WorldWideScience

Sample records for grain cropping systems

  1. Ensuring sustainable grain legume-cereal cropping systems

    DEFF Research Database (Denmark)

    Bedoussac, Laurent; Journet, E-P; Hauggaard-Nielsen, Henrik

    2017-01-01

    health makes them a key rotation crop in the sustainable intensification and diversification of smallholder farming. This makes grain legumes a key food security crop. However, yields in developing countries are low as a result of such factors as the need for improved varieties of seed, poor seed......Grain legumes are widely cultivated, particularly for their dry seeds (known as pulses). Grain legumes are an important crop for a number of reasons. They are a rich source of protein and fibre, minerals and vitamins. In addition, their rapid growth and ability to fix nitrogen and improve soil...... distribution, the impact of pests and diseases, as well as vulnerability to poor soils, drought and other effects of climate change. This chapter summarises data from over 50 field experiments undertaken since 2001 on cereal-grain legume intercropping in 13 sites in southern and western France as well...

  2. Managing for Multifunctionality in Perennial Grain Crops

    Science.gov (United States)

    Ryan, Matthew R; Crews, Timothy E; Culman, Steven W; DeHaan, Lee R; Hayes, Richard C; Jungers, Jacob M; Bakker, Matthew G

    2018-01-01

    Abstract Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption. PMID:29662249

  3. Corn yield for silage and grains in different integrated crop-livestock systems

    Directory of Open Access Journals (Sweden)

    Laíse da Silveira Pontes

    Full Text Available Abstract In this study, the objective was to assess the influence of two doses of N (90 and 180 kg N ha-1, added to the winter pastures, two integrated crop-livestock systems (ICLS, with and without trees and five positions between the tree rows, on the corn (Zea mays L. quality and productivity, for silage and grain. Adopting the complete randomized block design, the treatments included three replicates. In 2006, following the 14 x 3 m spacing (currently with 158 trees ha-1 the trees were planted in 6 out of the 12 paddocks. While the corn was implemented during summer of 2013/2014, cattle grazing on the annual pasture was done during the prior winter, in both ICLS. Corn for silage was reaped at the R5 phenological stage, whereas for grains it was done at 176 days post seeding. For silage, the corn plants were grinded and then stocked in the experimental mini PVC silos. The silage varied slightly in quality along the positions between the tree rows. The differences observed between N levels in the dry matter, crude protein (CP and grain productivity are expressions of the residual effects of the winter fertilization. Silage quality was improved by the shade effect which minimized the acid detergent fiber and raised the CP, although it reduced the corn production for silage and grains by 52%. Some feasible techniques to reduce these losses are discussed.

  4. Impact of integrated nutrient management on growth and grain yield of wheat under irrigated cropping system

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah, A.; Shah, P.; Arif, M.; Khan, A.M.

    2011-01-01

    Field study was conducted during 2001-02 and 2002-03 to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on the grain yield of wheat. Trials were conducted at Agricultural Research Farm, KPK Agricultural University Peshawar, Pakistan. Two factors cropping patterns and manures/fertilizers were studied in the experiment. Randomized complete block design was used with split plot arrangements and four replications having net plot size of 12 m/sup 2/. Wheat variety Ghaznavi-98 was sown in November soon after ploughing the soil at proper moisture level suitable for wheat seed germination. Five cropping patterns were allotted to main plots and the eight combinations of FYM, K and Zn to the sub-plots. Same plots were used for next year sowing. Effects of five cropping patterns i.e., rice-wheat, maize-wheat, sunflower-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers (Farmyard Manure, Potassium and Zinc) on subsequent wheat crop were observed. Highest grain yield was obtained when wheat was planted after pigeon pea. Manures/fertilizer application (Farmyard Manure, Potassium and Zinc) produced significantly higher grain yield than the control plots. The findings of the present study revealed that leguminous crops can significantly increase the yield of succeeding crops. Thus use of Farmyard Manure, Potassium and Zinc should be included in integrated crop management approaches for sustainable agriculture. (author)

  5. Soil Carbon Changes in Transitional Grain Crop Production Systems in South Dakota

    Science.gov (United States)

    Woodard, H. J.

    2004-12-01

    Corn-C (Zea Mays L.), soybean-S (Glycine max L.) and spring wheat-W (Triticum aestivum L.) crops were seeded as a component of either a C-S, S-W, or C-S-W crop rotation on silt-loam textured soils ranging from 3.0-5.0% organic matter. Conservation tillage(chisel plow-field cultivator) was applied to half of the plots. The other plots were direct seeded as a no-till (zero-tillage) treatment. Grain yield and surface crop residues were weighed from each treatment plot. Crop residue (stover and straw) was removed from half of the plots. After four years, soil samples were removed at various increments of depth and soil organic carbon (C) and nitrogen (N) was measured. The ranking of crop residue weights occurred by the order corn>>soybean>wheat. Surface residue accumulation was also greatest with residue treatments that were returned to the plots, those rotations in which maize was a component, and those without tillage. Mean soil organic carbon levels in the 0-7.5cm depth decreased from 3.41% to 3.19% (- 0.22%) with conventional tillage (chisel plow/field cultivator) as compared to a decrease from 3.19% to 3.05% (-0.14%) in plots without tillage over a four year period. Organic carbon in the 0-7.5cm depth decreased from 3.21% to 3.01% (- 0.20%) after residue removed as compared to a decrease from 3.39% to 3.23% (-0.17%) in plots without tillage applied after four years. The soil C:N ratio (0-7.5cm) decreased from 10.63 to 10.37 (-0.26 (unitless)) in the tilled plots over a four-year period. Soil C:N ratio at the 0-7.5cm depth decreased from 10.72 to 10.04 (-0.68) in the no-till plots over a four year period. Differences in the soil C:N ratio comparing residue removed and residue returned were similar (-0.51 vs. -0.43 respectively). These soils are highly buffered for organic carbon changes. Many cropping cycles are required to determine how soil carbon storage is significantly impacted by production systems.

  6. Grass-clover undersowing affects nitrogen dynamics in a grain legume–cereal arable cropping system

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Mundus, Simon; Jensen, Erik Steen

    2012-01-01

    A field experiment was carried out in an arable organic cropping system and included a sequence with sole cropped fababean (Vicia faba L.), lupin (Lupinus angustifolius L.), pea (Pisum sativum L.), oat (Avena sativa L.) and pea–oat intercropping with or without an undersown perennial ryegrass...... N2 fixation and 15N labeling technique to determine the fate of pea and oat residue N recovery in the subsequent crop. The subsequent spring wheat and winter triticale crop yields were not significantly affected by the previous main crop, but a significant effect of catch crop undersowing...

  7. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  8. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.

    Science.gov (United States)

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna

    2015-01-01

    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four

  9. Translocation of aluminum to grain crops grown in different agricultural systems

    International Nuclear Information System (INIS)

    Khan, S.; Kazi, T.G.; Kolachi, N.F.; Afridi, H.I.

    2012-01-01

    The aim of this study was to evaluate the mobility and transport of Aluminum (AI) by shoot and grain crops (wheat and maize) grown on two different agricultural soil irrigated with water have high (lake water) and low levels (canal water) of AI. The total and bio available fractions (deionized water, 0.11 M CH/sub 3/COOH, 0.05 M ethylenediaminetetraacetic acid (EDT A) and 0.1 M HCl extractable) of Al in both understudied agricultural soils and correlate with respective total Al in the edible parts (grains) and non edible parts (Shoots) of wheat and maize. The All content in lake and canal water samples was found in the range of 750 - 1340 and 90 - 50 micro g/L respectively. The total and extractable Al in both agricultural soil samples, edible and non edible parts of wheat and maize were analysed by atomic absorption spectrometry after acid digestion in microwave oven. The edible and non edible part of both crops absorbed significantly high levels of Al grown on agricultural soil irrigated with lake water (SILW) as compared to those grown on soil irrigated with can water (SICW) had low level of A] (p< O.OI). The transfer factor of Al from soils to edible and non edible parts of wheat and maize were also evaluated. It was observed that the bioaccumulation of Al was found to be high in non edible parts of both crops grown in SILW. This study highlights the increased danger of growing food crops in the agricultural land continuously irrigated by A] contaminated lake water. (author)

  10. Soil water infiltration affected by biofuel and grain crop production systems in claypan landscape

    Science.gov (United States)

    The effect of soil management systems on water infiltration is very crucial within claypan landscapes to maximize production as well as minimize environmental risks. The objective of this study was to assess the effect of topsoil thickness on water infiltration in claypan soils for grain and biofuel...

  11. Managing soil microbial communities in grain production systems through cropping practices

    Science.gov (United States)

    Gupta, Vadakattu

    2013-04-01

    Cropping practices can significantly influence the composition and activity of soil microbial communities with consequences to plant growth and production. Plant type can affect functional capacity of different groups of biota in the soil surrounding their roots, rhizosphere, influencing plant nutrition, beneficial symbioses, pests and diseases and overall plant health and crop production. The interaction between different players in the rhizosphere is due to the plethora of carbon and nutritional compounds, root-specific chemical signals and growth regulators that originate from the plant and are modulated by the physico-chemical properties of soils. A number of plant and environmental factors and management practices can influence the quantity and quality of rhizodeposition and in turn affect the composition of rhizosphere biota communities, microbe-fauna interactions and biological processes. Some of the examples of rhizosphere interactions that are currently considered important are: proliferation of plant and variety specific genera or groups of microbiota, induction of genes involved in symbiosis and virulence, promoter activity in biocontrol agents and genes correlated with root adhesion and border cell quality and quantity. The observation of variety-based differences in rhizodeposition and associated changes in rhizosphere microbial diversity and function suggests the possibility for the development of varieties with specific root-microbe interactions targeted for soil type and environment i.e. designer rhizospheres. Spatial location of microorganisms in the heterogeneous field soil matrix can have significant impacts on biological processes. Therefore, for rhizosphere research to be effective in variable seasonal climate and soil conditions, it must be evaluated in the field and within a farming systems context. With the current focus on security of food to feed the growing global populations through sustainable agricultural production systems there is a

  12. Effect of FYM, potassium and zinc on phenology and grain yield of wheat in rain fed cropping systems

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah; Arif, M.; Shah, P.; Khan, M.A.; Khan, K.

    2011-01-01

    Little work has been done on potassium (K) and zinc (Zn) in combination with farm yard manure (FYM) under rain fed conditions of NWFP. This study was designed to examine the effects of un-irrigated cropping patterns and organic and in-organic fertilizers on wheat crop. Field experiments were conducted to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on phenology and grain yield of wheat under rain fed (barani or un-irrigated) conditions at Agricultural Research Station, Serai Naurang Bannu for two years during 2001-02 and 2002-03. The experiment was designed in RCB design with split arrangements. Two factors were studied in the experiment. Effects of five cropping patterns i.e., fallow-wheat, groundnut-wheat, mungbean-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers on subsequent wheat crop were observed. Data revealed that both the cropping patterns and manures/fertilizers had non-significant effect on days to anthesis, seed fill duration and days to maturity of wheat. Highest grain yield (3194 kg ha/sup -1/ wheat following mungbean produced more yield and wheat following groundnut produced less yield under dry land conditions. The present findings revealed that pigeon pea-wheat cropping pattern seems to be more sustainable in terms of yield under rain fed conditions and use of FYM, K and Zn should be included in integrated crop management approaches for sustainable crop production. (Author)

  13. Grain legume-cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Jørnsgaard, B.; Kinane, J.

    2008-01-01

    . Faba bean and lupin had lower yield stability than pea and fertilized barley. However, the different IC used environmental resources for plant growth up to 50% (LER=0.91-1.51) more effectively as compared to the respective SC, but with considerable variation over location, years and crops. The SC...... in Denmark over three consecutive cropping seasons including dual grain legume (pea, faba bean and lupin)-barley intercropping as compared to the respective sole crops (SC). Yield stability of intercrops (IC) was not greater than that of grain legume SC, with the exception of the IC containing faba bean......-15% compared to the corresponding SC. However, especially lupin was suppressed when intercropping, with a reduced N2-fixation from 15 to 5-6 g N m-2. The IC were particularly effective at suppressing weeds, capturing a greater share of available resources than SC. Weed infestation in the different crops...

  14. Influence of Crop Nutrition on Grain Yield, Seed Quality and Water Productivity under Two Rice Cultivation Systems

    Directory of Open Access Journals (Sweden)

    Y.V. SINGH

    2013-03-01

    Full Text Available The system of rice intensification (SRI is reported to have advantages like lower seed requirement, less pest attack, shorter crop duration, higher water use efficiency and the ability to withstand higher degree of moisture stress than traditional method of rice cultivation. With this background, SRI was compared with traditional transplanting technique at Indian Agricultural Research Institute, New Delhi, India during two wet seasons (2009–2011. In the experiment laid out in a factorial randomized block design, two methods of rice cultivation [conventional transplanting (CT and SRI] and two rice varieties (Pusa Basmati 1 and Pusa 44 were used under seven crop nutrition treatments, viz. T1, 120 kg/hm2 N, 26.2 kg/hm2 P and 33 kg/hm2 K; T2, 20 t/hm2 farmyard manure (FYM; T3, 10 t/hm2 FYM + 60 kg/hm2 N; T4, 5 t/hm2 FYM + 90 kg/hm2 N; T5, 5 t/hm2 FYM + 60 kg/hm2 N + 1.5 kg/hm2 blue green algae (BGA; T6, 5 t/hm2 FYM + 60 kg/hm2 N + 1.0 t/hm2 Azolla, and T7, N0P0K0 (control, no NPK application to study the effect on seed quality, yield and water use. In SRI, soil was kept at saturated moisture condition throughout vegetative phase and thin layer of water (2–3 cm was maintained during the reproductive phase of rice, however, in CT, standing water was maintained in crop growing season. Results revealed that CT and SRI gave statistically at par grain yield but straw yield was significantly higher in CT as compared to SRI. Seed quality was superior in SRI as compared to CT. Integrated nutrient management (INM resulted in higher plant height with longer leaves than chemical fertilizer alone in both the rice varieties. Grain yield attributes such as number of effective tillers per hill, panicle length and panicle weight of rice in both the varieties were significantly higher in INM as compared to chemical fertilizer alone. Grain yields of both the varieties were the highest in INM followed by the recommended doses of chemical fertilizer. The grain yield

  15. The Effect of Inoculation with Azotobacter and Nitrogen Levels on Grain and Corn Yield Components at Simultaneous Cropping System with Legumes

    Directory of Open Access Journals (Sweden)

    mohammad mirzakhani

    2017-09-01

    Full Text Available Introduction: Corn has been regarded as one of the important crops from the view point of both human and animal feeding resource. Intercropping defined as cultivation of two or more species together. The advantages of intercropping can be included: efficient use of water and sunlight, exchange of nutrients, weed competition reduction, reduction of pathogens and the increase of soil fertility. Research shows that intercropping combinations of legume–grass will increase forage quality. Because, grasses Grains have a lot of carbohydrates and legumes are rich in protein and vitamins. This study was conducted to evaluate the effect of inoculation with azotobacter and nitrogen levels on grain and corn yield components at simultaneous cropping system with legumes under the weather conditions of Markazi province. Materials and methods: This study was carried out at agricultural research field of Payame Noor University, Arak Branch during 2011. A factorial arrangement of treatment in a randomized complete block design with three replications was used. Methods of plant nutrition (M0= inoculation with azotobacter, M1= inoculation with azotobacter + 37/5 Kg ha-1 of rare nitrogen with foliar application method, M2= inoculation with azotobacter + 150 Kg ha-1 of rare nitrogen mix with soil and simultaneous cropping treatment of legumes, [S1= corn + alfalfa (Medicago sativa L., S2= corn + bitter vetch (Lathyrus sativus L., S3= corn + mung bean (Vigna radiata L., S4= corn + chickpea (Cicer arientinum L., S5= corn + vetch (Vicia ervillia L. ] were assigned in plots. Each sub plot consisted of 4 rows, 6 m long with 60 cm between rows space and 20 cm between plants on the rows and S.C Apex hybrid was used. In this study characteristics such as: plant height, earing height, the number of grains per m-2, the number of rows per ear, the number of grains per row, surface of ear leaf, grain yield of corn, 1000 grain weight, harvest index of corn, nitrogen use

  16. Faba bean in cropping systems

    DEFF Research Database (Denmark)

    Steen Jensen, Erik; Peoples, Mark B.; Hauggaard-Nielsen, Henrik

    2010-01-01

    The grain legume (pulse) faba bean (Vicia faba L.) is grown world-wide as a protein source for food and feed. At the same time faba bean offers ecosystem services such as renewable inputs of nitrogen (N) into crops and soil via biological N2 fixation, and a diversification of cropping systems. Even...... though the global average grain yield has almost doubled during the past 50 years the total area sown to faba beans has declined by 56% over the same period. The season-to-season fluctuations in grain yield of faba bean and the progressive replacement of traditional farming systems, which utilized...... legumes to provide N to maintain soil N fertility, with industrialized, largely cereal-based systems that are heavily reliant upon fossil fuels (=N fertilizers, heavy mechanization) are some of the explanations for this decline in importance. Past studies of faba bean in cropping systems have tended...

  17. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed.......This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  18. Productivity of clay tailings from phosphate mining: 3. Grain crops

    International Nuclear Information System (INIS)

    Mislevy, P.; Blue, W.G.; Roessler, C.E.; Martin, F.G.

    1991-01-01

    A split-fold field experiment was conducted to study forage and grain yield, forage quality, plant nutrient concentrations, changes in soil nutrients, and 226 Ra contents of four grain crops in various rotations. The crop rotations (1) corn (Zea mays L. Jacques 247)-sunflower (Helianthus annuus L. Cargil 205), (2) sunflower-grain sorghum (Sorghum bicolor L, Moench Northrup King Savanna 5), (3) soybean (Glycine max L. Merr. Williams 80)-grain sorghum, and (4) grain sorghum-soybean (University of Florida V-1) were grown on a dry phosphatic clay with and without a 50-mm surface layer of quartz-sand tailings. Results show that corn and grain sorghum produced highest forage yields and highest grain yields per harvest, respectively. Soybean harvested for forage (Crop 1) contained the highest crude protein and in vitro organic matter digestibility. Concentrations of P, K, Ca, Mg, and Fe in most of the forages were adequate for the diets of beef cattle, while those of Mn, Cu and Zn were low. Mehlich I-extractable soil, Ca, and Mg were considered very high and changed little over the 4-yr production period. Application of 50 mm of sand tailings tended to increase Mehlich I-extractable P, Ca, Mn, Cu, Zn, and Fe. Radium-226 concentration in the forage of all grain crops averaged 8.5 Bq kg -1 , which was about 17 times higher than that in the grain of the same crops. Concentrations of 226 Ra in the forage and grain were 1.1% and 0.09% of the concentration in clay respectively. These data indicate that phosphatic clays can be a valuable resource for the production of corn and sorghum grain that contain low concentrations of 226 Ra

  19. Modelling nitrous oxide emissions from mown-grass and grain-cropping systems: Testing and sensitivity analysis of DailyDayCent using high frequency measurements.

    Science.gov (United States)

    Senapati, Nimai; Chabbi, Abad; Giostri, André Faé; Yeluripati, Jagadeesh B; Smith, Pete

    2016-12-01

    The DailyDayCent biogeochemical model was used to simulate nitrous oxide (N 2 O) emissions from two contrasting agro-ecosystems viz. a mown-grassland and a grain-cropping system in France. Model performance was tested using high frequency measurements over three years; additionally a local sensitivity analysis was performed. Annual N 2 O emissions of 1.97 and 1.24kgNha -1 year -1 were simulated from mown-grassland and grain-cropland, respectively. Measured and simulated water filled pore space (r=0.86, ME=-2.5%) and soil temperature (r=0.96, ME=-0.63°C) at 10cm soil depth matched well in mown-grassland. The model predicted cumulative hay and crop production effectively. The model simulated soil mineral nitrogen (N) concentrations, particularly ammonium (NH 4 + ), reasonably, but the model significantly underestimated soil nitrate (NO 3 - ) concentration under both systems. In general, the model effectively simulated the dynamics and the magnitude of daily N 2 O flux over the whole experimental period in grain-cropland (r=0.16, ME=-0.81gNha -1 day -1 ), with reasonable agreement between measured and modelled N 2 O fluxes for the mown-grassland (r=0.63, ME=-0.65gNha -1 day -1 ). Our results indicate that DailyDayCent has potential for use as a tool for predicting overall N 2 O emissions in the study region. However, in-depth analysis shows some systematic discrepancies between measured and simulated N 2 O fluxes on a daily basis. The current exercise suggests that the DailyDayCent may need improvement, particularly the sub-module responsible for N transformations, for better simulating soil mineral N, especially soil NO 3 - concentration, and N 2 O flux on a daily basis. The sensitivity analysis shows that many factors such as climate change, N-fertilizer use, input uncertainty and parameter value could influence the simulation of N 2 O emissions. Sensitivity estimation also helped to identify critical parameters, which need careful estimation or site

  20. Nitrogen dynamics following grain legumes and subsequent catch crops and the effects on succeeding cereal crops

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Mundus, Simon; Jensen, Erik Steen

    2009-01-01

    balances. A 2½-year lysimeter experiment was carried out on a temperate sandy loam soil. Crops were not fertilized in the experimental period and the natural 15N abundance technique was used to determine grain legume N2 fixation. Faba bean total aboveground DM production was significantly higher (1,300 g m...... on the subsequent spring wheat or winter triticale DM production. Nitrate leaching following grain legumes was significantly reduced with catch crops compared to without catch crops during autumn and winter before sowing subsequent spring wheat. Soil N balances were calculated from monitored N leaching from...

  1. Feeding potential of summer grain crop residues for woolled sheep ...

    African Journals Online (AJOL)

    of 80:20 for the first collection on maize residues. Schoonraad (1985) did not pick up the cobs, so much more grain was available. Crude protein content. Changes in percentage crude protein in oesophageal samples are shown in Figure 2. With all crops, CP content of oesophageal samples was initially high but decreased ...

  2. Biodegraded polymers as materials for sowing of grain crops seeds

    Directory of Open Access Journals (Sweden)

    L. S. Shibryaeva

    2015-01-01

    Full Text Available Increase of efficiency of grain production, solution of problems of food security demand search and development of innovative technologies at all stages. One of ways of environmentally friendly production is sowing of seeds on an excipient located in the soil, for example, nonwoven fabric made of eco- decomposable decomposed biodegraded polymer. Biodegraded polymeric materials influence on sowing properties of grain crops seeds and provide realization of their potential productivity. The authors used an electroforming method with chloroform and a dichloroethane application to receive nonwoven fabric from poly-3-hydroxybutyrate (PHB and its compositions together with synthetic nitrile rubber (PHB-SNR. Polymeric material influences on energy of germination and viability of wheat seeds. Germination index is calculated, heat physical parameters are determined for the polymeric excipient. The major factor influencing seeds germination is a structure of nonwoven fabric. Water diffusion, its supply to seeds and their viability depend on morphological features of polymeric material. Polymer excipient structure influence on speed of development of root system on which, in turn, intensity of destruction of polymer depends. The best indicators of energy of germination and viability of seeds correspond to the greatest value of decrease of melting heat of PHB in mix PHB-SNR. In addition, among the studied samples of PHB-SNR the material received from blend of solvents is most effective. The cause is in feature of its structure favorable for a seed germination.

  3. Effects of grain-producing cover crops on rice grain yield in Cabo Delgado, Mozambique

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    Full Text Available ABSTRACT Besides providing benefits to the environment such as soil protection, release of nutrients, soil moisture maintenance, and weed control, cover crops can increase food production for grain production. The aim of this study was to evaluate the production of biomass and grain cover crops (and its respective effects on soil chemical and physical attributes, yield components, and grain yield of rice in Mozambique. The study was conducted in two sites located in the province of Cabo Delgado, in Mozambique. The experimental design was a randomized block in a 2 × 6 factorial, with four repetitions. Treatments were carried out in two locations (Cuaia and Nambaua with six cover crops: Millet (Pennisetum glaucum L.; namarra bean (Lablab purpureus (L. Sweet, velvet beans (Mucuna pruriens L., oloco beans (Vigna radiata (L. R. Wilczek, cowpea (Vigna unguiculata L., and fallow. Cover crops provided similar changes in chemical and physical properties of the soil. Lablab purpureus, Vigna unguiculata, and Mucuna pruriens produced the highest dry matter biomass. Vigna unguiculada produced the highest amount of grains. Rice grain yields were similar under all cover crops and higher in Cuaia than Nambaua.

  4. Integrated crop management practices for maximizing grain yield of double-season rice crop

    Science.gov (United States)

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-01

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers’ practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha-1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  5. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.

    Science.gov (United States)

    Wang, Y B; Wu, P T; Engel, B A; Sun, S K

    2014-11-01

    Water shortages are detrimental to China's grain production while food production consumes a great deal of water causing water crises and ecological impacts. Increasing crop water productivity (CWP) is critical, so China is devoting significant resources to develop water-saving agricultural systems based on crop planning and agricultural water conservation planning. A comprehensive CWP index is necessary for such planning. Existing indices such as water use efficiency (WUE) and irrigation efficiency (IE) have limitations and are not suitable for the comprehensive evaluation of CWP. The water footprint (WF) index, calculated using effective precipitation and local water use, has advantages for CWP evaluation. Due to regional differences in crop patterns making the CWP difficult to compare directly across different regions, a unified virtual crop pattern is needed to calculate the WF. This project calculated and compared the WF of each grain crop and the integrated WFs of grain products with actual and virtual crop patterns in different regions of China for 2010. The results showed that there were significant differences for the WF among different crops in the same area or among different areas for the same crop. Rice had the highest WF at 1.39 m(3)/kg, while corn had the lowest at 0.91 m(3)/kg among the main grain crops. The WF of grain products was 1.25 m(3)/kg in China. Crop patterns had an important impact on WF of grain products because significant differences in WF were found between actual and virtual crop patterns in each region. The CWP level can be determined based on the WF of a virtual crop pattern, thereby helping optimize spatial distribution of crops and develop agricultural water savings to increase CWP. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Kersebaum, Kurt C; Kollas, Chris

    2017-01-01

    Realistic estimation of grain nitrogen (N; N in grain yield) is crucial for assessing N management in crop rotations, but there is little information on the performance of commonly used crop models for simulating grain N. Therefore, the objectives of the study were to (1) test if continuous simul...

  7. Annual forage cropping-systems for midwestern ruminant livestock production

    OpenAIRE

    McMillan, John Ernest

    2016-01-01

    Annual forage cropping systems are a vital aspect of livestock forage production. One area where this production system can be enhanced is the integration of novel annual forages into conventional cropping systems. Two separate projects were conducted to investigate alternative forage options in annual forage production. In the first discussed research trial, two sets of crops were sown following soft red winter wheat (Triticum aestivum L.) grain harvest, at two nitrogen application rates 56 ...

  8. Addressing crop interactions within cropping systems in LCA

    DEFF Research Database (Denmark)

    Goglio, Pietro; Brankatschk, Gerhard; Knudsen, Marie Trydeman

    2018-01-01

    objectives of this discussion article are as follows: (i) to discuss the characteristics of cropping systems which might affect the LCA methodology, (ii) to discuss the advantages and the disadvantages of the current available methods for the life-cycle assessment of cropping systems, and (iii) to offer...... management and emissions, and (3) functional unit issues. The LCA approaches presented are as follows: cropping system, allocation approaches, crop-by-crop approach, and combined approaches. The various approaches are described together with their advantages and disadvantages, applicability...... considers cropping system issues if they are related to multiproduct and nutrient cycling, while the crop-by-crop approach is highly affected by assumptions and considers cropping system issues only if they are related to the analyzed crop. Conclusions Each LCA approach presents advantages and disadvantages...

  9. Performance of process-based models for simulation of grain N in crop rotations across Europe

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Kersebaum, KC; Kollas, C

    2017-01-01

    The accurate estimation of crop grain nitrogen (N; N in grain yield) is crucial for optimizing agricultural N management, especially in crop rotations. In the present study, 12 process-based models were applied to simulate the grain N of i) seven crops in rotations, ii) across various pedo...... (Brassica napus L.). These differences are linked to the intensity of parameterization with better parameterized crops showing lower prediction errors. The model performance was influenced by N fertilization and irrigation treatments, and a majority of the predictions were more accurate under low N...

  10. Autonomous grain combine control system

    Science.gov (United States)

    Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.

    2013-06-25

    A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.

  11. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    Science.gov (United States)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  12. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement

    Science.gov (United States)

    Muñoz, Nacira; Liu, Ailin; Kan, Leo; Li, Man-Wah; Lam, Hon-Ming

    2017-01-01

    Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes. PMID:28165413

  13. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Nacira Muñoz

    2017-02-01

    Full Text Available Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes.

  14. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  15. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.

    Science.gov (United States)

    Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan

    2016-05-01

    Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with 4 years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30-0.60%, total aboveground biomass was reduced by 0.37-0.43%, and grain yield was reduced by 1.0-1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies. © 2016 John Wiley & Sons Ltd.

  16. Cropping pattern adjustment in China's grain production and its impact on land and water use

    DEFF Research Database (Denmark)

    Li, Tian-xiang; Zhu, Jing; Balezentis, Tomas

    2016-01-01

    This paper aims at decomposing China's grain output changes into three terms, namely area sown effect, pure yield effect, and cropping pattern adjustment effect. Furthermore, the paper analyses the impact of shifts in cropping pattern on water and land use in China's grain production. An index...... adjustments). However, these effects vary across regions: Southeast China experienced land-saving and water-using changes, while other regions underwent land- and water-saving changes. In general, China's grain output growth has increased the total amount of land and water needed, implying more severe...... played an important role in promoting China's grain production, with a contribution of over 15 per cent during 2003-2012. Moreover, such changes enabled to save about 6.8 million hectares of sown areas and 31.06 billion m3 of water in grain production (if compared to the case without cropping pattern...

  17. Nitrogen accumulation profiles of selected grain and vegetable crops: A bibliography (1940-1992)

    Energy Technology Data Exchange (ETDEWEB)

    Meischen, S.J.; Byrd, K.R.

    1994-10-01

    A bibliography of nitrogen accumulation profile data for 25 vegetable and grain crops reported between 1940 and 1992 is presented. The selected crops are asparagus, broccoli, brussels sprouts, cabbage, carrots, cauliflower, celery, corn, cotton, cucumber, field bean, field pea, garlic, lettuce, onions, and peppers.

  18. Vulnerability of grain crops and croplands in the Midwest to climatic variability and adaptation strategies

    Science.gov (United States)

    Maize (Zea mays L.) and soybean (Gylcine max (L.) Merr.) are the dominant grain crops across the Midwest and are grown on 75% of the arable land with wheat (Triticum aestivum L.) and oats (Avena sativa L.) small but economically important crops. Historically there have been variations in annual yiel...

  19. Starch grains reveal early root crop horticulture in the Panamanian tropical forest.

    Science.gov (United States)

    Piperno, D R; Ranere, A J; Holst, I; Hansell, P

    2000-10-19

    Native American populations are known to have cultivated a large number of plants and domesticated them for their starch-rich underground organs. Suggestions that the likely source of many of these crops, the tropical forest, was an early and influential centre of plant husbandry have long been controversial because the organic remains of roots and tubers are poorly preserved in archaeological sediments from the humid tropics. Here we report the occurrence of starch grains identifiable as manioc (Manihot esculenta Crantz), yams (Dioscorea sp.) and arrowroot (Maranta arundinacea L.) on assemblages of plant milling stones from preceramic horizons at the Aguadulce Shelter, Panama, dated between 7,000 and 5,000 years before present (BP). The artefacts also contain maize starch (Zea mays L.), indicating that early horticultural systems in this region were mixtures of root and seed crops. The data provide the earliest direct evidence for root crop cultivation in the Americas, and support an ancient and independent emergence of plant domestication in the lowland Neotropical forest.

  20. Performance of process-based models for simulation of grain N in crop rotations across Europe

    Czech Academy of Sciences Publication Activity Database

    Xiaogang, Y.; Kesebaum, K. C.; Kollas, C.; Manevski, K.; Baby, S.; Beaudoin, N.; Öztürk, I.; Gaiser, T.; Wu, L.; Hoffmann, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Ewert, F.; de Cortazar-Atauri, I. G.; Giglio, L.; Hlavinka, Petr; Hoffmann, H.; Launay, M.; Louarn, G.; Manderscheid, R.; Mary, B.; Mirschel, W.; Nendel, C.; Pacholski, A.; Palouso, T.; Ripoche-Wachter, D.; Rötter, R. P.; Ruget, F.; Sharif, B.; Trnka, Miroslav; Ventrella, D.; Weigel, H-J.; Olesen, J. E.

    2017-01-01

    Roč. 154, JUN (2017), s. 63-77 ISSN 0308-521X R&D Projects: GA MŠk(CZ) LO1415; GA MZe QJ1310123 Institutional support: RVO:67179843 Keywords : Calibration * Crop model * Crop rotation * Grain N content * Model evaluation * Model initialization Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.571, year: 2016

  1. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...... the tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability....

  2. Grain and straw for whole plant: implications for crop management and genetic improvement strategies

    OpenAIRE

    Schiere, J.B.; Joshi, A.L.; Seetharam, A.; Oosting, S.J.; Goodchild, A.V.; Deinum, B.; Keulen, van, H.

    2004-01-01

    Straws and stovers are often called `by-products` of grain production even though they are increasingly important, e.g. for animal feed, thatching, soil improvement, mushroom production and industrial use. As a result, plant breeders, agronomists, economists and animal nutritionists have to pay more attention than before to the total value of crops, i.e. whole plant value in which straws and grain both play a part. This paper reviews literature about the technical potential of breeding and/or...

  3. Adjustment and Optimization of the Cropping Systems under Water Constraint

    Directory of Open Access Journals (Sweden)

    Pingli An

    2016-11-01

    Full Text Available The water constraint on agricultural production receives growing concern with the increasingly sharp contradiction between demand and supply of water resources. How to mitigate and adapt to potential water constraint is one of the key issues for ensuring food security and achieving sustainable agriculture in the context of climate change. It has been suggested that adjustment and optimization of cropping systems could be an effective measure to improve water management and ensure food security. However, a knowledge gap still exists in how to quantify potential water constraint and how to select appropriate cropping systems. Here, we proposed a concept of water constraint risk and developed an approach for the evaluation of the water constraint risks for agricultural production by performing a case study in Daxing District, Beijing, China. The results show that, over the whole growth period, the order of the water constraint risks of crops from high to low was wheat, rice, broomcorn, foxtail millet, summer soybean, summer peanut, spring corn, and summer corn, and the order of the water constraint risks of the cropping systems from high to low was winter wheat-summer grain crops, rice, broomcorn, foxtail millet, and spring corn. Our results are consistent with the actual evolving process of cropping system. This indicates that our proposed method is practicable to adjust and optimize the cropping systems to mitigate and adapt to potential water risks. This study provides an insight into the adjustment and optimization of cropping systems under resource constraints.

  4. Effect of soil biochar amendment on grain crop resistance to Fusarium mycotoxin contamination

    Science.gov (United States)

    Mycotoxin contamination of food and feed is among the top food safety concerns. Fusarium spp. cause serious diseases in cereal crops reducing yield and contaminating grain with mycotoxins that can be deleterious to human and animal health. Fusarium graminearum and Fusarium verticillioides infect whe...

  5. Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health

    Science.gov (United States)

    Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739

  6. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India.

    Science.gov (United States)

    Lal, B; Gautam, Priyanka; Panda, B B; Raja, R; Singh, Teekam; Tripathi, R; Shahid, M; Nayak, A K

    2017-01-01

    Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June-September) and land leftovers fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate

  7. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana.

    Science.gov (United States)

    Kermah, Michael; Franke, Angelinus C; Adjei-Nsiah, Samuel; Ahiabor, Benjamin D K; Abaidoo, Robert C; Giller, Ken E

    2017-11-01

    Smallholder farmers in the Guinea savanna practise cereal-legume intercropping to mitigate risks of crop failure in mono-cropping. The productivity of cereal-legume intercrops could be influenced by the spatial arrangement of the intercrops and the soil fertility status. Knowledge on the effect of soil fertility status on intercrop productivity is generally lacking in the Guinea savanna despite the wide variability in soil fertility status in farmers' fields, and the productivity of within-row spatial arrangement of intercrops relative to the distinct-row systems under on-farm conditions has not been studied in the region. We studied effects of maize-legume spatial intercropping patterns and soil fertility status on resource use efficiency, crop productivity and economic profitability under on-farm conditions in the Guinea savanna. Treatments consisted of maize-legume intercropped within-row, 1 row of maize alternated with one row of legume, 2 rows of maize alternated with 2 rows of legume, a sole maize crop and a sole legume crop. These were assessed in the southern Guinea savanna (SGS) and the northern Guinea savanna (NGS) of northern Ghana for two seasons using three fields differing in soil fertility in each agro-ecological zone. Each treatment received 25 kg P and 30 kg K ha -1 at sowing, while maize received 25 kg (intercrop) or 50 kg (sole) N ha -1 at 3 and 6 weeks after sowing. The experiment was conducted in a randomised complete block design with each block of treatments replicated four times per fertility level at each site. Better soil conditions and rainfall in the SGS resulted in 48, 38 and 9% more maize, soybean and groundnut grain yield, respectively produced than in the NGS, while 11% more cowpea grain yield was produced in the NGS. Sole crops of maize and legumes produced significantly more grain yield per unit area than the respective intercrops of maize and legumes. Land equivalent ratios (LERs) of all intercrop patterns were greater than

  8. Invited review: Sustainable forage and grain crop production for the US dairy industry.

    Science.gov (United States)

    Martin, N P; Russelle, M P; Powell, J M; Sniffen, C J; Smith, S I; Tricarico, J M; Grant, R J

    2017-12-01

    A resilient US dairy industry will be underpinned by forage and crop production systems that are economically, environmentally, and socially sustainable. Land use for production of perennial and annual forages and grains for dairy cattle must evolve in response to multiple food security and environmental sustainability issues. These include increasing global populations; higher incomes and demand for dairy and other animal products; climate change with associated temperature and moisture changes; necessary reductions in carbon and water footprints; maintenance of soil quality and soil nutrient concerns; and competition for land. Likewise, maintaining producer profitability and utilizing practices accepted by consumers and society generally must also be considered. Predicted changes in climate and water availability will likely challenge current feed and dairy production systems and their national spatial distribution, particularly the western migration of dairy production in the late 20th century. To maintain and stabilize profitability while reducing carbon footprint, particularly reductions in methane emission and enhancements in soil carbon sequestration, dairy production will need to capitalize on genetic and management innovations that enhance forage and grain production and nutritive value. Improved regional and on-farm integration of feed production and manure utilization is needed to reduce environmental nitrogen and phosphorus losses and mitigate greenhouse gas emissions. Resilient and flexible feed production strategies are needed to address each of these challenges and opportunities to ensure profitable feeding of dairy cattle and a sustainable dairy industry. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  9. The perspective crops for the bioregenerative human life support systems

    Science.gov (United States)

    Polonskiy, Vadim; Polonskaya, Janna

    The perspective crops for the bioregenerative human life support systems V.I. Polonskiy, J.E. Polonskaya aKrasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia In the nearest future the space missions will be too long. In this case it is necessary to provide the crew by vitamins, antioxidants, and water-soluble dietary fibers. These compounds will be produced by higher plants. There was not enough attention at present to increasing content of micronutrients in edible parts of crops candidates for CELSS. We suggested to add the new crops to this list. 1. Barley -is the best crop for including to food crops (wheat, rice, soybean). Many of the health effects of barley are connected to dietary fibers beta-glucan of barley grains. Bar-ley is the only seed from cereals including wheat with content of all eight tocopherols (vitamin E, important antioxidant). Barley grains contain much greater amounts of phenolic compounds (potential antioxidant activities) than other cereal grains. Considerable focus is on supplement-ing wheat-based breads with barley to introduce the inherent nutritional advantages of barley flour, currently only 20We have selected and tested during 5 generations two high productive barley lines -1-K-O and 25-K-O. Our investigations (special breeding program for improving grain quality of barley) are in progress. 2. Volatile crops. Young leaves and shoots of these crops are edible and have a piquant taste. A lot of organic volatile compounds, oils, vitamins, antioxidants are in their biomass. These micronutrients are useful for good appetite and health of the crew. We have investigated 11 species: basil (Ocimum basilicum), hyssop (Hyssopus officinalis), marjoram (Origanum majorana), sweet-Mary (Melissa officinalis), common thyme (Thymus vulgaris), creeping thyme (Thymus serpyllum), summer savory (Satureja hortensis), catnip (Nepeta cataria), rue (Ruta graveolens), coriander (Coriandrum Ativum), sulfurwort (Levisticum officinale). These

  10. Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    King, Alison E.; Hofmockel, Kirsten S.

    2017-03-01

    Diversifying biologically simple cropping systems often entails altering other management practices, such as tillage regime or nitrogen (N) source. We hypothesized that the interaction of crop rotation, N source, and tillage in diversified cropping systems would promote microbially-mediated soil C and N cycling while attenuating inorganic N pools. We studied a cropping systems trial in its 10th year in Iowa, USA, which tested a 2-yr cropping system of corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] managed with conventional fertilizer N inputs and conservation tillage, a 3-yr cropping system of corn/soybean/small grain + red clover (Trifolium pratense L.), and a 4-yr cropping system of corn/soybean/small grain + alfalfa (Medicago sativa L.)/alfalfa. Three year and 4-yr cropping systems were managed with composted manure, reduced N fertilizer inputs, and periodic moldboard ploughing. We assayed soil microbial biomass carbon (MBC) and N (MBN), soil extractable NH4 and NO3, gross proteolytic activity of native soil, and potential activity of six hydrolytic enzymes eight times during the growing season. At the 0-20cm depth, native protease activity in the 4-yr cropping system was greater than in the 2-yr cropping system by a factor of 7.9, whereas dissolved inorganic N pools did not differ between cropping systems (P = 0.292). At the 0-20cm depth, MBC and MBN the 4-yr cropping system exceeded those in the 2-yr cropping system by factors of 1.51 and 1.57. Our findings suggest that diversified crop cropping systems, even when periodically moldboard ploughed, support higher levels of microbial biomass, greater production of bioavailable N from SOM, and a deeper microbially active layer than less diverse cropping systems.

  11. Pea and pea-grain mixtures as whole crop protein silage for dairy cows

    OpenAIRE

    Rondahl, Tomas

    2004-01-01

    In this review the use of pea and pea/grain mixtures as whole crop protein silage for dairy cows is discussed. An introductory discussion concerns the ensilage process and protein degradation and effects of different silage additives. To minimise protein loss, prewilting time should be kept short. An acid additive will reduce respiration and thereby reduce protein degradation. The main part of the review discusses nutritional and botanical changes during development as well as results from bo...

  12. Retention of simulated fallout nuclides in agricultural crops. 2. Deposition of Cs and Sr on grain crops

    International Nuclear Information System (INIS)

    Eriksson, Aake; Rosen, K.; Haak, E.

    1998-01-01

    Experiments with artificial wet depositions of 134 Cs and 85 Sr at different times during the growth period were carried out. The studies are complementary to the experiences after the Chernobyl fallout and the results are compared with similar earlier Swedish works on nuclide retention in experiments and on fallout in agriculture. The aim has been to cover the nuclide transfer to grain crops after deposition at different times during the growing period. The initial interception capacity per kg d.w., TRd, seemed to depend on the surface/weight ratio of the plant parts considered. Changes in TRd-values were rapid during the early growth but slower in later stages. The reduction half-time was then often 2 weeks for vegetative parts. Considering the fraction of a deposition retained, FRd, the residence half-time had an average length of 3-4 weeks. During that time there were possibilities for cesium penetration into the plant and further transfer to ears and grain. Strontium did not seem to be transferred that way. There was no increase of cesium in the ears per unit d.w. after the initial interception. However, there was a steady increase in the total content, especially after deposition during the latter half of the growth period when about 5 % was retained of cesium, and 2 % of strontium. The retention of fallout caesium in 1964 was statistically estimated to be of about the same size in Swedish grains

  13. Soil water infiltration affected by topsoil thickness in row crop and switchgrass production systems

    Science.gov (United States)

    Conversion of annual grain crop systems to biofuel production systems can restore soil hydrologic function; however, information on these effects is limited. Hence, the objective of this study was to evaluate the influence of topsoil thickness on water infiltration in claypan soils for grain and swi...

  14. Sources of Nitrogen for Winter Wheat in Organic Cropping Systems

    DEFF Research Database (Denmark)

    Petersen, Søren O; Schjønning, Per; Olesen, Jørgen E

    2013-01-01

    mineralizable N (PMN), microbial biomass N (MBN)] were monitored during two growth periods; at one site, biomass C/N ratios were also determined. Soil for labile N analysis was shielded from N inputs during spring application to isolate cumulated system effects. Potentially mineralizable N and MBN were...... explained 76 and 82% of the variation in grain N yields in organic cropping systems in 2007 and 2008, showing significant effects of, respectively, topsoil N, depth of A horizon, cumulated inputs of N, and N applied to winter wheat in manure. Thus, soil properties and past and current management all......In organic cropping systems, legumes, cover crops (CC), residue incorporation, and manure application are used to maintain soil fertility, but the contributions of these management practices to soil nitrogen (N) supply remain obscure. We examined potential sources of N for winter wheat (Triticum...

  15. Use of 13.5-MeV neutrons for protein determination in grain crops

    International Nuclear Information System (INIS)

    Barit, I.A.; Kuz'min, L.E.; Makarov, S.A.; Vozhzhov, V.F.; Pronman, I.M.

    1989-01-01

    One of the main objectives of the Food Supply Program, i.e., that of improving the quality of crop production, is bound up intimately with the intensification of work on the selection and genetics of high-protein grain and legume crops. High-protein stains cannot be isolated without the proper analytical service for mass testing of the nitrogen content in the grain, which is one of the main elements of protein. The neutron-activation method of nitrogen determination is based on the use of the 14 N(n, 2n) 13 N nuclear reaction (E th = 11.3 MeV) with an average neutron energy of ∼14.5 MeV. In this work the authors consider a new variant of the neutron-activation method of determining nitrogen in grain and legume crops. The method is based on the use of monoenergetic neutrons with an energy of ∼13.5 MeV, generated in relatively thin titanium-tritium targets by a mass-separated deuteron beam from neutron generators operating at 150-300 kV, in order to eliminate the interference of the reaction 39 K(n, 2n) 38 K (E thr = 13.4 MeV). The present method has been used to determine the protein content (mass %) in different grains and legumes at the All-Union Selection-Genetic Institute of the Lenin Academy of Agricultural Sciences. The correctness of the analysis was checked by comparison with the data of chemical analysis. The discrepancy between the results of the two methods does not exceed 3%, which is within the limits of the error of measurement of Δ and K s.r

  16. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (Pis explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of

  17. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced -Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, Bo; Munier-Jolain, Nicolas; Charles, Raphaël

    2013-01-01

    Non-inversion tillage with tine or disc based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape and maize in Europe. However, new regulations on pesticide use may hinder further expansion of reduc...

  18. An Assessment of Direct on-Farm Energy Use for High Value Grain Crops Grown under Different Farming Practices in Australia

    Directory of Open Access Journals (Sweden)

    Tek Maraseni

    2015-11-01

    Full Text Available Several studies have quantified the energy consumption associated with crop production in various countries. However, these studies have not compared the energy consumption from a broad range of farming practices currently in practice, such as zero tillage, conventional tillage and irrigated farming systems. This study examines direct on-farm energy use for high value grain crops grown under different farming practices in Australia. Grain farming processes are identified and “typical” farming operation data are collected from several sources, including published and unpublished literature, as well as expert interviews. The direct on-farm energy uses are assessed for 27 scenarios, including three high value grain crops―wheat, barley and sorghum―for three regions (Northern, Southern and Western Australia under three farming conditions with both dryland (both for conventional and zero-tillage and irrigated conditions. It is found that energy requirement for farming operations is directly related to the intensity and frequency of farming operations, which in turn is related to tillage practices, soil types, irrigation systems, local climate, and crop types. Among the three studied regions, Western Australia requires less direct on-farm energy for each crop, mainly due to the easily workable sandy soils and adoption of zero tillage systems. In irrigated crops, irrigation energy remains a major contributor to the total on-farm energy demand, accounting for up to 85% of total energy use.

  19. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems

    International Nuclear Information System (INIS)

    Svoboda, J; Fischer, F D

    2014-01-01

    Abnormal grain growth as the abrupt growth of a group of the largest grains in a multi-grain system is treated within the context of unequal retardation of grain growth due to the segregation of solute atoms from the bulk of the grains into the grain boundaries. During grain boundary migration, the segregated solute atoms are dragged under a small driving force or left behind the migrating grain boundary under a large driving force. Thus, the solute atoms in the grain boundaries of large grains, exhibiting a large driving force, can be released from the grain boundary. The mobility of these grain boundaries becomes significantly higher and abnormal grain growth is spontaneously provoked. The mean-field model presented here assumes that each grain is described by its grain radius and by its individual segregation parameter. The thermodynamic extremal principle is engaged to obtain explicit evolution equations for the radius and segregation parameter of each grain. Simulations of grain growth kinetics for various conditions of segregation with the same initial setting (100 000 grains with a given radius distribution) are presented. Depending on the diffusion coefficients of the solute in the grain boundaries, abnormal grain growth may be strongly or marginally pronounced. Solute segregation and drag can also significantly contribute to the stabilization of the grain structure. Qualitative agreement with several experimental results is reported. (paper)

  20. Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe

    Czech Academy of Sciences Publication Activity Database

    Yin, X.; Kersebaum, K. C.; Kollas, C.; Baby, S.; Beaudoin, N.; Manevski, K.; Palosuo, T.; Nendel, C.; Wu, L.; Hoffmann, M.; Hoffmann, H. D.; Sharif, B.; Armas-Herrera, C.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; de Cortazar-Atauri, I. G.; Giglio, L.; Hlavinka, Petr; Lana, M.; Launay, M.; Louarn, G.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Oeztuerk, M.; Pacholski, A.; Ripoche-Wachter, D.; Roetter, R. P.; Ruget, F.; Trnka, Miroslav; Ventrella, D.; Weigel, H-J.; Olesen, J. E.

    2017-01-01

    Roč. 84, mar (2017), s. 152-165 ISSN 1161-0301 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : air co2 enrichment * climate-change * catch crops * nitrogen-fertilization * wheat production * winter-wheat * model stics * sugar-beet * wide-range * growth * Continuous simulation * Grain N * Model calibration * Model ensemble * Model inter-comparison * Single year simulation Subject RIV: GC - Agronomy OBOR OECD: Agronomy , plant breeding and plant protection Impact factor: 3.757, year: 2016

  1. Effect of Mixed Systems on Crop Productivity

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  2. Integrated crop protection as a system approach

    OpenAIRE

    Haan, de, J.J.; Wijnands, F.G.; Sukkel, W.

    2005-01-01

    New farming systems in vegetable production are required as demands for high quality products that do not pollute the environment are rising, and production risks are large and incomes low. The methodology of prototyping new systems is described, especially the themes, parameters and target values connected to integrated crop protection. The role of integrated crop protection in prototyping new systems is discussed. The results of twenty years working with this prototyping methodology are pre...

  3. Effects of Organic and Conventional Crop Nutrition on Profiles of Polar Metabolites in Grain of Wheat.

    Science.gov (United States)

    Shewry, Peter; Rakszegi, Marianna; Lovegrove, Alison; Amos, Dominic; Corol, Delia-Irina; Tawfike, Ahmed; Mikó, Péter; Ward, Jane L

    2018-05-16

    The profiles of polar metabolites were determined in wholemeal flours of grain from the Broadbalk wheat experiment and from plants grown under organic and low-input systems to study the effects of nutrition on composition. The Broadbalk samples showed increased amino acids, acetate, and choline and decreased fructose and succinate with increasing nitrogen fertilization. Samples receiving farm yard manure had similar grain nitrogen to those receiving 96 kg of N/ha but had higher contents of amino acids, sugars, and organic acids. A comparison of the profiles of grain from organic and low-input systems showed only partial separation, with clear effects of climate and agronomy. However, supervised multivariate analysis showed that the low-input samples had higher contents of many amino acids, raffinose, glucose, organic acids, and choline and lower sucrose, fructose, and glycine. Consequently, although differences between organic and conventional grain occur, these cannot be used to confirm sample identity.

  4. Carbon balance of the typical grain crop rotation in Moscow region assessed by eddy covariance method

    Science.gov (United States)

    Meshalkina, Joulia; Yaroslavtsev, Alexis; Vassenev, Ivan

    2017-04-01

    Croplands could have equal or even greater net ecosystem production than several natural ecosystems (Hollinger et al., 2004), so agriculture plays a substantial role in mitigation strategies for the reduction of carbon dioxide emissions. In Central Russia, where agricultural soils carbon loses are 9 time higher than natural (forest's) soils ones (Stolbovoi, 2002), the reduction of carbon dioxide emissions in agroecosystems must be the central focus of the scientific efforts. Although the balance of the CO2 mostly attributed to management practices, limited information exists regarding the crop rotation overall as potential of C sequestration. In this study, we present data on carbon balance of the typical grain crop rotation in Moscow region followed for 4 years by measuring CO2 fluxes by paired eddy covariance stations (EC). The study was conducted at the Precision Farming Experimental Fields of the Russian Timiryazev State Agricultural University, Moscow, Russia. The experimental site has a temperate and continental climate and situated in south taiga zone with Arable Sod-Podzoluvisols (Albeluvisols Umbric). Two fields of the four-course rotation were studied in 2013-2016. Crop rotation included winter wheat (Triticum sativum L.), barley (Hordeum vulgare L.), potato crop (Solanum tuberosum L.) and cereal-legume mixture (Vicia sativa L. and Avena sativa L.). Crops sowing occurred during the period from mid-April to mid-May depending on weather conditions. Winter wheat was sown in the very beginning of September and the next year it occurred from under the snow in the phase of tillering. White mustard (Sinapis alba) was sown for green manure after harvesting winter wheat in mid of July. Barley was harvested in mid of August, potato crop was harvested in September. Cereal-legume mixture on herbage was collected depending on the weather from early July to mid-August. Carbon uptake (NEE negative values) was registered only for the fields with winter wheat and white

  5. Levels of fungi and mycotoxins in the samples of grain and grain dust collected from five various cereal crops in eastern Poland.

    Science.gov (United States)

    Krysińska-Traczyk, Ewa; Perkowski, Juliusz; Dutkiewicz, Jacek

    2007-01-01

    During combine harvesting of 5 various cereal crops (rye, barley, oats, buckwheat, corn) 24 samples of grain and 24 samples of settled grain dust were collected on farms located in the Lublin province of eastern Poland. The samples were examined for the concentration of total microfungi, Fusarium species, deoxynivalenol (DON), nivalenol (NIV), and ochratoxin A (OTA). Microfungi able to grow on malt agar were present in 79.2% of grain samples and in 91.7% of grain dust samples in the concentrations of 1.0-801.3x10(3) cfu/g and 1.5-12440.0x10(3) cfu/g, respectively. The concentration of microfungi in grain dust samples was significantly greater than in grain samples (pgrain samples and from 58.3% of grain dust samples in the concentrations of 0.1-375.0x10(3) cfu/g and 4.0-7,700.0x10(3) cfu/g, respectively. They were found in all samples of grain and grain dust from rye, barley and corn, but only in 0-16.7% of samples of grain and grain dust from oats and buckwheat. DON was found in 79.2% of grain samples and in 100% of grain dust samples in the concentrations of 0.001-0.18 microg/g and 0.006-0.283 microg/g, respectively. NIV was detected in 62.5% of grain samples and in 94.4% of grain dust samples in the concentrations of 0.004-0.502 microg/g and 0.005-0.339 microg/g, respectively. OTA was detected in 58.3% of grain samples and in 91.7% of grain dust samples in the concentrations of 0.00039- 0.00195 microg/g and 0.00036-0.00285 microg/g, respectively. The concentrations of DON, total fusariotoxins (DON+NIV) and OTA were significantly greater in grain dust samples than in grain samples (pgrain and dust was significantly correlated with the concentrations of DON (pgrain and dust was significantly correlated with the concentration of total fusariotoxins (pgrain dust collected from 5 various cereals on farms in eastern Poland was not large, the persistent presence of these mycotoxins in over 90% of examined samples poses a potential health risk of chronic respiratory

  6. The virtual water content of major grain crops and virtual water flows between regions in China.

    Science.gov (United States)

    Sun, Shi-Kun; Wu, Pu-Te; Wang, Yu-Bao; Zhao, Xi-Ning

    2013-04-01

    The disproportionate distribution of arable land and water resources has become a bottleneck for guaranteeing food security in China. Virtual water and virtual water trade theory have provided a potential solution to improve water resources management in agriculture and alleviate water crises in water-scarce regions. The present study evaluates the green and blue virtual water content of wheat, maize and rice at the regional scale in China. It then assesses the water-saving benefits of virtual water flows related to the transfer of the three crops between regions. The national average virtual water content of wheat, maize and rice were 1071 m(3) per ton (50.98% green water, 49.02% blue water ), 830 m(3) per ton (76.27% green water, 23.73% blue water) and 1294 m(3) per ton (61.90% green water, 38.10% blue water), respectively. With the regional transfer of wheat, maize and rice, virtual water flows reached 30.08 Gm(3) (59.91% green water, 40.09% blue water). Meanwhile, China saved 11.47 Gm(3) green water, while it consumed 7.84 Gm(3) more blue water than with a no-grain transfer scenario in 2009. In order to guarantee food security in China, the government should improve water productivity (reduce virtual water content of crops) during the grain production process. Meanwhile, under the preconditions of economic feasibility and land-water resources availability, China should guarantee the grain-sown area in southern regions for taking full advantage of green water resources and to alleviate the pressure on water resources. © 2012 Society of Chemical Industry.

  7. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries

    Directory of Open Access Journals (Sweden)

    Deepak Kumar

    2017-01-01

    Full Text Available While fulfilling the food demand of an increasing population remains a major global concern, more than one-third of food is lost or wasted in postharvest operations. Reducing the postharvest losses, especially in developing countries, could be a sustainable solution to increase food availability, reduce pressure on natural resources, eliminate hunger and improve farmers’ livelihoods. Cereal grains are the basis of staple food in most of the developing nations, and account for the maximum postharvest losses on a calorific basis among all agricultural commodities. As much as 50%–60% cereal grains can be lost during the storage stage due only to the lack of technical inefficiency. Use of scientific storage methods can reduce these losses to as low as 1%–2%. This paper provides a comprehensive literature review of the grain postharvest losses in developing countries, the status and causes of storage losses and discusses the technological interventions to reduce these losses. The basics of hermetic storage, various technology options, and their effectiveness on several crops in different localities are discussed in detail.

  8. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries.

    Science.gov (United States)

    Kumar, Deepak; Kalita, Prasanta

    2017-01-15

    While fulfilling the food demand of an increasing population remains a major global concern, more than one-third of food is lost or wasted in postharvest operations. Reducing the postharvest losses, especially in developing countries, could be a sustainable solution to increase food availability, reduce pressure on natural resources, eliminate hunger and improve farmers' livelihoods. Cereal grains are the basis of staple food in most of the developing nations, and account for the maximum postharvest losses on a calorific basis among all agricultural commodities. As much as 50%-60% cereal grains can be lost during the storage stage due only to the lack of technical inefficiency. Use of scientific storage methods can reduce these losses to as low as 1%-2%. This paper provides a comprehensive literature review of the grain postharvest losses in developing countries, the status and causes of storage losses and discusses the technological interventions to reduce these losses. The basics of hermetic storage, various technology options, and their effectiveness on several crops in different localities are discussed in detail.

  9. COMPARAÇÃO DE SISTEMAS DE COLHEITA MECANIZADA E SEMIMECANIZADA NA PERDA, DANO MECÂNICO E IMPUREZA DE GRÃOS NA CULTURA DO FEIJOEIRO (Phaseolus vulgaris L. COMPARISON OF SYSTEMS OF AUTOMATED CROP AND SEMIMECHANIZED IN THE LOSS, MECHANICAL DAMAGE AND IMPURITY OF GRAINS IN THE CULTURE OF THE BEAN (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Antônio Pasqualetto

    2007-09-01

    Full Text Available

    As dificuldades constatadas na colheita mecanizada do feijoeiro ainda constitui em um obstáculo para a expansão da cultura. Diante disto, o CNPAF vem se esforçando para o melhoramento da espécie buscando características adequadas à colheita mecanizada. A cultivar Safira atende a este objetivo. Neste sentido foi realizado um experimento na Fazenda Três Irmãos, no município de Santa Helena de Goiás (GO, onde se compararam três sistemas de colheita, objetivando avaliar perdas de grãos, bem como a qualidade do produto colhido, através da análise de grãos quebrados e impurezas, na cultivar Safira. Os resultados demonstraram que a colheita mecanizada do feijoeiro para a cultivar Safira é viável. A automotriz recolhedora causa menor perda de grãos, mas o dano mecânico é elevado; a recolhedora-trilhadora apresentou perda satisfatória, apesar de exigir manuseio adequado.

    PALAVRAS-CHAVE: Feijão; culturas anuais; mecanização agrícola.

    The mechanization of the crop of the bean still constitutes an obstacle for the expansion of the culture. Due to this fact, CNPAF is making an effort to the improvement of the species looking for favorable characteristics to the mechanized crop. The cultivar ‘Safira’ fulfills this aim. In this sense, an experiment was carried out at Fazenda Três Irmãos, in the district of Santa Helena of Goiás (GO. Three crop systems were tested in order to evaluate losses of grains and the quality of the picked product, through analysis of broken grains and sludges. The results demonstrated that the mechanized crop of bean concerning the cultivar ‘Safira’ is viable. The self-driven retirement causes a smaller loss of grains, but the mechanical damage is higher; the retirement-thrashing showed satisfactory loss, despite of requiring

  10. Modelling nutrient management in tropical cropping systems

    OpenAIRE

    Delve, R. (ed.); Probert, M. (ed.)

    2004-01-01

    Metadata only record In tropical regions, organic materials are often more important than fertilizers in maintaining soil fertility, yet fertilizer recommendations and most crop models are unable to take account of the level and quality of organic inputs that farmers use. Computer simulation models, such as the Agricultural Production Systems Simulator (APSIM) developed by CSIRO and the Queensland Department of Primary Industries, have proven their value in many cropping environments. Thes...

  11. Modelling the crop: from system dynamics to systems biology

    NARCIS (Netherlands)

    Yin, X.; Struik, P.C.

    2010-01-01

    There is strong interplant competition in a crop stand for various limiting resources, resulting in complex compensation and regulation mechanisms along the developmental cascade of the whole crop. Despite decades-long use of principles in system dynamics (e.g. feedback control), current crop models

  12. Glyphosate sustainability in South American cropping systems.

    Science.gov (United States)

    Christoffoleti, Pedro J; Galli, Antonio J B; Carvalho, Saul J P; Moreira, Murilo S; Nicolai, Marcelo; Foloni, Luiz L; Martins, Bianca A B; Ribeiro, Daniela N

    2008-04-01

    South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it. Copyright (c) 2008 Society of Chemical Industry.

  13. A bioenergy feedstock/vegetable double-cropping system

    Science.gov (United States)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  14. Influence of evenness of poultry manure application on grain crops productivity

    Directory of Open Access Journals (Sweden)

    T. Yu. Anisimova

    2015-01-01

    Full Text Available Possibility of increase of efficiency of poultry manure application due to more evenness of fertilizer application into the soil was investigated. Machines with a wide range of regulation of an application rate, for example ROU-6 with interval from 4 to 80 t/ha are for this purpose necessary. Efficiency of poultry manure application for grain crops was increased due to using of machines of drum type with optimum doses fertilizing (12-16 t/ha. An assessment of efficiency was carried out. The drums rotation speed, shovel quantity and shape, their installation angle and a design of the directing board were determined. The developed modified working of a spreader of drum type allowed to reduce unevenness of width fertilizing by 12-14 percent, on length of unit pass - by 5 percent. It was established that if the dose increases more than 8 t/ha, the crop productivity growths not significant. At reduction of fertilizing unevenness from 97 to 72 percent yield losses decrease by 54.4 percent. At reduction of fertilizing unevenness more than 97 percent, efficiency worsens by 58 percent. Poultry manure spreading by the machine and tractor unit MTZ-82.1 + ROU-6M afforded an yield by 38 percent higher, in comparison with the machine and tractor unit T-150K + PRT-10. At decrease in unevenness from 82 to 43 percent of barley loss decreased by 29 percent. It was revealed that spreading by machine ROU-6M provided a yield increase by 8.6 percent more, than by machine PRT-10. Yield losses because of spreading unevenness made: by the PRT-10 operating - 30 percent; by the ROU-6M operating - 0.33 percent. The grain yield increase was higher thanks to more evenness of fertilizer application by ROU-6M with the new spreading working element.

  15. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    International Nuclear Information System (INIS)

    Manatt, Robert K; Schulte, Lisa A; Hall, Richard B; Hallam, Arne; Heaton, Emily A; Gunther, Theo; Moore, Ken J

    2013-01-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn–soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn–switchgrass system. A novel triticale–hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops. (letter)

  16. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    Science.gov (United States)

    Manatt, Robert K.; Hallam, Arne; Schulte, Lisa A.; Heaton, Emily A.; Gunther, Theo; Hall, Richard B.; Moore, Ken J.

    2013-09-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn-soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn-switchgrass system. A novel triticale-hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops.

  17. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    Science.gov (United States)

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Estimating yield gaps at the cropping system level.

    Science.gov (United States)

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  19. Introduction to Agronomy, Grain Crops, Weeds and Controls. A Learning Activity Pac in Agricultural Education Courses in Wisconsin.

    Science.gov (United States)

    Wisconsin State Dept. of Public Instruction, Madison. Div. of Instructional Services.

    This learning activity pac contains information to help the teachers of high school vocational agriculture in the instructional area of agronomy. Each of the two main sections, grain crops and weeds and controls, includes teacher and student units for the section lessons. Teacher units include special instructions--equipment needed (film…

  20. Individual plant care in cropping systems

    OpenAIRE

    Griepentrog, Hans W.; Nørremark, Michael; Nielsen, Henning; Blackmore, Simon

    2003-01-01

    Individual plant care cropping systems, embodied in precision farming, may lead to new opportunities in agricultural crop management. The objective of the project was to provide high accuracy seed position mapping of a field of sugar beet. An RTK GPS was retrofitted on to a precision seeder to map the seeds as they were planted. The average error between the seed map and the actual plant map was about 32 mm to 59 mm. The results showed that the overall accuracy of the estimated plant position...

  1. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops

    NARCIS (Netherlands)

    Melander, B.; Munier-Jolain, N.M.; Charles, R.; Wirth, J.; Schwarz, J.; Weide, van der R.Y.; Bonin, L.; Jensen, P.K.; Kudsk, P.K.

    2013-01-01

    Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of

  2. Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    The benefits of improving nitrogen use efficiency (NUE) in crops are typically studied through the performance of the individual crop. However, in order to increase yields in a sustainable way, improving NUE of the cropping systems must be the aim. We did a model simulation study to investigate h...

  3. Strategic objectives and the usage possibility of competitive advantages of the grain crops complex of Chelyabinsk region

    Directory of Open Access Journals (Sweden)

    Ol'ga Dmitrievna Rubaeva

    2011-12-01

    Full Text Available This paper reviews the logical scheme of strategy of the grain complex competitive advantages usage. The results of evaluation of financial and economic situation of agricultural enterprises engaged into production of grain are presented. Determination of the level of competitiveness of the agro-grain industry was established on the basis of obtaining an integral point-weighting factor of competitiveness. Evaluation and confirmation of this technique allowed identifying key factors of competitiveness of agricultural enterprises in the grain corns industry. The main conclusion of the study is the following: the use of resource-saving technologies for the cultivation of crops greatly influences the development of competitive advantages. Calculations showed that the application of resource-saving technology increases productivity, reduces labour requirements and the cost of equipment maintenance and repair, fuel costs, improves basic economic indicators of activity: gross revenues from sales is increasing.

  4. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    OpenAIRE

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on poten...

  5. An operational fluorescence system for crop assessment

    Science.gov (United States)

    Belzile, Charles; Belanger, Marie-Christine; Viau, Alain A.; Chamberland, Martin; Roy, Simon

    2004-03-01

    The development of precision farming requires new tools for plant nutritional stress monitoring. An operational fluorescence system has been designed for vegetation status mapping and stress detection at plant and field scale. The instrument gives relative values of fluorescence at different wavelengths induced by the two-excitation sources. Lightinduced fluorescence has demonstrated successful crop health monitoring and plant nutritional stress detection capabilities. The spectral response of the plants has first been measured with an hyperspectral imager using laser-induced fluorescence. A tabletop imaging fluorometer based on flash lamp technology has also been designed to study the spatial distribution of fluorescence on plant leaves. For field based non-imaging system, LED technology is used as light source to induce fluorescence of the plant. The operational fluorescence system is based on ultraviolet and blue LED to induce fluorescence. Four narrow fluorescence bands centered on 440, 520, 690 and 740nm are detected. The instrument design includes a modular approach for light source and detector. It can accommodate as many as four different light sources and six bands of fluorescence detection. As part of the design for field application, the instrument is compatible with a mobile platform equipped with a GPS and data acquisition system. The current system developed by Telops/GAAP is configured for potato crops fluorescence measurement but can easily be adapted for other crops. This new instrument offers an effective and affordable solution for precision farming.

  6. How efficiently do corn- and soybean-based cropping systems use water? A systems modeling analysis.

    Science.gov (United States)

    Dietzel, Ranae; Liebman, Matt; Ewing, Robert; Helmers, Matt; Horton, Robert; Jarchow, Meghann; Archontoulis, Sotirios

    2016-02-01

    Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here, we provide a systems-level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using 6 years of continuous crop and soil measurements in corn- and soybean-based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region, 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern United States is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and

  7. Nitrate Leaching From Grain Maize After Different Tillage Methods and Long/Short Term Cover Cropping

    DEFF Research Database (Denmark)

    Hansen, Elly Møller

    trial initiated in 1968 on a coarse sandy soil. The previous trial included spring sown crops undersown (with or without) perennial ryegrass (Lolium perenne L.) as cover crop, two N-rates (90 and 120 kg N ha-1) and different tillage methods (shallow tillage and ploughing autumn or spring). With maize......) previous history of long-term cover cropping, ii) soil tillage methods, iii) N rates and iv) present short-term use of cover cropping in maize. Preliminary results from 2009 – 2011 suggest that leaching after a history of cover cropping tended to be higher than after no history of cover cropping......, but the effect was insignificant. The effect of tillage and previous N rates were also insignificant but the present use of cover crops had a small but significant decreasing effect on leaching compared to no cover cropping. The cover crop was well established in both years but grew less vigorously during autumn...

  8. A quality assessment of the MARS crop yield forecasting system for the European Union

    Science.gov (United States)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  9. Trade-offs between economic and environmental impacts of introducing legumes into cropping systems

    Directory of Open Access Journals (Sweden)

    Moritz eReckling

    2016-05-01

    Full Text Available Europe’s agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2 % of the arable land and more than 70 % of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 % and 33 % and N fertilizer use by 24 % and 38 % in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22 % in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers.

  10. Climate change and its effect on grain crops yields in the middle belt ...

    African Journals Online (AJOL)

    user

    impact of climate on the yield on reference crops in Kwara State, Nigeria. Multiple ... As a result, it is recommended that investment should be made to intensify the cultivation of crops on which .... Project (KWADP), Ilorin on maize (Zea mays), sorghum (Sorghum ... crop yield and the evaluation of a decade data is based on.

  11. Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety.

    Science.gov (United States)

    Halford, Nigel G; Curtis, Tanya Y; Chen, Zhiwei; Huang, Jianhua

    2015-03-01

    The effects of abiotic stresses and crop management on cereal grain composition are reviewed, focusing on phytochemicals, vitamins, fibre, protein, free amino acids, sugars, and oils. These effects are discussed in the context of nutritional and processing quality and the potential for formation of processing contaminants, such as acrylamide, furan, hydroxymethylfurfuryl, and trans fatty acids. The implications of climate change for cereal grain quality and food safety are considered. It is concluded that the identification of specific environmental stresses that affect grain composition in ways that have implications for food quality and safety and how these stresses interact with genetic factors and will be affected by climate change needs more investigation. Plant researchers and breeders are encouraged to address the issue of processing contaminants or risk appearing out of touch with major end-users in the food industry, and not to overlook the effects of environmental stresses and crop management on crop composition, quality, and safety as they strive to increase yield. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Impacts of Cropping Systems on Aggregates Associated Organic Carbon and Nitrogen in a Semiarid Highland Agroecosystem.

    Directory of Open Access Journals (Sweden)

    Jiashu Chu

    Full Text Available The effect of cropping system on the distribution of organic carbon (OC and nitrogen (N in soil aggregates has not been well addressed, which is important for understanding the sequestration of OC and N in agricultural soils. We analyzed the distribution of OC and N associated with soil aggregates in three unfertilized cropping systems in a 27-year field experiment: continuously cropped alfalfa, continuously cropped wheat and a legume-grain rotation. The objectives were to understand the effect of cropping system on the distribution of OC and N in aggregates and to examine the relationships between the changes in OC and N stocks in total soils and in aggregates. The cropping systems increased the stocks of OC and N in total soils (0-40 cm at mean rates of 15.6 g OC m-2 yr-1 and 1.2 g N m-2 yr-1 relative to a fallow control. The continuous cropping of alfalfa produced the largest increases at the 0-20 cm depth. The OC and N stocks in total soils were significantly correlated with the changes in the >0.053 mm aggregates. 27-year of cropping increased OC stocks in the >0.053 mm size class of aggregates and N stocks in the >0.25 mm size class but decreased OC stocks in the 0.25 mm aggregate size class accounted for more than 97% of the total increases in the continuous wheat and the legume-grain rotation systems. These results suggested that long-term cropping has the potential to sequester OC and N in soils and that the increases in soil OC and N stocks were mainly due to increases associated with aggregates >0.053 mm.

  13. CO2 uptake and ecophysiological parameters of the grain crops of midcontinent North America: estimates from flux tower measurements

    Science.gov (United States)

    Gilmanov, Tagir; Wylie, Bruce; Tieszen, Larry; Meyers, Tilden P.; Baron, Vern S.; Bernacchi, Carl J.; Billesbach, David P.; Burba, George G.; Fischer, Marc L.; Glenn, Aaron J.; Hanan, Niall P.; Hatfield, Jerry L.; Heuer, Mark W.; Hollinger, Steven E.; Howard, Daniel M.; Matamala, Roser; Prueger, John H.; Tenuta, Mario; Young, David G.

    2013-01-01

    We analyzed net CO2 exchange data from 13 flux tower sites with 27 site-years of measurements over maize and wheat fields across midcontinent North America. A numerically robust “light-soil temperature-VPD”-based method was used to partition the data into photosynthetic assimilation and ecosystem respiration components. Year-round ecosystem-scale ecophysiological parameters of apparent quantum yield, photosynthetic capacity, convexity of the light response, respiration rate parameters, ecological light-use efficiency, and the curvature of the VPD-response of photosynthesis for maize and wheat crops were numerically identified and interpolated/extrapolated. This allowed us to gap-fill CO2 exchange components and calculate annual totals and budgets. VPD-limitation of photosynthesis was systematically observed in grain crops of the region (occurring from 20 to 120 days during the growing season, depending on site and year), determined by the VPD regime and the numerical value of the curvature parameter of the photosynthesis-VPD-response, σVPD. In 78% of the 27 site-years of observations, annual gross photosynthesis in these crops significantly exceeded ecosystem respiration, resulting in a net ecosystem production of up to 2100 g CO2 m−2 year−1. The measurement-based photosynthesis, respiration, and net ecosystem production data, as well as the estimates of the ecophysiological parameters, provide an empirical basis for parameterization and validation of mechanistic models of grain crop production in this economically and ecologically important region of North America.

  14. Biological N2 Fixation by Chickpea in inter cropping System on Sand Soil

    International Nuclear Information System (INIS)

    Ismail, M. M.; Moursy, A. A. A.; Kotb, E. A.; Farid, I. M.

    2012-12-01

    A field experiment was carried out at the plant Nutrition and Fertilization Unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea inter cropping. The benefits of N 2 fixation by legumes to cereals growing in inter crops or to grasses growing in mixed swards are high clear. in cases the benefit to the N status of cereals has bee seen when they are inter cropped with legumes , where benefit is found ,it is mainly due to sparing of soil N rather than direct transfer from the legume. inter cropped wheat has a high grains yield as compared to those recorded under sole crop. The application of inter cropping system induced an increase of wheat grain yield against the sole system. regardless the cultivation system, the over all means of fertilizer rates indicated (50% MF + 50% OM) treatment was superiority (100% OM) and (75% MF + 25% OM) or those recorded with either un fertilizer when wheat grain yield considered. Comparison heed between organic sources reflected the superiority of under sole cultivation, while chickpea straw was the best under inter cropping. Inter cropped has a high grain N uptake compared to soil system. While totally organic materials had accumulates more N in grain than those of underrated treated control. In the same time, the overall mean indicated the superiority of compost treatment combined with 50% mineral fertilizer under inter cropping system over those of either only organic materials treatment or those combined with 75% mineral fertilizer. Plants treated of chickpea straw and compost, achieved the best value of straw weight. Among the organic manure treatments, chickpea straw and compost seem to be the best ones. Nitrogen derived from air (% Ndfa) shoots and seeds of chickpea plant: In case of cow manure and maize stalk, the best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general

  15. Desempenho de uma semeadora-adubadora no estabelecimento e na produtividade da cultura do milho sob plantio direto Performance of a sowing-fertilizer machine for corn crop establishment and grain yield under no-tillage system

    Directory of Open Access Journals (Sweden)

    José Geraldo da Silva

    2000-03-01

    Full Text Available Na semeadura mecanizada diversos fatores interferem no estabelecimento do estande de plantas e, com freqüência, na produtividade da cultura, destacando entre eles a velocidade de operação da máquina no campo e a profundidade de deposição do adubo no solo. Neste estudo avaliou-se o estabelecimento da cultura do milho, através de uma semeadora-adubadora provida de um dosador de sementes de disco horizontal perfurado e de quatro linhas de semeadura. A máquina foi operada em quatro velocidades de deslocamento (3, 6, 9 e 11,2 km/h e em duas profundidades de adubação (5 e 10 cm, num Latossolo Roxo eutrófico com plantio direto há 12 anos. O número de plantas de milho na linha de semeadura foi menor nas maiores velocidades de operação da máquina. As sementes de milho que passaram pelo dosador de disco horizontal, não foram sensivelmente danificadas nas velocidades de semeadura mais elevadas. A uniformidade dos espaçamentos entre as sementes de milho na linha de semeadura foi considerada excelente para velocidade de 3 km/h, regular para 6 e 9 km/h e insatisfatória para 11,2 km/h. As velocidades da semeadora-adubadora de até 6 km/h e a adubação realizada a 10 cm de profundidade propiciaram maiores estandes de plantas e número de espigas por metro e foram responsáveis pelos maiores rendimentos de grãos.In mechanized planting, several factors such as machine operation velocity in the field and depth of fertilizer deposition in the soil interfere in the plant stand establishment and crop yield. In this study, corn crop establishment was evaluated using a sowing-fertilizer machine, provided with a perforated horizontal disc device for seed dosage and containing four planting units. The machine was operated using four displacement velocities (3, 6, 9 and 11.2 km/h and two fertilization depths (5 and 10 cm, on an eutrophic Red Latosol, previously under no-tillage for 12 years. Corn seeding density in the sowing line was affected by the

  16. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    Science.gov (United States)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  17. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2010-01-01

    Organic and conventional farming practices differ in the use of several management strategies, including use of catch crops, green manure, and fertilization, which may influence soil properties, greenhouse gas emissions and productivity of agroecosystems. An 11-yr-old field experiment on a sandy...... loam soil in Denmark was used to compare several crop rotations with respect to a range of physical, chemical and biological characteristics related to carbon (C) and nitrogen (N) flows. Four organic rotations and an inorganic fertilizer-based system were selected to evaluate effects of fertilizer type...... growth was monitored and grain yields measured at harvest maturity. The different management strategies between 1997 and 2007 led to soil carbon inputs that were on average 18–68% and 32–91% higher in the organic than inorganic fertilizer-based rotations for the sampled winter wheat and spring barley...

  18. Biological N2 fixation by chickpea in inter cropping system on sand soil

    International Nuclear Information System (INIS)

    Ismail, M. M.; Moursy, A. A. A.; Kotb, E. A.; Farid, I. M.

    2012-12-01

    A field experiment was carried out at the plant nutrition and fertilization unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea incorporating. The benefits of N 2 fixation by legumes to cereals growing in inter crops or to grasses growing in mixed swards are high clear. In cases the benefit to the N status of cereals has bee seen when they are inter cropped with legumes, where benefit is found, it is mainly due to sparing of soil N rather than direct transfer from the legume. Inter cropped wheat, has a high grains yield as compared to those recorded under sole crop. The application of inter cropping system an increase of wheat grain yield against the sole system, regardless the cultivation system, the over all means of fertilizer rates indicated (50% MF + 50% OM) treatment was superiority (100% OM) and (75% MF + 25% OM) or those recorded with either un fertilizer when wheat grain yield considered. Comparison heed between or gain sources reflected the superiority of compost under sole cultivation, while chickpea straw was the best under inter cropping. Inter cropped has a high grain N uptake compared to soil systems. While totally organic materials had accumulates more N in grains than those of untreated treated control. In the some time, the overall mean indicated the superiority of compost treatment combined with 50% mineral fertilizer under inter cropping system over those of either only organic materials treatment or those combined with 75% mineral fertilizer. Plants treated of chickpea straw and compost, achieved the best value of straw weight. A mong the organic manure treatments, chickpea straw and compost seem to be the best ones. Nitrogen derived from air (%Ndfa) shoots and seeds of chickpea plants: In case of cow manure and maize stalk, the best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general

  19. Economics of wheat based cropping systems in rainfed areas of pakistan

    International Nuclear Information System (INIS)

    Khaliq, P.; Cheema, N.M.; Malik, A.; Umair, M.

    2012-01-01

    The Pothwar tract of rainfed area has enormous potential to meet incremental food grain needs of the country. However, a significant yield gap in wheat has been reported between yields of substantive and the progressive growers mainly due to poor management of soil, water and fertility issues. A field study was conducted at National Agricultural Research Centre (NARC), Islamabad and the traditional wheat-fallow-wheat (W-F-W) cropping system was evaluated with the improved wheat-maize fodder-wheat (W-MF-W) and wheat-mungbean-wheat (W-MB-W) cropping systems. Two tillage practices, i.e. shallow tillage with cultivator and deep tillage with moldboard; and four fertilizer treatments viz., control (C), recommended dose of fertilizer for each crop (F), farmyard manure (FYM) at the rate -15 tha . The recommended doses of fertilizer for individual crop with FYM (F+FYM) were also included in the study to know their impact on the crops yield in the cropping systems. Economic analysis of the data revealed that the traditional wheat-fallow-wheat cropping system could be economically replaced with wheat-maize fodder-wheat cropping system even under drought condition and there will be no economical loss of wheat yield when planted after maize fodder. Application of recommended dose of fertilizer -1 along with FYM at the rate 5 tha will enhance the yield of wheat and maize fodder. The improved cropping system of wheat-maize fodder-wheat will help the farmers to sustain productivity of these crops, stable economic benefits and improvement in soil nutrients and organic matter over time. (author)

  20. Social and ecological analysis of commercial integrated crop livestock systems

    NARCIS (Netherlands)

    Garrett, R.D.; Niles, M.T.; Gil, J.D.B.; Gaudin, A.; Chaplin-Kramer, R.; Assmann, A.; Assmann, T.S.; Brewer, K.; Faccio Carvalho, de P.C.; Cortner, O.; Dynes, R.; Garbach, K.; Kebreab, E.; Mueller, N.; Peterson, C.; Reis, J.C.; Snow, V.; Valentim, J.

    2017-01-01

    Crops and livestock play a synergistic role in global food production and farmer livelihoods. Increasingly, however, crops and livestock are produced in isolation, particularly in farms operating at the commercial scale. It has been suggested that re-integrating crop and livestock systems at the

  1. Crop and livestock enterprise integration: Livestock impacts on forage, stover, and grain production

    Science.gov (United States)

    Enterprise diversity is the key to ensure productive and sustainable agriculture for the future. Integration of crops and livestock enterprises is one way to improve agricultural sustainability, and take advantage of beneficial enterprise synergistic effects. Our objectives were to develop cropping ...

  2. 70-79 Effects of Crop Rotation and NP Fertilizer Rate on Grain Yield a

    African Journals Online (AJOL)

    Primary nutrient (N, P and K) composition of the ... Crop rotation with fertilizer amendment improved the pH of the soil. Crop rotation and ..... Soil organic carbon contents declined regardless of inputs application for continuously cultivated land (Kapkiyai, 1996). Higher. Organic carbon content next to before planting (1.98 %).

  3. Water Quality Impacts of Cover Crop/Manure Management Systems

    OpenAIRE

    Kern, James Donald

    1997-01-01

    Crop production, soil system, water quality, and economic impacts of four corn silage production systems were compared through a field study including 16 plots (4 replications of each treatment). Systems included a rye cover crop and application of liquid dairy manure in the spring and fall. The four management systems were: 1) traditional, 2) double- crop, 3) roll-down, and 4) undercut. In the fourth system, manure was applied below the soil surface during the ...

  4. Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2015-03-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo on slightly leached chernozem soil type. For the purposes of this investigation, variants from a stationary field experiment initiated in 1987 and based on various soil tillage tools and operations were analyzed. The species composition and density of weeds were followed in a wheat crop grown after grain maize using the following soil tillage systems: plowing at 24 – 26 cm (for maize – disking at 10 – 12 cm (for wheat; cutting at 24 – 26 cm (for maize – cutting at 8 – 10 cm (for wheat; disking at 10 – 12 cm (for maize – disking at 10 – 12 cm (for wheat; no-tillage (for maize – no-tillage (for wheat.Weed infestation was read at the fourth rotation since the initiation of the trial. The observations were made in spring before treatment of the crop with herbicides. The soil tillage system had a significant effect on the species composition and density of weeds in the field with wheat grown after previous crop maize. The long-term alternation of plowing with disking in parallel with the usage of chemicals for weed control lead to lower weed infestation of the weed crop. The lower weed density after this soil tillage system was not related to changes in the species composition and the relative percent of the individual species in the total weed infestation. The long-term application in crop rotation of systems without turning of the soil layer and of minimal and no-tillage increased the amount of weeds. The reason is the greater variability of weed species which typically occur after shallow soil tillage.

  5. Use of crop selection and cattle manure to bioremediate a heavy-oil polluted loamy sand for grain production

    International Nuclear Information System (INIS)

    Biederbeck, V. O.; Selles, F.; Hanson, K. G.; Geissler, H. J.

    1999-01-01

    As as initially unintended part of a study to assess the feasibility of utilizing heavy oil production waste to improve erodible sandy cropland by stabilizing soil aggregation and by microbial conversion of hydrocarbon into humus, it was discovered that by amending the highly polluted soil in one of the plots with an application of 63 tonnes /hectare of old cattle manure, it was possible to assess the restorative ability of manure for soil properties critical to plant growth as well as to measure manuring benefits for grain production for more oil-tolerant crops. Oat was identified by greenhouse and field tests as the least sensitive toward oily residues in soil, followed by wheat as a distant second, with barley and rye following a long way back. Marked improvements in soil properties were observed in unfertilized plots within four months, although the effectiveness of manure to improve soil conditions declined with increasing rates of previous fertilization. Two years after the addition of manure all plots were seeded to oats; manuring resulted in a 55 per cent increase in plant density, 70 per cent increase in crop biomass and an 82 per cent increase in grain yield. Manuring was also found to improve grain quality by maintaining protein levels and a marked increase in kernel size and test weight. The study demonstrated the restorative properties of old manure in improving soil properties, and its ability to restoring oil-polluted topsoil to full productivity within a relatively short time (one to two years). 10 refs., 5 tabs

  6. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems.

    Science.gov (United States)

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-06-05

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits.

  7. Interaction of nutrient resource and crop diversity on resource use efficiency in different cropping systems

    Directory of Open Access Journals (Sweden)

    M Allahdadi

    2016-05-01

    Full Text Available Introduction With the continuous growth of world population, degradation and ecological imbalance throughout the world, there is a need to increase agricultural production and environmental protection measures. In this respect, efforts to supply nutrients to the environment are at the head of the programs. One of the ways to approach this goal is the use of intercropping systems (Najafi & Mohammadi, 2005(. Suitable performance in intercropping systems may be achieved by selecting genotypes possessing traits consistent with and appropriate for establishing minimum and maximum synergy and competition employing proper agronomic practices such as density and planting pattern (Mutungamiri et al., 2001. In this context, selected plants should be less competitive in terms of environmental impact. The purpose of this study was to investigate the effect of different planting patterns on the competition between the two species of Calendula and soybean and to evaluate the yield and quality of an intercropping system compared with a mono-cropping system. Materials and Methods In order to evaluate the competition between soybean and calendula, a field experiment was conducted based on randomized complete block design with 7 treatments and 3 replications in the research farm of the Faculty of Agriculture, the University of Tabriz in 2009. The treatments included pure stands for both species, 1:1, 2:2, 4:2, 4:4 and 6:4 for soybean and calendula number of rows per strip, respectively. Before planting, soybean seeds were inoculated with Bradyrhyzobium japonicum. Before harvesting, the number of pods per plant, seeds per plant, 1000- grain weight, grain yield, percentage of oil and protein of soybean grain were measured in 10 randomly selected plants. The number of flowers per plant, dry inflorescence weight and dry petal weight of Calendula were recorded. The harvest of flowers of calendula began on July 30 and harvesting was done every 15 days in six steps. It

  8. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Directory of Open Access Journals (Sweden)

    Moslem Ladoni

    Full Text Available Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover and non-leguminous (winter rye cover crops on potentially mineralizable N (PMN and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management

  9. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Science.gov (United States)

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  10. Novel Developments of the MetaCrop Information System for Facilitating Systems Biological Approaches

    Directory of Open Access Journals (Sweden)

    Hippe Klaus

    2010-12-01

    Full Text Available Crop plants play a major role in human and animal nutrition and increasingly contribute to chemical or pharmaceutical industry and renewable resources. In order to achieve important goals, such as the improvement of growth or yield, it is indispensable to understand biological processes on a detailed level. Therefore, the well-structured management of fine-grained information about metabolic pathways is of high interest. Thus, we developed the MetaCrop information system, a manually curated repository of high quality information concerning the metabolism of crop plants. However, the data access to and flexible export of information of MetaCrop in standard exchange formats had to be improved. To automate and accelerate the data access we designed a set of web services to be integrated into external software. These web services have already been used by an add-on for the visualisation toolkit VANTED. Furthermore, we developed an export feature for the MetaCrop web interface, thus enabling the user to compose individual metabolic models using SBML.

  11. Cowpea production as affected by dry spells in no-tillage and conventional crop systems

    Directory of Open Access Journals (Sweden)

    Rômulo Magno Oliveira de Freitas

    2013-12-01

    Full Text Available The objective of this study was to evaluate the effect of different periods of water shortage in no-tillage and conventional crop systems on cowpea yield components and grain yield in the Mossoró-RN region. For this, an experiment was conducted using two tillage systems (conventional and no-tillage subjected to periods of irrigation suspension (2; 6; 10; 14; 18 end 22 days, started at flowering (34 days after sowing. Plants were harvested 70 days after sowing, and the studied variables were: Pods length (CV, number of grains per pod (NGV, number of pods per plant (NPP, the hundred grains weight (PCG and grain yield (kg ha-1. The no-tillage system is more productive than the conventional under both irrigation and water stress treatments. The water stress length affected grain yield and all yield components studied in a negative way, except for the hundred grains weight. Among the systems studied, the no-tillage provides higher values for the yield components, except the hundred grains weight.

  12. Adverse weather impacts on arable cropping systems

    Science.gov (United States)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  13. Turnover of grain legume N rhizodeposits and effect of rhizodeposition on the turnover of crop residues

    DEFF Research Database (Denmark)

    Mayer, J.; Buegger, F.; Jensen, E.S.

    2004-01-01

    The turnover of N derived from rhizodeposition of faba bean (Vicia faba L.), pea (Pisum sativum L.) and white lupin (Lupinus albus L.) and the effects of the rhizodeposition on the subsequent C and N turnover of its crop residues were investigated in an incubation experiment (168 days, 15 degrees....... In the experiment the turnover of C and N was compared in soils with and without previous growth of three legumes and with and without incorporation of crop residues. After 168 days, 21% (lupin), 26% (faba bean) and 27% (pea) of rhizodeposition N was mineralised in the treatments without crop residues. A smaller...... amount of 15-17% was present as microbial biomass and between 30 and 55% of mineralised rhizodeposition N was present as microbial residue pool, which consists of microbial exoenzymes, mucous substances and dead microbial biomass. The effect of rhizodeposition on the C and N turnover of crop residues...

  14. Enhancing productivity of salt affected soils through crops and cropping system

    International Nuclear Information System (INIS)

    Singh, S.S.; Khan, A.R.

    2002-05-01

    The reclamation of salt affected soils needs the addition of soil amendment and enough water to leach down the soluble salts. The operations may also include other simple agronomic techniques to reclaim soils and to know the crops and varieties that may be grown and other management practices which may be followed on such soils (Khan, 2001). The choice of crops to be grown during reclamation of salt affected soils is very important to obtain acceptable yields. This also decides cropping systems as well as favorable diversification for early reclamation, desirable yield and to meet the other requirements of farm families. In any salt affected soils, the following three measures are adopted for reclamation and sustaining the higher productivity of reclaimed soils. 1. Suitable choice of crops, forestry and tree species; 2. Suitable choice of cropping and agroforestry system; 3. Other measures to sustain the productivity of reclaimed soils. (author)

  15. EUE (energy use efficiency) of cropping systems for a sustainable agriculture

    International Nuclear Information System (INIS)

    Alluvione, Francesco; Moretti, Barbara; Sacco, Dario; Grignani, Carlo

    2011-01-01

    Energy efficiency of agriculture needs improvement to reduce the dependency on non-renewable energy sources. We estimated the energy flows of a wheat-maize-soybean-maize rotation of three different cropping systems: (i) low-input integrated farming (LI), (ii) integrated farming following European Regulations (IFS), and (iii) conventional farming (CONV). Balancing N fertilization with actual crop requirements and adopting minimum tillage proved the most efficient techniques to reduce energy inputs, contributing 64.7% and 11.2% respectively to the total reduction. Large differences among crops in energy efficiency (maize: 2.2 MJ kg -1 grain; wheat: 2.6 MJ kg -1 grain; soybean: 4.1 MJ kg -1 grain) suggest that crop rotation and crop management can be equally important in determining cropping system energy efficiency. Integrated farming techniques improved energy efficiency by reducing energy inputs without affecting energy outputs. Compared with CONV, energy use efficiency increased 31.4% and 32.7% in IFS and LI, respectively, while obtaining similar net energy values. Including SOM evolution in the energy analysis greatly enhanced the energy performance of IFS and, even more dramatically, LI compared to CONV. Improved energy efficiency suggests the adoption of alternative farming systems to reduce greenhouse gas emissions from agriculture. However, a thorough evaluation should include net global warming potential assessment. -- Highlights: → We evaluated the energy flows of integrated as alternative to conventional Farming. → Energy flows, soil organic matter evolution included, were analyzed following process analysis. → Energy flows were compared using indicators. → Integrated farming improved energy efficiency without affecting net energy. → Inclusion of soil organic matter in energy analysis accrue environmental evaluation.

  16. Yield and water use efficiencies of maize and cowpea as affected by tillage and cropping systems in semi-arid Eastern Kenya

    International Nuclear Information System (INIS)

    Miriti, M.J; Kironchi, G; Gachene, K.K.C; Esilaba, O.A.; Mwangi, M.D; Heng, K.L

    2012-01-01

    Soil water conservation through tillage is widely accepted as one of the ways of improving crop yields in rainfed agriculture. Field experiments were conducted between 2007 and 2009 to evaluate the effects of conservation tillage on the yields and crop water use efficiency of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) in eastern Kenya. Experimental treatments were a combination of three tillage practices and four cropping systems. Tillage practices were tied-ridges, subsoiling-ripping and ox-ploughing. The cropping systems were single crop maize, single crop cowpea, intercropped maize.cowpea and single crop maize with manure. The treatments were arranged in split plots with tillage practices as the main plots and cropping systems as the sub-plots in a Randomized Complete Block Design (RCBD). The results showed that tied-ridge tillage had the greatest plant available water content while subsoiling-ripping tillage had the least in all seasons. Averaged across seasons and cropping season, tillage did not have a significant effects on maize grain yield but it did have a significant effect on crop grain and dry matter water use efficiency (WUE). Nevertheless, maize grain yields and WUE values were generally greater under tied-ridge tillage than under subsoiling-ripping and ox-plough tillages. The yields and WUE of cowpea under subsoiling-ripping tillage were less than those of ox-plough tillage. When averaged across the seasons and tillage systems, the cropping system with the manure treatment increased (P.0.05) maize grain yield, grain WUE and dry matter WUE by 36%, 30%, 26% respectively, compared to treatments without manure. Maize and cowpea when intercropped under ox-plough and ripping tillage systems did not have any yield advantage over the single crop

  17. 70-79 Effects of Crop Rotation and NP Fertilizer Rate on Grain Yield a

    African Journals Online (AJOL)

    amendment enabled maize yields and soil fertility to be maintained at a higher level. Multiple ... Higher grain yield and high net return of maize were realized following Niger seed, ...... Generation, Transfer and Gap Analysis Workshop. Nekemt ...

  18. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  19. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    Science.gov (United States)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  20. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    Science.gov (United States)

    Higo, Masao; Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans ( Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha -1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover

  1. Environmental Sustainability of Some Cropping Systems in the ...

    African Journals Online (AJOL)

    Results from most findings reviewed in this paper had shown that there was no one size fits cropping system that can be use for sustainability of the humid environment but the best approach was the diversification of both traditional and modern cropping systems. The transition to systems which are both sustainable and ...

  2. Effects of cropping systems on soil biology

    Science.gov (United States)

    The need for fertilizer use to enhance soil nutrient pools to achieve good crop yield is essential to modern agriculture. Specific management practices, including cover cropping, that increase the activities of soil microorganisms to fix N and mobilize P and micronutrients may reduce annual inputs ...

  3. Soil Quality Indicators as Affected by a Long Term Barley-Maize and Maize Cropping Systems

    Directory of Open Access Journals (Sweden)

    Barbara Manachini

    2009-03-01

    Full Text Available Most soil studies aim a better characterization of the system through indicators. In the present study nematofauna and soil structure were chosen as indicators to be assess soil health as related to agricultural practices. The field research was carried out on the two fodder cropping systems continuous maize (CM, Zea mays L. and a 3-year rotation of silage-maize – silage-barley (Hordeum vulgare L. with Italian ryegrass (R3 and grain-maize maintained in these conditions for 18 years. Each crop system was submitted to two management options: 1 the high input level (H, done as a conventional tillage, 2 the low input level (L, where the tillage was replaced by harrowing and the manure was reduced by 30%. The effects of the two different cropping systems was assessed on soil nematofauna and soil physic parameters (structure or aggregate stability. Comparison was made of general composition, trophic structure and biodiversity of the nematofauna collected in both systems. Differences in nematode genera composition and distribution between the two systems were also recorded. The monoculture, compared to the three year rotation, had a negative influence on the nematofauna composition and its ecological succession. The Structural Stability Index (SSI values indicate that both the cropping systems had a negative effect on the aggregate stability. The results indicate that nematofauna can be used to assess the effects of cropping systems on soil ecosystem, and therefore be considered a good indicator of soil health to integrate information from different chemical or physical indicators.

  4. Soil Quality Indicators as Affected by a Long Term Barley-Maize and Maize Cropping Systems

    Directory of Open Access Journals (Sweden)

    Anna Corsini

    2011-02-01

    Full Text Available Most soil studies aim a better characterization of the system through indicators. In the present study nematofauna and soil structure were chosen as indicators to be assess soil health as related to agricultural practices. The field research was carried out on the two fodder cropping systems continuous maize (CM, Zea mays L. and a 3-year rotation of silage-maize – silage-barley (Hordeum vulgare L. with Italian ryegrass (R3 and grain-maize maintained in these conditions for 18 years. Each crop system was submitted to two management options: 1 the high input level (H, done as a conventional tillage, 2 the low input level (L, where the tillage was replaced by harrowing and the manure was reduced by 30%. The effects of the two different cropping systems was assessed on soil nematofauna and soil physic parameters (structure or aggregate stability. Comparison was made of general composition, trophic structure and biodiversity of the nematofauna collected in both systems. Differences in nematode genera composition and distribution between the two systems were also recorded. The monoculture, compared to the three year rotation, had a negative influence on the nematofauna composition and its ecological succession. The Structural Stability Index (SSI values indicate that both the cropping systems had a negative effect on the aggregate stability. The results indicate that nematofauna can be used to assess the effects of cropping systems on soil ecosystem, and therefore be considered a good indicator of soil health to integrate information from different chemical or physical indicators.

  5. Opportunities and challenges for harvest weed seed control in global cropping systems.

    Science.gov (United States)

    Walsh, Michael J; Broster, John C; Schwartz-Lazaro, Lauren M; Norsworthy, Jason K; Davis, Adam S; Tidemann, Breanne D; Beckie, Hugh J; Lyon, Drew J; Soni, Neeta; Neve, Paul; Bagavathiannan, Muthukumar V

    2017-11-28

    The opportunity to target weed seeds during grain harvest was established many decades ago following the introduction of mechanical harvesting and the recognition of high weed-seed retention levels at crop maturity; however, this opportunity remained largely neglected until more recently. The introduction and adoption of harvest weed seed control (HWSC) systems in Australia has been in response to widespread occurrence of herbicide-resistant weed populations. With diminishing herbicide resources and the need to maintain highly productive reduced tillage and stubble-retention practices, growers began to develop systems that targeted weed seeds during crop harvest. Research and development efforts over the past two decades have established the efficacy of HWSC systems in Australian cropping systems, where widespread adoption is now occurring. With similarly dramatic herbicide resistance issues now present across many of the world's cropping regions, it is timely for HWSC systems to be considered for inclusion in weed-management programs in these areas. This review describes HWSC systems and establishing the potential for this approach to weed control in several cropping regions. As observed in Australia, the inclusion of HWSC systems can reduce weed populations substantially reducing the potential for weed adaptation and resistance evolution. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Soil nitrous oxide and methane fluxes in integrated crop-livestock systems in subtropics

    International Nuclear Information System (INIS)

    Dieckow, Jeferson; Pergher, Maico; Moraes, Anibal de; Piva, Jonatas Thiago; Bayer, Cimélio; Sakadevan, Karuppan

    2015-01-01

    Integrated crop-livestock (ICL) system is an agricultural practice in which crop-pasture rotation is carried out in the same field over time. In Brasil, ICL associated with no-tillage farming is increasingly gaining importance as a soil use strategy that improves food production (grain, milk and beef) and economic returns to farmers. Integrated crop-livestock-forestry (ICLF) is a recent modification of ICL in Brazil, with the inclusion of trees cultivation aiming at additional wood production and offering thermal comfort to livestock (Porfírio-da-Silva & Moraes, 2010). However, despite the increasing importance of ICL, little information is available on how this system may affect soil-atmosphere exchange of nitrous oxide (N 2 O) and methane (CH 4 )

  7. Cropping system impact on soil quality determinants

    Directory of Open Access Journals (Sweden)

    M. VESTBERG

    2008-12-01

    Full Text Available Worldwide interest in soil quality evaluation has increased rapidly throughout the past decade, prompting us to evaluate the long-term impact of four cropping systems on several biological, chemical and physical determinants of soil quality. We hypothesized that after 17 years several of the determinants would show significant differences between conventional cereal and low input/organic rotations. Four crop rotations were imposed on a silt soil from 1982 through 1999. Rotation A was a conventionally managed cereal rotation that received 100% of the recommended mineral fertilizer each year. Rotation B was also managed conventionally from 1982 until 1993, although it received only 50% of the recommended mineral fertilizer. From 1994 through 1999, rotation B was managed as an organic rotation. Rotations C and D were low-input rotations with plant residues returned either untreated (Cor composted (Dfrom 1982 until 1994.From 1994 through 1999,they were also anaged organically. Significant decreases in extractable phosphorus (Pand potassium were observed in rotations C and D compared with rotation A, presumably because their yearly nutrient inputs were somewhat lower. The amount of soil organic carbon (Corg, soil water holding capacity, the numbers and biomass of earthworms and the microbial biomass carbon and nitrogen were or tended to be higher in low input/organic than in conventionally managed plots. These effects may be in connection with the slightly increased levels of Corg in soil of the organic rotations. Activities of twelve enzymes were strongly affected by sampling time (early-versus late-summer, but much less by long-term management. Litter decomposition, numbers of soil nematodes, arbuscular mycorrhizal (AMfungal diversity,AM spore density and AM functioning were little affected by rotation. However,AM spore density correlated positively with the high amounts of extractable calcium and P which were a result from excessive liming applied

  8. A multi-adaptive framework for the crop choice in paludicultural cropping systems

    Directory of Open Access Journals (Sweden)

    Nicola Silvestri

    2017-03-01

    Full Text Available The conventional cultivation of drained peatland causes peat oxidation, soil subsidence, nutrient loss, increasing greenhouse gas emissions and biodiversity reduction. Paludiculture has been identified as an alternative management strategy consisting in the cultivation of biomass on wet and rewetted peatlands. This strategy can save these habitats and restore the ecosystem services provided by the peatlands both on the local and global scale. This paper illustrates the most important features to optimise the crop choice phase which is the crucial point for the success of paludiculture systems. A multi-adaptive framework was proposed. It was based on four points that should be checked to identify suitable crops for paludicultural cropping system: biological traits, biomass production, attitude to cultivation and biomass quality. The main agronomic implications were explored with the help of some results from a plurennial open-field experimentation carried out in a paludicultural system set up in the Massaciuccoli Lake Basin (Tuscany, Italy and a complete example of the method application was provided. The tested crops were Arundo donax L., Miscanthus×giganteus Greef et Deuter, Phragmites australis L., Populus×canadensis Moench. and Salix alba L. The results showed a different level of suitability ascribable to the different plant species proving that the proposed framework can discriminate the behaviour of tested crops. Phragmites australis L. was the most suitable crop whereas Populus×canadensis Moench and Miscanthus×giganteus Greef et Deuter (in the case of biogas conversion occupied the last positions in the ranking.

  9. Studies on controls of the insects infested on growing legume crops and stored grains

    International Nuclear Information System (INIS)

    Chung, K.H.; Kwon, S.H.; Lee, Y.I.; Shin, I.C.; Koh, Y.S.

    1980-01-01

    Present studies were carried out to control the insect pests which infest on rice, barley, wheat, redbeam and mungbeam grains during the storage period. For application of radiation to the pest controls, life spans of indian-meal moth (Plodia interpuctella Hubner) and bean weevil (Callosobruches chinensis L.) were investigated in different rearing conditions. Eggs and adults of the bean weevil were irradiated with various doses of γ-ray to determine radiosensitivities of the insect. For the ecological control of general legume insects, screening for varietal resistance to bean weevil and beanfly were performed in the experiment field. Radioisotope, P-32, was applied to screening of soybean resistant to aphid. Also, the germinability and the seedling height were measured in γ-ray irradiated mungbean for the grain storage. (author)

  10. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    Science.gov (United States)

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  11. Integrating winter camelina into maize and soybean cropping systems

    Science.gov (United States)

    Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems. The objectives of this st...

  12. Profitability of groundnut-based cropping systems among farmers in ...

    African Journals Online (AJOL)

    Groundnut is an important cash crop and a good source of vegetable oil to resource-poor farmers. The study examined the Profitability of Groundnut–based Cropping Systems among farmers in Hong Local Government Area of Adamawa State, Nigeria. Specifically, the socio-economic characteristics of the farmers were ...

  13. Streaming of interstellar grains in the solar system

    Science.gov (United States)

    Gustafson, B. A. S.; Misconi, N. Y.

    1979-01-01

    Results of a theoretical study of the interactions between interstellar grains streaming through the solar system and the solar wind are presented. It is shown that although elongated core-mantle interstellar particles of a characteristic radius of about 0.12 microns are subject to a greater force due to radiation pressure than to gravitational attraction, they are still able to penetrate deep inside the solar system. Calculations of particle trajectories within the solar system indicate substantial effects of the solar activity cycle as reflected in the interplanetary magnetic field on the distribution of 0.12- and 0.0005-micron interstellar grains streaming through the solar system, leading to a 50-fold increase in interstellar grain densities 3 to 4 AU ahead of the sun during years 8 to 17 of the solar cycle. It is noted that during the Solar Polar Mission, concentrations are expected which will offer the opportunity of detecting interstellar grains in the solar system.

  14. Comparative performance of annual and perennial energy cropping systems under different management regimes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmel, Ute Constanze

    2007-07-18

    at the study site, may better perform on marginal sites. Switchgrass is an example of the need to grow site-adapted energy crops. The annual energy crop maize required the highest input, but at the same time yielded the most. The two crop rotation systems did not differ in yield and energy input, but the system with no-till may be more environmentally benign as it has the potential to sequester carbon. The objective of Paper II was the optimization of crop cultivation through the differentiation of input parameters to enhance the quality of the energy crop triticale, without influencing the biomass yield. The intention was to minimize the content of combustion-disturbing elements (potassium and chlorine) and the ash residue of both aboveground plant parts (grain and straw). It was done through different straw and potassium fertilizer treatments. It could be shown that the removal of straw from the previously cultivated crop and no additional potassium fertilizer could reduce the amount of combustion-disturbing elements. A high influence must also be expected from site and weather conditions. Papers III to V address the supply of different high quality biomasses, with the focus on maize for anaerobic digestion. The objective of Paper III was the assessment of the requirements of biogas plants and biomass for anaerobic digestion. It introduces potential energy crops, along with their advantages and disadvantages. Alongside maize, many other biomass types, which are preserved as silage and are high in carbohydrates and low in lignocelluloses, can be anaerobically digested. The development of potential site-specific crop rotation systems for biomass production are discussed. The objective of Papers IV and V was the identification of suitable biomass and production systems for the anaerobic digestion. The focus lay on the determination of (i) suitable energy maize varieties for Central Europe, (ii) optimal growth periods of energy crops, (iii) the influence of crop

  15. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems

    Directory of Open Access Journals (Sweden)

    Diego N. Chavarría

    2016-06-01

    Full Text Available Agricultural systems where monoculture prevails are characterized by fertility losses and reduced contribution to ecosystem services. Including cover crops (CC as part of an agricultural system is a promising choice in sustainable intensification of those demanding systems. We evaluated soil microbial functionality in cash crops in response to the inclusion of CC by analyzing soil microbial functions at two different periods of the agricultural year (cash crop harvest and CC desiccation during 2013 and 2014. Three plant species were used as CC: oat (Avena sativa L., vetch (Vicia sativa L. and radish (Raphanus sativus L. which were sown in two different mixtures of species: oat and radish mix (CC1 and oat, radish and vetch mix (CC2, with soybean monoculture and soybean/corn being the cash crops. The study of community level physiological profiles showed statistical differences in respiration of specific C sources indicating an improvement of catabolic diversity in CC treatments. Soil enzyme activities were also increased with the inclusion of CC mixtures, with values of dehydrogenase activity and fluorescein diacetate hydrolysis up to 38.1% and 35.3% higher than those of the control treatment, respectively. This research evidenced that CC inclusion promotes soil biological quality through a contribution of soil organic carbon, improving the sustainability of agrosystems. The use of a CC mixture of three plant species including the legume vetch increased soil biological processes and catabolic diversity, with no adverse effects on cash crop grain yield.

  16. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems

    Energy Technology Data Exchange (ETDEWEB)

    Chavarría, D.N.; Verdenelli, R.A.; Muñoz, M.J.; Conforto, C.; Restovich, S.B.; Andriulo, A.E.; Meriles, J.M.; Vargas-Gil, S.

    2016-11-01

    Agricultural systems where monoculture prevails are characterized by fertility losses and reduced contribution to ecosystem services. Including cover crops (CC) as part of an agricultural system is a promising choice in sustainable intensification of those demanding systems. We evaluated soil microbial functionality in cash crops in response to the inclusion of CC by analyzing soil microbial functions at two different periods of the agricultural year (cash crop harvest and CC desiccation) during 2013 and 2014. Three plant species were used as CC: oat (Avena sativa L.), vetch (Vicia sativa L.) and radish (Raphanus sativus L.) which weresown in two different mixtures of species: oat and radish mix (CC1) and oat, radish and vetch mix (CC2), with soybean monoculture and soybean/corn being the cash crops. The study of community level physiological profiles showed statistical differences in respiration of specific C sources indicating an improvement of catabolic diversity in CC treatments. Soil enzyme activities were also increased with the inclusion of CC mixtures, with values of dehydrogenase activity and fluorescein diacetate hydrolysis up to 38.1% and 35.3% higher than those of the control treatment, respectively. This research evidenced that CC inclusion promotes soil biological quality through a contribution of soil organic carbon, improving the sustainability of agrosystems. The use of a CC mixture of three plant species including the legume vetch increased soil biological processes and catabolic diversity, with no adverse effects on cash crop grain yield. (Author)

  17. Grain yield and crop N offtake in response to residual fertilizer N in long-term field experiments

    DEFF Research Database (Denmark)

    Petersen, Jens; Thomsen, Ingrid Kaag; Mattsson, L.

    2010-01-01

    in four long-term (>35 yr) field experiments, we measured the response of barley (grain yield and N offtake at crop maturity) to six rates (0, 30, 60, 90, 120 and 150 kg N/ha) of mineral fertilizer N (Nnew) applied in subplots replacing the customary long-term plot treatments of fertilizer inputs (Nprev......). Rates of Nprev above 50-100 kg N/ha had no consistent effect on the soil N content, but this was up to 20% greater than that in unfertilized treatments. Long-term unfertilized plots should not be used as control to test the residual value of N in modern agriculture with large production potentials....... Although the effect of mineral Nprev on grain yield and N offtake could be substituted by Nnew within a range of previous inputs, the value of Nprev was not eliminated irrespective of Nnew rate. Provided a sufficient supply of plant nutrients other than N, the use-efficiency of Nnew did not change...

  18. Crop candidates for the bioregenerative life support systems in China

    Science.gov (United States)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  19. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  20. Feed legumes for truly sustainable crop-animal systems

    Directory of Open Access Journals (Sweden)

    Paolo Annicchiarico

    2017-06-01

    Full Text Available Legume cultivation has sharply decreased in Italy during the last 50 years. Lucerne remains widely grown (with about 12% of its area devoted to dehydration, whereas soybean is definitely the most-grown grain legume. Poor legume cropping is mainly due to the gap in yielding ability with major cereals, which has widened up in time according to statistical data. Lucerne displays definitely higher crude protein yield and somewhat lower economic gap with benchmark cereals than feed grain legumes. Pea because of high feed energy production per unit area and rate of genetic progress, and white lupin because of high protein yield per unit area, are particularly interesting for Italian rain-fed environments. Greater legume cultivation in Europe is urged by the need for reducing energy and green-house gas emissions and excessive and unbalanced global N flows through greater symbiotic N fixation and more integrated crop-animal production, as well as to cope with ongoing and perspective raising prices of feed proteins and N fertilisers and insecurity of feed protein supplies. The transition towards greater legume cultivation requires focused research effort, comprehensive stakeholder cooperation and fair economic compensation for legume environmental services, with a key role for genetic improvement dragged by public breeding or pre-breeding. New opportunities for yield improvement arise from the ongoing development of cost-efficient genome-enabled selection procedures, enhanced adaptation to specific cropping conditions via ecophysiological and evolutionary-based approaches, and more thorough exploitation of global genetic resources.

  1. Meteorological risks and impacts on crop production systems in Belgium

    Science.gov (United States)

    Gobin, Anne

    2013-04-01

    Extreme weather events such as droughts, heat stress, rain storms and floods can have devastating effects on cropping systems. The perspective of rising risk-exposure is exacerbated further by projected increases of extreme events with climate change. More limits to aid received for agricultural damage and an overall reduction of direct income support to farmers further impacts farmers' resilience. Based on insurance claims, potatoes and rapeseed are the most vulnerable crops, followed by cereals and sugar beets. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Current knowledge gaps exist in the response of arable crops to the occurrence of extreme events. The degree of temporal overlap between extreme weather events and the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop and its environment. The regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency and magnitude of drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages of six arable crops: winter wheat, winter barley, winter rapeseed, potato, sugar beet and maize. Since crop development is driven by thermal time, crops matured earlier during the warmer 1988-2008 period than during the 1947-1987 period. Drought and heat stress, in particular during the sensitive crop stages, occur at different times in the cropping season and significantly differ between two climatic periods, 1947-1987 and 1988-2008. Soil moisture deficit increases towards harvesting, such that earlier maturing winter crops may avoid drought stress that occurs in late spring and summer. This is reflected in a decrease both in magnitude and frequency of soil moisture deficit around the sensitive stages during the 1988-2008 period when atmospheric drought may be compensated for with soil moisture. The risk of drought spells during

  2. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    2017-04-02

    Apr 2, 2017 ... Many methods have been described and sensors developed to manage irrigation ... time, and automated irrigation systems based on crop water needs can .... output components, and a software program for decision support.

  3. Systems study of fuels from grains and grasses. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Benson, W.; Allen, A.; Athey, R.; McElroy, A.; Davis, M.; Bennett, M.

    1978-02-24

    The program reported on herein consists of a first phase analysis of the potential for significant and economically viable contributions to U.S. energy needs from grasses and grains by the photosynthetic production of biomass. The study does not include other cultivated crops such as sugar cane, sugar beets, cotton, tobacco, vegetables, fruits, etc. The scope of the study encompasses grain crop residues, whole plant biomass from grain crops and nongrain crops on cropland, and whole plant biomass from grasses on pasture, rangeland, and federal range. The basic approach to the study involves first an assessment of current total biomass generation from the various grasses and grains on cropland, pasture, range, and federal range, and aggregating the production by combinations of crop residues and whole plant biomass; second, evaluation of possibilities for introduction of new crops and expanding production to marginal or presently idle land; third, development of proposed reasonable scenarios for actually harvesting biomass from selected combinations of crop residues, forages and hays, and new crops from land now in production, plus additional marginal or underutilized land brought into production; and finally, assessment on national and regional or local scales of the production that might be affected by reasonable scenarios. This latter effort includes analysis of tentative possibilities for reallocating priorities and needs with regard to production of grain for export or for livestock production. The overall program includes a case study analysis of production economics for a representative farm of about 1,000 acres (405 ha) located in Iowa.

  4. SMALLHOLDER FARMERS’ WILLINGNESS TO INCORPORATE BIOFUEL CROPS INTO CROPPING SYSTEMS IN MALAWI

    Directory of Open Access Journals (Sweden)

    Beston Bille Maonga

    2015-01-01

    Full Text Available Using cross-sectional data, this study analysed the critical and significant socioeconomic factors with high likelihood to determine smallholder farmers’ decision and willingness to adopt jatropha into cropping systems in Malawi. Employing desk study and multi-stage random sampling technique a sample of 592 households was drawn from across the country for analysis. A probit model was used for the analysis of determinants of jatropha adoption by smallholder farmers. Empirical findings show that education, access to loan, bicycle ownership and farmers’ expectation of raising socioeconomic status are major significant factors that would positively determine probability of smallholder farmers’ willingness to adopt jatropha as a biofuel crop on the farm. Furthermore, keeping of ruminant herds of livestock, long distance to market and fears of market unavailability have been revealed to have significant negative influence on farmers’ decision and willingness to adopt jatropha. Policy implications for sustainable crop diversification drive are drawn and discussed.

  5. Improved production systems for traditional food crops: The case of finger millet in Western Kenya

    OpenAIRE

    Christina Handschuch; Meike Wollni

    2013-01-01

    Increasing agricultural productivity through the dissemination of improved cropping practices remains one of the biggest challenges of this century. A considerable amount of literature is dedicated to the adoption of improved cropping practices among smallholder farmers in developing countries. While most studies focus on cash crops or main staple crops, traditional food grains like finger millet have received little attention in the past decades. The present study aims to assess the factors ...

  6. Soil microbiome characteristics and soilborne disease development associated with long-term potato cropping system practices

    Science.gov (United States)

    Potato cropping system practices substantially affect soil microbial communities and the development of soilborne diseases. Cropping systems incorporating soil health management practices, such as longer rotations, disease-suppressive crops, reduced tillage, and/or organic amendments can potentially...

  7. Scope for improved eco-efficiency varies among diverse cropping systems.

    Science.gov (United States)

    Carberry, Peter S; Liang, Wei-li; Twomlow, Stephen; Holzworth, Dean P; Dimes, John P; McClelland, Tim; Huth, Neil I; Chen, Fu; Hochman, Zvi; Keating, Brian A

    2013-05-21

    Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.

  8. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems

    Science.gov (United States)

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-01-01

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits. PMID:28587254

  9. Soil organism in organic and conventional cropping systems.

    OpenAIRE

    Bettiol, Wagner; Ghini, Raquel; Galvão, José Abrahão Haddad; Ligo, Marcos Antônio Vieira; Mineiro, Jeferson Luiz de Carvalho

    2002-01-01

    Despite the recent interest in organic agriculture, little research has been carried out in this area. Thus, the objective of this study was to compare, in a dystrophic Ultisol, the effects of organic and conventional agricultures on soil organism populations, for the tomato (Lycopersicum esculentum) and corn (Zea mays) crops. In general, it was found that fungus, bacterium and actinomycet populations counted by the number of colonies in the media, were similar for the two cropping systems. C...

  10. The value of crop germplasm and value accounting system

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaowei; DING Guangzhou; CHANG Ying

    2007-01-01

    The value evaluation and accounting of crop germplasm not only provides the theory and method for the price of germplasm, thus makes further lawful and fair transactions, but also ensures the benefits of crop germplasm owners and is also instructive in keeping the foodstuff safety. This paper founded a multidimensional value accounting system, which included physical accounting, value accounting and quality index accounting; individual accounting and total accounting; quantity accounting and quality accounting.

  11. Sustaining soil productivity by integrated plant nutrient management in wheat based cropping system under rainfed conditions

    International Nuclear Information System (INIS)

    Dilshad, M.; Lone, M.I.

    2011-01-01

    The study of the use of organic (FYM) and inorganic (NPK) nutrient sources with bio fertiliser on wheat-fallow and wheat-maize cropping system under rainfed environment revealed significant increase in bio metric parameters of wheat during winter and summer seasons of two years. During both the seasons, application of half NPK + half FYM + Bio power (brand) produced the highest grain yield (3684 kg/ha) and (3781 kg/ha) of wheat with the maximum N uptake of 357 kg/ha, P uptake of 51 kg/ha and K uptake of 215 kg/ha. Wheat-maize cropping system was found to be profitable economically with integrated use of mineral and organic and/or Bio power under rainfed conditions of Pakistan. (author)

  12. Substantiation of basic scheme of grain cleaning machine for preparation of agricultural crops seeds

    Science.gov (United States)

    Giyevskiy, A. M.; Orobinsky, V. I.; Tarasenko, A. P.; Chernyshov, A. V.; Kurilov, D. O.

    2018-03-01

    The article presents data on the feasibility of the concept of a high-efficiency seed cleaner with the consistent use of the air flow in aspiration and the multi-tier placement of the sorting grids in grating mills. As a result of modeling, the directions for further improvement of air-screen seed cleaning machines have been identified: an increase in the proportion of sorting grids in the mills up to 70 ... 80% and an increase in the speed of the air flow in the channel of the pre-filter cleaning up to 8.0 m / s. Experiments have established the competence of using mathematical modeling of airflow in the pneumatic system with the use of a finite-volume method for solving hydrodynamic equations for substantiating the basic parameters of the pneumatic system.

  13. Large Area Crop Inventory Experiment (LACIE). An early estimate of small grains acreage

    Science.gov (United States)

    Lea, R. N.; Kern, D. M. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. A major advantage of this scheme is that it needs minimal human intervention. The entire scheme, with the exception of the choice of dates, can be computerized and the results obtained in minutes. The decision to limit the number of acquisitions processed to four was made to facilitate operation on the particular computer being used. Some earlier runs on another computer system were based on as many as seven biophase-1 acquisitions.

  14. Integration of biochar and legumes in summer gap for enhancing productivity of wheat under cereal based cropping system

    International Nuclear Information System (INIS)

    Jalal, F.; Munif, F.; Khan, M. J.

    2016-01-01

    Biochar application is gaining popularity in agriculture system as prime technology in sustainable context. Field experiments were conducted at the Research Farm of the University of Agriculture Peshawar, during 2011-2013. Wheat-maize-wheat cropping pattern was followed with the adjustment of legumes in summer gap (land available after wheat harvest till maize sowing). Legumes i.e., mungbean, cowpea and Sesbania with a fallow were adjusted in the summer gap with and without biochar application. Biochar was applied at the rate of 0 and 50 t ha-1 with four N levels of 0, 60, 90 and 120 kg ha-1 to subsequent wheat crop. Biohcar application and plots previously sown with legumes improved thousand grain weight of wheat crop. Nitrogen application increased thousand spikes m-2, grains weight, grain and biological yield. It is concluded that integration of biochar and legumes could be a useful strategy for enhancing the overall farm profitability and productivity of cereal-based systems by providing increased yields from this additional summer gap crop. (author)

  15. Cropping Systems and Climate Change in Humid Subtropical Environments

    Directory of Open Access Journals (Sweden)

    Ixchel M. Hernandez-Ochoa

    2018-02-01

    Full Text Available In the future, climate change will challenge food security by threatening crop production. Humid subtropical regions play an important role in global food security, with crop rotations often including wheat (winter crop and soybean and maize (summer crops. Over the last 30 years, the humid subtropics in the Northern Hemisphere have experienced a stronger warming trend than in the Southern Hemisphere, and the trend is projected to continue throughout the mid- and end of century. Past rainfall trends range, from increases up to 4% per decade in Southeast China to −3% decadal decline in East Australia; a similar trend is projected in the future. Climate change impact studies suggest that by the middle and end of the century, wheat yields may not change, or they will increase up to 17%. Soybean yields will increase between 3% and 41%, while maize yields will increase by 30% or decline by −40%. These wide-ranging climate change impacts are partly due to the region-specific projections, but also due to different global climate models, climate change scenarios, single-model uncertainties, and cropping system assumptions, making it difficult to make conclusions from these impact studies and develop adaptation strategies. Additionally, most of the crop models used in these studies do not include major common stresses in this environment, such as heat, frost, excess water, pests, and diseases. Standard protocols and impact assessments across the humid subtropical regions are needed to understand climate change impacts and prepare for adaptation strategies.

  16. Effect of sugarcane cropping systems on herbicide losses in surface runoff.

    Science.gov (United States)

    Nachimuthu, Gunasekhar; Halpin, Neil V; Bell, Michael J

    2016-07-01

    Herbicide runoff from cropping fields has been identified as a threat to the Great Barrier Reef ecosystem. A field investigation was carried out to monitor the changes in runoff water quality resulting from four different sugarcane cropping systems that included different herbicides and contrasting tillage and trash management practices. These include (i) Conventional - Tillage (beds and inter-rows) with residual herbicides used; (ii) Improved - only the beds were tilled (zonal) with reduced residual herbicides used; (iii) Aspirational - minimum tillage (one pass of a single tine ripper before planting) with trash mulch, no residual herbicides and a legume intercrop after cane establishment; and (iv) New Farming System (NFS) - minimum tillage as in Aspirational practice with a grain legume rotation and a combination of residual and knockdown herbicides. Results suggest soil and trash management had a larger effect on the herbicide losses in runoff than the physico-chemical properties of herbicides. Improved practices with 30% lower atrazine application rates than used in conventional systems produced reduced runoff volumes by 40% and atrazine loss by 62%. There were a 2-fold variation in atrazine and >10-fold variation in metribuzin loads in runoff water between reduced tillage systems differing in soil disturbance and surface residue cover from the previous rotation crops, despite the same herbicide application rates. The elevated risk of offsite losses from herbicides was illustrated by the high concentrations of diuron (14μgL(-1)) recorded in runoff that occurred >2.5months after herbicide application in a 1(st) ratoon crop. A cropping system employing less persistent non-selective herbicides and an inter-row soybean mulch resulted in no residual herbicide contamination in runoff water, but recorded 12.3% lower yield compared to Conventional practice. These findings reveal a trade-off between achieving good water quality with minimal herbicide contamination and

  17. Environmental and Social Management System Implementation Handbook : Crop Production

    OpenAIRE

    International Finance Corporation

    2014-01-01

    This Handbook is intended to be a practical guide to help companies in the crop production industry develop and implement an environmental and social management system, which should help to improve overall operations. If a company has existing management systems for quality or health and safety, this Handbook will help to expand them to include environmental and social performance. Sectio...

  18. Effects of different cropping systems and weed management methods on free energy and content of pigments in maize

    Directory of Open Access Journals (Sweden)

    Igor Spasojević

    2014-03-01

    Full Text Available Rotation is a cropping system that has many advantages and ensures better crop growth and yielding. Its combinination with other cropping measures can ensure optimal crop density for maximal growth and photosynthesis efficiency. The aim of this study was to investigate the influence of different cropping systems: monoculture and two rotations, including maize, wheat and soybean (MSW and MWS, and different weed management methods (weed removal by hoeing, application of a full recommended herbicide dose (RD and half that dose (0.5 RD, and weedy check on weed biomass and maize growth parameters - leaf area index (LAI, free energy, contents of chlorophyll and carotenoids, grain yield, and their possible relationships in two fields of the maize hybrids ZP 677 (H1 and ZP 606 (H2. The lowest LAI and grain yield were found in monoculture, particularly in weedy check, which had relatively high weed infestation. Higher weed biomass was also observed in herbicide treated plots in monoculture. Such high competition pressure indicates a stress reflected on reduced LAI and chlorophyll content, and increased free energy and content of carotenoids. On the other hand, rotation, particularly if it is combined with the application of herbicides or hoeing, had a positive impact on yielding potential by increasing LAI and the contents of chlorophyll and carotenoids, and decreasing free energy.

  19. Changes in the potential multiple cropping system in response to climate change in China from 1960-2010.

    Science.gov (United States)

    Liu, Luo; Xu, Xinliang; Zhuang, Dafang; Chen, Xi; Li, Shuang

    2013-01-01

    The multiple cropping practice is essential to agriculture because it has been shown to significantly increase the grain yield and promote agricultural economic development. In this study, potential multiple cropping systems in China are calculated based on meteorological observation data by using the Agricultural Ecology Zone (AEZ) model. Following this, the changes in the potential cropping systems in response to climate change between the 1960s and the 2010s were subsequently analyzed. The results indicate that the changes of potential multiple cropping systems show tremendous heterogeneity in respect to the spatial pattern in China. A key finding is that the magnitude of change of the potential cropping systems showed a pattern of increase both from northern China to southern China and from western China to eastern China. Furthermore, the area found to be suitable only for single cropping decreased, while the area suitable for triple cropping increased significantly from the 1960s to the 2000s. During the studied period, the potential multiple cropping index (PMCI) gap between rain-fed and irrigated scenarios increased from 18% to 24%, which indicated noticeable growth of water supply limitations under the rain-fed scenario. The most significant finding of this research was that from the 1960s to the 2000s climate change had led to a significant increase of PMCI by 13% under irrigated scenario and 7% under rain-fed scenario across the whole of China. Furthermore, the growth of the annual mean temperature is identified as the main reason underlying the increase of PMCI. It has also been noticed that across China the changes of potential multiple cropping systems under climate change were different from region to region.

  20. The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate

    DEFF Research Database (Denmark)

    Doltra, Jordi; Olesen, Jørgen E

    2013-01-01

    common practices in organic farming. Measurements of dry matter (DM) and N content of grain cereals at harvest, above-ground biomass in catch crops and green manure crops in autumn and of the green manure crop at the first cutting were performed. The effect of catch crops on grain yield varied...... the nitrate leaching and increasing N retention, but also by improving yields. Management practices in relation to catch crops must be adapted to the specific soil and cropping systems....

  1. Policies for Reintegrating Crop and Livestock Systems: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Rachael D. Garrett

    2017-03-01

    Full Text Available The reintegration of crop and livestock systems within the same land area has the potential to improve soil quality and reduce water and air pollution, while maintaining high yields and reducing risk. In this study, we characterize the degree to which federal policies in three major global food production regions that span a range of socioeconomic contexts, Brazil, New Zealand, and the United States, incentivize or disincentivize the use of integrated crop and livestock practices (ICLS. Our analysis indicates that Brazil and New Zealand have the most favorable policy environment for ICLS, while the United States provides the least favorable environment. The balance of policy incentives and disincentives across our three cases studies mirrors current patterns of ICLS usage. Brazil and New Zealand have both undergone a trend toward mixed crop livestock systems in recent years, while the United States has transitioned rapidly toward continuous crop and livestock production. If transitions to ICLS are desired, particularly in the United States, it will be necessary to change agricultural, trade, environmental, biofuels, and food safety policies that currently buffer farmers from risk, provide too few incentives for pollution reduction, and restrict the presence of animals in crop areas. It will also be necessary to invest more in research and development in all countries to identify the most profitable ICLS technologies in each region.

  2. Toward cropping systems that enhance productivity and sustainability

    Science.gov (United States)

    Cook, R. James

    2006-01-01

    The defining features of any cropping system are (i) the crop rotation and (ii) the kind or intensity of tillage. The trend worldwide starting in the late 20th century has been (i) to specialize competitively in the production of two, three, a single, or closely related crops such as different market classes of wheat and barley, and (ii) to use direct seeding, also known as no-till, to cut costs and save soil, time, and fuel. The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops. However, little has been done through genetics and breeding to address diseases caused by residue- and soil-inhabiting pathogens that remain major obstacles to wider adoption of these potentially more productive and sustainable systems. Instead, the gains have been due largely to innovations in management, including enhancement of root defense by antibiotic-producing rhizosphere-inhabiting bacteria inhibitory to root pathogens. Historically, new varieties have facilitated wider adoption of new management, and changes in management have facilitated wider adoption of new varieties. Although actual yields may be lower in direct-seed compared with conventional cropping systems, largely due to diseases, the yield potential is higher because of more available water and increases in soil organic matter. Achieving the full production potential of these more-sustainable cropping systems must now await the development of varieties adapted to or resistant to the hazards shown to account for the yield depressions associated with direct seeding. PMID:17130454

  3. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.

    2014-01-01

    Roč. 22, č. 1 (2014), Art . No. 015013 ISSN 0965-0393 Institutional support: RVO:68081723 Keywords : grain boundary segregation * abnormal grain growth * theory * modelling * solute drag Subject RIV: BJ - Thermodynamics Impact factor: 2.167, year: 2014

  4. Soilless cultivation system for functional food crops

    International Nuclear Information System (INIS)

    Ahamad Sahali Mardi; Shyful Azizi Abdul Rahman; Ahmad Nazrul Abd Wahid; Abdul Razak Ruslan; Hazlina Abdullah

    2007-01-01

    This soilless cultivation system is based on the fertigation system and cultivation technologies using Functional Plant Cultivation System (FPCS). EBARA Japan has been studying on the cultivation conditions in order to enhance the function of decease risk reduction in plants. Through the research and development activities, EBARA found the possibilities on the enhancement of functions. Quality and quantity of the products in term of bioactive compounds present in the plants may be affected by unforeseen environmental conditions, such as temperature, strong light and UV radiation. The main objective to develop this system is, to support? Functional Food Industry? as newly emerging field in agriculture business. To success the system, needs comprehensive applying agriculture biotechnologies, health biotechnologies and also information technologies, in agriculture. By this system, production of valuable bioactive compounds is an advantage, because the market size of functional food is increasing more and more in the future. (Author)

  5. Using a decision support system to optimize production of agricultural crop residue Biofeedstock

    International Nuclear Information System (INIS)

    Hoskinson, Reed L.; Rope, Ronald C.; Fink, Raymond K.

    2007-01-01

    For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability of the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw. In this paper we report the results of 2 yr of field research testing and enhancing the DSS4Ag's ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock. For both years, the DSS4Ag reduced the cost and amount of fertilizers used and increased grower profit, while reducing the biomass produced. The DSS4Ag results show that when a biorefinery infrastructure is in place and growers have a strong market for their straw it is not economically advantageous to increase fertilization in order to try to produce more straw. This suggests that other solutions, such as single-pass selective harvest, must be implemented to meet national goals for the amount of biomass that will be available for collection and use for bioenergy. (author)

  6. Integrated crop protection as a system approach

    NARCIS (Netherlands)

    Haan, de J.J.; Wijnands, F.G.; Sukkel, W.

    2005-01-01

    New farming systems in vegetable production are required as demands for high quality products that do not pollute the environment are rising, and production risks are large and incomes low. The methodology of prototyping new systems is described, especially the themes, parameters and target values

  7. The FSE system for crop simulation, version 2.1

    NARCIS (Netherlands)

    Kraalingen, van D.W.G.

    1995-01-01

    A FORTRAN 77 programming environment for continuous simulation of agro-ecological processes, such as crop growth and calculation of water balances is presented. This system, called FSE (FORTRAN Simulation Environment), consists of a main program, weather data and utilities for performing specific

  8. Effects of organic manure and crop rotation system on potato ...

    African Journals Online (AJOL)

    Effects of organic manure and crop rotation system on potato ( Solanum tuberosum L.) tuber ... Ethiopian Journal of Science and Technology ... (FYM); V2 = 2.5 t/h fresh sesbania green manure (FSB) V3 = 5 t/ha FYM; and V4 = 5 t/ha FYM +2.5 ...

  9. Direct nitrous oxide emissions in Mediterranean climate cropping systems

    NARCIS (Netherlands)

    Cayuela, Maria L.; Aguilera, Eduardo; Sanz-Cobena, Alberto; Adams, Dean C.; Abalos Rodriguez, Diego; Barton, Louise; Ryals, Rebecca; Silver, Whendee L.; Alfaro, Marta A.; Pappa, Valentini A.; Bouwman, Lex; Lassaletta, Luis

    2017-01-01

    Many recent reviews and meta-analyses of N2O emissions do not include data from Mediterranean studies. In this paper we present a meta-analysis of the N2O emissions from Mediterranean cropping systems, and propose a more robust and reliable regional emission factor (EF) for

  10. Factors affecting the choice of cropping systems in Kebbi State ...

    African Journals Online (AJOL)

    The study examined the factors that influence choice of cropping systems in Kebbi State Nigeria. The technique applied in the study was Logit regression. Data to conduct the research was obtained mainly from primary sources through a questionnaire survey of 256 farmers, comprising 98 monocroppers and 158 ...

  11. Profitability of groundnut-based cropping systems among farmers in ...

    African Journals Online (AJOL)

    Profitability of groundnut-based cropping systems among farmers in Hong local government area of Adamawa state, Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information ...

  12. Life cycle assessment of a willow bioenergy cropping system

    International Nuclear Information System (INIS)

    Heller, M.C.; Keoleian, G.A.; Volk, Timothy A.

    2003-01-01

    The environmental performance of willow biomass crop production systems in New York (NY) is analyzed using life cycle assessment (LCA) methodology. The base-case, which represents current practices in NY, produces 55 units of biomass energy per unit of fossil energy consumed over the biomass crop's 23-year lifetime. Inorganic nitrogen fertilizer inputs have a strong influence on overall system performance, accounting for 37% of the non-renewable fossil energy input into the system. Net energy ratio varies from 58 to below 40 as a function of fertilizer application rate, but application rate also has implications on the system nutrient balance. Substituting inorganic N fertilizer with sewage sludge biosolids increases the net energy ratio of the willow biomass crop production system by more than 40%. While CO 2 emitted in combusting dedicated biomass is balanced by CO 2 adsorbed in the growing biomass, production processes contribute to the system's net global warming potential. Taking into account direct and indirect fuel use, N 2 O emissions from applied fertilizer and leaf litter, and carbon sequestration in below ground biomass and soil carbon, the net greenhouse gas emissions total 0.68 g CO 2 eq. MJ biomassproduced -1 . Site specific parameters such as soil carbon sequestration could easily offset these emissions resulting in a net reduction of greenhouse gases. Assuming reasonable biomass transportation distance and energy conversion efficiencies, this study implies that generating electricity from willow biomass crops could produce 11 units of electricity per unit of fossil energy consumed. Results form the LCA support the assertion that willow biomass crops are sustainable from an energy balance perspective and contribute additional environmental benefits

  13. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study

    International Nuclear Information System (INIS)

    Gao, Bing; Ju, Xiaotang; Su, Fang; Meng, Qingfeng; Oenema, Oene; Christie, Peter; Chen, Xinping; Zhang, Fusuo

    2014-01-01

    The impacts of different crop rotation systems with their corresponding management practices on grain yield, greenhouse gas emissions, and fertilizer nitrogen (N) and irrigation water use efficiencies are not well documented. This holds especially for the North China Plain which provides the staple food for hundreds of millions of people and where groundwater resources are polluted with nitrate and depleted through irrigation. Here, we report on fertilizer N and irrigation water use, grain yields, and nitrous oxide (N 2 O) and methane (CH 4 ) emissions of conventional and optimized winter wheat–summer maize double-cropping systems, and of three alternative cropping systems, namely a winter wheat–summer maize (or soybean)–spring maize system, with three harvests in two years; and a single spring maize system with one crop per year. The results of this two-year study show that the optimized double-cropping system led to a significant increase in grain yields and a significant decrease in fertilizer N use and net greenhouse gas intensity, but the net greenhouse gas N 2 O emissions plus CH 4 uptake and the use of irrigation water did not decrease relative to the conventional system. Compared to the conventional system the net greenhouse gas emissions, net greenhouse gas intensity and use of fertilizer N and irrigation water decreased in the three alternative cropping systems, but at the cost of grain yields except in the winter wheat–summer maize–spring maize system. Net uptake of CH 4 by the soil was little affected by cropping system. Average N 2 O emission factors were only 0.17% for winter wheat and 0.53% for maize. In conclusion, the winter wheat–summer maize–spring maize system has considerable potential to decrease water and N use and decrease N 2 O emissions while maintaining high grain yields and sustainable use of groundwater. - Highlights: • Yields, resource use efficiency and N 2 O + CH 4 emission differ among cropping systems. • An

  14. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bing [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Ju, Xiaotang, E-mail: juxt@cau.edu.cn [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Su, Fang; Meng, Qingfeng [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Oenema, Oene [Wageningen University and Research, Alterra, Wageningen (Netherlands); Christie, Peter [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast BT9 5PX (United Kingdom); Chen, Xinping; Zhang, Fusuo [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China)

    2014-02-01

    The impacts of different crop rotation systems with their corresponding management practices on grain yield, greenhouse gas emissions, and fertilizer nitrogen (N) and irrigation water use efficiencies are not well documented. This holds especially for the North China Plain which provides the staple food for hundreds of millions of people and where groundwater resources are polluted with nitrate and depleted through irrigation. Here, we report on fertilizer N and irrigation water use, grain yields, and nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) emissions of conventional and optimized winter wheat–summer maize double-cropping systems, and of three alternative cropping systems, namely a winter wheat–summer maize (or soybean)–spring maize system, with three harvests in two years; and a single spring maize system with one crop per year. The results of this two-year study show that the optimized double-cropping system led to a significant increase in grain yields and a significant decrease in fertilizer N use and net greenhouse gas intensity, but the net greenhouse gas N{sub 2}O emissions plus CH{sub 4} uptake and the use of irrigation water did not decrease relative to the conventional system. Compared to the conventional system the net greenhouse gas emissions, net greenhouse gas intensity and use of fertilizer N and irrigation water decreased in the three alternative cropping systems, but at the cost of grain yields except in the winter wheat–summer maize–spring maize system. Net uptake of CH{sub 4} by the soil was little affected by cropping system. Average N{sub 2}O emission factors were only 0.17% for winter wheat and 0.53% for maize. In conclusion, the winter wheat–summer maize–spring maize system has considerable potential to decrease water and N use and decrease N{sub 2}O emissions while maintaining high grain yields and sustainable use of groundwater. - Highlights: • Yields, resource use efficiency and N{sub 2}O + CH{sub 4} emission

  15. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Science.gov (United States)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  16. Digestibility and performance of steers fed low-quality crop residues treated with calcium oxide to partially replace corn in distillers grains finishing diets.

    Science.gov (United States)

    Shreck, A L; Nuttelman, B L; Harding, J L; Griffin, W A; Erickson, G E; Klopfenstein, T J; Cecava, M J

    2015-02-01

    Two studies were conducted to identify methods for treating crop residues to improve digestibility and value in finishing diets based on corn grain and corn wet distillers grain with solubles (WDGS). In Exp. 1, 336 yearling steers (initial BW 356 ± 11.5 kg) were used in a 2 × 3 + 1 factorial arrangement of treatments with 6 pens per treatment. Factors were 3 crop residues (corn cobs, wheat straw, and corn stover) and 2 treatments where crop residues were either fed (20% diet DM) in their native form (NT) or alkaline treated with 5% CaO (DM basis) and hydrated to 50% DM before anaerobic storage (AT). Intakes were not affected by diet (F test; P = 0.30). An interaction between chemical treatment and residue (P 0.10) was observed between control (46% corn; DM basis) and AT (31% corn; DM basis) for DM digestibility (70.7% vs. 73.7%) or OM digestibility (72.1% vs. 77.0%). Dry matter intakes were not different between treated and untreated diets (P = 0.38), but lower (P < 0.01) NDF intake was observed for treated diets (3.1 vs. 3.5 kg/d), suggesting that CaO treatment was effective in solubilizing some carbohydrate. These data suggest that 15% replacement of corn and 10% untreated residue with treated forage result in a nutrient supply of OM similar to that of the control. The improvements in total tract fiber digestibility that occurred when treated forages were fed may have been related to increased digestibility of recoverable NDF and not to increased ruminal pH. Feeding chemically treated crop residues and WDGS is an effective strategy for replacing a portion of corn grain and roughage in feedlot diets.

  17. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    Science.gov (United States)

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  18. Energizing marginal soils: A perennial cropping system for Sida hermaphrodita

    Science.gov (United States)

    Nabel, Moritz; Poorter, Hendrik; Temperton, Vicky; Schrey, Silvia D.; Koller, Robert; Schurr, Ulrich; Jablonowski, Nicolai D.

    2017-04-01

    As a way to avoid land use conflicts, the use of marginal soils for the production of plant biomass can be a sustainable alternative to conventional biomass production (e.g. maize). However, new cropping strategies have to be found that meet the challenge of crop production under marginal soil conditions. We aim for increased soil fertility by the use of the perennial crop Sida hermaphrodita in combination with organic fertilization and legume intercropping to produce substantial biomass yield. We present results of a three-year outdoor mesocosm experiment testing the perennial energy crop Sida hermaphrodita grown on a marginal model substrate (sand) with four kinds of fertilization (Digestate broadcast, Digestate Depot, mineral NPK and unfertilized control) in combination with legume intercropping. After three years, organic fertilization (via biogas digestate) compared to mineral fertilization (NPK), reduced the nitrate concentration in leachate and increased the soil carbon content. Biomass yields of Sida were 25% higher when fertilized organically, compared to mineral fertilizer. In general, digestate broadcast application reduced root growth and the wettability of the sandy substrate. However, when digestate was applied locally as depot to the rhizosphere, root growth increased and the wettability of the sandy substrate was preserved. Depot fertilization increased biomass yield by 10% compared to digestate broadcast fertilization. We intercropped Sida with various legumes (Trifolium repens, Trifolium pratense, Melilotus spp. and Medicago sativa) to enable biological nitrogen fixation and make the cropping system independent from synthetically produced fertilizers. We could show that Medicago sativa grown on marginal substrate fixed large amounts of N, especially when fertilized organically, whereas mineral fertilization suppressed biological nitrogen fixation. We conclude that the perennial energy crop Sida in combination with organic fertilization has great

  19. NEW TRENDS IN AGRICULTURE - CROP SYSTEMS WITHOUT SOIL

    Directory of Open Access Journals (Sweden)

    Ioan GRAD

    2014-04-01

    Full Text Available The paper studied new system of agriculture - crop systems without soil. The culture systems without soil can be called also the hydroponic systems and now in Romania are not used only sporadically. In other countries (USA, Japan, the Netherlands, France, UK, Denmark, Israel, Australia, etc.. they represent the modern crop technology, widely applied to vegetables, fruits, fodder, medicinal plants and flowers by the experts in this area. In the world, today there are millions of hectares hydroponics, most of the vegetables, herbs, fruits of hypermarkets are coming from the culture systems without soil. The process consists of growing plants in nutrient solutions (not in the ground, resorting to an complex equipment, depending on the specifics of each crop, so that the system can be applied only in the large farms, in the greenhouses, and not in the individual households. These types of culture systems have a number of advantages and disadvantages also. Even if today's culture systems without soil seem to be the most modern and surprising technology applied in plant growth, the principle is very old. Based on him were built The Suspended Gardens of the Semiramis from Babylon, in the seventh century BC, thanks to him, the population from the Peru”s highlands cultivates vegetables on surfaces covered with water or mud. The peasant households in China, even today use the millenary techniques of the crops on gravel. .This hydroponic agriculture system is a way of followed for Romanian agriculture too, despite its high cost, because it is very productive, ecological, can cover, by products, all market demands and it answer, increasingly, constraints of urban life. The concept of hydroponics agriculture is known and appreciated in Romania also, but more at the theory level.

  20. Use efficiency of nitrogen fertilizers in wheat and losses of nitrogen in the crop system

    International Nuclear Information System (INIS)

    Barbaro, Nestor O.; Lopez, Silvia C.; Melaj, Mariana; Martin, O; Rojas de Tramontini, Susana

    1999-01-01

    Full text: The sustenance of crop production systems is related to the maintenance of soil fertility. The nutrients taken up by the crops must be restored to the soil and nutrient loss should be minimized. In order to study the dynamics of nitrogen in a wheat production system, some studies using isotopic tracers were begun. These studies were supported by IAEA (ARCAL XXII and IAEA ARG 5/008 projects). The field experiences were carried out in four different locations within Buenos Aires, in Balcarce, Barrow, Bordenave and Pergamino. Each one consisted of two treatments (fertilized and non fertilized) and four replicates for each. 15 N-labelled urea was applied to micro plots, within the fertilized plots, at sowing and the unlabelled fertilizer was broadcast over the rest of the plot. Application of N fertilization increased grain yields by 1600, 1500, 500 and 150 kg/ha in Balcarce, Barrow, Bordenave and Pergamino respectively. The low increase obtained in Pergamino can be related to climatic conditions. In this case, the yield was lower than the potential average due to high rain level and low solar radiation. The recovery in plants of 15 N-labelled fertilizer was high, between 36,5% and 43%, except for Pergamino where only 16% of the labelled urea was recovered. Since samples were taken at different growing stages, some data on nitrogen losses from the crop are available. It is very important to continue the measurement of these losses

  1. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Science.gov (United States)

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Parametrizing coarse grained models for molecular systems at equilibrium

    KAUST Repository

    Kalligiannaki, Evangelia; Chazirakis, A.; Tsourtis, A.; Katsoulakis, M. A.; Plechá č, P.; Harmandaris, V.

    2016-01-01

    Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.

  3. Parametrizing coarse grained models for molecular systems at equilibrium

    KAUST Repository

    Kalligiannaki, Evangelia

    2016-10-18

    Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.

  4. Effects of crystallographic orientation vs. grain interaction on slip systems

    DEFF Research Database (Denmark)

    Winther, Grethe

    . Such investigations reveal both similarities and differences. The present contribution gives an overview of a series of investigations, including transmission electron microscopy as well as three-dimensional x-ray diffraction on polycrystalline aluminium deformed to strains of 5-50%. The data are analysed focusing...... on the set of activated slip systems, more precisely whether the observed differences can be attributed to fluctuations in the relative activities of the same set of systems or whether activation of truly different systems is the origin of the variations between and within grains....

  5. The Energy Effectiveness Of Crops In Crop Rotation Under Different Soil Tillage Systems

    Directory of Open Access Journals (Sweden)

    Strašil Zdeněk

    2015-09-01

    Full Text Available The paper identifies and compares the energy balance of winter wheat, spring barley and white mustard – all grown in crop rotation under different tillage conditions. The field trial included the conventional tillage (CT method, minimum tillage (MT and a system with no tillage (NT. The energy inputs included both the direct and indirect energy component. Energy outputs are evaluated as gross calorific value (gross heating value of phytomass dry matter of the primary product and the total harvested production. The energy effectiveness (energy output: energy input was selected for evaluation. The greatest energy effectiveness for the primary product was established as 6.35 for barley, 6.04 for wheat and 3.68 for mustard; in the case of total production, it was 9.82 for barley, 10.08 for wheat and 9.72 for mustard. When comparing the different tillage conditions, the greatest energy effectiveness was calculated for the evaluated crops under the MT operation and represented the primary product of wheat at 6.49, barley at 6.69 and mustard at 3.92. The smallest energy effectiveness for the primary product was found in wheat 5.77 and barley 6.10 under the CT option; it was 3.55 for mustard under the option of NT. Throughout the entire cropping pattern, the greatest energy effectiveness was established under the minimum tillage option – 5.70 for the primary product and 10.47 for the total production. On the other hand, the smallest values were calculated under CT – 5.22 for the primary product and 9.71 for total production.

  6. Cover Crop-Based, Organic Rotational No-Till Corn and Soybean Production Systems in the Mid-Atlantic United States

    Directory of Open Access Journals (Sweden)

    John M. Wallace

    2017-04-01

    Full Text Available Cover crop-based, organic rotational no-till (CCORNT corn and soybean production is becoming a viable strategy for reducing tillage in organic annual grain systems in the mid-Atlantic, United States. This strategy relies on mechanical termination of cover crops with a roller-crimper and no-till planting corn and soybean into cover crop mulches. Here, we report on recent research that focuses on integrated approaches for crop, nutrient and pest management in CCORNT systems that consider system and regional constraints for adoption in the mid-Atlantic. Our research suggests that no-till planting soybean into roller-crimped cereal rye can produce consistent yields. However, constraints to fertility management have produced less consistent no-till corn yields. Our research shows that grass-legume mixtures can improve N-release synchrony with corn demand and also improve weed suppression. Integration of high-residue inter-row cultivation improves weed control consistency and may reduce reliance on optimizing cover crop biomass accumulation for weed suppression. System-specific strategies are needed to address volunteer cover crops in later rotational phases, which result from incomplete cover crop termination with the roller crimper. The paucity of adequate machinery for optimizing establishment of cash crops into thick residue mulch remains a major constraint on CCORNT adoption. Similarly, breeding efforts are needed to improve cover crop germplasm and develop regionally-adapted varieties.

  7. Short-term winter wheat (Triticum aestivum L.) cover crop grazing influence on calf growth, grain yield, and soil properties

    Science.gov (United States)

    Winter cover cropping has many agronomic benefits and can provide forages base for spring livestock grazing. Winter cover crop grazing has shown immediate economic benefits through increased animal production. Winter wheat pasture grazing is common in beef cow-calf production and stocker operations....

  8. Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro- and micronutrients in grains in rice–wheat cropping sequence

    Directory of Open Access Journals (Sweden)

    Anuj Rana

    2015-12-01

    Full Text Available The influence of plant growth promoting bacteria (PGPB and cyanobacteria, alone and in combination, was investigated on micronutrient enrichment and yield in rice–wheat sequence, over a period of two years. Analysis of variance (ANOVA in both crops indicated significant differences in soil dehydrogenase activity and micronutrient enrichment in grains (Fe, Zn in rice, and Cu, Mn in wheat. The combined inoculation of Anabaena oscillarioides CR3, Brevundimonas diminuta PR7, and Ochrobactrum anthropi PR10 (T6 significantly increased nitrogen, phosphorus, and potassium (NPK content and improved rice yield by 21.2%, as compared to the application of recommended dose of NPK fertilizers (T2. The treatment T5 (Providencia sp. PR3 + B. diminuta PR7 + O. anthropi PR10 recorded an enhancement of 13–16% in Fe, Zn, Cu, and Mn concentrations, respectively, in rice grains. In wheat, Providencia sp. PW5 (T6 recorded the highest yield (5.23 Mg ha−1 and significantly higher enrichment of Fe and Cu (44–45% in the grains. This study highlighted the promise of combinations of cyanobacteria/bacteria and their synergistic action in biofortification and providing savings of 40–60 kg N ha−1. Future focus needs to be towards integrating such promising environment-friendly and environmentally sustainable options in nutrient management strategies for this cropping sequence.

  9. Organic versus Conventional Cropping Sustainability: A Comparative System Analysis

    Directory of Open Access Journals (Sweden)

    Tiffany L. Fess

    2018-01-01

    Full Text Available We are at a pivotal time in human history, as the agricultural sector undergoes consolidation coupled with increasing energy costs in the context of declining resource availability. Although organic systems are often thought of as more sustainable than conventional operations, the lack of concise and widely accepted means to measure sustainability makes coming to an agreement on this issue quite challenging. However, an accurate assessment of sustainability can be reached by dissecting the scientific underpinnings of opposing production practices and crop output between cropping systems. The purpose of this review is to provide an in-depth and comprehensive evaluation of modern global production practices and economics of organic cropping systems, as well as assess the sustainability of organic production practices through the clarification of information and analysis of recent research. Additionally, this review addresses areas where improvements can be made to help meet the needs of future organic producers, including organic-focused breeding programs and necessity of coming to a unified global stance on plant breeding technologies. By identifying management strategies that utilize practices with long-term environmental and resource efficiencies, a concerted global effort could guide the adoption of organic agriculture as a sustainable food production system.

  10. Soil Erodibility Parameters Under Various Cropping Systems of Maize

    Science.gov (United States)

    van Dijk, P. M.; van der Zijp, M.; Kwaad, F. J. P. M.

    1996-08-01

    For four years, runoff and soil loss from seven cropping systems of fodder maize have been measured on experimental plots under natural and simulated rainfall. Besides runoff and soil loss, several variables have also been measured, including rainfall kinetic energy, degree of slaking, surface roughness, aggregate stability, soil moisture content, crop cover, shear strength and topsoil porosity. These variables explain a large part of the variance in measured runoff, soil loss and splash erosion under the various cropping systems. The following conclusions were drawn from the erosion measurements on the experimental plots (these conclusions apply to the spatial level at which the measurements were carried out). (1) Soil tillage after maize harvest strongly reduced surface runoff and soil loss during the winter; sowing of winter rye further reduced winter erosion, though the difference with a merely tilled soil is small. (2) During spring and the growing season, soil loss is reduced strongly if the soil surface is partly covered by plant residues; the presence of plant residue on the surface appeared to be essential in achieving erosion reduction in summer. (3) Soil loss reductions were much higher than runoff reductions; significant runoff reduction is only achieved by the straw system having flat-lying, non-fixed plant residue on the soil surface; the other systems, though effective in reducing soil loss, were not effective in reducing runoff.

  11. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    ), and moldboard plowing (MP) with and without a cover crop were evaluated in a long-term experiment on a sandy loam soil in Denmark. Chemical, physical, and biological soil properties were measured in the spring of 2012. The field measurements included mean weight diameter (MWD) after the drop-shatter test......, penetration resistance, and visual evaluation of soil structure (VESS). In the laboratory, aggregate strength, water-stable aggregates (WSA), and clay dispersibility were measured. The analyzed chemical and biological properties included soil organic C (SOC), total N, microbial biomass C, labile P and K......Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H...

  12. Managed Multi-strata Tree + Crop Systems: An Agroecological Marvel

    Directory of Open Access Journals (Sweden)

    P. K. Ramachandran Nair

    2017-12-01

    Full Text Available Today, when the emphasis on single-species production systems that is cardinal to agricultural and forestry programs the world over has resulted in serious ecosystem imbalances, the virtues of the time-tested practice of growing different species together as in managed Multi-strata Tree + Crop (MTC systems deserve serious attention. The coconut-palm-based multispecies systems in tropical homegardens and shaded perennial systems are just two such systems. A fundamental ecological principle of these systems is niche complementarity, which implies that systems that are structurally and functionally more complex than crop- or tree monocultures result in greater efficiency of resource (nutrients, light, and water capture and utilization. Others include spatial and temporal heterogeneity, perennialism, and structural and functional diversity. Unexplored or under-exploited areas of benefits of MTC systems include their ecosystem services such as carbon storage, climate regulation, and biodiversity conservation. These multispecies integrated systems indeed represent an agroecological marvel, the principles of which could be utilized in the design of sustainable as well as productive agroecosystems. Environmental and ecological specificity of MTC systems, however, is a unique feature that restricts their comparison with other land-use systems and extrapolation of the management features used in one location to another.

  13. Cover crop root, shoot, and rhizodeposit contributions to soil carbon in a no- till corn bioenergy cropping system

    Science.gov (United States)

    Austin, E.; Grandy, S.; Wickings, K.; McDaniel, M. D.; Robertson, P.

    2016-12-01

    Crop residues are potential biofuel feedstocks, but residue removal may result in reduced soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass and as well as help to mitigate the negative effects of residue removal by adding belowground C to stable soil C pools. In a no-till continuous corn bioenergy system in the northern portion of the US corn belt, we used 13CO2 pulse labeling to trace C in a winter rye (secale cereale) cover crop into different soil C pools for two years following rye termination. Corn stover contributed 66 (another 163 was in harvested corn stover), corn roots 57, rye shoot 61, rye roots 59, and rye rhizodeposits 27 g C m-2 to soil C. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools and much of the root-derived C was in mineral- associated soil fractions. Our results underscore the importance of cover crop roots vs. shoots as a source of soil C. Belowground C inputs from winter cover crops could substantially offset short term stover removal in this system.

  14. Soil Management Practices to Improve Nutrient-use Efficiencies and Reduce Risk in Millet-based Cropping Systems in the Sahel

    Directory of Open Access Journals (Sweden)

    Koala, S.

    2003-01-01

    Full Text Available Low soil fertility and moisture deficit are among the main constraints to sustainable crop yields in the Sahel. A study therefore, was conducted at the ICRISAT Sahelian Center, Sadore in Niger to test the hypothesis that integrated soil husbandry practices consisting of manure, fertilizer and crop residues in rotational cropping systems use organic and mineral fertilizes efficiently, thereby resulting in higher yields and reduced risk. Results from an analysis of variance showed that choice of cropping systems explained more than 50% of overall variability in millet and cowpea grain yields. Among the cropping systems, rotation gave higher yields than sole crop and intercropping systems and increased millet yield by 46% without fertilizer. Rainfall-use efficiency and partial factor productivity of fertilizer were similarly higher in rotations than in millet monoculture system. Returns from cowpea grown in cowpea-millet rotation without fertilizer and the medium rates of fertilizers (4 kg P.ha-1 + 15 kg N.ha-1 were found to be most profitable in terms of high returns and low risk, principally because of a higher price of cowpea than millet. The study recommends crop diversification, either in the form of rotations or relay intercropping systems for the Sahel as an insurance against total crop failure.

  15. nteraction of nutrient resource and crop diversity on resource use efficiency in different cropping systems

    Directory of Open Access Journals (Sweden)

    E azizi

    2016-05-01

    of 3 soybean varieties, intercropping of millet, soybean and sesame and intercropping of millet, sesame, fenugreek and ajowan showed the highest NUE. In the two years, intercropping of millet, soybean and sesame and intercropping of millet, sesame, fenugreek and ajowan showed the highest nitrogen and phosphorus absorption efficiency (NAE. Intercropping of millet, soybean and sesame showed the highest potassium uptake efficiency. In this study, nutrient resource did not have a significant effect on water and nutrient use efficiency. The research results have indicated that often nitrogen amount and use efficiency in legume and non legume intercropping were higher than monocultures. This indicates the synergist effect in the intercroppings (Vandermeer, 1989; Szumigalski & Van Acker, 2006. In general, the different benefits of diversity and better use of available inputs are obtained by increasing the diversity of crops and proper selection of plants cultivated in intercropping systems and crop rotations in monoculture systems Acknowledgments This research (044 p was funded by the Vice Chancellor for Research of the Ferdowsi University of Mashhad, which is hereby acknowledged.

  16. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    The results revealed that the water use efficiency (WUE) and irrigation water use efficiency (IWUE) were typically higher in the AIS than in the conventional irrigation control system (CIS). Under the AIS treatment, the WUE and IWUE values were 1.64 and 1.37 k·gm-3 for wheat, and 7.50 and 6.50 kg·m-3 for tomato crops; ...

  17. Cover crop rotations in no-till system: short-term CO2 emissions and soybean yield

    Directory of Open Access Journals (Sweden)

    João Paulo Gonsiorkiewicz Rigon

    Full Text Available ABSTRACT: In addition to improving sustainability in cropping systems, the use of a spring and winter crop rotation system may be a viable option for mitigating soil CO2 emissions (ECO2. This study aimed to determine short-term ECO2 as affected by crop rotations and soil management over one soybean cycle in two no-till experiments, and to assess the soybean yields with the lowest ECO2. Two experiments were carried out in fall-winter as follows: i triticale and sunflower were grown in Typic Rhodudalf (TR, and ii ruzigrass, grain sorghum, and ruzigrass + grain sorghum were grown in Rhodic Hapludox (RH. In the spring, pearl millet, sunn hemp, and forage sorghum were grown in both experiments. In addition, in TR a fallow treatment was also applied in the spring. Soybean was grown every year in the summer, and ECO2 were recorded during the growing period. The average ECO2 was 0.58 and 0.84 g m2 h–1 with accumulated ECO2 of 5,268 and 7,813 kg ha–1 C-CO2 in TR and RH, respectively. Sunn hemp, when compared to pearl millet, resulted in lower ECO2 by up to 12 % and an increase in soybean yield of 9% in TR. In RH, under the winter crop Ruzigrazz+Sorghum, ECO2 were lower by 17%, although with the same soybean yield. Soil moisture and N content of crop residues are the main drivers of ECO2 and soil clay content seems to play an important role in ECO2 that is worthy of further studies. In conclusion, sunn hemp in crop rotation may be utilized to mitigate ECO2 and improve soybean yield.

  18. Dynamic cropping systems: Holistic approach for dryland agricultural systems in the northern Great Plains of North America

    Science.gov (United States)

    Cropping systems over the past century have developed greater crop specialization, more effectively conserve our soil and water resources, and are more resilient. The purpose of this chapter is to discuss the evolution of cropping systems in the Northern Great Plains and provide an approach to crop...

  19. Fertilization management in bean crop under organic production system

    Directory of Open Access Journals (Sweden)

    Leandro Barradas Pereira

    2015-03-01

    Full Text Available Nowadays the food production systems tend to include the sustainable management of soil and water. One of the main obstacles to the organic cultivation of common bean is the fertilization management. This study aimed to evaluate doses of organic fertilizer containing slaughterhouse residues (1.0 t ha-1, 1.5 t ha-1, 2.0 t ha-1 and 2.5 t ha-1. The experimental design was randomized blocks in a 4x2x2 factorial scheme, with 16 treatments and 4 replications. Plant dry weight; foliar diagnose; initial and final plant population; number of pods per plant, grains per plant and grains per pod; 1000-grain weight; and grain yield were evaluated. It was concluded that the methods and time of organic fertilizer application do not affect the production components and yield in common bean. The dose of 2.5 t ha-1 of organic fertilizer provided the highest common bean yield in 2012, but it did not express its maximum production capacity.

  20. Using Winter Annual Cover Crops in a Virginia No-till Cotton Production System

    OpenAIRE

    Daniel, James B. II

    1997-01-01

    Cotton (Gossypium hirsutum L.) is a low residue crop, that may not provide sufficient surface residue to reduce erosion and protect the soil. A winter annual cover crop could alleviate erosion between cotton crops. Field experiments were conducted to evaluate selected winter annual cover crops for biomass production, ground cover, and N assimilation. The cover crop treatments were monitored under no-till and conventional tillage systems for the effects on soil moisture, cotton yield and qu...

  1. Effects of alternative cropping systems on globe artichoke qualitative traits.

    Science.gov (United States)

    Spanu, Emanuela; Deligios, Paola A; Azara, Emanuela; Delogu, Giovanna; Ledda, Luigi

    2018-02-01

    Traditionally, globe artichoke cultivation in the Mediterranean basin is based on monoculture and on use of high amounts of nitrogen fertiliser. This raises issues regarding its compatibility with sustainable agriculture. We studied the effect of one typical conventional (CONV) and two alternative cropping systems [globe artichoke in sequence with French bean (NCV1), or in biannual rotation (NCV2) with cauliflower and with a leguminous cover crop in inter-row spaces] on yield, polyphenol and mineral content of globe artichoke heads over two consecutive growing seasons. NCV2 showed statistical differences in terms of fresh product yield with respect to the monoculture systems. In addition, the dihydroxycinnamic acids and dicaffeoylquinic acids of non-conventional samples were one-fold significantly higher than the conventional one. All the samples reported good mineral content, although NCV2 achieved a higher Fe content than conventional throughout the two seasons. After two and three dates of sampling, the CONV samples showed the highest levels of K content. In our study, an acceptable commercial yield and quality of 'Spinoso sardo' were achieved by shifting the common conventional agronomic management to more sustainable ones, by means of an accurate choice of cover crop species and rotations introduced in the systems. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan.

    Science.gov (United States)

    Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad

    2018-01-01

    Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net

  3. Integrated Soil, Water and Nitrogen Management For Sustainable Rice–Wheat Cropping System in Pakistan

    International Nuclear Information System (INIS)

    Hussain, F.; Yasin, M.; Gurmani, A.R.; Zia, M.S.

    2016-01-01

    The area under the rice–wheat (R–W) cropping system in Pakistan is about 2.2 Mha and despite its great importance as staple foods for the local population, the productivity of the system is poor due to several constraints. Rice (Oryza sativa L.) and wheat (Triticum aestivum L.) are normally grown in sequence on the same land in the same year. Field experiments with rice and wheat were conducted during four years on a Typic Halorthid soil at Lahore, in the alluvial plain of Punjab, Pakistan to assess nitrogen use efficiency and water productivity under both traditional and emerging crop establishment methods (raised beds, unpuddled soil, direct seeding). The climate in this region is semiarid. The experimental design was a randomized complete block design with five crop establishment methods as treatments and four replications. One micro-plot was laid down in each main plot to apply 15 N labelled urea (5 atom % 15 N). Both wheat and rice received a uniform application of 120 kg N ha -1 as urea, 30 kg P ha -1 as triple super phosphate, 50 kg K ha -1 as potassium sulphate and 5 kg Zn ha -1 as zinc sulphate. Pooled data of wheat grown in 2002–03, 2004–05 and 2005–06 showed that the highest wheat grain yield (3.89 t ha -1 ) was produced with conventional flatbed sowing (well pulverised soil) followed by raised bed sowing (3.79–3.82 t ha -1 ), whereas the lowest yield (3.45 t ha -1 ) was obtained in flat bed sowing with zero till rice in sequence. The highest rice paddy yield (4.15 t ha -1 ) was achieved with conventional flooded transplanted rice at 20 × 20 cm spacing and the lowest paddy yield (3.57 t ha -1 ) was recorded with direct seeding of rice in zero tilled soil. Total N uptake in wheat was maximum (117 kg ha -1 ) with conventional flatbed sowing and it was lowest with zero tilled soil. The highest total N uptake by rice (106 kg ha -1 ) was recorded with conventional flooded transplanted rice at 20 × 20 cm spacing and the lowest (89 kg ha -1 ) with

  4. Effects of dietary combination of corn and rice as whole crop silage and grain sources on carbohydrate digestion and nitrogen use in steers.

    Science.gov (United States)

    Li, Zongfu; Sugino, Toshihisa; Obitsu, Taketo; Taniguchi, Kohzo

    2014-02-01

    Four Holstein steers were used to evaluate the combination effects of whole crop corn (Cs) or rice (Rs) silage with steam-flaked corn (Cg) or rice (Rg) grain (four dietary treatments) on ruminal carbohydrate digestion, duodenal nitrogen (N) flow and plasma essential amino acid (EAA) concentration. The ruminal digestibility of starch and nonfiber carbohydrate (NFC) for Rs and Rg diets compared with Cs and Cg diets was greater, but that of neutral detergent fiber (aNDFom) was less. Because the ruminal disappearance of NFC plus aNDFom was similar across four dietary treatments, microbial N flow was not affected by the diets. There was an interaction of methionine (Met) flow by silage and grain sources: greatest for CsRg and least for RsRg diet, and blood plasma concentration of Met after feeding was lower for Rg than Cg diets. Postprandial reduction degree of plasma EAA varied with the diets and individual EAA. The Cs diets compared with the Rs diets tended to be greater in N retention because of greater digestible organic matter (OM) intake. These results suggest that silage source combined with corn or rice grain affects N use in steers through the digestible OM intake, and the kinds of limiting AA may differ among the combination of silage and grain sources. © 2013 Japanese Society of Animal Science.

  5. Effects of tillage and cropping systems on yield and nitrogen fixation of cowpea intercropped with maize in northen Guinea savanna zone of Ghana

    International Nuclear Information System (INIS)

    Kombiok, J.M.; Safo, E.Y; Quansah, C.

    2006-01-01

    Published information is scanty on the response of crops in mixed cropping systems to the various tillage systems practised by farmers in the northern savanna zone of Ghana. A field experiment assessed the yield and nitrogen (N) fixation of cowpea (Vigna unguiculata (L.) Walp) intercropped with maize (Zea mays L.) on four different tillage systems at Nyankpala in the Northern Region of Ghana. The experiment was laid in a split-plot design with four replications. The main factor was tillage systems comprising conventional (Con), bullock plough (BP), hand hoe (HH) and zero tillage (ZT). The sub-factor was cropping systems (CRPSYT) which consisted of sole maize, sole cowpea, maize/cowpea inter-row cropping system, and bare fallow in 2000. The last named was replaced by maize/cowpea intra-row cropping system in 2001. The results showed that Con and BP, which produced over 10 cm plough depth, significantly reduced soil bulk density that favoured significant (P I). The LERs ranged from 1.43 to 1.79 in 2000, and from 1.23 to 1.24 in 2001 for Con and ZT, respectively. These indicate 33 and 52 percent mean increases in productivity of cowpea and maize, respectively, over their pure stands across the 2 years. However, grain yields of both crops from the inter- and intra-row cropping systems were not different. (au)

  6. FROM ATOMISTIC TO SYSTEMATIC COARSE-GRAINED MODELS FOR MOLECULAR SYSTEMS

    KAUST Repository

    Harmandaris, Vagelis; Kalligiannaki, Evangelia; Katsoulakis, Markos; Plechac, Petr

    2017-01-01

    The development of systematic (rigorous) coarse-grained mesoscopic models for complex molecular systems is an intense research area. Here we first give an overview of methods for obtaining optimal parametrized coarse-grained models, starting from

  7. Cover Crop (Rye) and No-Till System in Wisconsin

    OpenAIRE

    Alföldi, Thomas

    2014-01-01

    Erin Silva, University of Wisconsin, describes an organic no-till production technique using rye as cover crop to suppress weeds in the following production season. Using a roller-crimper, the overwintering rye is terminated at the time of cash crop planting, leaving a thick mat of plant residue on the soil surface. Soybeans are sown directly into the cover crop residue, allowing the cash crop to emerge through the terminated cover crop while suppressing weeds throughout the season. W...

  8. No till system of maize and crop-livestock integration

    Directory of Open Access Journals (Sweden)

    Edmar Eduardo Bassan Mendes

    2013-12-01

    Full Text Available The aim of this work was to evaluate the implementation of the Integrated Crop-Livestock (ICL in beef cattle farms where the corn was planted directly on the pasture, under no-till system, in the first year. The Crop-Livestock Integration (CLI models evaluated consisted of Brachiaria decumbens pastures intercropped with corn in the no tillage system. However, the evaluated CLI system differed from the usual system because it did not use the conventional tillage in the first year, while the conventional soil preparation and sowing of grass is used by most of the Brazilian farms. The results show that in the first year the period of time spent planting and side-dressing nitrogen   on corn was longer compared to the following years, mainly due to the lack of uniformity of the ground surface, once no conventional tillage was used to prepare the soil and these operations were performed with own implements for direct planting. Therefore, many seeds were placed either very deep or not buried, thus compromising the crop and becoming necessary to replant the corn with a manual planter. From the second year on, even though the conditions were not ideal, the ground surface became more accessible for the sowing and cultivation of corn, after the tillage of the first year. The time spent in most operations performed was longer than usual, especially planting and side-dressing nitrogen on the corn so that the discs did not chop off plants due to the irregularities of the ground surface. Productivity dropped due to the problems already discussed that contributed to a lower income. It is therefore concluded that, under these experimental conditions, the conventional tillage is imperative when implementing the CLI system, even considering the soil management improvements observed from the first to the second year.

  9. Yields of crops on a rhodic ferralsol in southern Brazil in relation to ...

    African Journals Online (AJOL)

    Even though no-tillage, crop rotation management systems have been accepted as useful for sustaining crop production, there is the need to identify which crops can be used for such rotations. This study evaluated the dry matter and grain yields of eight winter and two summer crops (maize, Zea mays L. and soybean, ...

  10. Classification system for rain fed wheat grain cultivars using artificial ...

    African Journals Online (AJOL)

    Artificial neural network (ANN) models have found wide applications, including ... of grains is essential for various applications as wheat grain industry and cultivation. In order to classify the rain fed wheat cultivars using artificial neural network ...

  11. Systems study of fuels from grains and grasses. Quarterly progress report, July--October 1976

    Energy Technology Data Exchange (ETDEWEB)

    Benson, W.; Allen, A.; Athey, R.; McElroy, A.

    1976-11-15

    The specific objectives of the project are to determine on a geographic basis the current and potential USA production capability for grain and grass crops, to perform a preliminary screening of conversion processes, and to perform preliminary technical and economic feasibility analyses. The results obtained to date on biomass production, conversion processes, and data management are reported. (JSR)

  12. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Science.gov (United States)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  13. Crop diversification, tillage, and management system influences on spring wheat yield and soil water use

    Science.gov (United States)

    Depleted soil quality, decreased water availability, and increased weed competition constrain spring wheat production in the northern Great Plains. Integrated crop management systems are necessary for improved crop productivity. We conducted a field experiment from 2004-2010 comparing productivity...

  14. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System

    Directory of Open Access Journals (Sweden)

    Jakob Geipel

    2014-10-01

    Full Text Available Precision Farming (PF management strategies are commonly based on estimations of within-field yield potential, often derived from remotely-sensed products, e.g., Vegetation Index (VI maps. These well-established means, however, lack important information, like crop height. Combinations of VI-maps and detailed 3D Crop Surface Models (CSMs enable advanced methods for crop yield prediction. This work utilizes an Unmanned Aircraft System (UAS to capture standard RGB imagery datasets for corn grain yield prediction at three early- to mid-season growth stages. The imagery is processed into simple VI-orthoimages for crop/non-crop classification and 3D CSMs for crop height determination at different spatial resolutions. Three linear regression models are tested on their prediction ability using site-specific (i unclassified mean heights, (ii crop-classified mean heights and (iii a combination of crop-classified mean heights with according crop coverages. The models show determination coefficients \\({R}^{2}\\ of up to 0.74, whereas model (iii performs best with imagery captured at the end of stem elongation and intermediate spatial resolution (0.04m\\(\\cdot\\px\\(^{-1}\\.Following these results, combined spectral and spatial modeling, based on aerial images and CSMs, proves to be a suitable method for mid-season corn yield prediction.

  15. Methane emissions, feed intake, performance, digestibility, and rumen fermentation of finishing beef cattle offered whole-crop wheat silages differing in grain content.

    Science.gov (United States)

    Mc Geough, E J; O'Kiely, P; Hart, K J; Moloney, A P; Boland, T M; Kenny, D A

    2010-08-01

    This study aimed to quantify the methane emissions and feed intake, performance, carcass traits, digestibility, and rumen fermentation characteristics of finishing beef cattle offered diets based on whole-crop wheat (WCW) silages differing in grain content and to rank these relative to diets based on grass silage (GS) and ad libitum concentrates (ALC). In Exp. 1, a total of 90 continental crossbred steers [538 +/- 27.6 kg of BW (mean +/- SD)] were blocked by BW and assigned in a randomized complete block design to 1 of 6 treatments based on 4 WCW silages [grain-to-straw plus chaff ratios of 11:89 (WCW I), 21:79 (WCW II), 31:69 (WCW III), and 47:53 (WCW IV)], GS, and ALC. Increasing grain content in WCW silage resulted in a quadratic (P = 0.01) response in DMI, with a linear (P content of WCW silage. A quadratic (P content of WCW; however, linear decreases were observed when expressed relative to DMI (P = 0.01) and CG (P rumen fermentation parameters were determined using 4 ruminally cannulated Rotbunde-Holstein steers (413 +/- 30.1 kg of BW) randomly allocated among WCW I, the average of WCW II and III (WCW II/III), WCW IV, and GS in a 4 x 4 Latin square design. Ruminal pH and total VFA concentration did not differ across dietary treatments. Molar proportion of acetic acid decreased (P = 0.01), with propionic acid tending to increase (P = 0.06) with increasing grain content. It was concluded that increasing the grain content of WCW silage reduced methane emissions relative to DMI and CG and improved animal performance. However, the relativity of GS to WCW in terms of methane emissions was dependent on the unit of expression used. Cattle offered ALC exhibited decreased methane emissions and greater performance than those offered any of the silage-based treatments.

  16. Mitigating Groundwater Depletion in North China Plain with Cropping System that Alternate Deep and Shallow Rooted Crops

    Directory of Open Access Journals (Sweden)

    Xiao-Lin Yang

    2017-06-01

    Full Text Available In the North China Plain, groundwater tables have been dropping at unsustainable rates of 1 m per year due to irrigation of a double cropping system of winter wheat and summer maize. To reverse the trend, we examined whether alternative crop rotations could save water. Moisture contents were measured weekly at 20 cm intervals in the top 180 cm of soil as part of a 12-year field experiment with four crop rotations: sweet potato→ cotton→ sweet potato→ winter wheat-summer maize (SpCSpWS, 4-year cycle; peanuts → winter wheat-summer maize (PWS, 2-year cycle; ryegrass–cotton→ peanuts→ winter wheat-summer maize (RCPWS, 3-year cycle; and winter wheat-summer maize (WS, each year. We found that, compared to WS, the SpCSpWS annual evapotranspiration was 28% lower, PWS was 19% lower and RCPWS was 14% lower. The yield per unit of water evaporated improved for wheat within any alternative rotation compared to WS, increasing up to 19%. Average soil moisture contents at the sowing date of wheat in the SpCSpWS, PWS, and RCPWS rotations were 7, 4, and 10% higher than WS, respectively. The advantage of alternative rotations was that a deep rooted crop of winter wheat reaching down to 180 cm followed shallow rooted crops (sweet potato and peanut drawing soil moisture from 0 to 120 cm. They benefited from the sequencing and vertical complementarity of soil moisture extraction. Thus, replacing the traditional crop rotation with cropping system that involves rotating with annual shallow rooted crops is promising for reducing groundwater depletion in the North China Plain.

  17. Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing

    Directory of Open Access Journals (Sweden)

    Betty Mulianga

    2015-10-01

    Full Text Available Over the recent past, there has been a growing concern on the need for mapping cropping practices in order to improve decision-making in the agricultural sector. We developed an original method for mapping cropping practices: crop type and harvest mode, in a sugarcane landscape of western Kenya using remote sensing data. At local scale, a temporal series of 15-m resolution Landsat 8 images was obtained for Kibos sugar management zone over 20 dates (April 2013 to March 2014 to characterize cropping practices. To map the crop type and harvest mode we used ground survey and factory data over 1280 fields, digitized field boundaries, and spectral indices (the Normalized Difference Vegetation Index (NDVI and the Normalized Difference Water Index (NDWI were computed for all Landsat images. The results showed NDVI classified crop type at 83.3% accuracy, while NDWI classified harvest mode at 90% accuracy. The crop map will inform better planning decisions for the sugar industry operations, while the harvest mode map will be used to plan for sensitizations forums on best management and environmental practices.

  18. GIS-based spatial decision support system for grain logistics management

    Science.gov (United States)

    Zhen, Tong; Ge, Hongyi; Jiang, Yuying; Che, Yi

    2010-07-01

    Grain logistics is the important component of the social logistics, which can be attributed to frequent circulation and the great quantity. At present time, there is no modern grain logistics distribution management system, and the logistics cost is the high. Geographic Information Systems (GIS) have been widely used for spatial data manipulation and model operations and provide effective decision support through its spatial database management capabilities and cartographic visualization. In the present paper, a spatial decision support system (SDSS) is proposed to support policy makers and to reduce the cost of grain logistics. The system is composed of two major components: grain logistics goods tracking model and vehicle routing problem optimization model and also allows incorporation of data coming from external sources. The proposed system is an effective tool to manage grain logistics in order to increase the speed of grain logistics and reduce the grain circulation cost.

  19. The feasibility of crop diversification in rice based cropping systems in haor ecosystem

    OpenAIRE

    Shopan, J.; Bhuiya, M.S.U.; Kader, M.A.; Hasan, M.K.

    2012-01-01

    An experiment was conducted in five farmers’ field in Dingaputa haor of Purba Tetulia village, Mohangonj Upazila in Netrakona district during the period from 20 July 2010 to 15 May 2011. The objective of the study was to determine the feasibility of growing short duration vegetable and oil crops in seasonal fallow of Boro rice-Fallow-Fallow cropping patterns in terms of both combined yields and economic performance. Six short duration vegetables such as potato, red amaranth, stem amaranth, sp...

  20. Prospects of whole grain crops of wheat, rye and triticale under different fertilizer regimes for energy production

    DEFF Research Database (Denmark)

    Jørgensen, Johannes Ravn; Deleuran, Lise Christina; Wollenweber, Bernd

    2007-01-01

    is an advantage for biomass for energy purposes. The mineral content of the grain fraction changed only little between years and locations. By contrast, large variations in the analysed ions in the straw fraction between years and locations were observed. The use of K fertilizers resulted in a significantly...

  1. Effects of stored feed cropping systems and farm size on the profitability of Maine organic dairy farm simulations.

    Science.gov (United States)

    Hoshide, A K; Halloran, J M; Kersbergen, R J; Griffin, T S; DeFauw, S L; LaGasse, B J; Jain, S

    2011-11-01

    United States organic dairy production has increased to meet the growing demand for organic milk. Despite higher prices received for milk, organic dairy farmers have come under increasing financial stress due to increases in concentrated feed prices over the past few years, which can make up one-third of variable costs. Market demand for milk has also leveled in the last year, resulting in some downward pressure on prices paid to dairy farmers. Organic dairy farmers in the Northeast United States have experimented with growing different forage and grain crops to maximize on-farm production of protein and energy to improve profitability. Three representative organic feed systems were simulated using the integrated farm system model for farms with 30, 120, and 220 milk cows. Increasing intensity of equipment use was represented by organic dairy farms growing only perennial sod (low) to those with corn-based forage systems, which purchase supplemental grain (medium) or which produce and feed soybeans (high). The relative profitability of these 3 organic feed systems was strongly dependent on dairy farm size. From results, we suggest smaller organic dairy farms can be more profitable with perennial sod-based rather than corn-based forage systems due to lower fixed costs from using only equipment associated with perennial forage harvest and storage. The largest farm size was more profitable using a corn-based system due to greater economies of scale for growing soybeans, corn grain, winter cereals, and corn silages. At an intermediate farm size of 120 cows, corn-based forage systems were more profitable if perennial sod was not harvested at optimum quality, corn was grown on better soils, or if milk yield was 10% higher. Delayed harvest decreased the protein and energy content of perennial sod crops, requiring more purchased grain to balance the ration and resulting in lower profits. Corn-based systems were less affected by lower perennial forage quality, as corn silage

  2. An ultrasonic system for weed detection in cereal crops.

    Science.gov (United States)

    Andújar, Dionisio; Weis, Martin; Gerhards, Roland

    2012-12-13

    Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were

  3. Comparison of the effects of different crop rotation systems on winter ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... were found the best crop rotation systems under rain-fed conditions of ... Crop rotation is one of the major cultural practices in the .... components such as seed weight in a spike, harvest index, seed ..... due to high prices of product belonging to fodder pea and ... was a cash crop in agricultural marketing.

  4. Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops

    DEFF Research Database (Denmark)

    Thorup-Kristensen, Kristian; Dresbøll, Dorte Bodin; Kristensen, Hanne Lakkenborg

    2012-01-01

    systems based on fertility building crops (green manures and catch crops). In short, the main distinctions were not observed between organic and conventional systems (i.e. C vs. O1, O2 and O3), but between systems based mainly on nutrient import vs. systems based mainly on fertility building crops (C...... of the organic rotation, both relying on green manures and catch crops grown during the autumn after the main crop as their main source of soil fertility, and the O3 system further leaving rows of the green manures to grow as intercrops between vegetable rows to improve the conditions for biodiversity...... were found. Root growth of all crops was studied in the C and O2 system, but only few effects of cropping system on root growth was observed. However, the addition of green manures to the systems almost doubled the average soil exploration by active root systems during the rotation from only 21% in C...

  5. Tillage systems and cover crops on soil physical properties after soybean cultivation

    Directory of Open Access Journals (Sweden)

    Rafael B. Teixeira

    Full Text Available ABSTRACT Soil management alters soil physical attributes and may affect crop yield. In order to evaluate soil physical attributes in layers from 0 to 0.40 m and soybean grain yield, in the 2012/2013 agricultural year, an essay was installed in the experimental area of the Federal University of Mato Grosso do Sul (UFMS/CPCS. Soil tillage systems were: conventional tillage (CT, minimum tillage (MT and no tillage (DS, the cover crops used were millet, sunn hemp and fallow. The experimental design was randomized blocks with split plots. For the layer of 0.20-0.30 m, millet provided the best results for soil bulk density, macro and microporosity. The resistance to penetration (RP was influenced in the layer of 0-0.10 m, and millet provided lower RP. The DS provided the lowest RP values for the layer of 0.10-0.20 m. The treatments did not influence yield or thousand-seed weight.

  6. Banco de sementes no solo em sistemas de cultivo lavoura-pastagem Soil seedbank in integrated crop-pasture systems

    Directory of Open Access Journals (Sweden)

    Fernanda Satie Ikeda

    2007-11-01

    gradual corrective fertilization, there was no difference between tillage systems. The fertilization level caused a reduction in seed density only in LPLC and PLPC cultivated areas. Integrated crop-pasture system with no-tillage adoption can be useful in weed management of grains crop areas.

  7. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  8. The Crop Journal Call for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  9. The Crop Journal Call for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  10. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  11. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  12. Climate change adaptability of cropping and farming systems for Europe

    DEFF Research Database (Denmark)

    Justes, Eric; Rossing, Walter; Vermue, Anthony

    systems to CC through a gradient of adaptation strategies. Methods: The adaptation strategies are evaluated at cropping and farming systems as well as regional levels for nine “Adaptation Pilots” along a North-South climate gradient in the EU. Three categories of strategies are evaluated: i) Resistance...... and foster learning in participatory co-design workshops. Results and expectations: The expected results of the Climate-CAFE on-going project will produce an overview of potential CC adaptation measures for selected sites across the EU, along with mutual learning experiences for improved understanding......Introduction: Prospective studies showed that the European agriculture will be impacted by climate change (CC) with different effects depending on the geographic region. The ERA-Net+ project Climate-CAFE (call of FACCE-JPI) aims to improve the “adaptive capacity” of arable and forage based farming...

  13. Symbiotic Performance of Herbaceous Legumes in Tropical Cover Cropping Systems

    Directory of Open Access Journals (Sweden)

    Basil Ibewiro

    2001-01-01

    Full Text Available Increasing use of herbaceous legumes such as mucuna (Mucuna pruriens var. utilis [Wright] Bruck and lablab (Lablab purpureus [L.] Sweet in the derived savannas of West Africa can be attributed to their potential to fix atmospheric nitrogen (N2. The effects of management practices on N2 fixation in mucuna and lablab were examined using 15N isotope dilution technique. Dry matter yield of both legumes at 12 weeks was two to five times more in in situ mulch (IM than live mulch (LM systems. Land Equivalent Ratios, however, showed 8 to 30% more efficient utilization of resources required for biomass production under LM than IM systems. Live mulching reduced nodule numbers in the legumes by one third compared to values in the IM systems. Similarly, nodule mass was reduced by 34 to 58% under LM compared to the IM systems. The proportion of fixed N2 in the legumes was 18% higher in LM than IM systems. Except for inoculated mucuna, the amounts of N fixed by both legumes were greater in IM than LM systems. Rhizobia inoculation of the legumes did not significantly increase N2 fixation compared to uninoculated plots. Application of N fertilizer reduced N2 fixed in the legumes by 36 to 51% compared to inoculated or uninoculated systems. The implications of cover cropping, N fertilization, and rhizobia inoculation on N contributions of legumes into tropical low-input systems were discussed.

  14. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation.

    Science.gov (United States)

    Iannetta, Pietro P M; Young, Mark; Bachinger, Johann; Bergkvist, Göran; Doltra, Jordi; Lopez-Bellido, Rafael J; Monti, Michele; Pappa, Valentini A; Reckling, Moritz; Topp, Cairistiona F E; Walker, Robin L; Rees, Robert M; Watson, Christine A; James, Euan K; Squire, Geoffrey R; Begg, Graham S

    2016-01-01

    The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume-based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha -1 annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6-0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output.

  15. A comparative nitrogen balance and productivity analysis of legume and non-legume supported cropping systems: the potential role of biological nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Pietro P M Iannetta

    2016-11-01

    Full Text Available The potential of biological nitrogen fixation (BNF to provide sufficient N for production have encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertiliser, although few studies have systematically evaluated the effect of optimising the balance between legumes and non N-fixing crops to optimise production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new, legume–based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g. grains, forages and intercrops across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32-115 kg ha-1 annually. Output in terms of total biomass (grain, forage, etc. was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years. BNF was lower when the legume fraction increased to 0.6-0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertiliser was normally applied. Forage (e.g. grass and clover, as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes have the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output.

  16. Environmental assessment of two different crop systems in terms of biomethane potential production

    International Nuclear Information System (INIS)

    Bacenetti, Jacopo; Fusi, Alessandra; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. - Highlights: • Environmental impact of two crop systems was evaluated • Biomethane specific production tests were carried out • Alternative scenarios (different yields and crop management) were assessed • Maize single crop obtains the better environmental performance • Critical factors are: fertilizer and diesel fuel emissions and diesel fuel

  17. Environmental assessment of two different crop systems in terms of biomethane potential production

    Energy Technology Data Exchange (ETDEWEB)

    Bacenetti, Jacopo; Fusi, Alessandra, E-mail: alessandra.fusi@unimi.it; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. - Highlights: • Environmental impact of two crop systems was evaluated • Biomethane specific production tests were carried out • Alternative scenarios (different yields and crop management) were assessed • Maize single crop obtains the better environmental performance • Critical factors are: fertilizer and diesel fuel emissions and diesel fuel

  18. The Effect of Crop Seed Rate and Post Emergence Herbicide Application on Weed control and grain yield of Wheat

    Directory of Open Access Journals (Sweden)

    M. Babaei

    2017-08-01

    Full Text Available Introduction Interference weed with crop is a major concern for production in croplands particularly where modern agricultural practices such as mechanical weeding and the application of herbicides are limited. At present, the aim of weed management is to keep weed population at an acceptable level rather than to keep crop totally free of weeds. Among the weed control methods, the chemical control is the easiest one of the recent origins, as well the most successful alternative method. Materials and methods Field experiments were conducted at Shoushtar Branch, Islamic Azad University, Iran (32 0 3´ N, 480 50´ E during winters of 2012-2013 in order to evaluate the effect of sulfosulfuron and sulfosulfuron plus metsulfuron-methyl at 30 and 45 g a.i. ha-1, respectively, and wheat seed rate at 180, 200 and 220 kg ha-1 on weed control. Experiments were carry out in a randomized complete block design with a factorial arrangement and four replicates. The plot size was 6 m × 2 m. The soil was a clay loam texture, pH 7.4 and 0.6 % organic matter content. In the experimental site, the 30-year average annual rainfall is 321.4 mm, daily average annual air temperature is minimum and maximum 9.5 °C and 46.3 °C, respectively. Wheat cv. Chamran was planted in the first fortnight of November. Seedbed preparation consisted of moldboard plowing, disking and leveling. A basal fertilizer rate of 125 kg ha-1 N (form of urea (46% N, 75 kg ha-1 P2O5 (diammonium phosphate (18% N; 46% P2O5, and 60 kg K2O ha-1 (sulfate of potash (50% K2O was applied. The whole P and K and half of N were applied at sowing. The remaining half of N was top dressed with the irrigation at the booting stage. Results and Discussion As the crop population brings competition for limited resources with the weeds, we tested different seeding rates to increase crop plant density as a measure to control weeds. The weed population was significantly affected by seed rate. In general, there was an

  19. Crop response of aerobic rice and winter wheat to nitrogen, phosphorus and potassium in a double cropping system

    NARCIS (Netherlands)

    Dai, X.Q.; Zhang, H.Y.; Spiertz, J.H.J.; Yu, J.; Xie, G.H.; Bouman, B.A.M.

    2010-01-01

    In the aerobic rice system, adapted rice cultivars are grown in non-flooded moist soil. Aerobic rice may be suitable for double cropping with winter wheat in the Huai River Basin, northern China plain. Field experiments in 2005 and 2006 were conducted to study the response of aerobic rice and winter

  20. Using the GENESYS model quantifying the effect of cropping systems on gene escape from GM rape varieties to evaluate and design cropping systems

    Directory of Open Access Journals (Sweden)

    Colbach Nathalie

    2004-01-01

    Full Text Available Gene flow in rapeseed is a process taking place both in space and over the years and cannot be studied exclusively by field trials. Consequently, the GENESYS model was developed to quantify the effects of cropping systems on transgene escape from rapeseed crops to rapeseed volunteers in neighbour plots and in the subsequent crops. In the present work, this model was used to evaluate the risk of rape harvest contamination by extraneous genes in various farming systems in case of co-existing GM, conventional and organic crops. When 50 % of the rape varieties in the region were transgenic, the rate of GM seeds in non-GM crop harvests on farms with large fields was lower than the 0.9 % purity threshold proposed by the EC for rape crop production (food and feed harvests, but on farms with smaller fields, the threshold was exceeded. Harvest impurity increased in organic farms, mainly because of their small field size. The model was then used to evaluate the consequences of changes in farming practices and to identify those changes reducing harvest contamination. The effects of these changes depended on the field pattern and farming system. The most efficient practices in limiting harvest impurity comprised improved set-aside management by sowing a cover crop in spring on all set-aside fields in the region, permanently banning rape crops and set-aside around seed production fields and (for non-GM farmers clustering farm fields to reduce gene inflow from neighbour fields.

  1. Features of Terra MOD11A2DAY in Operational Forecastof Grain Crops Yield in Kazakhstan with AN 8 Day Renewal

    Science.gov (United States)

    Terekhov, A.

    2011-08-01

    The Kazakhstan, with export capacity of 6-8 million tons, is one of the largest wheat exporter in the world. About 16 million hectares of unirrigated land is used for monocultural cultivation of cereals (wheat and barley). Most of the cropland is located in the steppe and forest steppe zone. The moisture deficit limits the crop productivity and creates a strong dependency of its state of the moisture conditions during vegetation season. In Kazakhstan, the average grain yield variations are sufficiently large, from 0.9 (2010) to 1.4 tonha (2007). Given the high volatility of the gross grain harvest and export potential, respectively, methods of early satellite forecast of grain yield with high frequency of the renewal are of the great interest. In Kazakhstan, the variations in the weather growing season determine the yield of grain crops. By significant weather parameters include: the spring soil moisture, humidity and air temperature, rainfall, and several others. Plants respond to the sum of all parameters through the volume of green biomass. The regional cereal state can be estimated from satellite vegetation indices, which are particularly informative in the period of its seasonal peak. Another satellite parameter closely related to humidity conditions may be the land surface temperature (LST). Product USGS: TERRA MOD11A2DAY represents the 8-days LST composite was tested in the task of estimating of arable lands temperature in Northern Kazakhstan. The description of the temperature conditions of the growing season based on the temperature calibrated index (TCI), which was introduced by Kogan. TCI provides a weighted assessment of the current LST on a scale of 0-100, where 0 - the lowest, respectively, 100 as a high temperature, recorded during the observation period at a given location at a given time window. The monitoring period included 2004-2010 years. During the beginning of the growing season was taken on April 15, season end on 20 August - ripeness stage

  2. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding

    Directory of Open Access Journals (Sweden)

    Arindam Ghatak

    2017-06-01

    Full Text Available Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.

  3. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    M. Ruiz-Ramos

    2011-12-01

    Full Text Available Crops growing in the Iberian Peninsula may be subjected to damagingly high temperatures during the sensitive development periods of flowering and grain filling. Such episodes are considered important hazards and farmers may take insurance to offset their impact. Increases in value and frequency of maximum temperature have been observed in the Iberian Peninsula during the 20th century, and studies on climate change indicate the possibility of further increase by the end of the 21st century. Here, impacts of current and future high temperatures on cereal cropping systems of the Iberian Peninsula are evaluated, focusing on vulnerable development periods of winter and summer crops. Climate change scenarios obtained from an ensemble of ten Regional Climate Models (multimodel ensemble combined with crop simulation models were used for this purpose and related uncertainty was estimated. Results reveal that higher extremes of maximum temperature represent a threat to summer-grown but not to winter-grown crops in the Iberian Peninsula. The study highlights the different vulnerability of crops in the two growing seasons and the need to account for changes in extreme temperatures in developing adaptations in cereal cropping systems. Finally, this work contributes to clarifying the causes of high-uncertainty impact projections from previous studies.

  4. PRACT (Prototyping Rotation and Association with Cover crop and no Till) - a tool for designing conservation agriculture systems

    NARCIS (Netherlands)

    Naudin, K.; Husson, M.O.; Scopel, E.; Auzoux, S.; Giller, K.E.

    2015-01-01

    Moving to more agroecological cropping systems implies deep changes in the organization of cropping systems. We propose a method for formalizing the process of innovating cropping system prototype design using a tool called PRACT (Prototyping Rotation and Association with Cover crop and no Till)

  5. Integrated Soil, Water and Nutrient Management for Sustainable Rice–Wheat Cropping Systems in Asia

    International Nuclear Information System (INIS)

    2016-08-01

    The rice-wheat system is a predominant cropping system in Asia providing food, employment and income, ensuring the livelihoods of about 1 billion of resource poor rural and urban people. However, the productivity of the current rice-wheat systems is seriously threatened by increasing land degradation and scarcity of water and labour, inefficient cropping practices and other emerging socio economic and environmental drivers. Responding to the need to develop alternate crop establishment methods and improved cropping practices, this publication summarizes the results from a joint FAO/IAEA coordinated research project on optimizing productivity and sustainability of rice-wheat cropping systems. It provides relevant information on how to modify existing water and nutrient management systems and improve soil management in both traditional and emerging crop establishment methods for sustainable intensification of cereal production in Asia

  6. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops

    Directory of Open Access Journals (Sweden)

    Philippa eBorrill

    2014-02-01

    Full Text Available Wheat, like many other staple cereals, contains low levels of the essential micronutrients iron and zinc. Up to two billion people worldwide suffer from iron and zinc deficiencies, particularly in regions with predominantly cereal-based diets. Although wheat flour is commonly fortified during processing, an attractive and more sustainable solution is biofortification, which requires developing new varieties of wheat with inherently higher iron and zinc content in their grains. Until now most studies aimed at increasing iron and zinc content in wheat grains have focused on discovering natural variation in progenitor or related species. However, recent developments in genomics and transformation have led to a step change in targeted research on wheat at a molecular level. We discuss promising approaches to improve iron and zinc content in wheat using knowledge gained in model grasses. We explore how the latest resources developed in wheat, including sequenced genomes and mutant populations, can be exploited for biofortification. We also highlight the key research and practical challenges that remain in improving iron and zinc content in wheat.

  7. Potential for biological nitrification inhibition to reduce nitrification and N2O emissions in pasture crop-livestock systems.

    Science.gov (United States)

    Subbarao, G V; Rao, I M; Nakahara, K; Sahrawat, K L; Ando, Y; Kawashima, T

    2013-06-01

    Agriculture and livestock production systems are two major emitters of greenhouse gases. Methane with a GWP (global warming potential) of 21, and nitrous oxide (N2O) with a GWP of 300, are largely emitted from animal production agriculture, where livestock production is based on pasture and feed grains. The principal biological processes involved in N2O emissions are nitrification and denitrification. Biological nitrification inhibition (BNI) is the natural ability of certain plant species to release nitrification inhibitors from their roots that suppress nitrifier activity, thus reducing soil nitrification and N2O emission. Recent methodological developments (e.g. bioluminescence assay to detect BNIs in plant root systems) have led to significant advances in our ability to quantify and characterize the BNI function. Synthesis and release of BNIs from plants is a highly regulated process triggered by the presence of NH4 + in the rhizosphere, which results in the inhibitor being released precisely where the majority of the soil-nitrifier population resides. Among the tropical pasture grasses, the BNI function is strongest (i.e. BNI capacity) in Brachiaria sp. Some feed-grain crops such as sorghum also have significant BNI capacity present in their root systems. The chemical identity of some of these BNIs has now been established, and their mode of inhibitory action on Nitrosomonas has been characterized. The ability of the BNI function in Brachiaria pastures to suppress N2O emissions and soil nitrification potential has been demonstrated; however, its potential role in controlling N2O emissions in agro-pastoral systems is under investigation. Here we present the current status of our understanding on how the BNI functions in Brachiaria pastures and feed-grain crops such as sorghum can be exploited both genetically and, from a production system's perspective, to develop low-nitrifying and low N2O-emitting production systems that would be economically profitable and

  8. Diversity of segetal weeds in pea (Pisum sativum L. depending on crops chosen for a crop rotation system

    Directory of Open Access Journals (Sweden)

    Marta K. Kostrzewska

    2014-04-01

    Full Text Available This study, lasting from 1999 to 2006, was conducted at the Research Station in Tomaszkowo, which belongs to the University of Warmia and Mazury in Olsztyn. The experiment was set up on brown rusty soil classified as good rye complex 5 in the Polish soil valuation system. The analysis comprised weeds in fields sown with pea cultivated in two four-field crop rotation systems with a different first crop: A. potato – spring barley – pea – spring barley; B. mixture of spring barley with pea – spring barley – pea – spring barley. Every year, at the 2–3 true leaf stage of pea, the species composition and density of individual weed species were determined; in addition, before harvesting the main crop, the dry matter of weeds was weighed. The results were used to analyze the constancy of weed taxa, species diversity, and the evenness and dominance indices, to determine the relationships between all biological indicators analyzed and weather conditions, and to calculate the indices of similarity, in terms of species composition, density and biomass of weeds, between the crop rotations compared. The species richness, density and biomass of weeds in fields with field pea were not differentiated by the choice of the initial crop in a given rotation system. In the spring, the total number of identified taxa was 28 and it increased to 36 before the harvest of pea plants. Chenopodium album and Echinochloa crus-galli were the most numerous. Chenopodium album, Echinochloa crus-galli, Sonchus arvensis, Fallopia convolvulus and Viola arvensis were constant in all treatments, regardless of what the first crop in rotation was or when the observations were made. The species diversity and the evenness and species dominance indices varied significantly between years and dates of observations. Species diversity calculated on the basis of the density of weed species was higher in the rotation with a mixture of cereals and legumes, while that calculated on

  9. A high sensitivity optically stimulated luminescence scanning system for measurement of single sand-sized grains

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Kohsiek, P.

    1999-01-01

    An instrument has been designed for the routine analysis of the optically stimulated luminescence signal from single grains of sand. The system is capable of analysing over 3000 individual grains in a single measurement sequence, and the OSL signal from each grain can be read in less than 3 s....... The design principles are described, along with preliminary measurements that illustrate the operation of the system and its capabilities....

  10. Cropping Systems Dynamics in the Lower Gangetic Plains of India using Geospatial Technologies

    Directory of Open Access Journals (Sweden)

    K. R. Manjunath

    2012-08-01

    Full Text Available Cropping system study is useful to understand the overall sustainability of agricultural system. Capturing the change dynamics of cropping systems, especially spatial and temporal aspects, is of utmost importance in overall planning and management of natural resources. This paper highlights the remote sensing based cropping systems change-dynamics assessment. Current study is aimed at use of multidate-multisensor data for deriving the seasonal cropping pattern maps and deriving the remote sensing based cropping system performance indicators during 1998–99 and 2004–05 in West- Bengal state of India. The temporal assessment of the changes of cropping systems components such as cropping pattern and indices for the study years 1998–99 and 2004–05 have been brought out. The results indicate that during the six years of time the kharif cropping pattern has almost remained the same, being a rice dominant system. A notable point is the decrease in the aus rice due to readjusting the cropping system practice to suit the two crop systems in many places was observed. Marginal variations in mustard and wheat areas during rabi season was observed. The boro (summer rice area has almost remained constant. The rice-fallow-fallow (R-F-F rotation reduced by about 4 percent while the rice-fallow-rice (R-F-R increased by about 7 percent percent. The Area Diversity Index reduced by about 38 percent in 2004 which may be attributed to decrease in kharif pulses and minor crops during kharif and summer. However, diversity during rabi season continued to remain high. The increase in Multiple Cropping Index was observed predominantly in the southern part of the state. Cultivated Land Utilization Index shows an increase by about 0.05.

  11. Toward multiscale modelings of grain-fluid systems

    Science.gov (United States)

    Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon

    2017-06-01

    Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.

  12. Yield gap analysis of feed-crop livestock systems

    NARCIS (Netherlands)

    Linden, van der Aart; Oosting, Simon J.; Ven, van de Gerrie W.J.; Veysset, Patrick; Boer, de Imke J.M.; Ittersum, van Martin K.

    2018-01-01

    Sustainable intensification is a strategy contributing to global food security. The scope for sustainable intensification in crop sciences can be assessed through yield gap analysis, using crop growth models based on concepts of production ecology. Recently, an analogous cattle production model

  13. Network-assisted crop systems genetics: network inference and integrative analysis.

    Science.gov (United States)

    Lee, Tak; Kim, Hyojin; Lee, Insuk

    2015-04-01

    Although next-generation sequencing (NGS) technology has enabled the decoding of many crop species genomes, most of the underlying genetic components for economically important crop traits remain to be determined. Network approaches have proven useful for the study of the reference plant, Arabidopsis thaliana, and the success of network-based crop genetics will also require the availability of a genome-scale functional networks for crop species. In this review, we discuss how to construct functional networks and elucidate the holistic view of a crop system. The crop gene network then can be used for gene prioritization and the analysis of resequencing-based genome-wide association study (GWAS) data, the amount of which will rapidly grow in the field of crop science in the coming years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Crop residues as raw materials for biorefinery systems - A LCA case study

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Ulgiati, Sergio

    2010-01-01

    Our strong dependence on fossil fuels results from the intensive use and consumption of petroleum derivatives which, combined with diminishing oil resources, causes environmental and political concerns. The utilization of agricultural residues as raw materials in a biorefinery is a promising alternative to fossil resources for production of energy carriers and chemicals, thus mitigating climate change and enhancing energy security. This paper focuses on a biorefinery concept which produces bioethanol, bioenergy and biochemicals from two types of agricultural residues, corn stover and wheat straw. These biorefinery systems are investigated using a Life Cycle Assessment (LCA) approach, which takes into account all the input and output flows occurring along the production chain. This approach can be applied to almost all the other patterns that convert lignocellulosic residues into bioenergy and biochemicals. The analysis elaborates on land use change aspects, i.e. the effects of crop residue removal (like decrease in grain yields, change in soil N 2 O emissions and decrease of soil organic carbon). The biorefinery systems are compared with the respective fossil reference systems producing the same amount of products/services from fossils instead of biomass. Since climate change mitigation and energy security are the two most important driving forces for biorefinery development, the assessment focuses on greenhouse gas (GHG) emissions and cumulative primary energy demand, but other environmental categories are evaluated as well. Results show that the use of crop residues in a biorefinery saves GHG emissions and reduces fossil energy demand. For instance, GHG emissions are reduced by about 50% and more than 80% of non-renewable energy is saved. Land use change effects have a strong influence in the final GHG balance (about 50%), and their uncertainty is discussed in a sensitivity analysis. Concerning the investigation of the other impact categories, biorefinery systems

  15. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation

    DEFF Research Database (Denmark)

    Iannetta, Pietro P M; Young, Mark; Bachinger, Johann

    2016-01-01

    studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume......–based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions...... the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6–0.8, not because of any feature of the legume, but because the cropping...

  16. European Perspectives on the Adoption of Non-Chemical Weed Management in Reduced Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, B.; Munier-Jolan, N.; Schwarz, J.

    2012-01-01

    cropping systems to allow for more diversification of the crop rotations to combat these weed problems with less herbicide input. Cover crops, stubble management strategies and tactics that strengthen crop growth relative to weed growth are also seen as important components in future IPM systems...

  17. Analysis of energy consumption in lowland rice-based cropping system of Malaysia

    Directory of Open Access Journals (Sweden)

    Chan Chee Wan

    2005-07-01

    Full Text Available Sufficient energy is needed in the right form and at the right time for adequate crop production. One way to optimize energy consumption in agriculture is to determine the efficiency of methods and techniques used. With the current increase in world population, energy consumption needs effective planning. That is, the input elements need to be identified in order to prescribe the most efficient methods for controlling them. This study was undertaken in order to determine the direct and indirect energy consumption of field operations in a lowland rice production system of Malaysia. Field time, fuel and other energy requirements were measured for the tillage, planting, fertilizing, spraying and harvesting operations performed. Energy analysis carried out revealed the highest average operational energy consumption was for tillage (1747.33 MJ ha-1 which accounted for about 48.6% of the total operational energy consumption (3595.87 MJ ha-1, followed by harvesting (1171.44 MJ ha-1, 32.6% and planting (562.91 MJ ha-1, 15.7%. Fertilizing and pesticide spraying did not make any significant contributions to the operational energy consumption. Based on energy sources, fuel was the main consumer of direct energy with 2717.82 MJha-1 (22.2%, and fertilizer recording the highest indirect energy consumption of 7721.03 MJha-1 (63.2%. Human labour, pesticides, seeds and indirect energy for machinery use had marginal importance, contributing only 0.2%, 0.6%, 6.8% and 6.9%, respectively to the total energy consumption (12225.97 MJha-1. Average grain yield was 6470.8 kg ha-1, representing energy output of 108321.75 MJha-1, that is, 96095.78 MJ net energy gain or 8.86 MJ output per MJ input. Energy input per kilogram grain yield was 1.89 MJkg-1. The results of the study indicate energy gain in the lowland rice production system of Malaysia.

  18. Life Cycle Assessment on Carbon Footprint of Winter Wheat-Summer Maize Cropping System Based on Survey Data of Gaomi in Shandong Province, China

    Directory of Open Access Journals (Sweden)

    ZHU Yong-chang

    2017-08-01

    Full Text Available Grain production can generate huge amount of greenhouse gases through raw material production and energy comsumption, nitrogen fertilizer amendment and farming machinery operation. Based questionnaire survey of raw material inputs and management of wheat-maize cropping system in Gaomi, Shandong Province, carbon footprint of grain production was calculated using life cycle assessment methodology. Carbon footprint per unit area of wheat, maize, and winter wheat-summer maize cropping system were 5 183.33, 3 778.09 kg CO2-eq·hm-2 and 8 961.42 kg CO2-eq·hm-2, carbon footprint per unit grain yield were 0.69, 0.40 kg CO2-eq·kg-1 and 0.53 kg CO2-eq·kg-1, carbon footprint per unit net present value were 1.82, 0.40 kg CO2-eq·yuan-1 and 0.44 kg CO2-eq·yuan-1, respectively. Greenhouse gas(GHG emission of winter wheat-summer maize cropping system mainly came from nitrogen fertilizer production(48.30% and nitrogen fertilizer application(12.04%, irrigation electricity consumption(12.94% and machinery oil consumption(11.20%. Optimizing the application of fertilizer, reducing the amount of nitrogen fertilizer and saving water irrigation were important ways to realize the clean production.

  19. Alternative crops

    International Nuclear Information System (INIS)

    Andreasen, L.M.; Boon, A.D.

    1992-01-01

    Surplus cereal production in the EEC and decreasing product prices, mainly for cereals, has prompted considerable interest for new earnings in arable farming. The objective was to examine whether suggested new crops (fibre, oil, medicinal and alternative grains crops) could be considered as real alternatives. Whether a specific crop can compete economically with cereals and whether there is a market demand for the crop is analyzed. The described possibilities will result in ca. 50,000 hectares of new crops. It is expected that they would not immediately provide increased earnings, but in the long run expected price developments are more positive than for cereals. The area for new crops will not solve the current surplus cereal problem as the area used for new crops is only 3% of that used for cereals. Preconditions for many new crops is further research activities and development work as well as the establishment of processing units and organizational initiatives. Presumably, it is stated, there will then be a basis for a profitable production of new crops for some farmers. (AB) (47 refs.)

  20. Sequential use of the STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems.

    Science.gov (United States)

    Lammoglia, Sabine-Karen; Moeys, Julien; Barriuso, Enrique; Larsbo, Mats; Marín-Benito, Jesús-María; Justes, Eric; Alletto, Lionel; Ubertosi, Marjorie; Nicolardot, Bernard; Munier-Jolain, Nicolas; Mamy, Laure

    2017-03-01

    The current challenge in sustainable agriculture is to introduce new cropping systems to reduce pesticides use in order to reduce ground and surface water contamination. However, it is difficult to carry out in situ experiments to assess the environmental impacts of pesticide use for all possible combinations of climate, crop, and soils; therefore, in silico tools are necessary. The objective of this work was to assess pesticides leaching in cropping systems coupling the performances of a crop model (STICS) and of a pesticide fate model (MACRO). STICS-MACRO has the advantage of being able to simulate pesticides fate in complex cropping systems and to consider some agricultural practices such as fertilization, mulch, or crop residues management, which cannot be accounted for with MACRO. The performance of STICS-MACRO was tested, without calibration, from measurements done in two French experimental sites with contrasted soil and climate properties. The prediction of water percolation and pesticides concentrations with STICS-MACRO was satisfactory, but it varied with the pedoclimatic context. The performance of STICS-MACRO was shown to be similar or better than that of MACRO. The improvement of the simulation of crop growth allowed better estimate of crop transpiration therefore of water balance. It also allowed better estimate of pesticide interception by the crop which was found to be crucial for the prediction of pesticides concentrations in water. STICS-MACRO is a new promising tool to improve the assessment of the environmental risks of pesticides used in cropping systems.

  1. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China.

    Science.gov (United States)

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-12-02

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI.

  2. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China

    Science.gov (United States)

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-01-01

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI. PMID:26626733

  3. Sediment and PM10 flux from no-tillage cropping systems in the Pacific Northwest

    Science.gov (United States)

    Wind erosion is a concern in the Inland Pacific Northwest (PNW) United States where the emission of fine particulates from winter wheat – summer fallow (WW/SF) dryland cropping systems during high winds degrade air quality. Although no-tillage cropping systems are not yet economically viable, these ...

  4. 60 changes in soil properties under alley cropping system of three ...

    African Journals Online (AJOL)

    OLUWOLE AKINNAGBE

    2009-01-01

    Jan 1, 2009 ... A study to evaluate the changes in soil properties, under existing alley cropping system with three leguminous crops (Leucaena leucocephala ... of improved farming system is efficient recycling of organic materials. This exploits ... in form of violent shower of short duration. Rainfall is seasonal and defines ...

  5. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types

    DEFF Research Database (Denmark)

    Chirinda, N.; Carter, Mette Sustmann; Albert, Kristian Rost

    2010-01-01

    Conventional cropping systems rely on targeted short-term fertility management, whereas organic systems depend, in part, on long-term increase in soil fertility as determined by crop rotation and management. Such differences influence soil nitrogen (N) cycling and availability through the year...

  6. Rice in cropping systems - Modelling transitions between flooded and non-flooded soil environments

    NARCIS (Netherlands)

    Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.B.; Suriadi, A.; Dobermann, A.; Bouman, B.A.M.; Timsina, J.

    2012-01-01

    Water shortages in many rice-growing regions, combined with growing global imperatives to increase food production, are driving research into increased water use efficiency and modified agricultural practices in rice-based cropping systems. Well-tested cropping systems models that capture

  7. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang

    NARCIS (Netherlands)

    Fang, B.; Wang, G.; Berg, van den M.M.; Roetter, R.P.

    2005-01-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China¿s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This

  8. A low-cost microcontroller-based system to monitor crop temperature and water status

    Science.gov (United States)

    A prototype microcontroller-based system was developed to automate the measurement and recording of soil-moisture status and canopy-, air-, and soil-temperature levels in cropped fields. Measurements of these conditions within the cropping system are often used to assess plant stress, and can assis...

  9. Livestock and feed water productivity in the mixed crop-livestock system.

    Science.gov (United States)

    Bekele, M; Mengistu, A; Tamir, B

    2017-10-01

    Recently with limited information from intensified grain-based farming systems in developed countries, livestock production is challenged as being huge consumer of freshwater. The smallholder mixed crop-livestock (MCL) system which is predominant in developing countries like Ethiopia, is maintained with considerable contributions of crop residues (CR) to livestock feeding. Inclusion of CR is expected to reduce the water requirement for feed production resulting improvement in livestock water productivity (LWP). This study was conducted to determine feed water productivity (FWP) and LWP in the MCL system. A multistage sampling procedure was followed to select farmers from different wealth status. Wealth status dictated by ownership of key farm resources such as size of cropland and livestock influenced the magnitude of livestock outputs, FWP and LWP. Significant difference in feed collected, freshwater evapotranspired, livestock outputs and water productivity (WP) were observed between wealth groups, where wealthier are relatively more advantaged. Water productivity of CR and grazing land (GL) analyzed separately showed contrasting differences where better-off gained more on CR, whereas vice versa on GL. These counterbalancing of variations may justify the non-significant difference in total FWP between wealth groups. Despite observed differences, low WP on GL indicates the need of interventions at all levels. The variation in WP of CR is attributed to availability of production factors which restrained the capacity of poor farmers most. A linear relationship between the proportion of CR in livestock feed and FWP was evident, but the relationship with LWP was not likely linear. As CR are inherently low in digestibility and nutritive values which have an effect on feed conversion into valuable livestock products and services, increasing share of CR beyond an optimum level is not a viable option to bring improvements in livestock productivity as expressed in terms of

  10. Determination of Allelopathic Effect of Some Invasive Weed Species on Germination and Initial Development of Grain Legume Crops

    Directory of Open Access Journals (Sweden)

    Plamen Marinov-Serafimov

    2010-01-01

    Full Text Available During the 2006-2007 period, the allelopathic effect of cold water extracts from Amaranthus retroflexus L., Chenopodium album L., Erigeron canadensis L. and Solanum nigrum L. on seed germinationand initial development of Glycine max L., Pisum sativum L. and Vicia sativa L. was studied under laboratory conditions in the Institute of Forage Crops, Pleven. It was found that: waterextracts from fresh and dry biomass of A. retroflexus, Ch. album, E. canadensis and S. nigrum had an inhibitory effect on seed ermination of G. max, P. sativum and V. sativa, the inhibition rate for the extracts from fresh biomass varying from 28.8 to 81.5% and for the extracts from dry weed biomass it was from 26.8 tо 89.2%; The values of LC50 varied from 13.5 tо 72.2 g l-1 for the extracts from fresh biomass and from 7.0 tо 84.1 g l-1 for the extracts from dry weed biomass and they could be conditionally grouped in the following ascending order: A. retroflexus < S. nigrum < E.canadensis

  11. Effect of feeding strategies and cropping systems on greenhouse gas emission from Wisconsin certified organic dairy farms.

    Science.gov (United States)

    Liang, D; Sun, F; Wattiaux, M A; Cabrera, V E; Hedtcke, J L; Silva, E M

    2017-07-01

    Organic agriculture continues to expand in the United States, both in total hectares and market share. However, management practices used by dairy organic producers, and their resulting environmental impacts, vary across farms. This study used a partial life cycle assessment approach to estimate the effect of different feeding strategies and associated crop production on greenhouse gas emissions (GHG) from Wisconsin certified organic dairy farms. Field and livestock-driven emissions were calculated using 2 data sets. One was a 20-yr data set from the Wisconsin Integrated Cropping System Trial documenting management inputs, crop and pasture yields, and soil characteristics, used to estimate field-level emissions from land associated with feed production (row crop and pasture), including N 2 O and soil carbon sequestration. The other was a data set summarizing organic farm management in Wisconsin, which was used to estimate replacement heifer emission (CO 2 equivalents), enteric methane (CH 4 ), and manure management (N 2 O and CH 4 ). Three combinations of corn grain (CG) and soybean (SB) as concentrate (all corn = 100% CG; baseline = 75% CG + 25% SB; half corn = 50% CG + 50% SB) were assigned to each of 4 representative management strategies as determined by survey data. Overall, GHG emissions associated with crop production was 1,297 ± 136 kg of CO 2 equivalents/t of ECM without accounting for soil carbon changes (ΔSC), and GHG emission with ΔSC was 1,457 ± 111 kg of CO 2 equivalents/t of ECM, with greater reliance on pasture resulting in less ΔSC. Higher levels of milk production were a major driver associated with reduction in GHG emission per metric tonne of ECM. Emissions per metric tonne of ECM increased with increasing proportion of SB in the ration; however, including SB in the crop rotation decreased N 2 O emission per metric tonne of ECM from cropland due to lower applications of organically approved N fertility inputs. More SB at the expense of CG

  12. Suppression of soilborne pathogens in mixed cropping systems

    NARCIS (Netherlands)

    Hiddink, G.A.

    2008-01-01

    Since the green revolution, agricultural production has increased tremendously due to synthetic fertilizers, chemical crop protectants and high yielding plant varieties. However, soilborne pathogens remain yield-limiting factors in agricultural production. Hardly any sustainable solutions are

  13. Indicators of soil quality in the implantation of no-till system with winter crops.

    OpenAIRE

    NOGUEIRA, M. A.; TELLES, T. S.; FAGOTTI, D. dos S. L.; BRITO, O. R.; PRETE, C. E. C.; GUIMARÃES, M. de F.

    2014-01-01

    We assessed the effect of different winter crops on indicators of soil quality related to C and N cycling and C fractions in a Rhodic Kandiudult under no-till system at implantation, during two growing seasons, in Londrina PR Brazil. The experimental design was randomized blocks with split-plot in time arrangement, with four replications. The parcels were the winter crops: multicropping of cover crops with black oat (Avena strigosa), hairy vetch (Vicia villosa) and fodder radish (Raphanus sat...

  14. Coarse-grained modeling of hybrid block copolymer system

    Science.gov (United States)

    Su, Yongrui

    This thesis is comprised of three major projects of my research. In the first project, I proposed a nanoparticle model and combined it with the Theoretically Informed Coarse Grained (TICG) model for pure polymer systems and the grand canonical slip springs model developed in our group to build a new model for entangled nanocomposites. With Molecule Dynamics(MD) simulation, I studied the mechanic properties of the nanocomposites, for example the influence of nanoparticles size and volume fraction on entanglements, the diffusion of polymers and nanoparticles, and the influence of nanoparticles size and volume fraction on viscosity et al.. We found that the addition of small-size nanoparticles reduces the viscosity of the nanocomposites, which is in contrary to what Einstein predicted a century ago. However, when particle increases its size to micrometers the Einstein predictions is recovered. From our simulation, we believe that small-size nanoparticles can more effectively decrease the entanglements of nanocomposites than larger particles. The free volume effect introduced by small-size nanoparticles also helps decrease the viscosity of the whole system. In the second project, I combined the Ohta-Kawasaki (OK) model [3] and the Covariance Matrix Adaptation Evolutionary Strategy(CMA-ES) to optimize the block copolymer blends self-assembly in the hole-shrink process. The aim is to predict the optimal composition and the optimal surface energy to direct the block copolymer blends self-assembly process in the confined hole. After optimization in the OK model, we calibrated the optimal results by the more reliable TICG model and got the same morphology. By comparing different optimization process, we found that the homopolymers which are comprised of the same monomers as either block of the block copolymer can form a perfect perforated hole and might have better performance than the pure block copolymer. While homopolymers which are comprised of a third-party monomers

  15. POTASSIUM FERTILIZATION AND SOIL MANAGEMENT SYSTEMS FOR COTTON CROPS

    Directory of Open Access Journals (Sweden)

    VITOR MARQUES VIDAL

    2017-01-01

    Full Text Available Cotton has great socio-economic importance due to its use in textile industry, edible oil and biodiesel production and animal feed. Thus, the objective of this work was to identify the best potassium rate and soil management for cotton crops and select among cultivars, the one that better develops in the climatic conditions of the Cerrado biome in the State of Goiás, Brazil. Thus, the effect of five potassium rates (100, 150, 200, 250 and 300 kg ha-1 of K2O and two soil management systems (no-till and conventional tillage on the growth, development and reproduction of four cotton cultivars (BRS-371, BRS-372, BRS-286 and BRS-201 was evaluated. The data on cotton growth and development were subjected to analysis of variance; the data on potassium rates were subjected to regression analysis; and the data on cultivars and soil management to mean test. The correlation between the vegetative and reproductive variables was also assessed. The conventional tillage system provides the best results for the herbaceous cotton, regardless of the others factors evaluated. The cultivar BRS-286 has the best results in the conditions evaluated. The cultivar BRS-371 under no-till system present the highest number of fruiting branches at a potassium rate of 105.5% and highest number of floral buds at a potassium rate of 96.16%. The specific leaf area was positively correlated with the number of bolls per plant at 120 days after emergence of the herbaceous cotton.

  16. Assessing nutritional diversity of cropping systems in African villages.

    Directory of Open Access Journals (Sweden)

    Roseline Remans

    Full Text Available BACKGROUND: In Sub-Saharan Africa, 40% of children under five years in age are chronically undernourished. As new investments and attention galvanize action on African agriculture to reduce hunger, there is an urgent need for metrics that monitor agricultural progress beyond calories produced per capita and address nutritional diversity essential for human health. In this study we demonstrate how an ecological tool, functional diversity (FD, has potential to address this need and provide new insights on nutritional diversity of cropping systems in rural Africa. METHODS AND FINDINGS: Data on edible plant species diversity, food security and diet diversity were collected for 170 farms in three rural settings in Sub-Saharan Africa. Nutritional FD metrics were calculated based on farm species composition and species nutritional composition. Iron and vitamin A deficiency were determined from blood samples of 90 adult women. Nutritional FD metrics summarized the diversity of nutrients provided by the farm and showed variability between farms and villages. Regression of nutritional FD against species richness and expected FD enabled identification of key species that add nutrient diversity to the system and assessed the degree of redundancy for nutrient traits. Nutritional FD analysis demonstrated that depending on the original composition of species on farm or village, adding or removing individual species can have radically different outcomes for nutritional diversity. While correlations between nutritional FD, food and nutrition indicators were not significant at household level, associations between these variables were observed at village level. CONCLUSION: This study provides novel metrics to address nutritional diversity in farming systems and examples of how these metrics can help guide agricultural interventions towards adequate nutrient diversity. New hypotheses on the link between agro-diversity, food security and human nutrition are

  17. The Response to P-Derived from Phosphate Rock and TSP by Crops Grown in a Simulated Crop Rotation System

    International Nuclear Information System (INIS)

    Sisworo, Elsye L; Sisworo, Widjang H; Havid-Rasjid; Syamsul-Rizal; Komarudin-Idris

    2002-01-01

    A green house experiment was carried out on a simulated crop rotation system of upland rice-soybean-mungbean to determine the effect of P-derived from different phosphate rock (PR) sources and TSP using 32 P. The data obtained reveal that all the P-sources has a significant effect on the growth of all the three crops, expressed in dry weight, % P-total and total P-uptake (mg P pot -1 ). For the P-source it was shown that % P-derived from PR/TSP and their uptake (mg P pot -1 ) was quite high, showing that the PR s applied were of good reactivity. The residue of the PR s has also still a good effect on plant growth than that of TSP. The efficiency of PR s was far below that of TSP. This apparently was due to the high rate of application, ten times the rate of TSP. (author)

  18. Timber tree-based contour hedgerow system on sloping acid upland soils: the use of 15N in quantifying tree-crop interaction in agroforestry system

    International Nuclear Information System (INIS)

    Rosales, Crispina M.; Pailagao, Charmaine; Grafia, Alfonso O.; Rivera, Faye G.; Mercado, Agustin R. Jr.

    2004-01-01

    nutrients yield was proportional to the volume of pruning biomass. Upland rice rows close to the trees had reduced plant height and grain yield. G. arborea was found out to be the most competitive affecting over-all yield of upland rice. But its competitiveness was reduced when interplanted with A. mangium. Grain yield was affected by the different hedgerow species and N-fixing interplant. Row analyses indicated that the first crop of rice was significantly affected by the hedgerows regardless of species. But G. arborea was the most competitive providing the lowest over-all rice yield. Soil nutrients were not affected by the different hedgerow species. Available P was affected by soil depth. Planting of N-fixing and non-N-fixing timber trees had no significant effect on fertilizer nitrogen (FN) yield, % fertilizer nitrogen utilization (FNU) of both grain and straw of upland rice. Significant effects of interplanting N-fixing timber trees on upland rice were only observed on total dry matter yield (TDMY), nitrogen yield (NY), % nitrogen derived from fertilizer (%Ndff) of both grain and straw. This study will be continued to understand more in-depth the tree-soil crop interactions, particularly on the long term N dynamics of this agroforestry system. (Author)

  19. Controlled Drainage As Measure to Reduce Nitrate Leaching in a Wheat Cropping System

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Hvid, Søren Kolind; Thomsen, Ingrid Kaag

    2013-01-01

    for the growing crop, and nutrient exports are reduced. CD has been shown to diminish leaching losses of soluble nutrients. So far CD has only been tested for spring sown crops but widespread implementation on drained clayey soils would rely on its adaption to winter cereal production systems. A new project on CD...... applied at four winter cropped fields in Denmark investigates how effects of anaerobic conditions created by CD will affect chemical/biological processes in the submerged soil, root growth, crop production, and nutrient losses. Nitrification is expected to be retarded by wet soils during winter...

  20. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel

    International Nuclear Information System (INIS)

    Kim, Seungdo; Dale, Bruce E.

    2005-01-01

    A life cycle assessment of different cropping systems emphasizing corn and soybean production was performed, assuming that biomass from the cropping systems is utilized for producing biofuels (i.e., ethanol and biodiesel). The functional unit is defined as 1 ha of arable land producing biomass for biofuels to compare the environmental performance of the different cropping systems. The external functions are allocated by introducing alternative product systems (the system expansion allocation approach). Nonrenewable energy consumption, global warming impact, acidification and eutrophication are considered as potential environmental impacts and estimated by characterization factors given by the United States Environmental Protection Agency (EPA-TRACI). The benefits of corn stover removal are (1) lower nitrogen related environmental burdens from the soil, (2) higher ethanol production rate per unit arable land, and (3) energy recovery from lignin-rich fermentation residues, while the disadvantages of corn stover removal are a lower accumulation rate of soil organic carbon and higher fuel consumption in harvesting corn stover. Planting winter cover crops can compensate for some disadvantages (i.e., soil organic carbon levels and soil erosion) of removing corn stover. Cover crops also permit more corn stover to be harvested. Thus, utilization of corn stover and winter cover crops can improve the eco-efficiency of the cropping systems. When biomass from the cropping systems is utilized for biofuel production, all the cropping systems studied here offer environmental benefits in terms of nonrenewable energy consumption and global warming impact. Therefore utilizing biomass for biofuels would save nonrenewable energy, and reduce greenhouse gases. However, unless additional measures such as planting cover crops were taken, utilization of biomass for biofuels would also tend to increase acidification and eutrophication, primarily because large nitrogen (and phosphorus

  1. Indicators of soil quality in the implantation of no-till system with winter crops

    Directory of Open Access Journals (Sweden)

    Marco Antonio Nogueira

    Full Text Available We assessed the effect of different winter crops on indicators of soil quality related to C and N cycling and C fractions in a Rhodic Kandiudult under no-till system at implantation, during two growing seasons, in Londrina PR Brazil. The experimental design was randomized blocks with split-plot in time arrangement, with four replications. The parcels were the winter crops: multicropping of cover crops with black oat (Avena strigosa, hairy vetch (Vicia villosa and fodder radish (Raphanus sativus; sunflower (Heliantus annuus intercropped with Urochloa ruziziensis; corn (Zea mays intercropped with Urochloa; and corn; fodder radish; or wheat (Triticum aestivum as sole crops. The subplots were the years: 2008 and 2009. Determinations consisted of total organic C, labile and resistant C, total N, microbial biomass C and N, the C/N ratio of soil organic matter, and the microbial quotient (qMic, besides microbiological and biochemical attributes, assessed only in 2009. The attributes significantly changed with the winter crops, especially the multicropping of cover crops and fodder radish, as well as effect of years. Despite stimulating the microbiological/biochemical activity, fodder radish cropping decreased the soil C in the second year, likewise the wheat cropping. The multicropping of cover crops in winter is an option for management in the establishment of no-till system, which contributes to increase the concentrations of C and stimulate the soil microbiological/biochemical activity.

  2. Polyphenols from Root, Tubercles and Grains Cropped in Brazil: Chemical and Nutritional Characterization and Their Effects on Human Health and Diseases

    Directory of Open Access Journals (Sweden)

    Diego dos Santos Baião

    2017-09-01

    Full Text Available Throughout evolution, plants have developed the ability to produce secondary phenolic metabolites, which are important for their interactions with the environment, reproductive strategies and defense mechanisms. These (polyphenolic compounds are a heterogeneous group of natural antioxidants found in vegetables, cereals and leguminous that exert beneficial and protective actions on human health, playing roles such as enzymatic reaction inhibitors and cofactors, toxic chemicals scavengers and biochemical reaction substrates, increasing the absorption of essential nutrients and selectively inhibiting deleterious intestinal bacteria. Polyphenols present in some commodity grains, such as soy and cocoa beans, as well as in other vegetables considered security foods for developing countries, including cassava, taro and beetroot, all of them cropped in Brazil, have been identified and quantified in order to point out their bioavailability and the adequate dietary intake to promote health. The effects of the flavonoid and non-flavonoid compounds present in these vegetables, their metabolism and their effects on preventing chronic and degenerative disorders like cancers, diabetes, osteoporosis, cardiovascular and neurological diseases are herein discussed based on recent epidemiological studies.

  3. Polyphenols from Root, Tubercles and Grains Cropped in Brazil: Chemical and Nutritional Characterization and Their Effects on Human Health and Diseases

    Science.gov (United States)

    dos Santos Baião, Diego; Silva de Freitas, Cyntia; da Silva, Davi; Ribeiro Pereira, Patricia

    2017-01-01

    Throughout evolution, plants have developed the ability to produce secondary phenolic metabolites, which are important for their interactions with the environment, reproductive strategies and defense mechanisms. These (poly)phenolic compounds are a heterogeneous group of natural antioxidants found in vegetables, cereals and leguminous that exert beneficial and protective actions on human health, playing roles such as enzymatic reaction inhibitors and cofactors, toxic chemicals scavengers and biochemical reaction substrates, increasing the absorption of essential nutrients and selectively inhibiting deleterious intestinal bacteria. Polyphenols present in some commodity grains, such as soy and cocoa beans, as well as in other vegetables considered security foods for developing countries, including cassava, taro and beetroot, all of them cropped in Brazil, have been identified and quantified in order to point out their bioavailability and the adequate dietary intake to promote health. The effects of the flavonoid and non-flavonoid compounds present in these vegetables, their metabolism and their effects on preventing chronic and degenerative disorders like cancers, diabetes, osteoporosis, cardiovascular and neurological diseases are herein discussed based on recent epidemiological studies. PMID:28930173

  4. Soil phosphatase and urease activities impacted by cropping systems and water management

    Science.gov (United States)

    Soil enzymes can play an important role in nutrient availability to plants. Consequently, soil enzyme measurements can provide useful information on soil fertility for crop production. We examined the impact of cropping system and water management on phosphatase, urease, and microbial biomass C in s...

  5. Agronomic & entomological results from 7 years of dryland cropping systems research at Briggsdale, Colorado

    Science.gov (United States)

    Dryland crop production in the semi-arid Great Plains is limited by both the quantity and timing of precipitation. Sustainable dryland cropping systems maximize precipitation use efficiency by managing precipitation capture, storage, and use. Pest management approaches are also critical for efficie...

  6. Understanding cropping systems in the semi-arid environments of Zimbabwe: options for soil fertility management

    NARCIS (Netherlands)

    Ncube, B.

    2007-01-01

    African smallholder farmers face perennial food shortages due to low crop yields. The major cause of poor crop yields is soil fertility decline. The diversity of sites and soils between African farming systems isgreat,therefore strategies to solve soil fertility problems

  7. Assessing the sustainability of wheat-based cropping systems using APSIM: Model parameterisation and evaluation

    NARCIS (Netherlands)

    Moeller, C.; Pala, M.; Manschadi, A.M.; Meinke, H.B.; Sauerborn, J.

    2007-01-01

    Assessing the sustainability of crop and soil management practices in wheat-based rotations requires a well-tested model with the demonstrated ability to sensibly predict crop productivity and changes in the soil resource. The Agricultural Production Systems Simulator (APSIM) suite of models was

  8. The Myth of Coexistence: Why Transgenic Crops Are Not Compatible With Agroecologically Based Systems of Production

    Science.gov (United States)

    Altieri, Miguel

    2005-01-01

    The coexistence of genetically modified (GM) crops and non-GM crops is a myth because the movement of transgenes beyond their intended destinations is a certainty, and this leads to genetic contamination of organic farms and other systems. It is unlikely that transgenes can be retracted once they have escaped, thus the damage to the purity of…

  9. Biomass productivity and radiation utilisation of innovative cropping systems for biorefinery

    DEFF Research Database (Denmark)

    Manevski, Kiril; Lærke, Poul Erik; Jiao, Xiurong

    2017-01-01

    rotation of annual crops (maize, beet, hemp/oat, triticale, winter rye and winter rapeseed), ii) perennial crops intensively fertilised (festulolium, reed canary, cocksfoot and tall fescue), low-fertilised (miscanthus) or unfertilised (grass-legume mixtures) and iii) traditional systems (continuous...

  10. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    Science.gov (United States)

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  11. Long-term effects of potato cropping system strategies on soilborne diseases and soil microbial communities

    Science.gov (United States)

    Cropping systems incorporating soil health management practices, such as longer rotations, disease-suppressive crops, reduced tillage, and/or organic amendments can substantially affect soil microbial communities, and potentially reduce soilborne potato diseases and increase productivity, but long-t...

  12. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.

    Science.gov (United States)

    Wasson, A P; Richards, R A; Chatrath, R; Misra, S C; Prasad, S V Sai; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Watt, M

    2012-05-01

    Wheat yields globally will depend increasingly on good management to conserve rainfall and new varieties that use water efficiently for grain production. Here we propose an approach for developing new varieties to make better use of deep stored water. We focus on water-limited wheat production in the summer-dominant rainfall regions of India and Australia, but the approach is generally applicable to other environments and root-based constraints. Use of stored deep water is valuable because it is more predictable than variable in-season rainfall and can be measured prior to sowing. Further, this moisture is converted into grain with twice the efficiently of in-season rainfall since it is taken up later in crop growth during the grain-filling period when the roots reach deeper layers. We propose that wheat varieties with a deeper root system, a redistribution of branch root density from the surface to depth, and with greater radial hydraulic conductivity at depth would have higher yields in rainfed systems where crops rely on deep water for grain fill. Developing selection systems for mature root system traits is challenging as there are limited high-throughput phenotyping methods for roots in the field, and there is a risk that traits selected in the lab on young plants will not translate into mature root system traits in the field. We give an example of a breeding programme that combines laboratory and field phenotyping with proof of concept evaluation of the trait at the beginning of the selection programme. This would greatly enhance confidence in a high-throughput laboratory or field screen, and avoid investment in screens without yield value. This approach requires careful selection of field sites and years that allow expression of deep roots and increased yield. It also requires careful selection and crossing of germplasm to allow comparison of root expression among genotypes that are similar for other traits, especially flowering time and disease and toxicity

  13. Activity of some isoenzymatic systems in stored coffee grains

    Directory of Open Access Journals (Sweden)

    Reni Saath

    2014-02-01

    Full Text Available Considering the worldwide consumption of coffee, it is natural that throughout the history many people have dedicated the research to markers that contribute somehow on gauging its quality. This research aimed to evaluate the biochemical performance of arabica coffee during storage. Coffee in beans (natural and in parchment (pulped dried in concrete terrace and in dryer with heated air were packed in jute bags and stored in not controlled environmental conditions. Enzymatic activities of superoxide dismutase, catalase, peroxidase, polyphenoloxidase, esterase and lipoxygenase in coffee grains were evaluated at zero, three, six, nine and twelve months by means of electrophoresis. Independently of the drying method, the activity of isoenzymatic complexes highlighted deteriorative processes in stored grains of coffee. The treatments 60/40º C and 60º C used to reduce the water content imposed a greater stress condition, accelerated metabolism of natural coffee in the storage with decreased activity of defense mechanisms due to latent damage in these grains. Natural coffees are more sensible to high drying temperatures and its quality reduces faster than pulped coffee in the storage.

  14. Economic evaluation of cereal cropping systems under semiarid conditions: minimum input, organic and conventional

    OpenAIRE

    Pardo,Gabriel; Aibar,Joaquín; Cavero,José; Zaragoza,Carlos

    2009-01-01

    Cropping systems like organic farming, selling products at a higher price and promoting environmental sustainability by reducing fertilizer and pesticides, can be more profitable than conventional systems. An economic evaluation of three cropping systems in a seven year period experiment was performed, using a common rotation (fallow-barley-vetch-durum wheat) in a semi-arid rainfed field of Spain. The minimum input system included mouldboard ploughing, cultivator preparation, sowing and harve...

  15. Robust cropping systems to tackle pests under climate change

    DEFF Research Database (Denmark)

    Lamichhane, Jay Ram; Barzman, Marco; Booij, Kees

    2015-01-01

    ) and the severity of their outbreaks. Increasing concerns over health and the environment as well as new legislation on pesticide use, particularly in the European Union, urge us to find sustainable alternatives to pesticide-based pest management. Here, we review the effect of climate change on crop protection......Agriculture in the twenty-first century faces the challenge of meeting food demands while satisfying sustainability goals. The challenge is further complicated by climate change which affects the distribution of crop pests (intended as insects, plants, and pathogenic agents injurious to crops...... and propose strategies to reduce the impact of future invasive as well as rapidly evolving resident populations. The major points are the following: (1) the main consequence of climate change and globalization is a heightened level of unpredictability of spatial and temporal interactions between weather...

  16. Effect of intercropping period management on runoff and erosion in a maize cropping system.

    Science.gov (United States)

    Laloy, Eric; Bielders, C L

    2010-01-01

    The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest.

  17. Two intelligent spraying systems developed for tree crop production

    Science.gov (United States)

    Precision pesticide application technologies are needed to achieve efficient and effective spray deposition on target areas and minimize off-target losses. Two variable-rate intelligent sprayers were developed as an introduction of new generation sprayers for tree crop applications. The first spraye...

  18. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    Information about the quantitative effect of conservation tillage combined with a cover crop on soil structure is still limited. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-term field trial. The tillage treatments (main...... plots) included direct drilling (D), harrowing to a depth of 8 to 10 cm (H), and moldboard plowing (MP). The cover crop treatments were subplot with cover crop (+CC) and without cover crop (−CC). Minimally disturbed soil cores were taken from the 4- to 8-, 12- to 16-, and 18- to 27-cm depth intervals...... in the spring of 2012 before cultivation. Soil water retention and air permeability were measured for matric potentials ranging from −1 to −30 kPa. Gas diffusivity was measured at −10 kPa. Computed tomography (CT) scanning was also used to characterize soil pore characteristics. At the 4- to 8- and 18- to 27-cm...

  19. A spatially based field specific crop recordkeeping system prototype ...

    African Journals Online (AJOL)

    These spatial data were prepared using ArcGIS 9.3. A database was created in Microsoft Access 2007. The database contained information on crops, fertilizers and past management. The information was linked to the spatial data table and maintained in the database. An application was developed using Visual Basic 6 in ...

  20. Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera

    OpenAIRE

    Thuy Tuong Nguyen; David C. Slaughter; Bradley D. Hanson; Andrew Barber; Amy Freitas; Daniel Robles; Erin Whelan

    2015-01-01

    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a t...

  1. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya.

    Science.gov (United States)

    Richard, Kyalo; Abdel-Rahman, Elfatih M; Subramanian, Sevgan; Nyasani, Johnson O; Thiel, Michael; Jozani, Hosein; Borgemeister, Christian; Landmann, Tobias

    2017-11-03

    Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer's accuracy and UA: user's accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10-20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.

  2. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya

    Directory of Open Access Journals (Sweden)

    Kyalo Richard

    2017-11-01

    Full Text Available Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step. An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer’s accuracy and UA: user’s accuracy for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10–20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.

  3. Canaryseed Crop

    Directory of Open Access Journals (Sweden)

    Maximiliano Cogliatti

    2012-03-01

    Full Text Available Canaryseed (Phalaris canariensis L. is a graminaceous crop species with production practices and cycle similar to those of other winter cereal crops such as spring wheat (Triticum aestivum L. and oat (Avena sativa L.. Currently its grains are used almost exclusively as feed for birds, alone or mixed with other grains like millet, sunflower seed, and flaxseed. Canaryseed is a genuine cereal with a unique composition that suggests its potential for food use. P. canariensis is cultivated in many areas of temperate climates. Currently, its production is concentrated in the southwestern provinces of Canada (Alberta, Saskatchewan and Manitoba and on a smaller scale in Argentina, Thailand and Australia. Globally it is considered to be a minor crop with regional relevance, with a production about of 250000 tonnes per year, which restricts private investment and public research on its genetic and technological improvement. For this reason, the type of crop management that is applied to this species largely depends on innovations made in other similar crops. This work provides an updated summary of the available information on the species: its requirements, distribution, genetic resources, cultivation practices, potential uses, marketing and other topics of interest to researchers and producers.

  4. Development and characterization of food-grade tracers for the global grain tracing and recall system.

    Science.gov (United States)

    Lee, Kyung-Min; Armstrong, Paul R; Thomasson, J Alex; Sui, Ruixiu; Casada, Mark; Herrman, Timothy J

    2010-10-27

    Tracing grain from the farm to its final processing destination as it moves through multiple grain-handling systems, storage bins, and bulk carriers presents numerous challenges to existing record-keeping systems. This study examines the suitability of coded caplets to trace grain, in particular, to evaluate methodology to test tracers' ability to withstand the rigors of a commercial grain handling and storage systems as defined by physical properties using measurement technology commonly applied to assess grain hardness and end-use properties. Three types of tracers to dispense into bulk grains for tracing the grain back to its field of origin were developed using three food-grade substances [processed sugar, pregelatinized starch, and silicified microcrystalline cellulose (SMCC)] as a major component in formulations. Due to a different functionality of formulations, the manufacturing process conditions varied for each tracer type, resulting in unique variations in surface roughness, weight, dimensions, and physical and spectroscopic properties before and after coating. The applied two types of coating [pregelatinized starch and hydroxypropylmethylcellulose (HPMC)] using an aqueous coating system containing appropriate plasticizers showed uniform coverage and clear coating. Coating appeared to act as a barrier against moisture penetration, to protect against mechanical damage of the surface of the tracers, and to improve the mechanical strength of tracers. The results of analysis of variance (ANOVA) tests showed the type of tracer, coating material, conditioning time, and a theoretical weight gain significantly influenced the morphological and physical properties of tracers. Optimization of these factors needs to be pursued to produce desirable tracers with consistent quality and performance when they flow with bulk grains throughout the grain marketing channels.

  5. Effect of Weed Management and Seed Rate on Crop Growth under Direct Dry Seeded Rice Systems in Bangladesh

    Science.gov (United States)

    Ahmed, Sharif; Salim, Muhammad; Chauhan, Bhagirath S.

    2014-01-01

    Weeds are a major constraint to the success of dry-seeded rice (DSR). The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet) seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free) and rice seeding rate (20, 40, 60, 80, and 100 kg ha−1) on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha−1 in the 2012 and 2013 seasons, respectively) were obtained at the seeding rate of 40 kg ha−1 and thereafter, yield decreased slightly beyond 40 kg seed ha−1. Under partially-weedy conditions, yield increased by 30 to 33% (2.0–2.2 and 2.9–3.2 t ha−1 in the 2012 and 2013 seasons, respectively) with increase in seeding rate from 20 to 100 kg ha−1. In the partially-weedy plots, weed biomass decreased by 41–60% and 54–56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha−1. Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition. PMID:25000520

  6. Effect of weed management and seed rate on crop growth under direct dry seeded rice systems in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Sharif Ahmed

    Full Text Available Weeds are a major constraint to the success of dry-seeded rice (DSR. The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free and rice seeding rate (20, 40, 60, 80, and 100 kg ha(-1 on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha(-1 in the 2012 and 2013 seasons, respectively were obtained at the seeding rate of 40 kg ha(-1 and thereafter, yield decreased slightly beyond 40 kg seed ha(-1. Under partially-weedy conditions, yield increased by 30 to 33% (2.0-2.2 and 2.9-3.2 t ha(-1 in the 2012 and 2013 seasons, respectively with increase in seeding rate from 20 to 100 kg ha(-1. In the partially-weedy plots, weed biomass decreased by 41-60% and 54-56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha(-1. Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition.

  7. Increasing Soil Organic Matter Enhances Inherent Soil Productivity while Offsetting Fertilization Effect under a Rice Cropping System

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhao

    2016-09-01

    Full Text Available Understanding the role of soil organic matter (SOM in soil quality and subsequent crop yield and input requirements is useful for agricultural sustainability. SOM is widely considered to affect a wide range of soil properties, however, great uncertainty still remains in identifying the relationships between SOM and crop yield due to the difficulty in separating the effect of SOM from other yield-limiting factors. Based on 543 on-farm experiments, where paired treatments with and without NPK fertilizer were conducted during 2005–2009, we quantified the inherent soil productivity, fertilization effect, and their contribution to rice yield and further evaluated their relationships with SOM contents under a rice cropping system in the Sichuan Basin of China. The inherent soil productivity assessed by rice grain yield under no fertilization (Y-CK was 5.8 t/ha, on average, and contributed 70% to the 8.3 t/ha of rice yield under NPK fertilization (Y-NPK while the other 30% was from the fertilization effect (FE. No significant correlation between SOM content and Y-NPK was observed, however, SOM content positively related to Y-CK and its contribution to Y-NPK but negatively to FE and its contribution to Y-NPK, indicating an increased soil contribution but a decreased fertilizer contribution to rice yield with increasing SOM. There were significantly positive relationships between SOM and soil available N, P, and K, indicating the potential contribution of SOM to inherent soil productivity by supplying nutrients from mineralization. As a result, approaches for SOM accumulation are practical to improve the inherent soil productivity and thereafter maintain a high crop productivity with less dependence on chemical fertilizers, while fertilization recommendations need to be adjusted with the temporal and spatial SOM variation.

  8. Effect of weed management and seed rate on crop growth under direct dry seeded rice systems in Bangladesh.

    Science.gov (United States)

    Ahmed, Sharif; Salim, Muhammad; Chauhan, Bhagirath S

    2014-01-01

    Weeds are a major constraint to the success of dry-seeded rice (DSR). The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet) seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free) and rice seeding rate (20, 40, 60, 80, and 100 kg ha(-1)) on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha(-1) in the 2012 and 2013 seasons, respectively) were obtained at the seeding rate of 40 kg ha(-1) and thereafter, yield decreased slightly beyond 40 kg seed ha(-1). Under partially-weedy conditions, yield increased by 30 to 33% (2.0-2.2 and 2.9-3.2 t ha(-1) in the 2012 and 2013 seasons, respectively) with increase in seeding rate from 20 to 100 kg ha(-1). In the partially-weedy plots, weed biomass decreased by 41-60% and 54-56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha(-1). Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition.

  9. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark

    DEFF Research Database (Denmark)

    Jabloun, Mohamed; Schelde, Kirsten; Tao, F

    2015-01-01

    The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3single bondN) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop...... rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction......N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3single bondN leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop...

  10. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    Science.gov (United States)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  11. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang.

    Science.gov (United States)

    Fang, Bin; Wang, Guang-Huo; Van, Den Berg Marrit; Roetter, Reimund

    2005-10-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China's Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops.

  12. Integrated cropping systems : an answer to environmental regulations imposed on nursery stock in the Netherlands

    NARCIS (Netherlands)

    Pronk, A.A.; Challa, H.

    2000-01-01

    Government regulations in the Netherlands are increasingly constraining and sometimes even banning conventional cultivation practices in nursery stock cropping systems. As a consequence, growers face problems concerning the use of manure, fertilisers and irrigation. In this study we analysed the

  13. Production versus environmental impact trade-offs for Swiss cropping systems: a model-based approach

    Science.gov (United States)

    Necpalova, Magdalena; Lee, Juhwan; Six, Johan

    2017-04-01

    There is a growing need to improve sustainability of agricultural systems. The key focus remains on optimizing current production systems in order to deliver food security at low environmental costs. It is therefore essential to identify and evaluate agricultural management practices for their potential to maintain or increase productivity and mitigate climate change and N pollution. Previous research on Swiss cropping systems has been concentrated on increasing crop productivity and soil fertility. Thus, relatively little is known about management effects on net soil greenhouse gas (GHG) emissions and environmental N losses in the long-term. The aim of this study was to extrapolate findings from Swiss long-term field experiments and to evaluate the system-level sustainability of a wide range of cropping systems under conditions beyond field experimentation by comparing their crop productivity and impacts on soil carbon, net soil GHG emissions, NO3 leaching and soil N balance over 30 years. The DayCent model was previously parameterized for common Swiss crops and crop-specific management practices and evaluated for productivity, soil carbon dynamics and N2O emissions from Swiss cropping systems. Based on a prediction uncertainty criterion for crop productivity and soil carbon (rRMSEGM). The productivity of Swiss cropping systems was mainly driven by total N inputs to the systems. The GWP of systems ranged from -450 to 1309 kg CO2 eq ha-1 yr-1. All studied systems, except for ORG-RT-GM systems, acted as a source of net soil GHG emissions with the relative contribution of soil N2O emissions to GWP of more than 60%. The GWP of systems with CT decreased consistently with increasing use of organic manures (MIN>IN>ORG). NT relative to RT management showed to be more effective in reducing GWP from MIN systems due to reduced soil N2O emissions and positive effects on soil C sequestration. GM relative to CC management was shown to be more effective in mitigating NO3

  14. [Continuous remediation of heavy metal contaminated soil by co-cropping system enhanced with chelator].

    Science.gov (United States)

    Wei, Ze-Bin; Guo, Xiao-Fang; Wu, Qi-Tang; Long, Xin-Xian

    2014-11-01

    In order to elucidate the continuous effectiveness of co-cropping system coupling with chelator enhancement in remediating heavy metal contaminated soils and its environmental risk towards underground water, soil lysimeter (0.9 m x 0.9 m x 0.9 m) experiments were conducted using a paddy soil affected by Pb and Zn mining in Lechang district of Guangdong Province, 7 successive crops were conducted for about 2.5 years. The treatments included mono-crop of Sedum alfredii Hance (Zn and Cd hyperaccumulator), mono-crop of corn (Zea mays, cv. Yunshi-5, a low-accumulating cultivar), co-crop of S. alfredii and corn, and co-crop + MC (Mixture of Chelators, comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCI with molar ratio of 10: 1:2:3 at the concentration of 5 mmol x kg(-1) soil). The changes of heavy metal concentrations in plants, soil and underground water were monitored. Results showed that the co-cropping system was suitable only in spring-summer seasons and significantly increased Zn and Cd phytoextraction. In autumn-winter seasons, the growth of S. alfredii and its phytoextraction of Zn and Cd were reduced by co-cropping and MC application. In total, the mono-crops of S. alfredii recorded a highest phytoextraction of Zn and Cd. However, the greatest reduction of soil Zn, Cd and Pb was observed with the co-crop + MC treatment, the reduction rates were 28%, 50%, and 22%, respectively, relative to the initial soil metal content. The reduction of this treatment was mainly attributed to the downwards leaching of metals to the subsoil caused by MC application. The continuous monitoring of leachates during 2. 5 year's experiment also revealed that the addition of MC increased heavy metal concentrations in the leaching water, but they did not significantly exceed the III grade limits of the underground water standard of China.

  15. Instabilities in vertically vibrated fluid-grain systems.

    Science.gov (United States)

    King, P J; Lopez-Alcaraz, P; Pacheco-Martinez, H A; Clement, C P; Smith, A J; Swift, M R

    2007-03-01

    When a bed of fluid-immersed fine grains is exposed to vertical vibration a wealth of phenomena may be observed. At low frequencies a horizontal bed geometry is generally unstable and the bed breaks spatial symmetry, acquiring a tilt. At the same time it undergoes asymmetric granular convection. Fine binary mixtures may separate completely into layers or patterns of stripes. The separated regions may exhibit instabilities in which they undergo wave-like motion or exhibit quasi-periodic oscillations. We briefly review these and a number of related behaviours, identifying the physical mechanisms behind each. Finally, we discuss the magneto-vibratory separation of binary mixtures which results from exposing each component to a different effective gravity and describe the influence of a background fluid on this process.

  16. Valuation of vegetable crops produced in the UVI Commercial Aquaponic System

    Directory of Open Access Journals (Sweden)

    Donald S. Bailey

    2017-08-01

    Full Text Available The UVI Commercial Aquaponic System is designed to produce fish and vegetables in a recirculating aquaculture system. The integration of these systems intensifies production in a small land area, conserves water, reduces waste discharged into the environment, and recovers nutrients from fish production into valuable vegetable crops. A standard protocol has been developed for the production of tilapia yielding 5 MT per annum. The production of many vegetable crops has also been studied but, because of specific growth patterns and differences of marketable product, no single protocol can be promoted. Each crop yields different value per unit area and this must be considered when selecting varieties to produce to provide the highest returns to the farmer. Variables influencing the value of a crop are density (plants/m2, yield (unit or kg, production period (weeks and unit value ($. Combining these variables to one unit, $/m2/week, provides a common point for comparison among crops. Farmers can focus production efforts on the most valuable crops or continue to produce a variety of crops meeting market demand with the knowledge that each does not contribute equally to profitability.

  17. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang*

    OpenAIRE

    Fang, Bin; Wang, Guang-huo; Van den berg, Marrit; Roetter, Reimund

    2005-01-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China’s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology de...

  18. Effects of contrasting catch crops on nitrogen availability and nitrous oxide emissions in an organic cropping system

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Petersen, Søren O; Sørensen, Peter

    2015-01-01

    Legume-based catch crops (LBCCs) may act as an important source of nitrogen (N) in organic crop rotations because of biological N fixation. However, the potential risk of high nitrous oxide (N2O) emissions needs to be taken into account when including LBCCs in crop rotations. Here, we report...

  19. Development of micro tensile testing method in an FIB system for evaluating grain boundary strength

    International Nuclear Information System (INIS)

    Fujii, Katsuhiko; Fukuya, Koji

    2010-01-01

    A micro tensile testing method for evaluating grain boundary strength was developed. Specimens of 2 x 2 x 10μm having one grain boundary were made by focused ion beam (FIB) micro-processing and tensioned in an FIB system in situ. The load was measured from the deflection of the silicon cantilever. The method was applied to aged and unaged Fe-Mn-P alloy specimens with different level of grain boundary phosphorus segregation. The load at intergranular fracture decreased with increasing phosphorus segregation. (author)

  20. Nutrient cycling in a cropping system with potato, spring wheat, sugar beet, oats and nitrogen catch crops. II. Effect of catch crops on nitrate leaching in autumn and winter

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.

    2004-01-01

    The Nitrate Directive of the European Union (EU) forces agriculture to reduce nitrate emission. The current study addressed nitrate emission and nitrate-N concentrations in leachate from cropping systems with and without the cultivation of catch crops (winter rye: Secale cereale L. and forage rape:

  1. Cropping system innovation for coping with climatic warming in China

    OpenAIRE

    Deng, Aixing; Chen, Changqing; Feng, Jinfei; Chen, Jin; Zhang, Weijian

    2017-01-01

    China is becoming the largest grain producing and carbon-emitting country in the world, with a steady increase in population and economic development. A review of Chinese experiences in ensuring food self-sufficiency and reducing carbon emission in the agricultural sector can provide a valuable reference for similar countries and regions. According to a comprehensive review of previous publications and recent field observations, China has experienced on average a larger and faster climatic wa...

  2. Recycling of Na in advanced life support: strategies based on crop production systems.

    Science.gov (United States)

    Guntur, S V; Mackowiak, C; Wheeler, R M

    1999-01-01

    Sodium is an essential dietary requirement in human nutrition, but seldom holds much importance as a nutritional element for crop plants. In Advanced Life Support (ALS) systems, recycling of gases, nutrients, and water loops is required to improve system closure. If plants are to play a significant role in recycling of human wastes, Na will need to accumulate in edible tissues for return to the crew diet. If crops fail to accumulate the incoming Na into edible tissues, Na could become a threat to the hydroponic food production system by increasing the nutrient solution salinity. Vegetable crops of Chenopodiaceae such as spinach, table beet, and chard may have a high potential to supply Na to the human diet, as Na can substitute for K to a large extent in metabolic processes of these crops. Various strategies are outlined that include both genetic and environmental management aspects to optimize the Na recovery from waste streams and their resupply through the human diet in ALS.

  3. 6 Grain Yield

    African Journals Online (AJOL)

    create a favourable environment for rice ... developing lines adaptable to many ... have stable, not too short crop duration with ..... Analysis of variance of the effect of site and season on maturity, grain yield and plant ..... and yield components.

  4. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  5. Socio-economic characterization of integrated cropping systems in urban and peri-urban agriculture of Faisalabad, Pakistan

    Directory of Open Access Journals (Sweden)

    Shoaib Ur Rehman

    2013-12-01

    Full Text Available Faisalabad city is surrounded by agricultural lands, where farmers are growing vegetables, grain crops, and fodder for auto-consumption and local marketing. To study the socioeconomic impact and resource use in these urban and peri-urban agricultural production (UPA systems, a baseline survey was conducted during 2009–2010. A total of 140 households were selected using a stratified sampling method and interviewed with a structured questionnaire. The results revealed that 96 % of the households rely on agriculture as their main occupation. Thirty percent of the households were owners of the land and the rest cultivated either rented or sharecropped land. Most of the families (70 % were headed by a member with primary education, and only 10 % of the household head had a secondary school certificate. Irrigationwater was obtained from waste water (37 %, canals (27 %, and mixed alternative sources (36 %. A total of 35 species were cultivated in the UPA systems of which were 65% vegetables, 15% grain and fodder crops, and 5% medicinal plants. Fifty-nine percent of the households cultivated wheat, mostly for auto-consumption. The 51 % of the respondents grew cauliflower (Brassica oleracea L. and gourds (Cucurbitaceae in the winter and summer seasons, respectively. Group marketing was uncommon and most of the farmers sold their produce at the farm gate (45 % and on local markets (43 %. Seeds and fertilizers were available from commission agents and dealers on a credit basis with the obligation to pay by harvested produce. A major problem reported by the UPA farmers of Faisalabad was the scarcity of high quality irrigation water, especially during the hot dry summer months, in addition to lacking adequate quantities of mineral fertilizers and other inputs during sowing time. Half of the respondents estimated their daily income to be less than 1.25 US$ and spent almost half of it on food. Monthly average household income and expenses were 334 and 237 US

  6. Insect pests and their natural enemies on spring oilseed rape in Estonia : impact of cropping systems

    Directory of Open Access Journals (Sweden)

    E. VEROMANN

    2008-12-01

    Full Text Available To investigate the impact of different cropping systems, the pests, their hymenopteran parasitoids and predatory ground beetles present in two spring rape crops in Estonia, in 2003, were compared. One crop was grown under a standard (STN cropping system and the other under a minimised (MIN system. The STN system plants had more flowers than those in the MIN system, and these attracted significantly more Meligethes aeneus, the only abundant and real pest in Estonia. Meligethes aeneus had two population peaks: the first during opening of the first flowers and the second, the new generation, during ripening of the pods. The number of new generation M. aeneus was almost four times greater in the STN than in the MIN crop. More carabids were caught in the MIN than in STN crop. The maximum abundance of carabids occurred two weeks before that of the new generation of M. aeneus, at the time when M. aeneus larvae were dropping to the soil for pupation and hence were vulnerable to predation by carabids.

  7. Cultivo de milho no sistema de aléias com leguminosas perenes Maize crop in alley cropping system with perennials legumes

    Directory of Open Access Journals (Sweden)

    Luciano Rodrigues Queiroz

    2007-10-01

    Full Text Available Objetivou-se avaliar a influência de algumas leguminosas perenes no teor foliar de N, P e K e na produtividade da cultura do milho (UENF 506-8, cultivado no sistema de aléias, sem adubação fosfatada. Foram realizados experimentos de campo por dois ciclos de cultivo, no Campo Experimental do CCTA/UENF, em Campos dos Goytacazes - RJ. Os tratamentos consistiram no sistema de aléias com Albizia lebbeck (L. Benth., Peltophorum dubium (Spreng. Taub., Leucaena leucocephala (Lam. de Wit., Cajanus cajan (L. Millsp., Sesbania virgata (Cav. Pers., Mimosa caesalpiniaefolia Benth., Gliricidia sepium (Jacq. Pers. e duas testemunhas com milho solteiro (com e sem NPK. Após oito meses de plantio das leguminosas, essas foram podadas, o material foi incorporado ao solo e em seguida semeado o milho nas entrelinhas, com espaçamento de 80 cm entre fileiras. Após 60 dias da semeadura do milho efetuou-se nova poda. No segundo ciclo de cultivo, as práticas culturais foram similares às do primeiro. Foi utilizado o delineamento em blocos casualizados com quatro repetições. Nas aléias de guandu, observou-se milho com maior teor foliar de N, em relação às demais leguminosas, no primeiro ciclo de cultivo. No segundo ciclo, os consórcios milho+guandu, milho+gliricídia e milho solteiro adubado superaram os demais na produtividade de grãos.The objective of this study was to evaluate the effects of perennials legumes, in N, P and K foliar concentration and maize productivity in alley cropping system, without phosphorus fertilization. Field experiments were carried out for two cycles, with legumes intercropping maize (UENF 506-8 in Field Research CCTA/UENF in Campos dos Goytacazes - RJ - Brazil. The treatments consisted of alley cropping system with the species: Albizia lebbeck (L. Benth., Peltophorum dubium (Spreng. Taub., Leucaena leucocephala (Lam. de Wit., Cajanus cajan (L. Millsp., Sesbania virgata (Cav. Pers., Mimosa caesalpiniaefolia Benth., Gliricidia

  8. Effects of snow grain shape on climate simulations: sensitivity tests with the Norwegian Earth System Model

    Directory of Open Access Journals (Sweden)

    P. Räisänen

    2017-12-01

    Full Text Available Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR model and in the Los Alamos sea ice model, version 4 (CICE4, both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM. In this study, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH is compared with another (NONSPH in which the snow shortwave single-scattering properties are based on a combination of three non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (0.77–0.78 in the visible region than in the spherical case ( ≈  0.89. Therefore, for the same effective snow grain size (or equivalently, the same specific projected area, the snow broadband albedo is higher when assuming non-spherical rather than spherical snow grains, typically by 0.02–0.03. Considering the spherical case as the baseline, this results in an instantaneous negative change in net shortwave radiation with a global-mean top-of-the-model value of ca. −0.22 W m−2. Although this global-mean radiative effect is rather modest, the impacts on the climate simulated by NorESM are substantial. The global annual-mean 2 m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further demonstrated that the effect of snow grain shape could be largely offset by adjusting the snow grain size. When assuming non-spherical snow grains with the parameterized grain

  9. Effects of snow grain shape on climate simulations: sensitivity tests with the Norwegian Earth System Model

    Science.gov (United States)

    Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf; Debernard, Jens B.

    2017-12-01

    Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this study, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of three non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (0.77-0.78 in the visible region) than in the spherical case ( ≈ 0.89). Therefore, for the same effective snow grain size (or equivalently, the same specific projected area), the snow broadband albedo is higher when assuming non-spherical rather than spherical snow grains, typically by 0.02-0.03. Considering the spherical case as the baseline, this results in an instantaneous negative change in net shortwave radiation with a global-mean top-of-the-model value of ca. -0.22 W m-2. Although this global-mean radiative effect is rather modest, the impacts on the climate simulated by NorESM are substantial. The global annual-mean 2 m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further demonstrated that the effect of snow grain shape could be largely offset by adjusting the snow grain size. When assuming non-spherical snow grains with the parameterized grain size increased by ca. 70 %, the

  10. Conventional vs. organic cropping systems: yield of crops and weeds in Mediterranean environment

    OpenAIRE

    Campiglia, Enio; Mancinelli , Roberto; Radicetti, Emanuele

    2015-01-01

    Agriculture must meet the twin challenge of feeding a growing population while simultaneously of minimizing its global environmental impacts. The organic farming, which is a system aimed at producing food with minimal harm to ecosystems, is often proposed as a possible solution. However, critics argue that organic agriculture may give lower yields and therefore more land is required in order to produce the same amount of food of the conventional farms, resulting in more widespread deforestati...

  11. Crop yield network and its response to changes in climate system

    Science.gov (United States)

    Yokozawa, M.

    2013-12-01

    Crop failure (reduction in crop yield) due to extreme weather and climate change could lead to unstable food supply, reflecting the recent globalization in world agricultural production. Specifically, in several major production countries producing large amount of main cereal crops, wheat, maize, soybean and rice, abrupt crop failures in wide area are significantly serious for world food supply system. We examined the simultaneous changes in crop yield in USA, China and Brazil, in terms of the changes in climate system such as El Nino, La nina and so on. In this study, we defined a crop yield networks, which represent the correlation between yearly changes in crop yields and climate resources during the crop growing season in two regions. The climate resources during the crop growing season represents here the average temperature and the accumulated precipitation during the crop growing season of a target crop. As climate data, we used a reanalysis climate data JRA-25 (Japan Meteorological Agency). The yearly changes in crop yields are based on a gridded crop productivity database with a resolution of 1.125 degree in latitude/longitude (Iizumi et al. 2013). It is constructed from the agriculture statistics issued by local administrative bureau in each country, which covers the period during 1982 to 2006 (25 years). For the regions being lack of data, the data was interpolated referring to NPP values estimated by satellite data. Crop yield network is constructed as follows: (1) let DY(i,y) be negative difference in crop yield of year y from the trend yield at grid i; (2) define the correlation of the differences Cij(y) = DY(i, y) DY(j, y); (3) if Cij(y) > Q, then grids i and j are mutually linked for a threshold value Q. Links between grids make a crop yield network. It is here noted that only negative differences are taken into account because we focused on the lean year cases (i.e. yields of both grids were lower than those in the long-term trend). The arrays of

  12. Seasonal Soil Nitrogen Mineralization within an Integrated Crop and Livestock System in Western North Dakota, USA

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.

    2015-04-01

    Protecting natural resources while maintaining or maximizing crop yield potential is of utmost importance for sustainable crop and livestock production systems. Since soil organic matter and its decomposition by soil organisms is at the very foundation of healthy productive soils, systems research at the North Dakota State University Dickinson Research Extension Center is evaluating seasonal soil nitrogen fertility within an integrated crop and livestock production system. The 5-year diverse crop rotation is: sunflower (SF) - hard red spring wheat (HRSW) - fall seeded winter triticale-hairy vetch (THV; spring harvested for hay)/spring seeded 7-species cover crop (CC) - Corn (C) (85-90 day var.) - field pea-barley intercrop (PBY). The HRSW and SF are harvested as cash crops and the PBY, C, and CC are harvested by grazing cattle. In the system, yearling beef steers graze the PBY and C before feedlot entry and after weaning, gestating beef cows graze the CC. Since rotation establishment, four crop years have been harvested from the crop rotation. All crops have been seeded using a JD 1590 no-till drill except C and SF. Corn and SF were planted using a JD 7000 no-till planter. The HRSW, PBY, and CC were seeded at a soil depth of 3.8 cm and a row width of 19.1 cm. Seed placement for the C and SF crops was at a soil depth of 5.1 cm and the row spacing was 0.762 m. The plant population goal/ha for C, SF, and wheat was 7,689, 50,587, and 7,244 p/ha, respectively. During the 3rd cropping year, soil bulk density was measured and during the 4th cropping year, seasonal nitrogen fertility was monitored throughout the growing season from June to October. Seasonal nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total season mineral nitrogen (NO3-N + NH4-N), cropping system NO3-N, and bulk density were measured in 3 replicated non-fertilized field plot areas within each 10.6 ha triple replicated crop fields. Within each plot area, 6 - 20.3 cm x 0.61 m aluminum irrigation

  13. Fine-Grained Access Control for Electronic Health Record Systems

    Science.gov (United States)

    Hue, Pham Thi Bach; Wohlgemuth, Sven; Echizen, Isao; Thuy, Dong Thi Bich; Thuc, Nguyen Dinh

    There needs to be a strategy for securing the privacy of patients when exchanging health records between various entities over the Internet. Despite the fact that health care providers such as Google Health and Microsoft Corp.'s Health Vault comply with the U.S Health Insurance Portability and Accountability Act (HIPAA), the privacy of patients is still at risk. Several encryption schemes and access control mechanisms have been suggested to protect the disclosure of a patient's health record especially from unauthorized entities. However, by implementing these approaches, data owners are not capable of controlling and protecting the disclosure of the individual sensitive attributes of their health records. This raises the need to adopt a secure mechanism to protect personal information against unauthorized disclosure. Therefore, we propose a new Fine-grained Access Control (FGAC) mechanism that is based on subkeys, which would allow a data owner to further control the access to his data at the column-level. We also propose a new mechanism to efficiently reduce the number of keys maintained by a data owner in cases when the users have different access privileges to different columns of the data being shared.

  14. Autonomous bed-sediment imaging-systems for revealing temporal variability of grain size

    Science.gov (United States)

    Buscombe, Daniel; Rubin, David M.; Lacy, Jessica R.; Storlazzi, Curt D.; Hatcher, Gerald; Chezar, Henry; Wyland, Robert; Sherwood, Christopher R.

    2014-01-01

    We describe a remotely operated video microscope system, designed to provide high-resolution images of seabed sediments. Two versions were developed, which differ in how they raise the camera from the seabed. The first used hydraulics and the second used the energy associated with wave orbital motion. Images were analyzed using automated frequency-domain methods, which following a rigorous partially supervised quality control procedure, yielded estimates to within 20% of the true size as determined by on-screen manual measurements of grains. Long-term grain-size variability at a sandy inner shelf site offshore of Santa Cruz, California, USA, was investigated using the hydraulic system. Eighteen months of high frequency (min to h), high-resolution (μm) images were collected, and grain size distributions compiled. The data constitutes the longest known high-frequency record of seabed-grain size at this sample frequency, at any location. Short-term grain-size variability of sand in an energetic surf zone at Praa Sands, Cornwall, UK was investigated using the ‘wave-powered’ system. The data are the first high-frequency record of grain size at a single location of a highly mobile and evolving bed in a natural surf zone. Using this technology, it is now possible to measure bed-sediment-grain size at a time-scale comparable with flow conditions. Results suggest models of sediment transport at sandy, wave-dominated, nearshore locations should allow for substantial changes in grain-size distribution over time-scales as short as a few hours.

  15. FROM ATOMISTIC TO SYSTEMATIC COARSE-GRAINED MODELS FOR MOLECULAR SYSTEMS

    KAUST Repository

    Harmandaris, Vagelis

    2017-10-03

    The development of systematic (rigorous) coarse-grained mesoscopic models for complex molecular systems is an intense research area. Here we first give an overview of methods for obtaining optimal parametrized coarse-grained models, starting from detailed atomistic representation for high dimensional molecular systems. Different methods are described based on (a) structural properties (inverse Boltzmann approaches), (b) forces (force matching), and (c) path-space information (relative entropy). Next, we present a detailed investigation concerning the application of these methods in systems under equilibrium and non-equilibrium conditions. Finally, we present results from the application of these methods to model molecular systems.

  16. Emergy analysis of cropping-grazing system in Inner Mongolia Autonomous Region, China

    International Nuclear Information System (INIS)

    Zhang, L.X.; Yang, Z.F.; Chen, G.Q.

    2007-01-01

    An ecological energetic evaluation is presented in this paper as a complement to economic account for the cropping-grazing system in the Inner Mongolia Autonomous Region in China in the year 2000. Based on Odum's well-known concept of emergy in terms of embodied solar energy as a unified measure for environmental resources, human or animal labors and industrial products, a systems diagram is developed for the crop and livestock productions with arms and sub-arms for free renewable natural resource input, purchased economic investment, yields of and interactive fluxes between the cropping and grazing sub-industries. In addition to conventional systems indices of the emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR) and environmental sustainability index (ESI) introduced for congregated systems ecological assessment with essential implication for sustainability, new indicators of soil emergy cost (SEC), self-support intensity (SSI) and self-support orientation (SSO) are defined to characterize the desertification and internal recycling associated with the special agricultural system. Extensive emergy accounting is made for the cropping-grazing system as a whole as well as for the cropping and grazing subsystems. The overall cropping-grazing system is shown with outstanding production competence compared with agricultural systems in some other provinces and the national average in China, though confronted with severe desertification associated with soil loss. The production of crops has higher emergy density and yield rate per unit area as well as higher rate of soil loss than grazing system. The soil emergy cost defined as the soil loss emergy divided by the yield emergy is estimated to be of the same value for both of the subsystems, but the grazing activity is with less extraction intensity, leaving rangeland to rest and rehabilitate. Suggestions with regard to the local sustainability and national ecological security in

  17. An Assessment of some Fertilizer Recommendations under Different Cropping Systems in a Humid Tropical Environment

    Directory of Open Access Journals (Sweden)

    Fondufe, EY.

    2001-01-01

    Full Text Available Studies were carried out to determine the effects of four fertilizer recommendation systems (bianket recommendation, soil test recommendation, recommendation based on nutrient supplementation index and unfertilized control on five cropping systems (sole cassava, maize, melon, cassava + maize and cassava + maize + melon. The experiment was a split-plot in randomised complete block design, with fertilizer recommendation systems in main plots and cropping systems in subplots. Observations were made on plant growth and yield. Plant samples were also analyzed for N, P and K uptake. Cassava and melon gave higher yields in sole cropping than intercropping while maize yield under intercropping exceeded that under sole cropping by 17 %. Cassava root yield was significantly reduced by 24 and 35 % in cassava + maize and cassava + maize + melon plots. Fertilizer recommendation based on nutrient supplementation index (NSI gave the highest crop yield 41, 31, and 27 t/ha of maize in sole maize, maize + cassava and maize + cassava + melon and 0.6 and 0.2 t/ha of sole melon and intercropped melon respectively. Nitrogen uptake by cassava and maize was highest under NSI, but fertilizer recommendation based on soil test gave the highest crop yield and monetary returns per unit of fertilizer used.

  18. Molecular and systems approaches towards drought-tolerant canola crops.

    Science.gov (United States)

    Zhu, Mengmeng; Monroe, J Grey; Suhail, Yasir; Villiers, Florent; Mullen, Jack; Pater, Dianne; Hauser, Felix; Jeon, Byeong Wook; Bader, Joel S; Kwak, June M; Schroeder, Julian I; McKay, John K; Assmann, Sarah M

    2016-06-01

    1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Biomass supply from alternative cellulosic crops and crop residues: A spatially explicit bioeconomic modeling approach

    International Nuclear Information System (INIS)

    Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.; Izaurralde, César R.; Manowitz, David H.; Zhang, Xuesong

    2011-01-01

    This paper introduces a spatially-explicit bioeconomic model for the study of potential cellulosic biomass supply. For biomass crops to begin to replace current crops, farmers must earn more from them than from current crops. Using weather, topographic and soil data, the terrestrial ecosystem model, EPIC, dynamically simulates multiple cropping systems that vary by crop rotation, tillage, fertilization and residue removal rate. EPIC generates predicted crop yield and environmental outcomes over multiple watersheds. These EPIC results are used to parameterize a regional profit-maximization mathematical programming model that identifies profitable cropping system choices. The bioeconomic model is calibrated to 2007–09 crop production in a 9-county region of southwest Michigan. A simulation of biomass supply in response to rising biomass prices shows that cellulosic residues from corn stover and wheat straw begin to be supplied at minimum delivered biomass:corn grain price ratios of 0.15 and 0.18, respectively. At the mean corn price of $162.6/Mg ($4.13 per bushel) at commercial moisture content during 2007–2009, these ratios correspond to stover and straw prices of $24 and $29 per dry Mg. Perennial bioenergy crops begin to be supplied at price levels 2–3 times higher. Average biomass transport costs to the biorefinery plant range from $6 to $20/Mg compared to conventional crop production practices in the area, biomass supply from annual crop residues increased greenhouse gas emissions and reduced water quality through increased nutrient loss. By contrast, perennial cellulosic biomass crop production reduced greenhouse gas emissions and improved water quality. -- Highlights: ► A new bioeconomic model predicts biomass supply and its environmental impacts. ► The model captures the opportunity cost of switching to new cellulosic crops. ► Biomass from crop residues is supplied at lower biomass price than cellulosic crops. ► Biomass from cellulosic crops has

  20. Impact of management strategies on the global warming potential at the cropping system level

    International Nuclear Information System (INIS)

    Goglio, Pietro; Grant, Brian B.; Smith, Ward N.; Desjardins, Raymond L.; Worth, Devon E.; Zentner, Robert; Malhi, Sukhdev S.

    2014-01-01

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha −1 decreased on average the emissions of N 2 O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO 2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. - Highlights: • LCA was combined with DNDC model to estimate the GWP of a cropping system. • N 2 O, NO and NH 3 flux increased by 39% under the higher fertilizer rate. • A change from 75 to 50 kg N ha −1 reduced the GWP per ha and GJ basis by 18%. • N 2 O emissions contributed 67% to the overall GWP of the cropping system. • Small changes in N fertilizer can have a substantial environmental impact

  1. Development of a European Ensemble System for Seasonal Prediction: Application to crop yield

    Science.gov (United States)

    Terres, J. M.; Cantelaube, P.

    2003-04-01

    Western European agriculture is highly intensive and the weather is the main source of uncertainty for crop yield assessment and for crop management. In the current system, at the time when a crop yield forecast is issued, the weather conditions leading up to harvest time are unknown and are therefore a major source of uncertainty. The use of seasonal weather forecast would bring additional information for the remaining crop season and has valuable benefit for improving the management of agricultural markets and environmentally sustainable farm practices. An innovative method for supplying seasonal forecast information to crop simulation models has been developed in the frame of the EU funded research project DEMETER. It consists in running a crop model on each individual member of the seasonal hindcasts to derive a probability distribution of crop yield. Preliminary results of cumulative probability function of wheat yield provides information on both the yield anomaly and the reliability of the forecast. Based on the spread of the probability distribution, the end-user can directly quantify the benefits and risks of taking weather-sensitive decisions.

  2. Effects of crop species richness on pest-natural enemy systems based on an experimental model system using a microlandscape.

    Science.gov (United States)

    Zhao, ZiHua; Shi, PeiJian; Men, XingYuan; Ouyang, Fang; Ge, Feng

    2013-08-01

    The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services. The effects of crop arrangement on predator-prey interactions have received much attention as the basis for pest population management. To explore the internal mechanisms and factors driving the relationship between crop richness and pest population management, we designed an experimental model system of a microlandscape that included 50 plots and five treatments. Each treatment had 10 repetitions in each year from 2007 to 2010. The results showed that the biomass of pests and their natural enemies increased with increasing crop biomass and decreased with decreasing crop biomass; however, the effects of plant biomass on the pest and natural enemy biomass were not significant. The relationship between adjacent trophic levels was significant (such as pests and their natural enemies or crops and pests), whereas non-adjacent trophic levels (crops and natural enemies) did not significantly interact with each other. The ratio of natural enemy/pest biomass was the highest in the areas of four crop species that had the best biological control service. Having either low or high crop species richness did not enhance the pest population management service and lead to loss of biological control. Although the resource concentration hypothesis was not well supported by our results, high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services. These results could be applied in habitat management aimed at biological control, provide the theoretical basis for agricultural landscape design, and also suggest new methods for integrated pest management.

  3. 3-D and quasi-2-D discrete element modeling of grain commingling in a bucket elevator boot system

    Science.gov (United States)

    Unwanted grain commingling impedes new quality-based grain handling systems and has proven to be an expensive and time consuming issue to study experimentally. Experimentally validated models may reduce the time and expense of studying grain commingling while providing additional insight into detail...

  4. Application of binomial and multinomial probability statistics to the sampling design process of a global grain tracing and recall system

    Science.gov (United States)

    Small, coded, pill-sized tracers embedded in grain are proposed as a method for grain traceability. A sampling process for a grain traceability system was designed and investigated by applying probability statistics using a science-based sampling approach to collect an adequate number of tracers fo...

  5. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  6. The Andatza coarse-grained turbidite system (westernmost Pyrenees: Stratigraphy, sedimentology and structural control

    Directory of Open Access Journals (Sweden)

    A. Bodego

    2017-06-01

    Full Text Available This is a field-based work that describes the stratigraphy and sedimentology of the Andatza Conglomerate Formation. Based on facies analysis three facies associations of a coarse-grained turbidite system and the related slope have been identified: (1 an inner fan of a turbidite system (or canyon and (2 a low- and (3 a high-gradient muddy slope respectively. The spatial distribution of the facies associations and the palaeocurrent analysis allow to interpret a depositional model for the Andatza Conglomerates consisting of an L-shaped, coarse-grained turbidite system, whose morphology was structurally controlled by synsedimentary basement-involved normal faults. The coarse-grained character of the turbidite system indicates the proximity of the source area, with the presence of a narrow shelf that fed the turbidite canyon from the north.

  7. Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions?

    Science.gov (United States)

    Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea

    2017-04-01

    In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (sunlight. The two tree species behaved differently. The poplar strips showed more marked diurnal changes in soil water potential, with fast drying during daytime and rewetting during nighttime. We suppose that the rewetting during nighttime was caused by hydraulic lift, which supports passively the drier upper soil with water from the wetter, lower soil layers. This experimental study shows the importance of above- and

  8. Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions

    Science.gov (United States)

    Islam, Md. Monirul; Hasanuzzaman, Mirza

    2014-01-01

    This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0–15 cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept). PMID:25197702

  9. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China.

    Science.gov (United States)

    Ti, Chaopu; Luo, Yongxia; Yan, Xiaoyuan

    2015-12-01

    Nitrogen (N) loss from vegetable cropping systems has become a significant environmental issue in China. In this study, estimation of N balances in both open-air and greenhouse vegetable cropping systems in China was established. Results showed that the total N input in open-air and greenhouse vegetable cropping systems in 2010 was 5.44 and 2.60 Tg, respectively. Chemical fertilizer N input in the two cropping systems was 201 kg N ha(-1) per season (open-air) and 478 kg N ha(-1) per season (greenhouse). The N use efficiency (NUE) was 25.9 ± 13.3 and 19.7 ± 9.4% for open-air and greenhouse vegetable cropping systems, respectively, significantly lower than that of maize, wheat, and rice. Approximately 30.6% of total N input was accumulated in soils and 0.8% was lost by ammonia volatilization in greenhouse vegetable system, while N accumulation and ammonia volatilization accounted for 19.1 and 11.1%, respectively, of total N input in open-air vegetable systems.

  10. Nitrate leaching from sandy loam soils under a double-cropping forage system estimated from suction-probe measurements.

    NARCIS (Netherlands)

    Trindade, H.; Coutinho, J.; Beusichem, van M.L.; Scholefield, D.; Moreira, N.

    1997-01-01

    Nitrate leaching from a double-cropping forage system was measured over a 2-year period (June 1994–May 1996) in the Northwest region of Portugal using ceramic cup samplers. The crops were grown for silage making and include maize (from May to September) and a winter crop (rest of the year)

  11. Identifying barriers and motivators for adoption of multifunctional perennial cropping systems by landowners in the Upper Sangamon River Watershed, Illinois

    Science.gov (United States)

    The demand on agriculture to meet food security goals has led to intensification of management practices for annual grain crops (e.g. soybean and maize). One option for improving the long-term sustainability of agricultural practices, considering both farmer motivations and rural development needs, ...

  12. Overcoming Phosphorus Deficiency in West African Pearl Millet and Sorghum Production Systems: Promising Options for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Dorcus C. GEMENET

    2016-09-01

    Full Text Available West Africa (WA is among the most food insecure regions. Rapid human population growth and stagnating crop yields greatly contribute to this fact. Poor soil fertility, especially low plant available phosphorus (P is constraining food production in the region. P-fertilizer use in WA is among the lowest in the world due to inaccessibility and high prices, unaffordable to resource-poor farmers. This article provides an overview of soil P-deficiency in WA and opportunities to overcome it by exploiting sorghum and pearl millet genetic diversity. The topic is examined from the perspectives of plant breeding, soil science, plant physiology, plant nutrition, and agronomy, thereby referring to recent results obtained in a joint interdisciplinary research project, and reported literature. Specific objectives are to summarize: (1 The global problem of P scarcity and how it will affect WA farmers; (2 Soil P dynamics in WA soils; (3 Plant responses to P deficiency; (4 Opportunities to breed for improved crop adaptation to P-limited conditions; (5 Challenges and trade-offs for improving sorghum and pearl millet adaptation to low-P conditions in WA; and (6 Systems approaches to addressing soil P-deficiency in WA.Sorghum and pearl millet in WA exhibit highly significant genetic variation for P-uptake efficiency, P-utilization efficiency, and grain yield under P-limited conditions indicating the possibility of breeding P-efficient varieties. Direct selection under P-limited conditions was more efficient than indirect selection under high-P conditions. Combining P-uptake and P-utilization efficiency is recommendable for WA to avoid further soil mining. Genomic regions responsible for P-uptake, P-utilization efficiency, and grain yield under low-P have been identified in WA sorghum and pearl millet, and marker-assisted selection could be possible once these genomic regions are validated. Developing P-efficient genotypes may not however be a sustainable solution in

  13. Overcoming Phosphorus Deficiency in West African Pearl Millet and Sorghum Production Systems: Promising Options for Crop Improvement.

    Science.gov (United States)

    Gemenet, Dorcus C; Leiser, Willmar L; Beggi, Francesca; Herrmann, Ludger H; Vadez, Vincent; Rattunde, Henry F W; Weltzien, Eva; Hash, Charles T; Buerkert, Andreas; Haussmann, Bettina I G

    2016-01-01

    West Africa (WA) is among the most food insecure regions. Rapid human population growth and stagnating crop yields greatly contribute to this fact. Poor soil fertility, especially low plant available phosphorus (P) is constraining food production in the region. P-fertilizer use in WA is among the lowest in the world due to inaccessibility and high prices, often unaffordable to resource-poor subsistence farmers. This article provides an overview of soil P-deficiency in WA and opportunities to overcome it by exploiting sorghum and pearl millet genetic diversity. The topic is examined from the perspectives of plant breeding, soil science, plant physiology, plant nutrition, and agronomy, thereby referring to recent results obtained in a joint interdisciplinary research project, and reported literature. Specific objectives are to summarize: (1) The global problem of P scarcity and how it will affect WA farmers; (2) Soil P dynamics in WA soils; (3) Plant responses to P deficiency; (4) Opportunities to breed for improved crop adaptation to P-limited conditions; (5) Challenges and trade-offs for improving sorghum and pearl millet adaptation to low-P conditions in WA; and (6) Systems approaches to address soil P-deficiency in WA. Sorghum and pearl millet in WA exhibit highly significant genetic variation for P-uptake efficiency, P-utilization efficiency, and grain yield under P-limited conditions indicating the possibility of breeding P-efficient varieties. Direct selection under P-limited conditions was more efficient than indirect selection under high-P conditions. Combining P-uptake and P-utilization efficiency is recommendable for WA to avoid further soil mining. Genomic regions responsible for P-uptake, P-utilization efficiency, and grain yield under low-P have been identified in WA sorghum and pearl millet, and marker-assisted selection could be possible once these genomic regions are validated. Developing P-efficient genotypes may not, however, be a sustainable

  14. Nitrogen fertilizer fate after introducing maize into a continuous paddy rice cropping system

    Science.gov (United States)

    Thiemann, Irabella; He, Yao; Siemens, Jan; Brüggemann, Nicolas; Lehndorf, Eva; Amelung, Wulf

    2017-04-01

    After introducing upland crops into permanent flooded cropping systems, soil conditions temporally change from anaerobic to aerobic, which profoundly impacts nitrogen (N) dynamics. In the framework of the DFG research unit 1701 ICON we applied a single 15N-urea pulse in a field experiment in the Philippines with three different crop rotations: continuous paddy rice, paddy rice-dry rice, and paddy rice-maize. Subsequently, we traced the fate of the labelled urea in bulk soil, rhizosphere, roots, biomass and microbial residues (amino sugars) within the following two years. 15N recovery in the first 5 cm of bulk soil was highest in the first dry season of continuous paddy rice cropping (37.8 % of applied 15N) and lowest in the paddy rice-maize rotation (19.2 %). While an accumulation over time could be observed in bulk soil in 5-20 cm depth of the continuous paddy rice system, the recoveries decreased over time within the following two years in the other cropping systems. Highest 15N-recovery in shoots and roots were found in the continuous paddy rice system in the first dry season (27.3 % in shoots, 3.2 % in roots) as well as in the following wet season (4.2 % in shoots, 0.3 % in roots). Lowest recoveries in biomass were found for the paddy rice-dry rice rotation. Long-term fixation of 15N in microbial biomass residues was observed in all cropping systems (2-3 % in the 3rd dry season). The results indicate that the introduction of maize into a continuous paddy rice cropping system can reduce the fertilizer N use efficiency especially in the first year, most likely due to nitrate leaching and gaseous losses to the atmosphere.

  15. Embedded system in Arduino platform with Fuzzy control to support the grain aeration decision

    Directory of Open Access Journals (Sweden)

    Albino Szesz Junior

    Full Text Available ABSTRACT: Aeration is currently the most commonly used technique to improve the drying and storage of grain, depending on temperature and water content of the grain, as of the temperature and relative humidity of the outside air. In order to monitor temperature and humidity of the grain mass, it is possible to have a network of sensors in the cells of both internal and external storage. Use of artificial intelligence through Fuzzy theory, has been used since the 60s and enables their application on various forms. Thus, it is observed that the aeration of grain in function of representing a system of controlled environment can be studied in relation to the application of this theory. Therefore, the aim of this paper is to present an embedded Fuzzy control system based on the mathematical model of CRUZ et al. (2002 and applied to the Arduino platform, for decision support in aeration of grain. For this, an embedded Arduino system was developed, which received the environmental values of temperature and humidity to then be processed in a Fuzzy controller and return the output as a recommendation to control the aeration process rationally. Comparing the results obtained from the graph presented by LASSERAN (1981 it was observed that the system is effective.

  16. Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems

    International Nuclear Information System (INIS)

    Sanginga, N.

    2001-01-01

    Nitrogen (N) has been gradually depleted from West African soils and now poses serious threats to food production. Many ways of increasing N supply (e.g. judicious use of inorganic fertilizers and nitrogen-fixing plants) have been tried in West African farming systems. Herbaceous and woody legumes commonly contribute 40-70 kg N ha -l season. This represents about 30% of the total N applied as residues. Nevertheless and despite repeated demonstrations of the usefulness of green manures in enhancing soil fertility, their practices and adoption are still limited. Promiscuous soya beans are being used to develop sustainable cropping systems in the moist savannah. Reliable estimates of N 2 fixed by soya beans and their residual N benefits to subsequent cereal crops in the savannah zone of southern Guinea have only infrequently been made. The actual amounts measured varied between 38 and 126 kg N ha -l assuming that only seeds of soya beans are removed from the plots, the net N accrual of soil nitrogen ranges between minus 8 kg N ha -l and plus 47 kg N ha -l depending on the soyabean cultivar. Residual soyabean N values of 10-24 kg N ha -l (14-36% of the total N in maize) were obtained in a soyabean-maize rotation. Although cereal yields following legume cultivation have been attributed to greater N accumulation, our data show that the relative increase in maize N was smaller than the relative increase in dry-matter yield. Hence, the increased yields of maize following soy beans are not entirely due to the carry-over of N from soyabean residues (as well as to conservation of soil N) but to other rotational effects as well. It is thus clear that the N benefit of grain legumes to non-legumes is small compared to the level of N fertilizer use in more intensive cereal production systems but is nevertheless significant in the context of the low amounts of input in subsistence farming. (author)

  17. Productivity of organic and conventional arable cropping systems in long-term experiments in Denmark

    DEFF Research Database (Denmark)

    Shah, Ambreen; Askegaard, Margrethe; Rasmussen, Ilse Ankjær

    2017-01-01

    manure there was a tendency for increased DM yield over time at all sites, whereas little response was seen in N yield. In the O4 rotation DM and N yields tended to increase at Foulum over time, but there was little change at Flakkebjerg. The DM yield gap between organic and conventional systems in the 3......A field experiment comparing different arable crop rotations was conducted in Denmark during 1997–2008 on three sites varying in climatic conditions and soil types, i.e. coarse sand (Jyndevand), loamy sand (Foulum), and sandy loam (Flakkebjerg). The crop rotations followed organic farm management......, and from 2005 also conventional management was included for comparison. Three experimental factors were included in the experiment in a factorial design: 1) crop rotation (organic crop rotations varying in use of whole-year green manure (O1 and O2 with a whole-year green manure, and O4 without...

  18. Impact of wheat / faba bean mixed cropping or rotation systems on soil microbial functionalities

    Directory of Open Access Journals (Sweden)

    Sanâa Wahbi

    2016-09-01

    Full Text Available Cropping systems based on carefully designed species mixtures reveal many potential advantages in terms of enhancing crop productivity, reducing pest and diseases and enhacing ecological serices. Associating cereals and legume production either through intercropping or rotations might be a relevant strategy of producing both type of culture, while benefiting from combined nitrogen fixed by the legume through its symbiotic association with nitrogen-fixing bacteria, and from a better use of P and water through mycorrhizal associations. These practices also participate to the diversification of agricultural productions, enabling to secure the regularity of income returns across the seasonal and climatic uncertainties. In this context, we designed a field experiment aiming to estimate the two years impact of these practices on wheat yield and on soil microbial activities as estimated through Substrate Induced Respiration (SIR method and mycorrhizal soil infectivity (MSI measurement. It is expected that understanding soil microbial functionalities in response to these agricultural practices might allows to target the best type of combination, in regard to crop productivity. We found that the tested cropping systems largely impacted soil microbial functionalities and mycorrhizal soil infectivity. Intercropping gave better results in terms of crop productivity than the rotation practice after 2 cropping seasons. Benefits resulting from intercrop should be highly linked with changes recorded on soil microbial functionalities.

  19. Calibration and validation of coarse-grained models of atomic systems: application to semiconductor manufacturing

    Science.gov (United States)

    Farrell, Kathryn; Oden, J. Tinsley

    2014-07-01

    Coarse-grained models of atomic systems, created by aggregating groups of atoms into molecules to reduce the number of degrees of freedom, have been used for decades in important scientific and technological applications. In recent years, interest in developing a more rigorous theory for coarse graining and in assessing the predictivity of coarse-grained models has arisen. In this work, Bayesian methods for the calibration and validation of coarse-grained models of atomistic systems in thermodynamic equilibrium are developed. For specificity, only configurational models of systems in canonical ensembles are considered. Among major challenges in validating coarse-grained models are (1) the development of validation processes that lead to information essential in establishing confidence in the model's ability predict key quantities of interest and (2), above all, the determination of the coarse-grained model itself; that is, the characterization of the molecular architecture, the choice of interaction potentials and thus parameters, which best fit available data. The all-atom model is treated as the "ground truth," and it provides the basis with respect to which properties of the coarse-grained model are compared. This base all-atom model is characterized by an appropriate statistical mechanics framework in this work by canonical ensembles involving only configurational energies. The all-atom model thus supplies data for Bayesian calibration and validation methods for the molecular model. To address the first challenge, we develop priors based on the maximum entropy principle and likelihood functions based on Gaussian approximations of the uncertainties in the parameter-to-observation error. To address challenge (2), we introduce the notion of model plausibilities as a means for model selection. This methodology provides a powerful approach toward constructing coarse-grained models which are most plausible for given all-atom data. We demonstrate the theory and

  20. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China

    Science.gov (United States)

    Ma, Hongbo; Nittrouer, Jeffrey A.; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J.; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-01-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams. PMID:28508078

  1. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.

    Science.gov (United States)

    Ma, Hongbo; Nittrouer, Jeffrey A; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-05-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.

  2. Maximizing land productivity by diversified cropping systems with different nitrogen fertilizer types

    Directory of Open Access Journals (Sweden)

    Abd El-Hafeez Ahmed ZOHRY

    2017-12-01

    Full Text Available Six field experiments were conducted in Giza Agricultural Research Station, Egypt during 2010, 2011 and 2012 growing seasons to study the effect of two types of N fertilizers (urea and urea form as slow-release (UF on intercropping cowpea with sunflower and intercropping wheat with pea. A split plot design with three replications was used. The results indicated that insignificant effect of cropping systems was found for sunflower and significant effect was found for cowpea yield. Significant effect of N fertilizers was found on sunflower and insignificant effect was found for cowpea yield. Furthermore, insignificant effect of interaction of cropping systems and N fertilizers was found for sunflower and significant effect was found for cowpea yield. With respect to wheat and pea intercropping, both crops were significantly affected by intercropping system. Significant effect of N fertilizers was found on wheat and insignificant effect was found for pea yield. Both wheat and pea were significantly affected by the interaction of cropping system and N fertilizers. Yield advantage was achieved because land equivalent ratio exceeded 1.00. Dominance analysis proved that leguminous crop is dominated component. Thus, the studied intercropping systems could be recommended to farmers due to its beneficial returns.

  3. Farm Household Economic Model of The Integrated Crop Livestock System: Conceptual and Empirical Study

    Directory of Open Access Journals (Sweden)

    Atien Priyanti

    2007-06-01

    Full Text Available An integrated approach to enhance rice production in Indonesia is very prospectus throughout the implementation of adapted and liable integrated program. One of the challenges in rice crop sub sector is the stagnation of its production due to the limitation of organic matter availability. This provides an opportunity for livestock development to overcome the problems on land fertility through the use of manure as the source of organic fertilizer. Ministry of Agriculture had implemented a program on Increasing Integrated Rice Productivity with an Integrated Crop Livestock System as one of the potential components since 2002. Integrated crop livestock system program with special reference to rice field and beef cattle is an alternative to enhance the potential development of agriculture sector in Indonesia. The implementation on this integrated program is to enhance rice production and productivity through a system involving beef cattle with its goal on increasing farmers’ income. Household economic model can be used as one of the analysis to evaluate the success of the implemented crop livestock system program. The specificity of the farmers is that rationality behavior of the role as production and consumption decision making. In this case, farmers perform the production to meet home consumption based on the resources that used directly for its production. The economic analysis of farmers household can be described to anticipate policy options through this model. Factors influencing farmers’ decisions and direct interrelations to production and consumption aspects that have complex implications for the farmers’ welfare of the integrated crop livestock system program.

  4. Root Parameters Show How Management Alters Resource Distribution and Soil Quality in Conventional and Low-Input Cropping Systems in Central Iowa.

    Directory of Open Access Journals (Sweden)

    Patricia A Lazicki

    Full Text Available Plant-soil relations may explain why low-external input (LEI diversified cropping systems are more efficient than their conventional counterparts. This work sought to identify links between management practices, soil quality changes, and root responses in a long-term cropping systems experiment in Iowa where grain yields of 3-year and 4-year LEI rotations have matched or exceeded yield achieved by a 2-year maize (Zea mays L. and soybean (Glycine max L. rotation. The 2-year system was conventionally managed and chisel-ploughed, whereas the 3-year and 4-year systems received plant residues and animal manures and were periodically moldboard ploughed. We expected changes in soil quality to be driven by organic matter inputs, and root growth to reflect spatial and temporal fluctuations in soil quality resulting from those additions. We constructed a carbon budget and measured soil quality indicators (SQIs and rooting characteristics using samples taken from two depths of all crop-phases of each rotation system on multiple dates. Stocks of particulate organic matter carbon (POM-C and potentially mineralizable nitrogen (PMN were greater and more evenly distributed in the LEI than conventional systems. Organic C inputs, which were 58% and 36% greater in the 3-year rotation than in the 4-year and 2-year rotations, respectively, did not account for differences in SQI abundance or distribution. Surprisingly, SQIs did not vary with crop-phase or date. All biochemical SQIs were more stratified (p<0.001 in the conventionally-managed soils. While POM-C and PMN in the top 10 cm were similar in all three systems, stocks in the 10-20 cm depth of the conventional system were less than half the size of those found in the LEI systems. This distribution was mirrored by maize root length density, which was also concentrated in the top 10 cm of the conventionally managed plots and evenly distributed between depths in the LEI systems. The plow-down of organic amendments

  5. Designing a new cropping system for high productivity and sustainable water usage under climate change

    Science.gov (United States)

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-02-01

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) -summer maize system. The M-M system improved yield by 14-31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr-1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.

  6. Dynamics of Phenol Degrading-Iron ReducingBacteria{1mm in Intensive Rice Cropping System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Field and greenhouse experiments were conducted to investigate theeffects of cropping season, nitrogen fertilizer input and aeratedfallow on the dynamics of phenol degrading-iron reducingbacteria (PD-IRB) in tropical irrigated rice ({ Oryza sativa L.)systems. The PD-IRB population density was monitored at different stagesof rice growth in two cropping seasons (dry and early wet) in acontinuous annual triple rice cropping system under irrigated condition.In this system, the high nitrogen input (195 and 135 kg N ha-1 indry and wet seasons, respectively) plots and control plots receiving noN fertilizer were compared to investigate the effect of nitrogen rate onpopulation size. The phenol degrading-iron reducing bacteria (PD-IRB)were abundant in soils under cropping systems of tropical irrigatedrice. However, density of the bacterial populations varied with ricegrowth stages. Cropping seasons, rhizosphere, and aerated fallow couldaffect the dynamics of PD-IRB. In the field trial, viable counts ofPD-IRB in the topsoil layer (15 cm) ranged between 102 and 108cells per gram of dry soil. A steep increase in viable counts during thesecond half of the cropping season suggested that the population densityof PD-IRB increased at advanced crop-growth stages. Population growth ofPD-IRB was accelerated during the dry season compared to the wet season.In the greenhouse experiment, the adjacent aerated fallow revealed 1-2orders of magnitude higher in most probable number (MPN) of PD-IRB thanthe wet fallow treated plots. As a prominent group of Fe reducingbacteria, PD-IRB predominated in the rhizosphere of rice, since maximumMPN of PD-IRB (2.62108 g-1 soil) was found in rhizospheresoil. Mineral N fertilizer rates showed no significant effect on PD-IRBpopulation density.

  7. Management of agroforestry systems for enhancing resource use efficiency and crop productivity

    International Nuclear Information System (INIS)

    2008-11-01

    Agroforestry is a low-input system which combines trees with crops in various combinations or sequences. It is an alternative to intensive cropping systems, which rely on large inputs of manufactured fertilizers and other external inputs to sustain production. Agroforestry also has the potential to reduce risk through diversification of a variety of products, including food, fuelwood and animal fodder. Other perceived benefits include enhanced nutrient and water use efficiencies, reduced nutrient leaching to groundwater and improved soil physical and biological properties. The use of leguminous or actinorhizal trees may further enhance these benefits because of their capacity to fix atmospheric nitrogen. Depending on the type of agroforestry system and the management practices employed, a substantial portion of this fixed nitrogen can be transferred to companion crops and to the soil. In considering the overall productivity of agroforestry systems, it is essential to investigate the competition or complementarity in the capture and partitioning of resources between tree and crop components. This is especially true for nutrients and water, usually the two most limiting factors influencing crop growth. The focus of this coordinated research project (CRP) was to evaluate the efficacy of various agroforestry systems used in Member States in terms of crop productivity, resource use efficiency and improvements in soil properties. The use of isotopes and nuclear techniques was essential for understanding the dynamics of nutrients and water in agroforestry systems. The contribution of nitrogen from fertilizers and leguminous trees to soil and crops was studied using both direct and indirect 15 N labelling techniques. The cycling of carbon from trees or crops to soil was studied using natural variations in the 13 C signatures of the soils and the different species. The soil moisture neutron probe in conjunction with tensionics was used to monitor soil water status and

  8. Production, Competition Indices, and Nutritive Values of Setaria splendida, Centrosema pubescens, and Clitoria ternatea in Mixed Cropping Systems in Peatland

    Directory of Open Access Journals (Sweden)

    A. Ali

    2013-12-01

    Full Text Available This research was conducted to evaluate production, different competition indices and nutritive value of Setaria splendida, Centrosema pubescens, and Clitoria ternatea in monoculture and mix cropping system on peat soil land. The experiment was set up in a randomized complete block design with five treatments and three replications. The five treatments were: S. splendida sole cropping (SS, C. pubescens sole cropping (CP, C. ternatea sole cropping (CT, S. splendida and C. pubescens mix cropping (SS/CP and S. splendida/C. ternatea mix cropping (SS/CT. The DM yield of S. splendida in mixed cropping with C. pubescens increased 43.4% and in mix cropping with C. ternatea increased 15.7% compared to sole S. splendida. The value of land equivalent ratio of SS/CP (LERSS/CP was >1. The LERSS/CT value was 1. The competition ratio (CR values of S. splendida in both mix cropping were >1. The agressivity (A values of S. splendida in both mix cropping were positive. The crude protein, NDF and ADF content of forage were not affected by mix cropping system. In conclusion, mix cropping in peatland do not affect productivity and nutritive value of S. splendida, C. pubescens, and C. ternatea. S. splendida is more effective in exploiting environmental resources when intercropped with C. pubescens compared to C. ternatea on peatland.

  9. Fertilizer-N uptake by Chickpea and Wheat Crops under Intercropping System using 15N Tracer Technique

    International Nuclear Information System (INIS)

    Farid, I.M.; Moursy, A.A.A.; Kotb, E.A.; Ismail, M.

    2012-01-01

    A field experiment was carried out at the Plant Nutrition and Fertilization Unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea inter cropping. The Objective of this current work is to study Organic matter decomposition under clean agriculture system in sandy soil using nuclear technique. The lowest portion of nitrogen derived from fertilizer was resulted from application of compost and chickpea straw treatments. It is worthy to mention that full recommend dos of fertilizer (20 kg N fed-1) was efficiently used by shoots of chickpea plants. Portion of nitrogen derived from fertilizer by seeds of chickpea was lower than those recorded with shoots. Generally, there was no big significant difference between nitrogen gained by shoots and seeds from the organic materials. This holds true with all treatments. More declines in nitrogen derived from soil percentages were resulted from application of cow manure and compost treatments under different rate of mineral fertilizer, the application 100% MF treatment induced higher nitrogen derived from soil pool as compared to the other treatments. The best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general, nitrogen derived from air by shoots lower than those up taken by seeds of chickpea plant. Application of wheat straw and compost treatments were enhanced the nitrogen derived from fertilizer by straw of wheat plant as compared to caw manure, maize stalk, chickpea straw, but Ndff% in grains of wheat , cow manure and maize stalk increased as compared to the other treatment. Application of organic materials, chickpea straw and cow manure achieved the highest value of Ndfo% by straw of wheat plant as compared to maize stalk, compost and wheat straw. But values of nitrogen derived from organic in grains of wheat plants, the application of chickpea straw and wheat straw

  10. The role of isotopes in studying nutrient and organic matter dynamics in livestock/cropping systems, with emphasis on carbon and nitrogen

    International Nuclear Information System (INIS)

    Ledgard, Stewart F.

    2002-01-01

    Integration of livestock and cropping systems can increase the efficiency of use and recycling of nutrients and other resources. In developing countries, a key goal in mixed animal/cropping systems is maximising production of animals and crops, possibly including grain for human consumption, while minimising the need for inputs of resources such as fertilisers, irrigation water and energy. Low organic N levels in soil in some developing countries, such as in Africa, mean that achievement and maintenance of high yielding crops requires appropriate inputs of organic and/or fertiliser N sources. Improvement in organic matter and N levels in cropping soils are generally achieved via crop rotations or inter-cropping with grain legumes or green manures, or by importing external sources of organic material. Recycling of crop residues is also important for retaining organic matter and nutrients in cropped soils. Increases in the efficiency of these farming systems require a detailed knowledge of the limiting factors or resources for maximising productivity. Isotopes can play a valuable role in identifying, understanding and testing new methodologies associated with soil, water and nutrient resources. Isotopes (particularly 15 N) have been widely used in field studies for determining fertiliser use efficiency, N 2 fixation, and more recently for studying the fate of nutrients from organic materials and crop residues. The major benefit in using isotopes in studies of nutrient use efficiency is that it enables the fate of the nutrient to be traced throughout the soil/plant system even where there are large reserves of the nutrient in soil pools. Most research with isotopes has been restricted to above-ground plant components but some recent studies have targeted plant roots. Foliar 15 N labelling has been used to better quantify root N yields and to determine the uptake of 15 N-labelled root N by subsequent crops. Similarly, 13 CO 2 pulse labelling studies have provided

  11. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China.

    Science.gov (United States)

    Gao, Lubo; Xu, Huasen; Bi, Huaxing; Xi, Weimin; Bao, Biao; Wang, Xiaoyan; Bi, Chao; Chang, Yifang

    2013-01-01

    Agroforestry has been widely practiced in the Loess Plateau region of China because of its prominent effects in reducing soil and water losses, improving land-use efficiency and increasing economic returns. However, the agroforestry practices may lead to competition between crops and trees for underground soil moisture and nutrients, and the trees on the canopy layer may also lead to shortage of light for crops. In order to minimize interspecific competition and maximize the benefits of tree-based intercropping systems, we studied photosynthesis, growth and yield of soybean (Glycine max L. Merr.) and peanut (Arachis hypogaea L.) by measuring photosynthetically active radiation, net photosynthetic rate, soil moisture and soil nutrients in a plantation of apple (Malus pumila M.) at a spacing of 4 m × 5 m on the Loess Plateau of China. The results showed that for both intercropping systems in the study region, soil moisture was the primary factor affecting the crop yields followed by light. Deficiency of the soil nutrients also had a significant impact on crop yields. Compared with soybean, peanut was more suitable for intercropping with apple trees to obtain economic benefits in the region. We concluded that apple-soybean and apple-peanut intercropping systems can be practical and beneficial in the region. However, the distance between crops and tree rows should be adjusted to minimize interspecies competition. Agronomic measures such as regular canopy pruning, root barriers, additional irrigation and fertilization also should be applied in the intercropping systems.

  12. Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the U.S. Midwest.

    Science.gov (United States)

    Gelfand, Ilya; Snapp, Sieglinde S; Robertson, G Philip

    2010-05-15

    The prospect of biofuel production on a large scale has focused attention on energy efficiencies associated with different agricultural systems and production goals. We used 17 years of detailed data on agricultural practices and yields to calculate an energy balance for different cropping systems under both food and fuel scenarios. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically based (organic) practices, and (5) continuous alfalfa (Medicago sativa). We compared energy balances under two scenarios: all harvestable biomass used for food versus all harvestable biomass used for biofuel production. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha(-1) y(-1) for the organic system to 7.1 GJ ha(-1) y(-1) for the conventional; the no-till system was also low at 4.9 GJ ha(-1) y(-1) and the low-chemical input system intermediate (5.2 GJ ha(-1) y(-1)). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output:input ratios of 10 to 16 for conventional and no-till food production and from 7 to 11 for conventional and no-till fuel production, respectively. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production and large differences in efficiencies attributable to management, which suggests multiple opportunities for improvement.

  13. Compatibility of switchgrass as an energy crop in farming systems of the southeastern USA

    Energy Technology Data Exchange (ETDEWEB)

    Bransby, D.I.; Rodriguez-Kabana, R.; Sladden, S.E. [Auburn Univ., AL (United States)

    1993-12-31

    The objective of this paper is to examine the compatibility of switchgrass as an energy crop in farming systems in the southeastern USA, relative to other regions. In particular, the issues addressed are (1) competition between switchgrass as an energy crop and existing farm enterprises, based primarily on economic returns, (2) complementarity between switchgrass and existing farm enterprises, and (3) environmental benefits. Because projected economic returns for switchgrass as an energy crop are highest in the Southeast, and returns from forestry and beef pastures (the major existing enterprises) are low, there is a very strong economic incentive in this region. In contrast, based on current information, economic viability of switchgrass as an energy crop in other regions appears doubtful. In addition, switchgrass in the southeastern USA would complement forage-livestock production, row crop production and wildlife and would provide several additional environmental benefits. It is concluded that the southeastern USA offers the greatest opportunity for developing switchgrass as an economically viable energy crop.

  14. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    Science.gov (United States)

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  15. Coarse Grained Molecular Dynamics Simulations of Transmembrane Protein-Lipid Systems

    Directory of Open Access Journals (Sweden)

    Peter Spijker

    2010-06-01

    Full Text Available Many biological cellular processes occur at the micro- or millisecond time scale. With traditional all-atom molecular modeling techniques it is difficult to investigate the dynamics of long time scales or large systems, such as protein aggregation or activation. Coarse graining (CG can be used to reduce the number of degrees of freedom in such a system, and reduce the computational complexity. In this paper the first version of a coarse grained model for transmembrane proteins is presented. This model differs from other coarse grained protein models due to the introduction of a novel angle potential as well as a hydrogen bonding potential. These new potentials are used to stabilize the backbone. The model has been validated by investigating the adaptation of the hydrophobic mismatch induced by the insertion of WALP-peptides into a lipid membrane, showing that the first step in the adaptation is an increase in the membrane thickness, followed by a tilting of the peptide.

  16. Rice production in relation to soil quality under different rice-based cropping systems

    Science.gov (United States)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  17. Life Cycle Assessment of a Highly Diverse Vegetable Multi-Cropping System in Fengqiu County, China

    Directory of Open Access Journals (Sweden)

    Li Li

    2018-03-01

    Full Text Available Agricultural biodiversity usually leads to greater sustainability in production practices. To understand the environmental implications of the development of village-level multi-cropping in rural China, we compared the environmental impact of a highly diverse vegetable multi-cropping system to a conventional wheat/maize rotation system based on the method of life cycle assessment (LCA. Using household level cultivation data, this study examined the gate-to-gate environmental impacts of on-site cultivation practices relating to the production of 10,000 nutrient equivalent units. Results show that vegetable multi-cropping resulted in decreased average land requirement, and diesel, water and electricity usage by 69.8%, 62.2%, 71.7%, and 63.4%, respectively, while average nitrogen (Total N, phosphorus (P2O5, and potassium (K2O usage in vegetable multi-cropping systems decreased by 16.3%, 42.1%, and 75.8%, respectively. Additional corresponding effects led to a decrease in the total global warming, eutrophication, and acidification potentials from external inputs by 21.6%, 16.7%, and 16.2% of the entire system, respectively. Moreover, the midpoint human toxicity potential from pesticide usage of the vegetable multi-cropping system was lower than that of the conventional system. However, the midpoint eco-toxicity potential from pesticide usage was higher due to certain highly toxic substances, and both human and eco-toxicity potentials from heavy metals were all higher by a few orders of magnitudes. Thus, to mitigate these detrimental consequences, some related measures are proposed for sustainable practices in the future implementation of multi-cropping systems.

  18. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    Science.gov (United States)

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  19. Tillage and residue management effect on soil properties, crop performance and energy relations in greengram (Vigna radiata L. under maize-based cropping systems

    Directory of Open Access Journals (Sweden)

    J.R. Meena

    2015-12-01

    Full Text Available Effect of tillage and crop residue management on soil properties, crop performance, energy relations and economics in greengram (Vigna radiata L. was evaluated under four maize-based cropping systems in an Inceptisol of Delhi, India. Soil bulk density, hydraulic conductivity and aggregation at 0–15 cm layer were significantly affected both by tillage and cropping systems, while zero tillage significantly increased the soil organic carbon content. Yields of greengram were significantly higher in maize–chickpea and maize–mustard systems, more so with residue addition. When no residue was added, conventional tillage required 20% higher energy inputs than the zero tillage, while the residue addition increased the energy output in both tillage practices. Maize–wheat–greengram cropping system involved the maximum energy requirement and the cost of production. However, the largest net return was obtained from the maize–chickpea–greengram system under the conventional tillage with residue incorporation. Although zero tillage resulted in better aggregation, C content and N availability in soil, and reduced the energy inputs, cultivation of summer greengram appeared to be profitable under conventional tillage system with residue incorporation.

  20. Soybean root growth and crop yield in reponse to liming at the beginning of a no-tillage system

    Directory of Open Access Journals (Sweden)

    Edson Campanhola Bortoluzzi

    2014-02-01

    Full Text Available Analyzing the soil near crop roots may reveal limitations to growth and yield even in a no-tillage system. The purpose of the present study was to relate the chemical and physical properties of soil under a no-tillage system to soybean root growth and plant yield after five years of use of different types of limestone and forms of application. A clayey Oxisol received application of dolomitic and calcitic limestones and their 1:1 combination in two forms: surface application, maintained on the soil surface; and incorporated, applied on the surface and incorporated mechanically. Soil physical properties (resistance to mechanical penetration, soil bulk density and soil aggregation, soil chemical properties (pH, exchangeable cations, H+Al, and cation exchange capacity and plant parameters (root growth system, soybean grain yield, and oat dry matter production were evaluated five years after setting up the experiment. Incorporation of lime neutralized exchangeable Al up to a depth of 20 cm without affecting the soil physical properties. The soybean root system reached depths of 40 cm or more with incorporated limestone, increasing grain yield an average of 31 % in relation to surface application, which limited the effect of lime up to a depth of 5 cm and root growth up to 20 cm. It was concluded that incorporation of limestone at the beginning of a no-tillage system ensures a favorable environment for root growth and soybean yield, while this intervention does not show long-term effects on soil physical properties under no-tillage. This suggests that there is resilience in the physical properties evaluated.

  1. A prototype sensor system for the early detection of microbially linked spoilage in stored wheat grain

    Science.gov (United States)

    de Lacy Costello, B. P. J.; Ewen, R. J.; Gunson, H.; Ratcliffe, N. M.; Sivanand, P. S.; Spencer-Phillips, P. T. N.

    2003-04-01

    Sensors based on composites of metal oxides were fabricated and tested extensively under high-humidity and high-flow conditions with exposure to vapours reported to increase in the headspace of wheat grain (Triticum aestivum cv Hereward) colonized by fungi. The sensors that exhibited high sensitivity to target vapours combined with high stability were selected for inclusion into a four-sensor array prototype system. A sampling protocol aligned to parallel gas chromatography-mass spectrometry and human olfactory assessment studies was established for use with the sensor system. The sensor system was utilized to assess irradiated wheat samples that had been conditioned to 25% moisture content and inoculated with pathogens known to cause spoilage of grain in storage. These included the fungi Penicillium aurantiogriseum, Penicillium vulpinum, Penicillium verrucosum, Fusarium culmorum, Aspergillus niger, and Aspergillus flavus and the actinomycete, Streptomyces griseus. The sensor system successfully tracked the progress of the infections from a very early stage and the results were compared with human olfactory assessment panels run concurrently. A series of dilution studies were undertaken using previously infected grain mixed with sound grain, to improve the sensitivity and maximize the differentiation of the sensor system. An optimum set of conditions including incubation temperature, incubation time, sampling time, and flow rate were ascertained utilizing this method. The sensor system differentiated samples of sound grain from samples of sound grain with 1% (w/w) fungus infected grain added. Following laboratory trials, the prototype sensor system was evaluated in a commercial wheat grain intake facility. Thresholds calculated from laboratory tests were used to differentiate between sound and infected samples (classified by intake laboratory technicians) collected routinely from trucks delivering grain for use in food manufacture. All samples identified as having

  2. The suitability of non-legume cover crops for inorganic soil nitrogen immobilisation in the transition period to an organic no-till system

    Directory of Open Access Journals (Sweden)

    Lars Rühlemann

    2016-01-01

    Full Text Available The aim of the study was to evaluate non-legume cover crops for growing no-till grain legumes in organic farming systems. Evaluated cover crops should be able to suppress weed growth, reduce plant available nitrogen in the soil and produce large amounts of biomass with slow N mineralisation. Six non-legume species; spring rye (Secale cereale L., black oat (Avena sativa L., sunflower (Helianthus annuus L., white mustard (Sinapis alba L., buckwheat (Fagopyrum esculentum Moench and hemp (Cannabis sativa L. were tested. Plots with organic fertiliser (50 kg N ha−1 and without fertiliser incorporation at three locations in south-east Germany were trialled and the cover crops’ ability to produce biomass and accumulate N in plant compartments was evaluated. The N mineralisation from stem and leaf material was simulated using the STICS model. The biomass production ranged from 0.95 to 7.73 Mg ha−1, with fertiliser increasing the total biomass at locations with low-N status. Sunflower consistently displayed large biomass and N accumulation at all locations and fertiliser variations, although not always significantly more than other species. Most N was stored in sunflower leaf material, which can be easily mineralised making it less suited as cover crop before no-till sown spring grain legumes. Rye, which produced slightly less biomass, but accumulated more N in the stem biomass, would be better suited than sunflower in this type of system. The N mineralisation simulation from rye biomass indicated long N immobilisation periods potentially improving weed suppression within no-till sown legume cash crops.

  3. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Science.gov (United States)

    Some small scale irrigation systems (powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  4. Soil microbial communities under cacao agroforestry and cover crop systems in Peru

    Science.gov (United States)

    Cacao (Theobroma cacao) trees are grown in tropical regions worldwide for chocolate production. We studied the effects of agroforestry management systems and cover cropping on soil microbial communities under cacao in two different replicated field experiments in Peru. Two agroforestry systems, Imp...

  5. Effect of cropping system on yield of some sweetpotato and okra ...

    African Journals Online (AJOL)

    A field trial was conducted for 2 years to determine cropping system effect on yield of some sweetpotato and okra cultivars in an intercropping system. Sweetpotato variety TIS 87/0087 produced significantly (P<0.05) higher number of tubers per plant than Tis 8164 and Tis 2532.op.1.13 varieties. Tuber yield was also ...

  6. The Barley Grain Thioredoxin System – an Update

    Directory of Open Access Journals (Sweden)

    Per eHägglund

    2013-05-01

    Full Text Available Thioredoxin reduces disulfide bonds and play numerous important functions in plants. In cereal seeds, cytosolic h-type thioredoxin facilitates the release of energy reserves during the germination process and is recycled by NADPH-dependent thioredoxin reductase. This review presents a summary of the research conducted during the last ten years to elucidate the structure and function of the barley seed thioredoxin system at the molecular level combined with proteomic approaches to identify target proteins.

  7. A Simulation Software for the Analysis of Cropping Systems in Livestock Farms

    Directory of Open Access Journals (Sweden)

    Tommaso Maggiore

    2011-02-01

    Full Text Available Simulation models can support quantitative and integrated analyses of agricultural systems. In this paper we describe VA.TE., a computer program developed to support the preparation and evaluation of nitrogen fertilising plans for livestock farms in the Lombardy region (northern Italy. The program integrates the cropping systems simulation model CropSyst with several regional agricultural databases, and provides the users with a simple framework for applying the model and interpreting results. VA.TE. makes good use of available data, integrating into a single relational database existing information about soils, climate, farms, animal breeds, crops and crop managements, and providing estimates of missing input variables. A simulation engine manages the entire simulation process: choice of farms to be simulated, model parameterisation, creation of model inputs, simulation of scenarios and analysis of model outputs. The program permits to apply at farm scale a model originally designed for the lower scale of homogeneous land parcel. It manages alternative simulation scenarios for each farm, helping to identify solutions to combine low nitrate losses and satisfactory crop yields. Example simulation results for three farms located on different soils and having varying levels of nitrogen surplus show that the integrated system (model + database can manage various simulations automatically, and that strategies to improve N management can be refined by analysing the simulated amounts and temporal patterns of nitrogen leaching.We conclude by discussing the issues regarding the integration of existing regional databases with simulation models.

  8. A Simulation Software for the Analysis of Cropping Systems in Livestock Farms

    Directory of Open Access Journals (Sweden)

    Luca Bechini

    2008-09-01

    Full Text Available Simulation models can support quantitative and integrated analyses of agricultural systems. In this paper we describe VA.TE., a computer program developed to support the preparation and evaluation of nitrogen fertilising plans for livestock farms in the Lombardy region (northern Italy. The program integrates the cropping systems simulation model CropSyst with several regional agricultural databases, and provides the users with a simple framework for applying the model and interpreting results. VA.TE. makes good use of available data, integrating into a single relational database existing information about soils, climate, farms, animal breeds, crops and crop managements, and providing estimates of missing input variables. A simulation engine manages the entire simulation process: choice of farms to be simulated, model parameterisation, creation of model inputs, simulation of scenarios and analysis of model outputs. The program permits to apply at farm scale a model originally designed for the lower scale of homogeneous land parcel. It manages alternative simulation scenarios for each farm, helping to identify solutions to combine low nitrate losses and satisfactory crop yields. Example simulation results for three farms located on different soils and having varying levels of nitrogen surplus show that the integrated system (model + database can manage various simulations automatically, and that strategies to improve N management can be refined by analysing the simulated amounts and temporal patterns of nitrogen leaching.We conclude by discussing the issues regarding the integration of existing regional databases with simulation models.

  9. Improving Resilience of Northern Field Crop Systems Using Inter-Seeded Red Clover: A Review

    Directory of Open Access Journals (Sweden)

    William Deen

    2013-02-01

    Full Text Available In light of the environmental challenges ahead, resilience of the most abundant field crop production systems must be improved to guarantee yield stability with more efficient use of nitrogen inputs, soil and water resources. Along with genetic and agronomic innovations, diversification of northern agro-ecosystems using inter-seeded legumes provides further opportunities to improve land management practices that sustain crop yields and their resilience to biotic and abiotic stresses. Benefits of legume cover crops have been known for decades and red clover (Trifolium pratense is one of the most common and beneficial when frost-seeded under winter wheat in advance of maize in a rotation. However, its use has been declining mostly due to the use of synthetic fertilizers and herbicides, concerns over competition with the main crop and the inability to fully capture red clover benefits due to difficulties in the persistence of uniform stands. In this manuscript, we first review the environmental, agronomic, rotational and economical benefits associated with inter-seeded red clover. Red clover adaptation to a wide array of common wheat-based rotations, its potential to mitigate the effects of land degradation in a changing climate and its integration into sustainable food production systems are discussed. We then identify areas of research with significant potential to impact cropping system profitability and sustainability.

  10. A new database sub-system for grain-size analysis

    Science.gov (United States)

    Suckow, Axel

    2013-04-01

    Detailed grain-size analyses of large depth profiles for palaeoclimate studies create large amounts of data. For instance (Novothny et al., 2011) presented a depth profile of grain-size analyses with 2 cm resolution and a total depth of more than 15 m, where each sample was measured with 5 repetitions on a Beckman Coulter LS13320 with 116 channels. This adds up to a total of more than four million numbers. Such amounts of data are not easily post-processed by spreadsheets or standard software; also MS Access databases would face serious performance problems. The poster describes a database sub-system dedicated to grain-size analyses. It expands the LabData database and laboratory management system published by Suckow and Dumke (2001). This compatibility with a very flexible database system provides ease to import the grain-size data, as well as the overall infrastructure of also storing geographic context and the ability to organize content like comprising several samples into one set or project. It also allows easy export and direct plot generation of final data in MS Excel. The sub-system allows automated import of raw data from the Beckman Coulter LS13320 Laser Diffraction Particle Size Analyzer. During post processing MS Excel is used as a data display, but no number crunching is implemented in Excel. Raw grain size spectra can be exported and controlled as Number- Surface- and Volume-fractions, while single spectra can be locked for further post-processing. From the spectra the usual statistical values (i.e. mean, median) can be computed as well as fractions larger than a grain size, smaller than a grain size, fractions between any two grain sizes or any ratio of such values. These deduced values can be easily exported into Excel for one or more depth profiles. However, such a reprocessing for large amounts of data also allows new display possibilities: normally depth profiles of grain-size data are displayed only with summarized parameters like the clay

  11. Cover Crop Species and Management Influence Predatory Arthropods and Predation in an Organically Managed, Reduced-Tillage Cropping System.

    Science.gov (United States)

    Rivers, Ariel N; Mullen, Christina A; Barbercheck, Mary E

    2018-04-05

    Agricultural practices affect arthropod communities and, therefore, have the potential to influence the activities of arthropods. We evaluated the effect of cover crop species and termination timing on the activity of ground-dwelling predatory arthropods in a corn-soybean-wheat rotation in transition to organic production in Pennsylvania, United States. We compared two cover crop treatments: 1) hairy vetch (Vicia villosa Roth) planted together with triticale (×Triticosecale Wittmack) after wheat harvest, and 2) cereal rye (Secale cereale Linnaeus) planted after corn harvest. We terminated the cover crops in the spring with a roller-crimper on three dates (early, middle, and late) based on cover crop phenology and standard practices for cash crop planting in our area. We characterized the ground-dwelling arthropod community using pitfall traps and assessed relative predation using sentinel assays with live greater waxworm larvae (Galleria mellonella Fabricius). The activity density of predatory arthropods was significantly higher in the hairy vetch and triticale treatments than in cereal rye treatments. Hairy vetch and triticale favored the predator groups Araneae, Opiliones, Staphylinidae, and Carabidae. Specific taxa were associated with cover crop condition (e.g., live or dead) and termination dates. Certain variables were positively or negatively associated with the relative predation on sentinel prey, depending on cover crop treatment and stage, including the presence of predatory arthropods and various habitat measurements. Our results suggest that management of a cover crop by roller-crimper at specific times in the growing season affects predator activity density and community composition. Terminating cover crops with a roller-crimper can conserve generalist predators.

  12. Productivity of coffee crop (Coffea arabica L.) in conversion to the organic production system

    OpenAIRE

    Malta, Marcelo Ribeiro; Empresa de Pesquisa Agropecuária de Minas Gerais - EPAMIG; Pereira, Rosemary Gualberto Fonseca Alvarenga; Universidade Federal de Lavras - UFLA; Chagas, Sílvio Júlio de Rezende; Empresa de Pesquisa Agropecuária de Minas Gerais - EPAMIG; Guimarães, Rubens José; Universidade Federal de Lavras - UFLA

    2008-01-01

    This experiment was carried out in Lavras, MG, to verify the productivity of coffee crop (Coffea arabica L.) in conversion to the organic production system. The experiment was set in a six-year old coffee crop of the cultivar Catuaí Amarelo IAC 86, with spacing of 4,0 x 0,6 m, previously cultivated under the conventional system. In the organic treatments a 4 x 4 balanced lattice design with 5 replications in a 3 x 2 x 2 factorial scheme was used, besides 4 additional treatments. The f...

  13. Nuclear techniques in the development of fertilizer practices for multiple cropping systems

    International Nuclear Information System (INIS)

    1986-12-01

    This document summarizes the results of a coordinated research programme. Eight Member States of the FAO and IAEA carried out a series of field studies aimed at identifying optimum practices for the use of fertilizers in multiple cropping systems and for maximizing the contribution of atmospheric nitrogen biologically fixed by the legume component of such systems to the non-fixing cereal component or to the succeeding crop. Isotope techniques allowed the researchers to accurately determine the uptake of specific nutrients and to compare selected treatments

  14. Nitrogen Leaching in Intensive Cropping Systems in Tam Duong District, Red River Delta of Vietnam

    OpenAIRE

    Trinh, M.V.; Keulen, van, H.; Roetter, R.P.

    2010-01-01

    The environmental and economic consequences of nitrogen (N) lost in rice-based systems in Vietnam is important but has not been extensively studied. The objective of this study was to quantify the amount of N lost in major cropping systems in the Red River Delta. An experiment was conducted in the Red River Delta of Vietnam, on five different crops including rose, daisy, cabbage, chili, and a rice–rice–maize rotation during 2004 and 2005. Core soil samples were taken periodically in 20-cm inc...

  15. Achieving Lower Nitrogen Balance and Higher Nitrogen Recovery Efficiency Reduces Nitrous Oxide Emissions in North America's Maize Cropping Systems

    Directory of Open Access Journals (Sweden)

    Rex A. Omonode

    2017-06-01

    Full Text Available Few studies have assessed the common, yet unproven, hypothesis that an increase of plant nitrogen (N uptake and/or recovery efficiency (NRE will reduce nitrous oxide (N2O emission during crop production. Understanding the relationships between N2O emissions and crop N uptake and use efficiency parameters can help inform crop N management recommendations for both efficiency and environmental goals. Analyses were conducted to determine which of several commonly used crop N uptake-derived parameters related most strongly to growing season N2O emissions under varying N management practices in North American maize systems. Nitrogen uptake-derived variables included total aboveground N uptake (TNU, grain N uptake (GNU, N recovery efficiency (NRE, net N balance (NNB in relation to GNU [NNB(GNU] and TNU [NNB(TNU], and surplus N (SN. The relationship between N2O and N application rate was sigmoidal with relatively small emissions for N rates <130 kg ha−1, and a sharp increase for N rates from 130 to 220 kg ha−1; on average, N2O increased linearly by about 5 g N per kg of N applied for rates up to 220 kg ha−1. Fairly strong and significant negative relationships existed between N2O and NRE when management focused on N application rate (r2 = 0.52 or rate and timing combinations (r2 = 0.65. For every percentage point increase, N2O decreased by 13 g N ha−1 in response to N rates, and by 20 g N ha−1 for NRE changes in response to rate-by-timing treatments. However, more consistent positive relationships (R2 = 0.73–0.77 existed between N2O and NNB(TNU, NNB(GNU, and SN, regardless of rate and timing of N application; on average N2O emission increased by about 5, 7, and 8 g N, respectively, per kg increase of NNB(GNU, NNB(TNU, and SN. Neither N source nor placement influenced the relationship between N2O and NRE. Overall, our analysis indicated that a careful selection of appropriate N rate applied at the right time can both increase NRE and reduce N

  16. Development of a red TL detection system for a single grain of quartz

    International Nuclear Information System (INIS)

    Yawata, T.; Hashimoto, T.

    2007-01-01

    Red thermoluminescence (RTL) of natural quartz grains offers many desirable properties for quaternary chronology and archaeological dating, although RTL measurements suffer from high thermal background due to black-body radiation on heating. To reduce the thermal background to as low a level as possible, a silver sample disc covered with a biotite plate with a sample hole was used in combination with a light guide, cluster heater, optical filters, and photomultiplier tube cooling to -20 deg. C in the present system. As a result, the thermal background decreased from 2x10 4 to 1000 cps in the temperature range 350-380 deg. C, resulting in a detection limit of approximately 100 cps, corresponding to the RTL signal from a single quartz grain (250-500μm) irradiated with 4.0 Gy. In addition, application of lower heating rates retarded the thermal quenching effect, resulting in high RTL signals, which are preferable for young or insensitive quartz samples. Using RTL measurements with the single quartz grain method under optimal RTL conditions, comparison of equivalent doses from artificially irradiated single quartz grains to the known dose was within the 20% measurement error. Based on equivalent dose determinations for single quartz grains, large irregularities on non-etched quartz surfaces might be very detrimental to the TL detection process. This result confirms that surface etching treatment is required to achieve reliable dating with high counting efficiency

  17. [The status of the body protective systems in children in atmospheric pollution by grain dust].

    Science.gov (United States)

    Mukhambetova, L Kh; Petrova, I V; Pinigin, M A; Leshchenko, G M; Shekhter, O V; Safiulin, A A; Astakhova, L F

    1998-01-01

    The use of noninvasive methods has revealed changes in the detoxification and immune systems in children exposed to grain dust-polluted ambient air. Impaired detoxification and immunity may be considered to be a manifestation of the common pathological mechanism responsible for reduced resistance to adverse factors and they lead to the increased risk of nonspecific infectious processes and allergy in the population.

  18. Long-term C-CO2 emissions and carbon crop residue mineralization in an oxisol under different tillage and crop rotation systems

    Directory of Open Access Journals (Sweden)

    Ben-Hur Costa de Campos

    2011-06-01

    Full Text Available Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM. The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification, mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a conventional tillage (CT and (b no tillage (NT in combination with three cropping systems: (a R0- monoculture system (soybean/wheat, (b R1- winter crop rotation (soybean/wheat/soybean/black oat, and (c R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat. The soil C-CO2 efflux was measured every 14 days for two years (48 measurements, by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between

  19. Soil characterization in contrasting cropping systems under the fast ...

    African Journals Online (AJOL)

    The contrasting production systems under study were communal area, A2 (large scale resettlement) and A1 (small scale resettlement).All these systems are in Manicaland province, Zimbabwe. The A1 and A2 production systems were brought about during the 2000 land reform programme. The soil samples were collected ...

  20. Artichoke (Cynara scolymus L. as cash-cover crop in an organic vegetable system

    Directory of Open Access Journals (Sweden)

    Anna LENZI

    2015-11-01

    Full Text Available In organic vegetable systems green manure crops play an important role as a nitrogen source, but they cover the soil for several months without producing a direct income. Globe artichoke (Cynara scolymus L. provides both heads to be harvested and particularly abundant plant residues to be possibly incorporated into the soil, so it may play a double role of cash and cover crop. This paper describes an on-farm study in which seed-propagated artichoke, cultivated as an annual crop, preceded zucchini squash and lettuce cultivated in sequence within a vegetable organic system. Artichoke produced about 7 t ha-1 of saleable heads and left, after harvest, 50.3 t ha-1 of fresh biomass usable as green manure. Zucchini squash and lettuce following artichoke showed a significant increase in yield when artichoke residues were incorporated into the soil. Furthermore, a residual positive effect of green manure on soil fertility was detected after lettuce harvest. 

  1. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang*

    Science.gov (United States)

    Fang, Bin; Wang, Guang-huo; Van den berg, Marrit; Roetter, Reimund

    2005-01-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China’s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops. PMID:16187411

  2. The effect of some growth regulators on enzyme systems in irradiated barley grain using disinfestation doses

    International Nuclear Information System (INIS)

    Bachman, S.

    1973-01-01

    Disinfestation doses of 20 to 100 krad may cause changes in the biological systems of barley grain and, therefore, may influence undesirably the technological quality of malted grain. The effect of some growth regulators on irradiated grain has been investigated. The experiments have been carried out on brewery barley var. Visa Breuns. Following growth-regulators were used: gibberellic acid (Polish preparation ''Gibrescol''), kinetin (6-furfurylo-aminopurin), CCC (2-chloroethyl trimethyl ammonium chloride), and betaine hydrochloride. By treating the irradiated barley with solutions of growth regulators it was possible to diminish the loss of enzyme activity. A ''regenerating'' effect of growth substances, mainly gibberellic acid and betain hydrochloride in 10 -4 M solutions, was observed. Amylolytic activity decreased immediately after irradiation but in samples treated with growth regulators it was higher than in those without regulators. The results may have a practical importance since gibberellic acid has just been introduced into the brewery industry. (F.J.)

  3. Global Monitoring RSEM System for Crop Production by Incorporating Satellite-based Photosynthesis Rates and Anomaly Data of Sea Surface Temperature

    Science.gov (United States)

    Kaneko, D.; Sakuma, H.

    2014-12-01

    The first author has been developing RSEM crop-monitoring system using satellite-based assessment of photosynthesis, incorporating meteorological conditions. Crop production comprises of several stages and plural mechanisms based on leaf photosynthesis, surface energy balance, and the maturing of grains after fixation of CO2, along with water exchange through soil vegetation-atmosphere transfer. Grain production in prime countries appears to be randomly perturbed regionally and globally. Weather for crop plants reflects turbulent phenomena of convective and advection flows in atmosphere and surface boundary layer. It has been difficult for scientists to simulate and forecast weather correctly for sufficiently long terms to crop harvesting. However, severely poor harvests related to continental events must originate from a consistent mechanism of abnormal energetic flow in the atmosphere through both land and oceans. It should be remembered that oceans have more than 100 times of energy storage compared to atmosphere and ocean currents represent gigantic energy flows, strongly affecting climate. Anomalies of Sea Surface Temperature (SST), globally known as El Niño, Indian Ocean dipole, and Atlantic Niño etc., affect the seasonal climate on a continental scale. The authors aim to combine monitoring and seasonal forecasting, considering such mechanisms through land-ocean biosphere transfer. The present system produces assessments for all continents, specifically monitoring agricultural fields of main crops. Historical regions of poor and good harvests are compared with distributions of SST anomalies, which are provided by NASA GSFC. Those comparisons fairly suggest that the Worst harvest in 1993 and the Best in 1994 relate to the offshore distribution of low temperature anomalies and high gaps in ocean surface temperatures. However, high-temperature anomalies supported good harvests because of sufficient solar radiation for photosynthesis, and poor harvests because

  4. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets

    Science.gov (United States)

    Salisbury, F. B.; Clark, M. A.

    1996-01-01

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  5. Integrating remote sensing, geographic information system and modeling for estimating crop yield

    Science.gov (United States)

    Salazar, Luis Alonso

    This thesis explores various aspects of the use of remote sensing, geographic information system and digital signal processing technologies for broad-scale estimation of crop yield in Kansas. Recent dry and drought years in the Great Plains have emphasized the need for new sources of timely, objective and quantitative information on crop conditions. Crop growth monitoring and yield estimation can provide important information for government agencies, commodity traders and producers in planning harvest, storage, transportation and marketing activities. The sooner this information is available the lower the economic risk translating into greater efficiency and increased return on investments. Weather data is normally used when crop yield is forecasted. Such information, to provide adequate detail for effective predictions, is typically feasible only on small research sites due to expensive and time-consuming collections. In order for crop assessment systems to be economical, more efficient methods for data collection and analysis are necessary. The purpose of this research is to use satellite data which provides 50 times more spatial information about the environment than the weather station network in a short amount of time at a relatively low cost. Specifically, we are going to use Advanced Very High Resolution Radiometer (AVHRR) based vegetation health (VH) indices as proxies for characterization of weather conditions.

  6. Food Yields and Nutrient Analyses of the Three Sisters: A Haudenosaunee Cropping System

    Directory of Open Access Journals (Sweden)

    Jane Mt.Pleasant

    2016-11-01

    Full Text Available Scholars have studied The Three Sisters, a traditional cropping system of the Haudenosaunee (Iroquois, from multiple perspectives. However, there is no research examining food yields, defined as the quantities of energy and protein produced per unit land area, from the cropping system within Iroquoia. This article compares food yields and other nutrient contributions from the Three Sisters, comprised of interplanted maize, bean and pumpkin, with monocultures of these same crops. The Three Sisters yields more energy (12.25 x 106 kcal/ha and more protein (349 kg/ha than any of the crop monocultures or mixtures of monocultures planted to the same area. The Three Sisters supplies 13.42 people/ha/yr. with energy and 15.86 people/ha/yr. with protein. Nutrient contents of the crops are further enhanced by nixtamalization, a traditional processing technique where maize is cooked in a high alkaline solution. This process increases calcium, protein quality, and niacin in maize.

  7. Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation

    Directory of Open Access Journals (Sweden)

    Gabriel Villarrubia

    2017-08-01

    Full Text Available Monitoring mechanisms that ensure efficient crop growth are essential on many farms, especially in certain areas of the planet where water is scarce. Most farmers must assume the high cost of the required equipment in order to be able to streamline natural resources on their farms. Considering that many farmers cannot afford to install this equipment, it is necessary to look for more effective solutions that would be cheaper to implement. The objective of this study is to build virtual organizations of agents that can communicate between each other while monitoring crops. A low cost sensor architecture allows farmers to monitor and optimize the growth of their crops by streamlining the amount of resources the crops need at every moment. Since the hardware has limited processing and communication capabilities, our approach uses the PANGEA architecture to overcome this limitation. Specifically, we will design a system that is capable of collecting heterogeneous information from its environment, using sensors for temperature, solar radiation, humidity, pH, moisture and wind. A major outcome of our approach is that our solution is able to merge heterogeneous data from sensors and produce a response adapted to the context. In order to validate the proposed system, we present a case study in which farmers are provided with a tool that allows us to monitor the condition of crops on a TV screen using a low cost device.

  8. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets

    Science.gov (United States)

    Salisbury, F. B.; Clark, M. A. Z.

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  9. The Development of a Remote Sensor System and Decision Support Systems Architecture to Monitor Resistance Development in Transgenic Crops

    Science.gov (United States)

    Cacas, Joseph; Glaser, John; Copenhaver, Kenneth; May, George; Stephens, Karen

    2008-01-01

    The United States Environmental Protection Agency (EPA) has declared that "significant benefits accrue to growers, the public, and the environment" from the use of transgenic pesticidal crops due to reductions in pesticide usage for crop pest management. Large increases in the global use of transgenic pesticidal crops has reduced the amounts of broad spectrum pesticides used to manage pest populations, improved yield and reduced the environmental impact of crop management. A significant threat to the continued use of this technology is the evolution of resistance in insect pest populations to the insecticidal Bt toxins expressed by the plants. Management of transgenic pesticidal crops with an emphasis on conservation of Bt toxicity in field populations of insect pests is important to the future of sustainable agriculture. A vital component of this transgenic pesticidal crop management is establishing the proof of concept basic understanding, situational awareness, and monitoring and decision support system tools for more than 133650 square kilometers (33 million acres) of bio-engineered corn and cotton for development of insect resistance . Early and recent joint NASA, US EPA and ITD remote imagery flights and ground based field experiments have provided very promising research results that will potentially address future requirements for crop management capabilities.

  10. Cover Crops and Fertilization Alter Nitrogen Loss in Organic and Conventional Conservation Agriculture Systems

    Science.gov (United States)

    Shelton, Rebecca E.; Jacobsen, Krista L.; McCulley, Rebecca L.

    2018-01-01

    Agroecosystem nitrogen (N) loss produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, conservation agricultural management practices aimed at reducing N loss are increasingly adopted. However, the ecosystem consequences of these practices have not been well-studied. We quantified N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems in Kentucky, USA. Three systems were evaluated: (1) an unfertilized, organic system with cover crops hairy vetch (Vicia villosa), winter wheat (Triticum aestivum), or a mix of the two (bi-culture); (2) an organic system with a hairy vetch cover crop employing three fertilization schemes (0 N, organic N, or a fertilizer N-credit approach); and (3) a conventional system with a winter wheat cover crop and three fertilization schemes (0 N, urea N, or organic N). In the unfertilized organic system, cover crop species affected NO3-N leaching (vetch > bi-culture > wheat) and N2O-N emissions and yield during corn growth (vetch, bi-culture > wheat). Fertilization increased soil inorganic N, gaseous N loss, N leaching, and yield in the organic vetch and conventional wheat systems. Fertilizer scheme affected the magnitude of growing season N2O-N loss in the organic vetch system (organic N > fertilizer N-credit) and the timing of loss (organic N delayed N2O-N loss vs. urea) and NO3-N leaching (urea >> organic N) in the conventional wheat system, but had no effect on yield. Cover crop selection and N fertilization techniques can reduce N leaching and greenhouse gas emissions without sacrificing yield, thereby enhancing N conservation in both organic and conventional conservation agriculture systems. PMID:29403512

  11. Cover Crops and Fertilization Alter Nitrogen Loss in Organic and Conventional Conservation Agriculture Systems

    Directory of Open Access Journals (Sweden)

    Rebecca E. Shelton

    2018-01-01

    Full Text Available Agroecosystem nitrogen (N loss produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, conservation agricultural management practices aimed at reducing N loss are increasingly adopted. However, the ecosystem consequences of these practices have not been well-studied. We quantified N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems in Kentucky, USA. Three systems were evaluated: (1 an unfertilized, organic system with cover crops hairy vetch (Vicia villosa, winter wheat (Triticum aestivum, or a mix of the two (bi-culture; (2 an organic system with a hairy vetch cover crop employing three fertilization schemes (0 N, organic N, or a fertilizer N-credit approach; and (3 a conventional system with a winter wheat cover crop and three fertilization schemes (0 N, urea N, or organic N. In the unfertilized organic system, cover crop species affected NO3-N leaching (vetch > bi-culture > wheat and N2O-N emissions and yield during corn growth (vetch, bi-culture > wheat. Fertilization increased soil inorganic N, gaseous N loss, N leaching, and yield in the organic vetch and conventional wheat systems. Fertilizer scheme affected the magnitude of growing season N2O-N loss in the organic vetch system (organic N > fertilizer N-credit and the timing of loss (organic N delayed N2O-N loss vs. urea and NO3-N leaching (urea >> organic N in the conventional wheat system, but had no effect on yield. Cover crop selection and N fertilization techniques can reduce N leaching and greenhouse gas emissions without sacrificing yield, thereby enhancing N conservation in both organic and conventional conservation agriculture systems.

  12. Applications of 15N-isotopic dilution techniques to study the recovery of nitrogen fertilizer in the soil and plant uptake in wheat cropping system

    International Nuclear Information System (INIS)

    Rouanet, Juan Luis; Godoy, Alejandra; Montenegro, Adolfo; Mera, Mario; Uribe, Hamil; Pino, Ines; Parada, Ana Maria; Nario, Adriana

    1999-01-01

    Soil erosion is a major concern of the Chilean Ministry of Agriculture, which supports actions to develop new approaches in order to decrease the loss of this fragile natural resource and to promote sustainable production systems. This study, based on the management of biological, chemical and physical characteristics of the soil, was aimed to save nitrogen fertilizer. Nitrogen fertilization is the most costly production factor in wheat cropping systems on Ultisols, one of the most eroded soil types in southern Chile. A field experiment was undertaken on a Ultisol (''Buenos Aires'' Farm) at Imperial, IX Region, during 1997 and 1998, in order to assess the nitrogen and water use efficiency by a wheat crop (cv. Dalcahue-INIA) under alternative soil tillage systems. 15 N-isotopic dilution techniques allowed determining aspects of plant nutrition, nitrogen and water movement in the soil, processes not evaluated so far under these conditions. A strip-plot field layout with four replications was used , with soil tillage systems (traditional, burning/no-till, and no burning/no-till) as the main plots and crop successions (wheat-lupin-wheat and lupin-wheat-oat) as the subplots (30 m-2). In each subplot, a microplot (1m-2 ) was delimited. N fertilizer in the form of urea was added on subplots, except the microplot, at the rate of 150 kg N ha-1. 15N-labelled urea at c. 10 atom % excess, at the rate of 150 kg N ha-1, was added to the microplots. The fertilizer was split three times, 10% at planting, 45% at tillering and 45% jointing stage. No significant differences were found for wheat grain yield among tillage treatments. N fertilizer recovery by the wheat crop was 43%, and 56% on the nitrogen found in plants was derived from soil. No significant differences for these proportions were found among treatments. Although the wheat crop did not respond to tillage treatments in terms of 15N recovery, the physiological nitrogen use efficiency, or grain production per unit of

  13. [Soil quality assessment under different cropping system and straw management in farmland of arid oasis region].

    Science.gov (United States)

    Zhang, Peng Peng; Pu, Xiao Zhen; Zhang, Wang Feng

    2018-03-01

    To reveal the regulatory mechanism of agricultural management practices on soil quality, an experiment was carried out to study the different cropping system and straw management on soil organic carbon and fractions and soil enzyme activity in farmland of arid oasis region, which would provide a scientific basic for enhancing agricultural resources utilization and sustainable development. In crop planting planning area, we took the mainly crop (cotton, wheat, maize) as research objects and designed long-term continues cropping and crop rotation experiments. The results showed that the soil organic carbon (SOC), soil microbial biomass C, labile C, water-soluble organic C, and hot-water-soluble organic C content were increased by 3.6%-9.9%, 41.8%-98.9%, 3.3%-17.0%, 11.1%-32.4%, 4.6%-27.5% by crop rotation compared to continues cropping, and 12%-35.9%, 22.4%-49.7%, 30.7%-51.0%, 10.6%-31.9%, 41.0%-96.4% by straw incorporated compared to straw removed, respectively. The soil catalase, dehydrogenase, β-glucosidase, invertase glucose, cellulase glucose activity were increased by 6.4%-10.9%, 6.6%-18.8%, 5.9%-15.3%, 10.0%-27.4%, 28.1%-37.5% by crop rotation compared to continues cropping, and 31.4%-47.5%, 19.9%-46.6%, 13.8%-20.7%, 19.8%-55.6%, 54.1%-70.9% by straw incorporated compared to straw removed, respectively. There were significant positive linear correlations among SOC, labile SOC fractions and soil enzyme. Therefore, we concluded that labile SOC fractions and soil enzyme were effective index for evaluating the change of SOC and soil quality. Based on factor analysis, in arid region, developing agricultural production using cropland management measures, such as straw-incorporated and combined short-term continues cotton and crop rotation, could enhance SOC and labile SOC fractions contents and soil enzyme activity, which could improve soil quality and be conducive to agricultural sustainable development.

  14. From the Academy: Colloquium perspective. Toward cropping systems that enhance productivity and sustainability.

    Science.gov (United States)

    Cook, R James

    2006-12-05

    The defining features of any cropping system are (i) the crop rotation and (ii) the kind or intensity of tillage. The trend worldwide starting in the late 20th century has been (i) to specialize competitively in the production of two, three, a single, or closely related crops such as different market classes of wheat and barley, and (ii) to use direct seeding, also known as no-till, to cut costs and save soil, time, and fuel. The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops. However, little has been done through genetics and breeding to address diseases caused by residue- and soil-inhabiting pathogens that remain major obstacles to wider adoption of these potentially more productive and sustainable systems. Instead, the gains have been due largely to innovations in management, including enhancement of root defense by antibiotic-producing rhizosphere-inhabiting bacteria inhibitory to root pathogens. Historically, new varieties have facilitated wider adoption of new management, and changes in management have facilitated wider adoption of new varieties. Although actual yields may be lower in direct-seed compared with conventional cropping systems, largely due to diseases, the yield potential is higher because of more available water and increases in soil organic matter. Achieving the full production potential of these more-sustainable cropping systems must now await the development of varieties adapted to or resistant to the hazards shown to account for the yield depressions associated with direct seeding.

  15. Energy balance in rainfed herbaceous crops in a semiarid environment for a 15-year experiment. 1. Impact of farming systems

    Science.gov (United States)

    Moreno, M. M.; Moreno, C.; Lacasta, C.; Tarquis, A. M.; Meco, R.

    2012-04-01

    During the last years, agricultural practices have led to increase yields by means of the massive consumption on non-renewable fossil energy. However, the viability of a production system does not depend solely on crop yield, but also on its efficiency in the use of available resources. This work is part of a larger study assessing the effects of three farming systems (conventional, conservation with zero tillage, and organic) and four barley-based crop rotations (barley monoculture and in rotation with vetch, sunflower and fallow) on the energy balance of crop production under the semi-arid conditions over a 15 year period. However, the present work is focused on the farming system effect, so crop rotations and years are averaged. Experiments were conducted at "La Higueruela" Experimental Farm (4°26' W, 40°04' N, altitude 450 m) (Spanish National Research Council, Santa Olalla, Toledo, central Spain). The climate is semi-arid Mediterranean, with an average seasonal rainfall of 480 mm irregularly distributed and a 4-month summer drought period. Conventional farming included the use of moldboard plow for tillage, chemical fertilizers and herbicides. Conservation farming was developed with zero tillage, direct sowing and chemical fertilizers and herbicides. Organic farming included the use of cultivator and no chemical fertilizers or herbicides. The energy balance method used required the identification and quantification of all the inputs and outputs implied, and the conversion to energy values by corresponding coefficients. The parameters considered were (i) energy inputs (EI) (diesel, machines, fertilizers, herbicides, seeds) (ii) energy outputs (EO) (energy in the harvested biomass), (iii) net energy produced (NE) (EI - EO), (iv) the energy output/input ratio (O/I), and (v) energy productivity (EP) (Crop yield/EI). EI was 3.0 and 3.5 times higher in conservation (10.4 GJ ha-1 year-1) and conventional (11.7 GJ ha-1 year-1) than in organic farming (3.41 GJ ha-1

  16. Requirement, balance and energy efficiency under two models of cropping systems in the center-south of Buenos Aires, Argentina.

    Science.gov (United States)

    Zamora, Martin; Barbera, Agustin; Hansson, Alejandro; Carrasco, Natalia; Domenech, Marisa

    2017-04-01

    In a natural ecosystem, the solar energy is the main source. However, in the agro ecosystem we should use others in order to sustain specific processes or to avoid some interactions. This energy is introduced in the agro-system not only as fossil fuel but also as inputs like fertilizers and pesticides or for agricultural machines. Since February 2011, two adjacent fields were set at Barrow Experimental Station (Lat:-38.322844, Lon:-60.25572): one of them adopting agro-ecology principles (AGROE), as biodiversity increase, polyculture with legumes, less use of agrochemicals; while the other one is based on industrial model of agriculture (ACTUAL). This model is defined by its capital intensity and dependence on massive inputs like seeds, fertilizer, and pesticides. In both fields, beef cattle and agriculture production have been implemented with different intensity. The aim of this study was to compare the demand, production, balance and energy efficiency between these two agro-systems. To do this, we use tables of energy associated with different processes and inputs. For both systems, we estimate the energetic demand used in seeds, pesticides, fertilizers and labor during the crop sequence from February 2011 to December 2015; the energy production according to grains and meat yield achieved; the energetic balance calculated as the difference between inputs and outputs of energy in the system and finally, the energy efficiency which is the ratio between the energy produced and consumed. Inputs-outputs ratios of energy were transformed into equivalent units = GJ (Gigajoules). After a sequence of seven crops, ACTUAL consumed 60 GJ, which represents 158% more energy than AGROE. Particularly, ACTUAL consumed a 72% more energy in cultivation labor, 372% more in herbicides and 10 times more energy used in fertilizers than AGROE. Even though ACTUAL produced 37% more energy than AGROE (187 GJ vs 127 GJ) in grain and meat, the energetic balance was only 12% higher. However

  17. Soil physical properties and grape yield influenced by cover crops and management systems

    Directory of Open Access Journals (Sweden)

    Jaqueline Dalla Rosa

    2013-10-01

    Full Text Available The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L. in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS, black oat (Avena strigosa Schreb (BO, and a mixture of white clover (Trifolium repens L., red clover (Trifolium pratense L. and annual rye-grass (Lolium multiflorum L. (MC. Two management systems were applied: desiccation with herbicide (D and mechanical mowing (M. Soil under a native forest (NF area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.

  18. Future Food Production System Development Pulling From Space Biology Crop Growth Testing in Veggie

    Science.gov (United States)

    Massa, Gioia; Romeyn, Matt; Fritsche, Ralph

    2017-01-01

    Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics

  19. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.

    Science.gov (United States)

    Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D

    2017-02-01

    Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.

  20. Adapting Towards Climate Change: A Bioeconomic Analysis of Winterwheat and Grain Maize

    NARCIS (Netherlands)

    Lehmann, N.; Finger, R.; Klein, T.; Calanca, P.; Walter, A.

    2012-01-01

    Climate change (CC) will alter the environmental conditions for crop growth. In order to minimize negative CC impacts on cropping systems, farmers will have to adapt their management schemes. In this paper we analyzed CC impacts and adaptation in winterwheat and grain maize production using a

  1. New indicators for global crop monitoring in CropWatch -case study in North China Plain

    International Nuclear Information System (INIS)

    Bingfang, Wu; Miao, Zhang; Hongwei, Zeng; Guoshui, Liu; Sheng, Chang; Gommes, René

    2014-01-01

    CropWatch is a monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information. Now in its 15th year of operation, CropWatch was modified several times to be a timely, comprehensive and independent global agricultural monitoring system using advanced remote sensing technology. Currently CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite (FY-3A) and cloud classification products of FY-2. With new satellite data, CropWatch will generate new indicators such as fallow land ratio (FLR), crop condition for irrigated (CCI) and non-irrigated (CCNI) areas separately, photosynthetically active radiation (PAR), radiation use efficiency for the photosynthetically active radiation (RUE PAR ) and cropping index (CI) with crop rotation information (CRI). In this paper, the methods for monitoring the new indicators are applied to the North China Plain which is one of the major grain producing areas in China. This paper shows the preliminary results of the new indicators and methods; they still need to be thoroughly validated before being incorporated into the operational CropWatch system. In the future, the new and improved indicators will help us to better understand the global situation of food security

  2. Weed Population Dynamics, Water Productivity and Grain Yield of Durum Wheat (Triticum durum L. in No-Tillage and Conventional Tillage Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Mojab

    2016-09-01

    and broadleaved weed densities were recorded at 30 days after the beginning of crop emergence. Wheat grain yield was calculated at harvest time. Comparison of the means was conducted based on protected LSD (PLSD at 0.05 significant levels. Results and Discussion: Tillage systems indicated a significant effect on wheat density. The average number of crop seedlings in no-tillage plots was 27 % higher than in the conventional tillage plots. Maintaining crop residues on the soil surface provided a better site for crop germination and emergence. The response to tillage system and year effects varied depending on the weed species. Results showed that the effect of tillage systems, year and their interactions were significant on the density of Lolium temulentum and Sinapis arvensis, while in the case of Phalaris minor and Hordeum spontaneum just the tillage regimen significantly influenced the weed density. L. temulentum and S. arvensis plants showed an almost similar pattern in their response to tillage systems and year effects. The density of these two species significantly decreased under no-tillage system compared with conventional tillage operations. Moreover, their densities in conventional tillage plots were significantly greater in the second year of the experiment than the first year. The lower seedling emergence of P. minor and H. spontaneum under no-tillage circumstances is not surprising, as crop residues prevent from reaching the light on the soil surface and the light requirement for germination of these species has been reported in several studies. The water productivity of the no-tillage plots was greater than of the conventional ones at both two years of the experiment. Preservation of wheat residues on the soil surface decreases soil temperature via shading and causes reduces the evaporation rate from the soil surface. Although there was no significant difference between wheat yields in the two growing seasons under conventional tillage environment, wheat

  3. VIC–CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    Directory of Open Access Journals (Sweden)

    K. Malek

    2017-08-01

    Full Text Available Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively. A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC–CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology, it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC–CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC–CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land–atmosphere interactions. The performance of VIC–CropSyst was evaluated on both regional (over the US Pacific Northwest and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois. The agreement between recorded and simulated evapotranspiration (ET, applied irrigation water, soil moisture, leaf area index (LAI, and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  4. VIC-CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    Science.gov (United States)

    Malek, Keyvan; Stöckle, Claudio; Chinnayakanahalli, Kiran; Nelson, Roger; Liu, Mingliang; Rajagopalan, Kirti; Barik, Muhammad; Adam, Jennifer C.

    2017-08-01

    Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively). A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC) hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC-CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology), it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC-CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC-CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land-atmosphere interactions. The performance of VIC-CropSyst was evaluated on both regional (over the US Pacific Northwest) and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois). The agreement between recorded and simulated evapotranspiration (ET), applied irrigation water, soil moisture, leaf area index (LAI), and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  5. Impact of management strategies on the global warming potential at the cropping system level

    Energy Technology Data Exchange (ETDEWEB)

    Goglio, Pietro; Grant, Brian B.; Smith, Ward N. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Desjardins, Raymond L., E-mail: ray.desjardins@agr.gc.ca [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Worth, Devon E. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Zentner, Robert [Swift Current Research Station, Swift Current, Saskatchewan S0E 1A0 (Canada); Malhi, Sukhdev S. [Melfort Research Farm, PO Box 1240, Melfort, Saskatchewan S0E 1A0 (Canada)

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha{sup −1} decreased on average the emissions of N{sub 2}O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO{sub 2} emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. - Highlights: • LCA was combined with DNDC model to estimate the GWP of a cropping system. • N{sub 2}O, NO and NH{sub 3} flux increased by 39% under the higher fertilizer rate. • A change from 75 to 50 kg N ha{sup −1} reduced the GWP per ha and GJ basis by 18%. • N{sub 2}O emissions contributed 67% to the overall GWP of the cropping system. • Small changes in N fertilizer can have a substantial environmental impact.

  6. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  7. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn.

    Science.gov (United States)

    Wang, Shiyu; Wu, Wenyong; Liu, Fei; Liao, Renkuan; Hu, Yaqi

    2017-06-01

    The health risks arising from heavy metal pollution (HMP) in agricultural soils have attracted global attention, and research on the accumulation of heavy metals in soil-plant systems is the basis for human health risk assessments. This review studied the accumulation of seven typical heavy metals-Cd, Cr, As, Pb, Hg, Cu, and Zn-in soil-corn and soil-wheat systems. The findings indicated that, in general, wheat was more likely to accumulate heavy metals than corn. Bioconcentration factor (BCF) of the seven heavy metals in wheat and corn grains decreased exponentially with their average concentrations in soil. The seven heavy metals were ranked as follows, in ascending order of accumulation in corn grains: Pb < Cr < Zn < As < Cu < Cd grains, their ranking was as follows: Zn < Pb < Cr < Cu < As < Hg grains were 0.054, 6.65 × 10 -4 , 7.94 × 10 -4 , 0.0044, 0.028, 0.13, and 0.19, respectively. The corresponding BCFs values for wheat grains were 0.25, 0.0045, 5.42 × 10 -4 , 0.009, 4.03 × 10 -4 , 0.11, and 0.054, respectively.

  8. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    Science.gov (United States)

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  9. Nutrient cycling in an agroforestry alley cropping system receiving poultry litter or nitrogen fertilizer

    Science.gov (United States)

    Optimal utilization of animal manures as a plant nutrient source should also prevent adverse impacts on water quality. The objective of this study was to evaluate long-term poultry litter and N fertilizer application on nutrient cycling following establishment of an alley cropping system with easter...

  10. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes

    NARCIS (Netherlands)

    Hu, X.K.; Su, F.; Ju, X.T.; Gao, B.; Oenema, O.; Christie, P.; Huang, B.X.; Jiang, R.F.; Zhang, F.S.

    2013-01-01

    Here, we report on a two-years field experiment aimed at the quantification of the emissions of nitrous oxide (N2O) and methane (CH4) from the dominant wheat maize double cropping system in North China Plain. The experiment had 6 different fertilization strategies, including a control treatment,

  11. Surface N Balances in Agricultural Crop production systems in China for the period 1980-2015

    NARCIS (Netherlands)

    Sun, B.; Shen, R.P.; Bouwman, A.F.

    2008-01-01

    Surface nitrogen (N) balances for China's crop production systems were estimated using statistical data collected from 1980 to 2004 at the national and provincial scale and from 1994 to 1999 at the county level. There was a surplus N balance throughout these periods, but the surplus was nearly

  12. Trough and pot crop systems with leaching recirculation and defoliation levels for mini tomatoes

    Directory of Open Access Journals (Sweden)

    Lais Perin

    2017-11-01

    Full Text Available The use of raw rice husk as substrate allows the use of crop systems that promote the recirculation of leachate in long crop cycles. Mini tomatoes present relatively low demand for photoassimilates. Thus, partial defoliation of the sympodium could benefit the crop without damage to the production or quality of the fruits. The objective of this work was to evaluate the plant growth, fruit yield and fruit quality of Cherry Hybrid Wanda and Grape Hybrid Dolcetto mini tomatoes cultivated in two recirculation crop systems (pots and troughs, using raw rice husk as substrate, under three defoliation conditions (without defoliation, removal of one and two leaves of the sympodium. The Cherry cultivar showed higher plant growth, fruit yield and mean fruit size. The Grape cultivar produced fruits with higher sugar concentration. For the Grape cultivar, the removal of one sympodium leaf did not affect the plant responses. However, for the Cherry cultivar, it was necessary to maintain the complete sympodium. The trough cultivation system improved plant growth and yield, whereas the pot system increased fruit sugar concentration.

  13. Exploring profit - Sustainability trade-offs in cropping systems using evolutionary algorithms

    NARCIS (Netherlands)

    DeVoil, P.; Rossing, W.A.H.; Hammer, G.L.

    2006-01-01

    Models that implement the bio-physical components of agro-ecosystems are ideally suited for exploring sustainability issues in cropping systems. Sustainability may be represented as a number of objectives to be maximised or minimised. However, the full decision space of these objectives is usually

  14. Integrated Assessment of Crop-Livestock Production Systems Beyond Biophysical Methods

    NARCIS (Netherlands)

    Masikati, Patricia; Homann Kee-Tui, Sabine; Descheemaeker, Katrien; Sisito, Gevious; Senda, Trinity; Crespo, Olivier; Nhamo, Nhamo

    2017-01-01

    Crop-livestock farming systems that are predominant in Africa, are complex with various interrelated ecological and economic factors. They involve multiple products or benefits (intended and nonintended), with trade-offs and synergies occurring both on- and off-site and varying over time.

  15. Remediation of Stratified Soil Acidity Through Surface Application of Lime in No-Till Cropping Systems

    Science.gov (United States)

    Yield reduction and reduced crop vigor, resulting from soil acidification, are of increasing concern in eastern Washington and northern Idaho. In this region, soil pH has been decreasing at an accelerated rate, primarily due to the long-term use of ammonium based fertilizers. In no-till systems, the...

  16. Smart investments in sustainable food production: revisiting mixed crop-livestock systems.

    Science.gov (United States)

    Herrero, M; Thornton, P K; Notenbaert, A M; Wood, S; Msangi, S; Freeman, H A; Bossio, D; Dixon, J; Peters, M; van de Steeg, J; Lynam, J; Parthasarathy Rao, P; Macmillan, S; Gerard, B; McDermott, J; Seré, C; Rosegrant, M

    2010-02-12

    Farmers in mixed crop-livestock systems produce about half of the world's food. In small holdings around the world, livestock are reared mostly on grass, browse, and nonfood biomass from maize, millet, rice, and sorghum crops and in their turn supply manure and traction for future crops. Animals act as insurance against hard times and supply farmers with a source of regular income from sales of milk, eggs, and other products. Thus, faced with population growth and climate change, small-holder farmers should be the first target for policies to intensify production by carefully managed inputs of fertilizer, water, and feed to minimize waste and environmental impact, supported by improved access to markets, new varieties, and technologies.

  17. Impact of management strategies on the global warming potential at the cropping system level.

    Science.gov (United States)

    Goglio, Pietro; Grant, Brian B; Smith, Ward N; Desjardins, Raymond L; Worth, Devon E; Zentner, Robert; Malhi, Sukhdev S

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  18. Path-space variational inference for non-equilibrium coarse-grained systems

    International Nuclear Information System (INIS)

    Harmandaris, Vagelis; Kalligiannaki, Evangelia; Katsoulakis, Markos; Plecháč, Petr

    2016-01-01

    In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirely data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.

  19. Path-space variational inference for non-equilibrium coarse-grained systems

    Energy Technology Data Exchange (ETDEWEB)

    Harmandaris, Vagelis, E-mail: harman@uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete (Greece); Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), IACM/FORTH, GR-71110 Heraklion (Greece); Kalligiannaki, Evangelia, E-mail: ekalligian@tem.uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete (Greece); Katsoulakis, Markos, E-mail: markos@math.umass.edu [Department of Mathematics and Statistics, University of Massachusetts at Amherst (United States); Plecháč, Petr, E-mail: plechac@math.udel.edu [Department of Mathematical Sciences, University of Delaware, Newark, Delaware (United States)

    2016-06-01

    In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirely data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.

  20. Crop and Irrigation Management Systems under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Pedro García-Caparrós

    2018-01-01

    Full Text Available Plants of Ruscus aculeatus, known as “butcher’s broom”, Maytenus senegalensis, known as “confetti tree”, and Juncus acutus, known as “spiny rush” were grown in pots with a mixture of sphagnum peat-moss and Perlite in order to determine the effect and evolution over time of three water use systems on plant growth, water saving and nutrient uptake. These were an open system (irrigated with standard nutrient solution and two closed systems (blended-water (drainage water blended with water of low electrical conductivity (EC and sequential reuse of drainage (sequential-reuse water, over a period of 8 weeks. Irrigation with blended- and sequential-reuse-water increased the biomass of all three species at the end of the experiment, compared to the open system. Overall, sequential-reuse-water treatment maximised biomass production. The application of blended- and sequential-reuse-water allowed savings of 17% of water in comparison to the open system. Regarding Cl, NO3− and H2PO4− loads, there was a removal of 5%, 32% and 32%; respectively in the blended-water treatment and 15%, 17% and 17% in the sequential-reuse water treatment compared to the open system. For the cation loads (Na+, K+, Ca2+ and Mg2+ in these water treatments there was a removal of 10%, 32%, 7% and 18% respectively in the blended-water treatment, and 17%, 22%, 17% and 18% respectively in the sequential-reuse treatment, compared to the open system.

  1. Water and nitrogen in crop and pasture systems in southern Australia

    International Nuclear Information System (INIS)

    Angus, J.F.; Peoples, M.B.; Herwaarden, A.F. van

    1998-01-01

    Recent research on water and N for dryland crops in southern Australia has addressed the need for more efficient and sustainable production. Water-use efficiency is well below the potential and N-use efficiency well below optimum on farms. Excess water and N cause on-site and off-site environmental damage. The most effective means of illustrating these inefficiencies to growers is to present simple benchmarks of water and N-use efficiencies with which farmers can assess and improve the performance of their own crops. The practices shown by our recent research that best support the goals of more efficient and sustainable production are those that maximize extraction of soil water and mineral N, and increase biological N 2 fixation. Wheat growing after a brassica break-crop extract more water and mineral N from the soil than when grown as a continuous cereal, apparently because of a 'biofumigation' effect that reduces the numbers of soil-borne pathogens of wheat and produces a stronger root system. In the case of phased pasture-crop systems, annual pastures do not fully extract subsoil water or mineral N. However, when the grasses are removed from annual pastures with a selective herbicide, the remaining pure clover rapidly decomposes after maturity, leaving a large amount of mineral N for the following crop. Perennial pastures containing lucerne produce more forage and fix more N 2 than do annual pastures, but they dry the soil profile. After removal of the lucerne, the soil may be so dry that mineralization is slow, with the risk of water deficit for the subsequent crop. (author)

  2. Development of a farm-firm modelling system for evaluation of herbaceous energy crops

    International Nuclear Information System (INIS)

    English, B.C.; Alexander, R.R.; Loewen, K.H.; Coady, S.A.; Cole, G.V.; Goodman, W.R.

    1992-01-01

    A complete analysis is performed to simulate biomass production incorporated into a realistic whole farm situation, including or replacing a typical crop mix. Representative farms are constructed to accommodate such simulation. Four management systems are simulated for each firm, with each simulation depicting a different crop mix and/or use of different farming technologies and production methods. The first simulation was a base farm plan in which the operator would maintain the historical crop mix for the area, participate in all price support programs, and not participate in either a conservative reserve or a biomass production program. In the second simulation, the operator would again maintain the historical crop mix, would not participate in a conservation reserve or biomass production program, and would be ineligible to participate in any price support system. The third simulation introduced the Conservation Reserve Program (CRP) and included participation in all price support programs. The fourth simulation introduced a biomass crop production enterprise (switchgrass) as an alternative to enrolling highly erodible cropland in the CRP and allowed participation in price support programs. Simulations were made for three farms, two in West Tennessee and on in South Georgia. Results indicate that erosion is likely to be reduced more by the diversion of cropland to permanent vegetative cover on farms similar to the more highly erodible West Tennessee farms than on the less erodible Tift County, Georgia farm. Equivalent reductions in erosion rates result from entering highly erodible cropland in the CRP and from production of switchgrass as a biomass energy crop. Both switchgrass and CRP farm plans result in decreased net returns from the base plan, although the biomass farm plans are, in general, more profitable than the CRP plans

  3. Development of Intelligent Spray Systems for Nursery Crop Production

    Science.gov (United States)

    Two intelligent sprayer prototypes were developed to increase pesticide application efficiency in nursery production. The first prototype was a hydraulic vertical boom system using ultrasonic sensors to detect tree size and volume for liner-sized trees and the second prototype was an air-assisted sp...

  4. Innovative biological systems for anaerobic treatment of grain and food processing wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, P M

    1986-09-01

    The application of two innovative fixed film and suspended growth anaerobic biological systems to the treatment of grain and food processing wastewaters is discussed. A fluidized bed fixed film system and a suspended growth membrane system are described. The technical and economic factors dictating which system is selected for treatment of a specific industrial wastewater are discussed. Case history results from successful operation of full-scale, demonstration, and pilot-scale systems treating respectively, soy whey, cheese whey, and wheat flour processing wastewaters are presented.

  5. Quantitative Phase-Field Approach for Simulating Grain Growth in Anisotropic Systems with Arbitrary Inclination and Misorientation Dependence

    International Nuclear Information System (INIS)

    Moelans, N.; Blanpain, B.; Wollants, P.

    2008-01-01

    A phase-field approach for quantitative simulations of grain growth in anisotropic systems is introduced, together with a new methodology to derive appropriate model parameters that reproduce given misorientation and inclination dependent grain boundary energy and mobility in the simulations. The proposed model formulation and parameter choice guarantee a constant diffuse interface width and consequently give high controllability of the accuracy in grain growth simulations

  6. Native prairie filter strips reduce runoff from hillslopes under annual row-crop systems in Iowa, USA

    Science.gov (United States)

    V. Hernandez-Santana; X. Zhou; M.J. Helmers; H. Asbjornsen; R. Kolka; M. Tomer

    2013-01-01

    Intensively managed annual cropping systems have produced high crop yields but have often produced significant ecosystem services alteration, in particular hydrologic regulation loss. Reconversion of annual agricultural systems to perennial vegetation can lead to hydrologic function restoration, but its effect is still not well understood. Therefore, our objective was...

  7. Evaluation of phosphate-solubilizing bacteria on the growth and grain yield of rice (Oryza sativa L.) cropped in northern Iran.

    Science.gov (United States)

    Bakhshandeh, E; Rahimian, H; Pirdashti, H; Nematzadeh, G A

    2015-11-01

    This study aimed to evaluate the efficiency of four phosphate-solubilizing bacteria (PSB) on the growth and yield of rice under different soil conditions. Bacterial strains were Rahnella aquatillis (KM977991), Enterobacter sp. (KM977992), Pseudomonas fluorescens and Pseudomonas putida. These studies were conducted on different rice cultivars ('Shiroodi', 'Tarom' and 'Tarom Hashemi') in both pot and field experiments. Measurements started from transplanting and continued throughout the growing season in field experiments. Single PSB inoculations in field trials increased grain yield, biological yield, total number of stems hill(-1) , number of panicles hill(-1) and plant height by 8·50-26·9%, 12·4-30·9%, 20·3-38·7%, 22·1-36·1% and 0·85-3·35% in experiment 1, by 7·74-14·7%, 4·22-12·6%, 6·67-16·7%, 4·0-15·4% and 3·15-4·20% in experiment 2 and by 23·4-37%, 16·1-36·4%, 30·2-39·1%, 28·8-34% and 2·11-4·55% in experiment 3, respectively, compared to the control. Our results indicate that the application of triple super phosphate together with PSB inoculations resulted in reducing the use of chemical fertilizers (about 67%) and increasing fertilizer use efficiency. This study clearly indicates that these PSBs can be used as biofertilizers in ecological rice agricultural systems. To the best of our knowledge, this is first report on the association of Rahnella aquatilis with rice and also the application of a mathematical model to evaluate the effect of PSBs on rice growth. © 2015 The Society for Applied Microbiology.

  8. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad.

    Science.gov (United States)

    Lamichhane, Jay Ram; Devos, Yann; Beckie, Hugh J; Owen, Micheal D K; Tillie, Pascal; Messéan, Antoine; Kudsk, Per

    2017-06-01

    Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union.

  9. Integrated water-crop-soil-management system for evaluating the quality of irrigation water

    International Nuclear Information System (INIS)

    Pla-Sentis, I.

    1983-01-01

    The authors make use of an independent balance of the salts and ions present in the water available for irrigation, based on the residence times in the soil solution that are allowed by solubility limits and drainage conditions, to develop an efficient system for evaluating the quality of such water which combines the factors: water, crop, soil and management. The system is based on the principle that such quality depends not only on the concentration and composition of the salts dissolved in the water, but also on existing possibilities and limitations in using and managing it in respect of the soil and crops, with allowance for the crop's tolerance of salinity, drainage conditions and hydrological properties of the soils, climate and current or potential practices for the management of the irrigation. If this system is used to quantify approximately the time behaviour of the concentration and composition of the salts in the soil solution, it is possible not only to predict the effects on soil, crops and drainage water, but also to evaluate the various combinations of irrigation water, soil, crops and management and to select the most suitable. It is also useful for fairly accurately diagnosing current problems of salinity and for identifying alternatives and possibilities for reclamation. Examples of its use for these purposes in Venezuela are presented with particular reference to the diagnosis of the present and future development of ''salino-sodic'' and ''sodic'' soils by means of low-salt irrigation water spread over agricultural soils with very poor drainage in a sub-humid or semi-arid tropical climate. The authors also describe the use of radiation techniques for gaining an understanding of the relations between the factors making up the system and for improving the quantitative evaluations required to diagnose problems and to select the best management methods for the available irrigation water. (author)

  10. Regional application of a cropping systems simulation model: crop residue retention in maize production systems of Jalisco, Mexico

    NARCIS (Netherlands)

    Hartkamp, A.D.; White, J.W.; Rossing, W.A.H.; Ittersum, van M.K.; Bakker, E.J.; Rabbinge, R.

    2004-01-01

    To ensure the productivity of smallholder maize production systems in Central America, increased attention must be paid to conserving soil and water resources. Various stakeholders from national agricultural research services (NARS), networks, non-governmental organizations (NGO's) and research

  11. Effect of Ion Streaming on Diffusion of Dust Grains in Dissipative System

    Science.gov (United States)

    Begum, M.; Das, N.

    2018-01-01

    The presence of strong electric fields in the sheath region of laboratory complex plasma induces an ion drift and perturbs the field around dust grains. The downstream focusing of ions leads to the formation of oscillatory kind of attractive wake potential which superimpose with the normal Debye-Hückel (DH) potential. The structural properties of complex plasma and diffusion coefficient of dust grains in the presence of such a wake potential have been investigated using Langevin dynamics simulation in the subsonic regime of ion flow. The study reveals that the diffusion of dust grains is strongly affected by the ion flow, so that the diffusion changes its character in the wake potential to the DH potential dominant regimes. The dependence of the diffusion coefficient on the parameters, such as the neutral pressure, dust grain size, ion flow velocity, and Coulomb coupling parameter, have been calculated for the subsonic regime by using the Green-Kubo expression, which is based on the integrated velocity autocorrelation function. It is found that the diffusion and the structural property of the system is intimately connected with the interaction potential and significantly get affected in the presence of ion flow in the subsonic regime.

  12. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil.

    OpenAIRE

    FRANCHINI, J. C.; CRISPINO, C. C.; SOUZA, R. A.; TORRES, E.; HUNGRIA, M.

    2006-01-01

    Metadata only record This article attempts to recognize soil parameters that can be used to monitor soil quality under different crop and soil management systems. The rates of CO2 emissions (soil respiration) were affected by variations in the sampling period, as well as in soil management and crop rotation. Considering all samples, CO2 emissions were 21% greater in conventional tillage. Soil microbial biomass was also influenced by sampling period and soil management, but not by crop rota...

  13. Mixed crop-livestock production systems of smallholder farmers in sub-humid and semi-arid areas of Zambia

    International Nuclear Information System (INIS)

    Lungu, J.C.N.

    2002-01-01

    Livestock production activities among small-scale farmers of semi-arid (Agro-ecological zone 1) and sub-humid (Agro-ecological zone 2) areas of Zambia are integrated with crop production activities in what is termed as crop/livestock farming system. This is a closed system in which production of one enterprise depends on the other. In Zambia, crop production depends on draught animals for tillage of cropping area, animal manure for fertilisation of crops while livestock depend on crop residues for dry season feeding. Good quality grass is generally available in adequate amounts to support reasonable level of livestock productivity during the rainy season. But livestock rely on low quantity and poor quality, highly fibrous perennial grass from veld and fibrous crop residues during the dry season. These resources are inadequate to support optimum livestock productivity activities. Poor nutrition results in low rates of reproduction and production as well as increased susceptibility to diseases. With the increasing human population cropping land is expanding, leading to increased production of crop residues. This has however, reduced the grazing land available for ruminant production. In Zambia large quantities of crop residues (stovers, husks and straws, legume tops and hulls, sugar cane tops, cassava leaves, potato vines, etc.) are left in the field where they are wasted each year because small-scale farmers lack the knowledge on how best to use them. There is a need to find ways to reverse this situation by adapting known and workable technologies to local conditions and by introducing new approaches for improving the use of crop residues and poor quality fibrous feeds. Efforts should also be made to enlarge feed resource base. The technologies should be simple and effective. In the presence of a dynamic market system, livestock production in a crop/livestock system could be intensified and made profitable for small-scale farmers. (author)

  14. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    Directory of Open Access Journals (Sweden)

    X. Han

    2018-04-01

    Full Text Available Loss of soil organic carbon (SOC from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR, SI significantly sequestered SOC (0–20 cm depth at the rate of 0.35 (95 % CI, 0.31–0.40 Mg C ha−1 yr−1, increased crop grain yield by 13.4 % (9.3–18.4 % and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha−1 yr−1 with mineral fertilizer of 200–400 kg N ha−1 yr−1 was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9–56.4 % and SOC sequestrated by the rate of 0.85 (0.54–1.15 Mg C ha−1 yr−1. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28–62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11–15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with

  15. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    Science.gov (United States)

    Han, Xiao; Xu, Cong; Dungait, Jennifer A. J.; Bol, Roland; Wang, Xiaojie; Wu, Wenliang; Meng, Fanqiao

    2018-04-01

    Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR), SI significantly sequestered SOC (0-20 cm depth) at the rate of 0.35 (95 % CI, 0.31-0.40) Mg C ha-1 yr-1, increased crop grain yield by 13.4 % (9.3-18.4 %) and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha-1 yr-1 with mineral fertilizer of 200-400 kg N ha-1 yr-1 was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9-56.4 %) and SOC sequestrated by the rate of 0.85 (0.54-1.15) Mg C ha-1 yr-1. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28-62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11-15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with increased crop production, and this is of great practical importance to straw management as agriculture

  16. Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: I grain yields and nutrient use efficiencies

    NARCIS (Netherlands)

    Wang, X.B.; Cai, D.X.; Hoogmoed, W.B.; Perdok, U.D.; Oenema, O.

    2007-01-01

    The rapidly increasing population and associated quest for food and feed in China has led to increased soil cultivation and nitrogen (N) fertilizer use, and as a consequence to increased wind erosion and unbalanced crop nutrition. In the study presented here, we explored the long-term effects of

  17. Relationship between stoichiometry and ecosystem services in organic crop production systems

    DEFF Research Database (Denmark)

    Fan, Fan

    contribute to and mitigate global ES loss. Organic farming has been suggested as one possible solution to alleviate the loss of ES in agro-ecosystems due to its environmental benefits compared with conventional farming. However, only a few studies have accounted for the economic value of ES in different...... organic crop production systems and little is known about how anthropogenic activities affect the supply of ES in such organic crop production systems. Ecological stoichiometry, which is the study of the fluxes of chemical elements and the ratio between them, has been considered as a new approach....... The organic farming systems with a high soil C:N stoichiometric ratio had a potential to produce more food, sequester more carbon from the atmosphere, store more water in the soil, attract more aphid predators, and regulate more nitrogen compared with the organic farming systems with a low soil C...

  18. Fitting maize into sustainable cropping systems on acid soils of the tropics

    International Nuclear Information System (INIS)

    Horst, W.J.

    2000-01-01

    One of the key elements of sustainable cropping systems is the integration of crops and/or crop cultivars with high tolerance of soil acidity and which make most efficient use of the nutrients supplied by soil and fertilizer. This paper is based mainly on on-going work within an EU-funded project combining basic research on plant adaptation mechanisms by plant physiologists, and field experimentation on acid soils in Brazil, Cameroon, Colombia and Guadeloupe by breeders, soil scientists and a agronomists. The results suggest that large genetic variability exists in adaptation of plants to acid soils. A range of morphological and physiological plant characteristics contribute to tolerance of acid soils, elucidation of which has contributed to the development of rapid techniques for screening for tolerance. Incorporation of acid-soil-tolerant species and cultivars into cropping systems contributes to improved nutrient efficiency overall, and thus reduces fertilizer needs. This may help to minimize maintenance applications of fertiliser through various pathways: (i) deeper root growth resulting in more-efficient uptake of nutrients from the sub-soil and less leaching, (ii) more biomass production resulting in less seepage and less leaching, with more intensive nutrient cycling, maintenance of higher soil organic-matter content, and, consequently, less erosion owing to better soil protection by vegetation and mulch. (author)

  19. Estimation of runoff mitigation by morphologically different cover crop root systems

    Science.gov (United States)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  20. Effect of inorganic fertilizers and municipal solid waste manure on some soil physical properties in cotton-wheat cropping system

    International Nuclear Information System (INIS)

    Qazi, A. M.; Akram, M.; Ahmad, A.

    2006-01-01

    A field experiment was conducted on a sandy loam soil for three consecutive years (2002-2005) to study the effects of combined use of chemical fertilizers (NPK) and organic manure (municipal solid waste manure-MSWM) on soil organic matter, bulk density, porosity, penetration resistance, and yields of crops in cotton (Desi)-wheat cropping system. After three years, organic matter content of the surface (0-15 cm) soil increased (42-68%)to 7.1-8.4 g kg from an initial level of 5.0 g kg with out any significant interaction between two fertilizer doses, three management techniques and six seasons except for dose x season interaction where higher organic matter contents were found after each cotton harvest by site-specific fertilizer application. In general, the bulk density of the surface soil increased un-impressively with the time by unique use of fertilizers and decreased gradually by application of integrated plant nutrients management (IPNM) technique using MSWM with or without pesticides/herbicides use. Porosity of soil increased (2.5 %) by applying IPNM technique compared to unique use of chemical fertilizers. Penetration resistance was increased with unique use of fertilizers to a level of 0.80 M Pa from initial value of 0.74 MPa. Presumably due to higher intrinsic bulk density of the soil. Over the three years, on an average, the MSW manured and fertilized plots (IPNM with pesticides/herbicides use ) produced higher i.e. 2% and 11% increase in seed cotton and wheat grain yields respectively than did the plots receiving chemical fertilizers. Neglecting herbicides/pesticides application decreased (4-5%) seed cotton yield. (author)

  1. MORPHOMETRIC CHARACTERIZATION OF THE SAND FRACTION IN A SAND GRAIN IMAGE CAPTURE SYSTEM1

    Directory of Open Access Journals (Sweden)

    Lucimar Arruda Viana

    Full Text Available ABSTRACT Morphology studies assume significant importance in analysis of phenomena of granular systems packaging, in particular with a view to the use of the technique of soil stabilization named particle size correction in forest roads. In this context, this study aimed to develop and operationalize a Sand Grain Image Capture System and, hereby, determine the morphological indices of the sand fractions of two sandy soils called João Pinheiro (JP and Cachoeira da Prata (CP. Soil samples, air-dried, were sieved (2.0 mm nominal mesh size for removal of gravels. The materials that passed through the sieve were subjected to dispersion, washing in 0.053 mm nominal mesh size sieve, removal of organic matter and iron oxides to obtain the clean sand fractions. Subsequently, each soil sample was sieved for separation into twelve classes, between the diameters of 0.149 mm and 1.190 mm, using a Rotap shaker. Next, tests were carried out to characterize the morphometric attributes of the twelve classes of sand fractions of the soils studied. For validation of the performance of the Sand Grain Image Capture System, the results were compared to those obtained using a standard procedure for image analysis. The analysis of the results led to the following conclusions: (i the sand fraction of the JP soil presented higher values for the morphometric indices roundness, elongation and compactness compared to sand fraction of the CP soil; and (ii the Sand Grain Image Capture System worked properly, with practicality.

  2. Reduced tillage and green manures for sustainable cropping systems - Overview of the TILMAN-ORG project

    OpenAIRE

    Mäder, Paul

    2013-01-01

    Reduced tillage and green manures are environmentally friendly practices that increase levels of soil organic matter and biological activity, improve soil stability, and reduce fuel consumption and may mitigate the climate impact of crop production. The avoidance of deep ploughing is successfully practiced as no-tillage agriculture in conventional farming systems. However, these no-tillage systems rely on herbicides for weed control and mineral fertilisers for plant nutrients. As these inputs...

  3. Fate of nitrogen in soil-crop system by nuclear techniques. Effects of applied rate of ammonium bicarbonate

    International Nuclear Information System (INIS)

    Chen Qing

    1996-11-01

    The experiment was conducted with 15 N tracing techniques in Shijiazhuang from 1994 to 1995. Three nitrogen rates, including optimum rate (150 kg/hm 2 ) based on the recommendation of local farmers, above 50% of optimum rate (225 kg/hm 2 ) and below 50% of optimum rate (75 kg/hm 2 ), were selected to study the effect of application rates of ammonium bicarbonate on yield of winter wheat and fate of applied nitrogen under local management and irrigated condition. The results showed that nitrogen uptake and grain yield of wheat under fertilized treatments were higher than those in unfertilized treatment (except 225 kg/hm 2 treatment). The highest yield and top dry mater weight (grain 6.80 t/hm 2 , top 14.70 t/hm 2 ) were obtained in optimum N applied treatment (150 kg/hm 2 ), while the highest nitrogen recovery efficiency (38.5%) of ammonium bicarbonate by winter wheat was found in below 50% of optimum rate treatment (75 kg/hm 2 ) due to the relatively high basic fertility of the field. However, nitrogen recovery efficiency of ammonium bicarbonate decreased with the increasing N application rate. The highest residue of fertilizer N was found in 225 kg/hm 2 treatment, and 46% of the residue existed in the top layer of the soil (0∼50 cm). The unaccounted N from fertilizer were 30.20%, 36.56%, 31.25% in 75 kg/hm 2 , 150 kg/hm 2 , 225 kg/hm 2 treatments respectively according to 15 N balance calculation in soil-plant system. The effect of residue N in soil on the next crop, maize, in 225 kg/hm 2 treatment was best in three fertilized treatments, suggesting the possibilities of nitrate leaching down in 225 kg/hm 2 treatment. (15 tabs.)

  4. Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas

    Directory of Open Access Journals (Sweden)

    Isaque Daniel Rocha Eberhardt

    2016-03-01

    Full Text Available The potential of optical remote sensing data to identify, map and monitor croplands is well recognized. However, clouds strongly limit the usefulness of optical imagery for these applications. This paper aims at assessing cloud cover conditions over four states in the tropical and sub-tropical Center-South region of Brazil to guide the development of an appropriate agricultural monitoring system based on Landsat-like imagery. Cloudiness was assessed during overlapping four months periods to match the typical length of crop cycles in the study area. The percentage of clear sky occurrence was computed from the 1 km resolution MODIS Cloud Mask product (MOD35 considering 14 years of data between July 2000 and June 2014. Results showed high seasonality of cloud occurrence within the crop year with strong variations across the study area. The maximum seasonality was observed for the two states in the northern part of the study area (i.e., the ones closer to the Equator line, which also presented the lowest averaged values (15% of clear sky occurrence during the main (summer cropping period (November to February. In these locations, optical data faces severe constraints for mapping summer crops. On the other hand, relatively favorable conditions were found in the southern part of the study region. In the South, clear sky values of around 45% were found and no significant clear sky seasonality was observed. Results underpin the challenges to implement an operational crop monitoring system based solely on optical remote sensing imagery in tropical and sub-tropical regions, in particular if short-cycle crops have to be monitored during the cloudy summer months. To cope with cloudiness issues, we recommend the use of new systems with higher repetition rates such as Sentinel-2. For local studies, Unmanned Aircraft Vehicles (UAVs might be used to augment the observing capability. Multi-sensor approaches combining optical and microwave data can be another

  5. Grain size and shape analysis of the AD 1226 tephra layer, Reykjanes volcanic system

    Science.gov (United States)

    Ösp Magnúsdóttir, Agnes; Höskuldsson, Ármann; Larsen, Guðrún; Tumi Guðmunsson, Magnús; Sigurgeirsson, Magnús Á.

    2014-05-01

    Recent explosive eruptions in Iceland have drawn attention to long range tephra transport in the atmosphere. In Iceland tephra forming explosion eruptions are frequent, due to abundance of water. However, the volcanism on the island is principally basaltic. Volcanism along the Reykjanes Peninsula is divided into five distinct volcanic systems. Volcano-tectonic activity within these systems is periodic, with recurrence intervals in the range of 1 ka. Last volcano-tectonic sequence began around AD 940, shortly after settlement of Iceland, and lasted through AD 1340. During this period activity was characterized by basaltic fissure eruptions. Furthermore, this activity period on the Reykjanes peninsula began within the eastern most volcanic system and gradually moved towards the west across the peninsula. The 1226 eruption was a basaltic fissure eruption with in the Reykjanes volcanic system. The eruption began on land and gradually progressed towards the SW until the volcanic fissure extended into the sea. Water-magma interaction changed the eruption from effusive into explosive forming the largest tephra layer on the peninsula. Due to its close proximity to the Keflavik international airport and that of the capital of Iceland it is important to get an insight into, the characteristics, generation and distribution of such tephra deposits. In this eruption the tephra produced had an approximate volume of 0.1 km3 and covered an area of some 3500 km2 within the 0.5 cm isopach. Total grain size distribution of this tephra layer will be presented along with analysis of principal grain shapes of the finer portion of the tephra layer as a function of distance from the source. The tephra grain size is dominated by particles finer than 1 millimeter with an almost complete absence of large grains independent of distance from the source. Comprehensive understanding of the characteristics of tephra generated in this eruption can help us to understand hazards posed by future

  6. Net global warming potential and greenhouse gas intensity as affected by different water management strategies in Chinese double rice-cropping systems.

    Science.gov (United States)

    Wu, Xiaohong; Wang, Wei; Xie, Xiaoli; Yin, Chunmei; Hou, Haijun; Yan, Wende; Wang, Guangjun

    2018-01-15

    This study provides a complete account of global warming potential (GWP) and greenhouse gas intensity (GHGI) in relation to a long-term water management experiment in Chinese double-rice cropping systems. The three strategies of water management comprised continuous (year-round) flooding (CF), flooding during the rice season but with drainage during the midseason and harvest time (F-D-F), and irrigation only for flooding during transplanting and the tillering stage (F-RF). The CH 4 and N 2 O fluxes were measured with the static chamber method. Soil organic carbon (SOC) sequestration rates were estimated based on the changes in the carbon stocks during 1998-2014. Longer periods of soil flooding led to increased CH 4 emissions, reduced N 2 O emissions, and enhanced SOC sequestration. The net GWPs were 22,497, 8,895, and 1,646 kg CO 2 -equivalent ha -1 yr -1 for the CF, F-D-F, and F-RF, respectively. The annual rice grain yields were comparable between the F-D-F and CF, but were reduced significantly (by 13%) in the F-RF. The GHGIs were 2.07, 0.87, and 0.18 kg CO 2 -equivalent kg -1 grain yr -1 for the CF, F-D-F, and F-RF, respectively. These results suggest that F-D-F could be used to maintain the grain yields and simultaneously mitigate the climatic impact of double rice-cropping systems.

  7. What influences the composition of fungi in wheat grains?

    Directory of Open Access Journals (Sweden)

    Biruta Bankina

    2017-12-01

    Full Text Available Wheat grains are inhabited by different fungi, including plant pathogens and fungi – mycotoxin producers. The composition of seed mycobiota can be influenced by different factors, including agronomic practices, but the results are still contradictory. The aim of this study was to evaluate the mycobiota of wheat grains depending on agroecological conditions. Wheat grains were obtained from a two-factorial field trial: A – tillage system (A1 – ploughing at a depth of 22–24 cm; A2 – harrowing at a depth of up to 10 cm; B – crop rotation (B1 – continuous wheat; B2 – oilseed rape and wheat; B3 – crop rotation. The mycobiota of grain were determined by mycological and molecular methods. The most abundant and widespread of the mycobiota were Pyrenophora tritici-repentis, Alternaria spp., Arthrinium spp., and Fusarium avenaceum. Higher amounts of precipitation increased the infection of grains with Fusarium fungi. Seven species of Fusarium were identified in the grain samples: F. avenaceum, F. poae, F. graminearum, F. culmorum, F. acuminatum, F. sporotrichioides, and F. tricinctum. The soil tillage method and crop rotation did not influence the total incidence of Fusarium spp., but the abundance of a particular species differed depending on agronomic practice. The research suggests that continuous wheat sowing under conditions of reduced soil tillage can increase the level of risk of grain infection with F. graminearum and, consequently, the accumulation of mycotoxins.

  8. Increasing crop diversity mitigates weather variations and improves yield stability.

    Science.gov (United States)

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  9. Grain-A Java data analysis system for Total Data Readout

    International Nuclear Information System (INIS)

    Rahkila, P.

    2008-01-01

    Grain is a data analysis system developed to be used with the novel Total Data Readout data acquisition system. In Total Data Readout all the electronics channels are read out asynchronously in singles mode and each data item is timestamped. Event building and analysis has to be done entirely in the software post-processing the data stream. A flexible and efficient event parser and the accompanying software system have been written entirely in Java. The design and implementation of the software are discussed along with experiences gained in running real-life experiments

  10. The beginnings of crop phosphoproteomics: exploring early warning systems of stress.

    Directory of Open Access Journals (Sweden)

    Christof eRampitsch

    2012-07-01

    Full Text Available This review examines why a knowledge of plant protein phosphorylation events is important in devising strategies to protect crops from both biotic and abiotic stresses, and why proteomics should be included when studying stress pathways. Most of the achievements in elucidating phospho-signalling pathways in biotic and abiotic stress are reported from model systems: while these are discussed, this review attempts mainly to focus on work done with crops, with examples of achievements reported from rice, maize, wheat, grape, Brassica, tomato and soy bean after cold acclimation, hormonal and oxidative H2O2 treatment, salt stress, mechanical wounding or pathogen challenge. The challenges that remain to transfer this information into a format that can be used to protect crops against biotic and abiotic stresses are enormous. The tremendous increase in the speed and ease of DNA sequencing is poised to reveal the whole genomes of many crop species in the near future, which will facilitate phosphoproteomics and phosphogenomics research.

  11. Coupling sensing to crop models for closed-loop plant production in advanced life support systems

    Science.gov (United States)

    Cavazzoni, James; Ling, Peter P.

    1999-01-01

    We present a conceptual framework for coupling sensing to crop models for closed-loop analysis of plant production for NASA's program in advanced life support. Crop status may be monitored through non-destructive observations, while models may be independently applied to crop production planning and decision support. To achieve coupling, environmental variables and observations are linked to mode inputs and outputs, and monitoring results compared with model predictions of plant growth and development. The information thus provided may be useful in diagnosing problems with the plant growth system, or as a feedback to the model for evaluation of plant scheduling and potential yield. In this paper, we demonstrate this coupling using machine vision sensing of canopy height and top projected canopy area, and the CROPGRO crop growth model. Model simulations and scenarios are used for illustration. We also compare model predictions of the machine vision variables with data from soybean experiments conducted at New Jersey Agriculture Experiment Station Horticulture Greenhouse Facility, Rutgers University. Model simulations produce reasonable agreement with the available data, supporting our illustration.

  12. Nitrous oxide emissions in cover crop-based corn production systems

    Science.gov (United States)

    Davis, Brian Wesley

    Nitrous oxide (N2O) is a potent greenhouse gas; the majority of N2O emissions are the result of agricultural management, particularly the application of N fertilizers to soils. The relationship of N2O emissions to varying sources of N (manures, mineral fertilizers, and cover crops) has not been well-evaluated. Here we discussed a novel methodology for estimating precipitation-induced pulses of N2O using flux measurements; results indicated that short-term intensive time-series sampling methods can adequately describe the magnitude of these pulses. We also evaluated the annual N2O emissions from corn-cover crop (Zea mays; cereal rye [Secale cereale], hairy vetch [Vicia villosa ], or biculture) production systems when fertilized with multiple rates of subsurface banded poultry litter, as compared with tillage incorporation or mineral fertilizer. N2O emissions increased exponentially with total N rate; tillage decreased emissions following cover crops with legume components, while the effect of mineral fertilizer was mixed across cover crops.

  13. Effect of different cover crops on C and N cycling in sorghum NT systems.

    Science.gov (United States)

    Frasier, Ileana; Quiroga, Alberto; Noellemeyer, Elke

    2016-08-15

    In many no-till (NT) systems, residue input is low and fallow periods excessive, for which reasons soil degradation occurs. Cover crops could improve organic matter, biological activity, and soil structure. In order to study changes in soil carbon, nitrogen and microbial biomass a field experiment (2010-2012) was set up with sorghum (Sorghum bicolor Moench.) monoculture and with cover crops. Treatments were control (NT with bare fallow), rye (Secale cereale L.) (R), rye with nitrogen fertilization (R+N), vetch (Vicia villosa Roth.) (V), and rye-vetch mixture (VR) cover crops. A completely randomized block design with 4 replicates was used. Soil was sampled once a year at 0.06 and 0.12m depth for total C, microbial biomass carbon (MBC) and-nitrogen (MBN) determinations. Shoot and root biomass of sorghum and cover crops, litter biomass, and their respective carbon and nitrogen contents were determined. Soil temperatures at 0.06 and 0.12m depth, volumetric water contents and nitrate concentrations were determined at sowing, and harvest of each crop, and during sorghum's vegetative phase. NT led to a small increase in MBC and MBN, despite low litter and root biomass residue. Cover crops increased litter, root biomass, total C, MBC, and MBN. Relationships between MBC, MBN, and root-C and -N adjusted to logistic models (R(2)=0.61 and 0.43 for C and N respectively). Litter cover improved soil moisture to 45-50% water filled pore space and soil temperatures not exceeding 25°C during the warmest month. Microbial biomass stabilized at 20.1gCm(-2) and 1.9gNm(-2) in the upper 0.06m. Soil litter disappearance was a good indicator of mineral N availability. These findings support the view that cover crops, specifically legumes in NT systems can increase soil ecosystem services related to water and carbon storage, habitat for biodiversity, and nutrient availability. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad

    DEFF Research Database (Denmark)

    Lamichhane, Jay Ram; Devos, Yann; Beckie, Hugh J.

    2017-01-01

    of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops...... are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM...... with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM