semen samples from 22 fertile donors were collected, and each semen sample was diluted and mixed with cryoprotectant in a ratio of 1:1, and then frozen using three different straws such as LSL straw (50-100 μl, traditional 0.25 ml and 0.5 ml straws. For freezing, all straws were fumigated with liquid nitrogen, with temperature directly reducing to −130-−140°C. Sperm concentration, progressive motility, morphology, acrosome integrity, and DNA fragmentation index were evaluated before and after freezing. After freezing-thawing, LSL straw group had significantly higher percentage of sperm motility than traditional 0.25 ml and 0.5 ml straw groups (38.5% vs 27.4% and 25.6%, P 0.05. As LSL straws were thinner and hold very small volume, the freezing rate of LSL straw was obviously faster than 0.25 ml straw and 0.5 ml straws. In conclusion, LSL micro-straws may be useful to store few motile spermatozoa with good recovery of motility for patients undergoing ICSI treatment.

  10. Pretreatment and Fractionation of Wheat Straw for Production of Fuel Ethanol and Value-added Co-products in a Biorefinery

    Xiu Zhang

    2014-08-01

    Full Text Available An integrated process has been developed for a wheat straw biorefinery. In this process, wheat straw was pretreated by soaking in aqueous ammonia (SAA, which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment conditions included 15 wt% NH4OH, 1:10 solid:liquid ratio, 65 oC and 15 hours. Under these conditions, 48% of the original lignin was removed, whereas 98%, 83% and 78% of the original glucan, xylan, and arabinan, respectively, were preserved. The pretreated material was subsequently hydrolyzed with a commercial hemicellulase to produce a solution rich in xylose and low in glucose plus a cellulose-enriched solid residue. The xylose-rich solution then was used for production of value-added products. Xylitol and astaxanthin were selected to demonstrate the fermentability of the xylose-rich hydrolysate. Candida mogii and Phaffia rhodozyma were used for xylitol and astaxanthin fermentation, respectively. The cellulose-enriched residue obtained after the enzymatic hydrolysis of the pretreated straw was used for ethanol production in a fed-batch simultaneous saccharification and fermentation (SSF process. In this process, a commercial cellulase was used for hydrolysis of the glucan in the residue and Saccharomyces cerevisiae, which is the most efficient commercial ethanol-producing organism, was used for ethanol production. Final ethanol concentration of 57 g/l was obtained at 27 wt% total solid loading.

  11. Microbiota of kefir grains

    Tomislav Pogačić

    2013-03-01

    Full Text Available Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities for identification of previously nonisolated and non-identified microbial species from the kefir grains. Considering recent studies, there are over 50 microbial species associated with kefir grains. The aim of this review is to summarise the microbiota composition of kefir grains. Moreover, because of technological and microbiological significance of the kefir grains, the paper provides an insight into the microbiological and molecular methods applied to study microbial biodiversity of kefir grains.

  12. Carbaryl residues in maize products

    Zayed, S.M.A.D.; Mansour, S.A.; Mostafa, I.Y.; Hassan, A.

    1976-01-01

    The 14 C-labelled insecticide carbaryl was synthesized from [1- 14 C]-1-naphthol at a specific activity of 3.18mCig -1 . Maize plants were treated with the labelled insecticide under simulated conditions of agricultural practice. Mature plants were harvested and studied for distribution of total residues in untreated grains as popularly roasted and consumed, and in the corn oil and corn germ products. Total residues found under these conditions in the respective products were 0.2, 0.1, 0.45 and 0.16ppm. (author)

  13. Process from removing benzine, toluene, etc. , from petroleum residues, coal tar, and shale tar, etc

    Hlawaty, F

    1888-08-11

    A process is described for the preparation of ligroin and its homologs as well as naphthalene and anthracene consisting in leading superheated water vapor into a mixture of petroleum residues (or mineral coal tar, etc.) heated to about 400/sup 0/C with cellulosic substances as sage shreds, sea grass, or straw, with addition of caustic alkali.

  14. The effect of gamma irradiation on in vitro digestible energy of some agricultural residues

    Al-Masri, M.R.

    1993-03-01

    Experiments have been carried out on the effect of gamma irradiation on total energy, dry organic matter digestibility and on digestible energy of organic matter for some agricultural residues (maize straw, lentils straw, cottonwood, residues of apple-tree pruning, olive-cake first and second treatment). Sample were irradiated at 0, 50 and 100 KGy. Total energy was estimated by calorimeter. Digestibility was estimated in vitro by the method of Tilly and Terry (1963). Two sheep with rumen fistula were used as rumen liquor donating animals. Irradiation resulted in increasing the digestion of organic and dry matter and also the digestible energy of organic matter in all residues used except lentils straw and olive-cake first treatment. The increase in digestible energy values of organic matter (kJ) at dose of 100 KGy were: 155, 105, 71 and 25 for residue of apple-tree pruning, maize straw, cottonwood and olive-cake second treatment, respectively. (author).28 refs., 10 figs., 5 tabs

  15. 40 CFR 180.522 - Fumigants for processed grains used in production of fermented malt beverage; tolerances for...

    2010-07-01

    ... production of fermented malt beverage; tolerances for residues. 180.522 Section 180.522 Protection of... PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.522 Fumigants for processed grains used in production of fermented malt beverage; tolerances for residues. (a) General. Fumigants for processed grain...

  16. Sorption of selected pesticides on soils, sediment and straw from a constructed agricultural drainage ditch or pond.

    Vallée, Romain; Dousset, Sylvie; Billet, David; Benoit, Marc

    2014-04-01

    Buffer zones such as ponds and ditches are used to reduce field-scale losses of pesticides from subsurface drainage waters to surface waters. The objective of this study was to assess the efficiency of these buffer zones, in particular constructed wetlands, focusing specifically on sorption processes. We modelled the sorption processes of three herbicides [2-methyl-4-chlorophenoxyacetic acid (2,4-MCPA), isoproturon and napropamide] and three fungicides (boscalid, prochloraz and tebuconazole) on four substrates (two soils, sediment and straw) commonly found in a pond and ditch in Lorraine (France). A wide range of Freundlich coefficient (K fads) values was obtained, from 0.74 to 442.63 mg(1 - n) L (n) kg(-1), and the corresponding K foc values ranged from 56 to 3,725 mg(1 - n) L (n) kg(-1). Based on potential retention, the substrates may be classified as straw > sediments > soils. These results show the importance of organic carbon content and nature in the process of sorption. Similarly, the studied pesticides could be classified according to their adsorption capacity as follows: prochloraz > tebuconazole-boscalid > napropamide > MCPA-isoproturon. This classification is strongly influenced by the physico-chemical properties of pesticides, especially solubility and K oc. Straw exhibited the largest quantity of non-desorbable pesticide residues, from 12.1 to 224.2 mg/L for all pesticides. The presence of plants could increase soil-sediment sorption capacity. Thus, establishment and maintenance of plants and straw filters should be promoted to optimise sorption processes and the efficiency of ponds and ditches in reducing surface water pollution.

  17. Potassium hydroxide pulping of rice straw in biorefinery initiatives.

    Jahan, M Sarwar; Haris, Fahmida; Rahman, M Mostafizur; Samaddar, Purabi Rani; Sutradhar, Shrikanta

    2016-11-01

    Rice straw is supposed to be one of the most important lignocellulosic raw materials for pulp mill in Asian countries. The major problem in rice straw pulping is silica. The present research is focused on the separation of silica from the black liquor of rice straw pulping by potassium hydroxide (KOH) and pulp evaluation. Optimum KOH pulping conditions of rice straw were alkali charge 12% as NaOH, cooking temperature 150°C for 2h and material to liquor ratio, 1:6. At this condition pulp yield was 42.4% with kappa number 10.3. KOH pulp bleached to 85% brightness by D0EpD1 bleaching sequences with ClO2 consumption of 25kg/ton of pulp. Silica and lignin were separated from the black liquor of KOH pulping. The amount of recovered silica, lignin and hemicelluloses were 10.4%, 8.4% and 13.0%. The papermaking properties of KOH pulp from rice straw were slightly better than those of corresponding NaOH pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Chemical modification of straw by alkaline treatment. [Trolmen process

    1977-01-01

    In straw from 9 Swedish cereal cultivars of barley, oats, wheat, and rye, low molecular weight carbohydrates constituted only 0.3-1.4% of the straw with sucrose, glucose, fructose, and the sugar alcohols arabinitol and mannitol as main constituents. Hemicellulose (18-24%), cellulose (27-37%) and Klason-lignin (19-24%) were the main constituents. The ash (3-12%) and silica (0.5-3%) values showed rather high variations. After the Trolmen process, a wet closed NaOH treatment method, there was a slight enrichment of carbohydrates and ash and a decrease of Klason-lignin in the treated straw. About 1% of phenolic acids, mainly alpha ..beta.. -dihydro-p-coumatic, trans-p-coumaric, alpha ..beta.. -dihydroferulic and trans-ferulic acids, were quantified in the black liquid from the Trolmen process. These acids were probably ester-linked to the hemicellulose in the native straw and released during alkali treatment.HOAc, probably from Ac groups in xylan, and some of the silica were also released during the process. Although the amount of dissolved lignin was small, linkages between lignin and hemicellulosic polymers, perhaps also to cellulose, may be broken during the treatment. Linkages of these types may block the carbohydrates from enzymic action and reduce the digestibility. The higher digestibility of alkali-treated straw is probably due both to breaking of such linkages and to swelling of the polysaccharides rather than removal of any large amounts of undigestible components as lignin and silica.

  19. Application of a continuous twin screw-driven process for dilute acid pretreatment of rape straw.

    Choi, Chang Ho; Oh, Kyeong Keun

    2012-04-01

    Rape straw, a processing residue generated from the bio-oil industry, was used as a model biomass for application of continuous twin screw-driven dilute acid pretreatment. The screw rotation speed and feeding rate were adjusted to 19.7rpm and 0.5g/min, respectively to maintain a residence time of 7.2min in the reaction zone, respectively. The sulfuric acid concentration was 3.5wt% and the reaction temperature was 165°C. The enzymatic digestibility of the glucan in the pretreated solids was 70.9%. The continuous process routinely gave around 28.8% higher yield for glucan digestibility than did the batch processing method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine.

    Zhao, Xuchen; Ouyang, Wei; Hao, Fanghua; Lin, Chunye; Wang, Fangli; Han, Sheng; Geng, Xiaojun

    2013-11-01

    Biochar has been recognised as an efficient pollution control material. In this study, biochars (CS450 and ADPCS450) were produced using corn straw with different pretreatment techniques (without and with ammonium dihydrogen phosphate (ADP)). The character of the two biochars was compared using elemental analysis, specific surface area (SSA) and Fourier transform infrared spectra (FTIR). ADPCS450 had a higher residue yield and a much larger specific surface area than CS450. The Freundlich, Langmuir and Redlich-Peterson models were used to interpret the sorption behaviour of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), and the results fit the Redlich-Peterson equation best. The isothermal sorption parameters indicated that the sorption capacity of atrazine on ADPCS450 was much larger than the sorption capacity of atrazine on CS450. Atrazine sorption was also favoured in acidic solution and under higher temperature conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The effects on digestibility and ruminal measures of chemically treated corn stover as a partial replacement for grain in dairy diets.

    Cook, D E; Combs, D K; Doane, P H; Cecava, M J; Hall, M B

    2016-08-01

    Alkaline treatment of gramineous crop residues can convert an abundant, minimally utilized, poorly digestible straw into a moderately digestible feedstuff. Given the volatile nature of grain prices, substitution of treated stover for grain was investigated with dairy cows to provide insights on ruminal and digestibility effects of a feed option that makes use of alternative, available resources. The objective of this study was to evaluate changes in diet digestibility and ruminal effects when increasing levels of calcium oxide-treated corn stover (CaOSt) were substituted for corn grain in diets of lactating cows. Mature corn stover was treated with calcium oxide at a level of 50g∙kg(-1) dry matter (DM), brought up to a moisture content of 50% following bale grinding, and stored anaerobically at ambient temperatures for greater than 60d before the feeding experiment. Eight ruminally cannulated Holstein cows averaging 686kg of body weight and 35kg of milk∙d(-1) were enrolled in a replicated 4×4 Latin square, where CaOSt replaced corn grain on a DM basis in the ration at rates of 0, 40, 80, and 120g∙kg(-1) DM. All reported significant responses were linear. The DM intake declined by approximately 1kg per 4% increase in CaOSt inclusion. With increasing replacement of corn grain, dietary neutral detergent fiber (NDF) concentration increased. However, rumen NDF turnover, NDF digestibility, NDF passage rate, and digestion rate of potentially digestible NDF were unaffected by increasing CaOSt inclusion. Total-tract organic matter digestibility declined by 5 percentage units over the range of treatments, approximately 1.5 units per 4-percentage-unit substitution of CaOSt for grain. With increasing CaOSt, the molar proportions of butyrate and valerate declined, whereas the lowest detected ruminal pH increased from 5.83 to 5.94. Milk, fat, and protein yields declined as CaOSt increased and DM intake declined with the result that net energy in milk declined by

  2. Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass

    Petrik, SiniŠa; Márová, Ivana; Kádár, Zsófia

    2013-01-01

    In this work hydrothermally pretreated wheat straw was used for production of bioethanol by Saccharomyces cerevisiae and carotene-enriched biomass by red yeasts Rhodotorula glutinis, Cystofilobasidium capitatum and Sporobolomyces roseus. To evaluate the convertibility of pretreated wheat straw...

  3. Development and performance of resistive seamless straw-tube gas chambers

    Takubo, Y.; Aoki, M.; Ishihara, A.; Ishii, J.; Kuno, Y.; Maeda, F.; Nakahara, K.; Nosaka, N.; Sakamoto, H.; Sato, A.; Terai, K.; Igarashi, Y.; Yokoi, T.

    2005-01-01

    A new straw-tube gas chamber which is made of seamless straw-tubes, instead of ordinary wound-type straw-tubes is developed. Seamless straw-tubes have various advantages over ordinary wound-type ones, in particular, in terms of mechanical strength and lesser wall thickness. Our seamless straw-tubes are fabricated to be resistive so that the hit positions along the straw axis can be read by cathode planes placed outside the straw-tube chambers, where the cathode strips run transverse to the straw axis. A beam test was carried out at KEK to study their performance. As a result of the beam test, the position resolution of the cathode strips of 220μm is achieved, and an anode position resolution of 112μm is also obtained

  4. Toward the complete utilization of rice straw: Methane fermentation and lignin recovery by a combinational process involving mechanical milling, supporting material and nanofiltration.

    Sasaki, Kengo; Okamoto, Mami; Shirai, Tomokazu; Tsuge, Yota; Fujino, Ayami; Sasaki, Daisuke; Morita, Masahiko; Matsuda, Fumio; Kikuchi, Jun; Kondo, Akihiko

    2016-09-01

    Rice straw was mechanically milled using a process consuming 1.9MJ/kg-biomass, and 10g/L of unmilled or milled rice straw was used as the carbon source for methane fermentation in a digester containing carbon fiber textile as the supporting material. Milling increased methane production from 226 to 419mL/L/day at an organic loading rate of 2180mg-dichromate chemical oxygen demand/L/day, corresponding to 260mLCH4/gVS. Storage of the fermentation effluent at room temperature decreased the weight of the milled rice straw residue from 3.81 to 1.00g/L. The supernatant of the effluent was subjected to nanofiltration. The black concentrates deposited on the nanofiltration membranes contained 53.0-57.9% lignin. Solution nuclear magnetic resonance showed that lignin aromatic components such as p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) were retained primarily, and major lignin interunit structures such as the β-O-4-H/G unit were absent. This combinational process will aid the complete utilization of rice straw. Copyright © 2016. Published by Elsevier Ltd.

  5. Effects of Some Additives on In Vitro True Digestibility of Wheat and Soybean Straw Pellets

    Kılıc Unal; Gulecyuz Emre

    2017-01-01

    This study was aimed to explore the nutrient content, relative feed values (RFV) and in vitro true digestibilities (IVTD) of wheat straw and soybean straw pellets produced with the addition of molasses, guar meal and sepiolite. In this experiment, 16 groups were created for 2 different straws (wheat/soybean straws), 2 different sepiolite applications (available/not available) and 4 different applications (control, guar meal, molasses, guar meal+molasses) in accordance with the 2×2×4 factorial...

  6. Generating a positive energy balance from using rice straw for anaerobic digestion

    V.H. Nguyen

    2016-11-01

    The net energy of the rice straw supply chain for biogas generation through AD is 3,500 MJ per ton of straw. This rice straw management option can provide a 70% net output energy benefit. The research highlighted the potential of rice straw as a clean fuel source with a positive energy balance, helping to reduce greenhouse gas emissions compared with the existing practice of burning it in the field.

  7. Organic dyes removal using magnetically modified rye straw

    Baldikova, Eva, E-mail: baldie@email.cz [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarikova, Mirka [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic)

    2015-04-15

    Rye straw, a very low-cost material, was employed as a biosorbent for two organic water-soluble dyes belonging to different dye classes, namely acridine orange (acridine group) and methyl green (triarylmethane group). The adsorption properties were tested for native and citric acid–NaOH modified rye straw, both in nonmagnetic and magnetic versions. The adsorption equilibrium was reached in 2 h and the adsorption isotherms data were analyzed using the Langmuir model. The highest values of maximum adsorption capacities were 208.3 mg/g for acridine orange and 384.6 mg/g for methyl green. - Highlights: • Rye derivatives can be considered as efficient adsorbents for organic dyes. • Magnetic modification of straw by microwave-synthesized magnetic iron oxides. • Citric acid–NaOH modification increased the maximum adsorption capacities.

  8. Heat Transfer in a Fixed Bed of Straw Char

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Jensen, Anker

    2003-01-01

    A model for the thermal conductivity of a straw char bed has been developed. The model extends the work of Yagi and Kunii to describe heat transfer in a bed of cylinders, using a relationship between the interparticle distance and the external porosity. To verify the model, thermal conductivity...... the experimental uncertainty over the range of conditions investigated. The heat transfer model was used in a parametric study to evaluate the effect of gas flow rate, particle diameter, porosity, and temperature on the thermal conductivity in a straw char bed....... experiments were performed on shredded and un-shredded straw char samples, varying particle size, bed packing (loose or dense), and temperature. Predictions with the model, using the measured external porosity and particle diameter as input parameters, are in agreement with measurements within...

  9. Ozone pretreatment and fermentative hydrolysis of wheat straw

    Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.

    2017-11-01

    Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.

  10. Wet oxidation pretreatment of rape straw for ethanol production

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via...... Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole...... gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid...

  11. Wet explosion og wheat straw and codigestion with swine manure

    Wang, Guangtao; Gavala, Hariklia N.; Skiadas, Ioannis V.

    2009-01-01

    with wheat straw in a continuous operated system was investigated, as a method to increase the efficiency of biogas plants that are based on anaerobic digestion of swine manure. Also, the pretreatment of wheat straw with the wet explosion method was studied and the efficiency of the wet explosion process......The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Twenty-two (22) large-scale biogas plants are currently under operation in Denmark. Most of these plants use manure as the primary......, production of regenerated cellulose fibers as an alternative to wood for cellulose-based materials and ethanol production. The advantage of exploiting wheat straw for various applications is that it is available in considerable quantity and at low-cost. In the present study, the codigestion of swine manure...

  12. 78 FR 63938 - Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various...

    2013-10-25

    ... Cosmetic Act (FFDCA), (21 U.S.C. 346a), requesting the establishment or modification of regulations in 40...; vegetable, cucurbit, Group 9 at 0.20 ppm; vegetable, fruiting, Group 8-10 at 0.60 ppm; walnut, black at 0... 16, except barley, rice and wheat straw'' as well as amend the commodity definition, ``Grain, cereal...

  13. [The influence of straw, particularly rice straw, together with calcium-cyanamide on the microbiological activity of two Portuguese soils (author's transl)].

    Glathe, H; El Din, A; Scheuer, A

    1976-01-01

    The influence of calcium-cyanamide upon the microbiological activity was tested in pot experiments under controlled conditions in two Portuguese soils (sandy and loamy) after the addition of rice or wheat straw (rice straw 0.275% N, wheat straw 0.307% N). The amount of straw was equalled to 100 dz/ha, the application of calcium-cyanamide to 25, 50 and 100 kg N/ha. In the containers treated with straw the total amount of microorganisms (Koch-method) was higher in sandy than in loamy soil after 30 days, but after 70 days it was higher in loamy soil. The content of active nitrogen (NH4 + NO3) increased, when calcium-cyanamide was added, but decreased after the application of straw. After 70 days sandy soil again showed an increase of active nitrogen. Straw increased the rates of CO2-production considerably, wheat straw was superior to rice straw. Calcium-cyanamide increased the CO2-production more in sandy than in loamy soil or German loess, which was also used for this experiment. Only in the case of rice straw higher doses of calcium-cyanamide had a positive effect. After 70 days the CO2-production rose only when rice straw was applied. The dehydrogenase-activity was increased in both soils, but a superiority of wheat straw occurred in sandy soil only. The microbiological activity in the pots with straw was higher in sandy than in loamy soil, the addition of calcium-cyanamide accelerated it. Doses of 25-50 kg N/ha are sufficient generally. The period of the formation of insoluble organic N-compounds, usually connected with the application of organic matter with a wide N:C-ratio, seems to be reduced by the addition of calcium-cyanamide.

  14. Passively Aerated Composting of Straw-Rich Pig Manure : Effect of Compost Bed Porosity

    Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.

    2002-01-01

    Straw-rich manure from organic pig farming systems can be composted in passively aerated systems as the high application of straw results in a compost bed with good structure and porosity. The passively aerated composting process was simulated in one-dimensional reactors of 2 m3 for straw-rich

  15. Urea-ensiled rice straw as a feed for cattle in Thailand

    straw. Rice straw contains about 3% crude protein (air- dry basis), 35% crude fiber and 1900kcal DE/kg of straw. Because of its low energy and protein content, ... corn, 9,4 kg soybean meal, 10 kg coconut meal, 2 kg mineral, 2 kg bone meal and 1 kg salt. Table 3 Performance of crossbred heifers fed with different roughages.

  16. Selected properties of particleboard panels manufactured from rice straws of different geometries

    Xianjun Li; Zhiyong Cai; Jerrold E. Winandy; Altaf H. Basta

    2010-01-01

    The objective is to evaluate the primary mechanical and physical properties of particleboard made from hammer-milled rice straw particles of six different categories and two types of resins. The results show the performance of straw particleboards is highly dependent upon the straw particle size controlled by the opening size of the perforated plate inside the hammer-...

  17. A Novel Approach for an Integrated Straw Tube-Microstrip Detector

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.; Paolozzi, A.; Passamonti, L.; Pierluigi, D.; Pucci, C.; Russo, A.; Saviano, G.; Casali, F.; Bettuzzi, M.; Bianconi, D.; Baruffaldi, F.; Perilli, E.; Massa, F.

    2006-06-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell/spl reg/ lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported as well.

  18. A Novel Approach for an Integrated Straw tube-Microstrip Detector

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.

    2005-01-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell $^{\\circledR}$ lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported on as well.

  19. Wheat-straw as roughage component in finishing diets of growing ...

    to use wheat-straw in diets, this study was conducted (i) to determine the degree whereto the inclusion of wheat-straw in finishing diets for lambs affected digestibility, N retention and animal performance, and (ii) to evaluate ammoniated wheat straw as roughage component in a balanced diet, containing. >60% concentrates ...

  20. Hunger in pregnant sows: Effects of a fibrous diet and free access to straw

    Jensen, Margit Bak; Pedersen, Lene Juul; Theil, Peter Kappel

    2015-01-01

    of metabolites and hormones in pregnant sows. Ten groups of three pregnant sows were housed in pens with concrete floor where a limited amount of chopped straw (approx. 330 g/sow) was provided daily. In 5 of the 10 groups sows had free access to uncut straw in racks in addition to the chopped straw (Ad libitum...

  1. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw oxides iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. High temperature corrosion in straw-fired power plants: Influence of steam/metal temperature on corrosion rates for TP347H

    Montgomery, Melanie; Biede, O; Larsen, OH

    2002-01-01

    The corrosion in straw-fired boilers has been investigated at various straw-fired power plants in Denmark. Water/air-cooled probes, a test superheater and test sections removed from the actual superheater have been utilised to characterise corrosion and corrosion rates. This paper describes...... the corrosion rates measured for the TP347H type steel. The corrosion morphology at high temperature consists of grain boundary attack and selective attack of chromium. The corrosion rate increases with calculated metal temperature (based on steam temperature), however there is great variation within....... The difference in the results could be traced back to a lower flue gas temperature on one side of the boiler. Although metal temperature is the most important parameter with respect to corrosion rate, flue gas temperature also plays an important role. Efforts to quantify the effect of flue gas temperature...

  3. Electrodialytic removal of cadmium from straw combustion fly ash

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Villumsen, Arne

    2004-01-01

    Fly ash from straw combustion contains valuable nutrients when returned to agricultural soils. In many instances, however, this fly ash may contain heavy metals, such as cadmium, at levels which often exceed the limits given by the Danish legislation. Thus before utilizing the nutrients, cadmium...... must be removed from these ashes. The use of an electrodialytic remediation method to remove cadmium from fly ash arising from straw combustion and containing 11.2 mg Cd kg$+-1$/ DM (dry matter) was accessed. After 36 days of remediation at a constant current density of 5.6 mA cm$+-2$/ more than 97...

  4. Effect of sterilization on mineralization of straw and black carbon

    Bobul'ská, Lenka; Bruun, Sander; Fazekašová, Danica

    2013-01-01

    The study was aimed at investigating the role of microorganisms in the degradation of BC (black carbon). CO evolution was measured under sterilized and non-sterilized soil using BC and straw amendments. Black carbon and straw were produced from homogenously C labelled roots of barley (Hordeum vulgare) with a specific activity 2.9 MBq g C. Production of BC was implemented at 300 °C for 24 h in a muffle oven, incubated in soil and C in the evolved CO was measured after 0.5, 1, 2, 4, 8, 16, 26 a...

  5. Analysis of energetic exploitation of straw in Vojvodina

    Dodic, Sinisa N.; Dodic, Jelena M.; Popov, Stevan D.; Zekic, Vladislav N.; Rodic, Vesna O.; Tica, Nedeljko Lj.

    2011-01-01

    The Autonomous Province of Vojvodina is an autonomous province in the Republic of Serbia. It is located in the northern part of the country, in the Pannonia plain. Vojvodina is an energy-deficient province. The average yearly quantity of the cellulose wastes in Vojvodina amounts to about 9 millions tons barely in the agriculture, and the same potential on the level of Serbia estimates to almost 13 million tons. This study gives the analysis of energetic exploitation of straws from stubble cereals processed in different forms. Costs for the equipment that uses biomass in the EU are approximately two times higher with respect to those for the equipment for combustion of natural gas or of fuel oil. Costs of investments for combustion of biomass in Vojvodina if compared with the cited data are approximately for 40-50% lower. The difference of the investment costs for the construction of such units is because units for straw combustion designed and constructed in our country, have neither the complicated devices for manipulation of fuels, nor the devices for the waste gasses processing. The definite conclusions about the economic justification of the energetic exploitation of stubble straws can be obtained only by comparison of costs of the so obtained energy, with the costs of energy obtained through the combustion of classical fuels. Previous comparisons were the most often based on the comparisons of value of prices of the equivalent straw quantity with the process of fuel oil of other classical fuels. Such the comparisons leaded to the very positive evaluations of the economical effects of straws, without taking into account the realizability of the named method. Namely, comparisons of straw and fuel oil hardly could lead to the conclusion that these two fuels are mutually substitutable. According to its physical properties, straw is most similar to firewood, but the preciousness and lacking of this the very resource excludes it from the comparative analysis, so

  6. Methane productivity of manure, straw and solid fractions of manure

    Møller, H.B.; Sommer, S.G.; Ahring, Birgitte Kiær

    2004-01-01

    are in the same range (282-301 m(3) CH4 LU-1). Pre-treatment of manure by separation is a way of making fractions of the manure that have a higher gas potential per volume. Theoretical methane potential and biodegradability of three types of fractions deriving from manure separation were tested. The volumetric...... methane yield of straw was found to be higher than the yield from total manure and the solid fractions of manure, due to the higher VS content, and hence the use of straw as bedding material will increase the volumetric as well as the livestock-based methane productivity....

  7. Environmentally friendly education: A passive solar, straw-bale school

    Stone, L.; Dickinson, J.

    1999-07-01

    The Waldorf students in the Roaring Fork Valley of western Colorado are learning their reading, writing and arithmetic in the cozy confines of a solar heated, naturally lit, straw-bale school. The Waldorf education system, founded in 1919 by Austrian Rudolph Steiner, stresses what's appropriate for the kids, not what's easiest to teach. In constructing a new school, the Waldorf community wanted a building that would reflect their philosophy. There was a long list of requirements: natural, energy efficient, light, warm, alive, and earthy. Passive solar straw-bale construction brought together all those qualities.

  8. Decomposition of Straw in Soil after Stepwise Repeated Additions

    Sørensen, Lasse Holst

    1979-01-01

    after the first repeated addition of labelled straw the soils were subjected to a number of “stress” treatments: addition of unlabelled glucose, air-drying, oven-drying, grinding and fumigation with vapour of chloroform, respectively. The CO2 that developed during the first 10 days after the treatments......, grinding the most. The effect of each treatment declined with an increasing number of successive additions of straw. The ratio between CO2 evolved after grinding and fumigation, respectively, revealed that grinding also exposed non-biomass material to accelerated decomposition. The effects of the stress...

  9. Drinking-Straw Microbalance and Seesaw: Stability and Instability

    Chapman, Peter; Glasser, Leslie

    2015-03-01

    The mechanics of a beam balance are little appreciated and seldom understood. We here consider the conditions that result in a stable balance, with center of gravity below the fulcrum (pivot point), while an unstable balance results when the center of gravity is above the fulcrum. The highly sensitive drinking-straw microbalance, which uses a plastic drinking straw as a rigid beam, is briefly described with some slight convenient modifications. Different placements of the center of gravity are considered analytically to explain the equilibrium neutrality, stability, and instability of such beam balances as the microbalance, the playground "seesaw" or "teeter-totter," the "dipping bird," and other toys and magic tricks.

  10. The large size straw drift chambers of the COMPASS experiment

    Bychkov, V N; Dünnweber, W; Faessler, Martin A; Fischer, H; Franz, J; Geyer, R; Gousakov, Yu V; Grünemaier, A; Heinsius, F H; Ilgner, C; Ivanchenko, I M; Kekelidze, G D; Königsmann, K C; Livinski, V V; Lysan, V M; Marzec, J; Matveev, D A; Mishin, S V; Mialkovski, V V; Novikov, E A; Peshekhonov, V D; Platzer, K; San, M; Schmid, T; Shokin, V I; Sissakian, A N; Viriasov, K S; Wiedner, U; Zaremba, K; Zhukov, I A; Zlobin, Y L; Zvyagin, A

    2005-01-01

    Straw drift chambers are used for the Large Area Tracking (LAT) of the Common Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) at CERN. An active area of 130 m2 in total is covered by 12 440 straw tubes, which are arranged in 15 double layers. The design has been optimized with respect to spatial resolution, rate capability, low material budget and compactness of the detectors. Mechanical and electrical design considerations of the chambers are discussed as well as new production techniques. The mechanical precision of the chambers has been determined using a CCD X-ray scanning apparatus. Results about the performance during data taking in COMPASS are described.

  11. Signal propagation in straw tubes with resistive cathodes

    Marzec, J.; Zaremba, K.; Pawlowski, Z.; Konarzewski, B.

    2000-01-01

    The analysis presented in this paper is part of the research performed by the authors for the COMPASS experiment at CERN. They have developed a theoretical model of the signal transmission in a straw tube. In contrast to commonly used simplified models, their approach takes into account the energy losses in the cathode resistance. This model allows determination of the main electrical parameters, such as characteristic impedance and signal attenuation, as well as a detailed simulation of the pulse shape dependent on the point of the charge injection. Simulation results have been compared with the results of experimental measurements of different types of the straw detectors

  12. Signal propagation in straw tubes with resistive cathodes

    Marzec, J.; Zaremba, K.; Pawlowski, Z.; Konarzewski, B.

    2000-02-01

    The analysis presented in this paper is part of the research performed by the authors for the COMPASS experiment at CERN. They have developed a theoretical model of the signal transmission in a straw tube. In contrast to commonly used simplified models, their approach takes into account the energy losses in the cathode resistance. This model allows determination of the main electrical parameters, such as characteristic impedance and signal attenuation, as well as a detailed simulation of the pulse shape dependent on the point of the charge injection. Simulation results have been compared with the results of experimental measurements of different types of the straw detectors.

  13. Signal propagation in straw tubes with resistive cathode

    Marzec, J; Pawlowski, Z; Konarzewski, B

    2000-01-01

    The analysis presented in this paper is part of the research performed by the authors for the COMPASS experiment at CERN. We have developed a theoretical model of the signal transmission in a straw tube. In contrast to commonly used simplified models, our approach takes into account the energy losses in the cathode resistance. This model allows determination of the main electrical parameters, such as characteristic impedance and signal attenuation, as well as a detailed simulation of the pulse shape dependent on the point of the charge injection. Simulation results have been compared with the results of experimental measurements of different types of the straw detectors. (7 refs).

  14. Residual basins

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  15. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?

    Li, H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Ye, Z.H. [State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Chan, W.F.; Chen, X.W.; Wu, F.Y. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Wu, S.C. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.hk [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China)

    2011-10-15

    The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg{sup -1}. In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses. - Highlights: > Rice/AMF combinations had significant effects on grain As concentration, grain yield and grain P uptake. > Rice colonized with suitable AMF can increase grain yield. > The variation in the transfer and uptake of As and P reflected strong functional diversity in AM symbioses. - Different rice/AMF combinations had very different effects on arsenic and phosphorus uptake.

  16. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?

    Li, H.; Ye, Z.H.; Chan, W.F.; Chen, X.W.; Wu, F.Y.; Wu, S.C.; Wong, M.H.

    2011-01-01

    The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg -1 . In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses. - Highlights: → Rice/AMF combinations had significant effects on grain As concentration, grain yield and grain P uptake. → Rice colonized with suitable AMF can increase grain yield. → The variation in the transfer and uptake of As and P reflected strong functional diversity in AM symbioses. - Different rice/AMF combinations had very different effects on arsenic and phosphorus uptake.

  17. Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation

    Fang, Zheng; Deng, Wei; Zhang, Yanli; Ding, Xiang; Tang, Mingjin; Liu, Tengyu; Hu, Qihou; Zhu, Ming; Wang, Zhaoyi; Yang, Weiqiang; Huang, Zhonghui; Song, Wei; Bi, Xinhui; Chen, Jianmin; Sun, Yele; George, Christian; Wang, Xinming

    2017-12-01

    Agricultural residues are among the most abundant biomass burned globally, especially in China. However, there is little information on primary emissions and photochemical evolution of agricultural residue burning. In this study, indoor chamber experiments were conducted to investigate primary emissions from open burning of rice, corn and wheat straws and their photochemical aging as well. Emission factors of NOx, NH3, SO2, 67 non-methane hydrocarbons (NMHCs), particulate matter (PM), organic aerosol (OA) and black carbon (BC) under ambient dilution conditions were determined. Olefins accounted for > 50 % of the total speciated NMHCs emission (2.47 to 5.04 g kg-1), indicating high ozone formation potential of straw burning emissions. Emission factors of PM (3.73 to 6.36 g kg-1) and primary organic carbon (POC, 2.05 to 4.11 gC kg-1), measured at dilution ratios of 1300 to 4000, were lower than those reported in previous studies at low dilution ratios, probably due to the evaporation of semi-volatile organic compounds under high dilution conditions. After photochemical aging with an OH exposure range of (1.97-4.97) × 1010 molecule cm-3 s in the chamber, large amounts of secondary organic aerosol (SOA) were produced with OA mass enhancement ratios (the mass ratio of total OA to primary OA) of 2.4-7.6. The 20 known precursors could only explain 5.0-27.3 % of the observed SOA mass, suggesting that the major precursors of SOA formed from open straw burning remain unidentified. Aerosol mass spectrometry (AMS) signaled that the aged OA contained less hydrocarbons but more oxygen- and nitrogen-containing compounds than primary OA, and carbon oxidation state (OSc) calculated with AMS resolved O / C and H / C ratios increased linearly (p < 0.001) with OH exposure with quite similar slopes.

  18. Numerical investigation of a straw combustion boiler – Part I: Modelling of the thermo-chemical conversion of straw

    Dernbecher Andrea

    2016-01-01

    Full Text Available In the framework of a European project, a straw combustion boiler in conjunction with an organic Rankine cycle is developed. One objective of the project is the enhancement of the combustion chamber by numerical methods. A comprehensive simulation of the combustion chamber is prepared, which contains the necessary submodels for the thermo-chemical conversion of straw and for the homogeneous gas phase reactions. Part I introduces the modelling approach for the thermal decomposition of the biomass inside the fuel bed, whereas part II deals with the simulation of the gas phase reactions in the freeboard.

  19. Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues

    Jensen, E.S.

    1997-01-01

    The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using N-15-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during...... the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g(-1) added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial...... the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial...

  20. An automatic system for controlling the quality of straws installed in the ATLAS TRT detector

    Golunov, A O; Gousakov, Yu V; Kekelidze, G D; Livinski, V V; Mouraviev, S V; Parzycki, S S; Peshekhonov, V D; Price, M J; Savenkov, A A

    2004-01-01

    This article describes an automatic system to control the quality of straws installed in the wheels of the end-cap Transition Radiation Tracker of the ATLAS experiment. The system tests both the straightness and the electrical insulation of the straws during installation. The testing time per straw is 9s; consequently it takes about 2h to measure one layer of straws. The off-line analysis takes 20s per straw. With this system defects can be immediately detected and corrected. This clearly influences the future performance of the detector.

  1. Compaction of cereal grain

    Wychowaniec, J.; Griffiths, I.; Gay, A.; Mughal, A.

    2013-01-01

    We report on simple shaking experiments to measure the compaction of a column of Firth oat grain. Such grains are elongated anisotropic particles with a bimodal polydispersity. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical shaking evolve to a dense state with evidence of nematic-like structure at the surface of the confining tube. This is accompanied by an increase in the packing fraction of the grain.

  2. Evolution of interstellar grains

    Greenberg, J.M.

    1984-01-01

    The principal aim of this chapter is to derive the properties of interstellar grains as a probe of local physical conditions and as a basis for predicting such properties as related to infrared emissivity and radiative transfer which can affect the evolution of dense clouds. The first sections will develop the criteria for grain models based directly on observations of gas and dust. A summary of the chemical evolution of grains and gas in diffuse and dense clouds follows. (author)

  3. Microbiota of kefir grains

    Tomislav Pogačić; Sanja Šinko; Šimun Zamberlin; Dubravka Samaržija

    2013-01-01

    Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities f...

  4. Grain boundary migration

    Dimitrov, O.

    1975-01-01

    Well-established aspects of grain-boundary migration are first briefly reviewed (influences of driving force, temperature, orientation and foreign atoms). Recent developments of the experimental methods and results are then examined, by considering the various driving of resistive forces acting on grain boundaries. Finally, the evolution in the theoretical models of grain-boundary motion is described, on the one hand for ideally pure metals and, on the other hand, in the presence of solute impurity atoms [fr

  5. Hydrothermal liquefaction of barley straw to bio-crude oil

    Zhu, Zhe; Rosendahl, Lasse; Toor, Saqib

    2015-01-01

    Hydrothermal liquefaction (HTL) of barley straw with K2CO3 at different temperatures (280–400 C) was conducted and compared to optimize its process conditions; the aqueous phase as a co-product from this process was recycled to explore the feasibility of implementing wastewater reuse for bio...

  6. Allelopathic appraisal effects of straw extract wheat varieties on the ...

    hope&shola

    2010-11-29

    Nov 29, 2010 ... Ben HM, Ghorbal H, Kremer RJ, Oussama O (2001). Allelopathic effects of barley extracts on germination and seedlings growth of bread and durum wheats. Agronomie, 21: 65-71. Dias LS (1991). Allelopathic activity of decomposing straw of wheat and oat and associated soil on some crop species. Soil Till.

  7. The Straw Tube Trackers of the PANDA Experiment

    Gianotti, P.; Lucherini, V.; Pace, E.; Boca, G.L.; Costanza, S.; Genova, P.; Lavezzi, L.; Montanga, P.; Rotondi, A.; Bragadireanu, M.; Vasile, M.E.; Pietreanu, D.; Biernat, J.; Jowzaee, S.; Korcyl, G.; Palka, M.; Salabura, P.; Smyrski, J.; Fiutowski, T.; Idzik, M.; Przyborowski, D.; Korcyl, K.; Kulessa, P.; Pysz, K.; Dobbs, S.; Tomaradze, A.; Bettoni, D.; Fioravanti, E.; Garzia, I.; Savrie, M.; Kozlov, V.; Mertens, M.; Ohm, H.; Orfanitski, S.; Ritman, J.; Serdyuk, V.; Wintz, P.; Spataro, S.

    2013-06-01

    The PANDA experiment will be built at the FAIR facility at Darmstadt (Germany) to perform accurate tests of the strong interaction through p-bar p and p-bar A annihilation's studies. To track charged particles, two systems consisting of a set of planar, closed-packed, self-supporting straw tube layers are under construction. The PANDA straw tubes will have also unique characteristics in term of material budget and performance. They consist of very thin mylar-aluminized cathodes which are made self-supporting by means of the operation gas-mixture over-pressure. This solution allows to reduce at maximum the weight of the mechanical support frame and hence the detector material budget. The PANDA straw tube central tracker will not only reconstruct charged particle trajectories, but also will help in low momentum (< 1 GeV) particle identification via dE/dx measurements. This is a quite new approach that PANDA tracking group has first tested with detailed Monte Carlo simulations, and then with experimental tests of detector prototypes. This paper addresses the design issues of the PANDA straw tube trackers and the performance obtained in prototype tests. (authors)

  8. Sugarcane straw and the populations of pests and nematodes

    Leila Luci Dinardo-Miranda

    2013-10-01

    Full Text Available The green cane harvesting represented a significant change in sugarcane ecosystem due to the presence of straw left on the soil and to the absence of fire. These two factors may affect the populations of pests and their natural enemies. Among the pests benefit from the green cane harvesting stand out the spittlebug, Mahanarva fimbriolata, the curculionid Sphenophorus levis and sugarcane borer, Diatraea saccharalis. In areas of green cane harvesting, the population of these species grew faster than in areas of burnt cane. On the other hand, there are virtually no records of attacks by lesser cornstalk borers in areas of green cane harvesting. Populations of plant parasitic nematodes and the beetles Migdolus fryanus, very important pests of sugarcane, were apparently not affected by the green cane harvesting. Despite the absence of more consistent information, it appears that populations of ants and the giant borer Telchin licus can increase in green cane areas, due primarily to the difficulty of pest control. The partial or total removal of straw from the field represents an additional change to the ecosystem that could alter the status of pests and nematodes. It is likely that spittlebug, the curculionid S. levis and sugarcane borer populations decrease if a portion of the straw is removed from the field. However, the pest populations in areas where the straw is collected will not return to their original conditions at the time of burnt cane harvesting because the absence of fire will be maintained.

  9. Cryoprotectant redistribution along the frozen straw probed by Raman spectroscopy.

    Karpegina, Yu A; Okotrub, K A; Brusentsev, E Yu; Amstislavsky, S Ya; Surovtsev, N V

    2016-04-01

    The distribution of cryoprotectant (10% glycerol) and ice along the frozen plastic straw (the most useful container for freezing mammalian semen, oocytes and embryos) was studied by Raman scattering technique. Raman spectroscopy being a contactless, non-invasive tool was applied for the straws filled with the cryoprotectant solution and frozen by controlled rate programs commonly used for mammalian embryos freezing. Analysis of Raman spectra measured at different points along the straw reveals a non-uniform distribution of the cryoprotectant. The ratio between non-crystalline solution and ice was found to be increased by several times at the bottom side of the solution column frozen by the standard freezing program. The increase of the cryoprotectant fraction occurs in the area where embryos or oocytes are normally placed during their freezing. Possible effects of the cooling rate and the ice nucleation temperature on the cryoprotectant fraction at the bottom side of the solution column were considered. Our findings highlight that the ice fraction around cryopreserved embryos or oocytes can differ significantly from the averaged one in the frozen plastic straws. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Front-end electronics for long straw tube systems

    Paulos, J.J.; Blake, S.L.

    1990-01-01

    This paper addresses several critical issues in the readout of long, small diameter plastic straw tubes for central tracking subsystems. Of particular concern are signal attentuation in long straw tubes and signal reflections which arise from improper termination at the ends of the tube. This work is part of a 12 institution collaboration to design and validate a hybrid central tracking chamber (HCTC) utilizing both straw tube and scintillating fiber components. The HCTC design calls for 4 mm diameter plastic straw tubes spanning the entire central tracking region (6-8 m) with readout electronics at both ends. An electrical isolator may be used at the center of each wire to separate each tube into two electrically isolated regions so as to reduce occupancy by a factor of two. With this scheme, no track is farther than 4 m from the associated readout electronics. The HCTC collaboration includes the participation of researchers at the University of Pennsylvania who have contributed a preamplifier and shaper ship which is used in the simulations presented here. A more complete discussion of the HCTC design can be found in the paper by Dr. Alfred Goshaw

  11. Bioconversion of rape straw into a nutritionally enriched substrate by ...

    This work aims to select biological treatments and conditions for the bioconversion of rape straw by the mixed-strain fermentation of Ganoderma lucidum and yeasts (Saccharomyces cerevisiae, Candida tropicalis and Candida utilis), into an enriched substrate with increased crude protein and digestibility. Orthogonal ...

  12. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    This study was designed to determine the pin head formation time and yield values of Agaricus bisporus on some casing materials. Composts were prepared basically from wheat straw and waste tea leaves by using wheat chaff as activator substance. Temperatures of the compost formulas were measured during ...

  13. Characteristics and community diversity of a wheat straw-colonizing ...

    A microbial community named WSD-5 was successfully selected from plant litter and soil after longterm directed acclimation at normal temperature. After 15 days of cultivation at 30°C, the degradation rate of wheat straw by WSD-5 was 75.6%. For cellulose, hemicellulose and lignin, the degradation rates were 94.2, 81.9 ...

  14. Edafic fauna under different straw levels in sugarcane crop

    Rossiana Ribeiro Lino de Abreu

    2014-09-01

    Full Text Available The organisms that constitute the soil fauna are highly relevant to the litter-soil compartments, because they act in important processes, such as fragmentation of the plant material, decomposition and nutrients cycling. This study aimed to evaluate the invertebrate fauna community in soil cultivated with sugarcane harvested without burning, considering the maintenance of different straw levels on the soil surface. Treatments consisted of different amounts of sugarcane straw: T0% (0 Mg ha-1; T25% (2.2 Mg ha-1; T50% (5.1 Mg ha-1; T75% (7.8 Mg ha-1; and T100% (12.0 Mg ha-1. Samples were collected in the dry season and late wet season, with "Pitfall" traps. The number of individuals per trap per day during the dry period ranged from 11.1 (T0% to 14.7 (T25% and, in the rainy season, from 15.11 (T0% to 33.15 (T75%. The highest Shannon values were observed during the rainy season, and the lowest values for diversity and equitability resulted in a higher incidence of Araneae and Formicidae groups. The amount of straw on soil showed no significant influence on ecological indices and total and average wealth. The harvest time affected the number of individuals, species wealth and Shannon and Pielou's indices. The maintenance of straw on the soil surface benefitted the soil fauna, concerning the conventional crop management.

  15. Antifungal activity of rice straw extract on some phytopathogenic fungi

    The antifungal activity of allelochemicals extracted from rice straw on the radial growth rate and the activity of some hydrolyzing enzymes of Aspergillus flavus, Alternaria alternata and Botrytis cinerea were studied in vitro. Five different concentrations (2, 4, 6, 8 and 10%, w/v) of water, methanol and acetone extracts of rice ...

  16. Bioconversion of rape straw into a nutritionally enriched substrate by ...

    Jane

    2011-06-22

    Jun 22, 2011 ... rape straw substrate and the secretion of ligninolytic enzyme system including laccase (Lac), manganese ... results are mostly fields burning or natural degradation. The former ... Microbial conversion, especially fungal bio- conversion ... out at 27°C in plastic bags containing 200 g of lignocellulosic substrate ...

  17. Substitution of lucerne hay by ammoniated wheat straw in growth ...

    Lucerne hay (LH) was substituted by urea-ammoniated wheat straw (AWS) in four lamb-growth diets, all containing 60% roughage. ... Die ekonomiese voordeel van die verplasing van 'n hoë kwaliteit ruvoer, soos LH, met'n goedkoper bron (AKS), moet opgeweeg word teen die laer DMI en GDT, sowel as die nadelige effek ...

  18. Changes of chemical and mechanical behavior of torrefied wheat straw

    Shang, Lei; Ahrenfeldt, Jesper; Holm, Jens Kai

    2012-01-01

    200 °C there was no obvious structural change of the wheat straw. At 200–250 °C hemicelluloses started to decompose and were totally degraded when torrefied at 300 °C for 2 h, while cellulose and lignin began to decompose at about 270–300 °C. Tensile failure strength and strain energy of oven dried...

  19. Organic dyes removal using magnetically modified rye straw

    Baldíková, E.; Šafaříková, Miroslava; Šafařík, Ivo

    2015-01-01

    Roč. 180, APR 2015 (2015), s. 181-185 ISSN 0304-8853 R&D Projects: GA ČR GA13-13709S Institutional support: RVO:67179843 Keywords : Rye straw * Adsorbent * Dyes removal * Magnetic modification Subject RIV: CC - Organic Chemistry Impact factor: 2.357, year: 2015

  20. Amino acid profiles of rumen undegradable protein: a comparison between forages including cereal straws and alfalfa and their respective total mixed rations.

    Wang, B; Jiang, L S; Liu, J X

    2018-06-01

    Optimizing the amino acid (AA) profile of rumen undegradable protein (RUP) can positively affect the amount of milk protein. This study was conducted to improve knowledge regarding the AA profile of rumen undegradable protein from corn stover, rice straw and alfalfa hay as well as the total mixed ratio diets (TMR) based on one of them as forage source [forage-to-concentrate ratio of 45:55 (30% of corn stover (CS), 30% of rice straw (RS), 23% of alfalfa hay (AH) and dry matter basis)]. The other ingredients in the three TMR diets were similar. The RUP of all the forages and diets was estimated by incubation for 16 hr in the rumen of three ruminally cannulated lactating cows. All residues were corrected for microbial colonization, which was necessary in determining the AA composition of RUP from feed samples using in situ method. Compared with their original AA composition, the AA pattern of forages and forage-based diets changed drastically after rumen exposure. In addition, the extent of ruminal degradation of analysed AA was not constant among the forages. The greatest individual AA degradability of alfalfa hay and corn stover was Pro, but was His of rice straw. A remarkable difference was observed between microbial attachment corrected and uncorrected AA profiles of RUP, except for alfalfa hay and His in the three forages and TMR diets. The ruminal AA degradability of cereal straws was altered compared with alfalfa hay but not for the TMR diets. In summary, the AA composition of forages and TMR-based diets changed significantly after ruminal exposure, indicating that the original AA profiles of the feed cannot represent its AA composition of RUP. The AA profile of RUP and ruminal AA degradability for corn stover and rice straw contributed to missing information in the field. © 2017 Blackwell Verlag GmbH.

  1. Effects of Some Additives on In Vitro True Digestibility of Wheat and Soybean Straw Pellets

    Kılıc Unal

    2017-07-01

    Full Text Available This study was aimed to explore the nutrient content, relative feed values (RFV and in vitro true digestibilities (IVTD of wheat straw and soybean straw pellets produced with the addition of molasses, guar meal and sepiolite. In this experiment, 16 groups were created for 2 different straws (wheat/soybean straws, 2 different sepiolite applications (available/not available and 4 different applications (control, guar meal, molasses, guar meal+molasses in accordance with the 2×2×4 factorial design. A Daisy incubator was used to determine the IVTD of the feeds. According to the results, molasses and guar meal increased the RFV of soybean straws, while molasses and guar meal treatments and sepiolite did not affect the RFV of wheat straws. It was observed that sepiolite increased the RFV’s of soybean straw for guar meal and guar meal+molasses. The higher IVTD’s were found for guar meal (without sepiolite treatment of soybean straw and guar meal (with sepiolite treatment of wheat straw. Molasses and guar meal addition to wheat and soybean straws improved the crude protein contents. In conclusion, straw pelleting can be used as an alternative forage conservation method to close the gap in forage supply during the winter.

  2. Effect of 60Co γ-rays irradiation on rice straw fibre structure and enzyme hydrolyzation

    Chen Jingping; Li Wenge; Peng Ling; Wang Keqin; Xiong Xingyao

    2008-01-01

    The effect of improving enzyme hydrolyze of rice straw was estimated with treating dry rice straw and raw fiber by 60 Co γ-rays irradiation. the water-soluble deoxidize carbohydrate and total carbohydrate of 60 Co γ-rays irradiated rice straw and raw fibres were measured by DNS method and vitrol-phenol method. The changes of deoxidize carbohydrate groups of irradiated hydrolyzing rice straw were analyzed by gas chromatography. The organism structures of irradiated rice straw were scanned by electron microscope, the results showed that 1000-1500 kGy 60 Co γ-irradiation doses effectively destroyed rice straw's organism structures, especially the silicon crystal structures, and along with irradiation doses increased the breakage degree enlarged significantly. The contents of the water-soluble deoxidize carbohydrate and total carbohydrate of rice straw increased significantly. treated by both irradiation and enzyme, the cellulose transform rate of rice straw was 88.7%, which is better than that only treated by 60 Co γ-irradiation or enzyme. The content of water-solubility deoxidize carbohydrate of the treated rice straw was 214.4 mg/g and the total carbohydrate of straw was 758.5 mg/g. The contents of mannose, galactose, glucose, arabinose and xylose increased significantly, among those carbohydrate, the glucose's increment was the largest and account for 62.64%, and mannose's increments was the second. The contents of lignin of the rice straw were not influenced obviously by irradiation treatment. (authors)

  3. Life cycle GHG analysis of rice straw bio-DME production and application in Thailand

    Silalertruksa, Thapat; Gheewala, Shabbir H.; Sagisaka, Masayuki; Yamaguchi, Katsunobu

    2013-01-01

    Highlights: • Life cycle GHG emissions of rice straw bio-DME production in Thailand are assessed. • Bio-DME replaces diesel in engines and supplements LPG for household application. • Rice straw bio-DME in both cases of substitution helps reduce GHG emissions. - Abstract: Thailand is one of the leading countries in rice production and export; an abundance of rice straw, therefore, is left in the field nowadays and is commonly burnt to facilitate quick planting of the next crop. The study assesses the life cycle greenhouse gas (GHG) emissions of using rice straw for bio-DME production in Thailand. The analysis is divided into two scenarios of rice straw bio-DME utilization i.e. used as automotive fuel for diesel engines and used as LPG supplement for household application. The results reveal that that utilization of rice straw for bio-DME in the two scenarios could help reduce GHG emissions by around 14–70% and 2–66%, respectively as compared to the diesel fuel and LPG substituted. In case rice straw is considered as a by-product of rice cultivation, the cultivation of rice straw will be the major source of GHG emission contributing around 50% of the total GHG emissions of rice straw bio-DME production. Several factors that can affect the GHG performance of rice straw bio-DME production are discussed along with measures to enhance GHG performance of rice straw bio-DME production and utilization

  4. Preparation and Mechanical Properties of Pressed Straw Concrete Brick

    Sumarni, S.; Wijanarko, W.

    2018-03-01

    Rice straws have been widely used as wall filler material in China, Australia, and United States, by spinning them into hays with an approximate dimension of 40 cm of height, 40cm of thickness and 60 cm of width, using a machine. Then, the hays are placed into a wall frame until they fill it completely. After that, the wall frame is covered with wire mesh and plastered. In this research, rice straws are to be used as concrete brick fillers, by pressing the straws into hays and then putting them into the concrete brick mold along with mortar. The objective of this research is to investigate the mechanical properties of concrete brick, namely: compressive strength, specific gravity, and water absorption power. This research used experimental research method. It was conducted by using concrete bricks which had 400 cm of width, 200 cm of height, and 100 cm of thickness, made from rice straws, cement, sand, and water as the test sample. The straws were each made different by their volume. The mortars used in this research were made from cement, sand, and water, with the ratio of 1:7:0.5. The concrete bricks were made by pressing straws mixed with glue into hays, and then cut by determined variations of volume. The variations of hays volume were 0 m3, 0.000625 m3, 0.00075 m3, 0.000875 m3, 0.00125 m3, 0.0015 m3, 0.00175 m3, 0.001875 m3, 0.00225 m3, and 0.002625 m3. There were 3 samples for each volumes of hays. The result shows that the straw concrete bricks reached the maximum compressive strength of 1.92 MPa, specific gravity of 1,702 kg/m3, and water absorption level of 3.9 %. Based on the provided measurements of products in the Standar Nasional Indonesia (Indonesian product standardization), the concrete bricks produced attained the prescribed standard quality.

  5. Removal of phenol from aqueous solution using rice straw as adsorbent

    Sarker, Nandita; Fakhruddin, A. N. M.

    2017-06-01

    Phenol is an environmental pollutant; the present study was conducted to examine the adsorption of phenol by rice straw. For this purpose raw (untreated), physically treated (boiled and dried) and thermally treated (heated at 230 °C for 3 h to produce ash) rice straw were selected to determine phenol removal efficiency at different contact times and adsorbent dosages for 1 and Percentage of removal of phenol increased as the adsorbent dose increase. The removal efficiency increase in the order of: raw rice straw ash) rice straw. Langmuir and Freundlich isotherm was developed for 1 and ash) treated rice straw. Freundlich isotherm best fit the equilibrium data for 1 mm thermally treated rice straw. The results showed that thermally treated rice straw (ash) can be developed as a potential adsorbent for phenol removal from aqueous solution.

  6. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications.

    Bouasker, Marwen; Belayachi, Naima; Hoxha, Dashnor; Al-Mukhtar, Muzahim

    2014-04-11

    The aim of this paper is to find out new alternative materials that respond to sustainable development criteria. For this purpose, an original utilization of straw for the design of lightweight aggregate concretes is proposed. Four types of straw were used: three wheat straws and a barley straw. In the present study, the morphology and the porosity of the different straw aggregates was studied by SEM in order to understand their effects on the capillary structure and the hygroscopic behavior. The physical properties such as sorption-desorption isotherms, water absorption coefficient, pH, electrical conductivity and thermo-gravimetric analysis were also studied. As a result, it has been found that this new vegetable material has a very low bulk density, a high water absorption capacity and an excellent hydric regulator. The introduction of the straw in the water tends to make the environment more basic; this observation can slow carbonation of the binder matrix in the presence of the straw.

  7. Fungal pretreatment of straw for enhanced biogas yield

    Feng, Xinmei; Pilar Castillo, Maria del; Schnuerer, Anna

    2013-07-01

    Among lignocellulosic materials from the agricultural sector, straw is considered to have the biggest potential as a biofuel and therefore also represents a big potential for biogas production. However, the degradation of lignocellulosic materials is somewhat restricted due to the high content of lignin that binds cellulose and hemicellulose and makes them unavailable for microbial degradation. Consequently, low methane yields are achieved. The biodegradability of the lignocellulosic material can be increased by a pretreatment. Optimally the pre-treatment should give an increase in the formation of sugars while avoiding the degradation or loss of carbohydrates and the formation of inhibitory by-products. The treatment should also be cost-effective. Different methods for pre-treatment of lignocellulosic material have been explored, for example thermal, acid, alkaline and oxidative pretreatments. However, they often have a high energy demand. Biological treatment with fungi represents an alternative method for pretreatment of lignocellulosic materials that could be comparably more environmentally friendly, easier to operate and with low energy input. The fungal groups of interest for lignocellulose degradation are the wood decaying fungi, such as the white-, brown-rot and cellulose degraders. The purpose with this work was to increase the biogas potential of straw by using a pretreatment with fungi. Straw was incubated with fungi at aerobic conditions under certain periods of time. The growth and colonization of the straw by the fungi was expected to increase the availability of the lignocellulosic structure of the straw and thus positively affect the biogas potential. In addition also, the spent lignocellulosic material from the cultivation of edible fungi was investigated. We hypothesized that also growth of edible fungi could give a more accessible material and thus give higher biogas potential compared to the substrate before fungal growth.

  8. Origins of GEMS Grains

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the

  9. Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China

    Jiguang Zhang

    2016-07-01

    Full Text Available To determine the effects of straw incorporation on soil nutrients, enzyme activity, and aggregates in tobacco fields, we conducted experiments with different amounts of wheat and maize straw in Zhucheng area of southeast Shandong province for three years (2010–2012. In the final year of experiment (2012, straw incorporation increased soil organic carbon (SOC and related parameters, and improved soil enzyme activity proportionally with the amount of straw added, except for catalase when maize straw was used. And maize straw incorporation was more effective than wheat straw in the tobacco field. The percentage of aggregates >2 mm increased with straw incorporation when measured by either dry or wet sieving. The mean weight diameter (MWD and geometric mean diameter (GMD in straw incorporation treatments were higher than those in the no-straw control (CK. Maize straw increased soil aggregate stability more than wheat straw with the same incorporation amount. Alkaline phosphatase was significantly and negatively correlated with soil pH. Sucrase and urease were both significantly and positively correlated with soil alkali-hydrolysable N. Catalase was significantly but negatively correlated with soil extractable K (EK. The MWD and GMD by dry sieving had significantly positive correlations with SOC, total N, total K, and EK, but only significantly correlated with EK by wet sieving. Therefore, soil nutrients, metabolic enzyme activity, and aggregate stability might be increased by increasing the SOC content through the maize or wheat straw incorporation. Moreover, incorporation of maize straw at 7500 kg·hm−2 was the best choice to enhance soil fertility in the tobacco area of Eastern China.

  10. Flash pyrolysis of agricultural residues using a plasma heated laminar entrained flow reactor

    Xiu Shuangning; Yi Weiming; Li Baoming

    2005-01-01

    In order to study the volatilization characteristics of biomass particles at flash heating rates, a plasma heated laminar entrained flow reactor (PHLEFR) was designed and built in our lab. Two agricultural residues, wheat straw and corn stalk, were chosen as feedstock for pyrolysis which were conducted on the PHLEFR with the aim of determining the extent of thermal decomposition at high heating rate (more than 10 4o Cs -1 ). Based on the experimental data, a first order kinetic model was introduced and the relevant kinetic parameters (apparent active energy and apparent frequency factor) were determined for the two straws: E=31.51kJmol -1 , A=1028s -1 (wheat straw) and E=33.74kJmol -1 , A=1013s -1 (corn stalk). The predicted conversion of the fitted model to the experimental data provided general agreements when one considered the experimental errors

  11. Development of an extremely thin-wall straw tracker operational in vacuum – The COMET straw tracker system

    Nishiguchi, H.; Evtoukhovitch, P.; Fujii, Y.; Hamada, E.; Mihara, S.; Moiseenko, A.; Noguchi, K.; Oishi, K.; Tanaka, S.; Tojo, J.; Tsamalaidze, Z.; Tsverava, N.; Ueno, K.; Volkov, A.

    2017-01-01

    The COMET experiment at J-PARC aims to search for a lepton-flavour violating process of muon to electron conversion in a muonic atom, μ-e conversion, with a branching-ratio sensitivity of better than 10 −16 , 4 orders of magnitude better than the present limit, in order to explore the parameter region predicted by most of well-motivated theoretical models beyond the Standard Model. The need for this sensitivity places several stringent requirements on the detector development. The experiment requires to detect the monochromatic electron of 105 MeV, the momentum resolution is primarily limited by the multiple scattering effect for this momentum region. Thus we need the very light material detector in order to achieve an excellent momentum resolution, better than 2%, for 100 MeV region. In order to fulfil such a requirement, the thin-wall straw-tube planar tracker has been developed by an extremely light material which is operational in vacuum. The COMET straw tracker consists of 9.8 mm diameter straw tube, longer than 1 m length, with 20-μm-thick Mylar foil and 70-nm-thick aluminium deposition. Currently even thinner and smaller, 12 μm thick and 5 mm diameter, straw is under development by the ultrasonic welding technique.

  12. Development of an extremely thin-wall straw tracker operational in vacuum – The COMET straw tracker system

    Nishiguchi, H., E-mail: hajime.nishiguchi@kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Evtoukhovitch, P. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation); Fujii, Y. [Institute of High Energy Physics (IHEP), 19B YuquanLu, Shijingshan district, Beijing 1000049 (China); Hamada, E.; Mihara, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Moiseenko, A. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation); Noguchi, K.; Oishi, K.; Tanaka, S.; Tojo, J. [Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Tsamalaidze, Z.; Tsverava, N. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation); Ueno, K. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Volkov, A. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation)

    2017-02-11

    The COMET experiment at J-PARC aims to search for a lepton-flavour violating process of muon to electron conversion in a muonic atom, μ-e conversion, with a branching-ratio sensitivity of better than 10{sup −16}, 4 orders of magnitude better than the present limit, in order to explore the parameter region predicted by most of well-motivated theoretical models beyond the Standard Model. The need for this sensitivity places several stringent requirements on the detector development. The experiment requires to detect the monochromatic electron of 105 MeV, the momentum resolution is primarily limited by the multiple scattering effect for this momentum region. Thus we need the very light material detector in order to achieve an excellent momentum resolution, better than 2%, for 100 MeV region. In order to fulfil such a requirement, the thin-wall straw-tube planar tracker has been developed by an extremely light material which is operational in vacuum. The COMET straw tracker consists of 9.8 mm diameter straw tube, longer than 1 m length, with 20-μm-thick Mylar foil and 70-nm-thick aluminium deposition. Currently even thinner and smaller, 12 μm thick and 5 mm diameter, straw is under development by the ultrasonic welding technique.

  13. Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production.

    Liu, Gang; Bao, Jie

    2017-11-01

    This study takes the first insight on the rigorous evaluation of electricity generation based on the experimentally measured higher heating value (HHV) of lignin residue, as well as the chemical oxygen demand (COD) and biological oxygen demand (BOD 5 ) of wastewater. For producing one metric ton of ethanol fuel from five typical lignocellulose substrates, including corn stover, wheat straw, rice straw, sugarcane bagasse and poplar sawdust, 1.26-1.85tons of dry lignin residue is generated from biorefining process and 0.19-0.27tons of biogas is generated from anaerobic digestion of wastewater, equivalent to 4335-5981kWh and 1946-2795kWh of electricity by combustion of the generated lignin residue and biogas, respectively. The electricity generation not only sufficiently meets the electricity needs of process requirement, but also generates more than half of electricity surplus selling to the grid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues

    Hossain, M. B.; Puteh, A. B.

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO2-C emission. Poultry litter with soil mixture increased 121% cumulative CO2-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO2-C. Maximum CO2-C was found in 7 days after incubation and thereafter CO2-C emission was decreased with the increase of time. Control produced the lowest CO2-C (158.23 mg). Poultry litter produced maximum cumulative CO2-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO2-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d−1) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626

  15. 40 CFR 180.128 - Pyrethrins; tolerances for residues.

    2010-07-01

    ... byproducts 0.05 Loganberry, postharvest 1.0 Mango, postharvest 1.0 Milk, fat (reflecting negligible residues... a result of its use in cereal grain mills and in storage areas for milled cereal grain products. (3... served. Food must be removed or covered prior to use. (4) Where tolerances are established on both the...

  16. Hydrolysis of residuals of barley straw using white-rot basidiomycetes

    Lazaro-Anell, A. C.; Arana-Cuenca, A.; Tellez-Jurado, A.

    2009-01-01

    The imminent term of the fossil fuels has generated different initiatives focused to the development of a alternative fuels in the entire world, one of the main alternatives for the bio combustible production is the agricultural waste, all they have as main characteristic those of being compound for 3 biopolymers that represent, one of the biggest renewable sources of energy. (Author)

  17. 40 CFR 180.182 - Endosulfan; tolerances for residues.

    2010-07-01

    ... 2.0 Lettuce, head 11.0 Lettuce, leaf 6.0 Milk, fat 2.0 Mustard greens 2.0 Mustard, seed 0.2... seed 1.0 Eggplant 1.0 Goat, fat 13.0 Goat, liver 5.0 Goat, meat 2.0 Goat, meat byproducts, except liver... Rapeseed, seed 0.2 Rye, grain 0.3 Rye, straw 0.3 Sheep, fat 13.0 Sheep, liver 5.0 Sheep, meat 2.0 Sheep...

  18. Residual nilpotence and residual solubility of groups

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  19. Barriers and incentives to the production of bioethanol from cereal straw: A farm business perspective

    Glithero, N.J.; Ramsden, S.J.; Wilson, P.

    2013-01-01

    The EU renewable energy directive stipulates a requirement for 10% of transport fuels to be derived from renewable sources by 2020. Second generation biofuels offer potential to contribute towards this target with cereal straw representing a potentially large feedstock source. From an on-farm survey of 240 arable farmers, timeliness of crop establishment and benefits of nutrient retention from straw incorporation were cited as reasons for straw incorporation. However, two-thirds (one-third) of farmers would supply wheat (barley) straw for bioenergy. The most popular contract length and continuous length of straw supply was either 1 or 3 years. Contracts stipulating a fixed area of straw supply for a fixed price were the most frequently cited preferences, with £50 t −1 the most frequently cited minimum contract price that farmers would find acceptable. Arable farmers in England would be willing to sell 2.52 Mt of cereal straw for bioenergy purposes nationally and 1.65 Mt in the main cereal growing areas of Eastern England. Cereal straw would be diverted from current markets or on-farm uses and from straw currently incorporated into soil. Policy interventions may be required to incentivise farmers to engage in this market, but food and fuel policies must increasingly be integrated to meet societal goals. - Highlights: • English arable farmer survey to determine potential supply for straw based biofuel. • Two-thirds of farmers would supply wheat straw for bioenergy. • Farmers willing to sell 1.65 Mt of cereal straw from the main cereal producing regions. • Farmer preference for a fixed area of straw supply for a contracted fixed price. • £50 t −1 the most frequently cited minimum contract price farmers find acceptable

  20. Potential production from poultry litter, chicken manure and wheat straw; Potencial de producao de biogas da cama de aviario, esterco de galinhas e palha de trigo

    Zanatta, Fabio L.; Silva, Jadir Nogueira da [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola], email: fabio.zanatta@ufv.br; Scholz, Volkhard; Schonberg, Mandy [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Post Harvest Technology Dept.; Martin, Samuel [Universidade de Brasilia (UNB), DF (Brazil). Dept. de Engenharia Rural

    2011-07-01

    Poultry litter is a sub product of growth chicken, rich in nitrogen and used like fertilizer in grains and forage production. Normally is applied in the fields without treatment. It's a very good material to be used for biogas generation because his compounds are chicken manure, straw and others organics compounds like coffee and rice husks. The biogas produced by poultry litter can be used for electric generation or for the heating systems of chicken production. The aimed of this work was evaluated the biogas and methane production of poultry litter, chicken manure and wheat straw. The experiment was made in the Biogastechnikum Laboratory of Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), in Potsdam-Germany, from May to December 2010, according the rule VDI 4630 (Verein Deutscher Ingenieure). According to set conditions of the experiment, the results for biogas production are 393.25, 398.37 e 518.44 Nl biogas/kg{sub TSadded} and methane 223.72, 229.68, e 272.73 Nlmethane/kg{sub TSadded}; for poultry litter, poultry manure and wheat straw, respectively. (author)

  1. Autointoxication mechanism ofOryza sativa : III. Effect of temperature on phytotoxin production during rice straw decomposition in soil.

    Chou, C H; Chiang, Y C; Chfng, H H

    1981-07-01

    The phytotoxicity produced during decomposition of rice straw in soil was evaluated under both constant and changing temperature conditions. Bioassay tests showed that the aqueous extract from a soilstraw mixture after incubation at constant temperature was more than twice as phytotoxic as the extract from soil incubated alone. The phytotoxicity was highest at 20-25 ° C. Temperatures above 25 ° C enhanced rice straw decomposition and also degraded the phytotoxic substances more rapidly. After incubation of soil mixtures under changing temperature regimes in a phytotron, the phytotoxicy of the soil aqueous extracts increased in the following order: soil alone lettuce or rice seedlings was also at the highest at the temperature range of 25-30 ° C irrespective of the direction of temperature changes from either low to high or vice versa. Five phytotoxic phenolics,p-hydroxybenzoic, vanillic,p-coumaric, syringic, and ferulic acids, were obtained from both the aqueous extract and residue of the incubated soil samples and were quantitatively estimated by chromatography. The amount of phytotoxins found in various soil mixtures followed the same increasing order as that found by the seed bioassay test. Although no definite distribution pattern of the phenolics in the incubated soil samples can be attributed to temperature variations, the amount of the phenolics was likely higher in the samples incubated at 25 ° C than at either 15 ° C or 35 ° C. The quantity of toxins released during decomposition of rice straw in soil reached highest levels six weeks after incubation and gradually disappeared after twelve weeks.

  2. Kansas Agents Study Grain Marketing

    Schoeff, Robert W.

    1973-01-01

    Author is an extension specialist in feed and grain marketing for Kansas State University. He describes a tour set up to educate members of the Kansas Grain and Feed Dealers' Association in the area of grain marketing and exporting. (GB)

  3. FPGA Online Tracking Algorithm for the PANDA Straw Tube Tracker

    Liang, Yutie; Ye, Hua; Galuska, Martin J.; Gessler, Thomas; Kuhn, Wolfgang; Lange, Jens Soren; Wagner, Milan N.; Liu, Zhen'an; Zhao, Jingzhou

    2017-06-01

    A novel FPGA based online tracking algorithm for helix track reconstruction in a solenoidal field, developed for the PANDA spectrometer, is described. Employing the Straw Tube Tracker detector with 4636 straw tubes, the algorithm includes a complex track finder, and a track fitter. Implemented in VHDL, the algorithm is tested on a Xilinx Virtex-4 FX60 FPGA chip with different types of events, at different event rates. A processing time of 7 $\\mu$s per event for an average of 6 charged tracks is obtained. The momentum resolution is about 3\\% (4\\%) for $p_t$ ($p_z$) at 1 GeV/c. Comparing to the algorithm running on a CPU chip (single core Intel Xeon E5520 at 2.26 GHz), an improvement of 3 orders of magnitude in processing time is obtained. The algorithm can handle severe overlapping of events which are typical for interaction rates above 10 MHz.

  4. Optimization of microwave pretreatment on wheat straw for ethanol production

    Xu, Jian; Chen, Hongzhang; Kádár, Zsófia

    2011-01-01

    An orthogonal design (L9(34)) was used to optimize the microwave pretreatment on wheat straw for ethanol production. The orthogonal analysis was done based on the results obtained from the nine pretreatments. The effect of four factors including the ratio of biomass to NaOH solution, pretreatment...... time, microwave power, and the concentration of NaOH solution with three different levels on the chemical composition, cellulose/hemicellulose recoveries and ethanol concentration was investigated. According to the orthogonal analysis, pretreatment with the ratio of biomass to liquid at 80 g kg−1......, the NaOH concentration of 10 kg m−3, the microwave power of 1000 W for 15 min was confirmed to be the optimal condition. The ethanol yield was 148.93 g kg−1 wheat straw at this condition, much higher than that from the untreated material which was only 26.78 g kg−1....

  5. A Comparison of Lignin, Macroalgae, Wood and Straw Fast Pyrolysis

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2013-01-01

    these biomasses. The fast pyrolysis of macroalgae showed a promising result with a bio-oil yield of 65 wt% dry ash free basis (daf) and 76 % energy recovery in the bio-oil while the lignin fast pyrolysis provides a bio-oil yield of 47 wt% daf and energy recovery in bio-oil of 45 %. The physiochemical properties...... of the bio-oils were characterized with respect to higher heating value (HHV), molecular mass distribution, viscosity, pH, density, thermal behaviors, elemental concentrations, phase separation and aging. The lignin and macroalgae oil properties were different compared to those of the wood and straw oils......A fast pyrolysis study on lignin and macroalgae (non-conventional biomass) and wood and straw (conventional biomass) were carried out in a pyrolysis centrifugal reactor at pyrolysis temperature of 550 ºC. The product distributions and energy recoveries were measured and compared among...

  6. Field Evaluation of Cereal Combine Harvesters Processing Losses on JD-955 and JD-1165 Combines Equipped with Grain Loss Monitor

    M.R Mostofi Sarkari

    2014-09-01

    Full Text Available Grain loss monitors are installed on combine harvester and make it possible to measure grain loss on different parts of the combine. The instrument permits the operator to adjust a proper ground speed to keep grain loss within an acceptable range. In this study a loss monitoring system was implemented to measure grain losses continuously on straw walker and sieves. Two grain loss monitors (KEE and TeeJet were installed behind the straw walker and the sieves of JD-955 and JD-1165 combine harvesters. Harvesting performance parameters such as combine total and processing losses were then measured. To evaluate the precision and accuracy of the instruments, the measured and monitored losses were compared and investigated. The results of a two-year research showed that the average processing loss of the combine harvesters with 10-12% grain moisture content and 750 rpm drum speed was 0.82% which is whitin the acceptable range recommended by ASAE Standard No. S343.3. Furthermore, there was no significant difference between the measured and monitored values of processing loss.

  7. Corn residue utilization by livestock in the USA

    Corn (Zea mays L.) residue grazing or harvest provides a simple and economical practice to integrate crops and livestock. Limited information is available on how widespread corn residue utilization is practiced by US producers. In 2010, the USDA-ERS surveyed producers from 19 states on corn grain ...

  8. Approaches to achieve high grain yield and high resource use efficiency in rice

    Jianchang YANG

    2015-06-01

    Full Text Available This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  9. Logistics cost analysis of rice residues for second generation bioenergy production in Ghana.

    Vijay Ramamurthi, Pooja; Cristina Fernandes, Maria; Sieverts Nielsen, Per; Pedro Nunes, Clemente

    2014-12-01

    This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghana's energy demands. Major rice growing regions of Ghana have 70-90% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made for two bioenergy routes. Logistics costs for a 5 MWe straw combustion plant were 39.01, 47.52 and 47.89 USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25 MWe husk gasification plant (with roundtrip distance 10 km) was 2.64 USD/t in all regions. Capital cost (66-72%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 46-48% of total costs. Scale of straw unit does not have a large impact on logistic costs. Transport distance of husks has considerable impact on logistic costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Logistics cost analysis of rice residues for second generation bioenergy production in Ghana

    Vijay Ramamurthi, Pooja; Cristina Fernandes, Maria; Nielsen, Per Sieverts

    2014-01-01

    This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghana’s energy demands. Major rice growing regions of Ghana have 70–90% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made...... for two bioenergy routes. Logistics costs for a 5MWe straw combustion plant were 39.01, 47.52 and 47.89USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25MWe husk gasification plant (with roundtrip distance 10km) was 2.64USD/t in all regions. Capital cost (66......–72%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 46–48% of total costs. Scale of straw unit does not have a large impact on logistic...

  11. Wet oxidation pretreatment of rape straw for ethanol production

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin. The highest ethanol yield obtained was 67% after fermenting the whole slurry produced by WO at 205 °C for 3 min with 12 bar of oxygen gas pressure and featured with presoaking in water. At these conditions after pre-treatment, cellulose and hemicellulose was recovered quantitatively (100%) together with 86% of the lignin. WO treatments of 2–3 min at 205–210 °C with 12 bar of oxygen gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid formation in SSF. -- Highlights: ► Wet Oxidation pretreatment on rape straw for sugar and ethanol production. ► Variables were reaction time, temperature, and oxygen gas pressure. ► Also, other configurations for increase of water and energy efficiency. ► Short Wet oxidation pretreatment (2–3 min) produced highest ethanol yield. ► After these pretreatment conditions recovery of lignin in solids was 86%.

  12. Logistics and feed preparation of straw for gasification and combustion

    NONE

    1997-03-01

    The system for supply of biomass comprises the entire chain from harvest to feeding. The subsequent energy process makes demands on the quality of the biomass that is supplied. The process, moreover, makes a number of demands on the preceding pretreatment and the equipment subsequently utilised. The straw delivery and handling system ought therefore to be considered as a coherent unit whole consisting of the following: harvesting and collection; storage; transportation; fragmentizing; drying; densification; handling at the plants; feeding; `subsequent process`. (EG)

  13. Actinomycete enzymes and activities involved in straw saccharification

    McCarthy, A J; Ball, A S [Liverpool Univ. (UK). Dept. of Genetics and Microbiology

    1990-01-01

    This research programme has been directed towards the analysis of actinomycete enzyme systems involved in the degradation of plant biomass (lignocellulose.) The programme was innovative in that a novel source of enzymes was systematically screened and wheat straw saccharifying activity was the test criterion. Over 200 actinomycete strains representing a broad taxonomic range were screened. A range of specific enzyme activities were involved and included cellulase, xylanase, arabinofuranosidase, acetylesterase, {beta}-xylosidase and {beta}-glucosidase. Since hemicellulose (arabinoxylan) was the primary source of sugar, xylanases were characterized. The xylan-degrading systems of actinomycetes were complex and nonuniform, with up to six separate endoxylanases identified in active strains. Except for microbispora bispora, actinomycetes were found to be a poor source of cellulase activity. Evidence for activity against the lignin fraction of straw was produced for a range of actinomycete strains. While modification reactions were common, cleavage of inter-monomer bonds, and utilization of complex polyphenolic compounds were restricted to two strains: Thermomonospora mesophila and Streptomyces badius. Crude enzyme preparations from actinomycetes can be used to generate sugar, particularly pentoses, directly from cereal straw. The potential for improvements in yield rests with the formulation to cooperative enzyme combinations from different strains. The stability properties of enzymes from thermophilic strains and the general neutral to alkali pH optima offer advantages in certain process situations. Actinomycetes are a particularly rich source of xylanases for commercial application and can rapidly solubilise a lignocarbohydrate fraction of straw which may have both product and pretreatment potential. 31 refs., 4 figs., 5 tabs.

  14. Numerical modelling of a straw-fired grate boiler

    Kær, Søren Knudsen

    2004-01-01

    The paper presents a computational fluid dynamics (CFD) analysis of a 33 MW straw-fired grate boiler. Combustion on the grate plays akey-role in the analysis of these boilers and in this work a stand-alone code was used to provide inlet conditions for the CFD analysis. Modelpredictions were compa...... mixing in the furnace is a key issue leading to these problems. q 2003 Elsevier Ltd. All rights reserved....

  15. Whole Grains and Fiber

    ... for Physical Activity in Children My Family Health Tree What's that you're drinking? Get Active with ... grains. When grocery shopping, an easy way to identify healthy food choices is to look for the ...

  16. 6 Grain Yield

    create a favourable environment for rice ... developing lines adaptable to many ... have stable, not too short crop duration with ..... Analysis of variance of the effect of site and season on maturity, grain yield and plant ..... and yield components.

  17. Pretreatment of wheat straw for fermentation to methane

    Hashimoto, A.G.

    1986-01-01

    The effects of pretreating wheat straw with gamma-ray irradiation, ammonium hydroxide, and sodium hydroxide on methane yield, fermentation rate constant, and loss of feedstock constituents were evaluated using laboratory-scale batch fermentors. Results showed that methane yield increased as pretreatment alkali concentration increased, with the highest yield being 37% over untreated straw for the pretreatment consisting of sodium hydroxide dosage of 34 g OH - /kg volatile solids, at 90 0 C for 1 h. Gamma-ray irradiation had no significant effect on methane yield. Alkaline pretreatment temperatures above 100 0 C caused a decrease in methane yield. After more than 100 days of fermentation, all of the hemicellulose and more than 80% of the cellulose were degraded. The loss in cellulose and hemicellulose accounted for 100% of the volatile solids lost. No consistent effect of pretreatments on batch fermentation rates was noted. Semicontinuous fermentations of straw-manure mixtures confirmed the relative effectiveness of sodium- and ammonium-hydroxide pretreatments

  18. Rice straw pulp obtained by using various methods.

    Rodríguez, Alejandro; Moral, Ana; Serrano, Luis; Labidi, Jalel; Jiménez, Luis

    2008-05-01

    Rice straw was used as an alternative raw material to obtain cellulosics pulps. Pulping was done by using classics reagents as soda (with anthraquinone and parabenzoquinone as aditives), potassium hydroxide and Kraft process. The holocellulose, alpha-cellulose and lignin contents of rice straw (viz. 60.7, 41.2 and 21.9 wt%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using soda, soda and anthraquinone at 1 wt%, soda and parabenzoquinone at 1 wt%, potassium hydroxide and sodium sulphate (Kraft process) under two different sets of operating conditions, namely: (a) a 10 wt% reagent concentration, 170 degrees C and 60 min; and (b) 15 wt% reagent, 180 degrees C and 90 min. The solid/liquid ratio was 6 in both cases. Paper sheets made from pulp extracted by cooking with soda (15 wt%) and AQ (1 wt%) at 180 degrees C and 90 min pulp exhibit the best drainage index, breaking length, stretch and burst index (viz. 23 degrees SR, 3494 m, 3.34% and 2.51 kN/g, respectively).

  19. Removal of lead (II) from aqueous solutions using rice straw.

    Amer, Hayam; El-Gendy, Ahmed; El-Haggar, Salah

    2017-09-01

    Lead (Pb 2+ ) is a heavy metal which is utilized in several industries and can have severe impact on the environment and human health. Research work has been carried out lately on the feasibility of using various low cost materials in the removal of heavy metals from wastewater. In this study, the feasibility of utilizing raw rice straw for removal of Pb 2+ from water through biosorption was investigated using batch equilibrium experiments. The effect of several operating parameters on the removal of Pb 2+ using rice straw was studied, revealing the optimum parameters at an initial Pb 2+ concentration of 40 mg/l were: 30 min contact time at a pH of 5.5, particle size 75-150 μm and a dose of 4 g/l. A maximum removal of 94% was achieved under optimum conditions. Langmuir and Freundlich isotherm models were used for the evaluation of the equilibrium experimental data. The maximum adsorption capacity of rice straw calculated using the Langmuir isotherm was 42.55 mg/g.

  20. A Site Selection Model for a Straw-Based Power Generation Plant with CO2 Emissions

    Hao Lv

    2014-10-01

    Full Text Available The decision on the location of a straw-based power generation plant has a great influence on the plant’s operation and performance. This study explores traditional theories for site selection. Using integer programming, the study optimizes the economic and carbon emission outcomes of straw-based power generation as two objectives, with the supply and demand of straw as constraints. It provides a multi-objective mixed-integer programming model to solve the site selection problem for a straw-based power generation plant. It then provides a case study to demonstrate the application of the model in the decision on the site selection for a straw-based power generation plant with a Chinese region. Finally, the paper discusses the result of the model in the context of the wider aspect of straw-based power generation.