WorldWideScience

Sample records for gnss ear tag

  1. Performance and retention of lightweight satellite radio tags applied to the ears of polar bears (Ursus maritimus)

    Science.gov (United States)

    Wiig, Øystein; Born, Erik W.; Laidre, Kristin L.; Dietz, Rune; Jensen, Mikkel Villum; Durner, George M.; Pagano, Anthony M.; Regehr, Eric V.; St. Martin, Michelle; Atkinson, Stephen N.; Dyck, Markus

    2017-01-01

    BackgroundSatellite telemetry studies provide information that is critical to the conservation and management of species affected by ecological change. Here we report on the performance and retention of two types (SPOT-227 and SPOT-305A) of ear-mounted Argos-linked satellite transmitters (i.e., platform transmitter terminal, or PTT) deployed on free-ranging polar bears in Eastern Greenland, Baffin Bay, Kane Basin, the southern Beaufort Sea, and the Chukchi Sea during 2007–2013.ResultsTransmissions from 142 out of 145 PTTs deployed on polar bears were received for an average of 69.3 days. The average functional longevity, defined as the number of days they transmitted while still attached to polar bears, for SPOT-227 was 56.8 days and for SPOT-305A was 48.6 days. Thirty-four of the 142 (24%) PTTs showed signs of being detached before they stopped transmitting, indicating that tag loss was an important aspect of tag failure. Furthermore, 10 of 26 (38%) bears that were re-observed following application of a PTT had a split ear pinna, suggesting that some transmitters were detached by force. All six PTTs that were still on bears upon recapture had lost the antenna, which indicates that antenna breakage was a significant contributor to PTT failure. Finally, only nine of the 142 (6%) PTTs—three of which were still attached to bears—had a final voltage reading close to the value indicating battery exhaustion. This suggests that battery exhaustion was not a major factor in tag performance.ConclusionsThe average functional longevity of approximately 2 months for ear-mounted PTTs (this study) is poor compared to PTT collars fitted to adult female polar bears, which can last for several years. Early failure of the ear-mounted PTTs appeared to be caused primarily by detachment from the ear or antenna breakage. We suggest that much smaller and lighter ear-mounted transmitters are necessary to reduce the risk of tissue irritation, tissue damage, and tag detachment, and

  2. ?? ?????????????? ???????????? GNSS-??????????? ?? ??????? ????????

    OpenAIRE

    ???????, ?. ?.; ?????, ?. ?.; ??????, ?. ?.

    2015-01-01

    ???????? ?????????? GPS/GNSS ????????????? ? ? ?????????? ????? ??????? ???????? ????????? ???? ????? - ?????????? ?????. ???????? ?? ?????????? ?? ???????????? GNSS-???????????? ??????????? ? ???? ??????: ??????? ?????????? ???????????? ???????????????? ??????, ??????? ??????????? ?????? (???????? ????????????? ???? ?????), ? ??????????? GNSS-????????????; ? ??????? ?????????? ??? ??????????? ???????? ?????? ?? ???????????. ???? ???? ?????? - ?????? ??????? ?????????? ????????? ??????, ?????...

  3. Cattle behaviour classification from collar, halter, and ear tag sensors

    Directory of Open Access Journals (Sweden)

    A. Rahman

    2018-03-01

    Full Text Available In this paper, we summarise the outcome of a set of experiments aimed at classifying cattle behaviour based on sensor data. Each animal carried sensors generating time series accelerometer data placed on a collar on the neck at the back of the head, on a halter positioned at the side of the head behind the mouth, or on the ear using a tag. The purpose of the study was to determine how sensor data from different placement can classify a range of typical cattle behaviours. Data were collected and animal behaviours (grazing, standing or ruminating were observed over a common time frame. Statistical features were computed from the sensor data and machine learning algorithms were trained to classify each behaviour. Classification accuracies were computed on separate independent test sets. The analysis based on behaviour classification experiments revealed that different sensor placement can achieve good classification accuracy if the feature space (representing motion patterns between the training and test animal is similar. The paper will discuss these analyses in detail and can act as a guide for future studies.

  4. A Low-Cost Collaborative Location Scheme with GNSS and RFID for the Internet of Things

    Directory of Open Access Journals (Sweden)

    Changfeng Jing

    2018-05-01

    Full Text Available The emergence and development of the Internet of Things (IoT has attracted growing attention to low-cost location systems when facing the dramatically increased number of public infrastructure assets in smart cities. Various radio frequency identification (RFID-based locating systems have been developed. However, most of them are impractical for infrastructure asset inspection and management on a large scale due to their high cost, inefficient deployment, and complex environments such as emergencies or high-rise buildings. In this paper, we proposed a novel locating system by combing the Global Navigation Satellite System (GNSS with RFID, in which a target tag was located with one RFID reader and one GNSS receiver with sufficient accuracy for infrastructure asset management. To overcome the cost challenge, one mobile RFID reader-mounted GNSS receiver is used to simulate multiple location known reference tags. A vast number of reference tags are necessary for current RFID-based locating systems, which means higher cost. To achieve fine-grained location accuracy, we utilize a distance-based power law weight algorithm to estimate the exact coordinates. Our experiment demonstrates the effectiveness and advantages of the proposed scheme with sufficient accuracy, low cost and easy deployment on a large scale. The proposed scheme has potential applications for location-based services in smart cities.

  5. First Results in the Use of Bovine Ear Notch Tag for Bovine Viral Diarrhoea Virus Detection and Genetic Analysis.

    Directory of Open Access Journals (Sweden)

    Christian Quinet

    Full Text Available Infection due to bovine viral diarrhoea virus (BVDV is endemic in most cattle-producing countries throughout the world. The key elements of a BVDV control programme are biosecurity, elimination of persistently infected animals and surveillance. Bovine viral diarrhoea (BVD is a notifiable disease in Belgium and an official eradication programme started from January 2015, based on testing ear notches sampled during the official identification and registration of calves at birth. An antigen-capture ELISA test based on the detection of BVDV Erns protein is used. Ear notch sample may also be used to characterize the genotype of the calf when appropriate elution/dilution buffer is added. Both BVDV antigen-ELISA analysis and animal traceability could be performed.With regards to the reference protocol used in the preparation of ear notch samples, alternative procedures were tested in terms of BVDV analytic sensitivity, diagnostic sensitivity and specificity, as well as quality and purity of animal DNA.The Allflex DNA Buffer D showed promising results in BVDV diagnosis and genome analyses, opening new perspectives for the livestock industry by the exploitation of the animal genome. Due to the high number of cattle involved in the Belgian official BVDV eradication programme based on ear notch tags sample, a large database on both BVDV status of newborn calves and cattle genome could be created for subsequent different uses (e.g. traceability, determination of parentage, genetic signatures throughout the genome associated with particular traits evolving through a more integrated animal health.

  6. Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments

    Directory of Open Access Journals (Sweden)

    Dennis Akos

    2012-03-01

    Full Text Available Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF. Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.

  7. Monocular camera/IMU/GNSS integration for ground vehicle navigation in challenging GNSS environments.

    Science.gov (United States)

    Chu, Tianxing; Guo, Ningyan; Backén, Staffan; Akos, Dennis

    2012-01-01

    Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.

  8. Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments

    Science.gov (United States)

    Chu, Tianxing; Guo, Ningyan; Backén, Staffan; Akos, Dennis

    2012-01-01

    Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations. PMID:22736999

  9. SNR and Standard Deviation of cGNSS-R and iGNSS-R Scatterometric Measurements.

    Science.gov (United States)

    Alonso-Arroyo, Alberto; Querol, Jorge; Lopez-Martinez, Carlos; Zavorotny, Valery U; Park, Hyuk; Pascual, Daniel; Onrubia, Raul; Camps, Adriano

    2017-01-19

    This work addresses the accuracy of the Global Navigation Satellite Systems (GNSS)-Reflectometry (GNSS-R) scatterometric measurements considering the presence of both coherent and incoherent scattered components, for both conventional GNSS-R (cGNSS-R) and interferometric GNSS-R (iGNSS-R) techniques. The coherent component is present for some type of surfaces, and it has been neglected until now because it vanishes for the sea surface scattering case. Taking into account the presence of both scattering components, the estimated Signal-to-Noise Ratio (SNR) for both techniques is computed based on the detectability criterion, as it is done in conventional GNSS applications. The non-coherent averaging operation is considered from a general point of view, taking into account that thermal noise contributions can be reduced by an extra factor of 0.88 dB when using partially overlapped or partially correlated samples. After the SNRs are derived, the received waveform's peak variability is computed, which determines the system's capability to measure geophysical parameters. This theoretical derivations are applied to the United Kingdom (UK) TechDemoSat-1 (UK TDS-1) and to the future GNSS REflectometry, Radio Occultation and Scatterometry on board the International Space Station (ISS) (GEROS-ISS) scenarios, in order to estimate the expected scatterometric performance of both missions.

  10. SNR and Standard Deviation of cGNSS-R and iGNSS-R Scatterometric Measurements

    Directory of Open Access Journals (Sweden)

    Alberto Alonso-Arroyo

    2017-01-01

    Full Text Available This work addresses the accuracy of the Global Navigation Satellite Systems (GNSS-Reflectometry (GNSS-R scatterometric measurements considering the presence of both coherent and incoherent scattered components, for both conventional GNSS-R (cGNSS-R and interferometric GNSS-R (iGNSS-R techniques. The coherent component is present for some type of surfaces, and it has been neglected until now because it vanishes for the sea surface scattering case. Taking into account the presence of both scattering components, the estimated Signal-to-Noise Ratio (SNR for both techniques is computed based on the detectability criterion, as it is done in conventional GNSS applications. The non-coherent averaging operation is considered from a general point of view, taking into account that thermal noise contributions can be reduced by an extra factor of 0.88 dB when using partially overlapped or partially correlated samples. After the SNRs are derived, the received waveform’s peak variability is computed, which determines the system’s capability to measure geophysical parameters. This theoretical derivations are applied to the United Kingdom (UK TechDemoSat-1 (UK TDS-1 and to the future GNSS REflectometry, Radio Occultation and Scatterometry on board the International Space Station (ISS (GEROS-ISS scenarios, in order to estimate the expected scatterometric performance of both missions.

  11. Fusão INS/GNSS com auxílio de medidas de baseline e ângulo GNSS

    OpenAIRE

    Priscylla Angélica da Silva Oliveira

    2014-01-01

    Este trabalho investiga sistemas de navegação INS/GNSS auxiliado por medidas de baseline e ângulo GNSS. Os dados gerados para as simulações foram os dados IMU, dados GNSS e informações de baseline e ângulo GNSS. Estas informações, determinadas a partir de um sistema multiantenas para o posicionamento simples e relativo e no método direto, respectivamente, foram utilizadas como medidas auxiliares para a fusão INS/GNSS. Foi estudada a influência dessas medidas auxiliares nas estimativas de atit...

  12. Frequent arousals from winter torpor in Rafinesque's big-eared bat (Corynorhinus rafinesquii.

    Directory of Open Access Journals (Sweden)

    Joseph S Johnson

    Full Text Available Extensive use of torpor is a common winter survival strategy among bats; however, data comparing various torpor behaviors among species are scarce. Winter torpor behaviors are likely to vary among species with different physiologies and species inhabiting different regional climates. Understanding these differences may be important in identifying differing susceptibilities of species to white-nose syndrome (WNS in North America. We fitted 24 Rafinesque's big-eared bats (Corynorhinus rafinesquii with temperature-sensitive radio-transmitters, and monitored 128 PIT-tagged big-eared bats, during the winter months of 2010 to 2012. We tested the hypothesis that Rafinesque's big-eared bats use torpor less often than values reported for other North American cave-hibernators. Additionally, we tested the hypothesis that Rafinesque's big-eared bats arouse on winter nights more suitable for nocturnal foraging. Radio-tagged bats used short (2.4 d ± 0.3 (SE, shallow (13.9°C ± 0.6 torpor bouts and switched roosts every 4.1 d ± 0.6. Probability of arousal from torpor increased linearly with ambient temperature at sunset (P<0.0001, and 83% (n=86 of arousals occurred within 1 hr of sunset. Activity of PIT-tagged bats at an artificial maternity/hibernaculum roost between November and March was positively correlated with ambient temperature at sunset (P<0.0001, with males more active at the roost than females. These data show Rafinesque's big-eared bat is a shallow hibernator and is relatively active during winter. We hypothesize that winter activity patterns provide Corynorhinus species with an ecological and physiological defense against the fungus causing WNS, and that these bats may be better suited to withstand fungal infection than other cave-hibernating bat species in eastern North America.

  13. GNSS as a sea ice sensor - detecting coastal freeze states with ground-based GNSS-R

    Science.gov (United States)

    Strandberg, Joakim; Hobiger, Thomas; Haas, Rüdiger

    2017-04-01

    Based on the idea of using freely available signals for remote sensing, ground-based GNSS-reflectometry (GNSS-R) has found more and more applications in hydrology, oceanography, agriculture and other Earth sciences. GNSS-R is based on analysing the elevation dependent SNR patterns of GNSS signals, and traditionally only the oscillation frequency and phase have been studied to retrieve parameters from the reflecting surfaces. However, recently Strandberg et al. (2016) developed an inversion algorithm that has changed the paradigms of ground-based GNSS-R as it enables direct access to the radiometric properties of the reflector. Using the signal envelope and the rate at which the magnitude of the SNR oscillations are damped w.r.t. satellite elevation, the algorithm retrieves the roughness of the reflector surface amongst other parameters. Based on this idea, we demonstrate for the first time that a GNSS installation situated close to the coastline can detect the presence of sea-ice unambiguously. Using data from the GTGU antenna at the Onsala Space Observatory, Sweden, the time series of the derived damping parameter clearly matches the occurrence of ice in the bay where the antenna is situated. Our results were validated against visual inspection logs as well as with the help of ice charts from the Swedish Meteorological and Hydrological Institute. Our method is even sensitive to partial and intermediate ice formation stages, with clear difference in response between frazil ice and both open and solidly frozen water surfaces. As the GTGU installation is entirely built with standard geodetic equipment, the method can be applied directly to any coastal GNSS site, allowing analysis of both new and historical data. One can use the method as an automatic way of retrieving independent ground truth data for ice extent measurements for use in hydrology, cryosphere studies, and even societal interest fields such as sea transportation. Finally, the new method opens up for

  14. Evoluzione dei sistemi GNSS

    Directory of Open Access Journals (Sweden)

    Gianluca Pititto

    2010-03-01

    Full Text Available Evolution of GNSS systems With this article GEOmedia is starting a review on the latest updates concerning GNSS technology. Since the first GPS satellites, the evolution of GNSS sector witnessed the grow of other constellations: GLONASS, Beidou (Compass and Galileo. The development of positioning techniques even brought to the creation of specific Augmentation Systems, capable of the enhancement of the localization signals (GBAS and SBAS. The aim of this review is to provide a general-to-particular knowledge of all the positiong and augmentation systems, from a historical point of view to real applications.

  15. GNSS Software Receiver for UAVs

    DEFF Research Database (Denmark)

    Olesen, Daniel Madelung; Jakobsen, Jakob; von Benzon, Hans-Henrik

    2016-01-01

    This paper describes the current activities of GPS/GNSS Software receiver development at DTU Space. GNSS Software receivers have received a great deal of attention in the last two decades and numerous implementations have already been presented. DTU Space has just recently started development of ...... of our own GNSS software-receiver targeted for mini UAV applications, and we will in in this paper present our current progress and briefly discuss the benefits of Software Receivers in relation to our research interests....

  16. Frequent arousals from winter torpor in Rafinesque's big-eared bat (Corynorhinus rafinesquii).

    Science.gov (United States)

    Johnson, Joseph S; Lacki, Michael J; Thomas, Steven C; Grider, John F

    2012-01-01

    Extensive use of torpor is a common winter survival strategy among bats; however, data comparing various torpor behaviors among species are scarce. Winter torpor behaviors are likely to vary among species with different physiologies and species inhabiting different regional climates. Understanding these differences may be important in identifying differing susceptibilities of species to white-nose syndrome (WNS) in North America. We fitted 24 Rafinesque's big-eared bats (Corynorhinus rafinesquii) with temperature-sensitive radio-transmitters, and monitored 128 PIT-tagged big-eared bats, during the winter months of 2010 to 2012. We tested the hypothesis that Rafinesque's big-eared bats use torpor less often than values reported for other North American cave-hibernators. Additionally, we tested the hypothesis that Rafinesque's big-eared bats arouse on winter nights more suitable for nocturnal foraging. Radio-tagged bats used short (2.4 d ± 0.3 (SE)), shallow (13.9°C ± 0.6) torpor bouts and switched roosts every 4.1 d ± 0.6. Probability of arousal from torpor increased linearly with ambient temperature at sunset (Pdata show Rafinesque's big-eared bat is a shallow hibernator and is relatively active during winter. We hypothesize that winter activity patterns provide Corynorhinus species with an ecological and physiological defense against the fungus causing WNS, and that these bats may be better suited to withstand fungal infection than other cave-hibernating bat species in eastern North America.

  17. Estimating the Geocenter from GNSS Observations

    Science.gov (United States)

    Dach, Rolf; Michael, Meindl; Beutler, Gerhard; Schaer, Stefan; Lutz, Simon; Jäggi, Adrian

    2014-05-01

    The satellites of the Global Navigation Satellite Systems (GNSS) are orbiting the Earth according to the laws of celestial mechanics. As a consequence, the satellites are sensitive to the coordinates of the center of mass of the Earth. The coordinates of the (ground) tracking stations are referring to the center of figure as the conventional origin of the reference frame. The difference between the center of mass and center of figure is the instantaneous geocenter. Following this definition the global GNSS solutions are sensitive to the geocenter. Several studies demonstrated strong correlations of the GNSS-derived geocenter coordinates with parameters intended to absorb radiation pressure effects acting on the GNSS satellites, and with GNSS satellite clock parameters. One should thus pose the question to what extent these satellite-related parameters absorb (or hide) the geocenter information. A clean simulation study has been performed to answer this question. The simulation environment allows it in particular to introduce user-defined shifts of the geocenter (systematic inconsistencies between the satellite's and station's reference frames). These geocenter shifts may be recovered by the mentioned parameters - provided they were set up in the analysis. If the geocenter coordinates are not estimated, one may find out which other parameters absorb the user-defined shifts of the geocenter and to what extent. Furthermore, the simulation environment also allows it to extract the correlation matrix from the a posteriori covariance matrix to study the correlations between different parameter types of the GNSS analysis system. Our results show high degrees of correlations between geocenter coordinates, orbit-related parameters, and satellite clock parameters. These correlations are of the same order of magnitude as the correlations between station heights, troposphere, and receiver clock parameters in each regional or global GNSS network analysis. If such correlations

  18. High Precision GNSS Guidance for Field Mobile Robots

    Directory of Open Access Journals (Sweden)

    Ladislav Jurišica

    2012-11-01

    Full Text Available In this paper, we discuss GNSS (Global Navigation Satellite System guidance for field mobile robots. Several GNSS systems and receivers, as well as multiple measurement methods and principles of GNSS systems are examined. We focus mainly on sources of errors and investigate diverse approaches for precise measuring and effective use of GNSS systems for real-time robot localization. The main body of the article compares two GNSS receivers and their measurement methods. We design, implement and evaluate several mathematical methods for precise robot localization.

  19. THE PERFORMANCE OF A TIGHT INS/GNSS/PHOTOGRAMMETRIC INTEGRATION SCHEME FOR LAND BASED MMS APPLICATIONS IN GNSS DENIED ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    C. H. Chu

    2012-07-01

    Full Text Available Nowadays the most common technologies used for positioning and orientation of a mobile mapping system include using Global Navigation Satellite System (GNSS as a major positioning sensor and Inertial Navigation System (INS as the major orientation sensor. The integration strategy of the most commercially system is the loosely coupled (LC architecture, that has the simplest architecture using the GNSS solutions to aid the INS navigation information with proper optimization estimator. The LC does combine the two sensors’ solutions when the number of tracked satellite is more than four. In recent year, another commonly integration strategy is known as tightly coupled (TC architecture. Because the TC uses the GNSS measurements to aid INS, it can integrate measurements provided by GNSS receiver and INS unless no GNSS satellite is tracked. Obviously, the TC architecture is a better candidate for land based mobile mapping applications than LC in Taiwan. Unfortunately, there are still many GNSS denied environment in the urban area, therefore the TC architecture is still not robust and stable enough for MMS application. The overall objective of this paper is to provide a scheme that tightly integrates INS/GNSS and Photogrammetric for land based MMS applications with sufficient and stable POS solutions during GNSS outages. In the traditional photogrammetry operation, numerous ground control points are applied to compute those Exterior Orientation Parameters (EOPs of cameras by bundle adjustment. The key opinion is to derive the INS centre position and attitude and reconstruct 3-D tracking and 3-D object space by cameras EOPs. The proposed algorithm is verified using field test data collected in GNSS denied environments and the preliminary results presented in this study illustrated that the proposed algorithm is able to provide 60% improvement in terms of positioning and orientation accuracy in Taipei and Tainan cities.

  20. The Performance of a Tight Ins/gnss/photogrammetric Integration Scheme for Land Based MMS Applications in Gnss Denied Environments

    Science.gov (United States)

    Chu, C. H.; Chiang, K. W.

    2012-07-01

    Nowadays the most common technologies used for positioning and orientation of a mobile mapping system include using Global Navigation Satellite System (GNSS) as a major positioning sensor and Inertial Navigation System (INS) as the major orientation sensor. The integration strategy of the most commercially system is the loosely coupled (LC) architecture, that has the simplest architecture using the GNSS solutions to aid the INS navigation information with proper optimization estimator. The LC does combine the two sensors' solutions when the number of tracked satellite is more than four. In recent year, another commonly integration strategy is known as tightly coupled (TC) architecture. Because the TC uses the GNSS measurements to aid INS, it can integrate measurements provided by GNSS receiver and INS unless no GNSS satellite is tracked. Obviously, the TC architecture is a better candidate for land based mobile mapping applications than LC in Taiwan. Unfortunately, there are still many GNSS denied environment in the urban area, therefore the TC architecture is still not robust and stable enough for MMS application. The overall objective of this paper is to provide a scheme that tightly integrates INS/GNSS and Photogrammetric for land based MMS applications with sufficient and stable POS solutions during GNSS outages. In the traditional photogrammetry operation, numerous ground control points are applied to compute those Exterior Orientation Parameters (EOPs) of cameras by bundle adjustment. The key opinion is to derive the INS centre position and attitude and reconstruct 3-D tracking and 3-D object space by cameras EOPs. The proposed algorithm is verified using field test data collected in GNSS denied environments and the preliminary results presented in this study illustrated that the proposed algorithm is able to provide 60% improvement in terms of positioning and orientation accuracy in Taipei and Tainan cities.

  1. Combining the Observations from Different GNSS (Invited)

    Science.gov (United States)

    Dach, R.; Lutz, S.; Schaer, S.; Bock, H.; Jäggi, A.; Meindl, M.; Ostini, L.; Thaller, D.; Steinbach, A.; Beutler, G.; Steigenberger, P.

    2009-12-01

    For a very long time GPS has clearly dominated the use of GNSS measurements for scientific purposes. This picture is changing: we are moving from a GPS-only to a multi-GNSS world. This is, e.g., reflected by changing the meaning of the abbreviation IGS in March 2005 from International GPS to GNSS Service. The current situation can be described as follows: GPS has the leading role in the GNSS because it has provided a very stable satellite constellation over many years. Some of the currently active GPS satellites are nearly 15 years old. These old satellites are expected to be decommissioned within the next years. On the other hand, due to the increasing number of active GLONASS satellites and the improved density of multi-GNSS tracking stations in the IGS network, the quality of the GLONASS orbits has drastically improved during the last years. The European Galileo system is under development: currently two test satellites (GIOVE-A and GIOVE-B) are in orbit. The IOV (in-orbit-validation phase) will start soon. Also the first test satellites for the Chinese Compass system are in space. For the maximum benefit the observations of these GNSS will be processed in a combined multi-GNSS analysis in future. CODE (Center for Orbit Determination in Europe) is a joint venture between the Astronomical Institute of the University Bern (AIUB, Bern, Switzerland), the Federal Office of Topography (swisstopo, Wabern, Switzerland), the Federal Agency for Cartography and Geodesy (BKG, Frankfurt am Main, Germany), and the Institut für Astronomische und Physikalische Geodäsie of the Technische Universität München (IAPG/TUM, Munich, Germany). It acts as one of the global analysis centers of the IGS and has started in May 2003 with a rigorous combined processing of GPS and GLONASS measurements for the final, rapid, and even ultra-rapid product lines. All contributions from CODE to the IGS are in fact multi-GNSS products -- the only exception is the satellite and receiver clock

  2. Deep Coupled Integration of CSAC and GNSS for Robust PNT

    Directory of Open Access Journals (Sweden)

    Lin Ma

    2015-09-01

    Full Text Available Global navigation satellite systems (GNSS are the most widely used positioning, navigation, and timing (PNT technology. However, a GNSS cannot provide effective PNT services in physical blocks, such as in a natural canyon, canyon city, underground, underwater, and indoors. With the development of micro-electromechanical system (MEMS technology, the chip scale atomic clock (CSAC gradually matures, and performance is constantly improved. A deep coupled integration of CSAC and GNSS is explored in this thesis to enhance PNT robustness. “Clock coasting” of CSAC provides time synchronized with GNSS and optimizes navigation equations. However, errors of clock coasting increase over time and can be corrected by GNSS time, which is stable but noisy. In this paper, weighted linear optimal estimation algorithm is used for CSAC-aided GNSS, while Kalman filter is used for GNSS-corrected CSAC. Simulations of the model are conducted, and field tests are carried out. Dilution of precision can be improved by integration. Integration is more accurate than traditional GNSS. When only three satellites are visible, the integration still works, whereas the traditional method fails. The deep coupled integration of CSAC and GNSS can improve the accuracy, reliability, and availability of PNT.

  3. Deep Coupled Integration of CSAC and GNSS for Robust PNT.

    Science.gov (United States)

    Ma, Lin; You, Zheng; Li, Bin; Zhou, Bin; Han, Runqi

    2015-09-11

    Global navigation satellite systems (GNSS) are the most widely used positioning, navigation, and timing (PNT) technology. However, a GNSS cannot provide effective PNT services in physical blocks, such as in a natural canyon, canyon city, underground, underwater, and indoors. With the development of micro-electromechanical system (MEMS) technology, the chip scale atomic clock (CSAC) gradually matures, and performance is constantly improved. A deep coupled integration of CSAC and GNSS is explored in this thesis to enhance PNT robustness. "Clock coasting" of CSAC provides time synchronized with GNSS and optimizes navigation equations. However, errors of clock coasting increase over time and can be corrected by GNSS time, which is stable but noisy. In this paper, weighted linear optimal estimation algorithm is used for CSAC-aided GNSS, while Kalman filter is used for GNSS-corrected CSAC. Simulations of the model are conducted, and field tests are carried out. Dilution of precision can be improved by integration. Integration is more accurate than traditional GNSS. When only three satellites are visible, the integration still works, whereas the traditional method fails. The deep coupled integration of CSAC and GNSS can improve the accuracy, reliability, and availability of PNT.

  4. Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications

    Science.gov (United States)

    Zhu, D.; Henaut, J.; Beeby, S. P.

    2014-11-01

    This paper reports the design and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking and parking application. Existing long range asset tracking is based on the GSM/GPRS network, which requires expensive subscriptions. The EU FP7 project CEWITT aims at developing a credit card sized autonomous wireless tag with GNSS geo-positioning capabilities to ensure the integrity and cost effectiveness for parking applications. It was found in previous research that solar cells are the most suitable energy sources for this application. This study focused on the power electronics design for the wireless tag. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit and LDO were designed and integrated to meet the system requirement. Test results showed that charging efficiency of 80 % had been achieved.

  5. Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications

    International Nuclear Information System (INIS)

    Zhu, D; Beeby, S P; Henaut, J

    2014-01-01

    This paper reports the design and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking and parking application. Existing long range asset tracking is based on the GSM/GPRS network, which requires expensive subscriptions. The EU FP7 project CEWITT aims at developing a credit card sized autonomous wireless tag with GNSS geo-positioning capabilities to ensure the integrity and cost effectiveness for parking applications. It was found in previous research that solar cells are the most suitable energy sources for this application. This study focused on the power electronics design for the wireless tag. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit and LDO were designed and integrated to meet the system requirement. Test results showed that charging efficiency of 80 % had been achieved

  6. GNSS CORS hardware and software enabling new science

    Science.gov (United States)

    Drummond, P.

    2009-12-01

    GNSS CORS networks are enabling new opportunities for science and public and private sector business. This paper will explore how the newest geodetic monitoring software and GNSS receiver hardware from Trimble Navigation Ltd are enabling new science. Technology trends and science opportunities will be explored. These trends include the installation of active GNSS control, automation of observations and processing, and the advantages of multi-observable and multi-constellation observations, all performed with the use of off the shelf products and industry standard open-source data formats. Also the possibilities with moving science from an after-the-fact postprocessed model to a real-time epoch-by-epoch solution will be explored. This presentation will also discuss the combination of existing GNSS CORS networks with project specific installations used for monitoring. Experience is showing GNSS is able to provide higher resolution data than previous methods, providing new tools for science, decision makers and financial planners.

  7. Assessment of local GNSS baselines at co-location sites

    Science.gov (United States)

    Herrera Pinzón, Iván; Rothacher, Markus

    2018-01-01

    As one of the major contributors to the realisation of the International Terrestrial Reference System (ITRS), the Global Navigation Satellite Systems (GNSS) are prone to suffer from irregularities and discontinuities in time series. While often associated with hardware/software changes and the influence of the local environment, these discrepancies constitute a major threat for ITRS realisations. Co-located GNSS at fundamental sites, with two or more available instruments, provide the opportunity to mitigate their influence while improving the accuracy of estimated positions by examining data breaks, local biases, deformations, time-dependent variations and the comparison of GNSS baselines with existing local tie measurements. With the use of co-located GNSS data from a subset sites of the International GNSS Service network, this paper discusses a global multi-year analysis with the aim of delivering homogeneous time series of coordinates to analyse system-specific error sources in the local baselines. Results based on the comparison of different GNSS-based solutions with the local survey ties show discrepancies of up to 10 mm despite GNSS coordinate repeatabilities at the sub-mm level. The discrepancies are especially large for the solutions using the ionosphere-free linear combination and estimating tropospheric zenith delays, thus corresponding to the processing strategy used for global solutions. Snow on the antennas causes further problems and seasonal variations of the station coordinates. These demonstrate the need for a permanent high-quality monitoring of the effects present in the short GNSS baselines at fundamental sites.

  8. Global Navigation Satellite Systems (GNSS: The Utmost Interdisciplinary Integrator

    Directory of Open Access Journals (Sweden)

    Bernd Eissfeller

    2015-08-01

    Full Text Available Currently four global satellite navigation systems are under modernization and development: The US American GPS III, the Russian GLONASS, the European Galileo and Chinese BeiDou systems. In the paper the interdisciplinary contributions of different scientific areas to GNSS are assessed. It is outlined that GNSS is not only a technical system but also a basic element of mobile computing high-tech market. At the same time a GNSS has the role of a force enabler in security related applications. Technology, market and security policies are interdependent and are sometimes in a relationship of tension. The goal of the paper is to describe the overall systemics of GNSS from a holistic point of view. The paper also addresses the human factor side of GNSS. The requirements on human resources in GNSS are at least two-fold: On the one hand very specialized engineers are needed; on the other hand the generalists are necessary who are able to understand the system aspects. Decision makers in institutions and industry need special knowledge in technologies, economics and political strategies. Is the current university system able to educate and prepare such generalists? Are specialized master courses for GNSS needed? Are external training courses necessary?

  9. Measuring sea surface height with a GNSS-Wave Glider

    Science.gov (United States)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  10. The Impact of Inter-Modulation Components on Interferometric GNSS-Reflectometry

    Directory of Open Access Journals (Sweden)

    Weiqiang Li

    2016-12-01

    Full Text Available The interferometric Global Navigation Satellite System Reflectometry (iGNSS-R exploits the full spectrum of the transmitted GNSS signal to improve the ranging performance for sea surface height applications. The Inter-Modulation (IM component of the GNSS signals is an additional component that keeps the power envelope of the composite signals constant. This extra component has been neglected in previous studies on iGNSS-R, in both modelling and instrumentation. This letter takes the GPS L1 signal as an example to analyse the impact of the IM component on iGNSS-R ocean altimetry, including signal-to-noise ratio, the altimetric sensitivity and the final altimetric precision. Analytical results show that previous estimates of the final altimetric precision were underestimated by a factor of 1 . 5 ∼ 1 . 7 due to the negligence of the IM component, which should be taken into account in proper design of the future spaceborne iGNSS-R altimetry missions.

  11. THE PERFORMANCE OF A TIGHT INS/GNSS/PHOTOGRAMMETRIC INTEGRATION SCHEME FOR LAND BASED MMS APPLICATIONS IN GNSS DENIED ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    C.-H. Chu

    2016-06-01

    Full Text Available The early development of mobile mapping system (MMS was restricted to applications that permitted the determination of the elements of exterior orientation from existing ground control. Mobile mapping refers to a means of collecting geospatial data using mapping sensors that are mounted on a mobile platform. Research works concerning mobile mapping dates back to the late 1980s. This process is mainly driven by the need for highway infrastructure mapping and transportation corridor inventories. In the early nineties, advances in satellite and inertial technology made it possible to think about mobile mapping in a different way. Instead of using ground control points as references for orienting the images in space, the trajectory and attitude of the imager platform could now be determined directly. Cameras, along with navigation and positioning sensors are integrated and mounted on a land vehicle for mapping purposes. Objects of interest can be directly measured and mapped from images that have been georeferenced using navigation and positioning sensors. Direct georeferencing (DG is the determination of time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using the Global Navigation Satellite System (GNSS and inertial navigation using an Inertial Measuring Unit (IMU. Although either technology used along could in principle determine both position and orientation, they are usually integrated in such a way that the IMU is the main orientation sensor, while the GNSS receiver is the main position sensor. However, GNSS signals are obstructed due to limited number of visible satellites in GNSS denied environments such as urban canyon, foliage, tunnel and indoor that cause the GNSS gap or interfered by reflected signals that cause abnormal measurement residuals thus deteriorates the positioning accuracy in GNSS denied environments. This study aims

  12. USGS GNSS Applications to Earthquake Disaster Response and Hazard Mitigation

    Science.gov (United States)

    Hudnut, K. W.; Murray, J. R.; Minson, S. E.

    2015-12-01

    Rapid characterization of earthquake rupture is important during a disaster because it establishes which fault ruptured and the extent and amount of fault slip. These key parameters, in turn, can augment in situ seismic sensors for identifying disruption to lifelines as well as localized damage along the fault break. Differential GNSS station positioning, along with imagery differencing, are important methods for augmenting seismic sensors. During response to recent earthquakes (1989 Loma Prieta, 1992 Landers, 1994 Northridge, 1999 Hector Mine, 2010 El Mayor - Cucapah, 2012 Brawley Swarm and 2014 South Napa earthquakes), GNSS co-seismic and post-seismic observations proved to be essential for rapid earthquake source characterization. Often, we find that GNSS results indicate key aspects of the earthquake source that would not have been known in the absence of GNSS data. Seismic, geologic, and imagery data alone, without GNSS, would miss important details of the earthquake source. That is, GNSS results provide important additional insight into the earthquake source properties, which in turn help understand the relationship between shaking and damage patterns. GNSS also adds to understanding of the distribution of slip along strike and with depth on a fault, which can help determine possible lifeline damage due to fault offset, as well as the vertical deformation and tilt that are vitally important for gravitationally driven water systems. The GNSS processing work flow that took more than one week 25 years ago now takes less than one second. Formerly, portable receivers needed to be set up at a site, operated for many hours, then data retrieved, processed and modeled by a series of manual steps. The establishment of continuously telemetered, continuously operating high-rate GNSS stations and the robust automation of all aspects of data retrieval and processing, has led to sub-second overall system latency. Within the past few years, the final challenges of

  13. Contribution of Multi-GNSS Constellation to SLR-Derived Terrestrial Reference Frame

    Science.gov (United States)

    Sośnica, K.; Bury, G.; Zajdel, R.

    2018-03-01

    All satellites of new Global Navigation Satellite Systems (GNSS) are equipped with laser retroreflectors dedicated to Satellite Laser Ranging (SLR). This paper demonstrates the contribution of SLR tracking of multi-GNSS constellations to the improved SLR-derived reference frame and scientific products. We show a solution strategy with estimating satellite orbits, SLR station coordinates, geocenter coordinates, and Earth rotation parameters using SLR observations to 2 Laser Geodynamics Satellites (LAGEOS) and 55 GNSS satellites: 1 GPS, 31 Globalnaya Navigatsionnaya Sputnikovaya Sistema, 18 Galileo, 3 BeiDou Inclined Geosynchronous Orbit, 1 BeiDou Medium Earth Orbit, and 1 Quasi-Zenith Satellite System satellite for the period 2014.0-2017.4. Due to a substantial number of GNSS observations, the number of weekly solutions for some SLR stations, for example, Arkhyz, Komsomolsk, Altay, and Brasilia, is larger up to 41% in the combined LAGEOS + GNSS solution when compared to the LAGEOS-only solution. The SLR observations to GNSS can transfer the orientation of the reference frame from GNSS to SLR solutions. As a result, the SLR-derived pole coordinates and length-of-day estimates become more consistent with GNSS microwave-based results. The root-mean-square errors of length-of-day are reduced from 122.5 μs/d to 43.0 μs/d, whereas mean offsets are reduced from -81.6 μs/d to 0.5 μs/d in LAGEOS only and in the combined LAGEOS + GNSS solutions, respectively.

  14. Overview of GNSS-R Research Program for Ocean Observations at Japan

    Science.gov (United States)

    Ichikawa, Kaoru; Ebinuma, Takuji; Akiyama, Hiroaki; Kitazawa, Yukihito

    2015-04-01

    GNSS-R is a new remote-sensing method which uses reflected GNSS signals. Since no transmitters are required, it is suitable for small satellites. Constellations of GNSS-R small satellites have abilities on revolutionary progress on 'all-time observable' remote-sensing methods . We have started a research program for GNSS-R applications on oceanographic observations under a contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) as a'Space science research base formation program'. The duration of research program is 3 years (2015-2017). The one of important focuses of this program is creation of a new community to merge space engineering and marine science through establishment on application plans of GNSS-R. Actual GNSS-R data acquisition experiments using multi-copters, ships, and/or towers are planned, together with in-situ sea truth data such as wave spectrum, wind speed profiles and sea surface height. These data are compared to determine the accuracy and resolution of the estimates based on GNSS-R observations. Meanwhile, preparation of a ground station for receiving GNSS-R satellite data will be also established. Whole those data obtained in this project will be distributed for public. This paper introduces the overview of research plan..

  15. CONCEPTUAL DESIGN OF MONITORING AND CONTROL SUBSYSTEM FOR GNSS GROUND STATION

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2007-12-01

    Full Text Available The Global Navigation Satellite System (GNSS becomes more important and is applied to various systems. Recently, the Galileo navigation system is being developed in Europe. Also, other countries like China, Japan and India are developing the global/regional navigation satellite system. As various global/regional navigation satellite systems are used, the navigation ground system gets more important for using the navigation system reasonably and efficiently. According to this trend, the technology of GNSS Ground Station (GGS is developing in many fields. The one of purposes for this study is to develop the high precision receiver for GNSS sensor station and to provide ground infrastructure for better performance services on navigation system. In this study, we consider the configuration of GNSS Ground Station and analyze function of Monitoring and Control subsystem which is a part of GNSS Ground Station. We propose Monitoring and Control subsystem which contains the navigation software for GNSS Ground System to monitor and control equipments in GNSS Ground Station, to spread the applied field of navigation system, and to provide improved navigation information to user.

  16. Strong Sporadic E Occurrence Detected by Ground-Based GNSS

    Science.gov (United States)

    Sun, Wenjie; Ning, Baiqi; Yue, Xinan; Li, Guozhu; Hu, Lianhuan; Chang, Shoumin; Lan, Jiaping; Zhu, Zhengping; Zhao, Biqiang; Lin, Jian

    2018-04-01

    The ionospheric sporadic E (Es) layer has significant impact on radio wave propagation. The traditional techniques employed for Es layer observation, for example, ionosondes, are not dense enough to resolve the morphology and dynamics of Es layer in spatial distribution. The ground-based Global Navigation Satellite Systems (GNSS) technique is expected to shed light on the understanding of regional strong Es occurrence, owing to the facts that the critical frequency (foEs) of strong Es structure is usually high enough to cause pulse-like disturbances in GNSS total electron content (TEC), and a large number of GNSS receivers have been deployed all over the world. Based on the Chinese ground-based GNSS networks, including the Crustal Movement Observation Network of China and the Beidou Ionospheric Observation Network, a large-scale strong Es event was observed in the middle latitude of China. The strong Es shown as a band-like structure in the southwest-northeast direction extended more than 1,000 km. By making a comparative analysis of Es occurrences identified from the simultaneous observations by ionosondes and GNSS TEC receivers over China middle latitude statistically, we found that GNSS TEC can be well employed to observe strong Es occurrence with a threshold value of foEs, 14 MHz.

  17. Technical note: Evaluation of an ear-attached movement sensor to record cow feeding behavior and activity

    NARCIS (Netherlands)

    Bikker, J.P.; Laar, van H.; Rump, P.; Doorenbos, J.; Meurs, van K.; Griffioen, G.M.; Dijkstra, J.

    2014-01-01

    The ability to monitor dairy cow feeding behavior and activity could improve dairy herd management. A 3-dimensional accelerometer (SensOor; Agis Automatisering BV, Harmelen, the Netherlands) has been developed that can be attached to ear identification tags. Based on the principle that behavior can

  18. Sensing of the atmospheric variation using Low Cost GNSS Receiver

    Science.gov (United States)

    Bramanto, Brian; Gumilar, Irwan; Sidiq, Teguh P.; Kuntjoro, Wedyanto; Tampubolon, Daniel A.

    2018-05-01

    As the GNSS signals transmitted through the atmosphere, they are delayed by interference of TEC (Total Electron Content) in the ionosphere and water vapor in the troposphere. By using inverse-problem, name GNSS Meteorology, those parameters can be obtained precisely and several researches has approved and supported that method. However, the geodetic GNSS receivers are relatively high cost (30,000 to 70,000 each) to be established on a regular and uniform network. This research aims to investigate the potential use of low cost GNSS receiver (less than 2,000) to observe the atmospheric dynamic both in ionosphere and troposphere. Results indicated that low cost GNSS receiver is a promising tools to sensing the atmospheric dynamic, however, further processing is needed to enhance the data quality. It is found that both of ionosphere and troposphere dynamic has diurnal periodic component.

  19. CDDIS_GNSS_products_erp

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Rotation Parameters (ERPs) derived from analysis of Global Navigation Satellite System (GNSS) data. These products are the generated by analysis centers in...

  20. The Rise of GNSS Reflectometry for Earth Remote Sensing

    Science.gov (United States)

    Zuffada, Cinzia; Li, Zhijin; Nghiem, Son V.; Lowe, Steve; Shah, Rashmi; Clarizia, Maria Paola; Cardellach, Estel

    2015-01-01

    The Global Navigation Satellite System (GNSS) reflectometry, i.e. GNSS-R, is a novel remote-sensing technique first published in that uses GNSS signals reflected from the Earth's surface to infer its surface properties such as sea surface height (SSH), ocean winds, sea-ice coverage, vegetation, wetlands and soil moisture, to name a few. This communication discusses the scientific value of GNSS-R to (a) furthering our understanding of ocean mesoscale circulation toward scales finer than those that existing nadir altimeters can resolve, and (b) mapping vegetated wetlands, an emerging application that might open up new avenues to map and monitor the planet's wetlands for methane emission assessments. Such applications are expected to be demonstrated by the availability of data from GEROS-ISS, an ESA experiment currently in phase A, and CyGNSS [3], a NASA mission currently in development. In particular, the paper details the expected error characteristics and the role of filtering played in the assimilation of these data to reduce the altimetric error (when averaging many measurements).

  1. Application of GNSS Methods for Monitoring Offshore Platform Deformation

    Science.gov (United States)

    Myint, Khin Cho; Nasir Matori, Abd; Gohari, Adel

    2018-03-01

    Global Navigation Satellite System (GNSS) has become a powerful tool for high-precision deformation monitoring application. Monitoring of deformation and subsidence of offshore platform due to factors such as shallow gas phenomena. GNSS is the technical interoperability and compatibility between various satellite navigation systems such as modernized GPS, Galileo, reconstructed GLONASS to be used by civilian users. It has been known that excessive deformation affects platform structurally, causing loss of production and affects the efficiency of the machinery on board the platform. GNSS have been proven to be one of the most precise positioning methods where by users can get accuracy to the nearest centimeter of a given position from carrier phase measurement processing of GPS signals. This research is aimed at using GNSS technique, which is one of the most standard methods to monitor the deformation of offshore platforms. Therefore, station modeling, which accounts for the spatial correlated errors, and hence speeds up the ambiguity resolution process is employed. It was found that GNSS combines the high accuracy of the results monitoring the offshore platforms deformation with the possibility of survey.

  2. Ultra-Tightly Coupled GNSS/INS for small UAVs

    DEFF Research Database (Denmark)

    Olesen, Daniel; Jakobsen, Jakob; Knudsen, Per

    2017-01-01

    This paper describes an ultra-tight integration of a Global Navigation Satellite System ( GNSS) receiver and an Inertial Navigation System ( INS) for small Unmanned Aerial Vehicles ( UAVs). The system is based on a low-cost and low-weight GNSS Intermediate Frequency ( IF) sampler which has been...

  3. Tracking Clouds with low cost GNSS chips aided by the Arduino platform

    Science.gov (United States)

    Hameed, Saji; Realini, Eugenio; Ishida, Shinya

    2016-04-01

    The Global Navigation Satellite System (GNSS) is a constellation of satellites that is used to provide geo-positioning services. Besides this application, the GNSS system is important for a wide range of scientific and civilian applications. For example, GNSS systems are routinely used in civilian applications such as surveying and scientific applications such as the study of crustal deformation. Another important scientific application of GNSS system is in meteorological research. Here it is mainly used to determine the total water vapour content of the troposphere, hereafter Precipitable Water Vapor (PWV). However, both GNSS receivers and software have prohibitively high price due to a variety of reasons. To overcome this somewhat artificial barrier we are exploring the use of low-cost GNSS receivers along with open source GNSS software for scientific research, in particular for GNSS meteorology research. To achieve this aim, we have developed a custom Arduino compatible data logging board that is able to operate together with a specific low-cost single frequency GNSS receiver chip from NVS Technologies AG. We have also developed an open-source software bundle that includes a new Arduino core for the Atmel324p chip, which is the main processor used in our custom logger. We have also developed software code that enables data collection, logging and parsing of the GNSS data stream. Additionally we have comprehensively evaluated the low power characteristics of the GNSS receiver and logger boards. Currently we are exploring the use of several openly source or free to use for research software to map GNSS delays to PWV. These include the open source goGPS (http://www.gogps-project.org/) and gLAB (http://gage.upc.edu/gLAB) and the openly available GAMIT software from Massachusetts Institute of Technology (MIT). We note that all the firmware and software developed as part of this project is available on an open source license.

  4. Utilizing new GNSS capabilities for exploring Geospace

    Science.gov (United States)

    Coster, A. J.

    2015-12-01

    In 2000 the density of GPS receivers across the continental United States increased to the point that strictly data-driven regional maps of total electron content (TEC) could be constructed. These data-driven maps allowed the TEC to be monitored throughout the course of geomagnetic storms and to observe the progression of traveling ionospheric disturbances. This allowed studies of the development of storm enhanced density plumes in both hemispheres and of the dynamic changes in the equatorial TEC following stratospheric warming events. Currently, GPS TEC maps have become recognized as one of the premier tools to monitor coupling of atmospheric regions from both below and above the ionosphere. The number of available scientific dual-frequency receivers across the globe now exceeds 3000. However this number is anticipated to increase rapidly in part due to the numerous arrays being fielded for commercial applications such as precision farming and highway surveying. In addition, there will be a rapid increase in the number of GNSS signals available in the near future. Besides GPS, the European Union is building a system named GALILEO, which will consist of a 30-satellite constellation. The Russians have a system based on a 24-satellite constellation named GLONASS. The Chinese are developing a system called Beidou, which means "stars of the Big Dipper". The Beidou system will consist of 35 satellites. By 2023, there will be more than 160 GNSS satellites and 400 signals. Multi-constellation, multi-band GNSS will be a major enabler for space weather studies. This talk will focus on the potential of using the multiple new GNSS signals and the new higher density receiver arrays for measurements of plasma drift, detailed studies of traveling ionospheric disturbances (TIDS) and expanded studies of atmospheric coupling. We will conclude by describing the tremendous potential of merging GNSS observations with observations collected by arrays of low-cost, low-power, and small

  5. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  6. International Collaboration in the field of GNSS-Meteorology and Climate Monitoring

    Science.gov (United States)

    Jones, J.; Guerova, G.; Dousa, J.; Bock, O.; Elgered, G.; Vedel, H.; Pottiaux, E.; de Haan, S.; Pacione, R.; Dick, G.; Wang, J.; Gutman, S. I.; Wickert, J.; Rannat, K.; Liu, G.; Braun, J. J.; Shoji, Y.

    2012-12-01

    International collaboration in the field of GNSS-meteorology and climate monitoring is essential, as severe weather and climate change have no respect for national boundaries. The use of Global Navigation Satellite Systems (GNSS) for meteorological purposes is an established atmospheric observing technique, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Severe weather forecasting is challenging, in part due to the high temporal and spatial variation of atmospheric water vapour. Water vapour is currently under-sampled and obtaining and exploiting more high-quality humidity observations is essential to severe weather forecasting and climate monitoring. A proposed EU COST Action (http://www.cost.eu) will address new and improved capabilities from concurrent developments in both GNSS and atmospheric communities to improve (short-range) weather forecasts and climate projections. For the first time, the synergy of the three GNSS systems, GPS, GLONASS and Galileo, will be used to develop new, advanced tropospheric products, stimulating the full potential exploitation of multi-GNSS water vapour estimates on a wide range of temporal and spatial scales, from real-time severe weather monitoring and forecasting to climate research. The Action will work in close collaboration with the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN), GNSS Precipitable Water Task Team (TT). GRUAN is a global reference observing network, designed to meet climate requirements and to fill a major void in the current global observing system. GRUAN observations will provide long-term, high-quality data to determine climatic trends and to constrain and validate data from space-based remote sensors. Ground-based GNSS PW was identified as a Priority 1 measurement for GRUAN, and the GNSS-PW TT's goal is to develop explicit guidance on hardware, software and data management practices to obtain GNSS PW

  7. Deep Coupled Integration of CSAC and GNSS for Robust PNT

    OpenAIRE

    Ma, Lin; You, Zheng; Li, Bin; Zhou, Bin; Han, Runqi

    2015-01-01

    Global navigation satellite systems (GNSS) are the most widely used positioning, navigation, and timing (PNT) technology. However, a GNSS cannot provide effective PNT services in physical blocks, such as in a natural canyon, canyon city, underground, underwater, and indoors. With the development of micro-electromechanical system (MEMS) technology, the chip scale atomic clock (CSAC) gradually matures, and performance is constantly improved. A deep coupled integration of CSAC and GNSS is explo...

  8. Ear Infection (Middle Ear)

    Science.gov (United States)

    ... secretions from the middle ear Swelling, inflammation and mucus in the eustachian tubes from an upper respiratory ... your baby for at least six months. Breast milk contains antibodies that may offer protection from ear ...

  9. MULTI-GNSS RECEIVER FOR AEROSPACE NAVIGATION AND POSITIONING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    T. R. Peres

    2014-03-01

    Full Text Available The upcoming Galileo system opens a wide range of new opportunities in the Global Navigation Satellite System (GNSS market. However, the characteristics of the future GNSS signals require the development of new GNSS receivers. In the frame of the REAGE project, DEIMOS and ISEL have developed a GNSS receiver targeted for aerospace applications, supporting current and future GPS L1 and Galileo E1 signals, based on commercial (or, in the furthest extent, industrial grade components. Although the REAGE project aimed at space applications, the REAGE receiver is also applicable to many terrestrial applications (ground or airborne, such as Georeferencing and Unmanned Aerial Vehicle (UAV navigation. This paper presents the architecture and features of the REAGE receiver, as well as some results of the validation campaign with GPS L1 and Galileo E1 signals.

  10. Influence of Ionospheric Irregularities on GNSS Remote Sensing

    Directory of Open Access Journals (Sweden)

    M. V. Tinin

    2015-01-01

    Full Text Available We have used numerical simulation to study the effects of ionospheric irregularities on accuracy of global navigation satellite system (GNSS measurements, using ionosphere-free (in atmospheric research and geometry-free (in ionospheric research dual-frequency phase combinations. It is known that elimination of these effects from multifrequency GNSS measurements is handi-capped by diffraction effects during signal propagation through turbulent ionospheric plasma with the inner scale being smaller than the Fresnel radius. We demonstrated the possibility of reducing the residual ionospheric error in dual-frequency GNSS remote sensing in ionosphere-free combination by Fresnel inversion. The inversion parameter, the distance to the virtual screen, may be selected from the minimum of amplitude fluctuations. This suggests the possibility of improving the accuracy of GNSS remote sensing in meteorology. In the study of ionospheric disturbances with the aid of geometry-free combination, the Fresnel inversion eliminates only the third-order error. To eliminate the random TEC component which, like the measured average TEC, is the first-order correction, we should use temporal filtering (averaging.

  11. Advancing Wetlands Mapping and Monitoring with GNSS Reflectometry

    Science.gov (United States)

    Zuffada, Cinzia; Chew, Clara; Nghiem, Son V.; Shah, Rashmi; Podest, Erika; Bloom, A. Anthony; Koning, Alexandra; Small, Eric; Schimel, David; Reager, J. T.; Mannucci, Anthony; Williamson, Walton; Cardellach, Estel

    2016-08-01

    Wetland dynamics is crucial to address changes in both atmospheric methane (CH4) and terrestrial water storage. Yet, both spatial distribution and temporal variability of wetlands remain highly unconstrained despite the existence of remote sensing products from past and present satellite sensors. An innovative approach to mapping wetlands is offered by the Global Navigation Satellite System Reflectometry (GNSS-R), which is a bistatic radar concept that takes advantage of the ever increasing number of GNSS transmitting satellites to yield many randomly distributed measurements with broad-area global coverage and rapid revisit time. Hence, this communication presents the science motivation for mapping of wetlands and monitoring of their dynamics, and shows the relevance of the GNSS-R technique in this context, relative to and in synergy with other existing measurement systems. Additionally, the communication discusses results of our data analysis on wetlands in the Amazon, specifically from the initial analysis of satellite data acquired by the TechDemoSat-1 mission launched in 2014. Finally, recommendations are provided for the design of a GNSS-R mission specifically to address wetlands science issues.

  12. Detecting Volcanic Ash Plumes with GNSS Signals

    Science.gov (United States)

    Rainville, N.; Larson, K. M.; Palo, S. E.; Mattia, M.; Rossi, M.; Coltelli, M.; Roesler, C.; Fee, D.

    2016-12-01

    Global Navigation Satellite Systems (GNSS) receivers are commonly placed near volcanic sites to measure ground deformation. In addition to the carrier phase data used to measure ground position, these receivers also record Signal to Noise ratio (SNR) data. Larson (2013) showed that attenuations in SNR data strongly correlate with ash emissions at a series of eruptions of Redoubt Volcano. This finding has been confirmed at eruptions for Tongariro, Mt Etna, Mt Shindake, and Sakurajima. In each of these detections, very expensive geodetic quality GNSS receivers were used. If low-cost GNSS instruments could be used instead, a networked array could be deployed and optimized for plume detection and tomography. The outputs of this sensor array could then be used by both local volcanic observatories and Volcano Ash Advisory Centers. Here we will describe progress in developing such an array. The sensors we are working with are intended for navigation use, and thus lack the supporting power and communications equipment necessary for a networked system. Reliably providing those features is major challenge for the overall sensor design. We have built prototypes of our Volcano Ash Plume Receiver (VAPR), with solar panels, lithium-ion batteries and onboard data storage for preliminary testing. We will present results of our field tests of both receivers and antennas. A second critical need for our array is a reliable detection algorithm. We have tested our algorithm on data from recent eruptions and have incorporated the noise characteristics of the low-cost GNSS receiver. We have also developed a simulation capability so that the receivers can be deployed to optimize vent crossing GNSS signals.

  13. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS.

    Science.gov (United States)

    Ren, Xiaodong; Zhang, Xiaohong; Xie, Weiliang; Zhang, Keke; Yuan, Yongqiang; Li, Xingxing

    2016-09-15

    The emergence of China's Beidou, Europe's Galileo and Russia's GLONASS satellites has multiplied the number of ionospheric piercing points (IPP) offered by GPS alone. This provides great opportunities for deriving precise global ionospheric maps (GIMs) with high resolution to improve positioning accuracy and ionospheric monitoring capabilities. In this paper, the GIM is developed based on multi-GNSS (GPS, GLONASS, BeiDou and Galileo) observations in the current multi-constellation condition. The performance and contribution of multi-GNSS for ionospheric modelling are carefully analysed and evaluated. Multi-GNSS observations of over 300 stations from the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) networks for two months are processed. The results show that the multi-GNSS GIM products are better than those of GIM products based on GPS-only. Differential code biases (DCB) are by-products of the multi-GNSS ionosphere modelling, the corresponding standard deviations (STDs) are 0.06 ns, 0.10 ns, 0.18 ns and 0.15 ns for GPS, GLONASS, BeiDou and Galileo, respectively in satellite, and the STDs for the receiver are approximately 0.2~0.4 ns. The single-frequency precise point positioning (SF-PPP) results indicate that the ionospheric modelling accuracy of the proposed method based on multi-GNSS observations is better than that of the current dual-system GIM in specific areas.

  14. Data assimilation of GNSS zenith total delays from a Nordic processing centre

    Science.gov (United States)

    Lindskog, Magnus; Ridal, Martin; Thorsteinsson, Sigurdur; Ning, Tong

    2017-11-01

    Atmospheric moisture-related information estimated from Global Navigation Satellite System (GNSS) ground-based receiver stations by the Nordic GNSS Analysis Centre (NGAA) have been used within a state-of-the-art kilometre-scale numerical weather prediction system. Different processing techniques have been implemented to derive the moisture-related GNSS information in the form of zenith total delays (ZTDs) and these are described and compared. In addition full-scale data assimilation and modelling experiments have been carried out to investigate the impact of utilizing moisture-related GNSS data from the NGAA processing centre on a numerical weather prediction (NWP) model initial state and on the ensuing forecast quality. The sensitivity of results to aspects of the data processing, station density, bias-correction and data assimilation have been investigated. Results show benefits to forecast quality when using GNSS ZTD as an additional observation type. The results also show a sensitivity to thinning distance applied for GNSS ZTD observations but not to modifications to the number of predictors used in the variational bias correction applied. In addition, it is demonstrated that the assimilation of GNSS ZTD can benefit from more general data assimilation enhancements and that there is an interaction of GNSS ZTD with other types of observations used in the data assimilation. Future plans include further investigation of optimal thinning distances and application of more advanced data assimilation techniques.

  15. A comprehensive method for GNSS data quality determination to improve ionospheric data analysis.

    Science.gov (United States)

    Kim, Minchan; Seo, Jiwon; Lee, Jiyun

    2014-08-14

    Global Navigation Satellite Systems (GNSS) are now recognized as cost-effective tools for ionospheric studies by providing the global coverage through worldwide networks of GNSS stations. While GNSS networks continue to expand to improve the observability of the ionosphere, the amount of poor quality GNSS observation data is also increasing and the use of poor-quality GNSS data degrades the accuracy of ionospheric measurements. This paper develops a comprehensive method to determine the quality of GNSS observations for the purpose of ionospheric studies. The algorithms are designed especially to compute key GNSS data quality parameters which affect the quality of ionospheric product. The quality of data collected from the Continuously Operating Reference Stations (CORS) network in the conterminous United States (CONUS) is analyzed. The resulting quality varies widely, depending on each station and the data quality of individual stations persists for an extended time period. When compared to conventional methods, the quality parameters obtained from the proposed method have a stronger correlation with the quality of ionospheric data. The results suggest that a set of data quality parameters when used in combination can effectively select stations with high-quality GNSS data and improve the performance of ionospheric data analysis.

  16. The inertial attitude augmentation for ambiguity resolution in SF/SE-GNSS attitude determination.

    Science.gov (United States)

    Zhu, Jiancheng; Hu, Xiaoping; Zhang, Jingyu; Li, Tao; Wang, Jinling; Wu, Meiping

    2014-06-26

    The Unaided Single Frequency/Single Epoch Global Navigation Satellite System (SF/SE GNSS) model is the most challenging scenario for ambiguity resolution in the GNSS attitude determination application. To improve the performance of SF/SE-GNSS ambiguity resolution without excessive cost, the Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS-IMU) is a proper choice for the auxiliary sensor that carries out the inertial attitude augmentation. Firstly, based on the SF/SE-GNSS compass model, the Inertial Derived Baseline Vector (IDBV) is defined to connect the MEMS-IMU attitude measurement with the SF/SE-GNSS ambiguity search space, and the mechanism of inertial attitude augmentation is revealed from the perspective of geometry. Then, through the quantitative description of model strength by Ambiguity Dilution of Precision (ADOP), two ADOPs are specified for the unaided SF/SE-GNSS compass model and its inertial attitude augmentation counterparts, respectively, and a sufficient condition is proposed for augmenting the SF/SE-GNSS model strength with inertial attitude measurement. Finally, in the framework of an integer aperture estimator with fixed failure rate, the performance of SF/SE-GNSS ambiguity resolution with inertial attitude augmentation is analyzed when the model strength is varying from strong to weak. The simulation results show that, in the SF/SE-GNSS attitude determination application, MEMS-IMU can satisfy the requirements of ambiguity resolution with inertial attitude augmentation.

  17. The Inertial Attitude Augmentation for Ambiguity Resolution in SF/SE-GNSS Attitude Determination

    Science.gov (United States)

    Zhu, Jiancheng; Hu, Xiaoping; Zhang, Jingyu; Li, Tao; Wang, Jinling; Wu, Meiping

    2014-01-01

    The Unaided Single Frequency/Single Epoch Global Navigation Satellite System (SF/SE GNSS) model is the most challenging scenario for ambiguity resolution in the GNSS attitude determination application. To improve the performance of SF/SE-GNSS ambiguity resolution without excessive cost, the Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS-IMU) is a proper choice for the auxiliary sensor that carries out the inertial attitude augmentation. Firstly, based on the SF/SE-GNSS compass model, the Inertial Derived Baseline Vector (IDBV) is defined to connect the MEMS-IMU attitude measurement with the SF/SE-GNSS ambiguity search space, and the mechanism of inertial attitude augmentation is revealed from the perspective of geometry. Then, through the quantitative description of model strength by Ambiguity Dilution of Precision (ADOP), two ADOPs are specified for the unaided SF/SE-GNSS compass model and its inertial attitude augmentation counterparts, respectively, and a sufficient condition is proposed for augmenting the SF/SE-GNSS model strength with inertial attitude measurement. Finally, in the framework of an integer aperture estimator with fixed failure rate, the performance of SF/SE-GNSS ambiguity resolution with inertial attitude augmentation is analyzed when the model strength is varying from strong to weak. The simulation results show that, in the SF/SE-GNSS attitude determination application, MEMS-IMU can satisfy the requirements of ambiguity resolution with inertial attitude augmentation. PMID:24971472

  18. A REVIEW ON LEGAL TRACEABILITY OF GNSS MEASUREMENTS IN THE MALAYSIAN CADASTRAL PRACTICE

    Directory of Open Access Journals (Sweden)

    J. Gill

    2016-09-01

    Full Text Available As the dependency on Global Navigation Satellite System (GNSS in surveying has been growing over the years, the need for legal traceability of GNSS measurements has become a significant matter. In Malaysia, with the advent of the Malaysia Real-time Kinematic Network (MyRTKnet, GNSS surveying has revolutionised land survey and mapping. Correspondingly, the Department of Survey and Mapping Malaysia (DSMM amended and published standard regulations and guidelines concerning cadastral survey, i.e., Cadastral Survey Regulations 2009, to include GNSS measurements. However, these regulations and guidelines has not comprehensively incorporated legal traceability of GNSS measurements; which is a prerequisite for cadastral surveys as it requires reliable and conclusive evidence for issues such as boundary disputes. The first objective of this paper is to review and discuss the legal traceability of GNSS measurements. Secondly, it will highlight the current practice and issues, i.e., with regard to legal traceability, within the present Malaysian cadastral regulation and guidelines, in relation to the prevalently adopted Network RTK (N-RTK technique, GNSS instrument calibrations, and reference stations’ accuracy. Lastly, a rudimentary best practice guideline for GNSS surveying in cadastral survey for Malaysia is proposed. It is expected that this paper will contribute to the implementation of a best practice guideline, which is inclusive of legal traceability of GNSS measurements, for the Malaysian cadastral practice.

  19. Study of GNSS Loss of Lock Characteristics under Ionosphere Scintillation with GNSS Data at Weipa (Australia) During Solar Maximum Phase.

    Science.gov (United States)

    Liu, Yang; Fu, Lianjie; Wang, Jinling; Zhang, Chunxi

    2017-09-25

    One of the adverse impacts of scintillation on GNSS signals is the loss of lock status, which can lead to GNSS geometry and visibility reductions that compromise the accuracy and integrity of navigation performance. In this paper the loss of lock based on ionosphere scintillation in this solar maximum phase has been well investigated with respect to both temporal and spatial behaviors, based on GNSS observatory data collected at Weipa (Australia; geographic: 12.45° S, 130.95° E; geomagnetic: 21.79° S, 214.41° E) from 2011 to 2015. Experiments demonstrate that the percentage of occurrence of loss of lock events under ionosphere scintillation is closely related with solar activity and seasonal shifts. Loss of lock behaviors under ionosphere scintillation related to elevation and azimuth angles are statistically analyzed, with some distinct characteristics found. The influences of daytime scintillation and geomagnetic storms on loss of lock have also been discussed in details. The proposed work is valuable for a deeper understanding of theoretical mechanisms of-loss of lock under ionosphere scintillation in global regions, and provides a reference for GNSS applications in certain regions at Australian low latitudes.

  20. A grid-based tropospheric product for China using a GNSS network

    Science.gov (United States)

    Zhang, Hongxing; Yuan, Yunbin; Li, Wei; Zhang, Baocheng; Ou, Jikun

    2017-11-01

    Tropospheric delay accounts for one source of error in global navigation satellite systems (GNSS). To better characterize the tropospheric delays in the temporal and spatial domain and facilitate the safety-critical use of GNSS across China, a method is proposed to generate a grid-based tropospheric product (GTP) using the GNSS network with an empirical tropospheric model, known as IGGtrop. The prototype system generates the GTPs in post-processing and real-time modes and is based on the undifferenced and uncombined precise point positioning (UU-PPP) technique. GTPs are constructed for a grid form (2.0{°}× 2.5{°} latitude-longitude) over China with a time resolution of 5 min. The real-time GTP messages are encoded in a self-defined RTCM3 format and broadcast to users using NTRIP (networked transport of RTCM via internet protocol), which enables efficient and safe transmission to real-time users. Our approach for GTP generation consists of three sequential steps. In the first step, GNSS-derived zenith tropospheric delays (ZTDs) for a network of GNSS stations are estimated using UU-PPP. In the second step, vertical adjustments for the GNSS-derived ZTDs are applied to address the height differences between the GNSS stations and grid points. The ZTD height corrections are provided by the IGGtrop model. Finally, an inverse distance weighting method is used to interpolate the GNSS-derived ZTDs from the surrounding GNSS stations to the location of the grid point. A total of 210 global positioning system (GPS) stations from the crustal movement observation network of China are used to generate the GTPs in both post-processing and real-time modes. The accuracies of the GTPs are assessed against with ERA-Interim-derived ZTDs and the GPS-derived ZTDs at 12 test GPS stations, respectively. The results show that the post-processing and real-time GTPs can provide the ZTDs with accuracies of 1.4 and 1.8 cm, respectively. We also apply the GTPs in real-time kinematic GPS PPP

  1. GNSS-based receiver autonomous integrity monitoring for aircraft navigation

    NARCIS (Netherlands)

    Imparato, D.

    2016-01-01

    Nowadays, GNSS-based navigation is moving more and more to critical applications. Global Navigation Satellite Systems (GNSS), which in the past used to be represented by the American GPS and the Russian GLONASS are now growing in number and performance. The European systemGalileo and the Chinese

  2. A hybrid data fusion method for GNSS/INS integration navigation system

    Science.gov (United States)

    Yang, Ling; Li, Bofeng; Shen, Yunzhong; Li, Haojun

    2017-04-01

    Although DGNSS is widely used and PPP-GNSS is nowadays a viable precise positioning technology option, the major disadvantage of GNSS still remains: signal blockage due to obstructions in urban and built up environments, and extreme power attenuation of the signals when operated indoors. The combination of GNSS with other sensors, such as a self-contained inertial navigation system (INS), provides an ideal position and attitude determination solution which can not only mitigate the weakness of GNSS, but also bound the INS error that otherwise would grow with time when the INS operates alone. However, the navigation accuracy provided by GNSS/INS strongly depends on the quality and geometry of the GNSS observations, the quality of the INS technology used, and the integration model applied. There are two main types of coupled schemes for integration systems: loosely coupled integration and tightly coupled integration. In loosely coupled integration, position measurements are taken from both systems and combined optimally, usually in a Kalman filter. Tightly coupled integration directly combines the raw pseudorange or carrier phase measurements of GNSS with inertial measurements in an extended Kalman filter. The latter technique improves the ability to resolve ambiguities, i.e. allows a quicker recovery from outage events such as a loss of signal under vegetation. In recent years, tightly coupled differential carrier phase GNSS/INS integration has become popular, because it has the advantage of providing accurate position information even when GPS measurements are rank-deficient in stand-alone processing and is theoretically optimal in a filtering sense, especially in urban navigation applications. However, the heavier computational burden and sensor communication usually complicate the tightly coupled integration and reduce the system efficiency, compared with the loosely coupled integration. In this paper, it has been proved that the loosely coupled and tightly

  3. Ear Injury

    Science.gov (United States)

    ... of different injuries can affect the outer ear. Cauliflower ear (subperichondrial hematoma) A blunt blow to the ... to a deformed ear. This deformity, called a cauliflower ear, is common among wrestlers, boxers, and rugby ...

  4. Overview of new GNSS tropospheric products for GNSS-meteorology and their assessment at Geodetic Observatory Pecny (CZ)

    Science.gov (United States)

    Dousa, J.; Vaclavovic, P.; Gyori, G.

    2012-12-01

    Geodetic Observatory Pecný (GOP) has a long-term experience in the estimation of precise tropospheric parameters from GNSS permanent stations, in particular under the limited timelines of near real time. More than a decade, the GOP zenith total delays (ZTD) contributed to various projects in Europe (COST-716, TOUGH, E-GVAP, E-GVAP II) and the operational ZTD hourly updated product flows via the meteorological observation exchange network - GTS - to the end users worldwide. Currently, the GOP regional ZTD product is operationally assimilated in Météo France and UK MetOffice at least and further exploited in various ways at many other meteorological institutions. New developments at GOP over last three years consist of a) implementation and assessment of the global hourly ZTD product of about 170 stations, b) implementation of routine multi-GNSS (GPS+GLONASS) ZTD European product, and c) implementation of ultra-fast/real-time ZTD product. The GOP global ZTD product has been implemented on request of the meteorological institutions running global numerical weather forecasting models. The global ZTD product was seriously evaluated over ten months (Oct 2009 - Aug 2011) when compared to reprocessed EUREF and IGS ZTDs, radiosondes and ZTDs derived from UK MetOffice's global numerical weather model. After the evaluation (and on special request of UK MetOffice) the product has been switched from testing to operational status within the framework of the EUMETNET EIG GPS Water Vapour Programme (E-GVAP) and officially disseminated via the GTS network. The GOP multi-GNSS ZTD solution has been tested since 2009 shortly after developing GOP ultra-rapid GPS+GLONASS orbits for the International GNSS Service (IGS). A specific bias of mean value 1.5 mm was identified between GPS- and GLONASS-only ZTD at that time, and relation to the IGS05 antenna phase centre offset and variation models (PCO+PCV) identified. Consequently, the implementation of a routine operation has been done

  5. Technical note: Validation of an ear-tag accelerometer sensor to determine rumination, eating, and activity behaviors of grazing dairy cattle.

    Science.gov (United States)

    Pereira, G M; Heins, B J; Endres, M I

    2018-03-01

    The objective of this study was to validate an ear-tag accelerometer sensor (CowManager SensOor, Agis Automatisering BV, Harmelen, the Netherlands) using direct visual observations in a grazing dairy herd. Lactating crossbred cows (n = 24) were used for this experiment at the University of Minnesota West Central Research and Outreach Center grazing dairy (Morris, MN) during the summer of 2016. A single trained observer recorded behavior every minute for 6 h for each cow (24 cows × 6 h = 144 h of observation total). Direct visual observation was compared with sensor data during August and September 2016. The sensor detected and identified ear and head movements, and through algorithms the sensor classified each minute as one of the following behaviors: rumination, eating, not active, active, and high active. A 2-sided t-test was conducted with PROC TTEST of SAS (SAS Institute Inc., Cary, NC) to compare the percentage of time each cow's behavior was recorded by direct visual observation and sensor data. For total recorded time, the percentage of time of direct visual observation compared with sensor data was 17.9 and 19.1% for rumination, 52.8 and 51.9% for eating, 17.4 and 11.9% for not active, and 7.9 and 21.1% for active. Pearson correlations (PROC CORR of SAS) were used to evaluate associations between direct visual observations and sensor data. Furthermore, concordance correlation coefficient (CCC), bias correction factors, location shift, and scale shift (epiR package of R version 3.3.1; R Foundation for Statistical Computing, Vienna, Austria) were calculated to provide a measure of accuracy and precision. Correlations between visual observations for all 4 behaviors were highly to weakly correlated (rumination: r = 0.72, CCC = 0.71; eating: r = 0.88, CCC = 0.88; not active: r = 0.65, CCC = 0.52; and active: r = 0.20, CCC = 0.19) compared with sensor data. The results suggest that the sensor accurately monitors rumination and eating behavior of grazing dairy

  6. Beamsteerable GNSS Radio Occultation ASIC

    Data.gov (United States)

    National Aeronautics and Space Administration — We will develop an integrated RF ASIC to enable high quality radio occultation (RO) weather observations using the Global Navigations System Satellite (GNSS)...

  7. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Directory of Open Access Journals (Sweden)

    Kazancı Selma Zengin

    2017-12-01

    Full Text Available In recent years, Global Navigation Satellite Systems (GNSS have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC in order to troposphere monitoring. The project titled “Using Regional GNSS Networks to Strengthen Severe Weather Prediction” was accepted to the scientifi c and technological research council of Turkey (TUBITAK. With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  8. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Science.gov (United States)

    Kazancı, Selma Zengin; Kayıkçı, Emine Tanır

    2017-12-01

    In recent years, Global Navigation Satellite Systems (GNSS) have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN) stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC) KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC) in order to troposphere monitoring. The project titled "Using Regional GNSS Networks to Strengthen Severe Weather Prediction" was accepted to the scientifi c and technological research council of Turkey (TUBITAK). With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  9. A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs

    Directory of Open Access Journals (Sweden)

    Yu Zheng

    2017-06-01

    Full Text Available In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm.

  10. GEOREFERENCING IN GNSS-CHALLENGED ENVIRONMENT: INTEGRATING UWB AND IMU TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    C. K. Toth

    2017-05-01

    Full Text Available Acquiring geospatial data in GNSS compromised environments remains a problem in mapping and positioning in general. Urban canyons, heavily vegetated areas, indoor environments represent different levels of GNSS signal availability from weak to no signal reception. Even outdoors, with multiple GNSS systems, with an ever-increasing number of satellites, there are many situations with limited or no access to GNSS signals. Independent navigation sensors, such as IMU can provide high-data rate information but their initial accuracy degrades quickly, as the measurement data drift over time unless positioning fixes are provided from another source. At The Ohio State University’s Satellite Positioning and Inertial Navigation (SPIN Laboratory, as one feasible solution, Ultra- Wideband (UWB radio units are used to aid positioning and navigating in GNSS compromised environments, including indoor and outdoor scenarios. Here we report about experiences obtained with georeferencing a pushcart based sensor system under canopied areas. The positioning system is based on UWB and IMU sensor integration, and provides sensor platform orientation for an electromagnetic inference (EMI sensor. Performance evaluation results are provided for various test scenarios, confirming acceptable results for applications where high accuracy is not required.

  11. The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning

    Science.gov (United States)

    Guo, Fei; Li, Xingxing; Zhang, Xiaohong; Wang, Jinling

    2017-06-01

    In response to the changing world of GNSS, the International GNSS Service (IGS) has initiated the Multi-GNSS Experiment (MGEX). As part of the MGEX project, initial precise orbit and clock products have been released for public use, which are the key prerequisites for multi-GNSS precise point positioning (PPP). In particular, precise orbits and clocks at intervals of 5 min and 30 s are presently available for the new emerging systems. This paper investigates the benefits of multi-GNSS for PPP. Firstly, orbit and clock consistency tests (between different providers) were performed for GPS, GLONASS, Galileo and BeiDou. In general, the differences of GPS are, respectively, 1.0-1.5 cm for orbit and 0.1 ns for clock. The consistency of GLONASS is worse than GPS by a factor of 2-3, i.e. 2-4 cm for orbit and 0.2 ns for clock. However, the corresponding differences of Galileo and BeiDou are significantly larger than those of GPS and GLONASS, particularly for the BeiDou GEO satellites. Galileo as well as BeiDou IGSO/MEO products have a consistency of 0.1-0.2 m for orbit, and 0.2-0.3 ns for clock. As to BeiDou GEO satellites, the difference of their orbits reaches 3-4 m in along-track, 0.5-0.6 m in cross-track, and 0.2-0.3 m in the radial directions, together with an average RMS of 0.6 ns for clock. Furthermore, the short-term stability of multi-GNSS clocks was analyzed by Allan deviation. Results show that clock stability of the onboard GNSS is highly dependent on the satellites generations, operational lifetime, orbit types, and frequency standards. Finally, kinematic PPP tests were conducted to investigate the contribution of multi-GNSS and higher rate clock corrections. As expected, the positioning accuracy as well as convergence speed benefit from the fusion of multi-GNSS and higher rate of precise clock corrections. The multi-GNSS PPP improves the positioning accuracy by 10-20%, 40-60%, and 60-80% relative to the GPS-, GLONASS-, and BeiDou-only PPP. The usage of 30 s

  12. Utilizing GNSS Reflectometry to Assess Surface Inundation Dynamics in Tropical Wetlands

    Science.gov (United States)

    Jensen, K.; McDonald, K. C.; Podest, E.; Chew, C. C.

    2017-12-01

    Tropical wetlands play a significant role in global atmospheric methane and terrestrial water storage. Despite the growing number of remote sensing products from satellite sensors, both spatial distribution and temporal variability of wetlands remain highly uncertain. An emerging innovative approach to mapping wetlands is offered by GNSS reflectometry (GNSS-R), a bistatic radar concept that takes advantage of GNSS transmitting satellites to yield observations with global coverage and rapid revisit time. This technology offers the potential to capture dynamic inundation changes in wetlands at higher temporal fidelity and sensitivity under the canopy than presently possible. We present an integrative analysis of radiometric modeling, ground measurements, and several microwave remote sensing datasets traditionally used for wetland observations. From a theoretical standpoint, GNSS-R sensitivities for vegetation and wetlands are investigated with a bistatic radar model in order to understand the interactions of the signal with various land surface components. GNSS reflections from the TechDemoSat-1 (TDS-1), Soil Moisture Active Passive (SMAP), and Cyclone GNSS (CYGNSS) missions are tested experimentally with contemporaneous (1) field measurements collected from the Pacaya Samiria National Reserve in the Peruvian Amazon, (2) imaging radar from Sentinel-1 and PALSAR-2 observed over a variety of tropical wetland systems, and (3) pan-tropical coarse-resolution (25km) microwave datasets (Surface Water Microwave Product Series). We find that GNSS-R data provide the potential to extend capabilities of current remote sensing techniques to characterize surface inundation extent, and we explore how to maximize synergism between different satellite sensors to produce an enhanced wetland monitoring product.

  13. GNSS-Reflectometry based water level monitoring

    Science.gov (United States)

    Beckheinrich, Jamila; Schön, Steffen; Beyerle, Georg; Apel, Heiko; Semmling, Maximilian; Wickert, Jens

    2013-04-01

    Due to climate changing conditions severe changes in the Mekong delta in Vietnam have been recorded in the last years. The goal of the German Vietnamese WISDOM (Water-related Information system for the Sustainable Development Of the Mekong Delta) project is to build an information system to support and assist the decision makers, planners and authorities for an optimized water and land management. One of WISDOM's tasks is the flood monitoring of the Mekong delta. Earth reflected L-band signals from the Global Navigation Satellite System show a high reflectivity on water and ice surfaces or on wet soil so that GNSS-Reflectometry (GNSS-R) could contribute to monitor the water level in the main streams of the Mekong delta complementary to already existing monitoring networks. In principle, two different GNSS-R methods exist: the code- and the phase-based one. As the latter being more accurate, a new generation of GORS (GNSS Occultation, Reflectometry and Scatterometry) JAVAD DELTA GNSS receiver has been developed with the aim to extract precise phase observations. In a two week lasting measurement campaign, the receiver has been tested and several reflection events at the 150-200 m wide Can Tho river in Vietnam have been recorded. To analyze the geometrical impact on the quantity and quality of the reflection traces two different antennas height were tested. To track separately the direct and the reflected signal, two antennas were used. To derive an average height of the water level, for a 15 min observation interval, a phase model has been developed. Combined with the coherent observations, the minimum slope has been calculated based on the Least- Squares method. As cycle slips and outliers will impair the results, a preprocessing of the data has been performed. A cycle slip detection strategy that allows for automatic detection, identification and correction is proposed. To identify outliers, the data snooping method developed by Baarda 1968 is used. In this

  14. Multi-GNSS PPP-RTK : From large- to Small-Scale networks

    NARCIS (Netherlands)

    Nadarajah, Nandakumaran; Khodabandeh, Amir; Wang, Kan; Choudhury, Mazher; Teunissen, P.J.G.

    2018-01-01

    Precise point positioning (PPP) and its integer ambiguity resolution-enabled variant, PPP-RTK (real-time kinematic), can benefit enormously from the integration of multiple global navigation satellite systems (GNSS). In such a multi-GNSS landscape, the positioning convergence time is expected to

  15. Research Progress and Prospect of GNSS Space Environment Science

    Directory of Open Access Journals (Sweden)

    YAO Yibin

    2017-10-01

    Full Text Available Troposphere and ionosphere are two important components of the near-earth space environment. They are close to the surface of the earth and have great influence on human life. The developments of Global Navigation Satellite System (GNSS over the past several decades provide a great opportunity for the GNSS-based space environment science. This review summarizes the research progress and prospect of the GNSS-based research of the Earth's troposphere and ionosphere. On the tropospheric perspective, modeling of the key tropospheric parameters and inversion of precipitable water vapor (PWV are dominant researching fields. On the ionospheric perspective, 2D/3D ionospheric models and regional/global ionospheric monitoring are dominant researching fields.

  16. Ear wax

    Science.gov (United States)

    See your provider if your ears are blocked with wax and you are unable to remove the wax. Also call if you have an ear wax blockage and you develop new symptoms, such as: Drainage from the ear Ear pain Fever Hearing loss that continues after you clean the wax

  17. Integrated GNSS attitude determination and positioning for direct geo-referencing

    NARCIS (Netherlands)

    Nadarajah, N.; Paffenholz, J.A.; Teunissen, P.J.G.

    2014-01-01

    Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS

  18. Spoofing Detection Using GNSS/INS/Odometer Coupling for Vehicular Navigation.

    Science.gov (United States)

    Broumandan, Ali; Lachapelle, Gérard

    2018-04-24

    Location information is one of the most vital information required to achieve intelligent and context-aware capability for various applications such as driverless cars. However, related security and privacy threats are a major holdback. With increasing focus on using Global Navigation Satellite Systems (GNSS) for autonomous navigation and related applications, it is important to provide robust navigation solutions, yet signal spoofing for illegal or covert transportation and misleading receiver timing is increasing and now frequent. Hence, detection and mitigation of spoofing attacks has become an important topic. Several contributions on spoofing detection have been made, focusing on different layers of a GNSS receiver. This paper focuses on spoofing detection utilizing self-contained sensors, namely inertial measurement units (IMUs) and vehicle odometer outputs. A spoofing detection approach based on a consistency check between GNSS and IMU/odometer mechanization is proposed. To detect a spoofing attack, the method analyses GNSS and IMU/odometer measurements independently during a pre-selected observation window and cross checks the solutions provided by GNSS and inertial navigation solution (INS)/odometer mechanization. The performance of the proposed method is verified in real vehicular environments. Mean spoofing detection time and detection performance in terms of receiver operation characteristics (ROC) in sub-urban and dense urban environments are evaluated.

  19. Spoofing Detection Using GNSS/INS/Odometer Coupling for Vehicular Navigation

    Directory of Open Access Journals (Sweden)

    Ali Broumandan

    2018-04-01

    Full Text Available Location information is one of the most vital information required to achieve intelligent and context-aware capability for various applications such as driverless cars. However, related security and privacy threats are a major holdback. With increasing focus on using Global Navigation Satellite Systems (GNSS for autonomous navigation and related applications, it is important to provide robust navigation solutions, yet signal spoofing for illegal or covert transportation and misleading receiver timing is increasing and now frequent. Hence, detection and mitigation of spoofing attacks has become an important topic. Several contributions on spoofing detection have been made, focusing on different layers of a GNSS receiver. This paper focuses on spoofing detection utilizing self-contained sensors, namely inertial measurement units (IMUs and vehicle odometer outputs. A spoofing detection approach based on a consistency check between GNSS and IMU/odometer mechanization is proposed. To detect a spoofing attack, the method analyses GNSS and IMU/odometer measurements independently during a pre-selected observation window and cross checks the solutions provided by GNSS and inertial navigation solution (INS/odometer mechanization. The performance of the proposed method is verified in real vehicular environments. Mean spoofing detection time and detection performance in terms of receiver operation characteristics (ROC in sub-urban and dense urban environments are evaluated.

  20. GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS IN GEOGRAPHICAL EDUCATION AND APPLIED RESEARCH

    Directory of Open Access Journals (Sweden)

    A. A. Suchilin

    2017-01-01

    Full Text Available The paper considers the introduction of the newest methods of topographic surveying into the educational and scientific process, using global navigation satellite systems (GNSS at the Faculty of Geography of Moscow State University. It describes the designation and use of the current reference geodetic training network for the training of students within the program of topographic practice. The basic concepts and purpose of the equipment of the geodetic class of the user segment of GNSS, both the basic location (reference stations and mobile complexes are disclosed. The technique of measuring and processing the accumulated data after field fixation (in static or kinematic modes of geographic objects and phenomena using GNSS has been given. A constantly operating network of reference stations of the faculty has been described. A full-scale example of using the GNSS complex by students of the faculty of the study area is given, the collected materials have been used for subsequent modeling (relief restoration based on the results of field measurements. Within the framework of the perspective development of the network of GNSS reference stations of the Moscow State University, the scheme of their location in the meridian direction on an ongoing basis has been shown, which will substantially expand the territorial coverage of the use of mobile GNSS complexes in geographic studies. Within the framework of the program of preservation of monuments of Russia’s cultural heritage, an example has been shown of the joint use of groundbased laser scanning techniques and a mobile GNSS complex conducted by students and teachers of leading Moscow universities and representatives of GFK Firm LLC. The result is the fixation of the geometric characteristics of the object in 1 cm steps in real coordinates, which makes it possible to carry out the necessary modeling, visualize the object in perspective form, carry out the necessary measurements, build sections

  1. Ear Pieces

    Science.gov (United States)

    DiJulio, Betsy

    2011-01-01

    In this article, the author describes an art project wherein students make fanciful connections between art and medicine. This project challenges students to interpret "ear idioms" (e.g. "blow it out your ear," "in one ear and out the other") by relying almost entirely on realistic ear drawings, the placement of them, marks, and values. In that…

  2. Multi-frequency GNSS robust carrier tracking for ionospheric scintillation mitigation

    Science.gov (United States)

    Vilà-Valls, Jordi; Closas, Pau; Curran, James T.

    2017-10-01

    Ionospheric scintillation is the physical phenomena affecting radio waves propagating from the space through the ionosphere to earth. The signal distortion induced by scintillation can pose a major threat to some GNSS application. Scintillation is one of the more challenging propagation scenarios, particularly affecting high-precision GNSS receivers which require high quality carrier phase measurements; and safety critical applications which have strict accuracy, availability and integrity requirements. Under ionospheric scintillation conditions, GNSS signals are affected by fast amplitude and phase variations, which can compromise the receiver synchronization. To take into account the underlying correlation among different frequency bands, we propose a new multivariate autoregressive model (MAR) for the multi-frequency ionospheric scintillation process. Multi-frequency GNSS observations and the scintillation MAR are modeled in state-space, allowing independent tracking of both line-of-sight phase variations and complex gain scintillation components. The resulting joint synchronization and scintillation mitigation problem is solved using a robust nonlinear Kalman filter, validated using real multi-frequency scintillation data with encouraging results.

  3. EPOS-GNSS - Improving the infrastructure for GNSS data and products in Europe

    Science.gov (United States)

    Fernandes, Rui; Bos, Machiel; Bruyninx, Carine; Crocker, Paul; Dousa, Jan; Socquet, Anne; Walpersdorf, Andrea; Avallone, Antonio; Ganas, Athanassios; Gunnar, Benedikt; Ionescu, Constantin; Kenyeres, Ambrus; Ozener, Haluk; Vergnolle, Mathilde; Lidberg, Martin; Liwosz, Tomek; Soehne, Wolfgang

    2017-04-01

    EPOS-IP WP10 - "GNSS Data & Products" is the Working Package 10 of the European Plate Observing System - Implementation Phase project in charge of implementing services for the geo-sciences community to access existing Pan-European Geodetic Infrastructures. WP10 is currently formed by representatives of participating European institutions but in the operational phase contributions will be solicited from the entire geodetic community. In fact, WP10 also includes members from other institutions/countries that formally are not participating in the EPOS-IP but will be key players in the future services to be provided by EPOS. Additionally, several partners are also key partners at EUREF, which is also actively collaborating with EPOS. The geodetic component of EPOS is dealing essentially with implementing an e-infrastructure to store and disseminate the continuous GNSS data from existing Research Infrastructures. Present efforts are on developing geodetic tools to support Solid Earth research by optimizing the existing resources. However, other research and technical applications (e.g., reference frames, meteorology, space weather) can also benefit in the future from the optimization of the geodetic resources in Europe. We present and discuss the status of the implementation of the thematic and core services (TCS) for GNSS data within EPOS and the related business plan. We explain the tools and web-services being developed towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using a transparent and standardized processes. We also detail the different DDSS (Data, Data-Products, Services, Software) that will be made available for the Operational Phase of EPOS, which will start to be tested and made available during 2017 and 2018.

  4. GNSS-based operational monitoring devices for forest logging operation chains

    Directory of Open Access Journals (Sweden)

    Raimondo Gallo

    2013-09-01

    Full Text Available The first results of a new approach for implementing operational monitoring tool to control the performance of forest mechanisation chains are proposed and discussed. The solution is based on Global Navigation Satellite System (GNSS tools that are the core of a datalogging system that, in combination with a specific inference-engine, is able to analyse process times, work distances, forward speeds, vehicle tracking and number of working cycles in forest operations. As a consequence the operational monitoring control methods could provide an evaluation of the efficiency of the investigated forest operations. The study has monitored the performance of a tower yarder with crane and processor-head, during logging operations. The field surveys consisted on the installation of the GNSS device directly on the forest equipment for monitoring its movements. Simultaneously the field survey considered the integration of the GNSS information with a time study of work elements based on the continuous time methods supported by a time study board. Additionally, where possible, the onboard computer of the forest machine was also used in order to obtain additional information to be integrated to the GNSS data and the time study. All the recorded GNSS data integrated with the work elements study were thus post-processed through GIS analysis. The preliminary overview about the application of this approach on harvesting operations has permitted to assess a good feasibility of the use of GNSS in the relief of operative times in high mechanised forest chains. Results showed an easy and complete identification of the different operative cycles and elementary operations phases, with a maximum difference between the two methodologies of 10.32%. The use of GNSS installed on forest equipment, integrated with the inferenceengine and also with an interface for data communication or data storage, will permit an automatic or semi-automatic operational monitoring, improving

  5. On the impact of GNSS ambiguity resolution: geometry, ionosphere, time and biases

    Science.gov (United States)

    Khodabandeh, A.; Teunissen, P. J. G.

    2018-06-01

    Integer ambiguity resolution (IAR) is the key to fast and precise GNSS positioning and navigation. Next to the positioning parameters, however, there are several other types of GNSS parameters that are of importance for a range of different applications like atmospheric sounding, instrumental calibrations or time transfer. As some of these parameters may still require pseudo-range data for their estimation, their response to IAR may differ significantly. To infer the impact of ambiguity resolution on the parameters, we show how the ambiguity-resolved double-differenced phase data propagate into the GNSS parameter solutions. For that purpose, we introduce a canonical decomposition of the GNSS network model that, through its decoupled and decorrelated nature, provides direct insight into which parameters, or functions thereof, gain from IAR and which do not. Next to this qualitative analysis, we present for the GNSS estimable parameters of geometry, ionosphere, timing and instrumental biases closed-form expressions of their IAR precision gains together with supporting numerical examples.

  6. Uniqueness and nonuniqueness of the GNSS carrier-phase compass readings

    NARCIS (Netherlands)

    Teunissen, P.J.G.

    2009-01-01

    In this contribution we analyse the possible nonuniqueness in the least-squares solution of the GNSS carrier-phase compass model. It is shown that this lack of uniqueness may manifest itself in the fixed baseline estimator and therefore in the GNSS compass readings. We present the conditions under

  7. High-rate multi-GNSS: what does it mean to seismology?

    Science.gov (United States)

    Geng, J.

    2017-12-01

    GNSS precise point positioning (PPP) is capable of measuring centimeter-level positions epoch by epoch at a single station, and is thus treasured in tsunami/earthquake early warning where static displacements in the near field are critical to rapidly and reliably determining the magnitude of destructive events. However, most operational real-time PPP systems at present rely on only GPS data. The deficiency of such systems is that the high reliability and availability of precise displacements cannot be maintained continuously in real time, which is however a crucial requirement for disaster resistance and response. Multi-GNSS, including GLONASS, BeiDou, Galileo and QZSS other than only GPS, can be a solution to this problem because much more satellites per epoch (e.g. 30-40) will be available. In this case, positioning failure due to data loss or blunders can be minimized, and on the other hand, positioning initializations can be accelerated to a great extent since the satellite geometry for each epoch will be enhanced enormously. We established a prototype real-time multi-GNSS PPP service based on Asia-Pacific real-time network which can collect and stream high-rate data from all five navigation systems above. We estimated high-rate satellite clock corrections and enabled undifferenced ambiguity fixing for multi-GNSS, which therefore ensures high availability and reliability of precise displacement estimates in contrast to GPS-only systems. We will report how we can benefit from multi-GNSS for seismology, especially the noise characteristics of high-rate and sub-daily displacements. We will also use storm surge loading events to demonstrate the contribution of multi-GNSS to sub-daily transient signals.

  8. Contribution of GNSS CORS Infrastructure to the Mission of Modern Geodesy and Status of GNSS CORS in Thailand

    Directory of Open Access Journals (Sweden)

    Chalermchon Satirapod

    2011-01-01

    Full Text Available Geodesy is the science of measuring and mapping the geometry, orientation and gravity field of the Earth including the associated variations with time. Geodesy has also provided the foundation for high accuracy surveying and mapping. Modern Geodesy involves a range of space and terrestrial technologies that contribute to our knowledge of the solid earth, atmosphere and oceans. These technologies include: Global Positioning System/Global Navigation Satellite Systems (GPS/GNSS, Satellite Laser Ranging (SLR, Very Long Baseline Interferometry (VLBI, Satellite Altimetry, Gravity Mapping Missions such as GRACE, CHAMP and GOCE, satelliteborne Differential Interferometric Synthetic Aperture Radar (DInSAR, Absolute and Relative Gravimetry, and Precise Terrestrial Surveying (Levelling and Traversing. A variety of services have been established in recent years to ensure high accuracy and reliable geodetic products to support geoscientific research. The reference frame defined by Modern Geodesy is now the basis for most national and regional datums. Furthermore, the GPS/GNSS technology is a crucial geopositioning tool for both Geodesy and Surveying. There is therefore a blurring of the distinction between geodetic and surveying GPS/GNSS techniques, and increasingly the ground infrastructure of continuously operating reference stations (CORS receivers attempts to address the needs of both geodesists and other positioning professionals. Yet Geodesy is also striving to increase the level of accuracy by a factor of ten over the next decade in order to address the demands of “global change” studies. The Global Geodetic Observing System (GGOS is an important component of the International Association of Geodesy. GGOS aims to integrate all geodetic observations in order to generate a consistent high quality set of geodetic parameters for monitoring the phenomena and processes within the “System Earth”. Integration implies the inclusion of all relevant

  9. Cosmetic ear surgery

    Science.gov (United States)

    Otoplasty; Ear pinning; Ear surgery - cosmetic; Ear reshaping; Pinnaplasty ... Cosmetic ear surgery may be done in the surgeon's office, an outpatient clinic, or a hospital. It can be performed under ...

  10. Study on a High-frequency Multi-GNSS Real-time Precise Clock Estimation Algorithm and Application in GNSS Augment System

    Directory of Open Access Journals (Sweden)

    CHEN Liang

    2017-05-01

    Full Text Available GNSS satellite-based differential augment system is based on real-time orbit and clock augment message. The multi-GNSS real-time precise clock error estimation model is studied, and then the parameters estimated in traditional un-difference model are optimized and a high-efficient real-time clock simplified model is proposed and realized. The real-time orbit data processing based on PANDA is also analyzed. The results indicate that the real-time orbit radial accuracy of GPS, BeiDou MEO and Galileo is 1~5 cm, and the radial accuracy of the BeiDou GEO/IGSO satellite is about 10 cm. It is found that the optimized real-time clock simplified model is more efficient in one epoch than un-difference model and can be applied to high-frequency (such as 1 Hz updating of real-time clock augment message. The results show that the real-time clock error obtained by this model is absolute value and there is no constant bias. Based on the real-time orbit, the GPS real-time clock precision of the simplified model is about 0.24 ns, BeiDou GEO is about 0.50 ns, IGSO/MEO is about 0.22 ns and Galileo is about 0.32 ns. Using the multi-GNSS real-time data stream in GFZ, a multi-GNSS real-time augment prototype system is built and the real-time augment message is being broadcasted on the Internet. The real-time PPP centimeter-level service and meter-level navigation service based on pseudorange are realized based on this prototype system.

  11. Swimmer's Ear

    Science.gov (United States)

    ... Eardrum Taking Care of Your Ears Can Loud Music Hurt My Ears? Your Ears What's Earwax? How Do Pain Relievers Work? View more About Us Contact Us Partners Editorial Policy Permissions Guidelines Privacy Policy & Terms of Use Notice ...

  12. Prediction of GNSS satellite clocks

    International Nuclear Information System (INIS)

    Broederbauer, V.

    2010-01-01

    This thesis deals with the characterisation and prediction of GNSS-satellite-clocks. A prerequisite to develop powerful algorithms for the prediction of clock-corrections is the thorough study of the behaviour of the different clock-types of the satellites. In this context the predicted part of the IGU-clock-corrections provided by the Analysis Centers (ACs) of the IGS was compared to the IGS-Rapid-clock solutions to determine reasonable estimates of the quality of already existing well performing predictions. For the shortest investigated interval (three hours) all ACs obtain almost the same accuracy of 0,1 to 0,4 ns. For longer intervals the individual predictions results start to diverge. Thus, for a 12-hours- interval the differences range from nearly 10 ns (GFZ, CODE) until up to some 'tens of ns'. Based on the estimated clock corrections provided via the IGS Rapid products a simple quadratic polynomial turns out to be sufficient to describe the time series of Rubidium-clocks. On the other hand Cesium-clocks show a periodical behaviour (revolution period) with an amplitude of up to 6 ns. A clear correlation between these amplitudes and the Sun elevation angle above the orbital planes can be demonstrated. The variability of the amplitudes is supposed to be caused by temperature-variations affecting the oscillator. To account for this periodical behaviour a quadratic polynomial with an additional sinus-term was finally chosen as prediction model both for the Cesium as well as for the Rubidium clocks. The three polynomial-parameters as well as amplitude and phase shift of the periodic term are estimated within a least-square-adjustment by means of program GNSS-VC/static. Input-data are time series of the observed part of the IGU clock corrections. With the estimated parameters clock-corrections are predicted for various durations. The mean error of the prediction of Rubidium-clock-corrections for an interval of six hours reaches up to 1,5 ns. For the 12-hours

  13. New Quality Control Algorithm Based on GNSS Sensing Data for a Bridge Health Monitoring System

    Directory of Open Access Journals (Sweden)

    Jae Kang Lee

    2016-05-01

    Full Text Available This research introduces an improvement plan for the reliability of Global Navigation Satellite System (GNSS positioning solutions. It should be considered the most suitable methodology in terms of the adjustment and positioning of GNSS in order to maximize the utilization of GNSS applications. Though various studies have been conducted with regards to Bridge Health Monitoring System (BHMS based on GNSS, the outliers which depend on the signal reception environment could not be considered until now. Since these outliers may be connected to GNSS data collected from major bridge members, which can reduce the reliability of a whole monitoring system through the delivery of false information, they should be detected and eliminated in the previous adjustment stage. In this investigation, the Detection, Identification, Adaptation (DIA technique was applied and implemented through an algorithm. Moreover, it can be directly applied to GNSS data collected from long span cable stayed bridges and most of outliers were efficiently detected and eliminated simultaneously. By these effects, the reliability of GNSS should be enormously improved. Improvement on GNSS positioning accuracy is directly linked to the safety of bridges itself, and at the same time, the reliability of monitoring systems in terms of the system operation can also be increased.

  14. Detection of GNSS Signals Propagation in Urban Canyos Using 3D City Models

    Directory of Open Access Journals (Sweden)

    Petra Pisova

    2015-01-01

    Full Text Available This paper presents one of the solutions to the problem of multipath propagation and effects on Global Navigation Satellite Systems (GNSS signals in urban canyons. GNSS signals may reach a receiver not only through Line-of-Sight (LOS paths, but they are often blocked, reflected or diffracted from tall buildings, leading to unmodelled GNSS errors in position estimation. Therefore in order to detect and mitigate the impact of multipath, a new ray-tracing model for simulation of GNSS signals reception in urban canyons is proposed - based on digital 3D maps information, known positions of GNSS satellites and an assumed position of a receiver. The model is established and validated using experimental, as well as real data. It is specially designed for complex environments and situations where positioning with highest accuracy is required - a typical example is navigation for blind people.

  15. First Spaceborne GNSS-Reflectometry Observations of Hurricanes From the UK TechDemoSat-1 Mission

    Science.gov (United States)

    Foti, Giuseppe; Gommenginger, Christine; Srokosz, Meric

    2017-12-01

    We present the first examples of Global Navigation Satellite Systems-Reflectometry (GNSS-R) observations of hurricanes using spaceborne data from the UK TechDemoSat-1 (TDS-1) mission. We confirm that GNSS-R signals can detect ocean condition changes in very high near-surface ocean wind associated with hurricanes. TDS-1 GNSS-R reflections were collocated with International Best Track Archive for Climate Stewardship (IBTrACS) hurricane data, MetOp ASCAT A/B scatterometer winds, and two reanalysis products. Clear variations of GNSS-R reflected power (σ0) are observed as reflections travel through hurricanes, in some cases up to and through the eye wall. The GNSS-R reflected power is tentatively inverted to estimate wind speed using the TDS-1 baseline wind retrieval algorithm developed for low to moderate winds. Despite this, TDS-1 GNSS-R winds through the hurricanes show closer agreement with IBTrACS estimates than winds provided by scatterometers and reanalyses. GNSS-R wind profiles show realistic spatial patterns and sharp gradients that are consistent with expected structures around the eye of tropical cyclones.

  16. Multi-frequency GNSS robust carrier tracking for ionospheric scintillation mitigation

    Directory of Open Access Journals (Sweden)

    Vilà-Valls Jordi

    2017-01-01

    Full Text Available Ionospheric scintillation is the physical phenomena affecting radio waves propagating from the space through the ionosphere to earth. The signal distortion induced by scintillation can pose a major threat to some GNSS application. Scintillation is one of the more challenging propagation scenarios, particularly affecting high-precision GNSS receivers which require high quality carrier phase measurements; and safety critical applications which have strict accuracy, availability and integrity requirements. Under ionospheric scintillation conditions, GNSS signals are affected by fast amplitude and phase variations, which can compromise the receiver synchronization. To take into account the underlying correlation among different frequency bands, we propose a new multivariate autoregressive model (MAR for the multi-frequency ionospheric scintillation process. Multi-frequency GNSS observations and the scintillation MAR are modeled in state-space, allowing independent tracking of both line-of-sight phase variations and complex gain scintillation components. The resulting joint synchronization and scintillation mitigation problem is solved using a robust nonlinear Kalman filter, validated using real multi-frequency scintillation data with encouraging results.

  17. Tag-elese or The Language of Tags

    Directory of Open Access Journals (Sweden)

    Jan Simons

    2008-01-01

    Full Text Available The core "meme" of Web 2.0 from which almost all other memes radiated was: 'You control your own data' (O'Reilly, 2005, 3. Key instruments for this user control are tagging systems that allow users to freely assign keywords of their own choosing to Internet resources of their own making as well as to documents produced by others. Of course, freely chosen keywords tags do not necessarily follow prefixed taxonomies or classification systems. But going by the maxim that interaction creates similarity and similarity creates interaction, the idea - or hope - is, however, that the tagging practices of individual users will eventually converge into an emergent common vocabulary or folksonomy (Merholz, 2004; Shirky, 2005; Vander Wal, 2005b; Mika, 2007. It is far from clear, however, that free tagging systems will eventually yield controlled vocabularies, and there are many incentives for idiosyncratic, ambiguous, and inconsistent uses of tags. Left to themselves, free tagging systems seem to be too wild and too chaotic for any order to emerge. But are these free tagging systems really as "feral" as they seem to be, or do they only look uncontrolled because one has been looking for order in the wrong place? I have done a quick-and-dirty" analysis of Flickr's tag cloud. The concept was: if folksonomies encourage users to tap on their own vernacular, everyday natural language must somehow "guide" the tagging practices of users of tagging systems. Flickr's tag cloud has been choosen because it may teach us something about tagging systems and folksonomies, and not - or not primarily - because of what tags may tell us about pictures.

  18. Ubiquitous and Seamless Localization: Fusing GNSS Pseudoranges and WLAN Signal Strengths

    Directory of Open Access Journals (Sweden)

    Philipp Richter

    2017-01-01

    Full Text Available Ubiquitous global positioning is not feasible by GNSS alone, as it lacks accurate position fixes in dense urban centres and indoors. Hybrid positioning methods have been developed to aid GNSS in those environments. Fingerprinting localization in wireless local area networks (WLANs is a promising aiding system because of its availability, accuracy, and error mechanisms opposed to that of GNSS. This article presents a low-cost approach to ubiquitous, seamless positioning based on a particle filter integrating GNSS pseudoranges and WLAN received signal strength indicators (RSSIs. To achieve accurate location estimates indoors/outdoors and in the transition zones, appropriate likelihood functions are essential as they determine the influence of each sensor information on the position estimate. We model the spatial RSSI distributions with Gaussian processes and use these models to predict RSSIs at the particle’s positions to obtain point estimates of the RSSI likelihood function. The particle filter’s performance is assessed with real data of two test trajectories in an environment challenging for GNSS and WLAN fingerprinting localization. Outcomes of an extended Kalman filter using pseudoranges and a WLAN position as observation is included as benchmark. The proposed algorithm achieves accurate and robust seamless localization with a median accuracy of five meters.

  19. Comparing Global Positioning System (GPS) and Global Navigation Satellite System (GNSS) Measures of Team Sport Movements.

    Science.gov (United States)

    Jackson, Benjamin M; Polglaze, Ted; Dawson, Brian; King, Trish; Peeling, Peter

    2018-02-21

    To compare data from conventional GPS and new GNSS-enabled tracking devices, and to examine the inter-unit reliability of GNSS devices. Inter-device differences between 10 Hz GPS and GNSS devices were examined during laps (n=40) of a simulated game circuit (SGC) and during elite hockey matches (n=21); GNSS inter-unit reliability was also examined during the SGC laps. Differences in distance values and measures in three velocity categories (low 5 m.s -1 ) and acceleration/deceleration counts (>1.46 m.s -2 and GPS devices in all conditions. These findings suggest that GNSS devices may be more sensitive than GPS in quantifying the physical demands of team sport movements, but further study into the accuracy of GNSS devices is required.

  20. Ear Tubes

    Science.gov (United States)

    ... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...

  1. Performance Improvement of Receivers Based on Ultra-Tight Integration in GNSS-Challenged Environments

    Directory of Open Access Journals (Sweden)

    Feng Qin

    2013-12-01

    Full Text Available Ultra-tight integration was first proposed by Abbott in 2003 with the purpose of integrating a global navigation satellite system (GNSS and an inertial navigation system (INS. This technology can improve the tracking performances of a receiver by reconfiguring the tracking loops in GNSS-challenged environments. In this paper, the models of all error sources known to date in the phase lock loops (PLLs of a standard receiver and an ultra-tightly integrated GNSS/INS receiver are built, respectively. Based on these models, the tracking performances of the two receivers are compared to verify the improvement due to the ultra-tight integration. Meanwhile, the PLL error distributions of the two receivers are also depicted to analyze the error changes of the tracking loops. These results show that the tracking error is significantly reduced in the ultra-tightly integrated GNSS/INS receiver since the receiver’s dynamics are estimated and compensated by an INS. Moreover, the mathematical relationship between the tracking performances of the ultra-tightly integrated GNSS/INS receiver and the quality of the selected inertial measurement unit (IMU is derived from the error models and proved by the error comparisons of four ultra-tightly integrated GNSS/INS receivers aided by different grade IMUs.

  2. In-the-Ear Hearing-Instrument Antenna for ISM-Band Body-Centric Ear-to-Ear Communications

    DEFF Research Database (Denmark)

    Yatman, William H.; Larsen, Lauge K; Kvist, Søren Helstrup

    2012-01-01

    A compact 2.45 GHz slot-loop antenna is implemented for the use in the outer shell of an in-the-ear (ITE) hearing instrument (HI). The antenna is optimized for high ear-to-ear path gain (jS21j). The antenna simulation results are presented for two identical antennas, one placed in the center of e...

  3. GNSS Precise Kinematic Positioning for Multiple Kinematic Stations Based on A Priori Distance Constraints

    Science.gov (United States)

    He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank

    2016-01-01

    When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component. PMID:27043580

  4. Continuous Fine-Fault Estimation with Real-Time GNSS

    Science.gov (United States)

    Norford, B. B.; Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C.; Senko, J.; Larsen, D.

    2017-12-01

    Thousands of real-time telemetered GNSS stations operate throughout the circum-Pacific that may be used for rapid earthquake characterization and estimation of local tsunami excitation. We report on the development of a GNSS-based finite-fault inversion system that continuously estimates slip using real-time GNSS position streams from the Cascadia subduction zone and which is being expanded throughout the circum-Pacific. The system uses 1 Hz precise point position streams computed in the ITRF14 reference frame using clock and satellite orbit corrections from the IGS. The software is implemented as seven independent modules that filter time series using Kalman filters, trigger and estimate coseismic offsets, invert for slip using a non-negative least squares method developed by Lawson and Hanson (1974) and elastic half-space Green's Functions developed by Okada (1985), smooth the results temporally and spatially, and write the resulting streams of time-dependent slip to a RabbitMQ messaging server for use by downstream modules such as tsunami excitation modules. Additional fault models can be easily added to the system for other circum-Pacific subduction zones as additional real-time GNSS data become available. The system is currently being tested using data from well-recorded earthquakes including the 2011 Tohoku earthquake, the 2010 Maule earthquake, the 2015 Illapel earthquake, the 2003 Tokachi-oki earthquake, the 2014 Iquique earthquake, the 2010 Mentawai earthquake, the 2016 Kaikoura earthquake, the 2016 Ecuador earthquake, the 2015 Gorkha earthquake, and others. Test data will be fed to the system and the resultant earthquake characterizations will be compared with published earthquake parameters. Seismic events will be assumed to occur on major faults, so, for example, only the San Andreas fault will be considered in Southern California, while the hundreds of other faults in the region will be ignored. Rake will be constrained along each subfault to be

  5. Seismic displacements monitoring for 2015 Mw 7.8 Nepal earthquake with GNSS data

    Science.gov (United States)

    Geng, T.; Su, X.; Xie, X.

    2017-12-01

    The high-rate Global Positioning Satellite System (GNSS) has been recognized as one of the powerful tools for monitoring ground motions generated by seismic events. The high-rate GPS and BDS data collected during the 2015 Mw 7.8 Nepal earthquake have been analyzed using two methods, that are the variometric approach and Precise point positioning (PPP). The variometric approach is based on time differenced technique using only GNSS broadcast products to estimate velocity time series from tracking observations in real time, followed by an integration procedure on the velocities to derive the seismic event induced displacements. PPP is a positioning method to calculate precise positions at centimeter- or even millimeter-level accuracy with a single GNSS receiver using precise satellite orbit and clock products. The displacement motions with accuracy of 2 cm at far-field stations and 5 cm at near-field stations with great ground motions and static offsets up to 1-2 m could be achieved. The multi-GNSS, GPS + BDS, could provide higher accuracy displacements with the increasing of satellite numbers and the improvement of the Position Dilution of Precision (PDOP) values. Considering the time consumption of clock estimates and the precision of PPP solutions, 5 s GNSS satellite clock interval is suggested. In addition, the GNSS-derived displacements are in good agreement with those from strong motion data. These studies demonstrate the feasibility of real-time capturing seismic waves with multi-GNSS observations, which is of great promise for the purpose of earthquake early warning and rapid hazard assessment.

  6. Development of GNSS PWV information management system for very short-term weather forecast in the Korean Peninsula

    Science.gov (United States)

    Park, Han-Earl; Yoon, Ha Su; Yoo, Sung-Moon; Cho, Jungho

    2017-04-01

    Over the past decade, Global Navigation Satellite System (GNSS) was in the spotlight as a meteorological research tool. The Korea Astronomy and Space Science Institute (KASI) developed a GNSS precipitable water vapor (PWV) information management system to apply PWV to practical applications, such as very short-term weather forecast. The system consists of a DPR, DRS, and TEV, which are divided functionally. The DPR processes GNSS data using the Bernese GNSS software and then retrieves PWV from zenith total delay (ZTD) with the optimized mean temperature equation for the Korean Peninsula. The DRS collects data from eighty permanent GNSS stations in the southern part of the Korean Peninsula and provides the PWV retrieved from GNSS data to a user. The TEV is in charge of redundancy of the DPR. The whole process is performed in near real-time where the delay is ten minutes. The validity of the GNSS PWV was proved by means of a comparison with radiosonde data. In the experiment of numerical weather prediction model, the GNSS PWV was utilized as the initial value of the Weather Research & Forecasting (WRF) model for heavy rainfall event. As a result, we found that the forecasting capability of the WRF is improved by data assimilation of GNSS PWV.

  7. Combination of precise GNSS orbit and clock solutions in a multi-constellation, multi-frequency environment

    Science.gov (United States)

    Ortiz Geist, Estefania

    2015-04-01

    Precise GNSS orbit and clock solutions are essential for the generation of the Terrestrial Reference Frame (TRF) and required for a broad variety of applications. Over the last decades the combination products of the International GNSS Service (IGS) have become the standard for all kinds of GNSS applications requiring highest accuracy. The emerging new GNSS constellations Galileo, BeiDou and the QZSS as well as the modernization of the already established GPS and GLONASS constellations will stimulate a new development in the GNSS data processing in order to gain be best benefit from the new signals and systems for geodetic and geodynamic applications. This introduces the question regarding the influence of this development on the orbit and clock products. What are the consequences for the consistency of the contributions from the Analysis Centres (ACs) of the IGS and how does the combination procedure need to react on his development? Another set of questions is related to the expected scenario in which not all IGS ACs will likely include all GNSS. The algorithm for the orbit and clock combination needs to be adapted for a multi-system combination to keep on one hand the internal consistency between the GNSS during the combination procedure but also consider the differences in the expected orbit qualities between the satellite systems (e.g., due to the number of satellites or network coverage). To investigate these questions ESOC and AIUB have agreed on a joint research fellowship for three years. The objective of this research is to analyse the capabilities and challenges when combining hybrid multi-GNSS solutions and to develop a concept, which compares and combines orbit and clock contributions to come up with a consistent, reliable, truly combined multi-GNSS combination product. Well-defined test scenarios shall be constructed and analysed based on the GNSS data processing software packages in the two institutions, namely "NAPEOS" and "Bernese GNSS Software

  8. Microbiomes of the normal middle ear and ears with chronic otitis media.

    Science.gov (United States)

    Minami, Shujiro B; Mutai, Hideki; Suzuki, Tomoko; Horii, Arata; Oishi, Naoki; Wasano, Koichiro; Katsura, Motoyasu; Tanaka, Fujinobu; Takiguchi, Tetsuya; Fujii, Masato; Kaga, Kimitaka

    2017-10-01

    The aim of this study was to profile and compare the middle ear microbiomes of human subjects with and without chronic otitis media. Prospective multicenter cohort study. All consecutive patients undergoing tympanoplasty surgery for chronic otitis media or ear surgery for conditions other than otitis media were recruited. Sterile swab samples were collected from the middle ear mucosa during surgery. The variable region 4 of the 16S rRNA gene in each sample were amplified using region-specific primers adapted for the Illumina MiSeq sequencer (Illumina, CA, USA)). The sequences were subjected to local blast and classified using Metagenome@KIN (World Fusion, Tokyo, Japan). In total, 155 participants were recruited from seven medical centers. Of these, 88 and 67 had chronic otitis media and normal middle ears, respectively. The most abundant bacterial phyla on the mucosal surfaces of the normal middle ears were Proteobacteria, followed by Actinobacteria, Firmicutes, and Bacteroidetes. The children and adults with normal middle ears differed significantly in terms of middle ear microbiomes. Subjects with chronic otitis media without active inflammation (dry ear) had similar middle ear microbiomes as the normal middle ears group. Subjects with chronic otitis media with active inflammation (wet ear) had a lower prevalence of Proteobacteria and a higher prevalence of Firmicutes than the normal middle ears. The human middle ear is inhabited by more diverse microbial communities than was previously thought. Alteration of the middle ear microbiome may contribute to the pathogenesis of chronic otitis media with active inflammation. 2b. Laryngoscope, 127:E371-E377, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  9. What is the cost per millimetre? Challenging traditional GNSS equipment for precise geosciences and engineering applications

    Science.gov (United States)

    Hogg, William; Boreham, Nicholas; Benedetti, Elisa; Roberts, William

    2017-04-01

    Surveyors, civil and geotechnical engineers are the typical users of professional grade GNSS receiver that is capable of achieving positioning accuracies of sub-centimetre and navigation accuracies of 1-2cm. When choosing the equipment for their needs, they are often faced with a dilemma with each additional frequency, constellation and feature coming at a cost, resulting in professional GNSS equipment being regarded as high-priced specialist equipment. Indeed there are many users that have discounted GNSS on the grounds that it is too expensive and too operationally complex to warrant purchase. Having identified this situation, Nottingham Scientific Ltd (NSL) set about the development of equipment that would break down this barrier making high accuracy GNSS affordable to new users and applications and more cost effective to existing users. NSL created "STICK" which is a single frequency, multi-constellation, IMU-integrated GNSS sensor for precise movement detection of the natural and built environments and infrastructures, at approximately 1/20th of the price of a professional grade GNSS system. STICK has been developed within the context of three European Space Agency (ESA) Integrated Applications Programme Demonstration projects that use space assets to monitor the land stability and the status of different types of infrastructure, each with its own operational challenges. However through the careful selection of components, the implementation of certain operational constraints and the use of advanced statistical data processing, sub-centimetre positioning can be achieved for monitoring purposes. This paper describes STICK, the applications for which it has been developed, and the environments within which it is operating. We then explore the performance by directly comparing STICK to geodetic GNSS receivers setup in an operational, test bed environment. This test bed allows the receivers/antennas to be subjected to a three-dimensional displacement in the order

  10. Single-baseline RTK GNSS Positioning for Hydrographic Surveying

    Science.gov (United States)

    Metin Alkan, Reha; Murat Ozulu, I.; Ilçi, Veli; Kahveci, Muzaffer

    2015-04-01

    Positioning with GNSS technique can be carried out in two ways, absolute and relative. It has been possible to reach a few meters absolute point positioning accuracies in real time after disabling SA permanently in May 2000. Today, accuracies obtainable from absolute point positioning using code observations are not sufficient for most surveying applications. Thus to meet higher accuracy requirements, differential methods using single or dual frequency geodetic-grade GNSS receivers that measure carrier phase have to be used. However, this method requires time-cost field and office works and if the measurement is not carried out with conventional RTK method, user needs a GNSS data processing software to estimate the coordinates. If RTK is used, at least two or more GNSS receivers are required, one as a reference and the other as a rover. Moreover, the distance between the receivers must not exceed 15-20 km in order to be able to rapidly and reliably resolve the carrier phase ambiguities. On the other hand, based on the innovations and improvements in satellite geodesy and GNSS modernization studies occurred within the last decade, many new positioning methods and new approaches have been developed. One of them is Network-RTK (or commonly known as CORS) and the other is Single-baseline RTK. These methods are widely used for many surveying applications in many countries. The user of the system can obtain his/her position within a few cm level of accuracy in real-time with only a single GNSS receiver that has Network RTK (CORS) capability. When compared with the conventional differential and RTK methods, this technique has several significant advantages as it is easy to use and it produces accurate, cost-effective and rapid solutions. In Turkey, establishment of a multi-base RTK network was completed and opened for civilian use in 2009. This network is called CORS-TR and consists of 146 reference stations having about 80-100 km interstation distances. It is possible

  11. Applying the GNSS Volcanic Ash Plume Detection Technique to Consumer Navigation Receivers

    Science.gov (United States)

    Rainville, N.; Palo, S.; Larson, K. M.

    2017-12-01

    Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) rely on predictably structured and constant power RF signals to fulfill their primary use for navigation and timing. When the received strength of GNSS signals deviates from the expected baseline, it is typically due to a change in the local environment. This can occur when signal reflections from the ground are modified by changes in snow or soil moisture content, as well as by attenuation of the signal from volcanic ash. This effect allows GNSS signals to be used as a source for passive remote sensing. Larson et al. (2017) have developed a detection technique for volcanic ash plumes based on the attenuation seen at existing geodetic GNSS sites. Since these existing networks are relatively sparse, this technique has been extended to use lower cost consumer GNSS receiver chips to enable higher density measurements of volcanic ash. These low-cost receiver chips have been integrated into a fully stand-alone sensor, with independent power, communications, and logging capabilities as part of a Volcanic Ash Plume Receiver (VAPR) network. A mesh network of these sensors transmits data to a local base-station which then streams the data real-time to a web accessible server. Initial testing of this sensor network has uncovered that a different detection approach is necessary when using consumer GNSS receivers and antennas. The techniques to filter and process the lower quality data from consumer receivers will be discussed and will be applied to initial results from a functioning VAPR network installation.

  12. Multi-GNSS Opportunities and Challenges

    Science.gov (United States)

    Al-Shaery, A.; Zhang, S.; Lim, S.; Rizos, C.

    2012-04-01

    The multi-GNSS era has began attracting more attention with the declaration of full operational capability of GLONASS , with a 24 satellites being set to 'healthy' on December 8th 2011 (IAC, 2011). This means that GPS is no longer the only GNSS that provides global positioning coverage. This status brings benefits for GNSS users in areas (e.g. 'urban canyon' environments or in deep open cut mines) where the number of visible satellites is limited because of shadowing effects. In such areas adding more functioning satellites, which is one of the aiding solutions, becomes easier, at no extra cost. The inclusion of GLONASS observations in positioning solutions will increase the available number of satellites and thus positioning accuracy may improve as a result of enhanced overall satellite geometry. Such an aiding solution is increasingly attractive due to the successful revitalisation of GLONASS. Another motivation is the availability of improved GLONASS orbits from the IGS and individual analysis centres of the IGS. The increasing availability of receivers with GPS/GLONASS tracking capability on the market is an additional motive. Consequently, most networks of continuously operating reference stations (CORS) are now equipped with receivers that can track both GPS and GLONASS satellite signals, and therefore network-based positioning with combined GPS and GLONASS observations is possible. However, adding GLONASS observations to GPS is not a straight forward process. This is attributable to a few system differences in reference frames for time and coordinates, and in signal structures. The first two differences are easy to deal with using well-defined conversion and transformation parameters (El-Mowafy, 2001). However, signal structure differences have some implications. The mathematical modelling of combined GPS/GLONASS observations is not performed as in the case of GPS-alone. Special care should be paid to such integration. Not only is the software part affected

  13. A real-time GNSS-R system based on software-defined radio and graphics processing units

    Science.gov (United States)

    Hobiger, Thomas; Amagai, Jun; Aida, Masanori; Narita, Hideki

    2012-04-01

    Reflected signals of the Global Navigation Satellite System (GNSS) from the sea or land surface can be utilized to deduce and monitor physical and geophysical parameters of the reflecting area. Unlike most other remote sensing techniques, GNSS-Reflectometry (GNSS-R) operates as a passive radar that takes advantage from the increasing number of navigation satellites that broadcast their L-band signals. Thereby, most of the GNSS-R receiver architectures are based on dedicated hardware solutions. Software-defined radio (SDR) technology has advanced in the recent years and enabled signal processing in real-time, which makes it an ideal candidate for the realization of a flexible GNSS-R system. Additionally, modern commodity graphic cards, which offer massive parallel computing performances, allow to handle the whole signal processing chain without interfering with the PC's CPU. Thus, this paper describes a GNSS-R system which has been developed on the principles of software-defined radio supported by General Purpose Graphics Processing Units (GPGPUs), and presents results from initial field tests which confirm the anticipated capability of the system.

  14. Prototyping a GNSS-Based Passive Radar for UAVs: An Instrument to Classify the Water Content Feature of Lands

    Directory of Open Access Journals (Sweden)

    Micaela Troglia Gamba

    2015-11-01

    Full Text Available Global Navigation Satellite Systems (GNSS broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth’s surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R, whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs, which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests.

  15. The Location GNSS Modules for the Components of Proteus System

    Science.gov (United States)

    Brzostowski, K.; Darakchiev, R.; Foks-Ryznar, A.; Sitek, P.

    2012-01-01

    The Proteus system - the Integrated Mobile System for Counterterrorism and Rescue Operations is a complex innovative project. To assure the best possible localization of mobile components of the system, many different Global Navigation Satellite System (GNSS) modules were taken into account. In order to chose the best solution many types of tests were done. Full results and conclusions are presented in this paper. The idea of measurements was to test modules in GPS Standard Positioning Service (SPS) with EGNOS system specification according to certain algorithms. The tests had to answer the question: what type of GNSS modules should be used on different components with respect to specific usage of Proteus system. The second goal of tests was to check the solution quality of integrated GNSS/INS (Inertial Navigation System) and its possible usage in some Proteus system components.

  16. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe

    Directory of Open Access Journals (Sweden)

    G. Guerova

    2016-11-01

    Full Text Available Global navigation satellite systems (GNSSs have revolutionised positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is now an established atmospheric observing system, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60–70 % of atmospheric warming. In Europe, the application of GNSS in meteorology started roughly two decades ago, and today it is a well-established field in both research and operation. This review covers the state of the art in GNSS meteorology in Europe. The advances in GNSS processing for derivation of tropospheric products, application of GNSS tropospheric products in operational weather prediction and application of GNSS tropospheric products for climate monitoring are discussed. The GNSS processing techniques and tropospheric products are reviewed. A summary of the use of the products for validation and impact studies with operational numerical weather prediction (NWP models as well as very short weather prediction (nowcasting case studies is given. Climate research with GNSSs is an emerging field of research, but the studies so far have been limited to comparison with climate models and derivation of trends. More than 15 years of GNSS meteorology in Europe has already achieved outstanding cooperation between the atmospheric and geodetic communities. It is now feasible to develop next-generation GNSS tropospheric products and applications that can enhance the quality of weather forecasts and climate monitoring. This work is carried out within COST Action ES1206 advanced global navigation satellite systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC, http://gnss4swec.knmi.nl.

  17. An efficient solution of real-time data processing for multi-GNSS network

    Science.gov (United States)

    Gong, Xiaopeng; Gu, Shengfeng; Lou, Yidong; Zheng, Fu; Ge, Maorong; Liu, Jingnan

    2017-12-01

    Global navigation satellite systems (GNSS) are acting as an indispensable tool for geodetic research and global monitoring of the Earth, and they have been rapidly developed over the past few years with abundant GNSS networks, modern constellations, and significant improvement in mathematic models of data processing. However, due to the increasing number of satellites and stations, the computational efficiency becomes a key issue and it could hamper the further development of GNSS applications. In this contribution, this problem is overcome from the aspects of both dense linear algebra algorithms and GNSS processing strategy. First, in order to fully explore the power of modern microprocessors, the square root information filter solution based on the blocked QR factorization employing as many matrix-matrix operations as possible is introduced. In addition, the algorithm complexity of GNSS data processing is further decreased by centralizing the carrier-phase observations and ambiguity parameters, as well as performing the real-time ambiguity resolution and elimination. Based on the QR factorization of the simulated matrix, we can conclude that compared to unblocked QR factorization, the blocked QR factorization can greatly improve processing efficiency with a magnitude of nearly two orders on a personal computer with four 3.30 GHz cores. Then, with 82 globally distributed stations, the processing efficiency is further validated in multi-GNSS (GPS/BDS/Galileo) satellite clock estimation. The results suggest that it will take about 31.38 s per epoch for the unblocked method. While, without any loss of accuracy, it only takes 0.50 and 0.31 s for our new algorithm per epoch for float and fixed clock solutions, respectively.

  18. Biases in GNSS-Data Processing

    Science.gov (United States)

    Schaer, S. C.; Dach, R.; Lutz, S.; Meindl, M.; Beutler, G.

    2010-12-01

    Within the Global Positioning System (GPS) traditionally different types of pseudo-range measurements (P-code, C/A-code) are available on the first frequency that are tracked by the receivers with different technologies. For that reason, P1-C1 and P1-P2 Differential Code Biases (DCB) need to be considered in a GPS data processing with a mix of different receiver types. Since the Block IIR-M series of GPS satellites also provide C/A-code on the second frequency, P2-C2 DCB need to be added to the list of biases for maintenance. Potential quarter-cycle biases between different phase observables (specifically L2P and L2C) are another issue. When combining GNSS (currently GPS and GLONASS), careful consideration of inter-system biases (ISB) is indispensable, in particular when an adequate combination of individual GLONASS clock correction results from different sources (using, e.g., different software packages) is intended. Facing the GPS and GLONASS modernization programs and the upcoming GNSS, like the European Galileo and the Chinese Compass, an increasing number of types of biases is expected. The Center for Orbit Determination in Europe (CODE) is monitoring these GPS and GLONASS related biases for a long time based on RINEX files of the tracking network of the International GNSS Service (IGS) and in the frame of the data processing as one of the global analysis centers of the IGS. Within the presentation we give an overview on the stability of the biases based on the monitoring. Biases derived from different sources are compared. Finally, we give an outlook on the potential handling of such biases with the big variety of signals and systems expected in the future.

  19. A High-Level Functional Architecture for GNSS-Based Road Charging Systems

    DEFF Research Database (Denmark)

    Zabic, Martina

    2011-01-01

    , a short introduction is provided followed by a presentation of the system engineering methodology to illustrate how and why system architectures can be beneficial for GNSS-based road charging systems. Hereafter, a basic set of system functions is determined based on functional system requirements, which...... charging systems, it is important to highlight the overall system architecture which is the framework that defines the basic functions and important concepts of the system. This paper presents a functional architecture for GNSS-based road charging systems based on the concepts of system engineering. First...... defines the necessary tasks that these systems must accomplish. Finally, this paper defines the system functionalities; and provides a generic high-level functional architecture for GNSS-based road charging systems....

  20. Technical efficiency and economic viability of different cattle identification methods allowed by the Brazilian traceability system

    Directory of Open Access Journals (Sweden)

    Marcos Aurelio Lopes

    2017-03-01

    Full Text Available We aimed to evaluate the technical efficiency and economic viability of the implementation and use of four cattle identification methods allowed by the Brazilian traceability system. The study was conducted in a beef cattle production system located in the State of Mato Grosso, from January to June 2012. Four identification methods (treatments were compared: T1: ear tag in one ear and ear button in the other ear (eabu; T2: ear tag and iron brand on the right leg (eaib; T3: ear tag in one ear and tattoo on the other ear (eata; and T4: ear tag in one ear and electronic ear tag (eael on the other. Each treatment was applied to 60 Nelore animals, totaling 240 animals, divided equally into three life stages (calves, young cattle, adult cattle. The study had two phases: implementation (phase 1 and reading and transfer of identification numbers to an electronic database (phase 2. All operating expenses related to the two phases of the study were determined. The database was constructed, and the statistical analyses were performed using SPSS® 17.0 software. Regarding the time spent on implementation (phase 1, conventional ear tags and electronic ear tags produced similar results, which were lower than those of hot iron and tattoo methods, which differed from each other. Regarding the time required for reading the numbers on animals and their transcription into a database (phase 2, electronic ear-tagging was the fastest method, followed by conventional ear tag, hot iron and tattoo. Among the methods analyzed, the electronic ear tag had the highest technical efficiency because it required less time to implement identifiers and to complete the process of reading and transcription to an electronic database and because it did not exhibit any errors. However, the cost of using the electronic ear-tagging method was higher primarily due to the cost of the device.

  1. Preparing the Plate Boundary Observatory GNSS Network for the Future

    Science.gov (United States)

    Austin, K. E.; Walls, C. P.; Dittman, T.; Mann, D.; Boyce, E. S.; Basset, A.; Woolace, A. C.; Turner, R.; Lawrence, S.; Rhoades, S.; Pyatt, C.; Willoughby, H.; Feaux, K.; Mattioli, G. S.

    2017-12-01

    The EarthScope Plate Boundary Observatory (PBO) GNSS network, funded by the NSF and operated by UNAVCO, is comprised of 1100 permanent GPS and GNSS stations spanning three principal tectonic regimes and is administered by distinct management. The GPS-only network was initially designed for daily data file downloads primarily for tectonic analysis. This low data volume requirement and circa-2004 IP-based cellular/VSat modems provided significant freedom for station placement and enabled science-targeted installation of stations in some of the most remote and geologically interesting areas. Community requests for high-rate data downloads for GNSS seismology, airborne LiDAR surveys, meteorological/GNSS/seismic real-time data flow and other demands, however, require significantly increased bandwidth beyond the 5-20 kB/s transfer rates that were needed as part of the original design. Since the close of construction in September 2008, PBO enhancements have been implemented through additional funding by the NSF (ARRA/Cascadia), NOAA, and NASA and in collaboration with stakeholders such as Caltrans, ODOT, Scripps, and the USGS. Today, only 18 of the original cell modems remain, with 601 upgraded cell modems providing 3G/4G/LTE data communications that support transfer rates ranging from 80-400 kB/s. Radio network expansion and upgrades continue to harden communications using both 2.4 GHz and 5.8 GHz radios. 78 VSAT and 5 manual download sites remain. PBO-wide the network capabilities for 1 Hz & 5 Hz downloads or low latency 1 Hz streaming are 85%, 80% and 65% of PBO stations, respectively, with 708 active 1 Hz streams. Vaisala meteorological instruments are located at 140 sites most of which stream GPS/Met data in real time. GPS-only receivers are being replaced with GNSS receivers and antennas. Today, there are 279 stations in the PBO network with either GLONASS enabled Trimble NetR9 or full GNSS constellation Septentrio PolaRx5 receivers. Just as the scale and

  2. Play it by Ear

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2014-01-01

    The first antenna for ear-to-ear communication with a standard Bluetooth chip has the potential to improve hearing aid technology.......The first antenna for ear-to-ear communication with a standard Bluetooth chip has the potential to improve hearing aid technology....

  3. Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas.

    Science.gov (United States)

    Gakne, Paul Verlaine; O'Keefe, Kyle

    2018-04-17

    This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites.

  4. Tsunami Amplitude Estimation from Real-Time GNSS.

    Science.gov (United States)

    Jeffries, C.; MacInnes, B. T.; Melbourne, T. I.

    2017-12-01

    Tsunami early warning systems currently comprise modeling of observations from the global seismic network, deep-ocean DART buoys, and a global distribution of tide gauges. While these tools work well for tsunamis traveling teleseismic distances, saturation of seismic magnitude estimation in the near field can result in significant underestimation of tsunami excitation for local warning. Moreover, DART buoy and tide gauge observations cannot be used to rectify the underestimation in the available time, typically 10-20 minutes, before local runup occurs. Real-time GNSS measurements of coseismic offsets may be used to estimate finite faulting within 1-2 minutes and, in turn, tsunami excitation for local warning purposes. We describe here a tsunami amplitude estimation algorithm; implemented for the Cascadia subduction zone, that uses continuous GNSS position streams to estimate finite faulting. The system is based on a time-domain convolution of fault slip that uses a pre-computed catalog of hydrodynamic Green's functions generated with the GeoClaw shallow-water wave simulation software and maps seismic slip along each section of the fault to points located off the Cascadia coast in 20m of water depth and relies on the principle of the linearity in tsunami wave propagation. The system draws continuous slip estimates from a message broker, convolves the slip with appropriate Green's functions which are then superimposed to produce wave amplitude at each coastal location. The maximum amplitude and its arrival time are then passed into a database for subsequent monitoring and display. We plan on testing this system using a suite of synthetic earthquakes calculated for Cascadia whose ground motions are simulated at 500 existing Cascadia GPS sites, as well as real earthquakes for which we have continuous GNSS time series and surveyed runup heights, including Maule, Chile 2010 and Tohoku, Japan 2011. This system has been implemented in the CWU Geodesy Lab for the Cascadia

  5. A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations

    Science.gov (United States)

    Kleinherenbrink, Marcel; Riva, Riccardo; Frederikse, Thomas

    2018-03-01

    Tide gauge (TG) records are affected by vertical land motion (VLM), causing them to observe relative instead of geocentric sea level. VLM can be estimated from global navigation satellite system (GNSS) time series, but only a few TGs are equipped with a GNSS receiver. Hence, (multiple) neighboring GNSS stations can be used to estimate VLM at the TG. This study compares eight approaches to estimate VLM trends at 570 TG stations using GNSS by taking into account all GNSS trends with an uncertainty smaller than 1 mm yr-1 within 50 km. The range between the methods is comparable with the formal uncertainties of the GNSS trends. Taking the median of the surrounding GNSS trends shows the best agreement with differenced altimetry-tide gauge (ALT-TG) trends. An attempt is also made to improve VLM trends from ALT-TG time series. Only using highly correlated along-track altimetry and TG time series reduces the SD of ALT-TG time series by up to 10 %. As a result, there are spatially coherent changes in the trends, but the reduction in the root mean square (RMS) of differences between ALT-TG and GNSS trends is insignificant. However, setting correlation thresholds also acts like a filter to remove problematic TG time series. This results in sets of ALT-TG VLM trends at 344-663 TG locations, depending on the correlation threshold. Compared to other studies, we decrease the RMS of differences between GNSS and ALT-TG trends (from 1.47 to 1.22 mm yr-1), while we increase the number of locations (from 109 to 155), Depending on the methods the mean of differences between ALT-TG and GNSS trends vary between 0.1 and 0.2 mm yr-1. We reduce the mean of the differences by taking into account the effect of elastic deformation due to present-day mass redistribution. At varying ALT-TG correlation thresholds, we provide new sets of trends for 759 to 939 different TG stations. If both GNSS and ALT-TG trend estimates are available, we recommend using the GNSS trend estimates because residual

  6. LATENCY DETERMINATION AND COMPENSATION IN REAL-TIME GNSS/INS INTEGRATED NAVIGATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    P. D. Solomon

    2012-09-01

    Full Text Available Unmanned Aerial Vehicle (UAV technology is now commonplace in many defence and civilian environments. However, the high cost of owning and operating a sophisticated UAV has slowed their adoption in many commercial markets. Universities and research groups are actively experimenting with UAVs to further develop the technology, particularly for automated flying operations. The two main UAV platforms used are fixed-wing and helicopter. Helicopter-based UAVs offer many attractive features over fixed-wing UAVs, including vertical take-off, the ability to loiter, and highly dynamic flight. However the control and navigation of helicopters are significantly more demanding than those of fixed-wing UAVs and as such require a high bandwidth real-time Position, Velocity, Attitude (PVA navigation system. In practical Real-Time Navigation Systems (RTNS there are delays in the processing of the GNSS data prior to the fusion of the GNSS data with the INS measurements. This latency must be compensated for otherwise it degrades the solution of the navigation filter. This paper investigates the effect of latency in the arrival time of the GNSS data in a RTNS. Several test drives and flights were conducted with a low-cost RTNS, and compared with a high quality GNSS/INS solution. A technique for the real-time, automated and accurate estimation of the GNSS latency in low-cost systems was developed and tested. The latency estimates were then verified through cross-correlation with the time-stamped measurements from the reference system. A delayed measurement Extended Kalman Filter was then used to allow for the real-time fusing of the delayed measurements, and then a final system developed for on-the-fly measurement and compensation of GNSS latency in a RTNS.

  7. Latency Determination and Compensation in Real-Time Gnss/ins Integrated Navigation Systems

    Science.gov (United States)

    Solomon, P. D.; Wang, J.; Rizos, C.

    2011-09-01

    Unmanned Aerial Vehicle (UAV) technology is now commonplace in many defence and civilian environments. However, the high cost of owning and operating a sophisticated UAV has slowed their adoption in many commercial markets. Universities and research groups are actively experimenting with UAVs to further develop the technology, particularly for automated flying operations. The two main UAV platforms used are fixed-wing and helicopter. Helicopter-based UAVs offer many attractive features over fixed-wing UAVs, including vertical take-off, the ability to loiter, and highly dynamic flight. However the control and navigation of helicopters are significantly more demanding than those of fixed-wing UAVs and as such require a high bandwidth real-time Position, Velocity, Attitude (PVA) navigation system. In practical Real-Time Navigation Systems (RTNS) there are delays in the processing of the GNSS data prior to the fusion of the GNSS data with the INS measurements. This latency must be compensated for otherwise it degrades the solution of the navigation filter. This paper investigates the effect of latency in the arrival time of the GNSS data in a RTNS. Several test drives and flights were conducted with a low-cost RTNS, and compared with a high quality GNSS/INS solution. A technique for the real-time, automated and accurate estimation of the GNSS latency in low-cost systems was developed and tested. The latency estimates were then verified through cross-correlation with the time-stamped measurements from the reference system. A delayed measurement Extended Kalman Filter was then used to allow for the real-time fusing of the delayed measurements, and then a final system developed for on-the-fly measurement and compensation of GNSS latency in a RTNS.

  8. Tag questions Tag questions

    Directory of Open Access Journals (Sweden)

    David Brazil

    2008-04-01

    Full Text Available The so-called 'tag' structures of English have received a lot of attention in language teaching programmes, attention that is not hard to justify when one considers the problems and anxiety they can occasion for many foreign learners. Most teachers one speaks to seem fairly willing to agree, however, that traditional treatments of the topic leave much to be desired. It happens, also, that, when considered collectively, the tags and some related phenomena have a special heoretical interest. For they constitute a field in which it seems essential to bring together insights that derive from the study of several aspects of linguistic organisation, aspects which in some recent work have been held to need distinctive kinds of descriptive category to handle. Traditional treatments have found it necessary to recognise different syntactic types (e.g. 'same polarity' and 'reversed polarity' tags and ifferent intonational treatments ("falling'and 'rising' tag; while the way the communicative significance of the various permutations is described normally requires reference to the expectations they signal regarding the immediately following behaviour of the other party (in the common phrase, 'What kind of answer they expect'. This last consideration places the matter squarely in the arena of recent work on the analysis of interactive discourse. The so-called 'tag' structures of English have received a lot of attention in language teaching programmes, attention that is not hard to justify when one considers the problems and anxiety they can occasion for many foreign learners. Most teachers one speaks to seem fairly willing to agree, however, that traditional treatments of the topic leave much to be desired. It happens, also, that, when considered collectively, the tags and some related phenomena have a special heoretical interest. For they constitute a field in which it seems essential to bring together insights that derive from the study of several aspects

  9. Ear examination

    Science.gov (United States)

    ... may be present. The eardrum is a light-gray color or a shiny pearly-white. Light should ... discharge or bleeding Alternative Names Otoscopy Images Ear anatomy Medical findings based on ear anatomy Otoscopic exam ...

  10. Tempting To Tag: An Experimental Comparison Of Four Tagging Input Mechanisms

    Directory of Open Access Journals (Sweden)

    Mark Melenhorst

    2010-01-01

    Full Text Available Tagging helps achieve improved indexing and recommendation of resources (e.g., videos or pictures in large data collections. In order to reap the benefits of tagging, people must be persuaded to label the resources they consume. This paper reports on a study in which four different tagging input mechanisms and their effect on users' motivation to tag were compared. The mechanisms consisted of a standard tag input box, a chatbot-like environment, a bookmarking mechanism, and a "tag and vote" game. The results of our experiment show that the use of the nonstandard tagging input mechanisms does not affect users' motivation to tag. In some instances tagging mechanisms were found to distract users from their primary task: consuming resources. Persuading people to tag might be accomplished more effectively by using other motivating tagging mechanisms (e.g., tagging games, or motivation could be created by explaining the usefulness of tagging.

  11. EFFECTS OF OCEAN TIDE MODELS ON GNSS-ESTIMATED ZTD AND PWV IN TURKEY

    Directory of Open Access Journals (Sweden)

    G. Gurbuz

    2015-12-01

    Full Text Available Global Navigation Satellite System (GNSS observations can precisely estimate the total zenith tropospheric delay (ZTD and precipitable water vapour (PWV for weather prediction and atmospheric research as a continuous and all-weather technique. However, apart from GNSS technique itself, estimations of ZTD and PWV are subject to effects of geophysical models with large uncertainties, particularly imprecise ocean tide models in Turkey. In this paper, GNSS data from Jan. 1st to Dec. 31st of 2014 are processed at 4 co-located GNSS stations (GISM, DIYB, GANM, and ADAN with radiosonde from Turkish Met-Office along with several nearby IGS stations. The GAMIT/GLOBK software has been used to process GNSS data of 30-second sample using the Vienna Mapping Function and 10° elevation cut-off angle. Also tidal and non-tidal atmospheric pressure loadings (ATML at the observation level are also applied in GAMIT/GLOBK. Several widely used ocean tide models are used to evaluate their effects on GNSS-estimated ZTD and PWV estimation, such as IERS recommended FES2004, NAO99b from a barotropic hydrodynamic model, CSR4.0 obtained from TOPEX/Poseidon altimetry with the model FES94.1 as the reference model and GOT00 which is again long wavelength adjustments of FES94.1 using TOPEX/Poseidon data at 0.5 by 0.5 degree grid. The ZTD and PWV computed from radiosonde profile observations are regarded as reference values for the comparison and validation. In the processing phase, five different strategies are taken without ocean tide model and with four aforementioned ocean tide models, respectively, which are used to evaluate ocean tide models effects on GNSS-estimated ZTD and PWV estimation through comparing with co-located Radiosonde. Results showed that ocean tide models have greatly affected the estimation of the ZTD in centimeter level and thus the precipitable water vapour in millimeter level, respectively at stations near coasts. The ocean tide model FES2004 that is

  12. Ionospheric Modeling for Precise GNSS Applications

    NARCIS (Netherlands)

    Memarzadeh, Y.

    2009-01-01

    The main objective of this thesis is to develop a procedure for modeling and predicting ionospheric Total Electron Content (TEC) for high precision differential GNSS applications. As the ionosphere is a highly dynamic medium, we believe that to have a reliable procedure it is necessary to transfer

  13. Hairy ears; Revisited

    Directory of Open Access Journals (Sweden)

    Daifullah Al Aboud

    2014-04-01

    Full Text Available Hair can grow in areas which are not usually hairy in human skin. The Online Mendelian Inheritance in Man (OMIM (http:// www.ncbi.nlm.nih.gov/omimhave some entries in this regards. These include ( %139600 – HAIRY ELBOWS, #605130 – HAIRY ELBOWS, SHORT STATURE, FACIAL DYSMORPHISM, AND DEVELOPMENTAL DELAY, 139630 – HAIRY NOSE TIP, 139500 – HAIRY EARS, and 425500 – HAIRY EARS, Y-LINKED. Hairy ears, (Fig. 1, are uncommon trait and it is rare to see a person with very long hair on the ears.

  14. Gnss Geodetic Monitoring as Support of Geodynamics Research in Colombia, South America

    Science.gov (United States)

    Mora-Paez, H.; Acero-Patino, N.; Rodriguez-Zuluaga, J. S.; Diederix, H.; Bohorquez-Orozco, O. P.; Martinez-Diaz, G. P.; Diaz-Mila, F.; Giraldo-Londono, L. S.; Cardozo-Giraldo, S.; Vasquez-Ospina, A. F.; Lizarazo, S. C.

    2013-05-01

    To support the geodynamics research at the northwestern corner of South America, GEORED, the acronym for "Geodesia: Red de Estudios de Deformación" has been adopted for the Project "Implementation of the National GNSS Network for Geodynamics" carried out by the Colombian Geological Survey, (SGC), formerly INGEOMINAS. Beginning in 2007, discussions within the GEORED group led to a master plan for the distribution of the base permanent GPS/GNSS station array and specific areas of interest for campaign site construction. The use of previously identified active faults as preferred structures along which stresses are transferred through the deformational area led to the idea of segmentation of the North Andes within Colombia into 20 tectonic sub-blocks. Each of the 20 sub-blocks is expected to have, at least, three-four permanent GPS/GNSS stations within the block along with construction of campaign sites along the boundaries. Currently, the GEORED Network is managing 46 continuously including: 40 GEORED GPS/GNSS continuously operating stations; 4 GNSS continuously operating stations provided by the COCONet (Continuously Operating Caribbean GPS Observational Network) Project; the Bogotá IGS GPS station (BOGT), installed in 1994 under the agreement between JPL-NASA and the SGC; and the San Andres Island station, installed in 2007 under the MOU between UCAR and the SGC. In addition to the permanent installations, more than 230 GPS campaign sites have been constructed and are being occupied one time per year. The Authority of the Panama Canal and the Escuela Politecnica de Quito have also provided data of 4 and 5 GPS/GNSS stations respectively. The GPS data are processed using the GIPSY-OASIS II software, and the GPS time series of daily station positions give fundamental information for both regional and local geodynamics studies. Until now, we have obtained 100 quality vector velocities for Colombia, 23 of them as part of the permanent network. The GPS/GNSS stations

  15. Rapid kinematic finite source inversion for Tsunamic Early Warning using high rate GNSS data

    Science.gov (United States)

    Chen, K.; Liu, Z.; Song, Y. T.

    2017-12-01

    Recently, Global Navigation Satellite System (GNSS) has been used for rapid earthquake source inversion towards tsunami early warning. In practice, two approaches, i.e., static finite source inversion based on permanent co-seismic offsets and kinematic finite source inversion using high-rate (>= 1 Hz) co-seismic displacement waveforms, are often employed to fulfill the task. The static inversion is relatively easy to be implemented and does not require additional constraints on rupture velocity, duration, and temporal variation. However, since most GNSS receivers are deployed onshore locating on one side of the subduction fault, there is very limited resolution on near-trench fault slip using GNSS in static finite source inversion. On the other hand, the high-rate GNSS displacement waveforms, which contain the timing information of earthquake rupture explicitly and static offsets implicitly, have the potential to improve near-trench resolution by reconciling with the depth-dependent megathrust rupture behaviors. In this contribution, we assess the performance of rapid kinematic finite source inversion using high-rate GNSS by three selected historical tsunamigenic cases: the 2010 Mentawai, 2011 Tohoku and 2015 Illapel events. With respect to the 2010 Mentawai case, it is a typical tsunami earthquake with most slip concentrating near the trench. The static inversion has little resolution there and incorrectly puts slip at greater depth (>10km). In contrast, the recorded GNSS displacement waveforms are deficit in high-frequency energy, the kinematic source inversion recovers a shallow slip patch (depth less than 6 km) and tsunami runups are predicted quite reasonably. For the other two events, slip from kinematic and static inversion show similar characteristics and comparable tsunami scenarios, which may be related to dense GNSS network and behavior of the rupture. Acknowledging the complexity of kinematic source inversion in real-time, we adopt the back

  16. GNSS Derived Ionospheric TEC Observed Through Different TEC Calibration Techniques in the Brazilian Sector

    Science.gov (United States)

    Becker-Guedes, F.; Carmo, C. S.; Camargo, P. O.; Monico, J. F. G.; Nicoli Candido, C. M.

    2017-12-01

    Global Navigation Satellite System (GNSS) is becoming a reliable tool for use in air navigation systems. Its use as the main technology for determination of airplanes positioning has various economic and logistic benefits but it depends strongly on the ionospheric layer influences. The Brazilian sector ionosphere, mainly over the equatorial ionization anomaly (EIA), presents remarkable errors in the GNSS signal as compared to North America and Europe. In order to study the total electron content latitudinal variation of the Brazilian ionosphere we used a pair of GNSS receivers on the ground, one located in the equatorial region (Sao Luis) and other in the southern crest of the EIA (Cachoeira Paulista), to collect the GNSS observables and calculate the vertical TEC using different methods that has proven to work well to describe the ionospheric behavior in the North America and in Europe. We compared this results with a modified Nagoya TEC calculation method used by the EMBRACE (Estudo e Monitoramento BRAsileiro do Clima Espacial - Brazilian Study and Monitoring of Space Weather) program. This work intends to follow the performance of different TEC tuning methods to evaluate the spurious effects of the ionospheric EIA gradients in the TEC determination under typical conditions of the low-latitudes ionosphere in the Brazilian sector. The calculated TEC under different solar cycle conditions, geomagnetic activity, and seasonal variations show deviations in the performance of each method and stress the importance of well adjust the GNSS observations to local conditions in order to optimize the TEC evaluation. This study contributes to a better understanding of local GNSS signal errors in the global intent of offering conditions to improve the accuracy, integrity, availability, and continuity requirements for the use of GNSS for air navigation in South America.

  17. Flicker Noise in GNSS Station Position Time Series: How much is due to Crustal Loading Deformations?

    Science.gov (United States)

    Rebischung, P.; Chanard, K.; Metivier, L.; Altamimi, Z.

    2017-12-01

    The presence of colored noise in GNSS station position time series was detected 20 years ago. It has been shown since then that the background spectrum of non-linear GNSS station position residuals closely follows a power-law process (known as flicker noise, 1/f noise or pink noise), with some white noise taking over at the highest frequencies. However, the origin of the flicker noise present in GNSS station position time series is still unclear. Flicker noise is often described as intrinsic to the GNSS system, i.e. due to errors in the GNSS observations or in their modeling, but no such error source has been identified so far that could explain the level of observed flicker noise, nor its spatial correlation.We investigate another possible contributor to the observed flicker noise, namely real crustal displacements driven by surface mass transports, i.e. non-tidal loading deformations. This study is motivated by the presence of power-law noise in the time series of low-degree (≤ 40) and low-order (≤ 12) Stokes coefficients observed by GRACE - power-law noise might also exist at higher degrees and orders, but obscured by GRACE observational noise. By comparing GNSS station position time series with loading deformation time series derived from GRACE gravity fields, both with their periodic components removed, we therefore assess whether GNSS and GRACE both plausibly observe the same flicker behavior of surface mass transports / loading deformations. Taking into account GRACE observability limitations, we also quantify the amount of flicker noise in GNSS station position time series that could be explained by such flicker loading deformations.

  18. Outlier Detection in GNSS Pseudo-Range/Doppler Measurements for Robust Localization

    Directory of Open Access Journals (Sweden)

    Salim Zair

    2016-04-01

    Full Text Available In urban areas or space-constrained environments with obstacles, vehicle localization using Global Navigation Satellite System (GNSS data is hindered by Non-Line Of Sight (NLOS and multipath receptions. These phenomena induce faulty data that disrupt the precise localization of the GNSS receiver. In this study, we detect the outliers among the observations, Pseudo-Range (PR and/or Doppler measurements, and we evaluate how discarding them improves the localization. We specify a contrario modeling for GNSS raw data to derive an algorithm that partitions the dataset between inliers and outliers. Then, only the inlier data are considered in the localization process performed either through a classical Particle Filter (PF or a Rao-Blackwellization (RB approach. Both localization algorithms exclusively use GNSS data, but they differ by the way Doppler measurements are processed. An experiment has been performed with a GPS receiver aboard a vehicle. Results show that the proposed algorithms are able to detect the ‘outliers’ in the raw data while being robust to non-Gaussian noise and to intermittent satellite blockage. We compare the performance results achieved either estimating only PR outliers or estimating both PR and Doppler outliers. The best localization is achieved using the RB approach coupled with PR-Doppler outlier estimation.

  19. Accuracy improvement techniques in Precise Point Positioning method using multiple GNSS constellations

    Science.gov (United States)

    Vasileios Psychas, Dimitrios; Delikaraoglou, Demitris

    2016-04-01

    The future Global Navigation Satellite Systems (GNSS), including modernized GPS, GLONASS, Galileo and BeiDou, offer three or more signal carriers for civilian use and much more redundant observables. The additional frequencies can significantly improve the capabilities of the traditional geodetic techniques based on GPS signals at two frequencies, especially with regard to the availability, accuracy, interoperability and integrity of high-precision GNSS applications. Furthermore, highly redundant measurements can allow for robust simultaneous estimation of static or mobile user states including more parameters such as real-time tropospheric biases and more reliable ambiguity resolution estimates. This paper presents an investigation and analysis of accuracy improvement techniques in the Precise Point Positioning (PPP) method using signals from the fully operational (GPS and GLONASS), as well as the emerging (Galileo and BeiDou) GNSS systems. The main aim was to determine the improvement in both the positioning accuracy achieved and the time convergence it takes to achieve geodetic-level (10 cm or less) accuracy. To this end, freely available observation data from the recent Multi-GNSS Experiment (MGEX) of the International GNSS Service, as well as the open source program RTKLIB were used. Following a brief background of the PPP technique and the scope of MGEX, the paper outlines the various observational scenarios that were used in order to test various data processing aspects of PPP solutions with multi-frequency, multi-constellation GNSS systems. Results from the processing of multi-GNSS observation data from selected permanent MGEX stations are presented and useful conclusions and recommendations for further research are drawn. As shown, data fusion from GPS, GLONASS, Galileo and BeiDou systems is becoming increasingly significant nowadays resulting in a position accuracy increase (mostly in the less favorable East direction) and a large reduction of convergence

  20. The use of external electronic tags on fish: an evaluation of tag retention and tagging effects

    DEFF Research Database (Denmark)

    Jepsen, Niels; Thorstad, Eva B.; Havn, Torgeir

    2015-01-01

    External tagging of fish with electronic tags has been used for decades for a wide range of marine and freshwater species. In the early years of fish telemetry research, it was the most commonly used attachment method, but later internal implants became preferred. Recently, the number of telemetry...... unsuitable for surgical implantation, or when using tags with sensors recording the external environment. The most commonly reported problems with external tags are tissue damage, premature tag loss, and decreased swimming capacity, but the effects are highly context dependent and species specific. Reduced......, but particularly there are few studies on predation risk, social interactions, and studies distinguishing capture and handling effects from tagging effects. For PSATs, especially those that are large relative to fish size, there are particular problems with a high proportion of premature tag losses, reduced...

  1. The GNSS-based component for the new Indonesian tsunami early warning centre provided by GITEWS

    Science.gov (United States)

    Falck, C.; Ramatschi, M.; Bartsch, M.; Merx, A.; Hoeberechts, J.; Rothacher, M.

    2009-04-01

    Introduction Nowadays GNSS technologies are used for a large variety of precise positioning applications. The accuracy can reach the mm level depending on the data analysis methods. GNSS technologies thus offer a high potential to support tsunami early warning systems, e.g., by detection of ground motions due to earthquakes and of tsunami waves on the ocean by GNSS instruments on a buoy. Although GNSS-based precise positioning is a standard method, it is not yet common to apply this technique under tight time constraints and, hence, in the absence of precise satellite orbits and clocks. The new developed GNSS-based component utilises on- and offshore measured GNSS data and is the first system of its kind that was integrated into an operational early warning system. (Indonesian Tsunami Early Warning Centre INATEWS, inaugurated at BMKG, Jakarta on November, 11th 2008) Motivation After the Tsunami event of 26th December 2004 the German government initiated the GITEWS project (German Indonesian Tsunami Early Warning System) to develop a tsunami early warning system for Indonesia. The GFZ Potsdam (German Research Centre for Geosciences) as the consortial leader of GITEWS also covers several work packages, most of them related to sensor systems. The geodetic branch (Department 1) of the GFZ was assigned to develop a GNSS-based component. Brief system description The system covers all aspects from sensor stations with new developed hard- and software designs, manufacturing and installation of stations, real-time data transfer issues, a new developed automatic near real-time data processing and a graphical user interface for early warning centre operators including training on the system. GNSS sensors are installed on buoys, at tide gauges and as real-time reference stations (RTR stations), either stand-alone or co-located with seismic sensors. The GNSS data are transmitted to the warning centre where they are processed in a near real-time data processing chain. For

  2. Precise Point Positioning Using Triple GNSS Constellations in Various Modes

    Directory of Open Access Journals (Sweden)

    Akram Afifi

    2016-05-01

    Full Text Available This paper introduces a new dual-frequency precise point positioning (PPP model, which combines the observations from three different global navigation satellite system (GNSS constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada’s GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the

  3. Kilometer-Spaced GNSS Array for Ionospheric Irregularity Monitoring

    Science.gov (United States)

    Su, Yang

    This dissertation presents automated, systematic data collection, processing, and analysis methods for studying the spatial-temporal properties of Global Navigation Satellite Systems (GNSS) scintillations produced by ionospheric irregularities at high latitudes using a closely spaced multi-receiver array deployed in the northern auroral zone. The main contributions include 1) automated scintillation monitoring, 2) estimation of drift and anisotropy of the irregularities, 3) error analysis of the drift estimates, and 4) multi-instrument study of the ionosphere. A radio wave propagating through the ionosphere, consisting of ionized plasma, may suffer from rapid signal amplitude and/or phase fluctuations known as scintillation. Caused by non-uniform structures in the ionosphere, intense scintillation can lead to GNSS navigation and high-frequency (HF) communication failures. With specialized GNSS receivers, scintillation can be studied to better understand the structure and dynamics of the ionospheric irregularities, which can be parameterized by altitude, drift motion, anisotropy of the shape, horizontal spatial extent and their time evolution. To study the structuring and motion of ionospheric irregularities at the sub-kilometer scale sizes that produce L-band scintillations, a closely-spaced GNSS array has been established in the auroral zone at Poker Flat Research Range, Alaska to investigate high latitude scintillation and irregularities. Routinely collecting low-rate scintillation statistics, the array database also provides 100 Hz power and phase data for each channel at L1/L2C frequency. In this work, a survey of seasonal and hourly dependence of L1 scintillation events over the course of a year is discussed. To efficiently and systematically study scintillation events, an automated low-rate scintillation detection routine is established and performed for each day by screening the phase scintillation index. The spaced-receiver technique is applied to cross

  4. GNSS remote sensing theory, methods and applications

    CERN Document Server

    Jin, Shuanggen; Xie, Feiqin

    2014-01-01

    This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. It contains detailed theory and study cases to help the reader put the material into practice.

  5. Billfish Tagging

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SWFSC's constituent-based Billfish Tagging Program began in 1963 and since that time has provided conventional spaghetti type tags and tagging supplies to...

  6. Your Ears

    Science.gov (United States)

    ... More on this topic for: Kids Can Loud Music Hurt My Ears? What Is an Ear Infection? Senses Experiment: Model Eardrum Going to the Audiologist What's Earwax? View more About Us Contact Us Partners Editorial Policy Permissions Guidelines Privacy Policy & Terms of Use Notice ...

  7. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project

    Science.gov (United States)

    Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.

    2016-12-01

    Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data

  8. Impact and Implementation of Higher-Order Ionospheric Effects on Precise GNSS Applications

    Science.gov (United States)

    Hadas, T.; Krypiak-Gregorczyk, A.; Hernández-Pajares, M.; Kaplon, J.; Paziewski, J.; Wielgosz, P.; Garcia-Rigo, A.; Kazmierski, K.; Sosnica, K.; Kwasniak, D.; Sierny, J.; Bosy, J.; Pucilowski, M.; Szyszko, R.; Portasiak, K.; Olivares-Pulido, G.; Gulyaeva, T.; Orus-Perez, R.

    2017-11-01

    High precision Global Navigation Satellite Systems (GNSS) positioning and time transfer require correcting signal delays, in particular higher-order ionospheric (I2+) terms. We present a consolidated model to correct second- and third-order terms, geometric bending and differential STEC bending effects in GNSS data. The model has been implemented in an online service correcting observations from submitted RINEX files for I2+ effects. We performed GNSS data processing with and without including I2+ corrections, in order to investigate the impact of I2+ corrections on GNSS products. We selected three time periods representing different ionospheric conditions. We used GPS and GLONASS observations from a global network and two regional networks in Poland and Brazil. We estimated satellite orbits, satellite clock corrections, Earth rotation parameters, troposphere delays, horizontal gradients, and receiver positions using global GNSS solution, Real-Time Kinematic (RTK), and Precise Point Positioning (PPP) techniques. The satellite-related products captured most of the impact of I2+ corrections, with the magnitude up to 2 cm for clock corrections, 1 cm for the along- and cross-track orbit components, and below 5 mm for the radial component. The impact of I2+ on troposphere products turned out to be insignificant in general. I2+ corrections had limited influence on the performance of ambiguity resolution and the reliability of RTK positioning. Finally, we found that I2+ corrections caused a systematic shift in the coordinate domain that was time- and region-dependent and reached up to -11 mm for the north component of the Brazilian stations during the most active ionospheric conditions.

  9. Understanding Transient Forcing with Plasma Instability Model, Ionospheric Propagation Model and GNSS Observations

    Science.gov (United States)

    Deshpande, K.; Zettergren, M. D.; Datta-Barua, S.

    2017-12-01

    Fluctuations in the Global Navigation Satellite Systems (GNSS) signals observed as amplitude and phase scintillations are produced by plasma density structures in the ionosphere. Phase scintillation events in particular occur due to structures at Fresnel scales, typically about 250 meters at ionospheric heights and GNSS frequency. Likely processes contributing to small-scale density structuring in auroral and polar regions include ionospheric gradient-drift instability (GDI) and Kelvin-Helmholtz instability (KHI), which result, generally, from magnetosphere-ionosphere interactions (e.g. reconnection) associated with cusp and auroral zone regions. Scintillation signals, ostensibly from either GDI or KHI, are frequently observed in the high latitude ionosphere and are potentially useful diagnostics of how energy from the transient forcing in the cusp or polar cap region cascades, via instabilities, to small scales. However, extracting quantitative details of instabilities leading to scintillation using GNSS data drastically benefits from both a model of the irregularities and a model of GNSS signal propagation through irregular media. This work uses a physics-based model of the generation of plasma density irregularities (GEMINI - Geospace Environment Model of Ion-Neutral Interactions) coupled to an ionospheric radio wave propagation model (SIGMA - Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere) to explore the cascade of density structures from medium to small (sub-kilometer) scales. Specifically, GEMINI-SIGMA is used to simulate expected scintillation from different instabilities during various stages of evolution to determine features of the scintillation that may be useful to studying ionospheric density structures. Furthermore we relate the instabilities producing GNSS scintillations to the transient space and time-dependent magnetospheric phenomena and further predict characteristics of scintillation in different geophysical

  10. Extracting Tag Hierarchies

    Science.gov (United States)

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2013-01-01

    Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies, including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books, etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are often referred to as folksonomies, highlighting their collaborative origin and the “flat” organization of the tags opposed to traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help narrowing or broadening the scope of search

  11. Extracting tag hierarchies.

    Directory of Open Access Journals (Sweden)

    Gergely Tibély

    Full Text Available Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies, including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books, etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are often referred to as folksonomies, highlighting their collaborative origin and the "flat" organization of the tags opposed to traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help narrowing or broadening the scope of

  12. Extracting tag hierarchies.

    Science.gov (United States)

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2013-01-01

    Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies, including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books, etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are often referred to as folksonomies, highlighting their collaborative origin and the "flat" organization of the tags opposed to traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help narrowing or broadening the scope of search. Moreover

  13. Trusted Data Communication and Security Issues in Gnss Network of Turkey

    Science.gov (United States)

    Bakici, S.; Erkek, B.; Manti, V.; Altekin, A.

    2017-11-01

    There are three main activities of General Directorate of Land Registry and Cadastre. These are Mapping, Land Registry and Cadastre. Geomatic Department is responsible for mapping activities. The most important projects like TUSAGA-Aktif (CORS-Tr), Metadata Geoportal, Orthophoto Production and orthophoto web services and preparation of Turkish NSDI Feasibility Report have been conducted and completed by this department's specialists since 2005. TUSAGA-Aktif (CORS-Tr) System, serves location information at cm level accuracy in Turkey and TR Nortern Cyprus in few seconds, where adequate numbers of GNSS satellites are observed and communication possibilities are present. No ground control points and benchmarks are necessary. There are 146 permanent GNSS stations within the CORS-Tr System. Station data are transferred online to the main control center located in the Mapping Department of the General Directorate of Land Registry and Cadastre and to the control center located in the General Command of Mapping. Currently CORS-Tr has more than 9000 users. Most of them are private companies working for governmental organization. Providing data communication between control center and both GNSS station and users via trusted and good substructure is important. Additionally, protection of the system and data against cyber attacks from domestic and foreign sources is important. This paper focuses on data communication and security issues of GNSS network named TUSAGA-Aktif.

  14. TRUSTED DATA COMMUNICATION AND SECURITY ISSUES IN GNSS NETWORK OF TURKEY

    Directory of Open Access Journals (Sweden)

    S. Bakici

    2017-11-01

    Full Text Available There are three main activities of General Directorate of Land Registry and Cadastre. These are Mapping, Land Registry and Cadastre. Geomatic Department is responsible for mapping activities. The most important projects like TUSAGA-Aktif (CORS-Tr, Metadata Geoportal, Orthophoto Production and orthophoto web services and preparation of Turkish NSDI Feasibility Report have been conducted and completed by this department’s specialists since 2005. TUSAGA-Aktif (CORS-Tr System, serves location information at cm level accuracy in Turkey and TR Nortern Cyprus in few seconds, where adequate numbers of GNSS satellites are observed and communication possibilities are present. No ground control points and benchmarks are necessary. There are 146 permanent GNSS stations within the CORS-Tr System. Station data are transferred online to the main control center located in the Mapping Department of the General Directorate of Land Registry and Cadastre and to the control center located in the General Command of Mapping. Currently CORS-Tr has more than 9000 users. Most of them are private companies working for governmental organization. Providing data communication between control center and both GNSS station and users via trusted and good substructure is important. Additionally, protection of the system and data against cyber attacks from domestic and foreign sources is important. This paper focuses on data communication and security issues of GNSS network named TUSAGA-Aktif.

  15. A METHOD USING GNSS LH-REFLECTED SIGNALS FOR SOIL ROUGHNESS ESTIMATION

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2018-04-01

    Full Text Available Global Navigation Satellite System Reflectometry (GNSS-R is based on the concept of receiving GPS signals reflected by the ground using a passive receiver. The receiver can be on the ground or installed on a small aircraft or UAV and collects the electromagnetic field scattered from the surface of the Earth. The received signals are then analyzed to determine the characteristics of the surface. Many research has been reported showing the capability of the GNSS-R technique. However, the roughness of the surface impacts the phase and amplitude of the received signals, which is still a worthwhile study. This paper presented a method can be used by GNSS-R to estimate the surface roughness. First, the data was calculated in the specular reflection with the assumption of a flat surface with different permittivity. Since the power reflectivity can be evaluated as the ratio of left-hand (LH reflected signal to the direct right-hand (RH signal. Then a semi-empirical roughness model was applied to the data for testing. The results showed the method can distinguish the water and the soil surface. The sensitivity of the parameters was also analyzed. It indicates this method for soil roughness estimation can be used by GNSS-R LH reflected signals. In the next step, several experiments need to be done for improving the model and exploring the way of the estimation.

  16. a Method Using Gnss Lh-Reflected Signals for Soil Roughness Estimation

    Science.gov (United States)

    Jia, Y.; Li, W.; Chen, Y.; Lv, H.; Pei, Y.

    2018-04-01

    Global Navigation Satellite System Reflectometry (GNSS-R) is based on the concept of receiving GPS signals reflected by the ground using a passive receiver. The receiver can be on the ground or installed on a small aircraft or UAV and collects the electromagnetic field scattered from the surface of the Earth. The received signals are then analyzed to determine the characteristics of the surface. Many research has been reported showing the capability of the GNSS-R technique. However, the roughness of the surface impacts the phase and amplitude of the received signals, which is still a worthwhile study. This paper presented a method can be used by GNSS-R to estimate the surface roughness. First, the data was calculated in the specular reflection with the assumption of a flat surface with different permittivity. Since the power reflectivity can be evaluated as the ratio of left-hand (LH) reflected signal to the direct right-hand (RH) signal. Then a semi-empirical roughness model was applied to the data for testing. The results showed the method can distinguish the water and the soil surface. The sensitivity of the parameters was also analyzed. It indicates this method for soil roughness estimation can be used by GNSS-R LH reflected signals. In the next step, several experiments need to be done for improving the model and exploring the way of the estimation.

  17. First results of the Nordic and Baltic GNSS Analysis Centre

    Science.gov (United States)

    Lahtinen, Sonja; Pasi, Häkli; Jivall, Lotti; Kempe, Christina; Kollo, Karin; Kosenko, Ksenija; Pihlak, Priit; Prizginiene, Dalia; Tangen, Oddvar; Weber, Mette; Paršeliūnas, Eimuntas; Baniulis, Rimvydas; Galinauskas, Karolis

    2018-03-01

    The Nordic Geodetic Commission (NKG) has launched a joint NKG GNSS Analysis Centre that aims to routinely produce high qualityGNSS solutions for the common needs of the NKG and the Nordic and Baltic countries. A consistent and densified velocity field is needed for the constraining of the gla-cial isostatic adjustment (GIA) modelling that is a key component of maintaining the national reference frame realisations in the area. We described the methods of the NKG GNSS Analysis Centre including the defined processing setup for the local analysis centres (LAC) and for the combination centres.We analysed the results of the first 2.5 years (2014.5-2016). The results showed that different subnets were consistent with the combined solution within 1-2 mm level. We observed the so called network effect affecting our reference frame alignment. However, the accuracy of the reference frame alignment was on a few millimetre level in the area of the main interest (Nordic and Baltic Countries). TheNKGGNSS AC was declared fully operational in April 2017.

  18. On Chinese National Continuous Operating Reference Station System of GNSS

    Directory of Open Access Journals (Sweden)

    CHEN Junyong

    2007-11-01

    Full Text Available Objective: Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System can maintain a accurate, 3D, geocentric and dynamic reference coordinate frame in the corresponding area, can provide positioning and navigation service. It can also serve for the meteorology, geodynamics, earthquake monitoring and Location Based services (LBS etc in the same area. Until now, our country can’t provide a facing National CORS System serving for every profession and trade, and the national sharing platform of CORS System resources has not been established. So this paper discusses some valuable insight how to construct the National CORS System in China. Method: Constructing goal、Service object、CORS distribution、CORS geographic、geology and communication environment and other factors, are major considerations for the Constructing the National CORS System. Moreover, constructing GNSS CORS is more specific, mainly from four aspects, namely site-selection、civil construction、security measures and equipment-selection for consideration. Outcome: The project of the Constructing Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is put forward, and is discussed from goal、principle、project and other for construction. Some meaning thought how to construct the National CORS System is submitted Conclusion: The Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is the lack of a unified planning and design in the national level. So far, the national CORS system serving all walks of life has not been provided, and the national sharing platform of CORS System resources has not been established The primary mission of the Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is as follows: using data set of GNSS and receiving, transport, process, integration, transmit information and

  19. Status and Perspective of the IGS Multi-GNSS Experiment (MGEX)

    Science.gov (United States)

    Steigenberger, Peter; Montenbruck, Oliver; Weber, Robert; Hugentobler, Urs

    2013-04-01

    Following three decades, during which the Global Positioning System GPS has evolved from a military navigation system into an indispensable tool for geodetic research and global monitoring of the Earth, the world of satellite navigation has experienced dramatic changes over the past years. With GLONASS, a second global navigation system has achieved a fully operational status, GPS is introducing modernized civil and encrypted navigation signals, and a variety of new navigation constellations are being built-up in Asia and Europe. These include BeiDou, which has recently opened a regional navigation service in the Asia-Pacific region, Galileo, which now has four satellites in orbit, as well as QZSS, which offers a unique set of signals and service features. In recognition of a rapidly changing GNSS landscape, the International GNSS Service (IGS) has initiated the Multi-GNSS Experiment (MGEX - http://igs.org/mgex) as a platform for early familiarization with emerging navigation systems and to pave the way for a full-featured use thereof in a future multi-GNSS service. As a first step, MGEX has promoted the build-up of a new global network of GNSS monitoring stations, each tracking at least one new constellation (Galileo, BeiDou, or QZSS) on top of GPS, GLONASS and SBAS. By the end of 2012, approximately 50 stations contribute offline and/or real-time data to the MGEX network. To facilitate introduction of new standards (specifically RINEX3 observation and navigation data formats), distinct data archives are used even for those MGEX stations jointly contributing to the legacy IGS. Building-up on the new multi-GNSS network, the generation of associated orbit and clock products has started in the second quarter of 2012. At this stage, only Galileo and QZSS products are offered by selected MGEX Analysis Centers, but the addition of BeiDou is expected in 2013 as the MGEX network expands and new Analysis Centers join the data processing effort. Despite remarkable progress

  20. Quantum tagging for tags containing secret classical data

    International Nuclear Information System (INIS)

    Kent, Adrian

    2011-01-01

    Various authors have considered schemes for quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is potentially unbounded. All of the schemes proposed elsewhere in the literature assume that the adversary is able to inspect the interior of the tagging device. All of these schemes have been shown to be breakable if the adversary has unbounded predistributed entanglement. We consider here the case in which the tagging device contains a finite key string shared with distant sites but kept secret from the adversary, and show this allows the location of the tagging device to be authenticated securely and indefinitely. Our protocol relies on quantum key distribution between the tagging device and at least one distant site, and demonstrates a new practical application of quantum key distribution. It also illustrates that the attainable security in position-based cryptography can depend crucially on apparently subtle details in the security scenario considered.

  1. High Precision Positioning at Field Camp: Using GNSS as the primary data source to answer geologic questions

    Science.gov (United States)

    Crosby, B. T.; Lauer, I. H.; Pratt-Sitaula, B.

    2017-12-01

    Thanks to the availability and accessibility of GPS/GNSS enabled consumer grade positioning devices, GNSS are nearly ubiquitous in both geologic field research and education. Though the devices offer sufficient precision to geotag images, digital field book entries or measurements, positions themselves are not precise enough to accomplish independent geodetic analysis. As a consequence, most students learn about GNSS at a tool that aids other forms of geologic data acquisition rather serving as the primary source itself. To resolve this, we developed and tested a three-unit teaching module within the GETSI - SERC curriculum framework that reinforces high precision positioning as a primary source of geologic data. Units focus on three core topics: GNSS Fundamentals, Kinematic GNSS and Static GNSS Methods. Module goals enable students to (a) design and conduct a GNSS survey to answer a geologic question, (b) justify why their GNSS technique is appropriate to their question and (c) to articulate how answering their question benefits society. Skill building is via quantitative and qualitative analysis, concept sketches, and both field and office based data acquisition and interrogation. Exercises are site-independent and include example datasets for those unable to travel. In the summer of 2017, we tested the module with 20 undergraduate students over two days at the ISU field geology course. Located in the Lost River Range of Idaho, positioned among active normal faults, we not only explored the use of static GNSS data for active tectonics but visited a station in person. For a summative assessment, we focused on kinematic GNSS, using RTK rovers to reoccupy leveling monuments spanning the active Lost River fault that ruptured in 1983 (M 7.0). The data collected by our class quantified aseismic deformation occurring in the 30+ years since that event. Displacements were significantly larger than the instrumental uncertainty, confirming that RTK was an appropriate tool

  2. Taking Care of Your Ears

    Science.gov (United States)

    ... Audiologist Perforated Eardrum What's Hearing Loss? Can Loud Music Hurt My Ears? What Is an Ear Infection? Swimmer's Ear Your Ears What's Earwax? View more About Us Contact Us Partners Editorial Policy Permissions Guidelines Privacy Policy & Terms of Use Notice ...

  3. An Integrated GNSS/INS/LiDAR-SLAM Positioning Method for Highly Accurate Forest Stem Mapping

    Directory of Open Access Journals (Sweden)

    Chuang Qian

    2016-12-01

    Full Text Available Forest mapping, one of the main components of performing a forest inventory, is an important driving force in the development of laser scanning. Mobile laser scanning (MLS, in which laser scanners are installed on moving platforms, has been studied as a convenient measurement method for forest mapping in the past several years. Positioning and attitude accuracies are important for forest mapping using MLS systems. Inertial Navigation Systems (INSs and Global Navigation Satellite Systems (GNSSs are typical and popular positioning and attitude sensors used in MLS systems. In forest environments, because of the loss of signal due to occlusion and severe multipath effects, the positioning accuracy of GNSS is severely degraded, and even that of GNSS/INS decreases considerably. Light Detection and Ranging (LiDAR-based Simultaneous Localization and Mapping (SLAM can achieve higher positioning accuracy in environments containing many features and is commonly implemented in GNSS-denied indoor environments. Forests are different from an indoor environment in that the GNSS signal is available to some extent in a forest. Although the positioning accuracy of GNSS/INS is reduced, estimates of heading angle and velocity can maintain high accurate even with fewer satellites. GNSS/INS and the LiDAR-based SLAM technique can be effectively integrated to form a sustainable, highly accurate positioning and mapping solution for use in forests without additional hardware costs. In this study, information such as heading angles and velocities extracted from a GNSS/INS is utilized to improve the positioning accuracy of the SLAM solution, and two information-aided SLAM methods are proposed. First, a heading angle-aided SLAM (H-aided SLAM method is proposed that supplies the heading angle from GNSS/INS to SLAM. Field test results show that the horizontal positioning accuracy of an entire trajectory of 800 m is 0.13 m and is significantly improved (by 70% compared to that

  4. GNSS reflectometry aboard the International Space Station: phase-altimetry simulation to detect ocean topography anomalies

    Science.gov (United States)

    Semmling, Maximilian; Leister, Vera; Saynisch, Jan; Zus, Florian; Wickert, Jens

    2016-04-01

    An ocean altimetry experiment using Earth reflected GNSS signals has been proposed to the European Space Agency (ESA). It is part of the GNSS Reflectometry Radio Occultation Scatterometry (GEROS) mission that is planned aboard the International Space Station (ISS). Altimetric simulations are presented that examine the detection of ocean topography anomalies assuming GNSS phase delay observations. Such delay measurements are well established for positioning and are possible due to a sufficient synchronization of GNSS receiver and transmitter. For altimetric purpose delays of Earth reflected GNSS signals can be observed similar to radar altimeter signals. The advantage of GNSS is the synchronized separation of transmitter and receiver that allow a significantly increased number of observation per receiver due to more than 70 GNSS transmitters currently in orbit. The altimetric concept has already been applied successfully to flight data recorded over the Mediterranean Sea. The presented altimetric simulation considers anomalies in the Agulhas current region which are obtained from the Region Ocean Model System (ROMS). Suitable reflection events in an elevation range between 3° and 30° last about 10min with ground track's length >3000km. Typical along-track footprints (1s signal integration time) have a length of about 5km. The reflection's Fresnel zone limits the footprint of coherent observations to a major axis extention between 1 to 6km dependent on the elevation. The altimetric performance depends on the signal-to-noise ratio (SNR) of the reflection. Simulation results show that precision is better than 10cm for SNR of 30dB. Whereas, it is worse than 0.5m if SNR goes down to 10dB. Precision, in general, improves towards higher elevation angles. Critical biases are introduced by atmospheric and ionospheric refraction. Corresponding correction strategies are still under investigation.

  5. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    Energy Technology Data Exchange (ETDEWEB)

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonid Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7

  6. Generation of Unbiased Ionospheric Corrections in Brazilian Region for GNSS positioning based on SSR concept

    Science.gov (United States)

    Monico, J. F. G.; De Oliveira, P. S., Jr.; Morel, L.; Fund, F.; Durand, S.; Durand, F.

    2017-12-01

    Mitigation of ionospheric effects on GNSS (Global Navigation Satellite System) signals is very challenging, especially for GNSS positioning applications based on SSR (State Space Representation) concept, which requires the knowledge of spatial correlated errors with considerable accuracy level (centimeter). The presence of satellite and receiver hardware biases on GNSS measurements difficult the proper estimation of ionospheric corrections, reducing their physical meaning. This problematic can lead to ionospheric corrections biased of several meters and often presenting negative values, which is physically not possible. In this contribution, we discuss a strategy to obtain SSR ionospheric corrections based on GNSS measurements from CORS (Continuous Operation Reference Stations) Networks with minimal presence of hardware biases and consequently physical meaning. Preliminary results are presented on generation and application of such corrections for simulated users located in Brazilian region under high level of ionospheric activity.

  7. Tagging the European eel Anguilla anguilla (L.) with coded wire tags

    DEFF Research Database (Denmark)

    Thomassen, S.; Pedersen, Michael Ingemann; Holdensgaard, G.

    2000-01-01

    The coded wire tag (CWT) system was examined as a possible tool for tagging European eels (Anguilla anguilla). Two size groups of eels (3.8 and 10.2 g) were tagged with CWTs in the dorsal musculature, Tag loss 28 days after tagging was 3.1% for the small and 0.7% for the large groups of eels...

  8. A data-driven approach for denoising GNSS position time series

    Science.gov (United States)

    Li, Yanyan; Xu, Caijun; Yi, Lei; Fang, Rongxin

    2017-12-01

    Global navigation satellite system (GNSS) datasets suffer from common mode error (CME) and other unmodeled errors. To decrease the noise level in GNSS positioning, we propose a new data-driven adaptive multiscale denoising method in this paper. Both synthetic and real-world long-term GNSS datasets were employed to assess the performance of the proposed method, and its results were compared with those of stacking filtering, principal component analysis (PCA) and the recently developed multiscale multiway PCA. It is found that the proposed method can significantly eliminate the high-frequency white noise and remove the low-frequency CME. Furthermore, the proposed method is more precise for denoising GNSS signals than the other denoising methods. For example, in the real-world example, our method reduces the mean standard deviation of the north, east and vertical components from 1.54 to 0.26, 1.64 to 0.21 and 4.80 to 0.72 mm, respectively. Noise analysis indicates that for the original signals, a combination of power-law plus white noise model can be identified as the best noise model. For the filtered time series using our method, the generalized Gauss-Markov model is the best noise model with the spectral indices close to - 3, indicating that flicker walk noise can be identified. Moreover, the common mode error in the unfiltered time series is significantly reduced by the proposed method. After filtering with our method, a combination of power-law plus white noise model is the best noise model for the CMEs in the study region.

  9. Multi-GNSS PPP-RTK: From Large- to Small-Scale Networks

    Directory of Open Access Journals (Sweden)

    Nandakumaran Nadarajah

    2018-04-01

    Full Text Available Precise point positioning (PPP and its integer ambiguity resolution-enabled variant, PPP-RTK (real-time kinematic, can benefit enormously from the integration of multiple global navigation satellite systems (GNSS. In such a multi-GNSS landscape, the positioning convergence time is expected to be reduced considerably as compared to the one obtained by a single-GNSS setup. It is therefore the goal of the present contribution to provide numerical insights into the role taken by the multi-GNSS integration in delivering fast and high-precision positioning solutions (sub-decimeter and centimeter levels using PPP-RTK. To that end, we employ the Curtin PPP-RTK platform and process data-sets of GPS, BeiDou Navigation Satellite System (BDS and Galileo in stand-alone and combined forms. The data-sets are collected by various receiver types, ranging from high-end multi-frequency geodetic receivers to low-cost single-frequency mass-market receivers. The corresponding stations form a large-scale (Australia-wide network as well as a small-scale network with inter-station distances less than 30 km. In case of the Australia-wide GPS-only ambiguity-float setup, 90% of the horizontal positioning errors (kinematic mode are shown to become less than five centimeters after 103 min. The stated required time is reduced to 66 min for the corresponding GPS + BDS + Galieo setup. The time is further reduced to 15 min by applying single-receiver ambiguity resolution. The outcomes are supported by the positioning results of the small-scale network.

  10. Crustal block motion model and interplate coupling along Ecuador-Colombia trench based on GNSS observation network

    Science.gov (United States)

    Ito, T.; Mora-Páez, H.; Peláez-Gaviria, J. R.; Kimura, H.; Sagiya, T.

    2017-12-01

    IntroductionEcuador-Colombia trench is located at the boundary between South-America plate, Nazca Plate and Caribrian plate. This region is very complexes such as subducting Caribrian plate and Nazca plate, and collision between Panama and northern part of the Andes mountains. The previous large earthquakes occurred along the subducting boundary of Nazca plate, such as 1906 (M8.8) and 1979 (M8.2). And also, earthquakes occurred inland, too. So, it is important to evaluate earthquake potentials for preparing huge damage due to large earthquake in near future. GNSS observation In the last decade, the GNSS observation was established in Columbia. The GNSS observation is called by GEORED, which is operated by servicing Geologico Colomiano. The purpose of GEORED is research of crustal deformation. The number of GNSS site of GEORED is consist of 60 continuous GNSS observation site at 2017 (Mora et al., 2017). The sampling interval of almost GNSS site is 30 seconds. These GNSS data were processed by PPP processing using GIPSY-OASYS II software. GEORED can obtain the detailed crustal deformation map in whole Colombia. In addition, we use 100 GNSS data at Ecuador-Peru region (Nocquet et al. 2014). Method We developed a crustal block movements model based on crustal deformation derived from GNSS observation. Our model considers to the block motion with pole location and angular velocity and the interplate coupling between each block boundaries, including subduction between the South-American plate and the Nazca plate. And also, our approach of estimation of crustal block motion and coefficient of interplate coupling are based on MCMC method. The estimated each parameter is obtained probably density function (PDF). Result We tested 11 crustal block models based on geological data, such as active fault trace at surface. The optimal number of crustal blocks is 11 for based on geological and geodetic data using AIC. We use optimal block motion model. And also, we estimate

  11. Tempting to Tag : An Experimental Comparison of Four Tagging Input Mechanisms

    OpenAIRE

    Melenhorst, Mark; van Velsen, Lex

    2010-01-01

    Tagging helps achieve improved indexing and recommendation of resources (e.g., videos or pictures) in large data collections. In order to reap the benefits of tagging, people must be persuaded to label the resources they consume. This paper reports on a study in which four different tagging input mechanisms and their effect on users' motivation to tag were compared. The mechanisms consisted of a standard tag input box, a chatbot-like environment, a bookmarking mechanism, and a "tag and v...

  12. Analysis of seasonal position variation for selected GNSS sites in Poland using loading modelling and GRACE data

    Directory of Open Access Journals (Sweden)

    Marcin Rajner

    2017-07-01

    Full Text Available In this study we compared weekly GNSS position time series with modelled values of crustal deformations on the basis of Gravity Recovery and Climate Experiment (GRACE data. The Global Navigation Satellite Systems (GNSS time series were taken from homogeneously reprocessed global network solutions within the International GNSS Service (IGS Reprocessing 1 project and from regional solutions performed by Warsaw University of Technology (WUT European Permanent Network (EPN Local Analysis Center (LAC within the EPN reprocessing project. Eight GNSS sites from the territory of Poland with observation timespans between 2.5 and 13 years were selected for this study. The Total Water Equivalent (TWE estimation from GRACE data was used to compute deformations using the Green's function formalism. High frequency components were removed from GRACE data to avoid aliasing problems. Since GRACE observes mainly the mass transport in continental storage of water, we also compared GRACE deformations and the GNSS position time series, with the deformations computed on the basis of a hydrosphere model. We used the output of Water GAP Hydrology Model (WGHM to compute deformations in the same manner as for the GRACE data. The WGHM gave slightly larger amplitudes than GNSS and GRACE. The atmospheric non-tidal loading effect was removed from GNSS position time series before comparing them with modelled deformations. The results confirmed that the major part of observed seasonal variations for GNSS vertical components can be attributed to the hydrosphere loading. The results for these components agree very well both in the amplitude and phase. The decrease in standard deviation of the residual GNSS position time series for vertical components corrected for the hydrosphere loading reached maximally 36% and occurred for all but one stations for both global and regional solutions. For horizontal components the amplitudes are about three times smaller than for vertical

  13. Real-time Inversion of Tsunami Source from GNSS Ground Deformation Observations and Tide Gauges.

    Science.gov (United States)

    Arcas, D.; Wei, Y.

    2017-12-01

    Over the last decade, the NOAA Center for Tsunami Research (NCTR) has developed an inversion technique to constrain tsunami sources based on the use of Green's functions in combination with data reported by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART®) systems. The system has consistently proven effective in providing highly accurate tsunami forecasts of wave amplitude throughout an entire basin. However, improvement is necessary in two critical areas: reduction of data latency for near-field tsunami predictions and reduction of maintenance cost of the network. Two types of sensors have been proposed as supplementary to the existing network of DART®systems: Global Navigation Satellite System (GNSS) stations and coastal tide gauges. The use GNSS stations to provide autonomous geo-spatial positioning at specific sites during an earthquake has been proposed in recent years to supplement the DART® array in tsunami source inversion. GNSS technology has the potential to provide substantial contributions in the two critical areas of DART® technology where improvement is most necessary. The present study uses GNSS ground displacement observations of the 2011 Tohoku-Oki earthquake in combination with NCTR operational database of Green's functions, to produce a rapid estimate of tsunami source based on GNSS observations alone. The solution is then compared with that obtained via DART® data inversion and the difficulties in obtaining an accurate GNSS-based solution are underlined. The study also identifies the set of conditions required for source inversion from coastal tide-gauges using the degree of nonlinearity of the signal as a primary criteria. We then proceed to identify the conditions and scenarios under which a particular gage could be used to invert a tsunami source.

  14. Characterisation of current and future GNSS performance in urban canyons using a high quality 3-D urban model of Melbourne, Australia

    Science.gov (United States)

    Gang-jun, Liu; Kefei, Zhang; Falin, Wu; Liam, Densley; Retscher, Günther

    2009-03-01

    Global Navigation Satellite System (GNSS) is a critical space-borne geospatial infrastructure providing essential positioning supports to a range of location-sensitive applications. GNSS is currently dominated by the US Global Positioning System (GPS) constellation. The next generation GNSS is expected to offer more satellites, better positioning provision, and improved availability and continuity of navigation support. However, GNSS performance in 3-D urban environments is problematic because GNSS signals are either completely blocked or severely degraded by high-rising geographic features like buildings. The aim of this study is to gain an in-depth understanding of the changing spatial patterns of GNSS performance, measured by the number of visible satellites (NVS) and position dilution-of-precision (PDOP), in the urban canyons of Melbourne, Australia. The methodology used includes the following steps: (1) determination of the dynamic orbital positions of current and future GNSS satellites; (2) development of a 3-D urban model of high geometric quality for Melbourne Central Business District (CBD); (3) evaluation of GNSS performance for every specified location in the urban canyons; and (4) visualisation and characterisation of the dynamic spatial patterns of GNSS performances in the urban canyons. As expected, the study shows that the integration of the GPS and Galileo constellations results in higher availability and stronger geometry, leading to significant improvement of GNSS performance in urban canyons of Melbourne CBD. Some conclusions are drawn and further research currently undertaken is also outlined.

  15. GNSS, Satellite Altimetry and Formosat-3/COSMIC for Determination of Ionosphere Parameters

    Science.gov (United States)

    Mahdi Alizadeh Elizei, M.; Schuh, Harald; Schmidt, Michael; Todorova, Sonya

    The dispersion of ionosphere with respect to the microwave signals allows gaining information about the parameters of this medium in terms of the electron density (Ne), or the Total Elec-tron Content (TEC). In the last decade space geodetic techniques, such as Global Navigation Satellite System (GNSS), satellite altimetry missions, and Low Earth Orbiting (LEO) satel-lites have turned into a promising tool for remote sensing the ionosphere. The dual-frequency GNSS observations provide the main input data for development of Global Ionosphere Maps (GIM). However, the GNSS stations are heterogeneously distributed, with large gaps particu-larly over the sea surface, which lowers the precision of the GIM over these areas. Conversely, dual-frequency satellite altimetry missions provide information about the ionosphere precisely above the sea surface. In addition, LEO satellites such as Formosat-3/COSMIC (F-3/C) pro-vide well-distributed information of ionosphere around the world. In this study we developed GIMs of VTEC from combination of GNSS, satellite altimetry and F-3/C data with temporal resolution of 2 hours and spatial resolution of 5 degree in longitude and 2.5 degree in latitude. The combined GIMs provide a more homogeneous global coverage and higher precision and reliability than results of each individual technique.

  16. PROPOSTA DE MÉTODO DE REDE GNSS POR PPP E ANÁLISE DE CONFIABILIDADE

    Directory of Open Access Journals (Sweden)

    Carolina Collischonn

    Full Text Available Embora o método de posicionamento GNSS tradicionalmente utilizado em redes geodésicas seja o relativo. O nível de acurácia obtido com o método de Posicionamento por Ponto Preciso (PPP abre uma nova perspectiva. No PPP são utilizados dados de apenas um receptor GNSS e é fundamental o uso de efemérides e correções dos relógios dos satélites, ambas com alta precisão. Neste artigo é apresentada uma metodologia de desenvolvimento de rede utilizando dados GNSS processados pelo método de PPP e a verificação da sua potencialidade em aplicações geodésicas. Os dados utilizados são de estações GNSS pertencentes à RBMC/IBGE. O serviço de processamento de PPP utilizado é o fornecido pelo IBGE. A partir dos resultados foram feitas análises para verificar a aplicabilidade da metodologia descrita em rede com dados GNSS de 24, 6 e 4 horas de rastreio. Após o ajustamento, os testes global e data snooping foram aplicados e também foi analisada a confiabilidade da rede com o objetivo de avaliar o método proposto, além de verificar a influência do tempo de rastreio nos resultados.

  17. Ontologies and tag-statistics

    Science.gov (United States)

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2012-05-01

    Due to the increasing popularity of collaborative tagging systems, the research on tagged networks, hypergraphs, ontologies, folksonomies and other related concepts is becoming an important interdisciplinary area with great potential and relevance for practical applications. In most collaborative tagging systems the tagging by the users is completely ‘flat’, while in some cases they are allowed to define a shallow hierarchy for their own tags. However, usually no overall hierarchical organization of the tags is given, and one of the interesting challenges of this area is to provide an algorithm generating the ontology of the tags from the available data. In contrast, there are also other types of tagged networks available for research, where the tags are already organized into a directed acyclic graph (DAG), encapsulating the ‘is a sub-category of’ type of hierarchy between each other. In this paper, we study how this DAG affects the statistical distribution of tags on the nodes marked by the tags in various real networks. The motivation for this research was the fact that understanding the tagging based on a known hierarchy can help in revealing the hidden hierarchy of tags in collaborative tagging systems. We analyse the relation between the tag-frequency and the position of the tag in the DAG in two large sub-networks of the English Wikipedia and a protein-protein interaction network. We also study the tag co-occurrence statistics by introducing a two-dimensional (2D) tag-distance distribution preserving both the difference in the levels and the absolute distance in the DAG for the co-occurring pairs of tags. Our most interesting finding is that the local relevance of tags in the DAG (i.e. their rank or significance as characterized by, e.g., the length of the branches starting from them) is much more important than their global distance from the root. Furthermore, we also introduce a simple tagging model based on random walks on the DAG, capable of

  18. Ontologies and tag-statistics

    International Nuclear Information System (INIS)

    Tibély, Gergely; Vicsek, Tamás; Pollner, Péter; Palla, Gergely

    2012-01-01

    Due to the increasing popularity of collaborative tagging systems, the research on tagged networks, hypergraphs, ontologies, folksonomies and other related concepts is becoming an important interdisciplinary area with great potential and relevance for practical applications. In most collaborative tagging systems the tagging by the users is completely ‘flat’, while in some cases they are allowed to define a shallow hierarchy for their own tags. However, usually no overall hierarchical organization of the tags is given, and one of the interesting challenges of this area is to provide an algorithm generating the ontology of the tags from the available data. In contrast, there are also other types of tagged networks available for research, where the tags are already organized into a directed acyclic graph (DAG), encapsulating the ‘is a sub-category of’ type of hierarchy between each other. In this paper, we study how this DAG affects the statistical distribution of tags on the nodes marked by the tags in various real networks. The motivation for this research was the fact that understanding the tagging based on a known hierarchy can help in revealing the hidden hierarchy of tags in collaborative tagging systems. We analyse the relation between the tag-frequency and the position of the tag in the DAG in two large sub-networks of the English Wikipedia and a protein-protein interaction network. We also study the tag co-occurrence statistics by introducing a two-dimensional (2D) tag-distance distribution preserving both the difference in the levels and the absolute distance in the DAG for the co-occurring pairs of tags. Our most interesting finding is that the local relevance of tags in the DAG (i.e. their rank or significance as characterized by, e.g., the length of the branches starting from them) is much more important than their global distance from the root. Furthermore, we also introduce a simple tagging model based on random walks on the DAG, capable of

  19. Prenatal evaluation of the middle ear and diagnosis of middle ear hypoplasia using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Katorza, Eldad; Nahama-Allouche, Catherine; Ducou le Pointe, Hubert; Garel, Catherine [Hopital d' Enfants Armand-Trousseau, Service de Radiologie, Paris (France); Castaigne, Vanina [Hopital Saint-Antoine, Service de Gynecologie-Obstetrique, Paris (France); Gonzales, Marie; Marlin, Sandrine [Hopital d' Enfants Armand-Trousseau, Service de Genetique et Embryologie medicales, Paris (France); Galliani, Eva [Hopital d' Enfants Armand-Trousseau, Service de Chirurgie maxillo-faciale, Paris (France); Jouannic, Jean-Marie; Rosenblatt, Jonathan [Hopital d' Enfants Armand-Trousseau, Service de Gynecologie-Obstetrique, Centre pluridisciplinaire de diagnostic prenatal, Paris (France)

    2011-05-15

    Analysis of the middle ear with fetal MRI has not been previously reported. To show the contribution of fetal MRI to middle ear imaging. The tympanic cavity was evaluated in 108 fetal cerebral MRI examinations (facial and/or cerebral malformation excluded) and in two cases, one of Treacher Collins syndrome (case 1) and the other of oculo-auriculo-vertebral (OUV) spectrum (case 2) with middle ear hypoplasia identified by MRI at 27 and 36 weeks' gestation, respectively. In all 108 fetuses (mean gestational age 32.5 weeks), the tympanic cavity and T2 hypointensity related to the ossicles were well visualised on both sides. Case 1 had micro/retrognathia and bilateral external ear deformity and case 2 had retrognathism with a left low-set and deformed ear. MRI made it possible to recognize the marked hypoplasia of the tympanic cavity, which was bilateral in case 1 and unilateral in case 2. Both syndromes are characterized by craniofacial abnormalities including middle ear hypoplasia, which cannot be diagnosed with US. The middle ear cavity can be visualized with fetal MRI. We emphasize the use of this imaging modality in the diagnosis of middle ear hypoplasia. (orig.)

  20. GNSS observations in the Gabriela locality

    Czech Academy of Sciences Publication Activity Database

    Doležalová, Hana; Kajzar, Vlastimil; Souček, Kamil; Staš, Lubomír

    2012-01-01

    Roč. 19, č. 1 (2012), s. 13-18 ISSN 1803-1447 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : undermining * GNSS * surface changes Subject RIV: DH - Mining, incl. Coal Mining http://caag.cz/egrse/2012-1/02_dolezalova-r.pdf

  1. AMIGHO: Automated Metadata Ingest for GNSS Hydrology within OODT

    Data.gov (United States)

    National Aeronautics and Space Administration — GNSS sites installed by surveyors and geophysicists to measure land motions can also provide valuable and cost-efficient information about three critical hydrologic...

  2. Evaluation of spatial and temporal characteristics of GNSS-derived ZTD estimates in Nigeria

    Science.gov (United States)

    Isioye, Olalekan Adekunle; Combrinck, Ludwig; Botai, Joel

    2018-05-01

    This study presents an in-depth analysis to comprehend the spatial and temporal variability of zenith tropospheric delay (ZTD) over Nigeria during the period 2010-2014, using estimates from Global Navigation Satellite Systems (GNSS) data. GNSS data address the drawbacks in traditional techniques (e.g. radiosondes) by means of observing periodicities in ZTD. The ZTD estimates show weak spatial dependence among the stations, though this can be attributed to the density of stations in the network. Tidal oscillations are noticed at the GNSS stations. These oscillations have diurnal and semi-diurnal components. The diurnal components as seen from the ZTD are the principal source of the oscillations. This upshot may perhaps be ascribed to temporal variations in atmospheric water vapour on a diurnal scale. In addition, the diurnal ZTD cycles exhibited noteworthy seasonal dependence, with larger amplitudes in the rainy (wet) season and smaller ones in the harmattan (dry) season. Notably, the stations in the northern part of the country reach very high amplitudes in the months of June, July and August at the peak of the wet season, characterized by very high rainfall. This pinpoints the fact that in view of the small amount of atmospheric water vapour in the atmosphere, usually around 10%, its variations greatly influence the corresponding diurnal and seasonal discrepancies of ZTD. This study further affirms the prospective relevance of ground-based GNSS data to atmospheric studies. GNSS data analysis is therefore recommended as a tool for future exploration of Nigerian weather and climate.

  3. Resolving Peak Ground Displacements in Real-Time GNSS PPP Solutions

    Science.gov (United States)

    Hodgkinson, K. M.; Mencin, D.; Mattioli, G. S.; Sievers, C.; Fox, O.

    2017-12-01

    The goal of early earthquake warning (EEW) systems is to provide warning of impending ground shaking to the public, infrastructure managers, and emergency responders. Shaking intensity can be estimated using Ground Motion Prediction Equations (GMPEs), but only if site characteristics, hypocentral distance and event magnitude are known. In recent years work has been done analyzing the first few seconds of the seismic P wave to derive event location and magnitude. While initial rupture locations seem to be sufficiently constrained, it has been shown that P-wave magnitude estimates tend to saturate at M>7. Regions where major and great earthquakes occur may therefore be vulnerable to an underestimation of shaking intensity if only P waves magnitudes are used. Crowell et al., (2013) first demonstrated that Peak Ground Displacement (PGD) from long-period surface waves recorded by GNSS receivers could provide a source-scaling relation that does not saturate with event magnitude. GNSS PGD derived magnitudes could improve the accuracy of EEW GMPE calculations. If such a source-scaling method were to be implemented in EEW algorithms it is critical that the noise levels in real-time GNSS processed time-series are low enough to resolve long-period surface waves. UNAVCO currently operates 770 real-time GNSS sites, most of which are located along the North American-Pacific Plate Boundary. In this study, we present an analysis of noise levels observed in the GNSS Precise Point Positioning (PPP) solutions generated and distributed in real-time by UNAVCO for periods from seconds to hours. The analysis is performed using the 770 sites in the real-time network and data collected through July 2017. We compare noise levels determined from various monument types and receiver-antenna configurations. This analysis gives a robust estimation of noise levels in PPP solutions because the solutions analyzed are those that were generated in real-time and thus contain all the problems observed

  4. Ear-to-Ear On-Body Channel Fading in the ISM-band for Tangentially-Polarized Antennas

    DEFF Research Database (Denmark)

    Kvist, Søren Helstrup; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2011-01-01

    The ear-to-ear on-body channel fading has been studied in the ISM-band. The ear-to-ear path gain was measured on six persons in an indoor environment for a duration of 200 s. The channel fading has been characterized in terms of empirical cumulative distribution functions (CDF), average fade...

  5. PROPOSAL OF A TABLE TO CLASSIFY THE RELIABILITY OF BASELINES OBTAINED BY GNSS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Lima Segantine

    Full Text Available The correct data processing of GNSS measurements, as well as a correct interpretation of the results are fundamental factors for analysis of quality of land surveying works. In that sense, it is important to keep in mind that, although, the statistical data provided by the majority of commercials software used for GNSS data processing, describes the credibility of the work, they do not have consistent information about the reliability of the processed coordinates. Based on that assumption, this paper proposes a classification table to classify the reliability of baselines obtained through GNSS data processing. As data input, the GNSS measurements were performed during the years 2006 and 2008, considering different seasons of the year, geometric configurations of RBMC stations and baseline lengths. As demonstrated in this paper, parameters as baseline length, ambiguity solution, PDOP value and the precision of horizontal and vertical values of coordinates can be used as reliability parameters. The proposed classification guarantees the requirements of the Brazilian Law N( 10.267/2001 of the National Institute of Colonization and Agrarian Reform (INCRA

  6. Monitoraggio in continuo di strutture e del territorio mediante la tecnologia GNSS

    OpenAIRE

    Poluzzi, Luca

    2016-01-01

    Al giorno d’oggi, la tecnologia GNSS può essere uno strumento utile, non solo in ambito di navigazione, ma anche per applicazioni di posizionamento di precisione come il monitoraggio di strutture o del territorio. Questa tecnica permette un controllo in continuo, anche da remoto, e ha un costo relativamente basso sia per quanto riguarda le strumentazioni che per gli aspetti di materializzazione e mantenimento. Nell’ottica di utilizzare la tecnologia GNSS per applicazioni di monitoraggio, il p...

  7. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    OpenAIRE

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-01-01

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. Th...

  8. Investigation of the Air Quality Change Effect on Gnss Signals

    Science.gov (United States)

    Gurbuz, G.; Gormus, K. S.; Altan, U.

    2017-11-01

    Air pollution is the most important environmental problem in Zonguldak city center. Since bituminous coal is used for domestic heating in houses and generating electricity in thermal power plants, particulate matter (PM10) is the leading air pollutant. Previous studies have shown that the water vapor in the troposphere is responsible for the tropospheric zenith delay in Global Navigation Satellite System (GNSS) measurements. In this study, data obtained from the ZONG GNSS station from Türkiye Ulusal Sabit GNSS Ağı (TUSAGA-Active network) in the central district of Zonguldak province, processed with GIPSY-OASIS II and GAMIT/GlobK software using the VMF1 mapping function, which is developed previously and considered to be the most accurate model. The resulting values were examined separately in terms of software. The meteorological parameters obtained from the Turkish State Meteorological Service and the air pollution values obtained from the Ministry of Environment and Urban Planning were analyzed and the zenith delay values were compared. When wet zenith delays of different days with different amounts of PM10 concentrations were examined in succession and under the same meteorological conditions, differences in the range of 20-40 mm on ZTD were observed.

  9. Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections

    Science.gov (United States)

    Wang, Ningbo; Yuan, Yunbin; Li, Zishen; Huo, Xingliang

    2016-04-01

    Broadcast ionospheric model is currently an effective approach to mitigate the ionospheric time delay for real-time Global Navigation Satellite System (GNSS) single-frequency users. Klobuchar coefficients transmitted in Global Positioning System (GPS) navigation message have been widely used in various GNSS positioning and navigation applications; however, this model can only reduce the ionospheric error by approximately 50% in mid-latitudes. With the emerging BeiDou and Galileo, as well as the modernization of GPS and GLONASS, more precise ionospheric correction models or algorithms are required by GNSS single-frequency users. Numerical analysis of the initial phase and nighttime term in Klobuchar algorithm demonstrates that more parameters should be introduced to better describe the variation of nighttime ionospheric total electron content (TEC). In view of this, several schemes are proposed for the improvement of Klobuchar algorithm. Performance of these improved Klobuchar-like models are validated over the continental and oceanic regions during high (2002) and low (2006) levels of solar activities, respectively. Over the continental region, GPS TEC generated from 35 International GNSS Service (IGS) and the Crust Movement Observation Network of China (CMONOC) stations are used as references. Over the oceanic region, TEC data from TOPEX/Poseidon and JASON-1 altimeters are used for comparison. A ten-parameter Klobuchar-like model, which describes the nighttime term as a linear function of geomagnetic latitude, is finally proposed for GNSS single-frequency ionospheric corrections. Compared to GPS TEC, while GPS broadcast model can correct for 55.0% and 49.5% of the ionospheric delay for the year 2002 and 2006, respectively, the proposed ten-parameter Klobuchar-like model can reduce the ionospheric error by 68.4% and 64.7% for the same period. Compared to TOPEX/Poseidon and JASON-1 TEC, the improved ten-parameter Klobuchar-like model can mitigate the ionospheric

  10. Short-term estimation of GNSS TEC using a neural network model in Brazil

    Science.gov (United States)

    Ferreira, Arthur Amaral; Borges, Renato Alves; Paparini, Claudia; Ciraolo, Luigi; Radicella, Sandro M.

    2017-10-01

    This work presents a novel Neural Network (NN) model to estimate Total Electron Content (TEC) from Global Navigation Satellite Systems (GNSS) measurements in three distinct sectors in Brazil. The purpose of this work is to start the investigations on the development of a regional model that can be used to determine the vertical TEC over Brazil, aiming future applications on a near real-time frame estimations and short-term forecasting. The NN is used to estimate the GNSS TEC values at void locations, where no dual-frequency GNSS receiver that may be used as a source of data to GNSS TEC estimation is available. This approach is particularly useful for GNSS single-frequency users that rely on corrections of ionospheric range errors by TEC models. GNSS data from the first GLONASS network for research and development (GLONASS R&D network) installed in Latin America, and from the Brazilian Network for Continuous Monitoring of the GNSS (RMBC) were used on TEC calibration. The input parameters of the NN model are based on features known to influence TEC values, such as geographic location of the GNSS receiver, magnetic activity, seasonal and diurnal variations, and solar activity. Data from two ten-days periods (from DoY 154 to 163 and from 282 to 291) are used to train the network. Three distinct analyses have been carried out in order to assess time-varying and spatial performance of the model. At the spatial performance analysis, for each region, a set of stations is chosen to provide training data to the NN, and after the training procedure, the NN is used to estimate vTEC behavior for the test station which data were not presented to the NN in training process. An analysis is done by comparing, for each testing station, the estimated NN vTEC delivered by the NN and reference calibrated vTEC. Also, as a second analysis, the network ability to forecast one day after the time interval (DoY 292) based on information of the second period of investigation is also assessed

  11. Body lift, drag and power are relatively higher in large-eared than in small-eared bat species.

    Science.gov (United States)

    Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders; Johansson, L Christoffer

    2017-10-01

    Bats navigate the dark using echolocation. Echolocation is enhanced by external ears, but external ears increase the projected frontal area and reduce the streamlining of the animal. External ears are thus expected to compromise flight efficiency, but research suggests that very large ears may mitigate the cost by producing aerodynamic lift. Here we compare quantitative aerodynamic measures of flight efficiency of two bat species, one large-eared ( Plecotus auritus ) and one small-eared ( Glossophaga soricina ), flying freely in a wind tunnel. We find that the body drag of both species is higher than previously assumed and that the large-eared species has a higher body drag coefficient, but also produces relatively more ear/body lift than the small-eared species, in line with prior studies on model bats. The measured aerodynamic power of P. auritus was higher than predicted from the aerodynamic model, while the small-eared species aligned with predictions. The relatively higher power of the large-eared species results in lower optimal flight speeds and our findings support the notion of a trade-off between the acoustic benefits of large external ears and aerodynamic performance. The result of this trade-off would be the eco-morphological correlation in bat flight, with large-eared bats generally adopting slow-flight feeding strategies. © 2017 The Author(s).

  12. A Hands-on Physical Analog Demonstration of Real-Time Volcano Deformation Monitoring with GNSS/GPS

    Science.gov (United States)

    Jones, J. R.; Schobelock, J.; Nguyen, T. T.; Rajaonarison, T. A.; Malloy, S.; Njinju, E. A.; Guerra, L.; Stamps, D. S.; Glesener, G. B.

    2017-12-01

    Teaching about volcano deformation and how scientists study these processes using GNSS/GPS may present some challenge since the volcanoes and/or GNSS/GPS equipment are not quite accessible to most teachers. Educators and curriculum materials specialists have developed and shared a number of activities and demonstrations to help students visualize volcanic processes and ways scientist use GNSS/GPS in their research. From resources provided by MEDL (the Modeling and Educational Demonstrations Laboratory) in the Department of Geosciences at Virginia Tech, we combined multiple materials and techniques from these previous works to produce a hands-on physical analog model from which students can learn about GNSS/GPS studies of volcano deformation. The model functions as both a qualitative and quantitative learning tool with good analogical affordances. In our presentation, we will describe multiple ways of teaching with the model, what kinds of materials can be used to build it, and ways we think the model could be enhanced with the addition of Vernier sensors for data collection.

  13. Analysis strategies for combining continuous and episodic GNSS for studies of neo-tectonics in Northern-Norway

    Science.gov (United States)

    Kierulf, Halfdan Pascal

    2017-09-01

    Crustal deformation in the seismically active Nordland area in Northern Norway is estimated based on a combination of data from local episodic epGNSS campaigns (three 5-day campaigns in 1999, 2008 and 2015) and continuously operating cGNSS stations in the area that were mainly established in 2008 and in 2009. To establish a local long-term stable reference frame, which is consistent both with the epGNSS network and the network of newer cGNSS, a three-step procedure for reference frame realization is used to get consistent results from all the stations in the area. Analysis of the main error sources shows that uncertainties for the episodic epGNSS stations are around 0.2 mm/yr in the horizontal components and 0.5 mm/yr in the vertical component. The results support earlier findings that Ranafjord area of the Nordland is undergoing crustal spreading with horizontal displacement velocities of ca. 1.0 ± 0.2 mm/yr, predominantly in the east-west direction. The results also show a gradient in the uplift along the coast of Nordland that is larger than predicted by existing glacial isostatic adjustment models.

  14. by monitoring microgravity and GPS/GNSS methods

    Indian Academy of Sciences (India)

    Dokuz Eylul University, Department of Geophysical Engineering, Tınaztepe Campus, Buca, Izmir, Turkey. ∗. Corresponding author. e-mail: .... For processing GPS/GNSS data, the software, which is called GAMIT/GLOBK (Herring 2009; .... trend for DEU6, DEU7, DEU8, DEU5, DEU11 measurement points (uplift), stable for ...

  15. Low-set ears and pinna abnormalities

    Science.gov (United States)

    Low-set ears; Microtia; "Lop" ear; Pinna abnormalities; Genetic defect - pinna; Congenital defect - pinna ... conditions: Abnormal folds or location of the pinna Low-set ears No opening to the ear canal ...

  16. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02

    Directory of Open Access Journals (Sweden)

    Ruihang Yu

    2015-09-01

    Full Text Available In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter—SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS, a Global Navigation Satellite System (GNSS remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  17. Carrier phase altimetry using Zeppelin based GNSS-R observations and water gauge reference data

    Science.gov (United States)

    Semmling, Maximilian; Schön, Steffen; Beckheinrich, Jamila; Beyerle, Georg; Ge, Maorong; Wickert, Jens

    2014-05-01

    The increasing number of transmitters in global navigation satellite systems (GNSS), like GPS, Galileo, Glonass or Compass, provide observations with an increasing coverage for positioning but also for remote sensing. A space based GNSS remote sensing application is radio occultation, a limb sounding method. Globally distributed vertical profiles of temperature, water vapour and electron density are provided operationally for weather forecast and ionospheric monitoring. Another application is GNSS reflectometry (GNSS-R) that is currently developed especially for ocean remote sensing. The high reflection coefficient of water is crucial for GNSS-R. This study presents a method that uses GNSS phase observations for lake altimetry with the potential for ocean application. Phase observations are deduced from a GORS (GNSS Occultaction Reflectometry Scatterometry) receiver in Master-Slave-Configuration. The Master sampling dedicated for direct signal acquisition is connected to an up-looking antenna with right hand circular polarization (RHCP). Two Slave samplings dedicated for acquisition of the reflected signals are connected to down-looking antennas with right- and left-hand circular polarization (RHCP and LHCP). Based on in-phase and quad-phase (I, Q) sample components, an altimetric phase residual is retrieved. This residual can be related to the height of the reflecting surface. An altimetric challenge arises from the unknown ambiguity of phase residuals that introduces a height bias. The presented study uses ancillary data deduced from water gauges to mitigate the ambiguity bias. Reference tracks are formed by linear surface height interpolation between the water gauge stations. At crossover points of reflection tracks with reference tracks a phase ambiguity estimate is determined for bias mitigation. For this study airborne GNSS measurements were conducted aboard a Zeppelin NT (New Technology) airship with a geodetic receiver for navigation and a GORS receiver for

  18. Influence of Ionospheric Weather on GNSS Radio Occultation Signals

    Science.gov (United States)

    Yue, X.; Schreiner, W. S.; Pedatella, N. M.; Kuo, Y. H.

    2016-12-01

    Transient loss of lock (LOL) is one of the key space weather effects on the Global Navigation Satellite System (GNSS). Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) observations during 2007-2011, we have analyzed the signal cycle slip (CS) occurrence comprehensively and its correlation to the ionospheric weather phenomena such as sporadic E (Es), equatorial F region irregularity (EFI), and the ionospheric equatorial ionization anomaly (EIA). The high vertical resolution of RO observations enables us to distinguish the CS resulting from different ionospheric layers clearly on a global scale. In the E layer, the CS is dominated by the Es occurrence, while in the F layer, the CS is mainly related to the EIA and EFI at low and equatorial latitudes. In the polar region, the CS is primarily related to polar cap electron density gradients. The overall average CS (> 6 cycles) occurrence is 23% per occultation, with the E (50-150 km) and F (150-600 km) layers contributing 8.3% and 14.7%, respectively. Awareness of the effect of the ionospheric weather on the CS of the low-Earth-orbit (LEO)-based GNSS signal could be beneficial to a variety of applications, including the LEO-based GNSS data processing and the corresponding hardware/firmware design.

  19. MAPPING GNSS RESTRICTED ENVIRONMENTS WITH A DRONE TANDEM AND INDIRECT POSITION CONTROL

    Directory of Open Access Journals (Sweden)

    E. Cledat

    2017-08-01

    Full Text Available The problem of autonomously mapping highly cluttered environments, such as urban and natural canyons, is intractable with the current UAV technology. The reason lies in the absence or unreliability of GNSS signals due to partial sky occlusion or multi-path effects. High quality carrier-phase observations are also required in efficient mapping paradigms, such as Assisted Aerial Triangulation, to achieve high ground accuracy without the need of dense networks of ground control points. In this work we consider a drone tandem in which the first drone flies outside the canyon, where GNSS constellation is ideal, visually tracks the second drone and provides an indirect position control for it. This enables both autonomous guidance and accurate mapping of GNSS restricted environments without the need of ground control points. We address the technical feasibility of this concept considering preliminary real-world experiments in comparable conditions and we perform a mapping accuracy prediction based on a simulation scenario.

  20. A regional GNSS-VTEC model over Nigeria using neural networks: A novel approach

    Directory of Open Access Journals (Sweden)

    Daniel Okoh

    2016-01-01

    Full Text Available A neural network model of the Global Navigation Satellite System – vertical total electron content (GNSS-VTEC over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's critical plasma frequency (foF2 parameter as an additional neuron for the network's input layer. The work also explores the effects of using various other input layer neurons like disturbance storm time (DST and sunspot number. All available GNSS data from the Nigerian Permanent GNSS Network (NIGNET were used, and these cover the period from 2011 to 2015, for 14 stations. Asides increasing the learning accuracy of the networks, the inclusion of the IRI's foF2 parameter as an input neuron is ideal for making the networks to learn long-term solar cycle variations. This is important especially for regions, like in this work, where the GNSS data is available for less than the period of a solar cycle. The neural network model developed in this work has been tested for time-varying and spatial performances. The latest 10% of the GNSS observations from each of the stations were used to test the forecasting ability of the networks, while data from 2 of the stations were entirely used for spatial performance testing. The results show that root-mean-squared-errors were generally less than 8.5 TEC units for all modes of testing performed using the optimal network. When compared to other models, the model developed in this work was observed to reduce the prediction errors to about half those of the NeQuick and the IRI model.

  1. GEROS-ISS: Ocean Remote Sensing with GNSS Reflectometry from the International Space Station

    DEFF Research Database (Denmark)

    Wickert, Jens; Andersen, Ole Baltazar; Camps, Adriano

    on exploiting reflected signals of opportunity from Global Navigation Satellite Systems (GNSS) at L-band to measure key parameters of ocean surfaces. GEROS will utilize the U.S. American GPS (Global Positioning System) and pioneer the exploitation of signals from Galileo and possibly other GNSS systems (GLONASS......, QZSS, BeiDou), for reflectometry and occultation, thereby improving the accuracy as well as the spatio-temporal resolution of the derived geophysical properties. The primary mission objectives of GEROS are: (1) to measure the altimetric sea surface height of the ocean using reflected GNSS signals...... the oceanographic significance of the expected measurements and to demonstrate the usefulness of the GEROS concept. The presentation will give an overview on the current status of the GEROS experiment, review the science activities within the international GARCA study and related ESA-supported science activities....

  2. Evaluation of RTKLIB's Positioning Accuracy Using low-cost GNSS Receiver and ASG-EUPOS

    Directory of Open Access Journals (Sweden)

    Bartosz Wisniewski

    2013-03-01

    Full Text Available The paper focuses on a comparison of different positioning methods provided by free and open source software (FOSS package called RTKLIB. The RTKLIB supports real-time and post-processed positioning. The most important modes of operation tested by the authors are Kinematic, Static, Fixed and Precise Point Positioning (PPP. The data for evaluation were obtained from low-cost Global Navigation Satellite System (GNSS receiver. The tested receiver was based on the u-blox's LEA-6T GNSS module. This receiver provides different types of information including raw carrier phase measurements. It gives the possibility for centimeter-level precision of positioning. As the supporting source of data ASG-EUPOS system was used. ASG-EUPOS is a Polish network of GNSS reference stations providing the real-time corrections and post processing services for the entire territory of Poland.

  3. Impacts of GNSS position offsets on global frame stability

    Science.gov (United States)

    Griffiths, Jake; Ray, Jim

    2014-05-01

    Positional offsets appear in Global Navigation Satellite System (GNSS) time series for a variety of reasons. Antenna or radome changes are the most common cause for these discontinuities. Many others are from earthquakes, receiver changes, and different anthropogenic modifications at or near the stations. Some jumps appear for unknown or undocumented reasons. The accurate determination of station velocities, and therefore geophysical parameters and terrestrial reference frames, requires that positional offsets be correctly found and compensated. Williams (2003) found that undetected offsets introduce a random walk error component in individual station time series. The topic of detecting positional offsets has received considerable attention in recent years (e.g., Detection of Offsets in GPS Experiment; DOGEx), and most research groups using GNSS have adopted a combination of manual and automated methods for finding them. The removal of a positional offset is usually handled by estimating the average station position on both sides of the discontinuity, assuming a constant, continuous velocity. This is sufficient in the absence of time-correlated errors. However, GNSS time series contain systematic and power-law errors (white to random walk noise). In this paper, we aim to evaluate the impact to both individual station results and the overall stability of the global reference frame from adding increasing numbers of positional discontinuities. We use the International GNSS Service (IGS) weekly SINEX files, and iteratively insert positional offset parameters at the midpoint of each data segment. Each iteration includes a restacking of the modified SINEX files using the CATREF software from Institut National de l'Information Géographique et Forestière (IGN) to estimate: regularized station positions, secular velocities, Earth orientation parameters, Helmert frame alignment parameters, and the empirical shifts across all positional discontinuities. A comparison of the

  4. "Swimmer's Ear" (Otitis Externa) Prevention

    Science.gov (United States)

    ... infections, swimmer’s ear, and healthy swimming. "Swimmer's Ear" (Otitis Externa) What are the symptoms of swimmer's ear? ... Healthy page. Reference CDC. Estimated burden of acute otitis externa —United States, 2003–2007 . MMWR Morb Mortal ...

  5. Tropospheric Delay from VLBI and GNSS Measurements

    Science.gov (United States)

    Gubanov, V. S.

    2018-02-01

    Using an updated version of the QUASAR software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences, we have processed the VLBI observations within the international CONT14 program (May 6-20, 2014), in which a global network of 17 stations was involved (a total of 250 000 observations). The package update concerned the optimization of data structure and the refinement of stochastic models for the random variations in wet tropospheric delay and atomic clock difference. The main goal of this paper is to compare the VLBI determinations of the tropospheric delay with its independent determinations using global navigation satellite systems (GNSS). We show that both these determinations agree well between themselves only in the case of a global analysis of the VLBI observations, where the VLBI station coordinates are also refined, along with the tropospheric delay and the clock synchronization and Earth orientation parameters. If, alternatively, the station coordinates are insufficiently accurate and are not refined from VLBI observations, then it is appropriate not to determine the tropospheric delay from these observations, but to take it from the publicly accessible independent GNSS data. However, this requires that the VLBI and GNSS techniques operate simultaneously at a common observing site. We have established the shortcomings of the universally accepted method of stabilizing the global solution associated with the absence of a criterion for choosing reference stations and radio sources. Two ways of their elimination are proposed: (i) introducing a coordinated list of weight factors for the errors in the coordinates of such stations and sources into the stabilization algorithm and (ii) adopting a coordinated list of stations and sources the refinement of whose coordinates is not required at all for a certain time.

  6. Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance.

    Science.gov (United States)

    Li, Tuan; Zhang, Hongping; Niu, Xiaoji; Gao, Zhouzheng

    2017-10-27

    Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation Satellite System (multi-GNSS) has been applied to enhance the RTK performance in terms of availability and reliability of AR. In order to further enhance the multi-GNSS single-frequency RTK performance in terms of reliability, continuity and accuracy, a low-cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) is adopted in this contribution. We tightly integrate the single-frequency GPS/BeiDou/GLONASS and MEMS-IMU through the extended Kalman filter (EKF), which directly fuses the ambiguity-fixed double-differenced (DD) carrier phase observables and IMU data. A field vehicular test was carried out to evaluate the impacts of the multi-GNSS and IMU on the AR and positioning performance in different system configurations. Test results indicate that the empirical success rate of single-epoch AR for the tightly-coupled single-frequency multi-GNSS RTK/INS integration is over 99% even at an elevation cut-off angle of 40°, and the corresponding position time series is much more stable in comparison with the GPS solution. Besides, GNSS outage simulations show that continuous positioning with certain accuracy is possible due to the INS bridging capability when GNSS positioning is not available.

  7. Ear Problems in Swimmers

    Directory of Open Access Journals (Sweden)

    Mao-Che Wang

    2005-08-01

    Full Text Available Acute diffuse otitis externa (swimmer's ear, otomycosis, exostoses, traumatic eardrum perforation, middle ear infection, and barotraumas of the inner ear are common problems in swimmers and people engaged in aqua activities. The most common ear problem in swimmers is acute diffuse otitis externa, with Pseudomonas aeruginosa being the most common pathogen. The symptoms are itching, otalgia, otorrhea, and conductive hearing loss. The treatment includes frequent cleansing of the ear canal, pain control, oral or topical medications, acidification of the ear canal, and control of predisposing factors. Swimming in polluted waters and ear-canal cleaning with cotton-tip applicators should be avoided. Exostoses are usually seen in people who swim in cold water and present with symptoms of accumulated debris, otorrhea and conductive hearing loss. The treatment for exostoses is transmeatal surgical removal of the tumors. Traumatic eardrum perforations may occur during water skiing or scuba diving and present with symptoms of hearing loss, otalgia, otorrhea, tinnitus and vertigo. Tympanoplasty might be needed if the perforations do not heal spontaneously. Patients with chronic otitis media with active drainage should avoid swimming, while patients who have undergone mastoidectomy and who have no cavity problems may swim. For children with ventilation tubes, surface swimming is safe in a clean, chlorinated swimming pool. Sudden sensorineural hearing loss and some degree of vertigo may occur after diving because of rupture of the round or oval window membrane.

  8. The Analysis of Height System Definition and the High Precision GNSS Replacing Leveling Method

    Directory of Open Access Journals (Sweden)

    ZHANG Chuanyin

    2017-08-01

    Full Text Available Based on the definition of height system, the gravitational equipotential property of height datum surface is discussed in this paper, differences of the heights at ground points that defined in different height systems are tested and analyzed as well. A new method for replacing leveling using GNSS is proposed to ensure the consistency between GNSS replacing leveling and spirit leveling at mm accuracy level. The main conclusions include:①For determining normal height at centimeter accuracy level, the datum surface of normal height should be the geoid. The 1985 national height datum of China adopts normal height system, its datum surface is the geoid passing the Qingdao zero point.②The surface of equi-orthometric height in the near earth space is parallel to the geoid. The combination of GNSS precise positioning and geoid model can be directly used for orthometric height determination. However, the normal height system is more advantageous for describing the terrain and relief.③Based on the proposed method of GNSS replacing leveling, the errors in geodetic height affect more on normal height result than the errors of geoid model, the former is about 1.5 times of the latter.

  9. INVESTIGATION OF THE AIR QUALITY CHANGE EFFECT ON GNSS SIGNALS

    Directory of Open Access Journals (Sweden)

    G. Gurbuz

    2017-11-01

    Full Text Available Air pollution is the most important environmental problem in Zonguldak city center. Since bituminous coal is used for domestic heating in houses and generating electricity in thermal power plants, particulate matter (PM10 is the leading air pollutant. Previous studies have shown that the water vapor in the troposphere is responsible for the tropospheric zenith delay in Global Navigation Satellite System (GNSS measurements. In this study, data obtained from the ZONG GNSS station from Türkiye Ulusal Sabit GNSS Ağı (TUSAGA-Active network in the central district of Zonguldak province, processed with GIPSY-OASIS II and GAMIT/GlobK software using the VMF1 mapping function, which is developed previously and considered to be the most accurate model. The resulting values were examined separately in terms of software. The meteorological parameters obtained from the Turkish State Meteorological Service and the air pollution values obtained from the Ministry of Environment and Urban Planning were analyzed and the zenith delay values were compared. When wet zenith delays of different days with different amounts of PM10 concentrations were examined in succession and under the same meteorological conditions, differences in the range of 20–40 mm on ZTD were observed.

  10. NUVEM - New methods to Use gnss water Vapor Estimates for Meteorology of Portugal

    Science.gov (United States)

    Fernandes, R. M. S.; Viterbo, P.; Bos, M. S.; Martins, J. P.; Sá, A. G.; Valentim, H.; Jones, J.

    2014-12-01

    NUVEM (New methods to Use gnss water Vapor Estimates for Meteorology of Portugal) is a collaborative project funded by the Portuguese National Science Foundation (FCT) aiming to implement a multi-disciplinary approach in order to operationalize the inclusion of GNSS-PWV estimates for nowcasting in Portugal, namely for the preparation of warnings of severe weather. To achieve such goal, the NUVEM project is divided in two major components: a) Development and implementation of methods to compute accurate estimates of PWV (Precipitable Water Vapor) in NRT (Near Real-Time); b) Integration of such estimates in nowcasting procedures in use at IPMA (Portuguese Meteorological Service). Methodologies will be optimized at SEGAL to passive and actively access to the data; the PWV estimations will be computed using PPP (Precise Point Positioning), which permits the estimation of each individual station separately; solutions will be validated using internal and external values; and computed solutions will be transferred timely to the IPMA Operational Center. Validation of derived estimations using robust statistics is an important component of the project. The need for sending computed values as soon as possible to IPMA requires fast but reliable internal (e.g., noise estimation) and external (e.g., feedback from IPMA using other sensors like radiosondes) assessment of the quality of the PWV estimates. At IPMA, the goal is to implement the operational use of GNSS-PWV to assist weather nowcasting in Portugal. This will be done with the assistance of the Meteo group of IDL. Maps of GNSS-PWV will be automatically created and compared with solutions provided by other operational systems in order to help IPMA to detect suspicious patterns at near real time. This will be the first step towards the assimilation of GNSS-PWV estimates at IPMA nowcasting models. The NUVEM (EXPL/GEO-MET/0413/2013) project will also contribute to the active participation of Portugal at the COST Action ES

  11. Body lift, drag and power are relatively higher in large-eared than in small-eared bat species

    DEFF Research Database (Denmark)

    Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2017-01-01

    Bats navigate the dark using echolocation. Echolocation is enhanced by external ears, but external ears increase the projected frontal area and reduce the streamlining of the animal. External ears are thus expected to compromise flight efficiency, but research suggests that very large ears may mi....... The result of this trade-off would be the eco-morphological correlation in bat flight, with large-eared bats generally adopting slow-flight feeding strategies....

  12. An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing

    Science.gov (United States)

    Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin

    2018-02-01

    The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.

  13. Clarifying the interplate main tectonic elements of Western Anatolia, Turkey by using GNSS velocities and Bouguer gravity anomalies

    Science.gov (United States)

    Çırmık, Ayça; Pamukçu, Oya

    2017-10-01

    In this study, the GNSS and gravity data were processed and compared together for examining the continental structures of the Western Anatolia region which has very complicated tectonism. The GNSS data of three national projects were processed and GNSS velocities were found as approximately 25 mm per year towards southwest with respect to the Eurasia fixed frame. In order to investigate the interplate motions of the region, the Anatolian and Aegean block solutions were calculated and the differences in directions and amplitudes of velocities were observed particularly in the Anatolian block solution. Due to the Anatolian block solutions, the study area was grouped into three regions and compared with the tectonic structures as the first time for Western Anatolia by this study. Additionally, W-E and N-S relative GNSS solutions were obtained for observing the possible tectonic borders of the study area. Besides, 2nd order horizontal derivative and low-pass filter methods were applied to Bouguer gravity anomalies and the results of the gravity applications and the changes on crustal-mantle interface were compared with the GNSS horizontal velocities.

  14. Ear-to-Ear On-Body Channel Model for Hearing Aid Applications

    DEFF Research Database (Denmark)

    Kvist, Søren Helstrup; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2015-01-01

    that the head is mod- eled more accurately, and the radiation pattern is sampled in more points. The model is able to take the on-body radiation pattern of the antenna, as well as arbitrary he ad contours into account. The model is validated by the use of measurements and Ansys HFSS simulations on the specific......The deterministic ear-to-ear on-body channel is modeled by the use of a number of elliptically shaped paths. The semi-major axes of the elliptica lly shaped paths are adjusted such that they trace the outline of the head. The path gain converges when the number of paths is increased, su ch...... anthropomorphic mannequin (SAM) head. The model is used with a g enetic algorithm in order to synthesize a radiation pattern that is optimal for use with the ear-to-ear on-body channel. The radiation pattern is synthesized in terms of the spherical wave expansion coefficients of the hypothetical small antenna...

  15. A Filtering of Incomplete GNSS Position Time Series with Probabilistic Principal Component Analysis

    Science.gov (United States)

    Gruszczynski, Maciej; Klos, Anna; Bogusz, Janusz

    2018-04-01

    For the first time, we introduced the probabilistic principal component analysis (pPCA) regarding the spatio-temporal filtering of Global Navigation Satellite System (GNSS) position time series to estimate and remove Common Mode Error (CME) without the interpolation of missing values. We used data from the International GNSS Service (IGS) stations which contributed to the latest International Terrestrial Reference Frame (ITRF2014). The efficiency of the proposed algorithm was tested on the simulated incomplete time series, then CME was estimated for a set of 25 stations located in Central Europe. The newly applied pPCA was compared with previously used algorithms, which showed that this method is capable of resolving the problem of proper spatio-temporal filtering of GNSS time series characterized by different observation time span. We showed, that filtering can be carried out with pPCA method when there exist two time series in the dataset having less than 100 common epoch of observations. The 1st Principal Component (PC) explained more than 36% of the total variance represented by time series residuals' (series with deterministic model removed), what compared to the other PCs variances (less than 8%) means that common signals are significant in GNSS residuals. A clear improvement in the spectral indices of the power-law noise was noticed for the Up component, which is reflected by an average shift towards white noise from - 0.98 to - 0.67 (30%). We observed a significant average reduction in the accuracy of stations' velocity estimated for filtered residuals by 35, 28 and 69% for the North, East, and Up components, respectively. CME series were also subjected to analysis in the context of environmental mass loading influences of the filtering results. Subtraction of the environmental loading models from GNSS residuals provides to reduction of the estimated CME variance by 20 and 65% for horizontal and vertical components, respectively.

  16. PIT Tagging Anurans

    Science.gov (United States)

    McCreary, Brome

    2008-01-01

    The following video demonstrates a procedure to insert a passive integrated transponder (PIT) tag under the skin of an anuran (frog or toad) for research and monitoring purposes. Typically, a 12.5 mm tag (0.5 in.) is used to uniquely identify individual anurans as smal as 40 mm (1.6 in.) in length from snout to vent. Smaller tags are also available and allow smaller anurans to be tagged. The procedure does not differ for other sizes of tages or other sizes of anurans. Anyone using this procedure should ensure that the tag is small enough to fit easily behind the sacral hump of the anuran, as shown in this video.

  17. Implementing real-time GNSS monitoring to investigate continental rift initiation processes

    Science.gov (United States)

    Jones, J. R.; Stamps, D. S.; Wauthier, C.; Daniels, M. D.; Saria, E.; Ji, K. H.; Mencin, D.; Ntambila, D.

    2017-12-01

    Continental rift initiation remains an elusive, yet fundamental, process in the context of plate tectonic theory. Our early work in the Natron Rift, Tanzania, the Earth's archetype continental rift initiation setting, indicates feedback between volcanic deformation and fault slip play a key role in the rift initiation process. We found evidence that fault slip on the Natron border fault during active volcanism at Ol Doniyo Lengai in 2008 required only 0.01 MPa of Coulomb stress change. This previous study was limited by GPS constraints 18 km from the volcano, rather than immediately adjacent on the rift shoulder. We hypothesize that fault slip adjacent to the volcano creeps, and without the need for active eruption. We also hypothesize silent slip events may occur over time-scales less than 1 day. To test our hypotheses we designed a GNSS network with 4 sites on the flanks of Ol Doinyo Lengai and 1 site on the adjacent Natron border fault with the capability to calculate 1 second, 3-5 cm precision positions. Data is transmitted to UNAVCO in real-time with remote satellite internet, which we automatically import to the EarthCube building block CHORDS (Cloud Hosted Real-time Data Services for the Geosciences) using our newly developed method. We use CHORDS to monitor and evaluate the health of our network while visualizing the GNSS data in real-time. In addition to our import method we have also developed user-friendly capabilities to export GNSS positions (longitude, latitude, height) with CHORDS assuming the data are available at UNAVCO in NMEA standardized format through the Networked Transport of RTCM via Internet Protocol (NTRIP). The ability to access the GNSS data that continuously monitors volcanic deformation, tectonics, and their interactions on and around Ol Doinyo Lengai is a crucial component in our investigation of continental rift initiation in the Natron Rift, Tanzania. Our new user-friendly methods developed to access and post-process real-time GNSS

  18. Advanced algorithms for ionosphere modelling in GNSS applications within AUDITOR project

    Science.gov (United States)

    Goss, Andreas; Erdogan, Eren; Schmidt, Michael; Garcia-Rigo, Alberto; Hernandez-Pajares, Manuel; Lyu, Haixia; Nohutcu, Metin

    2017-04-01

    The H2020 project AUDITOR of the European Union started on January 1st 2016, with the participation of several European institutions and universities. The goal of the project is the implementation of a novel precise positioning technique, based on augmentation data in a customized GNSS receiver. Therefore more sophisticated ionospheric models have to be developed and implemented to increase the accuracy in real-time at the user side. Since the service should be available for the public, we use public data from GNSS networks (e.g. IGS, EUREF). The contributions of DGFI-TUM and UPC are focusing on the development of high accuracy GNSS algorithms to provide enhanced ionospheric corrections. This includes two major issues: 1. The existing mapping function to convert the slant total electron content (STEC) measurable by GNSS into the vertical total electron content (VTEC) is based on a so called single layer model (SLM), where all electrons are concentrated on an infinitesimal thin layer with fixed height (between 350 and 450 kilometers). This quantity is called the effective ionospheric height (EIH). An improvement of the mapping function shall be achieved by estimating more realistic numerical values for the EIH by means of a voxel-based tomographic model (TOMION). 2. The ionospheric observations are distributed rather unevenly over the globe and within specific regions. This inhomogeneous distribution is handled by data adaptive B-Spline approaches, with polynomial and trigonometric functions used for the latitude and longitude representations to provide high resolution VTEC maps for global and regional purposes. A Kalman filter is used as sequential estimator. The unknown parameters of the filter state vector are composed of the B-spline coefficients as well as the satellite and receiver DCBs. The resulting high accuracy ionosphere products will be disseminated to the users via downlink from a dedicated server to a receiver site. In this context, an appropriate

  19. MONITORING HIGH-FREQUENCY OCEAN SIGNALS USING LOW-COST GNSS/IMU BUOYS

    Directory of Open Access Journals (Sweden)

    Y.-L. Huang

    2016-06-01

    Full Text Available In oceans there are different ocean signals covering the multi-frequencies including tsunami, meteotsunami, storm surge, as sea level change, and currents. These signals have the direct and significant impact on the economy and life of human-beings. Therefore, measuring ocean signals accurately becomes more and more important and necessary. Nowadays, there are many techniques and methods commonly used for monitoring oceans, but each has its limitation. For example, tide gauges only measure sea level relative to benchmarks and are disturbed unevenly, and satellite altimeter measurements are not continuous and inaccurate near coastal oceans. In addition, high-frequency ocean signals such as tsunami and meteotsunami cannot be sufficiently detected by 6-minutes tide gauge measurements or 10-day sampled altimetry data. Moreover, traditional accelerometer buoy is heavy, expensive and the low-frequency noise caused by the instrument is unavoidable. In this study, a small, low-cost and self-assembly autonomous Inertial Measurement Unit (IMU that independently collects continuous acceleration and angular velocity data is mounted on a GNSS buoy to provide the positions and tilts of the moving buoy. The main idea is to integrate the Differential GNSS (DGNSS or Precise Point Positioning (PPP solutions with IMU data, and then evaluate the performance by comparing with in situ tide gauges. The validation experiments conducted in the NCKU Tainan Hydraulics Laboratory showed that GNSS and IMU both can detect the simulated regular wave frequency and height, and the field experiments in the Anping Harbor, Tainan, Taiwan showed that the low-cost GNSS buoy has an excellent ability to observe significant wave heights in amplitude and frequency.

  20. Preliminary results from the Arecibo Heating Experiment (HEX): HF to GNSS

    Science.gov (United States)

    Jackson-Booth, N.; Penney, R.; Bernhardt, P. A.; Martin, P. L.; Buckland, R.; Morton-Orr, T.; Nossa, E.; Buckland, R.

    2017-12-01

    The ionosphere is subject to many solar and terrestrial influences that can generate disturbances, causing degradation to modern communication and navigational systems. Whilst the disturbances are normally caused by natural phenomena such as hurricanes, earthquakes and solar storms; they can also be generated by artificially modifying the ionosphere. Artificial Ionospheric Modification (AIM) attempts to alter a small region of the ionosphere in order to perturb the RF propagation environment. This can be achieved through injecting the ionosphere with aerosols, chemicals or radio signals. The effects of any such modification can be detected through the deployment of sensors, including ground based high-frequency (HF) sounders and dual-band Global Navigation Satellite System (GNSS) receivers. HF sounders allow measurements of the bottom-side of the ionosphere. GNSS receivers offer a convenient means of obtaining information about the ionosphere, including ionospheric disturbances through changes in the derived total electron content information. The Heating EXperiment (HEX), which took place in March and May 2017, was designed to further our understanding of the phenomena caused by artificially heating a small region of the ionosphere, using the Arecibo facility in Puerto Rico. This was achieved by utilizing a HF measurement experiment spread between Texas and Trinidad and the deployment of a small scale travelling ionospheric disturbance (TID) network near the heater. The TID network comprised three GNSS receivers along baselines of approximately 4 km, located 20 km north of the heater. This paper presents preliminary results from the HEX campaign, including evidence of heating-induced disturbances enhancing propagation between Virginia and Trinidad. The implications of generated irregularities on GNSS will also be discussed.

  1. Validating and comparing GNSS antenna calibrations

    Science.gov (United States)

    Kallio, Ulla; Koivula, Hannu; Lahtinen, Sonja; Nikkonen, Ville; Poutanen, Markku

    2018-03-01

    GNSS antennas have no fixed electrical reference point. The variation of the phase centre is modelled and tabulated in antenna calibration tables, which include the offset vector (PCO) and phase centre variation (PCV) for each frequency according to the elevations and azimuths of the incoming signal. Used together, PCV and PCO reduce the phase observations to the antenna reference point. The remaining biases, called the residual offsets, can be revealed by circulating and rotating the antennas on pillars. The residual offsets are estimated as additional parameters when combining the daily GNSS network solutions with full covariance matrix. We present a procedure for validating the antenna calibration tables. The dedicated test field, called Revolver, was constructed at Metsähovi. We used the procedure to validate the calibration tables of 17 antennas. Tables from the IGS and three different calibration institutions were used. The tests show that we were able to separate the residual offsets at the millimetre level. We also investigated the influence of the calibration tables from the different institutions on site coordinates by performing kinematic double-difference baseline processing of the data from one site with different antenna tables. We found small but significant differences between the tables.

  2. Rapid characterization of seismic sources in Chile: Contribution of the GNSS component

    Science.gov (United States)

    Barrientos, S. E.; Riquelme, S.; Baez, J. C., Sr.

    2017-12-01

    The recently created National Seismological Center (CSN) of the University of Chile was tasked to upgrade the countrýs seismic network in 2013. The upgrade included new 65 collocated accelerometer and broadband instruments together with 130 GNSS devices designed to transmit their data in real time. Forty units of the GNSS devices include the RTX option, a real time 1-Hz positioning capability at 4-cm error level. The observation system is complemented with 297 additional stand-alone strong motion instruments mainly located in basins for seismic engineering purposes. Broadband data can be accessed in real time from IRIS Data Management Service under networks C and C1. Strong motion event data can be retrieved through the CSN database (evtdb.csn.uchile.cl). A server is being established to handle GNSS data requests through an NTRIP Caster. Completion of the connectivity of the GNSS remote units to the main acquisition servers is expected to take place within several months. In addition to the 40 units providing real time positioning through the RTX option, Precise Point Positioning (PPP) algorithms are being tested on the CSN main servers to enable real time estimates every second for all GNSS remote devices. Because of the high earthquake productivity rate in Chile, the RTX system capabilities have been positively tested in two cases already, demonstrating their excellent performance: i) the main aftershock (M7.6) of the April 1, 2014, northern Chile event and ii) the April 24, 2017, (M6.9) event in central Chile. The former produced coastal horizontal static displacements of the order of 30 cm while the latter of the order of 5 cm. In addition to rapid earthquake characterization through static deformation, W-phase displacement waveform inversions are included in the fast analysis providing excellent results. These new applications and methodologies have profoundly impacted the rapid evaluation of the tsunamigenic potential of large earthquakes in the near field.

  3. Assessment of Measurement Distortions in GNSS Antenna Array Space-Time Processing

    Directory of Open Access Journals (Sweden)

    Thyagaraja Marathe

    2016-01-01

    Full Text Available Antenna array processing techniques are studied in GNSS as effective tools to mitigate interference in spatial and spatiotemporal domains. However, without specific considerations, the array processing results in biases and distortions in the cross-ambiguity function (CAF of the ranging codes. In space-time processing (STP the CAF misshaping can happen due to the combined effect of space-time processing and the unintentional signal attenuation by filtering. This paper focuses on characterizing these degradations for different controlled signal scenarios and for live data from an antenna array. The antenna array simulation method introduced in this paper enables one to perform accurate analyses in the field of STP. The effects of relative placement of the interference source with respect to the desired signal direction are shown using overall measurement errors and profile of the signal strength. Analyses of contributions from each source of distortion are conducted individually and collectively. Effects of distortions on GNSS pseudorange errors and position errors are compared for blind, semi-distortionless, and distortionless beamforming methods. The results from characterization can be useful for designing low distortion filters that are especially important for high accuracy GNSS applications in challenging environments.

  4. Structure and function of the mammalian middle ear. I: Large middle ears in small desert mammals.

    Science.gov (United States)

    Mason, Matthew J

    2016-02-01

    Many species of small desert mammals are known to have expanded auditory bullae. The ears of gerbils and heteromyids have been well described, but much less is known about the middle ear anatomy of other desert mammals. In this study, the middle ears of three gerbils (Meriones, Desmodillus and Gerbillurus), two jerboas (Jaculus) and two sengis (elephant-shrews: Macroscelides and Elephantulus) were examined and compared, using micro-computed tomography and light microscopy. Middle ear cavity expansion has occurred in members of all three groups, apparently in association with an essentially 'freely mobile' ossicular morphology and the development of bony tubes for the middle ear arteries. Cavity expansion can occur in different ways, resulting in different subcavity patterns even between different species of gerbils. Having enlarged middle ear cavities aids low-frequency audition, and several adaptive advantages of low-frequency hearing to small desert mammals have been proposed. However, while Macroscelides was found here to have middle ear cavities so large that together they exceed brain volume, the bullae of Elephantulus are considerably smaller. Why middle ear cavities are enlarged in some desert species but not others remains unclear, but it may relate to microhabitat. © 2015 Anatomical Society.

  5. Cutaneous skin tag

    Science.gov (United States)

    Skin tag; Acrochordon; Fibroepithelial polyp ... have diabetes. They are thought to occur from skin rubbing against skin. ... The tag sticks out of the skin and may have a short, narrow stalk connecting it to the surface of the skin. Some skin tags are as long as ...

  6. Statistical Shape Analysis of the Human Ear Canal with Application to In-the-Ear Hearing Aid Design

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold

    2004-01-01

    This thesis is about the statistical shape analysis of the human ear canal with application to the mechanical design of in-the-ear hearing aids. Initially, it is described how a statistical shape model of the human ear canal is built based on a training set of laser-scanned ear impressions. A thin...

  7. Serous otitis media (S.O.M.). A bacteriological study of the ear canal and the middle ear

    NARCIS (Netherlands)

    Cabenda, S. I.; Peerbooms, P. G.; van Asselt, G. J.; Feenstra, L.; van der Baan, S.

    1988-01-01

    A bacteriological study of the middle-ear effusions and the ear canals in children with chronic serous otitis media (S.O.M.) was performed. Sixty-eight children (127 ears) were investigated. From this study it appeared that cleansing of the ear canal with 0.5% chlorhexidine in 70% ethanol for 30 s

  8. Efficiency Improvement of Kalman Filter for GNSS/INS through One-Step Prediction of P Matrix

    Directory of Open Access Journals (Sweden)

    Qingli Li

    2015-01-01

    Full Text Available To meet the real-time and low power consumption demands in MEMS navigation and guidance field, an improved Kalman filter algorithm for GNSS/INS was proposed in this paper named as one-step prediction of P matrix. Quantitative analysis of field test datasets was made to compare the navigation accuracy with the standard algorithm, which indicated that the degradation caused by the simplified algorithm is small enough compared to the navigation errors of the GNSS/INS system itself. Meanwhile, the computation load and time consumption of the algorithm decreased over 50% by the improved algorithm. The work has special significance for navigation applications that request low power consumption and strict real-time response, such as cellphone, wearable devices, and deeply coupled GNSS/INS systems.

  9. Contribution of BeiDou satellite system for long baseline GNSS measurement in Indonesia

    Science.gov (United States)

    Gumilar, I.; Bramanto, B.; Kuntjoro, W.; Abidin, H. Z.; Trihantoro, N. F.

    2018-05-01

    The demand for more precise positioning method using GNSS (Global Navigation Satellite System) in Indonesia continue to rise. The accuracy of GNSS positioning depends on the length of baseline and the distribution of observed satellites. BeiDou Navigation Satellite System (BDS) is a positioning system owned by China that operating in Asia-Pacific region, including Indonesia. This research aims to find out the contribution of BDS in increasing the accuracy of long baseline static positioning in Indonesia. The contributions are assessed by comparing the accuracy of measurement using only GPS (Global Positioning System) and measurement using the combination of GPS and BDS. The data used is 5 days of GPS and BDS measurement data for baseline with 120 km in length. The software used is open-source RTKLIB and commercial software Compass Solution. This research will explain in detail the contribution of BDS to the accuracy of position in long baseline static GNSS measurement.

  10. Distributed Arithmetic for Efficient Base-Band Processing in Real-Time GNSS Software Receivers

    Directory of Open Access Journals (Sweden)

    Grégoire Waelchli

    2010-01-01

    Full Text Available The growing market of GNSS capable mobile devices is driving the interest of GNSS software solutions, as they can share many system resources (processor, memory, reducing both the size and the cost of their integration. Indeed, with the increasing performance of modern processors, it becomes now feasible to implement in software a multichannel GNSS receiver operating in real time. However, a major issue with this approach is the large computing resources required for the base-band processing, in particular for the correlation operations. Therefore, new algorithms need to be developed in order to reduce the overall complexity of the receiver architecture. Towards that aim, this paper first introduces the challenges of the software implementation of a GPS receiver, with a main focus given to the base-band processing and correlation operations. It then describes the already existing solutions and, from this, introduces a new algorithm based on distributed arithmetic.

  11. The effect of different sowing depths on fresh ear yield and some ear characteristics of sweet corn

    Directory of Open Access Journals (Sweden)

    Bekir Atar

    2017-12-01

    Full Text Available The research was conducted with aim to investigate effect on fresh ear yield and some ear characteristics of sweet corn of sowing at different depths during 2015 and 2016 years in Isparta. The experiments were set up according to randomized complete block design with three replicates using BATEM TATLI sweet corn cultivar. Furrows were opened at depths of 10 and 20 cm after the soil preparation, and seeds were sown in the 4-5 cm depth in to these furrows. According to means of years, while furrow sowing increased ear diameter, ear weigh, number of kernels per ear and fresh ear yield compared to control, it was not effect on ear length. In the research, between 10 cm and 20 cm furrow sowing wasn’t significant statistically. Fresh ear yield in control, 10 cm and 20 cm furrow sowing were measured as 1110.9 kg ha-1 , 1228.4 kg ha-1 and 1289.4 kg ha-1 , respectively. According to results of research, 5 cm deep sowing in 10 cm furrows should be advised in sweet corn cultivation.

  12. Ear Infection and Vaccines

    Science.gov (United States)

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  13. Swimmer's Ear (For Parents)

    Science.gov (United States)

    ... Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family Life First Aid & Safety Doctors & ... can lead to an infection. Dry skin or eczema , scratching the ear canal, vigorous ear cleaning with ...

  14. A procedure for the significance testing of unmodeled errors in GNSS observations

    Science.gov (United States)

    Li, Bofeng; Zhang, Zhetao; Shen, Yunzhong; Yang, Ling

    2018-01-01

    It is a crucial task to establish a precise mathematical model for global navigation satellite system (GNSS) observations in precise positioning. Due to the spatiotemporal complexity of, and limited knowledge on, systematic errors in GNSS observations, some residual systematic errors would inevitably remain even after corrected with empirical model and parameterization. These residual systematic errors are referred to as unmodeled errors. However, most of the existing studies mainly focus on handling the systematic errors that can be properly modeled and then simply ignore the unmodeled errors that may actually exist. To further improve the accuracy and reliability of GNSS applications, such unmodeled errors must be handled especially when they are significant. Therefore, a very first question is how to statistically validate the significance of unmodeled errors. In this research, we will propose a procedure to examine the significance of these unmodeled errors by the combined use of the hypothesis tests. With this testing procedure, three components of unmodeled errors, i.e., the nonstationary signal, stationary signal and white noise, are identified. The procedure is tested by using simulated data and real BeiDou datasets with varying error sources. The results show that the unmodeled errors can be discriminated by our procedure with approximately 90% confidence. The efficiency of the proposed procedure is further reassured by applying the time-domain Allan variance analysis and frequency-domain fast Fourier transform. In summary, the spatiotemporally correlated unmodeled errors are commonly existent in GNSS observations and mainly governed by the residual atmospheric biases and multipath. Their patterns may also be impacted by the receiver.

  15. EPOS-IP WP10: services and data provision for the GNSS community

    Science.gov (United States)

    Fernandes, Rui

    2016-04-01

    The EPOS-IP WP10 - "GNSS Data & Products" is the Working Package of the EPOS-IP project in charge of implementing the necessary services in order that the geo-sciences community can access the existing Pan-European Geodetic Infrastructures. The WP10 is formed by representatives of the participating institutions (10) but it is also open to the entire geodetic community. In fact, WP10 also includes members from other institutions/countries that formally are not participating in the EPOS-IP. During the EPOS-IP project, the geodetic component of EPOS (WP10) is dealing essentially with Research Infrastructures focused on continuous operating GNSS (cGNSS). The option of concentrating the efforts on the presently most generalized geodetic tool supporting research on Solid Earth was decided in order to optimize the existing resources. Furthermore, although the focus is on Solid Earth applications, other research and technical applications (e.g., reference frames, meteorology, space weather) can also benefit from the efforts of WP10 towards the optimization of the geodetic resources in Europe. We will present and discuss the plans for the implementation of the thematic and core services (TCS) for GNSS data within EPOS and the related business plan. We will focus on strategies towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using transparent and uniform processes. The collaboration with EUREF is also an essential component of the implementation plan.

  16. Tags on healthcare information websites

    DEFF Research Database (Denmark)

    Lykke, Marianne; Ådland, Marit Kristine

    2018-01-01

    This paper explores tags and tagging behaviour on health information websites using an empirical, user-oriented, exploratory case study. Taggers and editors were interviewed about tags and tagging, while taggers solved tasks that included applying tags to a website. This qualitative data...... articles, request information, and value article content. Some of these show that tags are not only not only topical descriptions, but communicative by intent. This result can potentially inform the design of tagging features....

  17. Integration of Kinect and Low-Cost Gnss for Outdoor Navigation

    Science.gov (United States)

    Pagliaria, D.; Pinto, L.; Reguzzoni, M.; Rossi, L.

    2016-06-01

    Since its launch on the market, Microsoft Kinect sensor has represented a great revolution in the field of low cost navigation, especially for indoor robotic applications. In fact, this system is endowed with a depth camera, as well as a visual RGB camera, at a cost of about 200. The characteristics and the potentiality of the Kinect sensor have been widely studied for indoor applications. The second generation of this sensor has been announced to be capable of acquiring data even outdoors, under direct sunlight. The task of navigating passing from an indoor to an outdoor environment (and vice versa) is very demanding because the sensors that work properly in one environment are typically unsuitable in the other one. In this sense the Kinect could represent an interesting device allowing bridging the navigation solution between outdoor and indoor. In this work the accuracy and the field of application of the new generation of Kinect sensor have been tested outdoor, considering different lighting conditions and the reflective properties of the emitted ray on different materials. Moreover, an integrated system with a low cost GNSS receiver has been studied, with the aim of taking advantage of the GNSS positioning when the satellite visibility conditions are good enough. A kinematic test has been performed outdoor by using a Kinect sensor and a GNSS receiver and it is here presented.

  18. Design of GNSS Performance Analysis and Simulation Tools as a Web Portal

    Directory of Open Access Journals (Sweden)

    S. Tadic

    2014-11-01

    Full Text Available This paper considers design of a web-portal for the validation of behavior of GNSS applications in different environments. The tool provides the positioning performance analysis and a comparison to benchmark devices. Web-portal incorporates a 3D synthetic data generator to compute the propagation and the reception of radio-navigation signals in a 3D virtual environment. This radio propagation simulator uses ray-tracing to calculate interactions between the GNSS signal and the local environment. For faster execution on a GPU platform, the simulator uses BVH optimization. The work is verified in field trials and by using reference software.

  19. GNSS global navigation satellite systems : GPS, GLONASS, Galileo, and more

    CERN Document Server

    Hofmann-Wellenhof, Bernhard; Wasle, Elmar

    2008-01-01

    This book is an extension to the acclaimed scientific bestseller "GPS - Theory and Practice". It covers Global Navigation Satellite Systems (GNSS) and includes the Russian GLONASS, the European system Galileo, and additional systems.

  20. The study of key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring

    Science.gov (United States)

    Tu, Rui; Zhang, Pengfei; Zhang, Rui; Liu, Jinhai

    2016-08-01

    This paper has studied the key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring. The validations show that the consistence of the coordinate system must be considered firstly to exclude the system bias between GNSS and strong-motion. The GNSS sampling rate is suggested about 1-5 Hz, and we should give the strong-motion's baseline shift with a larger dynamic noise as its variation is very swift. The initialization time of solving the baseline shift is less than one minute, and ambiguity resolution strategy is not greatly improved the solution. The data quality is very important for the solution, we advised to use multi-frequency and multi-system observations. These ideas give an important guide for real-time earthquake monitoring and early warning by the tight integration of GNSS and strong-motion records.

  1. a Precise, Low-Cost Rtk Gnss System for Uav Applications

    Science.gov (United States)

    Stempfhuber, W.; Buchholz, M.

    2011-09-01

    High accuracy with real-time positioning of moving objects has been considered a standard task of engineering geodesy for 10 to 15 years. An absolute positioning accuracy of 1-3 cm is generally possible worldwide and is further used in many areas of machine guidance (machine control and guidance), and farming (precision farming) as well as for various special applications (e.g. railway trolley, mining, etc.). The cost of the measuring instruments required for the use of geodetic L1/L2 receivers with a local reference station amounts to approximately USD 30,000 to 50,000. Therefore, dual frequency RTK GNSS receivers are not used in the mass market. Affordable GPS/GNSS modules have already reached the mass market in various areas such as mobile phones, car navigation, the leisure industry, etc. Kinematic real-time positioning applications with centimetre or decimetre levels could also evolve into a mass product. In order for this to happen, the costs for such systems must lie between USD 1,000 to 2,000. What exactly low-cost means is determined by the precise specifications of the given individual application. Several university studies in geodesy focus on the approach of high-accuracy positioning by means of single frequency receivers for static applications [e.g. GLABSCH et. al. 2009, SCHWIEGER and GLÄSER 2005, ALKAN 2010, REALINI et. al. 2010, KORTH and HOFMANN 2011]. Although intelligent approaches have been developed that compute a trajectory in the post-processing mode [REALINI et. al., 2010], at present, there are only a very few GNSS Low-Cost Systems that enable real-time processing. This approach to precise position determination by means of the computation of static raw data with single frequency receivers is currently being explored in a research project at the Beuth Hochschule für Technik Berlin - and is being further developed for kinematic applications. The project is embedded in the European Social Fund. It is a follow-up project in the area of

  2. Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2018-02-01

    Full Text Available Precise Point Positioning (PPP is a popular technology for precise applications based on the Global Navigation Satellite System (GNSS. Multi-GNSS combined PPP has become a hot topic in recent years with the development of multiple GNSSs. Meanwhile, with the operation of the real-time service (RTS of the International GNSS Service (IGS agency that provides satellite orbit and clock corrections to broadcast ephemeris, it is possible to obtain the real-time precise products of satellite orbits and clocks and to conduct real-time PPP. In this contribution, the real-time multi-GNSS orbit and clock corrections of the CLK93 product are applied for real-time multi-GNSS PPP processing, and its orbit and clock qualities are investigated, first with a seven-day experiment by comparing them with the final multi-GNSS precise product ‘GBM’ from GFZ. Then, an experiment involving real-time PPP processing for three stations in the Multi-GNSS Experiment (MGEX network with a testing period of two weeks is conducted in order to evaluate the convergence performance of real-time PPP in a simulated kinematic mode. The experimental result shows that real-time PPP can achieve a convergence performance of less than 15 min for an accuracy level of 20 cm. Finally, the real-time data streams from 12 globally distributed IGS/MGEX stations for one month are used to assess and validate the positioning accuracy of real-time multi-GNSS PPP. The results show that the simulated kinematic positioning accuracy achieved by real-time PPP on different stations is about 3.0 to 4.0 cm for the horizontal direction and 5.0 to 7.0 cm for the three-dimensional (3D direction.

  3. Can space ties on board GNSS satellites replace terrestrial ties in the implementation of Terrestrial Reference Frames?

    Science.gov (United States)

    Bruni, Sara; Zerbini, Susanna; Altamimi, Zuheir; Rebischung, Paul; Errico, Maddalena; Santi, Efisio

    2016-04-01

    The realization of Terrestrial Reference Frames (TRFs) must be periodically updated in order to account for newly acquired observations and for upgrades in data analysis procedures and/or combination techniques. Any innovative computation strategy should ameliorate the definition of the frame physical parameters, upon which a number of scientific applications critically rely. On the basis of the requirements of scientific cutting edge studies, the geodetic community has estimated that the present day challenge in the determination of TRFs is to provide a frame that is accurate and long-term stable at the level of 1 mm and 0.1 mm/y respectively. This work aims at characterizing the frame realized by a combination of Satellite Laser Ranging (SLR) and Global Navigation Satellite Systems (GNSS) observations via their co-location on board GNSS spacecrafts. In particular, it is established how such a frame compares to the traditional ITRF computation and what is the impact on the realization of the frame origin and scale. Four years of data from a global network encompassing about one hundred GNSS stations and all SLR sites have been analyzed. In order to ensure the highest possible consistency, the raw data of both techniques are treated with the same analysis Software (Bernese GNSS Software 5.2) following IERS2010 Conventions. Both weekly and long term solutions are carried out exploiting either the Bernese or the Combination and Analysis of Terrestrial Reference Frames (CATREF) Software packages. We present the results of a combination study involving GNSS data and SLR observations to the two LAGEOS and to the GNSS satellites equipped with retroreflector arrays. The latter type of measurements is currently not included in the computation of the official ITRF solutions. The assessment of the benefit that they could provide to the definition of the origin and scale of the ITRF is however worth investigating, as such data provide the potential for linking the GNSS and

  4. Carcinoid tumour of the middle ear

    LENUS (Irish Health Repository)

    Baig, Salman

    2012-09-01

    A case of middle ear mass in a young female from Ireland is described, who presented with left ear hearing loss and intermittent bloody discharge from the same ear. Examination under microscope revealed occlusive polyp in the left ear and a biopsy had been taken under general anaesthesia. Histopathology report described an adenoma \\/ carcinoid tumour of the middle ear confirmed by positive immunohistochemical staining. CT temporal bones revealed the extension of the disease. The patient underwent left tympanotomy and excision of the tumour. In general, these tumours are regarded as benign but may be mistaken for adenocarcinomas because of their histological heterogenecity.

  5. Tag-to-Tag Interference Suppression Technique Based on Time Division for RFID

    Directory of Open Access Journals (Sweden)

    Grishma Khadka

    2017-01-01

    Full Text Available Radio-frequency identification (RFID is a tracking technology that enables immediate automatic object identification and rapid data sharing for a wide variety of modern applications using radio waves for data transmission from a tag to a reader. RFID is already well established in technical areas, and many companies have developed corresponding standards and measurement techniques. In the construction industry, effective monitoring of materials and equipment is an important task, and RFID helps to improve monitoring and controlling capabilities, in addition to enabling automation for construction projects. However, on construction sites, there are many tagged objects and multiple RFID tags that may interfere with each other’s communications. This reduces the reliability and efficiency of the RFID system. In this paper, we propose an anti-collision algorithm for communication between multiple tags and a reader. In order to suppress interference signals from multiple neighboring tags, the proposed algorithm employs the time-division (TD technique, where tags in the interrogation zone are assigned a specific time slot so that at every instance in time, a reader communicates with tags using the specific time slot. We present representative computer simulation examples to illustrate the performance of the proposed anti-collision technique for multiple RFID tags.

  6. Photon-tagged and B-meson-tagged b-jet production at the LHC

    Directory of Open Access Journals (Sweden)

    Jinrui Huang

    2015-11-01

    Full Text Available Tagged jet measurements in high energy hadronic and nuclear reactions provide constraints on the energy and parton flavor origin of the parton shower that recoils against the tagging particle. Such additional insight can be especially beneficial in illuminating the mechanisms of heavy flavor production in proton–proton collisions at the LHC and their modification in the heavy ion environment, which are not fully understood. With this motivation, we present theoretical results for isolated-photon-tagged and B-meson-tagged b-jet production at sNN=5.1 TeV for comparison to the upcoming lead–lead data. We find that photon-tagged b-jets exhibit smaller momentum imbalance shift in nuclear matter, and correspondingly smaller energy loss, than photon-tagged light flavor jets. Our results show that B-meson tagging is most effective in ensuring that the dominant fraction of recoiling jets originate from prompt b-quarks. Interestingly, in this channel the large suppression of the cross section is not accompanied by a significant momentum imbalance shift.

  7. To tag or not to tag: animal welfare, conservation and stakeholder considerations in fish tracking studies that use electronic tags

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Steven J.; Nguyen, Vivian M.; Murchie, Karen J.; Thiem, Jason D.; Donaldson, Michael R.; Hinch, Scott G.; Brown, Richard S.; Fisk, Aaron

    2013-11-01

    The advent and widespread adoption of electronic tags (including biotelemetry and biologging devices) for tracking animals has provided unprecedented information on the biology, management, and conservation of fish in the world’s oceans and inland waters. However, use of these tools is not without controversy. Even when scientific and management objectives may best be achieved using electronic tags, it is increasingly important to further consider other factors such as the welfare of tagged animals (i.e., the role of training and science-based surgical guidelines, anesthetic use, inability to maintain sterile conditions in field environments), the ethics of tagging threatened species vs. using surrogates, stakeholder perspectives on tagging (including aboriginals), as well as use of data emanating from such studies (e.g., by fishers to facilitate exploitation). Failure to do so will have the potential to create conflict and undermine scientific, management and public confidence in the use of this powerful tool. Indeed, there are already a number of examples of where tracking studies using electronic tags have been halted based on concerns raised by researchers, authorities, or stakeholders. Here we present a candid evaluation of several factors that should be considered when determining when to tag or not to tag fish with electronic devices. It is not our objective to judge the merit of previous studies. Rather, we hope to stimulate debate and discussion regarding the use of electronic tags to study fish. Relatedly, there is a need for more research to address these questions (e.g., what level of cleanliness is needed when conducting surgeries, what type of training should be required for fish surgery) including human dimensions studies to understand perspectives of different actors including society as a whole with respect to tagging and tracking studies.

  8. Middle ear implants

    Directory of Open Access Journals (Sweden)

    K S Gangadhara Somayaji

    2013-01-01

    Full Text Available Hearing loss is becoming more common in the society living in cities with lot of background noise around, and frequent use of gadgets like mobile phones, MP3s, and IPods are adding to the problem. The loss may involve the conductive or perceptive pathway. Majority of the patients with conductive hearing loss will revert back to normal hearing levels with medical and/or surgical treatment. However, in sensorineural hearing loss, many factors are involved in the management. Though traditionally hearing aids in various forms are the most commonly used modality in managing these patients, there are some drawbacks associated with them. Implantable middle ear amplifiers represent the most recent breakthrough in the management of hearing loss. Middle ear implants are surgically implanted electronic devices that aim to correct hearing loss by stimulating the ossicular chain or middle ear. Of late, they are also being used in the management of congenital conductive hearing loss and certain cases of chronic otitis media with residual hearing loss. The article aims to provide general information about the technology, indications and contraindications, selection of candidates, available systems, and advantages of middle ear implants. (MEI

  9. Precise GNSS Positioning Using Smart Devices

    Directory of Open Access Journals (Sweden)

    Eugenio Realini

    2017-10-01

    Full Text Available The recent access to GNSS (Global Navigation Satellite System phase observations on smart devices, enabled by Google through its Android operating system, opens the possibility to apply precise positioning techniques using off-the-shelf, mass-market devices. The target of this work is to evaluate whether this is feasible, and which positioning accuracy can be achieved by relative positioning of the smart device with respect to a base station. Positioning of a Google/HTC Nexus 9 tablet was performed by means of batch least-squares adjustment of L1 phase double-differenced observations, using the open source goGPS software, over baselines ranging from approximately 10 m to 8 km, with respect to both physical (geodetic or low-cost and virtual base stations. The same positioning procedure was applied also to a co-located u-blox low-cost receiver, to compare the performance between the receiver and antenna embedded in the Nexus 9 and a standard low-cost single-frequency receiver with external patch antenna. The results demonstrate that with a smart device providing raw GNSS phase observations, like the Nexus 9, it is possible to reach decimeter-level accuracy through rapid-static surveys, without phase ambiguity resolution. It is expected that sub-centimeter accuracy could be achieved, as demonstrated for the u-blox case, if integer phase ambiguities were correctly resolved.

  10. Precise GNSS Positioning Using Smart Devices.

    Science.gov (United States)

    Realini, Eugenio; Caldera, Stefano; Pertusini, Lisa; Sampietro, Daniele

    2017-10-24

    The recent access to GNSS (Global Navigation Satellite System) phase observations on smart devices, enabled by Google through its Android operating system, opens the possibility to apply precise positioning techniques using off-the-shelf, mass-market devices. The target of this work is to evaluate whether this is feasible, and which positioning accuracy can be achieved by relative positioning of the smart device with respect to a base station. Positioning of a Google/HTC Nexus 9 tablet was performed by means of batch least-squares adjustment of L1 phase double-differenced observations, using the open source goGPS software, over baselines ranging from approximately 10 m to 8 km, with respect to both physical (geodetic or low-cost) and virtual base stations. The same positioning procedure was applied also to a co-located u-blox low-cost receiver, to compare the performance between the receiver and antenna embedded in the Nexus 9 and a standard low-cost single-frequency receiver with external patch antenna. The results demonstrate that with a smart device providing raw GNSS phase observations, like the Nexus 9, it is possible to reach decimeter-level accuracy through rapid-static surveys, without phase ambiguity resolution. It is expected that sub-centimeter accuracy could be achieved, as demonstrated for the u-blox case, if integer phase ambiguities were correctly resolved.

  11. GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station

    DEFF Research Database (Denmark)

    Wickert, Jens; Cardellach, Estel; Bandeiras, Jorge

    2016-01-01

    GEROS-ISS stands for GNSS REflectometry, radio occultation, and scatterometry onboard the International Space Station (ISS). It is a scientific experiment, successfully proposed to the European Space Agency in 2011. The experiment as the name indicates will be conducted on the ISS. The main focus...... of GEROS-ISS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) in L-band for remote sensing of the Earth with a focus to study climate change. Prime mission objectives are the determination of the altimetric sea surface height of the oceans...

  12. Multi-GNSS orbit determination using satellite laser ranging

    Science.gov (United States)

    Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław

    2018-04-01

    Galileo, BeiDou, QZSS, and NavIC are emerging global navigation satellite systems (GNSSs) and regional navigation satellite systems all of which are equipped with laser retroreflector arrays for range measurements. This paper summarizes the GNSS-intensive tracking campaigns conducted by the International Laser Ranging Service and provides results from multi-GNSS orbit determination using solely SLR observations. We consider the whole constellation of GLONASS, all active Galileo, four BeiDou satellites: 1 MEO, 3 IGSO, and one QZSS. We analyze the influence of the number of SLR observations on the quality of the 3-day multi-GNSS orbit solution. About 60 SLR observations are needed for obtaining MEO orbits of sufficient quality with the root mean square (RMS) of 3 cm for the radial component when compared to microwave-based orbits. From the analysis of a minimum number of tracking stations, when considering the 3-day arcs, 5 SLR stations do not provide a sufficient geometry of observations. The solution obtained using ten stations is characterized with RMS of 4, 9, and 18 cm in the radial, along-track, and cross-track direction, respectively, for MEO satellites. We also investigate the impact of the length of orbital arc on the quality of SLR-derived orbits. Hence, 5- and 7-day arcs constitute the best solution, whereas 3-day arcs are of inferior quality due to an insufficient number of SLR observations and 9-day arcs deteriorate the along-track component. The median RMS from the comparison between 7-day orbital arcs determined using SLR data with microwave-based orbits assumes values in the range of 3-4, 11-16, and 15-27 cm in radial, along-track, and cross-track, respectively, for MEO satellites. BeiDou IGSO and QZSS are characterized by RMS values higher by a factor of 8 and 24, respectively, than MEO orbits.

  13. Listening to the ear

    Science.gov (United States)

    Shera, Christopher A.

    Otoacoustic emissions demonstrate that the ear creates sound while listening to sound, offering a promising acoustic window on the mechanics of hearing in awake, listening human beings. That window is clouded, however, by an incomplete knowledge of wave reflection and transmission, both forth and back within the cochlea and through the middle ear. This thesis "does windows," addressing wave propagation and scattering on both sides of the middle ear. A summary of highlights follows. Measurements of the cochlear input impedance in cat are used to identify a new symmetry in cochlear mechanics-termed "tapering symmetry" after its geometric interpretation in simple models-that guarantees that the wavelength of the traveling wave changes slowly with position near the stapes. Waves therefore propagate without reflection through the basal turns of the cochlea. Analytic methods for solving the cochlear wave equations using a perturbative scattering series are given and used to demonstrate that, contrary to common belief, conventional cochlear models exhibit negligible internal reflection whether or not they accurately represent the tapering symmetries of the inner ear. Frameworks for the systematic "deconstruction" of eardrum and middle-ear transduction characteristics are developed and applied to the analysis of noninvasive measurements of middle-ear and cochlear mechanics. A simple phenomenological model of inner-ear compressibility that correctly predicts hearing thresholds in patients with missing or disarticulated middle-ear ossicles is developed and used to establish an upper bound on cochlear compressibility several orders of magnitude smaller than that provided by direct measurements. Accurate measurements of stimulus frequency evoked otoacoustic emissions are performed and used to determine the form and frequency variation of the cochlear traveling-wave ratio noninvasively. Those measurements are inverted to obtain the spatial distribution of mechanical

  14. Noise Characteristics of High-Rate Multi-GNSS for Subdaily Crustal Deformation Monitoring

    Science.gov (United States)

    Geng, Jianghui; Pan, Yuanxin; Li, Xiaotao; Guo, Jiang; Liu, Jingnan; Chen, Xianchun; Zhang, Yong

    2018-02-01

    High-rate GPS (Global Positioning System) has the potential to record crustal motions on a wide subdaily timescale from seconds to hours but usually fails to capture subtle deformations which are often overwhelmed by the centimeter noise of epoch-wise GPS displacements. We hence investigated high-rate multi-GNSS (Global Navigation Satellite System) by processing 1 Hz GPS/GLONASS/BeiDou data at 15 static stations over 24 days and also those from the 8 August 2017 Jiuzhaigou Mw 6.5 earthquake. In contrast to high-rate GPS, its further integration with GLONASS/BeiDou reduces near uniformly the power spectral densities (PSDs) of 1 Hz displacement noise by 4-6 dB over the periods from a few seconds to half of a day, and orbital repeat time (ORT) filtering on all GNSS further again leads to a 2 more decibel decline of the PSDs over the periods of a few tens of seconds to minutes. BeiDou ORT filtering, however, takes effect mainly on the periods of over 2,000 s due to the high altitudes of Inclined Geosynchronous Satellite Orbiters/Geosynchronous Earth Orbiters. Multi-GNSS integration is on average as effective as GPS ORT filtering in reducing PSDs for the periods of a few tens of seconds to minutes while desirably can further decrease the PSDs on almost all other periods by 3-4 dB thanks to the enhanced satellite geometry. We conclude that the introduction of more GNSS into high-rate solutions and its augmentation by ORT filtering benefit the discrimination of slight deformations over a broad subdaily frequency band.

  15. GNSS Wave Glider: First results from Loch Ness and demonstration of its suitability for determining the marine geoid

    Science.gov (United States)

    Penna, N. T.; Morales Maqueda, M.; Williams, S. D.; Foden, P.; Martin, I.; Pugh, J.

    2013-12-01

    We report on a first deployment of a GNSS Wave Glider designed for precise, unmanned, autonomous, mobile self-propelled sea level and sea state measurement in the open ocean. The Wave Glider, equipped with a dual frequency GPS+GLONASS receiver, was deployed in Loch Ness, Scotland, autonomously travelling 32 km in a north-easterly direction along the length of the loch in 26 hours, propelled by energy generated from waves of typical amplitude only 100-150 mm and frequency on the order 0.5-1 Hz. The Wave Glider GNSS data were analysed using a post-processed kinematic GPS+GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations at either end of the loch. The PPP heights of the loch's surface revealed a clear geoid gradient of about 30 mm/km (i.e. just under 1 m over the whole length of the loch), very similar to both the EGM2008 and OSGM02 geoid models, demonstrating the potential use of a GNSS Wave Glider for marine geoid determination. After applying a low pass filter, the GNSS heights showed local deviations from both EGM2008 and OSGM02, potentially caused by omission errors or a lack of gravity data over Loch Ness. In addition to dual frequency GNSS data, the Wave Glider also recorded inclinometer data, bathymetry, and surface currents, which, in combination with tide gauge and wind data, were used to further control and interpret the GNSS time series.

  16. Yellowtail Tagging Data (MRDBS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Yellowtail Flounder Tagging Program began in 2003 and works with commercial fishermen to tag and release yellowtaiI flounder with pink and yellow disc tags or...

  17. Understanding why users tag: A survey of tagging motivation literature and results from an empirical study.

    Science.gov (United States)

    Strohmaier, Markus; Körner, Christian; Kern, Roman

    2012-12-01

    While recent progress has been achieved in understanding the structure and dynamics of social tagging systems, we know little about the underlying user motivations for tagging, and how they influence resulting folksonomies and tags. This paper addresses three issues related to this question. (1) What distinctions of user motivations are identified by previous research, and in what ways are the motivations of users amenable to quantitative analysis? (2) To what extent does tagging motivation vary across different social tagging systems? (3) How does variability in user motivation influence resulting tags and folksonomies? In this paper, we present measures to detect whether a tagger is primarily motivated by categorizing or describing resources, and apply these measures to datasets from seven different tagging systems. Our results show that (a) users' motivation for tagging varies not only across, but also within tagging systems, and that (b) tag agreement among users who are motivated by categorizing resources is significantly lower than among users who are motivated by describing resources . Our findings are relevant for (1) the development of tag-based user interfaces, (2) the analysis of tag semantics and (3) the design of search algorithms for social tagging systems.

  18. Mitigation of multipath effect in GNSS short baseline positioning by the multipath hemispherical map

    Science.gov (United States)

    Dong, D.; Wang, M.; Chen, W.; Zeng, Z.; Song, L.; Zhang, Q.; Cai, M.; Cheng, Y.; Lv, J.

    2016-03-01

    Multipath is one major error source in high-accuracy GNSS positioning. Various hardware and software approaches are developed to mitigate the multipath effect. Among them the MHM (multipath hemispherical map) and sidereal filtering (SF)/advanced SF (ASF) approaches utilize the spatiotemporal repeatability of multipath effect under static environment, hence they can be implemented to generate multipath correction model for real-time GNSS data processing. We focus on the spatial-temporal repeatability-based MHM and SF/ASF approaches and compare their performances for multipath reduction. Comparisons indicate that both MHM and ASF approaches perform well with residual variance reduction (50 %) for short span (next 5 days) and maintains roughly 45 % reduction level for longer span (next 6-25 days). The ASF model is more suitable for high frequency multipath reduction, such as high-rate GNSS applications. The MHM model is easier to implement for real-time multipath mitigation when the overall multipath regime is medium to low frequency.

  19. A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations

    NARCIS (Netherlands)

    Kleinherenbrink, M.; Riva, R.E.M.; Frederikse, T.

    2018-01-01

    Tide gauge (TG) records are affected by vertical land motion (VLM), causing them to observe relative instead of geocentric sea level. VLM can be estimated from global navigation satellite system (GNSS) time series, but only a few TGs are equipped with a GNSS receiver. Hence, (multiple)

  20. The GNSS data processing component within the Indonesian tsunami early warning centre provided by GITEWS

    Science.gov (United States)

    Bartsch, M.; Merx, A.; Falck, C.; Ramatschi, M.

    2010-05-01

    Introduction Within the GITEWS (German Indonesian Tsunami Early Warning System) project a near real-time GNSS processing system has been developed, which analizes on- and offshore measured GNSS data. It is the first system of its kind that was integrated into an operational tsunami early warning system. (Indonesian Tsunami Early Warning Centre INATEWS, inaugurated at BMKG Jakarta on November, 11th 2008) Brief system description The GNSS data to be processed are received from sensors (GNSS antenna and receiver) installed on buoys, at tide gauges and as real-time reference stations (RTR stations), either stand-alone or co-located with seismic sensors. The GNSS data are transmitted to the warning centre in real-time as a stream (RTR stations) or file-based and are processed in a near real-time data processing chain. The fully automatized system uses the BERNESE GPS software as processing core. Kinematic coordinate timeseries with a resolution of 1 Hz (landbased stations) and 1/3 Hz (buoys) are estimated every five minutes. In case of a recently occured earthquake the processing interval decreases from five to two minutes. All stations are processed with the relative technique (baseline-technique) using GITEWS-stations and stations available via IGS as reference. The most suitable reference stations are choosen by querying a database where continiously monitored quality data of GNSS observations are stored. In case of an earthquake at least one reference station should be located on a different tectonic plate to ensure that relative movements can be detected. The primary source for satellite orbit information is the IGS IGU product. If this source is not available for any reason, the system switches automatically to other orbit sources like CODE products or broadcast ephemeris data. For sensors on land the kinematic coordinates are used to detect deviations from their normal, mean coordinates. The deviations or so called displacements are indicators for land mass

  1. Tagged at first listen: an examination of social tagging practices in a music recommender system

    Directory of Open Access Journals (Sweden)

    Audrey Laplante

    2015-01-01

    Full Text Available http://dx.doi.org/10.5007/1518-2924.2015v20nesp1p33 Social tagging has become a very common way to index different types of resources on the web. Less prevalent in music than in other domains, social tagging is nevertheless used in a popular recommender system, Last.fm. Although the number of publications on tagging and folksonomies has exploded in the last few years, music tagging is still not well studied. In this paper, we present a study of tagging practices of Last.fm users. We examine the social tagging of songs during the first three months after their release. Our analysis shows that the release of a song triggers a burst in tagging activity that lasts two weeks, after what it decreases sharply and then remains fairly constant for the next ten weeks. We also find that a majority of songs do not get tagged during the first week and that tagging was positively related to popularity. Finally, we find that tags that have been frequently applied to a given song are more likely to be genre related, shorter in length, and relatively objective than tags that have been applied only once.

  2. Multi-Threaded DNA Tag/Anti-Tag Library Generator for Multi-Core Platforms

    Science.gov (United States)

    2009-05-01

    base pair)  Watson ‐ Crick  strand pairs that bind perfectly within pairs, but poorly across pairs. A variety  of  DNA  strand hybridization metrics...AFRL-RI-RS-TR-2009-131 Final Technical Report May 2009 MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE PLATFORMS...TYPE Final 3. DATES COVERED (From - To) Jun 08 – Feb 09 4. TITLE AND SUBTITLE MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE

  3. Evaluation of Low-Cost, Centimeter-Level Accuracy OEM GNSS Receivers

    Science.gov (United States)

    2018-02-02

    This report discusses the results of a study to quantify the performance of low-cost, centimeter-level accurate Global Navigation Satellite Systems (GNSS) receivers that have appeared on the market in the last few years. Centimeter-level accuracy is ...

  4. Towards Universal Semantic Tagging

    NARCIS (Netherlands)

    Abzianidze, Lasha; Bos, Johan

    2017-01-01

    The paper proposes the task of universal semantic tagging---tagging word tokens with language-neutral, semantically informative tags. We argue that the task, with its independent nature, contributes to better semantic analysis for wide-coverage multilingual text. We present the initial version of

  5. Can Loud Music Hurt My Ears?

    Science.gov (United States)

    ... Videos for Educators Search English Español Can Loud Music Hurt My Ears? KidsHealth / For Kids / Can Loud Music Hurt My Ears? Print en español La música ... up? Oh! You want to know if loud music can hurt your ears . Are you asking because ...

  6. Sensor-based material tagging system

    International Nuclear Information System (INIS)

    Vercellotti, L.C.; Cox, R.W.; Ravas, R.J.; Schlotterer, J.C.

    1991-01-01

    Electronic identification tags are being developed for tracking material and personnel. In applying electronic identification tags to radioactive materials safeguards, it is important to measure attributes of the material to ensure that the tag remains with the material. The addition of a microcontroller with an on-board analog-to-digital converter to an electronic identification tag application-specific integrated-circuit has been demonstrated as means to provide the tag with sensor data. Each tag is assembled into a housing, which serves as a scale for measuring the weight of a paint-can-sized container and its contents. Temperature rise of the can above ambient is also measured, and a piezoelectric detector detects disturbances and immediately puts the tag into its alarm and beacon mode. Radiation measurement was also considered, but the background from nearby containers was found to be excessive. The sensor-based tagging system allows tracking of the material in cans as it is stored in vaults or is moved through the manufacturing process. The paper presents details of the sensor-based material tagging system and describes a demonstration system

  7. Comparison of total water vapour content in the Arctic derived from GNSS, AIRS, MODIS and SCIAMACHY

    Science.gov (United States)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Noël, Stefan; Bekki, Slimane; Irbah, Abdenour; Meftah, Mustapha; Claud, Chantal

    2018-05-01

    Atmospheric water vapour plays a key role in the Arctic radiation budget, hydrological cycle and hence climate, but its measurement with high accuracy remains an important challenge. Total column water vapour (TCWV) datasets derived from ground-based GNSS measurements are used to assess the quality of different existing satellite TCWV datasets, namely from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Atmospheric Infrared Sounder (AIRS) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The comparisons between GNSS and satellite data are carried out for three reference Arctic observation sites (Sodankylä, Ny-Ålesund and Thule) where long homogeneous GNSS time series of more than a decade (2001-2014) are available. We select hourly GNSS data that are coincident with overpasses of the different satellites over the three sites and then average them into monthly means that are compared with monthly mean satellite products for different seasons. The agreement between GNSS and satellite time series is generally within 5 % at all sites for most conditions. The weakest correlations are found during summer. Among all the satellite data, AIRS shows the best agreement with GNSS time series, though AIRS TCWV is often slightly too high in drier atmospheres (i.e. high-latitude stations during autumn and winter). SCIAMACHY TCWV data are generally drier than GNSS measurements at all the stations during the summer. This study suggests that these biases are associated with cloud cover, especially at Ny-Ålesund and Thule. The dry biases of MODIS and SCIAMACHY observations are most pronounced at Sodankylä during the snow season (from October to March). Regarding SCIAMACHY, this bias is possibly linked to the fact that the SCIAMACHY TCWV retrieval does not take accurately into account the variations in surface albedo, notably in the presence of snow with a nearby canopy as in Sodankylä. The MODIS bias at Sodankylä is found

  8. Antenna for passive RFID tags

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  9. Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination.

    Science.gov (United States)

    Yang, Yingdong; Mao, Xuchu; Tian, Weifeng

    2016-06-08

    Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination.

  10. Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination

    Directory of Open Access Journals (Sweden)

    Yingdong Yang

    2016-06-01

    Full Text Available Global navigation satellite systems (GNSS are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination.

  11. Tagging vs. Controlled Vocabulary

    DEFF Research Database (Denmark)

    Bogers, Toine; Petras, Vivien

    2015-01-01

    The popularity of social tagging has sparked a great deal of debate on whether tags could replace or improve upon professional metadata as descriptors of books and other information objects. In this paper we present a large-scale empirical comparison of the contributions of individual information...... that tags and controlled vocabulary terms do not actually outperform each other consistently, but seem to provide complementary contributions: some information needs are best addressed using controlled vocabulary terms whereas other are best addressed using tags....

  12. 3D Printed Bionic Ears

    Science.gov (United States)

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  13. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  14. Improving Recommendations in Tag-based Systems with Spectral Clustering of Tag Neighbors

    DEFF Research Database (Denmark)

    Pan, Rong; Xu, Guandong; Dolog, Peter

    2012-01-01

    Tag as a useful metadata reflects the collaborative and conceptual features of documents in social collaborative annotation systems. In this paper, we propose a collaborative approach for expanding tag neighbors and investigate the spectral clustering algorithm to filter out noisy tag neighbors...... in order to get appropriate recommendation for users. The preliminary experiments have been conducted on MovieLens dataset to compare our proposed approach with the traditional collaborative filtering recommendation approach and naive tag neighbors expansion approach in terms of precision, and the result...... demonstrates that our approach could considerably improve the performance of recommendations....

  15. Strep-Tagged Protein Purification.

    Science.gov (United States)

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). © 2015 Elsevier Inc. All rights reserved.

  16. 'Outrunning' the running ear

    African Journals Online (AJOL)

    Chantel

    In even the most experienced hands, an adequate physical examination of the ears can be difficult to perform because of common problems such as cerumen blockage of the auditory canal, an unco- operative toddler or an exasperated parent. The most common cause for a running ear in a child is acute purulent otitis.

  17. A PRECISE, LOW-COST RTK GNSS SYSTEM FOR UAV APPLICATIONS

    Directory of Open Access Journals (Sweden)

    W. Stempfhuber

    2012-09-01

    Full Text Available High accuracy with real-time positioning of moving objects has been considered a standard task of engineering geodesy for 10 to 15 years. An absolute positioning accuracy of 1–3 cm is generally possible worldwide and is further used in many areas of machine guidance (machine control and guidance, and farming (precision farming as well as for various special applications (e.g. railway trolley, mining, etc.. The cost of the measuring instruments required for the use of geodetic L1/L2 receivers with a local reference station amounts to approximately USD 30,000 to 50,000. Therefore, dual frequency RTK GNSS receivers are not used in the mass market. Affordable GPS/GNSS modules have already reached the mass market in various areas such as mobile phones, car navigation, the leisure industry, etc. Kinematic real-time positioning applications with centimetre or decimetre levels could also evolve into a mass product. In order for this to happen, the costs for such systems must lie between USD 1,000 to 2,000. What exactly low-cost means is determined by the precise specifications of the given individual application. Several university studies in geodesy focus on the approach of high-accuracy positioning by means of single frequency receivers for static applications [e.g. GLABSCH et. al. 2009, SCHWIEGER and GLÄSER 2005, ALKAN 2010, REALINI et. al. 2010, KORTH and HOFMANN 2011]. Although intelligent approaches have been developed that compute a trajectory in the post-processing mode [REALINI et. al., 2010], at present, there are only a very few GNSS Low-Cost Systems that enable real-time processing. This approach to precise position determination by means of the computation of static raw data with single frequency receivers is currently being explored in a research project at the Beuth Hochschule für Technik Berlin – and is being further developed for kinematic applications. The project is embedded in the European Social Fund. It is a follow-up project

  18. GNSS-SLR satellite co-location for the estimate of local ties

    Science.gov (United States)

    Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio

    2013-04-01

    The current realization of the International Terrestrial Reference Frame (ITRF) is based on four different space-geodetic techniques, so that the benefits brought by each observing system to the definition of the frame can compensate for the drawbacks of the others and technique-specific systematic errors might be identified. The strategy used to combine the observations from the different techniques is then of prominent importance for the realization of a precise and stable reference frame. This study concentrates, in particular, on the combination of Satellite Laser Ranging (SLR) and Global Navigation Satellite System (GNSS) observations by exploiting satellite co-locations. This innovative approach is based on the fact that laser tracking of GNSS satellites, carrying on board laser reflector arrays, allows for the combination of optical and microwave signals in the determination of the spacecraft orbit. Besides, the use of satellite co-locations differs quite significantly from the traditional combination method in which each single technique solution is carried out autonomously and is interrelated in a second step. One of the benefits of the approach adopted in this study is that it allows for an independent validation of the local tie, i.e. of the vector connecting the SLR and GNSS reference points in a multi-techniques station. Typically, local ties are expressed by a single value, measured with ground-based geodetic techniques and taken as constant. In principle, however, local ties might show time variations likely caused by the different monumentation characteristics of the GNSS antennas with respect to those of a SLR system. This study evaluates the possibility of using the satellite co-location approach to generate local-ties time series by means of observations available for a selected network of ILRS stations. The data analyzed in this study were acquired as part of the NASA's Earth Science Data Systems and are archived and distributed by the Crustal

  19. WebTag: Web browsing into sensor tags over NFC.

    Science.gov (United States)

    Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Alvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio

    2012-01-01

    Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm.

  20. Extracting Usage Patterns and the Analysis of Tag Connection Dynamics within Collaborative Tagging Systems

    Directory of Open Access Journals (Sweden)

    Daniel MICAN

    2013-01-01

    Full Text Available Collaborative tagging has become a very popular way of annotation, thanks to the fact that any entity may be labeled by any individual based on his own reason. In this paper we present the results of the case study carried out on the basis of data gathered at different time intervals from the social tagging system developed and implemented on Întelepciune.ro. Analyzing collective data referring to the way in which community members associate different tags, we have observed that between tags, links are formed which become increasingly stable with the passing of time. Following the application of methodology specific to network analysis, we have managed to extract information referring to tag popularity, their influence within the network and the degree to which a tag depends upon another. As such, we have succeeded in determining different semantic structures within the collective tagging system and see their evolution at different stages in time. Furthermore, we have pictured the way in which tag rec-ommendations can be executed and that they can be integrated within recommendation sys-tems. Thus, we will be able to identify experts and trustworthy content based on different cat-egories of interest.

  1. PERFORMANCE ASSESSMENT OF INTEGRATED SENSOR ORIENTATION WITH A LOW-COST GNSS RECEIVER

    Directory of Open Access Journals (Sweden)

    M. Rehak

    2017-08-01

    Full Text Available Mapping with Micro Aerial Vehicles (MAVs whose weight does not exceed 5 kg is gaining importance in applications such as corridor mapping, road and pipeline inspections, or mapping of large areas with homogeneous surface structure, e.g. forest or agricultural fields. In these challenging scenarios, integrated sensor orientation (ISO improves effectiveness and accuracy. Furthermore, in block geometry configurations, this mode of operation allows mapping without ground control points (GCPs. Accurate camera positions are traditionally determined by carrier-phase GNSS (Global Navigation Satellite System positioning. However, such mode of positioning has strong requirements on receiver’s and antenna’s performance. In this article, we present a mapping project in which we employ a single-frequency, low-cost (< $100 GNSS receiver on a MAV. The performance of the low-cost receiver is assessed by comparing its trajectory with a reference trajectory obtained by a survey-grade, multi-frequency GNSS receiver. In addition, the camera positions derived from these two trajectories are used as observations in bundle adjustment (BA projects and mapping accuracy is evaluated at check points (ChP. Several BA scenarios are considered with absolute and relative aerial position control. Additionally, the presented experiments show the possibility of BA to determine a camera-antenna spatial offset, so-called lever-arm.

  2. Study on individual stochastic model of GNSS observations for precise kinematic applications

    Science.gov (United States)

    Próchniewicz, Dominik; Szpunar, Ryszard

    2015-04-01

    The proper definition of mathematical positioning model, which is defined by functional and stochastic models, is a prerequisite to obtain the optimal estimation of unknown parameters. Especially important in this definition is realistic modelling of stochastic properties of observations, which are more receiver-dependent and time-varying than deterministic relationships. This is particularly true with respect to precise kinematic applications which are characterized by weakening model strength. In this case, incorrect or simplified definition of stochastic model causes that the performance of ambiguity resolution and accuracy of position estimation can be limited. In this study we investigate the methods of describing the measurement noise of GNSS observations and its impact to derive precise kinematic positioning model. In particular stochastic modelling of individual components of the variance-covariance matrix of observation noise performed using observations from a very short baseline and laboratory GNSS signal generator, is analyzed. Experimental test results indicate that the utilizing the individual stochastic model of observations including elevation dependency and cross-correlation instead of assumption that raw measurements are independent with the same variance improves the performance of ambiguity resolution as well as rover positioning accuracy. This shows that the proposed stochastic assessment method could be a important part in complex calibration procedure of GNSS equipment.

  3. Editorial Tag Endogeneity for News Websites

    OpenAIRE

    Bruno Ribeiro; Ricardo Morla; Amílcar Correia

    2013-01-01

    Editors and journalists at some news websites label their articles with structure and content-related editorial tags. Each article can have more than one tag and each tag can be used in more than one article. A network of tags can be defined whose edges are all possible pairs of tags in each article. Because editorial tags relate to structure and content rather than individual articles, the analysis of a network of editorial tags could assist editorial decisions to prioritize types of content...

  4. Operational space weather service for GNSS precise positioning

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    2005-11-01

    Full Text Available The ionospheric plasma can significantly influence the propagation of radio waves and the ionospheric disturbances are capable of causing range errors, rapid phase and amplitude fluctuations (radio scintillations of satellite signals that may lead to degradation of the system performance, its accuracy and reliability. The cause of such disturbances should be sought in the processes originating in the Sun. Numerous studies on these phenomena have been already carried out at a broad international level, in order to measure/estimate these space weather induced effects, to forecast them, and to understand and mitigate their impact on present-day technological systems. SWIPPA (Space Weather Impact on Precise Positioning Applications is a pilot project jointly supported by the German Aerospace Centre (DLR and the European Space Agency (ESA. The project aims at establishing, operating, and evaluating a specific space-weather monitoring service that can possibly lead to improving current positioning applications based on Global Navigation Satellite Systems (GNSS. This space weather service provides GNSS users with essential expert information delivered in the form of several products - maps of TEC values, TEC spatial and temporal gradients, alerts for ongoing/oncoming ionosphere disturbances, etc.

  5. Operational space weather service for GNSS precise positioning

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    2005-11-01

    Full Text Available The ionospheric plasma can significantly influence the propagation of radio waves and the ionospheric disturbances are capable of causing range errors, rapid phase and amplitude fluctuations (radio scintillations of satellite signals that may lead to degradation of the system performance, its accuracy and reliability. The cause of such disturbances should be sought in the processes originating in the Sun. Numerous studies on these phenomena have been already carried out at a broad international level, in order to measure/estimate these space weather induced effects, to forecast them, and to understand and mitigate their impact on present-day technological systems.

    SWIPPA (Space Weather Impact on Precise Positioning Applications is a pilot project jointly supported by the German Aerospace Centre (DLR and the European Space Agency (ESA. The project aims at establishing, operating, and evaluating a specific space-weather monitoring service that can possibly lead to improving current positioning applications based on Global Navigation Satellite Systems (GNSS. This space weather service provides GNSS users with essential expert information delivered in the form of several products - maps of TEC values, TEC spatial and temporal gradients, alerts for ongoing/oncoming ionosphere disturbances, etc.

  6. Gillnet Tag Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Certain fishery management programs require vessels to obtain gillnet tags to be used with their gillnet gear. Gillnet tag data is a collection of requests and...

  7. Lineage analysis of the late otocyst stage mouse inner ear by transuterine microinjection of a retroviral vector encoding alkaline phosphatase and an oligonucleotide library.

    Directory of Open Access Journals (Sweden)

    Han Jiang

    Full Text Available The mammalian inner ear subserves the special senses of hearing and balance. The auditory and vestibular sensory epithelia consist of mechanically sensitive hair cells and associated supporting cells. Hearing loss and balance dysfunction are most frequently caused by compromise of hair cells and/or their innervating neurons. The development of gene- and cell-based therapeutics will benefit from a thorough understanding of the molecular basis of patterning and cell fate specification in the mammalian inner ear. This includes analyses of cell lineages and cell dispersals across anatomical boundaries (such as sensory versus nonsensory territories. The goal of this study was to conduct retroviral lineage analysis of the embryonic day 11.5(E11.5 mouse otic vesicle. A replication-defective retrovirus encoding human placental alkaline phosphatase (PLAP and a variable 24-bp oligonucleotide tag was microinjected into the E11.5 mouse otocyst. PLAP-positive cells were microdissected from cryostat sections of the postnatal inner ear and subjected to nested PCR. PLAP-positive cells sharing the same sequence tag were assumed to have arisen from a common progenitor and are clonally related. Thirty five multicellular clones consisting of an average of 3.4 cells per clone were identified in the auditory and vestibular sensory epithelia, ganglia, spiral limbus, and stria vascularis. Vestibular hair cells in the posterior crista were related to one another, their supporting cells, and nonsensory epithelial cells lining the ampulla. In the organ of Corti, outer hair cells were related to a supporting cell type and were tightly clustered. By contrast, spiral ganglion neurons, interdental cells, and Claudius' cells were related to cells of the same type and could be dispersed over hundreds of microns. These data contribute new information about the developmental potential of mammalian otic precursors in vivo.

  8. Improved methods for reprocessing of GNSS data for climate monitoring over Poland

    Science.gov (United States)

    Stepniak, Katarzyna; Bock, Olivier; Wielgosz, Pawel

    2016-04-01

    The goal of this work is to determine the most accurate and homogeneous processing strategy to reprocess ground-based GNSS data for climate monitoring applications (analysis of trends and variability of Zenith Total Delay, ZTD, and Integrated Water Vapor, IWV). Namely, we investigate the impact of network design strategy and tropospheric modeling approach on the quality and homogeneity of both relative (double difference) and absolute (PPP) solutions. A network of 138 GNSS stations (including 33 stations from the EUREF Permanent Network, EPN, and 105 stations from ASG-EUPOS in Poland) is reprocessed for year 2014 using Bernese 5.2 GNSS software with the final IGS (International GNSS Service) orbits and clocks. First a standard (the shortest) "star" baseline design strategy is used in which the EPN stations are connected together defining a reference network and every ASG-EUPOS station is connected to the nearest EPN station. The initial network is modified automatically by the Bernese software every day depending on the availability of observations at the EPN stations. We show that in case of sub-daily gaps in the measurements of the reference stations, small clusters of stations can be disconnected from the main reference network. As a result, offsets of a few centimeters in ZTD estimates and spikes in formal errors can appear. These offsets and spikes cannot always be detected. This phenomenon is quite frequent in a large network such as considered in this study. It is also responsible for significant discontinuities in the estimated ZTD series which are detrimental to climate monitoring applications. We developed a new baseline design strategy algorithm to circumvent this event and assure that all the stations remain connected to the main reference network. It is shown that using this strategy, the reprocessed ZTD series are much more continuous and homogeneous in comparison to the standard strategy. The results are further validated against a Precise Point

  9. Comparison of visual and electronic devices for individual identification of dromedary camels under different farming conditions.

    Science.gov (United States)

    Caja, G; Díaz-Medina, E; Salama, A A K; Salama, O A E; El-Shafie, M H; El-Metwaly, H A; Ayadi, M; Aljumaah, R S; Alshaikh, M A; Yahyahoui, M H; Seddik, M M; Hammadi, M; Khorchani, T; Amann, O; Cabrera, S

    2016-08-01

    The camel industry uses traditional (i.e., iron brands and ear tags) and modern (i.e., microchips) identification (ID) systems without having performance results of reference. Previously iron-branded ( = 45; 1 yr) and microchipped ( = 59; 7 yr) camels showed problems of healing (8.6% of brands) and reading (only 42.9% of brands and 69.5% of microchips were readable), which made their use inadvisable. With the aim of proposing suitable ID systems for different farming conditions, an on-field study was performed using a total of 528 dromedaries at 4 different locations (Egypt, = 83; Spain, = 304; Saudi Arabia, = 90; and Tunisia, = 51). The ID devices tested were visual (button ear tags, 28.5 mm diameter, = 178; double flag ear tags, 50 by 15 mm, = 83; both made of polyurethane) and electronic (ear tags, = 90, and rumen boluses, = 555). Electronic ear tags were polyurethane-loop type (75 by 9 mm) with a container in which a 22-mm transponder of full-duplex technology was lodged. Electronic boluses of 7 types, varying in dimensions (50 to 76 mm length, 11 to 21 mm width, and 12.7 to 82.1 g weight) and specific gravity (SG; 1.49 to 3.86) and each of them containing a 31-mm transponder of half-duplex technology, were all administered to the dromedaries at the beginning of the study. When a low-SG bolus was lost, a high-SG bolus was readministered. Readability rates of each ID system were evaluated during 1 to 3 yr, according to device and location, and yearly values were estimated for comparison. On a yearly basis, visual ear tag readability was not fully satisfactory; it was lower for rectangular ear tags (66.3%) than for button ear tags (80.9%). Yearly readability of electronic ear tags was 93.7%. Bolus readability dramatically varied according to their SG; the SG 3.0 boluses were efficiently retained (99.6 to 100%) at all locations. In conclusion, according to the expected long lifespan of camels, low ID performances were observed for iron brands, injectable

  10. Comparison of Microbiological Flora in the External Auditory Canal of Normal Ear and an Ear with Acute Otitis Externa.

    Science.gov (United States)

    Ghanpur, Asheesh Dora; Nayak, Dipak Ranjan; Chawla, Kiran; Shashidhar, V; Singh, Rohit

    2017-09-01

    Acute Otitis Externa (AOE) is also known as swimmer's ear. Investigations initiated during World War II firmly established the role of bacteria in the aetiology of Acute Otitis Externa. To culture the microbiological flora of the normal ear and compare it with the flora causing AOE and to know the role of normal ear canal flora and anaerobes in the aetiology. A prospective observational study was conducted on 64 patients clinically diagnosed with unilateral AOE. Ear swabs were taken from both the ears. Microbiological flora was studied considering diseased ear as test ear and the normal ear as the control. Aerobic and anaerobic cultures were done. Severity of the disease was assessed by subjective and objective scores. Effect of topical treatment with ichthammol glycerine pack was assessed after 48 hours and scores were calculated again. Patients with scores < 4 after pack removal were started on systemic antibiotics and were assessed after seven days of antibiotics course. Data was analysed using Paired t-test, Wilcoxon signed ranks test and Chi-square test. A p-value < 0.05 was considered significant. Pseudomonas aeruginosa (33%) was the most common bacteria cultured from the ear followed by Methicillin Resistant Staphylococcus aureus (MRSA) (18%). Patients with anaerobic organism in the test ear had severe symptoms and needed systemic antibiotic therapy. Most of the cases may respond to empirical antibiotic therapy. In cases with severe symptoms and the ones refractory to empirical treatment, a culture from the ear canal will not be a tax on the patient. This helps in giving a better understanding about the disease, causative organisms and helps in avoiding the use of inappropriate antibiotics that usually result in developing resistant strains of bacteria.

  11. Precision and accuracy of the static GNSS system for surveying networks used in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Nixon Alexander Correa Muñoz

    2018-01-01

    Full Text Available A field check was implemented for calibrating surveying equipment. It was geo-referenced with a Total Station Theodolite and by implementing procedures concerning repeatability and reproducibility. We carried out GNSS (Global Navigation Satellite System static positioning with double frequency equipment, sensitizing occupation times, day times, uncorrected coordinates subjected to a differential correction procedure and type of coordinates obtained. This facilitated an evaluation of precision and accuracy for the GNSS positioning with the static method, which gave a global RMSE (root mean square error of 1 cm for conditions with no multipath effect and 4 cm for field calibration points close to buildings. Additionally, optimal results for occupation times of 30 minutes were found, and the need to use planar Cartesian coordinates to ensure compatibility with the surveys using electronic measurement of distances, which allows the use of the static GNSS positioning for geo-referencing precise surveying networks, and can be used in different applications in Civil Engineering.

  12. A Multiple-Model Particle Filter Fusion Algorithm for GNSS/DR Slide Error Detection and Compensation

    Directory of Open Access Journals (Sweden)

    Rafael Toledo-Moreo

    2018-03-01

    Full Text Available Continuous accurate positioning is a key element for the deployment of many advanced driver assistance systems (ADAS and autonomous vehicle navigation. To achieve the necessary performance, global navigation satellite systems (GNSS must be combined with other technologies. A common onboard sensor-set that allows keeping the cost low, features the GNSS unit, odometry, and inertial sensors, such as a gyro. Odometry and inertial sensors compensate for GNSS flaws in many situations and, in normal conditions, their errors can be easily characterized, thus making the whole solution not only more accurate but also with more integrity. However, odometers do not behave properly when friction conditions make the tires slide. If not properly considered, the positioning perception will not be sound. This article introduces a hybridization approach that takes into consideration the sliding situations by means of a multiple model particle filter (MMPF. Tests with real datasets show the goodness of the proposal.

  13. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals

    Science.gov (United States)

    Li, Weiqiang; Cardellach, Estel; Fabra, Fran; Rius, Antonio; Ribó, Serni; Martín-Neira, Manuel

    2017-08-01

    A track of sea ice reflected Global Navigation Satellite System (GNSS) signal collected by the TechDemoSat-1 mission is processed to perform phase altimetry over sea ice. High-precision carrier phase measurements are extracted from coherent GNSS reflections at a high angle of elevation (>57°). The altimetric results show good consistency with a mean sea surface (MSS) model, and the root-mean-square difference is 4.7 cm with an along-track sampling distance of ˜140 m and a spatial resolution of ˜400 m. The difference observed between the altimetric results and the MSS shows good correlation with the colocated sea ice thickness data from Soil Moisture and Ocean Salinity. This is consistent with the reflecting surface aligned with the bottom of the ice-water interface, due to the penetration of the GNSS signal into the sea ice. Therefore, these high-precision altimetric results have potential to be used for determination of sea ice thickness.

  14. Social Tagging of Mission Data

    Science.gov (United States)

    Norris, Jeffrey S.; Wallick, Michael N.; Joswig, Joseph C.; Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Abramyan, Lucy; Crockett, Thomas M.; Shams, Khawaja S.; Fox, Jason M.; hide

    2010-01-01

    Mars missions will generate a large amount of data in various forms, such as daily plans, images, and scientific information. Often, there is a semantic linkage between images that cannot be captured automatically. Software is needed that will provide a method for creating arbitrary tags for this mission data so that items with a similar tag can be related to each other. The tags should be visible and searchable for all users. A new routine was written to offer a new and more flexible search option over previous applications. This software allows users of the MSLICE program to apply any number of arbitrary tags to a piece of mission data through a MSLICE search interface. The application of tags creates relationships between data that did not previously exist. These tags can be easily removed and changed, and contain enough flexibility to be specifically configured for any mission. This gives users the ability to quickly recall or draw attention to particular pieces of mission data, for example: Give a semantic and meaningful description to mission data; for example, tag all images with a rock in them with the tag "rock." Rapidly recall specific and useful pieces of data; for example, tag a plan as"driving template." Call specific data to a user s attention; for example, tag a plan as "for:User." This software is part of the MSLICE release, which was written in Java. It will run on any current Windows, Macintosh, or Linux system.

  15. Inner ear pressure changes following square wave intracranial or ear canal pressure manipulation in the same guinea pig

    NARCIS (Netherlands)

    Thalen, E; Wit, H; Segenhout, H; Albers, F

    Inner ear pressure was measured in scala tympani with a micropipette during square wave pressure manipulation of the intracranial compartment and, subsequently, of the external ear canal (EEC) in the same guinea pig. As expected, the combination of the cochlear aqueduct and the inner ear behaves as

  16. Real-time monitoring for fast deformations using GNSS low-cost receivers

    Directory of Open Access Journals (Sweden)

    T. Bellone

    2016-03-01

    Full Text Available Landslides are one of the major geo-hazards which have constantly affected Italy especially over the last few years. In fact 82% of the Italian territory is affected by this phenomenon which destroys the environment and often causes deaths: therefore it is necessary to monitor these effects in order to detect and prevent these risks. Nowadays, most of this type of monitoring is carried out by using traditional topographic instruments (e.g. total stations or satellite techniques such as global navigation satellite system (GNSS receivers. The level of accuracy obtainable with these instruments is sub-centimetrical in post-processing and centimetrical in real-time; however, the costs are very high (many thousands of euros. The rapid diffusion of GNSS networks has led to an increase of using mass-market receivers for real-time positioning. In this paper, the performances of GNSS mass-market receiver are reported with the aim of verifying if this type of sensor can be used for real-time landslide monitoring: for this purpose a special slide was used for simulating a landslide, since it enabled us to give manual displacements thanks to a micrometre screw. These experiments were also carried out by considering a specific statistical test (a modified Chow test which enabled us to understand if there were any displacements from a statistical point of view in real time. The tests, the algorithm and results are reported in this paper.

  17. Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media.

    Science.gov (United States)

    Ishihara, Hisashi; Kariya, Shin; Okano, Mitsuhiro; Zhao, Pengfei; Maeda, Yukihide; Nishizaki, Kazunori

    2016-10-01

    Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.

  18. Ear replanatation: a case report and literature review

    Directory of Open Access Journals (Sweden)

    Krešimir Božikov

    2013-10-01

    Full Text Available Background: Total ear amputation is a rare accident. The most common causes are traffic accidents (33 %, followed by fights (28 %. In 1980, Pennington et al. reported the first successful microsurgical ear replantation in a 29-year old man.Methods: An English literature review of trauma cases of total ear amputation showed only 13 successful replantations with arterial and venous microanastomoses. We present a case report of successful total ear replantation with arterial and vein microanastomoses in a 17-year old boy.Results: Our ear replantation with both arterial and venous anastomoses performed was successful and we achieved an excellent aesthetic outcome.Conclusion: The reason for such a low number of successful ear replantations is technical challenge due to small vessel diameter, difficult vessel identification, vessel approach and concomitant avulsion injury. The best aesthetic result in ear reconstruction is achieved by microsurgical replantation. The surgical technique depends on the intraoperative findings. Since ear replantation is a very challenging procedure, a microsurgeon needs to discuss with the patient the risk of partial/total necrosis of the replanted ear and the possibilities of other reconstructive options.

  19. Real ear unaided gain and its relation with the equivalent volume of the external and middle ear

    Directory of Open Access Journals (Sweden)

    Bastos, Bárbara Guimarães

    2012-01-01

    Full Text Available Introduction: Old age is associated with changes in the characteristics of the middle ear transmission system and in external ear resonance, and these carry implications for the hearing aid (HA verification process for which targets and measures of the real ear insertion gain (REIG are used. Aim: To compare the real ear unaided gain (REUG and the equivalent volumes of the external ear (VeqEE and the middle ear (VeqME between elderly and adult patients. Methods: This is a retrospective study in which the medical records of 28 elderly patients (aged between 61 and 102 years, average hearing thresholds between 38.75 and 85 dB HL and 23 adult patients (aged 20-59, mean hearing thresholds between 31.25 and 116.25 dB HL with bilateral sensorineural hearing loss and no history of middle ear abnormalities were analyzed. Immittance measurements (VeqEE, VeqME, and pressure of the peak of maximum compliance and the REUG (frequency and amplitude of the primary peak were recovered for a total of 40 ears. These data were compared between elderly and adults as well as between men and women, using Student's t test. Correlations (Pearson between immittance and REUG data were also verified. Results: No statistically significant differences (p < 0.01 were found for immittance and REUG data between elderly and adults, or between men and women. A negative and weak but significant correlation was observed between the REUG primary peak and VeqEE. Conclusion: Hearing aid verification can be performed with target and measures of the REIG in the elderly population.

  20. Passage of albumin from the middle ear to the inner ear in otitis media in the chinchilla

    International Nuclear Information System (INIS)

    Goldberg, B.; Goycoolea, M.V.; Schleivert, P.M.; Shea, D.; Schachern, P.; Paparella, M.M.; Carpenter, A.M.

    1981-01-01

    A study of the permeability of the middle ear-inner ear interface for macromolecules was carried out in chinchillas with open and obstructed eustachian tubes utilizing tritiated human serum albumin and immunoelectrophoresis. Tritiated albumin was placed in the round window niche area or normal animals and animals in which the eustachian tubes had been obstructed for 24 hours or 14 days. The tritiated albumin was allowed to remain in the middle ear cavity for 24 hours, Samples of middle ear effusion, perilymph, blood and cerebrospinal fluid were collected and measured for radioactivity. Radioactivity was demonstrated in the perilymph. Samples of middle ear effusions and perilymph were also studied by immunoelectrophoresis with goat antihuman albumin. Albumin placed in the round window niche of an experimental animal could be recovered unchanged in the perilymph. The results suggest a pathophysiologic explanation for the association of otitis media and sensorineural hearing loss or endolymphatic hydrops

  1. Simulation Tool for GNSS Ocean Surface Reflections

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-01-01

    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surfaceheights, and patterns of the general ocean circulation. In the reflection...... zone the measurements may deriveparameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from the top of mountains and airplanes have shown such results leading.The coming satellite missions, CYGNSS, COSMIC-2, and GEROS...

  2. Simulation of space-borne tsunami detection using GNSS-Reflectometry applied to tsunamis in the Indian Ocean

    Directory of Open Access Journals (Sweden)

    R. Stosius

    2010-06-01

    Full Text Available Within the German-Indonesian Tsunami Early Warning System project GITEWS (Rudloff et al., 2009, a feasibility study on a future tsunami detection system from space has been carried out. The Global Navigation Satellite System Reflectometry (GNSS-R is an innovative way of using reflected GNSS signals for remote sensing, e.g. sea surface altimetry. In contrast to conventional satellite radar altimetry, multiple height measurements within a wide field of view can be made simultaneously. With a dedicated Low Earth Orbit (LEO constellation of satellites equipped with GNSS-R, densely spaced sea surface height measurements could be established to detect tsunamis. This simulation study compares the Walker and the meshed comb constellation with respect to their global reflection point distribution. The detection performance of various LEO constellation scenarios with GPS, GLONASS and Galileo as signal sources is investigated. The study concentrates on the detection performance for six historic tsunami events in the Indian Ocean generated by earthquakes of different magnitudes, as well as on different constellation types and orbit parameters. The GNSS-R carrier phase is compared with the PARIS or code altimetry approach. The study shows that Walker constellations have a much better reflection point distribution compared to the meshed comb constellation. Considering simulation assumptions and assuming technical feasibility it can be demonstrated that strong tsunamis with magnitudes (M ≥8.5 can be detected with certainty from any orbit altitude within 15–25 min by a 48/8 or 81/9 Walker constellation if tsunami waves of 20 cm or higher can be detected by space-borne GNSS-R. The carrier phase approach outperforms the PARIS altimetry approach especially at low orbit altitudes and for a low number of LEO satellites.

  3. DORIS and GNSS processing at CNES/CLS for the contribution to the next ITRF2013

    Science.gov (United States)

    Loyer, Sylvain; Capdeville, Hugues; Soudarin, Laurent; Mezerette, Adrien; Lemoine, Jean-Michel; Mercier, Flavien; Perosanz, Felix

    2014-05-01

    CNES serves as Analysis Center in the International DORIS Service (IDS) and the International GNSS Service (IGS). DORIS and GNSS data are processed by its subsidiary CLS with the GRGS package software GINS/DYNAMO. For the contribution to the next release of the International Terrestrial Reference Frame planned this year (ITRF2013), two decades of data were analyzed (1993-2013 for DORIS, 1998-2013 for GPS, and 2009-2013 for GLONASS). In this context, the CNES/CLS Analysis Centers provided SINEX solutions to the IDS and IGS Combination Centers, respectively multi-satellite weekly solutions and daily solutions. Normal equations derived from this analysis are also made available to the GRGS Combination Center for the combination at the observation level of the geodetic parameters measured by DORIS, GPS, SLR and VLBI techniques. The purpose of this presentation is to point out how the overall quality of the DORIS and GNSS data processing benefits from the use of the same software and a common basis of models. Here, we present the modeling standards, the networks and the processing strategies. Assessments of some models are also discussed. The quality and the homogeneity of the products (orbits, station coordinates and Earth Orientation Parameters) over the complete period are shown, as well as the temporal variations of some parameters (dynamical parameters, orbit residuals, internal orbit overlaps ...). Some examples of time series of DORIS and GNSS station positions at collocated sites complete this presentation.

  4. Gas tagging system development in Japan

    International Nuclear Information System (INIS)

    Sekiguchi, N.; Rindo, H.; Akiyama, T.; Miyazawa, T.; Heki, H.

    1981-05-01

    The Gas tagging method has been considered to be most desirable for a failed fuel location system for the fast breeder reactor, regarding the component reduction in the reactor vessel and rapid location during reactor operation. The gas tagging system has been designed by referring to R and D results obtained in Japan and other countries. The designed system is comprised of tag gas filling pins, cover gas sampling system, tag gas recovery and enrichment system, tag gas analyzer and system control and data handling computers. The main specifications for this system have been decided as follows; 1) Main function is location of failed fuels in core and a part of blanket region, 2) Identification capability is each subassembly, 3) Time for identification is within a few days, 4) Continuous operation with automatic start at fuel failure, 5) Detection sensitivity must cover both gas leak and pin burst. In designing the gas tagging system, the following R and D items were selected; 1) System design study, 2) Tag gas capsule development, 3) Modeling the tag gas behavior in reactor primary cooling system, 4) Tag gas recovery and enrichment system, 5) Computer code development for tag gas isotope ratio change estimation. Details of the Japanese gas tagging system development appear in this paper. (author)

  5. Acceleration induced water removal from ear canals.

    Science.gov (United States)

    Kang, Hosung; Averett, Katelee; Jung, Sunghwan

    2017-11-01

    Children and adults commonly experience having water trapped in the ear canals after swimming. To remove the water, individuals will shake their head sideways. Since a child's ear canal has a smaller diameter, it requires more acceleration of the head to remove the trapped water. In this study, we theoretically and experimentally investigated the acceleration required to break the surface meniscus of the water in artificial ear canals and hydrophobic-coated glass tubes. In experiments, ear canal models were 3D-printed from a CT-scanned human head. Also, glass tubes were coated with silane to match the hydrophobicity in ear canals. Then, using a linear stage, we measured the acceleration values required to forcefully eject the water from the artificial ear canals and glass tubes. A theoretical model was developed to predict the critical acceleration at a given tube diameter and water volume by using a modified Rayleigh-Taylor instability. Furthermore, this research can shed light on the potential of long-term brain injury and damage by shaking the head to push the water out of the ear canal. This research was supported by National Science Foundation Grant CBET-1604424.

  6. Topical tags vs non-topical tags : Towards a bipartite classification?

    NARCIS (Netherlands)

    Basile, Valerio; Peroni, Silvio; Tamburini, Fabio; Vitali, Fabio

    2015-01-01

    In this paper we investigate whether it is possible to create a computational approach that allows us to distinguish topical tags (i.e. talking about the topic of a resource) and non-topical tags (i.e. describing aspects of a resource that are not related to its topic) in folksonomies, in a way that

  7. The role of tag suggestions in folksonomies

    NARCIS (Netherlands)

    Bollen, D.G.F.M.; Halpin, H.

    2009-01-01

    Most tagging systems support the user in the tag selection process by providing tag suggestions, or recommendations, based on a popularity measurement of tags other users provided when tagging the same resource. The majority of theories and mathematical models of tagging found in the literature

  8. Human ear recognition by computer

    CERN Document Server

    Bhanu, Bir; Chen, Hui

    2010-01-01

    Biometrics deals with recognition of individuals based on their physiological or behavioral characteristics. The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. Unlike the fingerprint and iris, it can be easily captured from a distance without a fully cooperative subject, although sometimes it may be hidden with hair, scarf and jewellery. Also, unlike a face, the ear is a relatively stable structure that does not change much with the age and facial expressions. ""Human Ear Recognition by Computer"" is the first book o

  9. Comparison of shipborne GNSS-derived precipitable water vapor with radiosonde in the western North Pacific and in the seas adjacent to Japan

    Science.gov (United States)

    Shoji, Yoshinori; Sato, Kazutoshi; Yabuki, Masanori; Tsuda, Toshitaka

    2017-11-01

    We installed two global navigation satellite system (GNSS) antennas on a research vessel, the RYOFU MARU of the Japan Meteorological Agency, and conducted experimental observations to assess the GNSS-derived precipitable water vapor (PWV) from October 19, 2016, to August 6, 2017. One antenna was set on the mast (MAST), while another antenna was set on the upper deck (DECK). The GNSS analysis was conducted using the precise point positioning procedure with a real-time GNSS orbit. A quality control (QC) procedure based on the amount of zenith tropospheric delay (ZTD) time variation was proposed. After the QC was applied, the retrieved PWVs were compared to 77 radiosonde observations. The PWVs of MAST agreed with the radiosonde observations with a 1.7 mm root mean square (RMS) difference, a - 0.7-mm bias, and 3.6% rejection rate, while that of DECK showed a 3.2, - 0.8 mm, and 15.7%. The larger RMS and higher rejection rate of DECK imply a stronger multi-path effect on the deck. The differences in the GNSS PWV versus radiosonde observations were compared to the atmospheric delay, the estimated altitude of the GNSS antenna, the vessel's moving speed, the wind speed, and the wave height. The atmospheric delay and GNSS antenna altitude showed moderate correlation with the differences. The results suggest the kinematic PPP's potential for practical water vapor monitoring over oceans worldwide. At the same time, from the growing negative biases with the PWV value and with estimated antenna altitude, it could be inferred that the difficulty grows in separating the signal delay from the vertical coordinate under high-humidity conditions.[Figure not available: see fulltext.

  10. Real-time positioning in logging: Effects of forest stand characteristics, topography, and line-of-sight obstructions on GNSS-RF transponder accuracy and radio signal propagation.

    Directory of Open Access Journals (Sweden)

    Eloise G Zimbelman

    Full Text Available Real-time positioning on mobile devices using global navigation satellite system (GNSS technology paired with radio frequency (RF transmission (GNSS-RF may help to improve safety on logging operations by increasing situational awareness. However, GNSS positional accuracy for ground workers in motion may be reduced by multipath error, satellite signal obstruction, or other factors. Radio propagation of GNSS locations may also be impacted due to line-of-sight (LOS obstruction in remote, forested areas. The objective of this study was to characterize the effects of forest stand characteristics, topography, and other LOS obstructions on the GNSS accuracy and radio signal propagation quality of multiple Raveon Atlas PT GNSS-RF transponders functioning as a network in a range of forest conditions. Because most previous research with GNSS in forestry has focused on stationary units, we chose to analyze units in motion by evaluating the time-to-signal accuracy of geofence crossings in 21 randomly-selected stands on the University of Idaho Experimental Forest. Specifically, we studied the effects of forest stand characteristics, topography, and LOS obstructions on (1 the odds of missed GNSS-RF signals, (2 the root mean squared error (RMSE of Atlas PTs, and (3 the time-to-signal accuracy of safety geofence crossings in forested environments. Mixed-effects models used to analyze the data showed that stand characteristics, topography, and obstructions in the LOS affected the odds of missed radio signals while stand variables alone affected RMSE. Both stand characteristics and topography affected the accuracy of geofence alerts.

  11. Real-time positioning in logging: Effects of forest stand characteristics, topography, and line-of-sight obstructions on GNSS-RF transponder accuracy and radio signal propagation.

    Science.gov (United States)

    Zimbelman, Eloise G; Keefe, Robert F

    2018-01-01

    Real-time positioning on mobile devices using global navigation satellite system (GNSS) technology paired with radio frequency (RF) transmission (GNSS-RF) may help to improve safety on logging operations by increasing situational awareness. However, GNSS positional accuracy for ground workers in motion may be reduced by multipath error, satellite signal obstruction, or other factors. Radio propagation of GNSS locations may also be impacted due to line-of-sight (LOS) obstruction in remote, forested areas. The objective of this study was to characterize the effects of forest stand characteristics, topography, and other LOS obstructions on the GNSS accuracy and radio signal propagation quality of multiple Raveon Atlas PT GNSS-RF transponders functioning as a network in a range of forest conditions. Because most previous research with GNSS in forestry has focused on stationary units, we chose to analyze units in motion by evaluating the time-to-signal accuracy of geofence crossings in 21 randomly-selected stands on the University of Idaho Experimental Forest. Specifically, we studied the effects of forest stand characteristics, topography, and LOS obstructions on (1) the odds of missed GNSS-RF signals, (2) the root mean squared error (RMSE) of Atlas PTs, and (3) the time-to-signal accuracy of safety geofence crossings in forested environments. Mixed-effects models used to analyze the data showed that stand characteristics, topography, and obstructions in the LOS affected the odds of missed radio signals while stand variables alone affected RMSE. Both stand characteristics and topography affected the accuracy of geofence alerts.

  12. Ear care: an update for nurses (part 1)

    OpenAIRE

    Millward, K.

    2017-01-01

    A healthy ear is vital not just for hearing, but for balance and for full engagement with the community. In the first of two articles, Kat Millward reviews the anatomy of the ear, outlines methods of dealing with cerumen, and discusses methods of assessment and diagnosis\\ud \\ud Our ears are essential for both hearing and balance. Up to 4% of the population will have difficulties with their ears relating to impacted cerumen and many of them will present in primary care with ear discomfort or h...

  13. Incorporating anthropometry into design of ear-related products.

    Science.gov (United States)

    Liu, Bor-Shong

    2008-01-01

    To achieve mass customization and collaborative product design, human factors and ergonomics should play a key development role. The purpose of this study was to provide product designers with the anthropometic dimensions of outer ears for different demographic data, including gender and age. The second purpose was to compare the dimensions of various ear-related products (i.e., earphone, bluetooth earphone and ear-cup earphone) with the anthropometic database and recommend appropriate solutions for design. Two hundred subjects aged 20-59 was selected for this study and divided into four age stratifications. Further, three different dimensions of the outer ear (i.e., the earhole length, the ear connection length and the length of the pinna) were measured by superimposed grid photographic technique. The analysis of variance (ANOVA) was used to investigate the effects of gender, and age on ear dimensions. The results showed that all ear dimensions had significant gender effects. A comparison between the anthropometric dimensions and those of current products revealed that most current ear-related products need to be redesigned using anthropometric data. The shapes of earhole and pinna are not circular. Consequently, ear products need to be elongated so that users may feel more comfortably and not have the product slip off easily.

  14. The combined geodetic network adjusted on the reference ellipsoid – a comparison of three functional models for GNSS observations

    Directory of Open Access Journals (Sweden)

    Kadaj Roman

    2016-12-01

    Full Text Available The adjustment problem of the so-called combined (hybrid, integrated network created with GNSS vectors and terrestrial observations has been the subject of many theoretical and applied works. The network adjustment in various mathematical spaces was considered: in the Cartesian geocentric system on a reference ellipsoid and on a mapping plane. For practical reasons, it often takes a geodetic coordinate system associated with the reference ellipsoid. In this case, the Cartesian GNSS vectors are converted, for example, into geodesic parameters (azimuth and length on the ellipsoid, but the simple form of converted pseudo-observations are the direct differences of the geodetic coordinates. Unfortunately, such an approach may be essentially distorted by a systematic error resulting from the position error of the GNSS vector, before its projection on the ellipsoid surface. In this paper, an analysis of the impact of this error on the determined measures of geometric ellipsoid elements, including the differences of geodetic coordinates or geodesic parameters is presented. Assuming that the adjustment of a combined network on the ellipsoid shows that the optimal functional approach in relation to the satellite observation, is to create the observational equations directly for the original GNSS Cartesian vector components, writing them directly as a function of the geodetic coordinates (in numerical applications, we use the linearized forms of observational equations with explicitly specified coefficients. While retaining the original character of the Cartesian vector, one avoids any systematic errors that may occur in the conversion of the original GNSS vectors to ellipsoid elements, for example the vector of the geodesic parameters. The problem is theoretically developed and numerically tested. An example of the adjustment of a subnet loaded from the database of reference stations of the ASG-EUPOS system was considered for the preferred functional

  15. Reduction of ZTD outliers through improved GNSS data processing and screening strategies

    Science.gov (United States)

    Stepniak, Katarzyna; Bock, Olivier; Wielgosz, Pawel

    2018-03-01

    Though Global Navigation Satellite System (GNSS) data processing has been significantly improved over the years, it is still commonly observed that zenith tropospheric delay (ZTD) estimates contain many outliers which are detrimental to meteorological and climatological applications. In this paper, we show that ZTD outliers in double-difference processing are mostly caused by sub-daily data gaps at reference stations, which cause disconnections of clusters of stations from the reference network and common mode biases due to the strong correlation between stations in short baselines. They can reach a few centimetres in ZTD and usually coincide with a jump in formal errors. The magnitude and sign of these biases are impossible to predict because they depend on different errors in the observations and on the geometry of the baselines. We elaborate and test a new baseline strategy which solves this problem and significantly reduces the number of outliers compared to the standard strategy commonly used for positioning (e.g. determination of national reference frame) in which the pre-defined network is composed of a skeleton of reference stations to which secondary stations are connected in a star-like structure. The new strategy is also shown to perform better than the widely used strategy maximizing the number of observations available in many GNSS programs. The reason is that observations are maximized before processing, whereas the final number of used observations can be dramatically lower because of data rejection (screening) during the processing. The study relies on the analysis of 1 year of GPS (Global Positioning System) data from a regional network of 136 GNSS stations processed using Bernese GNSS Software v.5.2. A post-processing screening procedure is also proposed to detect and remove a few outliers which may still remain due to short data gaps. It is based on a combination of range checks and outlier checks of ZTD and formal errors. The accuracy of the

  16. Improving GNSS time series for volcano monitoring: application to Canary Islands (Spain)

    Science.gov (United States)

    García-Cañada, Laura; Sevilla, Miguel J.; Pereda de Pablo, Jorge; Domínguez Cerdeña, Itahiza

    2017-04-01

    The number of permanent GNSS stations has increased significantly in recent years for different geodetic applications such as volcano monitoring, which require a high precision. Recently we have started to have coordinates time series long enough so that we can apply different analysis and filters that allow us to improve the GNSS coordinates results. Following this idea we have processed data from GNSS permanent stations used by the Spanish Instituto Geográfico Nacional (IGN) for volcano monitoring in Canary Islands to obtained time series by double difference processing method with Bernese v5.0 for the period 2007-2014. We have identified the characteristics of these time series and obtained models to estimate velocities with greater accuracy and more realistic uncertainties. In order to improve the results we have used two kinds of filters to improve the time series. The first, a spatial filter, has been computed using the series of residuals of all stations in the Canary Islands without an anomalous behaviour after removing a linear trend. This allows us to apply this filter to all sets of coordinates of the permanent stations reducing their dispersion. The second filter takes account of the temporal correlation in the coordinate time series for each station individually. A research about the evolution of the velocity depending on the series length has been carried out and it has demonstrated the need for using time series of at least four years. Therefore, in those stations with more than four years of data, we calculated the velocity and the characteristic parameters in order to have time series of residuals. This methodology has been applied to the GNSS data network in El Hierro (Canary Islands) during the 2011-2012 eruption and the subsequent magmatic intrusions (2012-2014). The results show that in the new series it is easier to detect anomalous behaviours in the coordinates, so they are most useful to detect crustal deformations in volcano monitoring.

  17. Innovative Sea Surface Monitoring with GNSS-Reflectometry aboard ISS: Overview and Recent Results from GEROS-ISS

    DEFF Research Database (Denmark)

    Wickert, Jens; Andersen, Ole Baltazar; Bandeiras, J.

    GEROS-ISS (GEROS hereafter) stands for GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station. It is a scientific experiment, proposed to the European Space Agency (ESA)in 2011 for installation aboard the ISS. The main focus of GEROS is the dedicated use o...... of signals from the currently available Global Navigation Satellite Systems (GNSS) for remote sensing of the System Earth with focus to Climate Change characterisation. The GEROS mission idea and the current status are briefly reviewed....

  18. Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation

    Directory of Open Access Journals (Sweden)

    Francesco Benassi

    2017-02-01

    Full Text Available UAV Photogrammetry today already enjoys a largely automated and efficient data processing pipeline. However, the goal of dispensing with Ground Control Points looks closer, as dual-frequency GNSS receivers are put on board. This paper reports on the accuracy in object space obtained by GNSS-supported orientation of four photogrammetric blocks, acquired by a senseFly eBee RTK and all flown according to the same flight plan at 80 m above ground over a test field. Differential corrections were sent to the eBee from a nearby ground station. Block orientation has been performed with three software packages: PhotoScan, Pix4D and MicMac. The influence on the checkpoint errors of the precision given to the projection centers has been studied: in most cases, values in Z are critical. Without GCP, the RTK solution consistently achieves a RMSE of about 2–3 cm on the horizontal coordinates of checkpoints. In elevation, the RMSE varies from flight to flight, from 2 to 10 cm. Using at least one GCP, with all packages and all test flights, the geocoding accuracy of GNSS-supported orientation is almost as good as that of a traditional GCP orientation in XY and only slightly worse in Z.

  19. Techniques and methods to guarantee Bologna-conform higher education in GNSS

    Science.gov (United States)

    Mayer, M.

    2012-04-01

    The Bologna Declaration is aiming for student-centered, outcome-related, and competence-based teaching. In order to fulfill these demands, deep level learning techniques should be used to meet the needs of adult-compatible and self-determined learning. The presentation will summarize selected case studies carried out in the framework of the lecture course "Introduction into GNSS positioning" of the Geodetic Institute of the Karlsruhe Institute of Technology (Karlsruhe, Germany). The lecture course "Introduction into GNSS positioning" is a compulsory part of the Bachelor study course "Geodesy and Geoinformatics" and also a supplementary module of the Bachelor study course "Geophysics". Within the lecture course, basic knowledge and basic principles of Global Navigation Satellite Systems, like GPS, are imparted. The lecture course was migrated starting from a classically designed geodetic lecture course, which consisted of a well-adapted combination of teacher-centered classroom lectures and practical training (e.g., field exercises). The recent Bologna-conform blended learning concepts supports and motivates students to learn more sustainable using online and classroom learning methods. Therefore, an appropriate combination of - classroom lectures: Students and teacher give lectures - practical training: Students select topics individually - online learning: ILIAS (learning management system) is used as data, result, and communication platform. The framing didactical method is based on the so-called anchored instruction approach. Within this approach, an up-to-date scientific GNSS-related paper dealing with the large-scale geodetic project "Fehmarn Belt Fixed Link" is used as anchor. The students have to read the paper individually in the beginning of the semester. This enables them to realize a lot of not-known GNSS-related facts. Therefore, questions can be formulated. The lecture course deals with these questions, in order to answer them. At the end of the

  20. Debris flow cartography using differential GNSS and Theodolite measurements

    Science.gov (United States)

    Khazaradze, Giorgi; Guinau, Marta; Calvet, Jaume; Furdada, Gloria; Victoriano, Ane; Génova, Mar; Suriñach, Emma

    2016-04-01

    The presented results form part of a CHARMA project, which pursues a broad objective of reducing damage caused by uncontrolled mass movements, such as rockfalls, snow avalanches and debris flows. Ultimate goal of the project is to contribute towards the establishment of new scientific knowledge and tools that can help in the design and creation of early warning systems. Here we present the specific results that deal with the application of differential GNSS and classical geodetic (e.g. theodolite) methods for mapping debris and torrential flows. Specifically, we investigate the Portainé stream located in the Pallars Sobirà region of Catalonia (Spain), in the eastern Pyrenees. In the last decade more than ten debris-flow type phenomena have affected the region, causing considerable economic losses. Since early 2014, we have conducted several field campaigns within the study area, where we have employed a multi-disciplinary approach, consisting of geomorphological, dendro-chronological and geodetic methods, in order to map the river bed and reconstruct the history of the extreme flooding and debris flow events. Geodetic studies included several approaches, using the classical and satellite based methods. The former consisted of angle and distance measurements between the Geodolite 502 total station and the reflecting prisms placed on top of the control points located within the riverbed. These type of measurements are precise, although present several disadvantages such as the lack of absolute coordinates that makes the geo-referencing difficult, as well as a relatively time-consuming process that involves two persons. For this reason, we have also measured the same control points using the differential GNSS system, in order to evaluate the feasibility of replacing the total station measurements with the GNSS. The latter measuring method is fast and can be conducted by one person. However, the fact that the study area is within the riverbed, often below the trees

  1. GNSS Transpolar Earth Reflectometry exploriNg System (G-TERN): Mission Concept

    DEFF Research Database (Denmark)

    Cardellach, Estel; Wickert, Jens; Baggen, Rens

    2018-01-01

    . Over polar areas, the G-TERN will measure sea ice surface elevation (polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability...

  2. COMPARISON BETWEEN RGB AND RGB-D CAMERAS FOR SUPPORTING LOW-COST GNSS URBAN NAVIGATION

    Directory of Open Access Journals (Sweden)

    L. Rossi

    2018-05-01

    Full Text Available A pure GNSS navigation is often unreliable in urban areas because of the presence of obstructions, thus preventing a correct reception of the satellite signal. The bridging between GNSS outages, as well as the vehicle attitude reconstruction, can be recovered by using complementary information, such as visual data acquired by RGB-D or RGB cameras. In this work, the possibility of integrating low-cost GNSS and visual data by means of an extended Kalman filter has been investigated. The focus is on the comparison between the use of RGB-D or RGB cameras. In particular, a Microsoft Kinect device (second generation and a mirrorless Canon EOS M RGB camera have been compared. The former is an interesting RGB-D camera because of its low-cost, easiness of use and raw data accessibility. The latter has been selected for the high-quality of the acquired images and for the possibility of mounting fixed focal length lenses with a lower weight and cost with respect to a reflex camera. The designed extended Kalman filter takes as input the GNSS-only trajectory and the relative orientation between subsequent pairs of images. Depending on the visual data acquisition system, the filter is different because RGB-D cameras acquire both RGB and depth data, allowing to solve the scale problem, which is instead typical of image-only solutions. The two systems and filtering approaches were assessed by ad-hoc experimental tests, showing that the use of a Kinect device for supporting a u-blox low-cost receiver led to a trajectory with a decimeter accuracy, that is 15 % better than the one obtained when using the Canon EOS M camera.

  3. Objective Audiometry using Ear-EEG

    DEFF Research Database (Denmark)

    Christensen, Christian Bech; Kidmose, Preben

    Recently, a novel electroencephalographic (EEG) method called ear-EEG [1], that enable recording of auditory evoked potentials (AEPs) from a personalized earpiece was introduced. Initial investigations show that well established AEPs, such as ASSR and P1-N1-P2 complex can be observed from ear-EEG...

  4. An Effective 3D Ear Acquisition System.

    Directory of Open Access Journals (Sweden)

    Yahui Liu

    Full Text Available The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition.

  5. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  6. Internally Coupled Ears in Living Mammals

    OpenAIRE

    Mason, Matthew James

    2015-01-01

    It is generally held that the right and left middle ears of mammals are acoustically isolated from each other, such that mammals must rely on neural computation to derive sound localisation cues. There are, however, some unusual species in which the middle ear cavities intercommunicate, in which case each ear might be able to act as a pressure-difference receiver. This could improve sound localisation at lower frequencies. The platypus Ornithorhynchus is apparently unique among mammals in tha...

  7. Assessment of the Impact of GNSS Processing Strategies on the Long-Term Parameters of 20 Years IWV Time Series

    Directory of Open Access Journals (Sweden)

    Zofia Baldysz

    2018-03-01

    Full Text Available Advanced processing of collected global navigation satellite systems (GNSS observations allows for the estimation of zenith tropospheric delay (ZTD, which in turn can be converted to the integrated water vapour (IWV. The proper estimation of GNSS IWV can be affected by the adopted GNSS processing strategy. To verify which of its elements cause deterioration and which improve the estimated GNSS IWV, we conducted eight reprocessings of 20 years of GPS observations (01.1996–12.2015. In each of them, we applied a different mapping function, the zenith hydrostatic delay (ZHD a priori value, the cut-off angle, software, and the positioning method. Obtained in such a way, the ZTD time series were converted to the IWV using the meteorological parameters sourced from the ERA-Interim. Then, based on them, the long-term parameters were estimated and compared to those obtained from the IWV derived from the radio sounding (RS observations. In this paper, we analyzed long-term parameters such as IWV mean values, linear trends, and amplitudes of annual and semiannual oscillations. A comparative analysis showed, inter alia, that in terms of the investigation of the IWV linear trend the precise point positioning (PPP method is characterized by higher accuracy than the differential one. It was also found that using the GPT2 model and the higher elevation mask brings benefits to the GNSS IWV linear trend estimation.

  8. Multi-GNSS signal-in-space range error assessment - Methodology and results

    Science.gov (United States)

    Montenbruck, Oliver; Steigenberger, Peter; Hauschild, André

    2018-06-01

    The positioning accuracy of global and regional navigation satellite systems (GNSS/RNSS) depends on a variety of influence factors. For constellation-specific performance analyses it has become common practice to separate a geometry-related quality factor (the dilution of precision, DOP) from the measurement and modeling errors of the individual ranging measurements (known as user equivalent range error, UERE). The latter is further divided into user equipment errors and contributions related to the space and control segment. The present study reviews the fundamental concepts and underlying assumptions of signal-in-space range error (SISRE) analyses and presents a harmonized framework for multi-GNSS performance monitoring based on the comparison of broadcast and precise ephemerides. The implications of inconsistent geometric reference points, non-common time systems, and signal-specific range biases are analyzed, and strategies for coping with these issues in the definition and computation of SIS range errors are developed. The presented concepts are, furthermore, applied to current navigation satellite systems, and representative results are presented along with a discussion of constellation-specific problems in their determination. Based on data for the January to December 2017 time frame, representative global average root-mean-square (RMS) SISRE values of 0.2 m, 0.6 m, 1 m, and 2 m are obtained for Galileo, GPS, BeiDou-2, and GLONASS, respectively. Roughly two times larger values apply for the corresponding 95th-percentile values. Overall, the study contributes to a better understanding and harmonization of multi-GNSS SISRE analyses and their use as key performance indicators for the various constellations.

  9. Movement of the external ear in human embryo.

    Science.gov (United States)

    Kagurasho, Miho; Yamada, Shigehito; Uwabe, Chigako; Kose, Katsumi; Takakuwa, Tetsuya

    2012-02-01

    External ears, one of the major face components, show an interesting movement during craniofacial morphogenesis in human embryo. The present study was performed to see if movement of the external ears in a human embryo could be explained by differential growth. In all, 171 samples between Carnegie stage (CS) 17 and CS 23 were selected from MR image datasets of human embryos obtained from the Kyoto Collection of Human Embryos. The three-dimensional absolute position of 13 representative anatomical landmarks, including external and internal ears, from MRI data was traced to evaluate the movement between the different stages with identical magnification. Two different sets of reference axes were selected for evaluation and comparison of the movements. When the pituitary gland and the first cervical vertebra were selected as a reference axis, the 13 anatomical landmarks of the face spread out within the same region as the embryo enlarged and changed shape. The external ear did move mainly laterally, but not cranially. The distance between the external and internal ear stayed approximately constant. Three-dimensionally, the external ear located in the caudal ventral parts of the internal ear in CS 17, moved mainly laterally until CS 23. When surface landmarks eyes and mouth were selected as a reference axis, external ears moved from the caudal lateral ventral region to the position between eyes and mouth during development. The results indicate that movement of all anatomical landmarks, including external and internal ears, can be explained by differential growth. Also, when the external ear is recognized as one of the facial landmarks and having a relative position to other landmarks such as the eyes and mouth, the external ears seem to move cranially. © 2012 Kagurasho et al; licensee BioMed Central Ltd.

  10. Analysis of the dynamic behavior of structures using the high-rate GNSS-PPP method combined with a wavelet-neural model: Numerical simulation and experimental tests

    Science.gov (United States)

    Kaloop, Mosbeh R.; Yigit, Cemal O.; Hu, Jong W.

    2018-03-01

    Recently, the high rate global navigation satellite system-precise point positioning (GNSS-PPP) technique has been used to detect the dynamic behavior of structures. This study aimed to increase the accuracy of the extraction oscillation properties of structural movements based on the high-rate (10 Hz) GNSS-PPP monitoring technique. A developmental model based on the combination of wavelet package transformation (WPT) de-noising and neural network prediction (NN) was proposed to improve the dynamic behavior of structures for GNSS-PPP method. A complicated numerical simulation involving highly noisy data and 13 experimental cases with different loads were utilized to confirm the efficiency of the proposed model design and the monitoring technique in detecting the dynamic behavior of structures. The results revealed that, when combined with the proposed model, GNSS-PPP method can be used to accurately detect the dynamic behavior of engineering structures as an alternative to relative GNSS method.

  11. Buddy Tag CONOPS and Requirements.

    Energy Technology Data Exchange (ETDEWEB)

    Brotz, Jay Kristoffer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deland, Sharon M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    This document defines the concept of operations (CONOPS) and the requirements for the Buddy Tag, which is conceived and designed in collaboration between Sandia National Laboratories and Princeton University under the Department of State Key VerificationAssets Fund. The CONOPS describe how the tags are used to support verification of treaty limitations and is only defined to the extent necessary to support a tag design. The requirements define the necessary functions and desired non-functional features of the Buddy Tag at a high level

  12. Near real-time estimation of water vapour in the troposphere using ground GNSS and the meteorological data

    Directory of Open Access Journals (Sweden)

    J. Bosy

    2012-09-01

    Full Text Available The near real-time (NRT high resolution water vapour distribution models can be constructed based on GNSS observations delivered from Ground Base Augmentation Systems (GBAS and ground meteorological data. Since 2008 in the territory of Poland, a GBAS system called ASG-EUPOS (Active Geodetic Network has been operating. This paper addresses the problems concerning construction of the NRT model of water vapour distribution in the troposphere near Poland. The first section presents all available GNSS and ground meteorological stations in the area of Poland and neighbouring countries. In this section, data feeding scheme is discussed, together with timeline and time resolution. The high consistency between measured and interpolated temperature value is shown, whereas some discrepancy in the pressure is observed. In the second section, the NRT GNSS data processing strategy of ASG-EUPOS network is discussed. Preliminary results show fine alignment of the obtained Zenith Troposphere Delays (ZTDs with reference data from European Permanent Network (EPN processing center. The validation of NRT troposphere products against daily solution shows 15 mm standard deviation of obtained ZTD differences. The last section presents the first results of 2-D water vapour distribution above the GNSS network and application of the tomographic model to 3-D distribution of water vapour in the atmosphere. The GNSS tomography model, working on the simulated data from numerical forecast model, shows high consistency with the reference data (by means of standard deviation 4 mm km−1 or 4 ppm, however, noise analysis shows high solution sensitivity to errors in observations. The discrepancy for real data preliminary solution (measured as a mean standard deviation between reference NWP data and tomography data was on the level of 9 mm km−1 (or 9 ppm in terms of wet refractivity.

  13. Retention and readability of radio frequency identification transponders in beef cows over a five-year period

    Science.gov (United States)

    Objective of this study was to evaluate failure (loss or inability to read) of radio frequency identification (RFID) ear tags in beef cows over a 2 to 5 year period under ranching conditions. One of 5 types of RFID tags was applied in the ear of a total of 4316 cows on 4 separate ranches. Tags wer...

  14. Anthropometric growth study of the ear in a Chinese population.

    Science.gov (United States)

    Zhao, Shichun; Li, Dianguo; Liu, Zhenzhong; Wang, Yibiao; Liu, Lei; Jiang, Duyin; Pan, Bo

    2018-04-01

    A large number of anthropometric studies of the auricle have been reported in different nations, but little data were available in the Chinese population. The aim of this study was to analyze growth changes in the ear by measuring the width and length of ears in a Chinese population. A total of 480 participants were enrolled and classified into 1-, 3-, 5-, 7-, 9-, 12-, 14-, and 18-year groups (half were boys and half were girls in each group). Ear length, ear width, body weight, and body length were measured and recorded; ear index was calculated according to ear length and ear width. The growth of auricle and differences between genders were analyzed. Growth of ear in relation to body height and weight and the degree of emphasis on the length and width of the auricle were also analyzed. Ear length and width increased with age. Ear length achieved its mature size in both 14-year-old males and females. Ear width reached its mature size in males at 7 years and in females at 5 years. Different trends of ear index were shown between males and females. People in this population paid more attention to the length than the width of the auricle. The data indicated that ear development followed increase in age. There were gender and ethnic difference in the development of ear. These results may have potential implications for the diagnosis of congenital malformations, syndromes, and planning of ear reconstruction surgery. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. The management of scarce water resources using GNSS, InSAR ...

    African Journals Online (AJOL)

    GNSS receivers were run continuously for a period of 133 days between March and August 2014 to detect possible surface subsidence during pumping and artesian free flow extraction of water in the wellfield. Two InSAR scenes were processed, one during the peak period of water extraction from the wellfield and the other ...

  16. Real-time capture of seismic waves using high-rate multi-GNSS observations: Application to the 2015 Mw 7.8 Nepal earthquake

    Science.gov (United States)

    Geng, Tao; Xie, Xin; Fang, Rongxin; Su, Xing; Zhao, Qile; Liu, Gang; Li, Heng; Shi, Chuang; Liu, Jingnan

    2016-01-01

    The variometric approach is investigated to measure real-time seismic waves induced by the 2015 Mw 7.8 Nepal earthquake with high-rate multi-GNSS observations, especially with the contribution of newly available BDS. The velocity estimation using GPS + BDS shows an additional improvement of around 20% with respect to GPS-only solutions. We also reconstruct displacements by integrating GNSS-derived velocities after a linear trend removal (IGV). The displacement waveforms with accuracy of better than 5 cm are derived when postprocessed GPS precise point positioning results are used as ground truth, even if those stations have strong ground motions and static offsets of up to 1-2 m. GNSS-derived velocity and displacement waveforms with the variometric approach are in good agreement with results from strong motion data. We therefore conclude that it is feasible to capture real-time seismic waves with multi-GNSS observations using the IGV-enhanced variometric approach, which has critical implications for earthquake early warning, tsunami forecasting, and rapid hazard assessment.

  17. Receptor GNSS multiantena para aplicaciones aeroespaciales

    OpenAIRE

    Cogo, Jorge; López La Valle, Ramón G.; Puga, Gerardo L.; Smidt, Javier A.; Díaz, Juan G.; García, Javier Gonzalo; Roncagliolo, Pedro Agustín; Muravchik, Carlos Horacio

    2013-01-01

    La determinación de la posición y velocidad del vehículo es una de las tareas críticas en las aplicaciones aeroespaciales como es el caso de aviones, satélites o cohetes. En los últimos años esta tarea se ha visto favorecida por el despliegue de los Sistemas de Navegación Global por Satélite (GNSS). Estos sistemas, utilizando como base una constelación de satélites que envían señales a la superficie terrestre, permiten que un usuario que cuente con un receptor adecuado pueda obtener esta info...

  18. Temporal bone CT analysis of congenital ear anomalies

    International Nuclear Information System (INIS)

    Hwang, Jung Won; Moon, Min Joo; Sung, Kyu Bo

    1988-01-01

    Authors analysed the CT findings of the congenital ear anomalies of twenty-nine patients for 2 years and 3 months. The results were as follows: 1. Most of the patients were under the age of 20 (82.7%) and prevalent in male (72.4%). 2. Clinically, congenital ear anomalies were detected in 20 patients (68.9%), conductive hearing loss in 4, sensorineural hearing loss in 1, and the remained 4 patients were detected incidentally without clinical symptom. 3. In the cases of unilateral involvement of 20 patients, right ear was more common (12/20). Eight of 9 bilateral involvement showed similar degree. 4. The middle ear malformations were found in 22 patients (75.9%) and bilateral in 4 patients. 26 cases of middle ear malformations had been classified by Frey into 4 groups; Group I in 5, Group II in 9, Graoup III in 9 and Group IV in 3. 5. Incidentally found ear anomaly was lateral semicircular canal formed a single cavity with the vestibule in all patients (5 pts.). 6. Inner ear malformations accompanying sensorineural hearing loss were found in 3 patients with bilateral involvement and middle ear malformations were accompanied in 2 patients. The degree of involvement of labyrinth was variable.

  19. Insights into inner ear-specific gene regulation: epigenetics and non-coding RNAs in inner ear development and regeneration

    Science.gov (United States)

    Avraham, Karen B.

    2016-01-01

    The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode sound, head motion and gravity. Gene expression programs under the control of transcription factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an additional layer of gene regulation, both in inner ear development and disease. In this review, we provide an overview on how epigenetic modifications and non-coding RNAs, in particular microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight their critical role in the proper formation of the inner ear labyrinth and its sensory organs. In contrast to non-mammalian vertebrates, adult mammals lack the ability to regenerate inner ear mechano-sensory hair cells. Finally, we discuss recent insights into how epigenetic factors and miRNAs may facilitate, or in the case of mammals, restrict sensory hair cell regeneration. PMID:27836639

  20. GNSS monitoring of the ionosphere for Space Weather services

    Science.gov (United States)

    Krankowski, A.; Sieradzki, R.; Zakharenkova, I. E.; Cherniak, I. V.

    2012-04-01

    The International GNSS Service (IGS) Ionosphere Working Group routinely provides the users global ionosphere maps (GIMs) of vertical total electron content (vTEC). The IGS GIMs are provided with spatial resolution of 5.0 degrees x 2.5 degrees in longitude and latitude, respectively. The current temporal resolution is 2 hours, however, 1-hour maps are delivered as a pilot project. There are three types IGS GIMs: the final, rapid and predicted. The latencies of the IGS ionospheric final and rapid products are 10 days and 1 day, respectively. The predicted GIMs are generated for 1 and 2 days in advance. There are four IGS Associate Analysis Centres (IAACs) that provide ionosphere maps computed with independent methodologies using GNSS data. These maps are uploaded to the IGS Ionosphere Combination and Validation Center at the GRL/UWM (Geodynamics Research Laboratory of the University of Warmia and Mazury in Olsztyn, Poland) that produces the IGS official ionospheric products, which are published online via ftp and www. On the other hand, the increasing number of permanently tracking GNSS stations near the North Geomagnetic Pole allow for using satellite observations to detect the ionospheric disturbances at high latitudes with even higher spatial resolution. In the space weather service developed at GRL/UWM, the data from the Arctic stations belonging to IGS/EPN/POLENET networks were used to study TEC fluctuations and scintillations. Since the beginning of 2011, a near real-time service presenting the conditions in the ionosphere have been operational at GRL/UWM www site. The rate of TEC index (ROTI) expressed in TECU/min is used as a measure of TEC fluctuations. The service provides 2-hour maps of the TEC variability. In addition, for each day the daily map of the ionospheric fluctuations as a function geomagnetic local time is also created. This presentation shows the architecture, algorithms, performance and future developments of the IGS GIMs and this new space

  1. Flavour tagging performance in LHCb

    International Nuclear Information System (INIS)

    Grabalosa Gandara, Marc

    2009-01-01

    To do precise CP violation measurements, the best possible determination of the flavour of the B-meson is necessary. This report summarizes the flavour tagging performances for the LHCb experiment. The flavour tagging is obtained through a combination of several methods, based on different signatures. The use of control channels, which are decays to flavour-specific final states, will allow to determine the wrong tag fraction ω (the probability of a tag to be wrong), which can be used as an input for the determination of CKM unitarity triangle angles.

  2. Cooperative Tagging Center (CTC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cooperative Tagging Center (CTC) began as the Cooperative Game Fish Tagging Program (GTP) at Woods Hole Oceanographic Institute (WHOI) in 1954. The GTP was...

  3. Multislice spiral computed tomography imaging in congenital inner ear malformations.

    Science.gov (United States)

    Ma, Hui; Han, Ping; Liang, Bo; Tian, Zhi-liang; Lei, Zi-qiao; Kong, Wei-jia; Feng, Gan-sheng

    2008-01-01

    The purpose of this study is to evaluate the usefulness of multislice spiral computed tomography (CT) in the diagnosis of congenital inner ear malformations. Forty-four patients with sensorineural hearing loss were examined on a Somatom Sensation 16 (Siemens) CT scanner. The 3-dimensional reconstructions and multiplanar reformation (MPR) were performed using the volume-rendering technique (VRT) on the workstation. Of the 44 patients examined for this study, 25 patients were found to be normal and 19 patients (36 ears) were diagnosed with congenital inner ear malformations. Of the malformations, the axial, MPR, and VRT images can all display the site and degree in 33 of the ears. Volume-rendering technique images were superior to the axial images in displaying the malformations in 3 ears with small lateral semicircular canal malformations. The common malformations were Michel deformity (1 ear), common cavity deformity (3 ears), incomplete partition I (3 ears), incomplete partition II (Mondini deformity) (5 ears), vestibular and semicircular canal malformations (14 ears), enlarged vestibular aqueduct (16 ears, 6 of which had other malformations), and internal auditory canal malformation (8 ears, all accompanied by other malformations). Multislice spiral CT allows a comprehensively assessment of various congenital inner ear malformations through high-quality MPR and VRT reconstructions. Volume-rendering technique images can display the site and degree of the malformation 3-dimensionally and intuitionisticly. This is very useful to the cochlear implantation.

  4. Secure passive RFID tag with seal

    Science.gov (United States)

    Nekoogar, Faranak; Reynolds, Matthew; Lefton, Scott; Dowla, Farid; Twogood, Richard

    2017-11-14

    A secure passive RFID tag system comprises at least one base station and at least one passive RFID tag. The tag includes a fiber optic cable with the cable ends sealed within the tag and the middle portion forming an external loop. The loop may be secured to at least portions of an object. The tag transmits and receives an optical signal through the fiber optic cable, and the cable is configured to be damaged or broken in response to removal or tampering attempts, wherein the optical signal is significantly altered if the cable is damaged or broken. The tag transmits the optical signal in response to receiving a radio signal from the base station and compares the transmitted optical signal to the received optical signal. If the transmitted optical signal and the received optical signal are identical, the tag transmits an affirmative radio signal to the base station.

  5. North Pacific Albacore Tagging

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conventional tagging data are available from 1971 to 1996. Electronic tagging data are available from 2000 to present. The data are managed by SWFSC in Access...

  6. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.

    Science.gov (United States)

    Péus, Dominik; Dobrev, Ivo; Prochazka, Lukas; Thoele, Konrad; Dalbert, Adrian; Boss, Andreas; Newcomb, Nicolas; Probst, Rudolf; Röösli, Christof; Sim, Jae Hoon; Huber, Alexander; Pfiffner, Flurin

    2017-08-01

    Animals are frequently used for the development and testing of new hearing devices. Dimensions of the middle ear and cochlea differ significantly between humans and commonly used animals, such as rodents or cats. The sheep cochlea is anatomically more like the human cochlea in size and number of turns. This study investigated the middle-ear ossicular velocities and intracochlear sound pressure (ICSP) in sheep temporal bones, with the aim of characterizing the sheep as an experimental model for implantable hearing devices. Measurements were made on fresh sheep temporal bones. Velocity responses of the middle ear ossicles at the umbo, long process of the incus and stapes footplate were measured in the frequency range of 0.25-8 kHz using a laser Doppler vibrometer system. Results were normalized by the corresponding sound pressure level in the external ear canal (P EC ). Sequentially, ICSPs at the scala vestibuli and tympani were then recorded with custom MEMS-based hydrophones, while presenting identical acoustic stimuli. The sheep middle ear transmitted most effectively around 4.8 kHz, with a maximum stapes velocity of 0.2 mm/s/Pa. At the same frequency, the ICSP measurements in the scala vestibuli and tympani showed the maximum gain relative to the P EC (24 dB and 5 dB, respectively). The greatest pressure difference across the cochlear partition occurred between 4 and 6 kHz. A comparison between the results of this study and human reference data showed middle-ear resonance and best cochlear sensitivity at higher frequencies in sheep. In summary, sheep can be an appropriate large animal model for research and development of implantable hearing devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Digital Active Noise Reduction Ear Plugs

    National Research Council Canada - National Science Library

    Harley, Thomas

    1994-01-01

    .... In contrast to available ANR headsets that implement fixed analog filters, the prototype defines a digital filter that is optimally defined for the user's current acoustical environment. An above-the-ear (ATE) and an in-the-ear (ITE...

  8. Middle ear infection (otitis media) (image)

    Science.gov (United States)

    Otitis media is an inflammation or infection of the middle ear. Acute otitis media (acute ear infection) occurs when there is ... which causes production of fluid or pus. Chronic otitis media occurs when the eustachian tube becomes blocked ...

  9. Ear Acupuncture in European Traditional Medicine

    Directory of Open Access Journals (Sweden)

    Luigi Gori

    2007-01-01

    Full Text Available Auricular acupuncture is a diagnostic and treatment system based on normalizing the body's dysfunction through stimulation of definite points on the ear. Rudimentary forms of acupuncture which probably arose during the Stone Age have survived in many parts of the world right down to present day. It was used in the ancient Egypt, Rome, Greece and all the Mediterranean area. It is a microacupuncture technique similar to reflexology, and was first described in France in 1950 by Paul Nogier who is considered the Father of modern ear acupuncture. It was speculated that the technique works because groups of pluripotent cells contain information from the whole organism and create regional organization centers representing different parts of the body. Nevertheless stimulation of a reflex point in the ear seems relieve symptoms of distant pathologies. Modern research is confirming the efficacy of ear acupuncture for analgesia and anxiety related disease, while tobacco dependence and other substance abuse still need confirmation. Actually main methodological problems with auricular acupuncture are that exist too many maps with little agreement regarding point location in the ear, and that the correspondence or reflex systems does not correlated with modern knowledge of anatomy and physiology.

  10. EnTagRec : an enhanced tag recommendation system for software information sites

    NARCIS (Netherlands)

    Wang, S.; Lo, D.; Vasilescu, B.N.; Serebrenik, A.

    2014-01-01

    Software engineers share experiences with modern technologies by means of software information sites, such as STACK OVERFLOW. These sites allow developers to label posted content, referred to as software objects, with short descriptions, known as tags. However, tags assigned to objects tend to be

  11. Using GNSS for Assessment Recent Sea Level Rise in the Northwestern Part of the Arabian Gulf

    Science.gov (United States)

    Alothman, A. O.; Bos, M. S.; Fernandes, R.

    2017-12-01

    Due to the global warming acting recently (in the 21st century) on the planet Earth, an associated sea level rise is predicted to reach up to 30 cm to 60 cm in some regions. Sea level monitoring is important for the Kingdom of Saudi Arabia, since it is surrounded by very long cost of about 3400 km in length and hundreds of isolated islands. The eastern coast line of KSA, in the Arabian Gulf, needs some monitoring in the long term, due to low land nature of the region. Also, the ongoing oil withdrawal activities in the area, may affect the regional sea level rise. In addition to these two facts, the tectonic structure of the Arabian Peninsula is one factor. The Regional Relative sea level in the eastern cost of Saudi Arabia has been estimated in the past using tide gauge data of more than 28 years using the vertical displacement of permanent Global Navigation Satellite System GNSS stations having time span of only about 3 years. In this paper, we discuss and update the methodology and results from Alothman et al. (2014), particularly by checking and extending the GNSS solutions. Since 3 of the 6 GPS stations used only started observing in the end of 2011, the longer time series have now significantly lower uncertainties in the estimated vertical rate. Longer time span of GNSS observations were included and 500 synthetic time series were estimated and seasonal signals were analysed. it is concluded that the varying seasonal signal present in the GNSS time series causes an underestimation of 0.1 mm/yr for short time series of 3 years. In addition to the implications of using short time series to estimate the vertical land motion, we found that if the varying seasonal signals are present in the data, the problem is aggravated. This finding can be useful for other studies analyzing short GNSS time series.

  12. Smart-tag Based Data Dissemination

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Beaufour, Allan; Leopold, Martin

    2002-01-01

    Monitoring wide, hostile areas requires disseminating data between fixed, disconnected clusters of sensor nodes. It is not always possible to install long-range radios in order to cover the whole area. We propose to leverage the movement of mobile individuals, equipped with smart-tags, to dissemi......-tag based data dissemination. We use simulation to study the characteristics of the model we propose. Finally, we present an implementation based on Bluetooth smart-tags.......Monitoring wide, hostile areas requires disseminating data between fixed, disconnected clusters of sensor nodes. It is not always possible to install long-range radios in order to cover the whole area. We propose to leverage the movement of mobile individuals, equipped with smart......-tags, to disseminate data across disconnected static nodes spread across a wide area. Static nodes and mobile smart-tags exchange data when they are in the vicinity of each other; smart-tags disseminate data as they move around. In this paper, we propose an algorithm for update propagation and a model for smart...

  13. Comparing the hierarchy of author given tags and repository given tags in a large document archive

    Science.gov (United States)

    Tibély, Gergely; Pollner, Péter; Palla, Gergely

    2016-10-01

    Folksonomies - large databases arising from collaborative tagging of items by independent users - are becoming an increasingly important way of categorizing information. In these systems users can tag items with free words, resulting in a tripartite item-tag-user network. Although there are no prescribed relations between tags, the way users think about the different categories presumably has some built in hierarchy, in which more special concepts are descendants of some more general categories. Several applications would benefit from the knowledge of this hierarchy. Here we apply a recent method to check the differences and similarities of hierarchies resulting from tags given by independent individuals and from tags given by a centrally managed repository system. The results from our method showed substantial differences between the lower part of the hierarchies, and in contrast, a relatively high similarity at the top of the hierarchies.

  14. Ear Disorders in Scuba Divers

    Directory of Open Access Journals (Sweden)

    MH Azizi

    2010-12-01

    Full Text Available History of underwater diving dates back to antiquity. Breath-hold technique in diving was known to the ancient nations. However, deep diving progressed only in the early decades of the 19th century as the result of advancements in efficient underwater technologies which subsequently led to invention of sophisticated sets of scuba diving in the 20th century. Currently, diving is performed for various purposes including commercial, recreational, military, underwater construction, oil industry, underwater archeology and scientific assessment of marine life. By increasing popularity of underwater diving, dive-related medical conditions gradually became more evident and created a new challenge for the health care professionals, so that eventually, a specialty the so-called “diving medicine” was established. Most of the diving-associated disorders appear in the head and neck. The most common of all occupational disorders associated with diving are otologic diseases. External otitis has been reported as the most common otolaryngologic problem in underwater divers. Exostosis of the external ear canal may be formed in divers as the result of prolonged diving in cold waters. Other disorders of the ear and paranasal sinuses in underwater divers are caused by barometric pressure change (i.e., barotraumas, and to a lesser extent by decompression sickness. Barotrauma of the middle ear is the most prevalent barotrauma in divers. The inner ear barotraumas, though important, is less common. The present paper is a brief overview of diving-related ear disorders particularly in scuba divers.

  15. EARS: Electronic Access to Reference Service.

    Science.gov (United States)

    Weise, F O; Borgendale, M

    1986-10-01

    Electronic Access to Reference Service (EARS) is a front end to the Health Sciences Library's electronic mail system, with links to the online public catalog. EARS, which became operational in September 1984, is accessed by users at remote sites with either a terminal or microcomputer. It is menu-driven, allowing users to request: a computerized literature search, reference information, a photocopy of a journal article, or a book. This paper traces the history of EARS and discusses its use, its impact on library staff and services, and factors that influence the diffusion of new technology.

  16. Physiological artifacts in scalp EEG and ear-EEG.

    Science.gov (United States)

    Kappel, Simon L; Looney, David; Mandic, Danilo P; Kidmose, Preben

    2017-08-11

    A problem inherent to recording EEG is the interference arising from noise and artifacts. While in a laboratory environment, artifacts and interference can, to a large extent, be avoided or controlled, in real-life scenarios this is a challenge. Ear-EEG is a concept where EEG is acquired from electrodes in the ear. We present a characterization of physiological artifacts generated in a controlled environment for nine subjects. The influence of the artifacts was quantified in terms of the signal-to-noise ratio (SNR) deterioration of the auditory steady-state response. Alpha band modulation was also studied in an open/closed eyes paradigm. Artifacts related to jaw muscle contractions were present all over the scalp and in the ear, with the highest SNR deteriorations in the gamma band. The SNR deterioration for jaw artifacts were in general higher in the ear compared to the scalp. Whereas eye-blinking did not influence the SNR in the ear, it was significant for all groups of scalps electrodes in the delta and theta bands. Eye movements resulted in statistical significant SNR deterioration in both frontal, temporal and ear electrodes. Recordings of alpha band modulation showed increased power and coherence of the EEG for ear and scalp electrodes in the closed-eyes periods. Ear-EEG is a method developed for unobtrusive and discreet recording over long periods of time and in real-life environments. This study investigated the influence of the most important types of physiological artifacts, and demonstrated that spontaneous activity, in terms of alpha band oscillations, could be recorded from the ear-EEG platform. In its present form ear-EEG was more prone to jaw related artifacts and less prone to eye-blinking artifacts compared to state-of-the-art scalp based systems.

  17. Deformation integrity monitoring for GNSS positioning services including local, regional and large scale hazard monitoring - the Karlsruhe approach and software(MONIKA)

    Science.gov (United States)

    Jaeger, R.

    2007-05-01

    GNSS-positioning services like SAPOS/ascos in Germany and many others in Europe, America and worldwide, usually yield in a short time their interdisciplinary and country-wide use for precise geo-referencing, replacing traditional low order geodetic networks. So it becomes necessary that possible changes of the reference stations' coordinates are detected ad hoc. The GNSS-reference-station MONitoring by the KArlsruhe approach and software (MONIKA) are designed for that task. The developments at Karlsruhe University of Applied Sciences in cooperation with the State Survey of Baden-Württemberg are further motivated by a the official resolution of the German state survey departments' association (Arbeitsgemeinschaft der Vermessungsverwaltungen Deutschland (AdV)) 2006 on coordinate monitoring as a quality-control duty of the GNSS-positioning service provider. The presented approach can - besides the coordinate control of GNSS-positioning services - also be used to set up any GNSS-service for the tasks of an area-wide geodynamical and natural disaster-prevention service. The mathematical model of approach, which enables a multivariate and multi-epochal design approach, is based on the GNSS-observations input of the RINEX-data of the GNSS service, followed by fully automatic processing of baselines and/or session, and a near-online setting up of epoch-state vectors and their covariance-matrices in a rigorous 3D network adjustment. In case of large scale and long-term monitoring situations, geodynamical standard trends (datum-drift, plate-movements etc.) are accordingly considered and included in the mathematical model of MONIKA. The coordinate-based deformation monitoring approach, as third step of the stepwise adjustments, is based on the above epoch-state vectors, and - splitting off geodynamics trends - hereby on a multivariate and multi-epochal congruency testing. So far, that no other information exists, all points are assumed as being stable and congruent reference

  18. 3D ear identification based on sparse representation.

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    Full Text Available Biometrics based personal authentication is an effective way for automatically recognizing, with a high confidence, a person's identity. Recently, 3D ear shape has attracted tremendous interests in research field due to its richness of feature and ease of acquisition. However, the existing ICP (Iterative Closet Point-based 3D ear matching methods prevalent in the literature are not quite efficient to cope with the one-to-many identification case. In this paper, we aim to fill this gap by proposing a novel effective fully automatic 3D ear identification system. We at first propose an accurate and efficient template-based ear detection method. By utilizing such a method, the extracted ear regions are represented in a common canonical coordinate system determined by the ear contour template, which facilitates much the following stages of feature extraction and classification. For each extracted 3D ear, a feature vector is generated as its representation by making use of a PCA-based local feature descriptor. At the stage of classification, we resort to the sparse representation based classification approach, which actually solves an l1-minimization problem. To the best of our knowledge, this is the first work introducing the sparse representation framework into the field of 3D ear identification. Extensive experiments conducted on a benchmark dataset corroborate the effectiveness and efficiency of the proposed approach. The associated Matlab source code and the evaluation results have been made publicly online available at http://sse.tongji.edu.cn/linzhang/ear/srcear/srcear.htm.

  19. Estimation and analysis of the short-term variations of multi-GNSS receiver differential code biases using global ionosphere maps

    Science.gov (United States)

    Li, Min; Yuan, Yunbin; Wang, Ningbo; Liu, Teng; Chen, Yongchang

    2017-12-01

    Care should be taken to minimize the adverse impact of differential code biases (DCBs) on global navigation satellite systems (GNSS)-derived ionospheric information determinations. For the sake of convenience, satellite and receiver DCB products provided by the International GNSS Service (IGS) are treated as constants over a period of 24 h (Li et al. (2014)). However, if DCB estimates show remarkable intra-day variability, the DCBs estimated as constants over 1-day period will partially account for ionospheric modeling error; in this case DCBs will be required to be estimated over shorter time period. Therefore, it is important to further gain insight into the short-term variation characteristics of receiver DCBs. In this contribution, the IGS combined global ionospheric maps and the German Aerospace Center (DLR)-provided satellite DCBs are used in the improved method to determine the multi-GNSS receiver DCBs with an hourly time resolution. The intra-day stability of the receiver DCBs is thereby analyzed in detail. Based on 1 month of data collected within the multi-GNSS experiment of the IGS, a good agreement within the receiver DCBs is found between the resulting receiver DCB estimates and multi-GNSS DCB products from the DLR at a level of 0.24 ns for GPS, 0.28 ns for GLONASS, 0.28 ns for BDS, and 0.30 ns for Galileo. Although most of the receiver DCBs are relatively stable over a 1-day period, large fluctuations (more than 9 ns between two consecutive hours) within the receiver DCBs can be found. We also demonstrate the impact of the significant short-term variations in receiver DCBs on the extraction of ionospheric total electron content (TEC), at a level of 12.96 TECu (TEC unit). Compared to daily receiver DCB estimates, the hourly DCB estimates obtained from this study can reflect the short-term variations of the DCB estimates more dedicatedly. The main conclusion is that preliminary analysis of characteristics of receiver DCB variations over short

  20. The Impact of Eclipsing GNSS Satellites on the Precise Point Positioning

    Directory of Open Access Journals (Sweden)

    Xinyun Cao

    2018-01-01

    Full Text Available When satellites enter into the noon maneuver or the shadow crossing regimes, the actual attitudes will depart from their nominal values. If improper attitude models are used, the induced-errors due to the wind-up effect and satellite antenna PCO (Phase Center Offset will deteriorate the positioning accuracy. Because different generations of satellites adopt different attitude control models, the influences on the positioning performances deserve further study. Consequently, the impact of three eclipsing strategies on the single-system and multi-GNSS (Global Navigation Satellite System Precise Point Positioning (PPP are analyzed. According to the results of the eclipsing monitor, 65 globally distributed MGEX (Multi-GNSS EXperiment stations for 31-day period in July 2017 are selected to perform G/R/E/C/GR/GREC PPP in both static and kinematic modes. The results show that the influences of non-nominal attitudes are related to the magnitude of the PCO values, maximum yaw angle differences, the duration of maneuver, the value of the sun angle and the satellite geometric strength. For single-system, using modeled attitudes rather than the nominal ones will greatly improve the positioning accuracy of GLONASS-only and BDS-only PPP while slightly contributions to the GPS-only and GALILEO-only PPP. Deleting the eclipsing satellites may sometimes induce a longer convergence time and a worse solution due to the poor satellite geometry, especially for GLONASS kinematic PPP when stations are located in the low latitude and BDS kinematic PPP. When multi-GNSS data are available, especially four navigation systems, the accuracy improvements of using the modeled attitudes or deleting eclipsing satellites are non-significant.

  1. An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS

    Science.gov (United States)

    Yanbin, Luo; Chengyan, Ma; Yebing, Gan; Min, Qian; Tianchun, Ye

    2015-10-01

    An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise-canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further amplifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down-converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than -26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is -43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220 × 280 μm2.

  2. The case for a Supersite for real-time GNSS hazard monitoring on a global scale

    Science.gov (United States)

    Bar-Sever, Y. E.

    2017-12-01

    Real-time measurements from many hundreds of GNSS tracking sites around the world are publicly available today, and the amount of streaming data is steadily increasing as national agencies densify their local and global infrastructure for natural hazard monitoring and a variety of geodetic, cadastral, and other civil applications. Thousands of such sites can soon be expected on a global scale. It is a challenge to manage and make optimal use of this massive amount of real-time data. We advocate the creation of Supersite(s), in the parlance of the U.N. Global Earth Observation System of Systems (https://www.earthobservations.org/geoss.php), to generate high level real-time data products from the raw GNSS measurements from all available sources (many thousands of sites). These products include: • High rate, real-time positioning time series for assessing rapid crustal motion due to Earthquakes, volcanic activities, land slides, etc. • Co-seismic displacement to help resolve earthquake mechanism and moment magnitude • Real-time total electron content (TEC) fluctuations to augment Dart buoy in detecting and tracking tsunamis • Aggregation of the many disparate raw data dispensation servers (Casters)Recognizing that natural hazards transcend national boundaries in terms of direct and indirect (e.g., economical, security) impact, the benefits from centralized, authoritative processing of GNSS measurements is manifold: • Offers a one-stop shop to less developed nations and institutions for raw and high-level products, in support of research and applications • Promotes the installation of tracking sites and the contribution of data from nations without the ability to process the data • Reduce dependency on local responsible agencies impacted by a natural disaster • Reliable 24/7 operations, independent of voluntary, best effort contributions from good-willing scientific organizationsThe JPL GNSS Real-Time Earthquake and Tsunami (GREAT) Alert has been

  3. Identifying position, visibility, dimensions, and angulation of the ear.

    Science.gov (United States)

    Mohamed, Kasim; Christian, Jayanth; Jeyapalan, Karthigeyan; Natarajan, Shanmuganathan; Banu, Fathima; Veeravalli, Padmanabhan T

    2014-01-01

    We selected 254 subjects between the ages of 18 and 30 yr to assess the ear position, angulations of the ear in relation to the nose, visibility from the frontal view, and dimensions of the ear by using various anthropometric points of the face. Subjects were divided into four groups based on facial form. A reference plane indicator, facial topographical measurements, metal ruler, and digital photography were used. While considering the position of the ear, in all facial forms except square tapering, the most samples showed a tendency for the subaurale being in line with subnasale. Regression analysis showed a tendency to gnathion distance is the most dependent variable with length of the ear kept as a constant predictor, while both interalar distance and exocanthion to endocanthion distance correlate highly significantly to the width of the ear. In all subjects, the visibility of the ear when viewed from the front was an average of 1.5 mm. Regardless of facial form, ear angulation was generally less than nose angulation.

  4. DICOM involving XML path-tag

    Science.gov (United States)

    Zeng, Qiang; Yao, Zhihong; Liu, Lei

    2011-03-01

    Digital Imaging and Communications in Medicine (DICOM) is a standard for handling, storing, printing, and transmitting information in medical imaging. XML (Extensible Markup Language) is a set of rules for encoding documents in machine-readable form which has become more and more popular. The combination of these two is very necessary and promising. Using XML tags instead of numeric labels in DICOM files will effectively increase the readability and enhance the clear hierarchical structure of DICOM files. However, due to the fact that the XML tags rely heavily on the orders of the tags, the strong data dependency has a lot of influence on the flexibility of inserting and exchanging data. In order to improve the extensibility and sharing of DICOM files, this paper introduces XML Path-Tag to DICOM. When a DICOM file is converted to XML format, adding simple Path-Tag into the DICOM file in place of complex tags will keep the flexibility of a DICOM file while inserting data elements and give full play to the advantages of the structure and readability of an XML file. Our method can solve the weak readability problem of DICOM files and the tedious work of inserting data into an XML file. In addition, we set up a conversion engine that can transform among traditional DICOM files, XML-DCM and XML-DCM files involving XML Path-Tag efficiently.

  5. MRI measurement for inner ear structures

    International Nuclear Information System (INIS)

    Li Shuling; Liu Huaijun; Chi Chen; Qin Ruiping; Shi Zhaoxia

    2003-01-01

    Objective: To reconstruct the image of inner ear by using 3D-FASE heavily T 2 WI, and to establish MRI measurement criterion of inner ear structures. Methods: One hundred and six inner ears of 53 healthy volunteers underwent MRI heavily T2-weighted axial scanning by using 3D fast advanced spin echo sequence. All the original images were transferred to an online workstation. Analyze AVW software was used for image post-processing. All the structures of inner ear were reconstructed, rotated from various angles and measured by using maximum intensity projection (MIP). Results: (1) All the structures of inner ear and internal auditory channel (IAC) could be visualized clearly by using 3D-FASE heavily T 2 WI. (2) Using analysis of variance, there was no age, side or race-related difference in inner ear volume, but it was bigger in male than in female [(0.242 ± 0.0236) mm 3 (male) versus (0.226 ± 0.021) mm 3 (female)]. There was no age, side-related differences in three semicircular canal height and vestibule vertical diameter, but, again, they were bigger in male than in female. The height of upper, lateral and posterior semicircular canal were (5.511 ± 0.626) mm (male) versus (5.167 ± 0.357) mm (female); (3.763 ± 0.495) mm (male) versus (3.446 ± 0.405) mm (female); (5.227 ± 0.547) mm (male) versus (4.786 ± 0.500) mm (female). There was no age, sex or side-related differences in three semicircular canal diameter and cochlea. The diameter of upper, lateral and posterior semicircular canal were (1.06 ± 0.119) mm, (1.14 ± 0.181) mm, and (1.22 ± 0.196)mm; the external diameter of cochlea basal turn was (6.520 ± 0.475) mm, the diameter of cochlea basal turn was (1.413 ± 0.144) mm, and cochlea height was (4.100 ± 0.405) mm. Conclusion: (1) For the first time, the MRI measurement criterion of inner ear structures is established. (2) Vestibule and three semicircular canal of inner ear are bigger in male than in female

  6. b-tagging in DELPHI at LEP

    CERN Document Server

    Abdallah, J; Adam, W; Adye, T; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bates, M; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bibby, J; Biffi, P; Bloch, D; Blom, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Branchini, P; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Couchot, F; Crawley, B; Crennell, D J; Cuevas-Maestro, J; D'Almagne, B; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Dijkstra, H; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Geralis, T; Gokieli, R; Golob, B; Gómez-Cadenas, J J; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Hansen, J; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Hernando, J A; Herr, H; Heuser, J M; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jalocha, P; Jarlskog, C; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Karlsson, M; Katsanevas, S; Katsoufis, E C; Keränen, R; Kernel, G; Kersevan, Borut P; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Kucewicz, W; Kurowska, J; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Meyer, W T; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Niezurawski, P; Nikolenko, M; Nomerotski, A; Norman, A; Nygren, A; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stavitski, I; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tinti, N; Tkatchev, L G; Tobin, M; Todorovova, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Trischuk, W; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tyndel, M; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verbeure, F; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weilhammer, Peter; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zimin, N I; Zinchenko, A I; Zupan, M

    2004-01-01

    The standard method used for tagging b-hadrons in the DELPHI experiment at the CERN LEP Collider is discussed in detail. The main ingredient of b-tagging is the impact parameters of tracks, which relies mostly on the vertex detector. Additional information, such as the mass of particles associated to a secondary vertex, significantly improves the selection efficiency and the background suppression. The paper describes various discriminating variables used for the tagging and the procedure of their combination. In addition, applications of b-tagging to some physics analyses, which depend crucially on the performance and reliability of b-tagging, are described briefly.

  7. Notes on SAW Tag Interrogation Techniques

    Science.gov (United States)

    Barton, Richard J.

    2010-01-01

    We consider the problem of interrogating a single SAW RFID tag with a known ID and known range in the presence of multiple interfering tags under the following assumptions: (1) The RF propagation environment is well approximated as a simple delay channel with geometric power-decay constant alpha >/= 2. (2) The interfering tag IDs are unknown but well approximated as independent, identically distributed random samples from a probability distribution of tag ID waveforms with known second-order properties, and the tag of interest is drawn independently from the same distribution. (3) The ranges of the interfering tags are unknown but well approximated as independent, identically distributed realizations of a random variable rho with a known probability distribution f(sub rho) , and the tag ranges are independent of the tag ID waveforms. In particular, we model the tag waveforms as random impulse responses from a wide-sense-stationary, uncorrelated-scattering (WSSUS) fading channel with known bandwidth and scattering function. A brief discussion of the properties of such channels and the notation used to describe them in this document is given in the Appendix. Under these assumptions, we derive the expression for the output signal-to-noise ratio (SNR) for an arbitrary combination of transmitted interrogation signal and linear receiver filter. Based on this expression, we derive the optimal interrogator configuration (i.e., transmitted signal/receiver filter combination) in the two extreme noise/interference regimes, i.e., noise-limited and interference-limited, under the additional assumption that the coherence bandwidth of the tags is much smaller than the total tag bandwidth. Finally, we evaluate the performance of both optimal interrogators over a broad range of operating scenarios using both numerical simulation based on the assumed model and Monte Carlo simulation based on a small sample of measured tag waveforms. The performance evaluation results not only

  8. Ear, Hearing and Speech

    DEFF Research Database (Denmark)

    Poulsen, Torben

    2000-01-01

    An introduction is given to the the anatomy and the function of the ear, basic psychoacoustic matters (hearing threshold, loudness, masking), the speech signal and speech intelligibility. The lecture note is written for the course: Fundamentals of Acoustics and Noise Control (51001)......An introduction is given to the the anatomy and the function of the ear, basic psychoacoustic matters (hearing threshold, loudness, masking), the speech signal and speech intelligibility. The lecture note is written for the course: Fundamentals of Acoustics and Noise Control (51001)...

  9. On the influence of ocean waves on simulated GNSS-R delay-doppler maps

    Science.gov (United States)

    Clarizia, M. P.; di Bisceglie, M.; Galdi, C.; Gommenginger, C.; Srokosz, M.

    2012-04-01

    Global Navigation Satellite System-Reflectometry (GNSS-R), is an established technique that exploits GNSS signals of opportunity reflected from the surface of the ocean, to look primarily at the ocean surface roughness. The strength of this technique, and the primary motivation to carry it forward, is in the fact that GNSS signals are available globally, all the time and over the long term, and could help dramatically improve the monitoring of ocean wind and waves. GNSS-R offers the prospect of high density global measurements of directional sea surface roughness, which are essential for scientific purposes (i.e. quantifying the air-sea exchanges of gases), operational weather and ocean forecasting (i.e. prediction of high winds, dangerous sea states, risk of flooding and storm surges) and to support important climate-relevant Earth Observation techniques (IR SST, or surface salinity retrieval). The retrieval of ocean roughness from GNSS-R data has now been demonstrated with a reasonable level of accuracy from both airborne [1] and spaceborne [2] platforms. In both cases, Directional Mean Square Slopes (DMSS) of the ocean surface have been retrieved from GNSS-R data, in the form of Delay-Doppler Maps (DDMs), using an established theoretical scattering model by Zavorotny and Voronovich (Z-V) [3]. The need for a better assessment of the way the ocean waves influence the scattering of GPS signals has recently led to a different approach, consisting of simulating the scattering of such signals, using a more sophisticated large-scale scattering model than Z-V, and explicit simulations of realistic seas. Initial results produced from these simulations have been recently published in [4], where the emphasis has been put on the effects of different sea states on Radar Cross Section (RCS) and Polarization Ratio (PR) in space domain. Linear wind wave surfaces have been simulated using the Elfouhaily wind wave spectrum [5], for different wind speeds and directions, and with

  10. Assessment of the NeQuick-2 and IRI-Plas 2017 models using global and long-term GNSS measurements

    Science.gov (United States)

    Okoh, Daniel; Onwuneme, Sylvester; Seemala, Gopi; Jin, Shuanggen; Rabiu, Babatunde; Nava, Bruno; Uwamahoro, Jean

    2018-05-01

    The global ionospheric models NeQuick and IRI-Plas have been widely used. However, their uncertainties are not clear at global scale and long term. In this paper, a climatologic assessment of the NeQuick and IRI-Plas models is investigated at a global scale from global navigation satellite system (GNSS) observations. GNSS observations from 36 globally distributed locations were used to evaluate performances of both NeQuick-2 and IRI-Plas 2017 models from January 2006 to July 2017, covering more than the 11-year period of a solar cycle. An hourly interval of diurnal profiles computed on monthly basis was used to measure deviations of the model estimations from corresponding GNSS VTEC observations. Results show that both models are fairly accurate in trends with the GNSS measurements. The NeQuick predictions were generally better than the IRI-Plas predictions in most of the stations and the times. The mean annual prediction errors for the IRI-Plas model typically varied from about 3 TECU at the high latitude stations to about 12 TECU at the low latitude stations, while for the NeQuick the values are respectively about 2-7 TECU. Out of a total 4497 months in which GNSS data were available for all the stations put together for the entire period covered in this work, the NeQuick model was observed to perform better in about 83% of the months while the IRI-Plas performed better in about 17% of the months. The IRI-Plas generally performed better than the NeQuick at certain locations (e.g. DAV1, KERG, and ADIS). For both models, the most of the deviations were witnessed during local daytimes and during seasons that receive maximum solar radiation for various locations. In particular, the IRI-Plas model predictions were improved during periods of increased solar activity at the low latitude stations. The IRI-Plas model overestimates the GNSS VTEC values, except during high solar activity years at some high latitude stations. The NeQuick underestimates the TEC values during

  11. Estimating absolute sea level variations by combining GNSS and Tide gauge data

    Digital Repository Service at National Institute of Oceanography (India)

    Bos, M.S.; Fernandes, R.M.S; Vethamony, P.; Mehra, P.

    Indian tide gauges can be used to estimate sea level rise. To separate relative sea level rise from vertical land motion at the tide gauges, various GNSS stations have been installed in the last years at, or nearby, tide gauges. Using the PSMSL...

  12. The Total Electron Content From InSAR and GNSS: A Midlatitude Study

    DEFF Research Database (Denmark)

    Musico, Elvira; Cesaroni, Claudio; Spogli, Luca

    2018-01-01

    The total electron content (TEC) measured from the interferometric synthetic aperture radar (InSAR) and froma dense network of global navigation satellite system (GNSS) receivers are used to assess the capability of InSAR to retrieve ionospheric information, when the tropospheric contribution...

  13. Congenital inner ear malformations without sensorineural hearing loss.

    Science.gov (United States)

    Yukawa, Kumiko; Horiguchi, Satoshi; Suzuki, Mamoru

    2008-03-01

    It has been reported that normal hearing is rare in patients with severe inner ear vestibular malformations [Kokai H, Oohashi M, Ishikawa K, Harada K, Hiratsuka H, Ogasawara M et al. Clinical review of inner ear malformation. J Otolaryngol Jpn 2003;106(10):1038-44; Schuknecht HF. Mondini dysplasia. A clinical pathological study. Ann Otol Rhinol Laryngol 1980;89(Suppl. 65):1-23; Jackler RK, Luxford WM, House WF. Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope 1987;97:2-14; Phelps PD. Congenital lesions of the inner ear, demonstrated by tomography. Arch Otolaryngol 1974;100:11-8]. A 37-year-old woman had combined dysplasia of the posterior and lateral semicircular canals (PSCC, LSCC) with normal cochlear development and normal hearing in both ears. She had complained of dizziness for 8 months. High resolution computed tomography (CT) showed hypogenesis of the bony labyrinth in both ears. Bilateral PSCC and LSCC dysplasia and dilatation of the vestibule were detected. Magnetic resonant imaging (MRI) revealed that the deformity of the PSCC was more severe than the LSCC. Although the caloric test of the left ear elicited no nystagmus and there was reduced response in the right ear, the horizontal vestibulo-occular reflex (VOR) was present. Her dizzy sensation disappeared within 3 months without special treatment. The dizziness attack might have been caused by a temporary breakdown of her peripheral vestibular system.

  14. A break-even analysis of major ear surgery.

    Science.gov (United States)

    Wasson, J D; Phillips, J S

    2015-10-01

    To determine variables which affect cost and profit for major ear surgery and perform a break-even analysis. Retrospective financial analysis. UK teaching hospital. Patients who underwent major ear surgery under general anaesthesia performed by the senior author in main theatre over a 2-year period between dates of 07 September 2010 and 07 September 2012. Income, cost and profit for each major ear patient spell. Variables that affect major ear surgery profitability. Seventy-six patients met inclusion criteria. Wide variation in earnings, with a median net loss of £-1345.50 was observed. Income was relatively uniform across all patient spells; however, theatre time of major ear surgery at a cost of £953.24 per hour varied between patients and was the main determinant of cost and profit for the patient spell. Bivariate linear regression of earnings on theatre time identified 94% of variation in earnings was due to variation in theatre time (r = -0.969; P break-even time for major ear surgery of 110.6 min. Theatre time was dependent on complexity of procedure and number of OPCS4 procedures performed, with a significant increase in theatre time when three or more procedures were performed during major ear surgery (P = 0.015). For major ear surgery to either break-even or return a profit, total theatre time should not exceed 110 min and 36 s. © 2015 John Wiley & Sons Ltd.

  15. Status of Core Products of the International GNSS Service

    Science.gov (United States)

    Choi, K. K.

    2014-12-01

    The International GNSS Service (IGS) has been providing high accuracy GNSS orbits, clocks and Earth Rotation Parameters (ERP) in three different time intervals. The quality of the IGS core products are regularly monitored since 2010, and the level of accuracies has not been changed noticeably. The Final and Rapid orbit's accuracies are known to be about ~2.5 cm and the near-real time (observed) Ultra-rapid orbit is about 3 cm. The real-time orbits obtained by propagating the Ultra-rapid orbits shows an accuracy of about 5 cm. The most significant error source of the real-time orbit is the sub-daily variation of the Earth orientation. Number of IGS08 core sites has been decreasing with the rate of ~0.13 stations per week due to equipment changes and natural disasters such as Earthquakes. This paper summarizes the quality state of the IGS core products for 2014, and the upcoming new official product IGV, Glonass Ultra-rapid orbit product which have been experimental for last 4 years. Eight IGS Analysis Centers (ACs) have completed their efforts to participate in the second reprocessing campaign (repro2). Based on their input, this paper summarizes the models and methodologies each AC have adopted for this campaign.

  16. A REDUNDANT GNSS-INS LOW-COST UAV NAVIGATION SOLUTION FOR PROFESSIONAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    J. Navarro

    2015-08-01

    Full Text Available This paper presents the current results for the FP7 GINSEC project. Its goal is to build a pre-commercial prototype of a low-cost, accurate and reliable system for the professional UAV market. Low-cost, in this context, stands for the use of sensors in the most affordable segment of the market, especially MEMS IMUs and GNSS receivers. Reliability applies to the ability of the autopilot to cope with situations where unfavourable GNSS reception conditions or strong electromagnetic fields make the computation of the position and / or attitude of the UAV difficult. Professional and accurate mean that, at least using post-processing techniques as PPP, it will be possible to reach cm-level precisions that open the door to a range of applications demanding high levels of quality in positioning, as precision agriculture or mapping. To achieve such goal, a rigorous sensor error modelling approach, the use of redundant IMUs and a dual-GNSS receiver setup, together with close-coupling techniques and an extended Kalman filter with self-analysis capabilities have been used. Although the project is not yet complete, the results obtained up to now prove the feasibility of the aforementioned goal, especially in those aspects related to position determination. Research work is still undergoing to estimate the heading using a dual-GNNS receiver setup; preliminary results prove the validity of this approach for relatively long baselines, although positive results are expected when these are shorter than 1 m – which is a necessary requisite for small-sized UAVs.

  17. a Redundant Gnss-Ins Low-Cost Uav Navigation Solution for Professional Applications

    Science.gov (United States)

    Navarro, J.; Parés, M. E.; Colomina, I.; Bianchi, G.; Pluchino, S.; Baddour, R.; Consoli, A.; Ayadi, J.; Gameiro, A.; Sekkas, O.; Tsetsos, V.; Gatsos, T.; Navoni, R.

    2015-08-01

    This paper presents the current results for the FP7 GINSEC project. Its goal is to build a pre-commercial prototype of a low-cost, accurate and reliable system for the professional UAV market. Low-cost, in this context, stands for the use of sensors in the most affordable segment of the market, especially MEMS IMUs and GNSS receivers. Reliability applies to the ability of the autopilot to cope with situations where unfavourable GNSS reception conditions or strong electromagnetic fields make the computation of the position and / or attitude of the UAV difficult. Professional and accurate mean that, at least using post-processing techniques as PPP, it will be possible to reach cm-level precisions that open the door to a range of applications demanding high levels of quality in positioning, as precision agriculture or mapping. To achieve such goal, a rigorous sensor error modelling approach, the use of redundant IMUs and a dual-GNSS receiver setup, together with close-coupling techniques and an extended Kalman filter with self-analysis capabilities have been used. Although the project is not yet complete, the results obtained up to now prove the feasibility of the aforementioned goal, especially in those aspects related to position determination. Research work is still undergoing to estimate the heading using a dual-GNNS receiver setup; preliminary results prove the validity of this approach for relatively long baselines, although positive results are expected when these are shorter than 1 m - which is a necessary requisite for small-sized UAVs.

  18. Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame

    Science.gov (United States)

    Bruni, Sara; Rebischung, Paul; Zerbini, Susanna; Altamimi, Zuheir; Errico, Maddalena; Santi, Efisio

    2018-04-01

    The realization of the international terrestrial reference frame (ITRF) is currently based on the data provided by four space geodetic techniques. The accuracy of the different technique-dependent materializations of the frame physical parameters (origin and scale) varies according to the nature of the relevant observables and to the impact of technique-specific errors. A reliable computation of the ITRF requires combining the different inputs, so that the strengths of each technique can compensate for the weaknesses of the others. This combination, however, can only be performed providing some additional information which allows tying together the independent technique networks. At present, the links used for that purpose are topometric surveys (local/terrestrial ties) available at ITRF sites hosting instruments of different techniques. In principle, a possible alternative could be offered by spacecrafts accommodating the positioning payloads of multiple geodetic techniques realizing their co-location in orbit (space ties). In this paper, the GNSS-SLR space ties on-board GPS and GLONASS satellites are thoroughly examined in the framework of global reference frame computations. The investigation focuses on the quality of the realized physical frame parameters. According to the achieved results, the space ties on-board GNSS satellites cannot, at present, substitute terrestrial ties in the computation of the ITRF. The study is completed by a series of synthetic simulations investigating the impact that substantial improvements in the volume and quality of SLR observations to GNSS satellites would have on the precision of the GNSS frame parameters.

  19. A Privacy Model for RFID Tag Ownership Transfer

    Directory of Open Access Journals (Sweden)

    Xingchun Yang

    2017-01-01

    Full Text Available The ownership of RFID tag is often transferred from one owner to another in its life cycle. To address the privacy problem caused by tag ownership transfer, we propose a tag privacy model which captures the adversary’s abilities to get secret information inside readers, to corrupt tags, to authenticate tags, and to observe tag ownership transfer processes. This model gives formal definitions for tag forward privacy and backward privacy and can be used to measure the privacy property of tag ownership transfer scheme. We also present a tag ownership transfer scheme, which is privacy-preserving under the proposed model and satisfies the other common security requirements, in addition to achieving better performance.

  20. On the occurrence and strength of multi-frequency multi-GNSS Ionospheric Scintillations in Indian sector during declining phase of solar cycle 24

    Science.gov (United States)

    Srinivasu, V. K. D.; Dashora, N.; Prasad, D. S. V. V. D.; Niranjan, K.; Gopi Krishna, S.

    2018-04-01

    This study presents unique perspectives of occurrence and strength of low latitude ionospheric scintillations on multiple signals of Global Navigation Satellite System (GNSS) and its frequency dependence using continuous observation records of 780 nights. A robust comparative analysis is performed using scintillation index, S4 and its variation during pre-midnight and post-midnight duration from a GNSS receiver located at Waltair (17.7°N, 83.3°E), India, covering period from July 2014 to August 2016. The results, generally exhibit the impact of declining phase of solar cycle 24 on occurrence and strength of scintillations, which, however, is evidently different over different frequencies transmitted from different GNSS systems. A deeper quantitative analysis uniquely reveals that apart from the solar cycle and seasonal effects, the number of visible satellites of a selected GNSS markedly affect the occurrence and also the strength. Processing scheme of adopting 6 hourly time windows of pre-midnight and post-midnight brought a novel result that the strength and occurrence of strong scintillations decrease with declining solar activity during pre-midnight hours but remarkably increase for moderate and weak scintillations during post-midnight. The physical processes that dominate the post-midnight equatorial ionosphere are invoked to explain such variations that are special during declining solar activity. Finally, inter-GNSS signal analysis in terms of the effect of strong, moderate and weak scintillations is presented with due consideration of number of satellite passes affected and frequency dependence of mean S4. The quantitative results of this study emphasize for the first time effect of low latitude scintillation on GNSS signals in Indian zone under changing background solar and seasonal conditions.

  1. Inner ear malformations in siblings presenting with vestibular ...

    African Journals Online (AJOL)

    Although the association between inner ear abnormalities and progressive sensorineural hearing loss is well known, vestibular signs or loss of vestibular function in these ... We provide a brief overview of the latest classification of these inner ear defects as well as a review of the literature pertaining to children with inner ear ...

  2. Engineering the ATLAS TAG Browser

    CERN Document Server

    Zhang, Q; The ATLAS collaboration

    2011-01-01

    ELSSI is a web-based event metadata (TAG) browser and event-level selection service for ATLAS. TAGs from all ATLAS physics and Monte Carlo data sets are routinely loaded into Oracle databases as an integral part of event processing. As data volumes increase, more and more sites are joining the distributed TAG data hosting topology. Meanwhile, TAG content and database schemata continue to evolve as new user requirements and additional sources of metadata emerge. All of this has posed many challenges to the development of ELSSI, which must support vast amounts of TAG data while source, content, geographic locations, and user query patterns may change over time. In this paper, we describe some of the challenges encountered in the process of developing ELSSI, and the software engineering strategies adopted to address those challenges. Approaches to management of access to data, browsing, data rendering, query building, query validation, execution, connection management, and communication with auxiliary services a...

  3. Engineering the ATLAS TAG Browser

    CERN Document Server

    Zhang, Q; The ATLAS collaboration

    2011-01-01

    ELSSI is a web-based event metadata (TAG) browser and event-level selection service for ATLAS. TAGs from all ATLAS physics and Monte Carlo data sets are routinely loaded into Oracle databases as an integral part of event processing. As data volumes increase, more and more sites are joining the distributed TAG data hosting topology[1]. Meanwhile, TAG content and database schemata continue to evolve as new user requirements and additional sources of metadata emerge. All of this has posed many challenges to the development of ELSSI, which must support vast amounts of TAG data while source, content, geographic locations, and user query patterns may change over time. In this paper, we describe some of the challenges encountered in the process of developing ELSSI, and the software engineering strategies adopted to address those challenges. Approaches to management of access to data, browsing, data rendering, query building, query validation, execution, connection management, and communication with auxiliary service...

  4. Nuclear studies with tagged photons

    International Nuclear Information System (INIS)

    Axel, P.

    1979-01-01

    First, the photon tagging technique will be described schematically, and a brief history of photon tagging will be given, including the 20 year development of this technique at Illinois. In the second part some typical operating conditions will be indicated for our tagged photon facility. The final section of this paper will illustrate some types of experiments by showing data obtained recently. (KBE) 891 KBE/KBE 892 ARA

  5. Human-Centered Implicit Tagging: Overview and Perspectives

    NARCIS (Netherlands)

    Soleymani, Mohammad; Pantic, Maja

    2012-01-01

    Tags are an effective form of metadata which help users to locate and browse multimedia content of interest. Tags can be generated by users (user-generated explicit tags), automatically from the content (content-based tags), or assigned automatically based on non-verbal behavioral reactions of users

  6. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus)

    Science.gov (United States)

    Johansson, L. Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2016-04-01

    Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3-5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested.

  7. The use of tags and tag clouds to discern credible content in online health message forums.

    Science.gov (United States)

    O'Grady, Laura; Wathen, C Nadine; Charnaw-Burger, Jill; Betel, Lisa; Shachak, Aviv; Luke, Robert; Hockema, Stephen; Jadad, Alejandro R

    2012-01-01

    Web sites with health-oriented content are potentially harmful if inaccurate or inappropriate medical information is used to make health-related decisions. Checklists, rating systems and guidelines have been developed to help people determine what is credible, but recent Internet technologies emphasize applications that are collaborative in nature, including tags and tag clouds, where site users 'tag' or label online content, each using their own labelling system. Concepts such as the date, reference, author, testimonial and quotations are considered predictors of credible content. An understanding of these descriptive tools, how they relate to the depiction of credibility and how this relates to overall efforts to label data in relation to the semantic web has yet to emerge. This study investigates how structured (pre-determined) and unstructured (user-generated) tags and tag clouds with a multiple word search feature are used by participants to assess credibility of messages posted in online message forums. The targeted respondents were those using web sites message forums for disease self-management. We also explored the relevancy of our findings to the labelling or indexing of data in the context of the semantic web. Diabetes was chosen as the content area in this study, since (a) this is a condition with increasing prevalence and (b) diabetics have been shown to actively use the Internet to manage their condition. From January to March 2010 participants were recruited using purposive sampling techniques. A screening instrument was used to determine eligibility. The study consisted of a demographic and computer usage survey, a series of usability tests and an interview. We tested participants (N=22) on two scenarios, each involving tasks that assessed their ability to tag content and search using a tag cloud that included six structured credibility terms (statistics, date, reference, author, testimonial and quotations). MORAE Usability software (version 3

  8. Low-cost precise measurement of oscillator frequency instability based on GNSS carrier observation

    Science.gov (United States)

    Kou, Yanhong; Jiao, Yue; Xu, Dongyang; Zhang, Meng; Liu, Ya; Li, Xiaohui

    2013-03-01

    Global navigation satellite systems (GNSS) receivers can be used in time and frequency metrology by exploiting stable GNSS time scales. This paper proposes a low-cost method for precise measurement of oscillator frequency instability using a single-frequency software GNSS receiver. The only required hardware is a common radio frequency (RF) data collection device driven by the oscillator under test (OUT). The receiver solves the oscillator frequency error in high time resolution using the carrier Doppler observation and the broadcast ephemeris from one of the available satellites employing the onboard reference atomic frequency standard that is more stable than the OUT. Considering the non-stable and non-Gaussian properties of the frequency error measurement, an unbiased finite impulse response (FIR) filter is employed to obtain robust estimation and filter out measurement noise. The effects of different filter orders and convolution lengths are further discussed. The frequency error of an oven controlled oscillator (OCXO) is measured using live Beidou-2/Compass signals. The results are compared with the synchronous measurement using a specialized phase comparator with the standard coordinated universal time (UTC) signal from the master clock H226 in the national time service center (NTSC) of China as its reference. The Allan deviation (ADEV) estimates using the two methods have a 99.9% correlation coefficient and a 0.6% mean relative difference over 1-1000 s intervals. The experiment demonstrates the effectiveness and high precision of the software receiver method.

  9. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies

    Science.gov (United States)

    Mendoza, Luciano; Bianchi, Clara; Fernández, Laura; Natali, María Paula; Meza, Amalia; Moirano, Juan

    2017-04-01

    Atmospheric water vapour has been acknowledged as an essential climate variable. Weather prediction and hazard assessment systems benefit from real-time observations, whereas long-term records contribute to climate studies. Nowadays, ground-based GNSS products have become widely employed, complementing satellite observations over the oceans. Although the past decade has seen a significant development of the GNSS infrastructure in Central and South America, its potential for atmospheric water vapour monitoring has not been fully exploited. With this in mind, we have performed a regional, seven-year long and homogeneous analysis, comprising 136 GNSS tracking stations, obtaining high-rate and continuous observations of column integrated water vapour and troposphere zenith total delay (Bianchi et al. 2016). As preliminary application for this data set, we have estimated local water vapour trends, their significance, and their relation with specific climate regimes. We have found evidence of drying at temperate regions in South America, at a rate of about 2% per decade, while a slow moistening of the troposphere over tropical regions is also weakly suggested by our results. Furthermore, we have assessed the regional performance of the empirical model GPT2w to blindly estimate troposphere delays. The model fairly reproduces the observed mean delays, including their annual and semi-annual variations. Nevertheless, a long-term evaluation has shown systematical biases, up to 20 mm, probably inherited form the underling atmospheric reanalysis. Additionally, the complete data set has been made openly available at a scientific repository (doi:10.1594/PANGAEA.858234). References: C. Bianchi, L. Mendoza, L. Fernandez, M. P. Natali, A. Meza, J. F. Moirano, Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies, Ann. Geophys., ISSN 0992-7689, eISSN 1432-0576, 34 (7), 623-639 (doi:10.5194/angeo-34-623-2016).

  10. Imaging of the postoperative middle ear

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Marc T. [Department of Medical Imaging, Fondation Ophtalmologique Adolphe de Rothschild, 25 rue Manin, 75940, Paris (France); Ayache, Denis [Department of Otorhinolaryngology, Fondation Ophtalmologique Adolphe de Rothschild, Paris (France)

    2004-03-01

    The aim of this article is twofold: (a) to present the principles and the indications of surgical treatment of middle ear pathologies; and (b) to review the imaging findings after middle ear surgery, including the normal postoperative aspects and imaging findings in patients presenting with unsatisfactory surgical results or with suspicion of postoperative complications. This review is intentionally restricted to the most common diseases involving the middle ear: chronic otitis media and otosclerosis. In these specific fields of interest, CT and MR imaging play a very important role in the postoperative follow-up and in the work-up of surgical failures and complications. (orig.)

  11. Proteomics and the Inner Ear

    Directory of Open Access Journals (Sweden)

    Isolde Thalmann

    2001-01-01

    Full Text Available The inner ear, one of the most complex organs, contains within its bony shell three sensory systems, the evolutionary oldest gravity receptor system, the three semicircular canals for the detection of angular acceleration, and the auditory system - unrivaled in sensitivity and frequency discrimination. All three systems are susceptible to a host of afflictions affecting the quality of life for all of us. In the first part of this review we present an introduction to the milestones of inner ear research to pave the way for understanding the complexities of a proteomics approach to the ear. Minute sensory structures, surrounded by large fluid spaces and a hard bony shell, pose extreme challenges to the ear researcher. In spite of these obstacles, a powerful preparatory technique was developed, whereby precisely defined microscopic tissue elements can be isolated and analyzed, while maintaining the biochemical state representative of the in vivo conditions. The second part consists of a discussion of proteomics as a tool in the elucidation of basic and pathologic mechanisms, diagnosis of disease, as well as treatment. Examples are the organ of Corti proteins OCP1 and OCP2, oncomodulin, a highly specific calcium-binding protein, and several disease entities, Meniere's disease, benign paroxysmal positional vertigo, and perilymphatic fistula.

  12. Inner ear barriers to nanomedicine-augmented drug delivery and imaging

    Directory of Open Access Journals (Sweden)

    Jing Zou

    2016-12-01

    Full Text Available There are several challenges to inner ear drug delivery and imaging due to the existence of tight biological barriers to the target structure and the dense bone surrounding it. Advances in imaging and nanomedicine may provide knowledge for overcoming the existing limitations to both the diagnosis and treatment of inner ear diseases. Novel techniques have improved the efficacy of drug delivery and targeting to the inner ear, as well as the quality and accuracy of imaging this structure. In this review, we will describe the pathways and biological barriers of the inner ear regarding drug delivery, the beneficial applications and limitations of the imaging techniques available for inner ear research, the behavior of engineered nanomaterials in inner ear applications, and future perspectives for nanomedicine-based inner ear imaging.

  13. Aberrant internal carotid artery in the middle ear

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Keun Tak; Kang, Hyun Koo [Dept. of Radiology, Seoul Veterans Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The knowledge about the aberrant internal carotid artery (ICA) in the middle ear is essential for clinicians, because a misdiagnosis of the aberrant ICA could have serious consequences such as excessive aural bleeding during a middle ear surgery. A 38-year-old woman presented with tinnitus and hearing difficulties of the left ear that had started 5 years ago. During otoscopy, an anteroinferior bluish mass was seen in the tympanic space. Computed tomography and magnetic resonance imaging demonstrated a left-side aberrant ICA with bony dehiscence of the carotid canal in the middle ear and a reduced diameter of the tympanic ICA. Herein we report a case of an aberrant ICA in the middle ear. We also review the literature regarding this important vascular anomaly of the temporal bone which may lead to disastrous surgical complications.

  14. Aberrant internal carotid artery in the middle ear

    International Nuclear Information System (INIS)

    Roh, Keun Tak; Kang, Hyun Koo

    2014-01-01

    The knowledge about the aberrant internal carotid artery (ICA) in the middle ear is essential for clinicians, because a misdiagnosis of the aberrant ICA could have serious consequences such as excessive aural bleeding during a middle ear surgery. A 38-year-old woman presented with tinnitus and hearing difficulties of the left ear that had started 5 years ago. During otoscopy, an anteroinferior bluish mass was seen in the tympanic space. Computed tomography and magnetic resonance imaging demonstrated a left-side aberrant ICA with bony dehiscence of the carotid canal in the middle ear and a reduced diameter of the tympanic ICA. Herein we report a case of an aberrant ICA in the middle ear. We also review the literature regarding this important vascular anomaly of the temporal bone which may lead to disastrous surgical complications.

  15. Scalable Faceted Ranking in Tagging Systems

    Science.gov (United States)

    Orlicki, José I.; Alvarez-Hamelin, J. Ignacio; Fierens, Pablo I.

    Nowadays, web collaborative tagging systems which allow users to upload, comment on and recommend contents, are growing. Such systems can be represented as graphs where nodes correspond to users and tagged-links to recommendations. In this paper we analyze the problem of computing a ranking of users with respect to a facet described as a set of tags. A straightforward solution is to compute a PageRank-like algorithm on a facet-related graph, but it is not feasible for online computation. We propose an alternative: (i) a ranking for each tag is computed offline on the basis of tag-related subgraphs; (ii) a faceted order is generated online by merging rankings corresponding to all the tags in the facet. Based on the graph analysis of YouTube and Flickr, we show that step (i) is scalable. We also present efficient algorithms for step (ii), which are evaluated by comparing their results with two gold standards.

  16. Exploring the Long Tail of Social Media Tags

    NARCIS (Netherlands)

    Kordumova, S.; van Gemert, J.; Snoek, C.G.M.; Tian, Q.; Sebe, N.; Qi, G.-J.; Huet, B.; Hong, R.; Liu, X.

    2016-01-01

    There are millions of users who tag multimedia content, generating a large vocabulary of tags. Some tags are frequent, while other tags are rarely used following a long tail distribution. For frequent tags, most of the multimedia methods that aim to automatically understand audio-visual content,

  17. GNSS Signal Tracking Performance Improvement for Highly Dynamic Receivers by Gyroscopic Mounting Crystal Oscillator.

    Science.gov (United States)

    Abedi, Maryam; Jin, Tian; Sun, Kewen

    2015-08-31

    In this paper, the efficiency of the gyroscopic mounting method is studied for a highly dynamic GNSS receiver's reference oscillator for reducing signal loss. Analyses are performed separately in two phases, atmospheric and upper atmospheric flights. Results show that the proposed mounting reduces signal loss, especially in parts of the trajectory where its probability is the highest. This reduction effect appears especially for crystal oscillators with a low elevation angle g-sensitivity vector. The gyroscopic mounting influences frequency deviation or jitter caused by dynamic loads on replica carrier and affects the frequency locked loop (FLL) as the dominant tracking loop in highly dynamic GNSS receivers. In terms of steady-state load, the proposed mounting mostly reduces the frequency deviation below the one-sigma threshold of FLL (1σ(FLL)). The mounting method can also reduce the frequency jitter caused by sinusoidal vibrations and reduces the probability of signal loss in parts of the trajectory where the other error sources accompany this vibration load. In the case of random vibration, which is the main disturbance source of FLL, gyroscopic mounting is even able to suppress the disturbances greater than the three-sigma threshold of FLL (3σ(FLL)). In this way, signal tracking performance can be improved by the gyroscopic mounting method for highly dynamic GNSS receivers.

  18. An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS

    International Nuclear Information System (INIS)

    Luo Yanbin; Ma Chengyan; Gan Yebing; Qian Min; Ye Tianchun

    2015-01-01

    An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise-canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further amplifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down-converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than −26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is −43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220 × 280 μm 2 . (paper)

  19. Flavour Tagging at LHCb

    CERN Multimedia

    Grabalosa Gandara, M

    2009-01-01

    To do precise CP violation measurements, the most possible accurate knowledge of the flavour at production of the reconstructed B meson is required. This poster summarizes the flavour tagging performances for the LHCb experiment. We use same side an opposite side algorithms to establish wheter the meson contained a b or a b\\bar quark. The final decision is obtained through a combination of several methods. The use of control channels, decays to a flavour specific final state, will allow to determine the wrong tag fraction \\omega (the probability of a tag to be wrong), which can be used as input for the determination of CKM unitary triangle angles.

  20. Merged Real Time GNSS Solutions for the READI System

    Science.gov (United States)

    Santillan, V. M.; Geng, J.

    2014-12-01

    Real-time measurements from increasingly dense Global Navigational Satellite Systems (GNSS) networks located throughout the western US offer a substantial, albeit largely untapped, contribution towards the mitigation of seismic and other natural hazards. Analyzed continuously in real-time, currently over 600 instruments blanket the San Andreas and Cascadia fault systems of the North American plate boundary and can provide on-the-fly characterization of transient ground displacements highly complementary to traditional seismic strong-motion monitoring. However, the utility of GNSS systems depends on their resolution, and merged solutions of two or more independent estimation strategies have been shown to offer lower scatter and higher resolution. Towards this end, independent real time GNSS solutions produced by Scripps Inst. of Oceanography and Central Washington University (PANGA) are now being formally combined in pursuit of NASA's Real-Time Earthquake Analysis for Disaster Mitigation (READI) positioning goals. CWU produces precise point positioning (PPP) solutions while SIO produces ambiguity resolved PPP solutions (PPP-AR). The PPP-AR solutions have a ~5 mm RMS scatter in the horizontal and ~10mm in the vertical, however PPP-AR solutions can take tens of minutes to re-converge in case of data gaps. The PPP solutions produced by CWU use pre-cleaned data in which biases are estimated as non-integer ambiguities prior to formal positioning with GIPSY 6.2 using a real time stream editor developed at CWU. These solutions show ~20mm RMS scatter in the horizontal and ~50mm RMS scatter in the vertical but re-converge within 2 min. or less following cycle-slips or data outages. We have implemented the formal combination of the CWU and SCRIPPS ENU displacements using the independent solutions as input measurements to a simple 3-element state Kalman filter plus white noise. We are now merging solutions from 90 stations, including 30 in Cascadia, 39 in the Bay Area, and 21

  1. External ear: An analysis of its uniqueness

    Directory of Open Access Journals (Sweden)

    Ruma Purkait

    2016-06-01

    Hence, the individuality of every ear has been confirmed which may find use in personal identification studies. The study is a step towards providing scientific support for admitting ear evidence in the Court of Law.

  2. Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: application to precise dynamic displacement detection

    Science.gov (United States)

    Paziewski, Jacek; Sieradzki, Rafal; Baryla, Radoslaw

    2018-03-01

    This paper provides the methodology and performance assessment of multi-GNSS signal processing for the detection of small-scale high-rate dynamic displacements. For this purpose, we used methods of relative (RTK) and absolute positioning (PPP), and a novel direct signal processing approach. The first two methods are recognized as providing accurate information on position in many navigation and surveying applications. The latter is an innovative method for dynamic displacement determination with the use of GNSS phase signal processing. This method is based on the developed functional model with parametrized epoch-wise topocentric relative coordinates derived from filtered GNSS observations. Current regular kinematic PPP positioning, as well as medium/long range RTK, may not offer coordinate estimates with subcentimeter precision. Thus, extended processing strategies of absolute and relative GNSS positioning have been developed and applied for displacement detection. The study also aimed to comparatively analyze the developed methods as well as to analyze the impact of combined GPS and BDS processing and the dependence of the results of the relative methods on the baseline length. All the methods were implemented with in-house developed software allowing for high-rate precise GNSS positioning and signal processing. The phase and pseudorange observations collected with a rate of 50 Hz during the field test served as the experiment’s data set. The displacements at the rover station were triggered in the horizontal plane using a device which was designed and constructed to ensure a periodic motion of GNSS antenna with an amplitude of ~3 cm and a frequency of ~4.5 Hz. Finally, a medium range RTK, PPP, and direct phase observation processing method demonstrated the capability of providing reliable and consistent results with the precision of the determined dynamic displacements at the millimeter level. Specifically, the research shows that the standard deviation of

  3. Building Tag Clouds in Perl and PHP

    CERN Document Server

    Bumgardner, Jim

    2006-01-01

    Tag clouds are everywhere on the web these days. First popularized by the web sites Flickr, Technorati, and del.icio.us, these amorphous clumps of words now appear on a slew of web sites as visual evidence of their membership in the elite corps of "Web 2.0." This PDF analyzes what is and isn't a tag cloud, offers design tips for using them effectively, and then goes on to show how to collect tags and display them in the tag cloud format. Scripts are provided in Perl and PHP. Yes, some have said tag clouds are a fad. But as you will see, tag clouds, when used properly, have real merits. More

  4. Methodologies for Improved Tag Cloud Generation with Clustering

    DEFF Research Database (Denmark)

    Leginus, Martin; Dolog, Peter; Lage, Ricardo Gomes

    2012-01-01

    Tag clouds are useful means for navigation in the social web systems. Usually the systems implement the tag cloud generation based on tag popularity which is not always the best method. In this paper we propose methodologies on how to combine clustering into the tag cloud generation to improve...... coverage and overlap. We study several clustering algorithms to generate tag clouds. We show that by extending cloud generation based on tag popularity with clustering we slightly improve coverage. We also show that if the cloud is generated by clustering independently of the tag popularity baseline we...

  5. [Diagnostic value of high-resolution computed tomography imaging in congenital inner ear malformations].

    Science.gov (United States)

    Sun, Xiaowei; Ding, Yuanping; Zhang, Jianji; Chen, Ying; Xu, Anting; Dou, Fenfen; Zhang, Zihe

    2007-02-01

    To observe the inner ear structure with volume rendering (VR) reconstruction and to evaluate the role of high-resolution computed tomography (HRCT) in congenital inner ear malformations. HRCT scanning was performed in 10 patients (20 ears) without ear disease (control group) and 7 patients (11 ears) with inner ear malformations (IEM group) and the original data was processed with VR reconstruction. The inner ear osseous labyrinth structure in the images generated by these techniques was observed respectively in the normal ears and malformation ears. The inner ear osseous labyrinth structure and the relationship was displayed clearly in VR imaging in the control group,meanwhile, characters and degree of malformed structure were also displayed clearly in the IEA group. Of seven patients (11 ears) with congenital inner ear malformations, the axial, MPR and VR images can display the site and degree in 9 ears. VR images were superior to the axial images in displaying the malformations in 2 ears with the small lateral semicircular canal malformations. The malformations included Mondini deformity (7 ears), vestibular and semicircular canal malformations (3 ears), vestibular aqueduct dilate (7 ears, of which 6 ears accompanied by other malformations) , the internal auditory canal malformation (2 ears, all accompanied by other malformations). HRCT can display the normal structure of bone inner ear through high quality VR reconstructions. VR images can also display the site and degree of the malformations three-dimensionally and intuitively. HRCT is valuable in diagnosing the inner ear malformation.

  6. Process-independent radiative-correction formula for single-tag and double-tag measurements of γγ reactions

    International Nuclear Information System (INIS)

    Ong, S.; Kessler, P.

    1988-01-01

    A simple and process-independent formula is given for radiative corrections in single-tag and double-tag measurements of γγ reactions. Its conditions of validity are that (i) in the γγ process itself all particles produced are detected and (ii) final-state particles, including the tagged electron(s), are measured with a good resolution in energy and momentum

  7. Coupled ears in lizards and crocodilians

    DEFF Research Database (Denmark)

    Carr, Catherine E; Christensen-Dalsgaard, Jakob; Bierman, Hilary

    2016-01-01

    Lizard ears are coupled across the pharynx, and are very directional. In consequence all auditory responses should be directional, without a requirement for computation of sound source location. Crocodilian ears are connected through sinuses, and thus less tightly coupled. Coupling may improve th...... range is reviewed in the light of current theories of sound localization....

  8. Detection of Traveling Ionospheric Disturbances (TIDs) from various man-made sources using Global Navigation Satellite System (GNSS)

    Science.gov (United States)

    Helmboldt, J.; Park, J.; von Frese, R. R. B.; Grejner-Brzezinska, D. A.

    2016-12-01

    Traveling ionospheric disturbance (TID) is generated by various sources and detectable by observing the spatial and temporal change of electron contents in the ionosphere. This study focused on detecting and analyzing TIDs generated by acoustic-gravity waves from man-made events including underground nuclear explosions (UNEs), mine collapses, mine blasts, and large chemical explosions (LCEs) using Global Navigation Satellite System (GNSS). In this study we selected different types of events for case study which covers two US and three North Korean UNEs, two large US mine collapses, three large US mine blasts, and a LCE in northern China and a second LCE at the Nevada Test Site. In most cases, we successfully detected the TIDs as array signatures from the multiple nearby GNSS stations. The array-based TID signatures from these studies were found to yield event-appropriate TID propagation speeds ranging from about a few hundred m/s to roughly a km/s. In addition, the event TID waveforms, and propagation angles and directions were established. The TID waveforms and the maximum angle between each event and the IPP of its TID with the longest travel distance from the source may help differentiate UNEs and LCEs, but the uneven distributions of the observing GNSS stations complicates these results. Thus, further analysis is required of the utility of the apertures of event signatures in the ionosphere for discriminating these events. In general, the results of this study show the potential utility of GNSS observations for detecting and mapping the ionospheric signatures of large-energy anthropological explosions and subsurface collapses.

  9. Discharge residence of TLD tagged fish

    International Nuclear Information System (INIS)

    Romberg, G.P.; Prepejchal, W.

    1974-01-01

    Although visual observations suggested that fish remained in the discharge for considerable periods, temperature-sensitive tags indicated the majority of fish spend less than 50 hr or 10 percent of the time at discharge temperatures. During 1974 a second fish tagging study was conducted, using temperature-sensitive tags to yield discharge residence times of Lake Michigan salmonids at Point Beach thermal discharge. Preliminary results revealed that many fish tag values were close to Unit I line indicating that calculated maximum discharge residence times for these fish will be nearly 100 percent of the elapsed time

  10. Using Interference to Block RFID Tags

    DEFF Research Database (Denmark)

    Krigslund, Rasmus; Popovski, Petar; Pedersen, Gert Frølund

    We propose a novel method to block RFID tags from responding, using intentional interference. We focus on the experimental evaluation, where we impose interference on the download and uplink, respectively. The results are positive, where modulated CCI shows most effective to block a tag.......We propose a novel method to block RFID tags from responding, using intentional interference. We focus on the experimental evaluation, where we impose interference on the download and uplink, respectively. The results are positive, where modulated CCI shows most effective to block a tag....

  11. Clinical review of inner ear malformation

    International Nuclear Information System (INIS)

    Kokai, Hiromi; Oohashi, Masami; Ishikawa, Kazuo; Harada, Kouji; Hiratsuka, Hitoshi; Ogasawara, Makoto; Miyashita, Souji; Terayama, Yoshihiko

    2003-01-01

    We had 126 patients with inner ear malformation diagnosed with temporal bone computed tomography (CT) scans at Azabu Triology Hospital between 1996 and 2002. We classified cases of inner ear malformation according to Jackler et al. The incidence of inner ear malformation in our series was as follows; labyrinthine anomalies 61% (isolated lateral semicircular canal dysplasia 56%, compound semicircular canal dysplasia 4%, semicircular canal aplasia 1%), cochlear anomalies 24%, enlargement of the vestibular aqueduct 12%, narrow internal auditory canal 2%, complete labyrinthine aplasia 1%, enlargement of the cochlear aqueduct 0%. The most frequent anomaly was isolated lateral semicircular canal dysplasia. We did not detect any significant clinical features in this anomaly. There were 2 patients with cochlear anomalies who had past histories of meningitis. Some patients with enlargement of the vestibular aqueduct had frequent attacks of fluctuating hearing. Clinically it is important to detect patients with inner ear malformation such as cochlear anomalies and enlargement of the vestibular aqueduct usually accompanied by congenital sensorineural hearing loss. For patients with congenital sensorineural hearing loss, we recommend temporal bone CT scan. (author)

  12. The effect of solar radio bursts on the GNSS radio occultation signals

    Science.gov (United States)

    Yue, Xinan; Schreiner, William S.; Kuo, Ying-Hwa; Zhao, Biqiang; Wan, Weixing; Ren, Zhipeng; Liu, Libo; Wei, Yong; Lei, Jiuhou; Solomon, Stan; Rocken, Christian

    2013-09-01

    radio burst (SRB) is the radio wave emission after a solar flare, covering a broad frequency range, originated from the Sun's atmosphere. During the SRB occurrence, some specific frequency radio wave could interfere with the Global Navigation Satellite System (GNSS) signals and therefore disturb the received signals. In this study, the low Earth orbit- (LEO-) based high-resolution GNSS radio occultation (RO) signals from multiple satellites (COSMIC, CHAMP, GRACE, SAC-C, Metop-A, and TerraSAR-X) processed in University Corporation for Atmospheric Research (UCAR) were first used to evaluate the effect of SRB on the RO technique. The radio solar telescope network (RSTN) observed radio flux was used to represent SRB occurrence. An extreme case during 6 December 2006 and statistical analysis during April 2006 to September 2012 were studied. The LEO RO signals show frequent loss of lock (LOL), simultaneous decrease on L1 and L2 signal-to-noise ratio (SNR) globally during daytime, small-scale perturbations of SNR, and decreased successful retrieval percentage (SRP) for both ionospheric and atmospheric occultations during SRB occurrence. A potential harmonic band interference was identified. Either decreased data volume or data quality will influence weather prediction, climate study, and space weather monitoring by using RO data during SRB time. Statistically, the SRP of ionospheric and atmospheric occultation retrieval shows ~4% and ~13% decrease, respectively, while the SNR of L1 and L2 show ~5.7% and ~11.7% decrease, respectively. A threshold value of ~1807 SFU of 1415 MHz frequency, which can result in observable GNSS SNR decrease, was derived based on our statistical analysis.

  13. Loose and Tight GNSS/INS Integrations: Comparison of Performance Assessed in Real Urban Scenarios.

    Science.gov (United States)

    Falco, Gianluca; Pini, Marco; Marucco, Gianluca

    2017-01-29

    Global Navigation Satellite Systems (GNSSs) remain the principal mean of positioning in many applications and systems, but in several types of environment, the performance of standalone receivers is degraded. Although many works show the benefits of the integration between GNSS and Inertial Navigation Systems (INSs), tightly-coupled architectures are mainly implemented in professional devices and are based on high-grade Inertial Measurement Units (IMUs). This paper investigates the performance improvements enabled by the tight integration, using low-cost sensors and a mass-market GNSS receiver. Performance is assessed through a series of tests carried out in real urban scenarios and is compared against commercial modules, operating in standalone mode or featuring loosely-coupled integrations. The paper describes the developed tight-integration algorithms with a terse mathematical model and assesses their efficacy from a practical perspective.

  14. Satellite Tags- Guam/CNMI EEZ

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tagging was implemented in 2013. Satellite tagging is conducted using a Dan Inject air rifle and deployment arrows designed by Wildlife Computers. Two...

  15. Alterations in the Contra lateral Ear in Chronic Otitis Media

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Damghani

    2013-03-01

    Full Text Available Introduction: Chronic otitis media (COM, a persistent and durable inflammation and infection of the middle ear, is a common disorder. Alterations in the contralateral ear in sufferers have been observed in recent years. Because only a few studies have been reported in this area, we performed this study in order to assess alterations in the contralateral ear of patients with COM.   Materials and Methods: Cross-sectional and descriptive methods were used in 100 patients with COM who were selected for surgical treatment and admitted to hospital. An information form was completed for all patients including demographic data, medical history of otoscopy and paraclinical examinations such as pure tone audiometry (PTA, tympanometry, Schuller radiography, and high resolution computed tomography (HRCT. All data were processed using SPSS (version 18 software and descriptive statistical tests.   Results: According to otoscopy, PTA, tympanometry and graphical analysis, 60% of patients experienced disorders of the contralateral ear. Otoscopy analysis showed 54% of patients had a disorder of the contralateral ear, with the most common disorder being perforation of the ear drum. PTA showed a 48% incidence of contralateral ear problems (85% conductive hearing impairment; 12.5% sensorineural hearing impairment; 1.2% mixed. A total of 73.2% of patients with conductive hearing loss had a problem across all frequencies, while half of the patients with sensorineural hearing impairment had problems at frequencies greater than 1000 Hz. According to tympanometry, 38% of patients had problem in the contralateral ear. HRCT and Schuller graphical analyses indicated 31.5% and 36% occurrence of contralateral ear disorders, respectively.   Conclusion:  More than 50% of patients with COM in one ear have a chance of also presenting with the disease in the other ear. Outcomes of this study and previous studies have shown that COM should not be perceived as a disease limited

  16. THE IDENTIFICATION OF EAR PRINTS USING COMPLEX GABOR FILTERS

    Directory of Open Access Journals (Sweden)

    Alexander A S Gunawan

    2012-05-01

    Full Text Available Biometrics is a method used to recognize humans based on one or a few characteristicsphysical or behavioral traits that are unique such as DNA, face, fingerprints, gait, iris, palm, retina,signature and sound. Although the facts that ear prints are found in 15% of crime scenes, ear printsresearch has been very limited since the success of fingerprints modality. The advantage of the useof ear prints, as forensic evidence, are it relatively unchanged due to increased age and have fewervariations than faces with expression variation and orientation. In this research, complex Gaborfilters is used to extract the ear prints feature based on texture segmentation. Principal componentanalysis (PCA is then used for dimensionality-reduction where variation in the dataset ispreserved. The classification is done in a lower dimension space defined by principal componentsbased on Euclidean distance. In experiments, it is used left and right ear prints of ten respondentsand in average, the successful recognition rate is 78%. Based on the experiment results, it isconcluded that ear prints is suitable as forensic evidence mainly when combined with otherbiometric modalities.Keywords: Biometrics; Ear prints; Complex Gabor filters; Principal component analysis;Euclidean distance

  17. Short communication: QTL mapping for ear tip-barrenness in maize

    Energy Technology Data Exchange (ETDEWEB)

    Ding, J.; Ma, J.; Chen, J.; Ai, T.; Li, Z.; Tian, Z.; Wu, S.; Chen, W.; Wu, J.

    2016-11-01

    Barren tip on corn ear is an important agronomic trait in maize, which is highly associated with grain yield. Understanding the genetic basis of tip-barrenness may help to reduce the ear tip-barrenness in breeding programs. In this study, ear tip-barrenness was evaluated in two environments in a F2:3 population, and it showed significant genotypic variation for ear tip-barrenness in both environments. Using mixed-model composite interval mapping method, three additive effects quantitative trait loci (QTL) for ear tip-barrenness were mapped on chromosomes 2, 3 and 6, respectively. They explained 16.6% of the phenotypic variation, and no significant QTL × Environment interactions and digenic interactions were detected. The results indicated that additive effect was the main genetic basis for ear tip-barrenness in maize. This is the first report of QTL mapped for ear tip-barrenness in maize. (Author)

  18. 40 CFR 156.140 - Identification of container types.

    Science.gov (United States)

    2010-07-01

    ....” (ii) “Once cleaned, some agricultural plastic pesticide containers can be taken to a container... example, this statement could be “Once cleaned, some agricultural plastic pesticide containers can be...) Pet collars or animal ear tags, such as cattle ear tags. (ix) One-time use semiochemical dispersion...

  19. Method and apparatus for manufacturing gas tags

    International Nuclear Information System (INIS)

    Gross, K.C.; Laug, M.T.

    1996-01-01

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs

  20. Bacteriology of chronic discharging ears in Port Harcourt, Nigeria ...

    African Journals Online (AJOL)

    Methods: Ear swabs of discharging ears aseptically collected from 102 patients of various age groups attending Ear, Nose, and Throat out-patient clinic at University of Port Harcourt Teaching Hospital were cultured for bacterial agents using blood agar, chocolate agar and MacConkey agar. Culture plates were incubated ...

  1. Near-real-time regional troposphere models for the GNSS precise point positioning technique

    International Nuclear Information System (INIS)

    Hadas, T; Kaplon, J; Bosy, J; Sierny, J; Wilgan, K

    2013-01-01

    The GNSS precise point positioning (PPP) technique requires high quality product (orbits and clocks) application, since their error directly affects the quality of positioning. For real-time purposes it is possible to utilize ultra-rapid precise orbits and clocks which are disseminated through the Internet. In order to eliminate as many unknown parameters as possible, one may introduce external information on zenith troposphere delay (ZTD). It is desirable that the a priori model is accurate and reliable, especially for real-time application. One of the open problems in GNSS positioning is troposphere delay modelling on the basis of ground meteorological observations. Institute of Geodesy and Geoinformatics of Wroclaw University of Environmental and Life Sciences (IGG WUELS) has developed two independent regional troposphere models for the territory of Poland. The first one is estimated in near-real-time regime using GNSS data from a Polish ground-based augmentation system named ASG-EUPOS established by Polish Head Office of Geodesy and Cartography (GUGiK) in 2008. The second one is based on meteorological parameters (temperature, pressure and humidity) gathered from various meteorological networks operating over the area of Poland and surrounding countries. This paper describes the methodology of both model calculation and verification. It also presents results of applying various ZTD models into kinematic PPP in the post-processing mode using Bernese GPS Software. Positioning results were used to assess the quality of the developed models during changing weather conditions. Finally, the impact of model application to simulated real-time PPP on precision, accuracy and convergence time is discussed. (paper)

  2. Vitamin D receptor deficiency impairs inner ear development in zebrafish

    International Nuclear Information System (INIS)

    Kwon, Hye-Joo

    2016-01-01

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effect on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. - Highlights: • VDR signaling is involved in ear development. • Knockdown of vdrb causes inner ear malformations during embryogenesis. • Knockdown of vdrb affects otic placode induction. • Knockdown of vdrb reduces the number of sensory hair cells in the inner ear. • Knockdown of vdrb disrupts balance and motor coordination.

  3. A suite of standard post-tagging evaluation metrics can help assess tag retention for field-based fish telemetry research

    Science.gov (United States)

    Gerber, Kayla M.; Mather, Martha E.; Smith, Joseph M.

    2017-01-01

    Telemetry can inform many scientific and research questions if a context exists for integrating individual studies into the larger body of literature. Creating cumulative distributions of post-tagging evaluation metrics would allow individual researchers to relate their telemetry data to other studies. Widespread reporting of standard metrics is a precursor to the calculation of benchmarks for these distributions (e.g., mean, SD, 95% CI). Here we illustrate five types of standard post-tagging evaluation metrics using acoustically tagged Blue Catfish (Ictalurus furcatus) released into a Kansas reservoir. These metrics included: (1) percent of tagged fish detected overall, (2) percent of tagged fish detected daily using abacus plot data, (3) average number of (and percent of available) receiver sites visited, (4) date of last movement between receiver sites (and percent of tagged fish moving during that time period), and (5) number (and percent) of fish that egressed through exit gates. These metrics were calculated for one to three time periods: early (of the study (5 months). Over three-quarters of our tagged fish were detected early (85%) and at the end (85%) of the study. Using abacus plot data, all tagged fish (100%) were detected at least one day and 96% were detected for > 5 days early in the study. On average, tagged Blue Catfish visited 9 (50%) and 13 (72%) of 18 within-reservoir receivers early and at the end of the study, respectively. At the end of the study, 73% of all tagged fish were detected moving between receivers. Creating statistical benchmarks for individual metrics can provide useful reference points. In addition, combining multiple metrics can inform ecology and research design. Consequently, individual researchers and the field of telemetry research can benefit from widespread, detailed, and standard reporting of post-tagging detection metrics.

  4. High-Precision and Low Latency RT-GNSS Processed Data for Diverse Geophysical and Natural Hazard Communities.

    Science.gov (United States)

    Mencin, David; Hodgkinson, Kathleen; Sievers, Charlie; David, Phillips; Charles, Meertens; Glen, Mattioli

    2017-04-01

    UNAVCO has been providing infrastructure and support for solid-earth sciences and earthquake natural hazards for the past two decades. Recent advances in GNSS technology and data processing are now providing position solutions with centimeter-level precision at high-rate (>1 Hz) and low latency (i.e. the time required for data to arrive for analysis, in this case less than 1 second). These data have the potential to improve our understanding in diverse areas of geophysics including properties of seismic, volcanic, magmatic and tsunami sources, and thus profoundly transform rapid event characterization and warning. Scientific and operational applications also include glacier and ice sheet motions; tropospheric modeling; and space weather. These areas of geophysics represent a spectrum of research fields, including geodesy, seismology, tropospheric weather, space weather and natural hazards. Processed Real-Time GNSS (RT-GNSS) data will require formats and standards that allow this broad and diverse community to use these data and associated meta-data in existing research infrastructure. These advances have critically highlighted the difficulties associated with merging data and metadata between scientific disciplines. Even seemingly very closely related fields such as geodesy and seismology, which both have rich histories of handling large volumes of data and metadata, do not go together well in any automated way. Community analysis strategies, or lack thereof, such as treatment of error prove difficult to address and are reflected in the data and metadata. In addition, these communities have differing security, accessibility and reliability requirements. We propose some solutions to the particular problem of making RT-GNSS processed solution data and metadata accessible to multiply scientific and natural hazard communities. Importantly, we discuss the roadblocks encounter and solved and those that remain to be addressed.

  5. Inclusive Flavour Tagging Algorithm

    International Nuclear Information System (INIS)

    Likhomanenko, Tatiana; Derkach, Denis; Rogozhnikov, Alex

    2016-01-01

    Identifying the flavour of neutral B mesons production is one of the most important components needed in the study of time-dependent CP violation. The harsh environment of the Large Hadron Collider makes it particularly hard to succeed in this task. We present an inclusive flavour-tagging algorithm as an upgrade of the algorithms currently used by the LHCb experiment. Specifically, a probabilistic model which efficiently combines information from reconstructed vertices and tracks using machine learning is proposed. The algorithm does not use information about underlying physics process. It reduces the dependence on the performance of lower level identification capacities and thus increases the overall performance. The proposed inclusive flavour-tagging algorithm is applicable to tag the flavour of B mesons in any proton-proton experiment. (paper)

  6. Fgf8 and Fgf3 are required for zebrafish ear placode induction, maintenance and inner ear patterning.

    Science.gov (United States)

    Léger, Sophie; Brand, Michael

    2002-11-01

    The vertebrate inner ear develops from initially 'simple' ectodermal placode and vesicle stages into the complex three-dimensional structure which is necessary for the senses of hearing and equilibrium. Although the main morphological events in vertebrate inner ear development are known, the genetic mechanisms controlling them are scarcely understood. Previous studies have suggested that the otic placode is induced by signals from the chordamesoderm and the hindbrain, notably by fibroblast growth factors (Fgfs) and Wnt proteins. Here we study the role of Fgf8 as a bona-fide hindbrain-derived signal that acts in conjunction with Fgf3 during placode induction, maintenance and otic vesicle patterning. Acerebellar (ace) is a mutant in the fgf8 gene that results in a non-functional Fgf8 product. Homozygous mutants for acerebellar (ace) have smaller ears that typically have only one otolith, abnormal semi-circular canals, and behavioral defects. Using gene expression markers for the otic placode, we find that ace/fgf8 and Fgf-signaling are required for normal otic placode formation and maintenance. Conversely, misexpression of fgf8 or Fgf8-coated beads implanted into the vicinity of the otic placode can increase ear size and marker gene expression, although competence to respond to the induction appears restricted. Cell transplantation experiments and expression analysis suggest that Fgf8 is required in the hindbrain in the rhombomere 4-6 area to restore normal placode development in ace mutants, in close neighbourhood to the forming placode, but not in mesodermal tissues. Fgf3 and Fgf8 are expressed in hindbrain rhombomere 4 during the stages that are critical for placode induction. Joint inactivation of Fgf3 and Fgf8 by mutation or antisense-morpholino injection causes failure of placode formation and results in ear-less embryos, mimicking the phenotype we observe after pharmacological inhibition of Fgf-signaling. Fgf8 and Fgf3 together therefore act during induction

  7. Morphological Variations and Biometrics of Ear: An Aid to Personal Identification.

    Science.gov (United States)

    Verma, Pradhuman; Sandhu, Harpreet Kaur; Verma, Kanika Gupta; Goyal, Sharry; Sudan, Madhu; Ladgotra, Amit

    2016-05-01

    The morphological characteristics and dimensions of external ear vary in different human ethnic races which can be utilized in forensics for personal identification of living or deceased. To determine uniqueness of morphological and biometric variations of both ears for individualization among North East (NE) and North West (NW) subpopulation of India. The study was conducted on randomly selected 80 students, 40 from each subgroup. Nine ear parameters were recorded twice using digital Vernier's caliper by single investigator and two indices (Ear Index and Lobule Index) were calculated for both the ears. Morphological ear shapes and lobule attachment were also noted. Pearson's coefficient correlation test was performed on cross-tabulations to evaluate significant relationship between different variables. Of the total 35% free and 65% attached ear lobes were noted in both population groups. Oval ear shape was most commonly noted followed by triangular, rectangular and round in both populations. On comparing anthropometric measurements of ears in two populations it was found that except the tragus length and lobule index all other values were noted more in NW population. No statistical difference was found in ear and lobular indices of males and females although the left ear index and lobule index were found to be higher than right in both populations except in NW females where right lobule index was recorded more than left. The results obtained can be used in anthropological and forensic sciences for the inclusion and exclusion of persons for identification on the basis of ear variations.

  8. Combination of High Rate, Real-time GNSS and Accelerometer Observations - Preliminary Results Using a Shake Table and Historic Earthquake Events.

    Science.gov (United States)

    Jackson, Michael; Passmore, Paul; Zimakov, Leonid; Raczka, Jared

    2014-05-01

    One of the fundamental requirements of an Earthquake Early Warning (EEW) system (and other mission critical applications) is to quickly detect and process the information from the strong motion event, i.e. event detection and location, magnitude estimation, and the peak ground motion estimation at the defined targeted site, thus allowing the civil protection authorities to provide pre-programmed emergency response actions: Slow down or stop rapid transit trains and high-speed trains; shutoff of gas pipelines and chemical facilities; stop elevators at the nearest floor; send alarms to hospitals, schools and other civil institutions. An important question associated with the EEW system is: can we measure displacements in real time with sufficient accuracy? Scientific GNSS networks are moving towards a model of real-time data acquisition, storage integrity, and real-time position and displacement calculations. This new paradigm allows the integration of real-time, high-rate GNSS displacement information with acceleration and velocity data to create very high-rate displacement records. The mating of these two instruments allows the creation of a new, very high-rate (200 Hz) displacement observable that has the full-scale displacement characteristics of GNSS and high-precision dynamic motions of seismic technologies. It is envisioned that these new observables can be used for earthquake early warning studies and other mission critical applications, such as volcano monitoring, building, bridge and dam monitoring systems. REF TEK a Division of Trimble has developed the integrated GNSS/Accelerograph system, model 160-09SG, which consists of REF TEK's fourth generation electronics, a 147-01 high-resolution ANSS Class A accelerometer, and Trimble GNSS receiver and antenna capable of real time, on board Precise Point Positioning (PPP) techniques with satellite clock and orbit corrections delivered to the receiver directly via L-band satellite communications. The test we

  9. Surface Acoustic Wave Tag-Based Coherence Multiplexing

    Science.gov (United States)

    Youngquist, Robert C. (Inventor); Malocha, Donald (Inventor); Saldanha, Nancy (Inventor)

    2016-01-01

    A surface acoustic wave (SAW)-based coherence multiplexing system includes SAW tags each including a SAW transducer, a first SAW reflector positioned a first distance from the SAW transducer and a second SAW reflector positioned a second distance from the SAW transducer. A transceiver including a wireless transmitter has a signal source providing a source signal and circuitry for transmitting interrogation pulses including a first and a second interrogation pulse toward the SAW tags, and a wireless receiver for receiving and processing response signals from the SAW tags. The receiver receives scrambled signals including a convolution of the wideband interrogation pulses with response signals from the SAW tags and includes a computing device which implements an algorithm that correlates the interrogation pulses or the source signal before transmitting against the scrambled signals to generate tag responses for each of the SAW tags.

  10. Group Discovery in a CollaborativeTagging System

    OpenAIRE

    Chen, Zijian

    2007-01-01

    Tagging refers to the process of adding metadata to describe things by usingone or several words. Collaborative Tagging systems, which allow different webusers to tag web content like weblogs, pictures, and bookmarks and so on, haverecently gained great popularity on internet. There are already a greatvariety of debates on internet of the advantages and disadvantages ofcollaborative tagging systems from the aspect of information organizing. Inthis paper, we primarily focus on a collaborative ...

  11. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    Directory of Open Access Journals (Sweden)

    Marques Haroldo Antonio

    2018-01-01

    Full Text Available GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP, where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  12. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    Science.gov (United States)

    Marques, Haroldo Antonio; Marques, Heloísa Alves Silva; Aquino, Marcio; Veettil, Sreeja Vadakke; Monico, João Francisco Galera

    2018-02-01

    GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS) with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP), where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  13. Analysis of tag-position bias in MPSS technology

    Directory of Open Access Journals (Sweden)

    Rattray Magnus

    2006-04-01

    Full Text Available Abstract Background Massively Parallel Signature Sequencing (MPSS technology was recently developed as a high-throughput technology for measuring the concentration of mRNA transcripts in a sample. It has previously been observed that the position of the signature tag in a transcript (distance from 3' end can affect the measurement, but this effect has not been studied in detail. Results We quantify the effect of tag-position bias in Classic and Signature MPSS technology using published data from Arabidopsis, rice and human. We investigate the relationship between measured concentration and tag-position using nonlinear regression methods. The observed relationship is shown to be broadly consistent across different data sets. We find that there exist different and significant biases in both Classic and Signature MPSS data. For Classic MPSS data, genes with tag-position in the middle-range have highest measured abundance on average while genes with tag-position in the high-range, far from the 3' end, show a significant decrease. For Signature MPSS data, high-range tag-position genes tend to have a flatter relationship between tag-position and measured abundance. Thus, our results confirm that the Signature MPSS method fixes a substantial problem with the Classic MPSS method. For both Classic and Signature MPSS data there is a positive correlation between measured abundance and tag-position for low-range tag-position genes. Compared with the effects of mRNA length and number of exons, tag-position bias seems to be more significant in Arabadopsis. The tag-position bias is reflected both in the measured abundance of genes with a significant tag count and in the proportion of unexpressed genes identified. Conclusion Tag-position bias should be taken into consideration when measuring mRNA transcript abundance using MPSS technology, both in Classic and Signature MPSS methods.

  14. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (hourly files)...

  15. Human ear detection in the thermal infrared spectrum

    Science.gov (United States)

    Abaza, Ayman; Bourlai, Thirimachos

    2012-06-01

    In this paper the problem of human ear detection in the thermal infrared (IR) spectrum is studied in order to illustrate the advantages and limitations of the most important steps of ear-based biometrics that can operate in day and night time environments. The main contributions of this work are two-fold: First, a dual-band database is assembled that consists of visible and thermal profile face images. The thermal data was collected using a high definition middle-wave infrared (3-5 microns) camera that is capable of acquiring thermal imprints of human skin. Second, a fully automated, thermal imaging based ear detection method is developed for real-time segmentation of human ears in either day or night time environments. The proposed method is based on Haar features forming a cascaded AdaBoost classifier (our modified version of the original Viola-Jones approach1 that was designed to be applied mainly in visible band images). The main advantage of the proposed method, applied on our profile face image data set collected in the thermal-band, is that it is designed to reduce the learning time required by the original Viola-Jones method from several weeks to several hours. Unlike other approaches reported in the literature, which have been tested but not designed to operate in the thermal band, our method yields a high detection accuracy that reaches ~ 91.5%. Further analysis on our data set yielded that: (a) photometric normalization techniques do not directly improve ear detection performance. However, when using a certain photometric normalization technique (CLAHE) on falsely detected images, the detection rate improved by ~ 4%; (b) the high detection accuracy of our method did not degrade when we lowered down the original spatial resolution of thermal ear images. For example, even after using one third of the original spatial resolution (i.e. ~ 20% of the original computational time) of the thermal profile face images, the high ear detection accuracy of our method

  16. Speech understanding and directional hearing for hearing-impaired subjects with in-the-ear and behind-the-ear hearing aids

    NARCIS (Netherlands)

    Leeuw, A. R.; Dreschler, W. A.

    1987-01-01

    With respect to acoustical properties, in-the-ear (ITE) aids should give better understanding and directional hearing than behind-the-ear (BTE) aids. Also hearing-impaired subjects often prefer ITEs. A study was performed to assess objectively the improvement in speech understanding and directional

  17. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Science.gov (United States)

    Zhang, Sibo; Calvet, Jean-Christophe; Darrozes, José; Roussel, Nicolas; Frappart, Frédéric; Bouhours, Gilles

    2018-03-01

    This work assesses the estimation of surface volumetric soil moisture (VSM) using the global navigation satellite system interferometric reflectometry (GNSS-IR) technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m). The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere) land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 = 0.86 and RMSE = 0.04 m3 m-3). It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  18. Low Computational Signal Acquisition for GNSS Receivers Using a Resampling Strategy and Variable Circular Correlation Time

    Directory of Open Access Journals (Sweden)

    Yeqing Zhang

    2018-02-01

    Full Text Available For the objective of essentially decreasing computational complexity and time consumption of signal acquisition, this paper explores a resampling strategy and variable circular correlation time strategy specific to broadband multi-frequency GNSS receivers. In broadband GNSS receivers, the resampling strategy is established to work on conventional acquisition algorithms by resampling the main lobe of received broadband signals with a much lower frequency. Variable circular correlation time is designed to adapt to different signal strength conditions and thereby increase the operation flexibility of GNSS signal acquisition. The acquisition threshold is defined as the ratio of the highest and second highest correlation results in the search space of carrier frequency and code phase. Moreover, computational complexity of signal acquisition is formulated by amounts of multiplication and summation operations in the acquisition process. Comparative experiments and performance analysis are conducted on four sets of real GPS L2C signals with different sampling frequencies. The results indicate that the resampling strategy can effectively decrease computation and time cost by nearly 90–94% with just slight loss of acquisition sensitivity. With circular correlation time varying from 10 ms to 20 ms, the time cost of signal acquisition has increased by about 2.7–5.6% per millisecond, with most satellites acquired successfully.

  19. Low Computational Signal Acquisition for GNSS Receivers Using a Resampling Strategy and Variable Circular Correlation Time

    Science.gov (United States)

    Zhang, Yeqing; Wang, Meiling; Li, Yafeng

    2018-01-01

    For the objective of essentially decreasing computational complexity and time consumption of signal acquisition, this paper explores a resampling strategy and variable circular correlation time strategy specific to broadband multi-frequency GNSS receivers. In broadband GNSS receivers, the resampling strategy is established to work on conventional acquisition algorithms by resampling the main lobe of received broadband signals with a much lower frequency. Variable circular correlation time is designed to adapt to different signal strength conditions and thereby increase the operation flexibility of GNSS signal acquisition. The acquisition threshold is defined as the ratio of the highest and second highest correlation results in the search space of carrier frequency and code phase. Moreover, computational complexity of signal acquisition is formulated by amounts of multiplication and summation operations in the acquisition process. Comparative experiments and performance analysis are conducted on four sets of real GPS L2C signals with different sampling frequencies. The results indicate that the resampling strategy can effectively decrease computation and time cost by nearly 90–94% with just slight loss of acquisition sensitivity. With circular correlation time varying from 10 ms to 20 ms, the time cost of signal acquisition has increased by about 2.7–5.6% per millisecond, with most satellites acquired successfully. PMID:29495301

  20. Mozart ear: diagnosis, treatment, and literature review.

    Science.gov (United States)

    Yamashita, Ken; Yotsuyanagi, Takatoshi; Saito, Tamotsu; Isogai, Noritaka; Mori, Hiromasa; Itani, Yoshihito

    2011-11-01

    Mozart ear is a congenital auricular deformity, which is mainly characterized by a bulging appearance of the anterosuperior portion of the auricle, a convexly protruded cavum conchae, and a slit-like narrowing of the orifice of the external auditory meatus. It is said to be uncommon, and because no one has yet fully described neither the disease nor the treatment, the concept of Mozart ear has not been unified. This report describes a case of a 13-year-old girl presented with an unusual congenital deformity which showed the features of Mozart ear. It is an extremely rare deformity that only about 4 clinical cases have been reported in medical literature thereby a treatment method has not been fully discussed. For surgical correction of our cases, we excised deformed conchal cartilage, turned it over, regrafted, and maintained a cosmetically positive result. We also reviewed and described the origin, current concept, and treatment method of Mozart ear.

  1. Ear infection - acute

    Science.gov (United States)

    ... to the back of the throat. Normally, this tube drains fluid that is made in the middle ear. ... allows air to get in so fluids can drain more easily. Usually the tubes fall out by themselves. Those that don't ...

  2. A Methodology to Assess Ionospheric Models for GNSS

    Science.gov (United States)

    Rovira-Garcia, Adria; Juan, José Miguel; Sanz, Jaume; González-Casado, Guillermo; Ibánez, Deimos

    2015-04-01

    Testing the accuracy of the ionospheric models used in the Global Navigation Satellite System (GNSS) is a long-standing issue. It is still a challenging problem due to the lack of accurate enough slant ionospheric determinations to be used as a reference. The present study proposes a methodology to assess any ionospheric model used in satellite-based applications and, in particular, GNSS ionospheric models. The methodology complements other analysis comparing the navigation based on different models to correct the code and carrier-phase observations. Specifically, the following ionospheric models are assessed: the operational models broadcast in the Global Positioning System (GPS), Galileo and the European Geostationary Navigation Overlay System (EGNOS), the post-process Global Ionospheric Maps (GIMs) from different analysis centers belonging to the International GNSS Service (IGS) and, finally, a new GIM computed by the gAGE/UPC research group. The methodology is based in the comparison between the predictions of the ionospheric model with actual unambiguous carrier-phase measurements from a global distribution of permanent receivers. The differences shall be separated into the hardware delays (a receiver constant plus a satellite constant) per data interval, e.g., a day. The condition that these Differential Code Biases (DCBs) are commonly shared throughout the world-wide network of receivers and satellites provides a global character to the assessment. This approach generalizes simple tests based on double differenced Slant Total Electron Contents (STECs) between pairs of satellites and receivers on a much local scale. The present study has been conducted during the entire 2014, i.e., the last Solar Maximum. The seasonal and latitudinal structures of the results clearly reflect the different strategies used by the different models. On one hand, ionospheric model corrections based on a grid (IGS-GIMs or EGNOS) are shown to be several times better than the models

  3. Behavioral tagging of extinction learning.

    Science.gov (United States)

    de Carvalho Myskiw, Jociane; Benetti, Fernando; Izquierdo, Iván

    2013-01-15

    Extinction of contextual fear in rats is enhanced by exposure to a novel environment at 1-2 h before or 1 h after extinction training. This effect is antagonized by administration of protein synthesis inhibitors anisomycin and rapamycin into the hippocampus, but not into the amygdala, immediately after either novelty or extinction training, as well as by the gene expression blocker 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole administered after novelty training, but not after extinction training. Thus, this effect can be attributed to a mechanism similar to synaptic tagging, through which long-term potentiation can be enhanced by other long-term potentiations or by exposure to a novel environment in a protein synthesis-dependent fashion. Extinction learning produces a tag at the appropriate synapses, whereas novelty learning causes the synthesis of plasticity-related proteins that are captured by the tag, strengthening the synapses that generated this tag.

  4. A Robust Vehicle Localization Approach Based on GNSS/IMU/DMI/LiDAR Sensor Fusion for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoli Meng

    2017-09-01

    Full Text Available Precise and robust localization in a large-scale outdoor environment is essential for an autonomous vehicle. In order to improve the performance of the fusion of GNSS (Global Navigation Satellite System/IMU (Inertial Measurement Unit/DMI (Distance-Measuring Instruments, a multi-constraint fault detection approach is proposed to smooth the vehicle locations in spite of GNSS jumps. Furthermore, the lateral localization error is compensated by the point cloud-based lateral localization method proposed in this paper. Experiment results have verified the algorithms proposed in this paper, which shows that the algorithms proposed in this paper are capable of providing precise and robust vehicle localization.

  5. A Robust Vehicle Localization Approach Based on GNSS/IMU/DMI/LiDAR Sensor Fusion for Autonomous Vehicles.

    Science.gov (United States)

    Meng, Xiaoli; Wang, Heng; Liu, Bingbing

    2017-09-18

    Precise and robust localization in a large-scale outdoor environment is essential for an autonomous vehicle. In order to improve the performance of the fusion of GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit)/DMI (Distance-Measuring Instruments), a multi-constraint fault detection approach is proposed to smooth the vehicle locations in spite of GNSS jumps. Furthermore, the lateral localization error is compensated by the point cloud-based lateral localization method proposed in this paper. Experiment results have verified the algorithms proposed in this paper, which shows that the algorithms proposed in this paper are capable of providing precise and robust vehicle localization.

  6. A DESCRIPTIVE STUDY OF FUNGAL INFECTIONS IN CHRONICALLY DISCHARGING EARS

    Directory of Open Access Journals (Sweden)

    Sujatha

    2015-08-01

    Full Text Available BACKGROUND : Chronic Suppurative Otitis Media (CSOM is a disease of multiple aetiology and well known for its persis tence and recurrence inspite of treatment and are the bearbug of otologist, paediatrician and general practitioner. One of the reason s for the refractoriness to treatment and chronicity is coexist ing fungal infection of the ear. OBJECTIVES: Are to find out the prevalence of fungal infections in chronic discharging ears and to identify and isolate the type of fungus prevalent in these ears . MATERIALS AND METHOD S: Tertiary care hospital level descrip tive study was conducted in 50 cases of CSOM with actively discharging ears for a period of one year starting from February 2013. For all the cases aural swabs were collected from the diseased ear and were used for direct microscopic examination in potassi um hydroxide wet mount. Ear swab was cultured on Sabouraud’s dextrose agar plate for fungal cultures. The patient characteristics were prospectively recorded and results were analysed. CONCLUSION : There is high prevalence of coexisting fungal infection in actively discharging ears of CSOM patients

  7. Mozart Ear Deformity: a Rare Diagnosis in the Ear Reconstruction Clinic.

    Science.gov (United States)

    Telich-Tarriba, Jose E; Victor-Baldin, Andre; Apellaniz-Campo, Armando

    2017-07-01

    Mozart ear is a rare auricular deformity; clinically the auricle is characterized by the bulging appearance of the anterosuperior portion of the auricle due to fusion of the crura of the antihelix, an inversion in the normal form of the cavum conchae resulting in its convexity and a slit-like narrowing of the orifice of the external auditory meatus.A retrospective review of clinical and photographic records of patients attended at the ear reconstruction clinic of our hospital between June of 2010 and May 2016 was performed; out of 576 consecutive patients only 3 fulfilled the inclusion criteria, with a prevalence of 0.5%. The authors present these patients.Surgical interventions mainly focus on the correction of the convex concha; however, the procedure should be tailored to the severity of the deformity and the wishes of the patient.

  8. Annotating images by harnessing worldwide user-tagged photos

    NARCIS (Netherlands)

    Li, X.; Snoek, C.G.M.; Worring, M.

    2009-01-01

    Automatic image tagging is important yet challenging due to the semantic gap and the lack of learning examples to model a tag's visual diversity. Meanwhile, social user tagging is creating rich multimedia content on the Web. In this paper, we propose to combine the two tagging approaches in a

  9. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.

    Science.gov (United States)

    Wang, Liang; Li, Zishen; Zhao, Jiaojiao; Zhou, Kai; Wang, Zhiyu; Yuan, Hong

    2016-12-21

    Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10-20 m (achieved by the standard positioning services) to about 3-5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS) combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50-80 km/h) mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed) for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS) were better than 0.15 m (horizontal) and 0.25 m (vertical) for the static test, and 0.30 m (horizontal) and 0.45 m (vertical) for the kinematic test.

  10. Evaluation of visible implant elastomer tags in zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Claudia Hohn

    2013-11-01

    The use of the visible implant elastomer (VIE tagging system in zebrafish (Danio rerio was examined. Two tag orientations (horizontal and vertical at the dorsal fin base were tested for tag retention, tag fragmentation and whether VIE tags affected growth and survival of juvenile zebrafish (1–4 month post hatch. Six tag locations (abdomen, anal fin base, caudal peduncle, dorsal fin base, pectoral fin base, isthmus and 5 tag colors (yellow, red, pink, orange, blue were evaluated for ease of VIE tag application and tag visibility in adult zebrafish. Long-term retention (1 year and multiple tagging sites (right and left of dorsal fin and pectoral fin base were examined in adult zebrafish. Lastly, survival of recombination activation gene 1−/− (rag1−/− zebrafish was evaluated after VIE tagging. The best tag location was the dorsal fin base, and the most visible tag color was pink. Growth rate of juvenile zebrafish was not affected by VIE tagging. Horizontal tagging is recommended in early stages of fish growth (1–2 months post hatch. VIE tags were retained for 1 year and tagging did not interfere with long-term growth and survival. There was no mortality associated with VIE tagging in rag1−/− zebrafish. The VIE tagging system is highly suitable for small-sized zebrafish. When familiar with the procedure, 120 adult zebrafish can be tagged in one hour. It does not increase mortality in adult zebrafish or interfere with growth in juvenile or adult zebrafish.

  11. Peptide-tagged proteins in aqueous two-phase systems

    OpenAIRE

    Nilsson, Anna

    2002-01-01

    This thesis deals with proteins containing peptide tags for improved partitioning in aqueous two-phase systems. Qualitatively the peptide-tagged protein partitioning could be predicted from peptide data, i.e. partitioning trends found for peptides were also found for the peptide-tagged proteins. However, full effect of the tag as expected from peptide partitioning was not found in the tagged protein. When alkyl-ethylene oxide surfactant was included in a two-polymer system, almost full effect...

  12. Concise Review: Inner Ear Stem Cells—An Oxymoron, But Why?

    OpenAIRE

    Ronaghi, Mohammad; Nasr, Marjan; Heller, Stefan

    2012-01-01

    Hearing loss, caused by irreversible loss of cochlear sensory hair cells, affects millions of patients worldwide. In this concise review, we examine the conundrum of inner ear stem cells, which obviously are present in the inner ear sensory epithelia of nonmammalian vertebrates, giving these ears the ability to functionally recover even from repetitive ototoxic insults. Despite the inability of the mammalian inner ear to regenerate lost hair cells, there is evidence for cells with regenerativ...

  13. Sonographic Measurement of Fetal Ear Length in Turkish Women with a Normal Pregnancy

    Directory of Open Access Journals (Sweden)

    Mucize Eriç Özdemir

    2014-12-01

    Full Text Available Background: Abnormal fetal ear length is a feature of chromosomal disorders. Fetal ear length measurement is a simple measurement that can be obtained during ultrasonographic examinations. Aims: To develop a nomogram for fetal ear length measurements in our population and investigate the correlation between fetal ear length, gestational age, and other standard fetal biometric measurements. Study Design: Cohort study. Methods: Ear lengths of the fetuses were measured in normal singleton pregnancies. The relationship between gestational age and fetal ear length in millimetres was analysed by simple linear regression. In addition, the correlation of fetal ear length measurements with biparietal diameter, head circumference, abdominal circumference, and femur length were evaluated.Ear length measurements were obtained from fetuses in 389 normal singleton pregnancies ranging between 16 and 28 weeks of gestation. Results: A nomogram was developed by linear regression analysis of the parameters ear length and gestational age. Fetal ear length (mm = y = (1.348 X gestational age-12.265, where gestational ages is in weeks. A high correlation was found between fetal ear length and gestational age, and a significant correlation was also found between fetal ear length and the biparietal diameter (r=0.962; p<0.001. Similar correlations were found between fetal ear length and head circumference, and fetal ear length and femur length. Conclusion: The results of this study provide a nomogram for fetal ear length. The study also demonstrates the relationship between ear length and other biometric measurements.

  14. a Middle-Ear Reverse Transfer Function Computed from Vibration Measurements of Otoacoustic Emissions on the Ear Drum of the Guinea PIG

    Science.gov (United States)

    Dalhoff, Ernst; Turcanu, Diana; Gummer, Anthony W.

    2009-02-01

    Using distortion products measured as vibration of the umbo and as sound pressure in the ear canal of guinea pigs, we calculated the corresponding reverse transfer function. We compare the measurements with a middle-ear model taken from the literature and adapted to the guinea pig. A reasonable fit could be achieved. We conclude that the reverse transfer function will be useful to aid fitting a middle-ear model to measured transfer functions of human subjects.

  15. An in vitro model of murine middle ear epithelium.

    Science.gov (United States)

    Mulay, Apoorva; Akram, Khondoker M; Williams, Debbie; Armes, Hannah; Russell, Catherine; Hood, Derek; Armstrong, Stuart; Stewart, James P; Brown, Steve D M; Bingle, Lynne; Bingle, Colin D

    2016-11-01

    Otitis media (OM), or middle ear inflammation, is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology it is clear that epithelial abnormalities underpin the disease. There is currently a lack of a well-characterised in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear. Here, we report the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs) at an air-liquid interface (ALI) that recapitulates the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Proteomic analysis confirmed that the cultures secrete a multitude of innate defence proteins from their apical surface. We showed that the mMECs supported the growth of the otopathogen, nontypeable Haemophilus influenzae (NTHi), suggesting that the model can be successfully utilised to study host-pathogen interactions in the middle ear. Overall, our mMEC culture system can help to better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodelling that underpin OM development. © 2016. Published by The Company of Biologists Ltd.

  16. An in vitro model of murine middle ear epithelium

    Directory of Open Access Journals (Sweden)

    Apoorva Mulay

    2016-11-01

    Full Text Available Otitis media (OM, or middle ear inflammation, is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology it is clear that epithelial abnormalities underpin the disease. There is currently a lack of a well-characterised in vitro model of the middle ear (ME epithelium that replicates the complex cellular composition of the middle ear. Here, we report the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs at an air–liquid interface (ALI that recapitulates the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Proteomic analysis confirmed that the cultures secrete a multitude of innate defence proteins from their apical surface. We showed that the mMECs supported the growth of the otopathogen, nontypeable Haemophilus influenzae (NTHi, suggesting that the model can be successfully utilised to study host–pathogen interactions in the middle ear. Overall, our mMEC culture system can help to better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodelling that underpin OM development.

  17. Employing Tropospheric Numerical Weather Prediction Model for High-Precision GNSS Positioning

    Science.gov (United States)

    Alves, Daniele; Gouveia, Tayna; Abreu, Pedro; Magário, Jackes

    2014-05-01

    In the past few years is increasing the necessity of realizing high accuracy positioning. In this sense, the spatial technologies have being widely used. The GNSS (Global Navigation Satellite System) has revolutionized the geodetic positioning activities. Among the existent methods one can emphasize the Precise Point Positioning (PPP) and network-based positioning. But, to get high accuracy employing these methods, mainly in real time, is indispensable to realize the atmospheric modeling (ionosphere and troposphere) accordingly. Related to troposphere, there are the empirical models (for example Saastamoinen and Hopfield). But when highly accuracy results (error of few centimeters) are desired, maybe these models are not appropriated to the Brazilian reality. In order to minimize this limitation arises the NWP (Numerical Weather Prediction) models. In Brazil the CPTEC/INPE (Center for Weather Prediction and Climate Studies / Brazilian Institute for Spatial Researches) provides a regional NWP model, currently used to produce Zenithal Tropospheric Delay (ZTD) predictions (http://satelite.cptec.inpe.br/zenital/). The actual version, called eta15km model, has a spatial resolution of 15 km and temporal resolution of 3 hours. In this paper the main goal is to accomplish experiments and analysis concerning the use of troposphere NWP model (eta15km model) in PPP and network-based positioning. Concerning PPP it was used data from dozens of stations over the Brazilian territory, including Amazon forest. The results obtained with NWP model were compared with Hopfield one. NWP model presented the best results in all experiments. Related to network-based positioning it was used data from GNSS/SP Network in São Paulo State, Brazil. This network presents the best configuration in the country to realize this kind of positioning. Actually the network is composed by twenty stations (http://www.fct.unesp.br/#!/pesquisa/grupos-de-estudo-e-pesquisa/gege//gnss-sp-network2789/). The

  18. Are two ears not better than one?

    Science.gov (United States)

    McArdle, Rachel A; Killion, Mead; Mennite, Monica A; Chisolm, Theresa H

    2012-03-01

    The decision to fit one or two hearing aids in individuals with binaural hearing loss has been debated for years. Although some 78% of U.S. hearing aid fittings are binaural (Kochkin , 2010), Walden and Walden (2005) presented data showing that 82% (23 of 28 patients) of their sample obtained significantly better speech recognition in noise scores when wearing one hearing aid as opposed to two. To conduct two new experiments to fuel the monaural/binaural debate. The first experiment was a replication of Walden and Walden (2005), whereas the second experiment examined the use of binaural cues to improve speech recognition in noise. A repeated measures experimental design. Twenty veterans (aged 59-85 yr), with mild to moderately severe binaurally symmetrical hearing loss who wore binaural hearing aids were recruited from the Audiology Department at the Bay Pines VA Healthcare System. Experiment 1 followed the procedures of the Walden and Walden study, where signal-to-noise ratio (SNR) loss was measured using the Quick Speech-in-Noise (QuickSIN) test on participants who were aided with their current hearing aids. Signal and noise were presented in the sound booth at 0° azimuth under five test conditions: (1) right ear aided, (2) left ear aided, (3) both ears aided, (4) right ear aided, left ear plugged, and (5) unaided. The opposite ear in (1) and (2) was left open. In Experiment 2, binaural Knowles Electronics Manikin for Acoustic Research (KEMAR) manikin recordings made in Lou Malnati's pizza restaurant during a busy period provided a typical real-world noise, while prerecorded target sentences were presented through a small loudspeaker located in front of the KEMAR manikin. Subjects listened to the resulting binaural recordings through insert earphones under the following four conditions: (1) binaural, (2) diotic, (3) monaural left, and (4) monaural right. Results of repeated measures ANOVAs demonstrated that the best speech recognition in noise performance was

  19. Ground-Based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from the NASA Crustal Dynamics Data...

  20. Pediatric Obesity and Ear, Nose, and Throat Disorders

    Science.gov (United States)

    ... Marketplace Find an ENT Doctor Near You Pediatric Obesity and Ear, Nose, and Throat Disorders Pediatric Obesity ... self-esteem, and isolation from their peers. Pediatric obesity and otolaryngic problems Otolaryngologists, or ear, nose, and ...

  1. Ear tube surgery - what to ask your doctor

    Science.gov (United States)

    What to ask your doctor about ear tube surgery; Tympanostomy - what to ask your doctor; Myringotomy - what ... other treatments? What are the risks of the surgery? Is it safe to wait before getting ear ...

  2. Pediatric Obesity and Ear, Nose, and Throat Disorders

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Pediatric Obesity and Ear, Nose, and Throat Disorders Pediatric ... of self-esteem, and isolation from their peers. Pediatric obesity and otolaryngic problems Otolaryngologists, or ear, nose, ...

  3. Study of mast cell count in skin tags

    Directory of Open Access Journals (Sweden)

    Zaher Hesham

    2007-01-01

    Full Text Available Background: Skin tags or acrochordons are common tumors of middle-aged and elderly subjects. They consist of loose fibrous tissue and occur mainly on the neck and major flexures as small, soft, pedunculated protrusions. Objectives: The aim was to compare the mast cells count in skin tags to adjacent normal skin in diabetic and nondiabetic participants in an attempt to elucidate the possible role of mast cells in the pathogenesis of skin tags. Participants and Methods: Thirty participants with skin tags were divided into group I (15 nondiabetic participants and group II (15 diabetic participants. Three biopsies were obtained from each participant: a large skin tag, a small skin tag and adjacent normal skin. Mast cell count from all the obtained sections was carried out, and the mast cell density was expressed as the average mast cell count/high power field (HPF. Results: A statistically significant increase in mast cells count in skin tags in comparison to normal skin was detected in group I and group II. There was no statistically significant difference between mast cell counts in skin tags of both the groups. Conclusion: Both the mast cell mediators and hyperinsulinemia are capable of inducing fibroblast proliferation and epidermal hyperplasia that are the main pathologic abnormalities seen in all types of skin tags. However, the presence of mast cells in all examined skin tags regardless of diabetes and obesity may point to the possible crucial role of mast cells in the etiogenesis of skin tags through its interaction with fibroblasts and keratinocytes.

  4. Tags in Domain-Specific Sites - New Information?

    DEFF Research Database (Denmark)

    Steinhauer, Jeremy; Delcambre, Lois M.L.; Maier, David

    2011-01-01

    If researchers use tags in retrieval applications they might assume, implicitly, that tags represent novel information, e.g., when they attribute performance improvement in their retrieval algorithm(s) to the use of tags. In this work, we investigate whether this assumption is true. We focus on t...

  5. A suite of standard post-tagging evaluation metrics can help assess tag retention for field-based fish telemetry research

    Science.gov (United States)

    Gerber, Kayla M.; Mather, Martha E.; Smith, Joseph M.

    2017-01-01

    Telemetry can inform many scientific and research questions if a context exists for integrating individual studies into the larger body of literature. Creating cumulative distributions of post-tagging evaluation metrics would allow individual researchers to relate their telemetry data to other studies. Widespread reporting of standard metrics is a precursor to the calculation of benchmarks for these distributions (e.g., mean, SD, 95% CI). Here we illustrate five types of standard post-tagging evaluation metrics using acoustically tagged Blue Catfish (Ictalurus furcatus) released into a Kansas reservoir. These metrics included: (1) percent of tagged fish detected overall, (2) percent of tagged fish detected daily using abacus plot data, (3) average number of (and percent of available) receiver sites visited, (4) date of last movement between receiver sites (and percent of tagged fish moving during that time period), and (5) number (and percent) of fish that egressed through exit gates. These metrics were calculated for one to three time periods: early ( 5 days early in the study. On average, tagged Blue Catfish visited 9 (50%) and 13 (72%) of 18 within-reservoir receivers early and at the end of the study, respectively. At the end of the study, 73% of all tagged fish were detected moving between receivers. Creating statistical benchmarks for individual metrics can provide useful reference points. In addition, combining multiple metrics can inform ecology and research design. Consequently, individual researchers and the field of telemetry research can benefit from widespread, detailed, and standard reporting of post-tagging detection metrics.

  6. AATR an ionospheric activity indicator specifically based on GNSS measurements

    Science.gov (United States)

    Juan, José Miguel; Sanz, Jaume; Rovira-Garcia, Adrià; González-Casado, Guillermo; Ibáñez, D.; Perez, R. Orus

    2018-03-01

    This work reviews an ionospheric activity indicator useful for identifying disturbed periods affecting the performance of Global Navigation Satellite System (GNSS). This index is based in the Along Arc TEC Rate (AATR) and can be easily computed from dual-frequency GNSS measurements. The AATR indicator has been assessed over more than one Solar Cycle (2002-2017) involving about 140 receivers distributed world-wide. Results show that it is well correlated with the ionospheric activity and, unlike other global indicators linked to the geomagnetic activity (i.e. DST or Ap), it is sensitive to the regional behaviour of the ionosphere and identifies specific effects on GNSS users. Moreover, from a devoted analysis of different Satellite Based Augmentation System (SBAS) performances in different ionospheric conditions, it follows that the AATR indicator is a very suitable mean to reveal whether SBAS service availability anomalies are linked to the ionosphere. On this account, the AATR indicator has been selected as the metric to characterise the ionosphere operational conditions in the frame of the European Space Agency activities on the European Geostationary Navigation Overlay System (EGNOS). The AATR index has been adopted as a standard tool by the International Civil Aviation Organization (ICAO) for joint ionospheric studies in SBAS. In this work we explain how the AATR is computed, paying special attention to the cycle-slip detection, which is one of the key issues in the AATR computation, not fully addressed in other indicators such as the Rate Of change of the TEC Index (ROTI). After this explanation we present some of the main conclusions about the ionospheric activity that can extracted from the AATR values during the above mentioned long-term study. These conclusions are: (a) the different spatial correlation related with the MOdified DIP (MODIP) which allows to clearly separate high, mid and low latitude regions, (b) the large spatial correlation in mid

  7. CT of temporal bone - IV. inner ear

    International Nuclear Information System (INIS)

    Kwon, Jae Yoon; Sung, Kyu Bo; Youn, Eun Kyoung; Park, Youn Kyeung; Lee, Young Uk

    1990-01-01

    Temporal bone CT was done in 697 patients from April 1985 to October 1989. The abnormal findings were seen in 453 patients, which were chronic otitis media in 355 patients, fracture in 49 patients and congenital anomaly in 44 patients, etc. The abnormal findings of inner ear were observed on 46 patients. The results were summarized as follows : 1. The incidence of inner ear involvement by chronic otitis media was 7.3% (26/355 : labyrinthine fistula in 17 patients, labyrinthitis ossificans in 9 patients). Labyrinthine fistula was most commonly located on lateral semicircular canal (15/17, 88.2%). 2. Fusion of vestibule with lateral semicircular canal and formation of common cavity was demonstrated incidentally in 5 patients (0.7% of total number of temporal bone CT), and bilateral in 3 patients. 3. The incidence of inner ear anomaly in congenital ear anomaly was 11.4% (5/44). All cases were bilateral and three patients showed associated middle ear anomaly. 4. The incidence of involvement of bony labyrinth in temporal bone fracture was 10.2% (5/49). Labyrinthine fracture was seen all patients of transverse(3) and mixed fracture(1). In longitudinal fracture, labyrinthine fracture was seen in 2.2% (1/45). 5. Others were traumatic labyrinthitis ossificans(1), intracanalicular acoustic neuroma(3) and facial nerve neuroma(1)

  8. Inner Ear Morphology in the Atlantic Molly Poecilia mexicana—First Detailed Microanatomical Study of the Inner Ear of a Cyprinodontiform Species

    Science.gov (United States)

    Schulz-Mirbach, Tanja; Heß, Martin; Plath, Martin

    2011-01-01

    Background Fishes show an amazing diversity in hearing abilities, inner ear structures, and otolith morphology. Inner ear morphology, however, has not yet been investigated in detail in any member of the diverse order Cyprinodontiformes. We, therefore, studied the inner ear of the cyprinodontiform freshwater fish Poecilia mexicana by analyzing the position of otoliths in situ, investigating the 3D structure of sensory epithelia, and examining the orientation patterns of ciliary bundles of the sensory hair cells, while combining μ-CT analyses, scanning electron microscopy, and immunocytochemical methods. P. mexicana occurs in different ecotypes, enabling us to study the intra-specific variability (on a qualitative basis) of fish from regular surface streams, and the Cueva del Azufre, a sulfidic cave in southern Mexico. Results The inner ear of Poecilia mexicana displays a combination of several remarkable features. The utricle is connected rostrally instead of dorso-rostrally to the saccule, and the macula sacculi, therefore, is very close to the utricle. Moreover, the macula sacculi possesses dorsal and ventral bulges. The two studied ecotypes of P. mexicana showed variation mainly in the shape and curvature of the macula lagenae, in the curvature of the macula sacculi, and in the thickness of the otolithic membrane. Conclusions Our study for the first time provides detailed insights into the auditory periphery of a cyprinodontiform inner ear and thus serves a basis—especially with regard to the application of 3D techniques—for further research on structure-function relationships of inner ears within the species-rich order Cyprinodontiformes. We suggest that other poeciliid taxa, or even other non-poeciliid cyprinodontiforms, may display similar inner ear morphologies as described here. PMID:22110746

  9. Inner ear morphology in the Atlantic molly Poecilia mexicana--first detailed microanatomical study of the inner ear of a cyprinodontiform species.

    Science.gov (United States)

    Schulz-Mirbach, Tanja; Hess, Martin; Plath, Martin

    2011-01-01

    Fishes show an amazing diversity in hearing abilities, inner ear structures, and otolith morphology. Inner ear morphology, however, has not yet been investigated in detail in any member of the diverse order Cyprinodontiformes. We, therefore, studied the inner ear of the cyprinodontiform freshwater fish Poecilia mexicana by analyzing the position of otoliths in situ, investigating the 3D structure of sensory epithelia, and examining the orientation patterns of ciliary bundles of the sensory hair cells, while combining μ-CT analyses, scanning electron microscopy, and immunocytochemical methods. P. mexicana occurs in different ecotypes, enabling us to study the intra-specific variability (on a qualitative basis) of fish from regular surface streams, and the Cueva del Azufre, a sulfidic cave in southern Mexico. The inner ear of Poecilia mexicana displays a combination of several remarkable features. The utricle is connected rostrally instead of dorso-rostrally to the saccule, and the macula sacculi, therefore, is very close to the utricle. Moreover, the macula sacculi possesses dorsal and ventral bulges. The two studied ecotypes of P. mexicana showed variation mainly in the shape and curvature of the macula lagenae, in the curvature of the macula sacculi, and in the thickness of the otolithic membrane. Our study for the first time provides detailed insights into the auditory periphery of a cyprinodontiform inner ear and thus serves a basis--especially with regard to the application of 3D techniques--for further research on structure-function relationships of inner ears within the species-rich order Cyprinodontiformes. We suggest that other poeciliid taxa, or even other non-poeciliid cyprinodontiforms, may display similar inner ear morphologies as described here.

  10. B-tagging in CMS at LHC

    CERN Document Server

    Cucciarelli, S

    2003-01-01

    This report provides a review of the main algorithms for offline inclusive b-tagging developed within the CMS community. Two b-tag algorithms, one based on the impact parameter measurement and the other based on the secondary vertices are discussed. The performance of these algorithms are presented for several jet transverse energies and pseudorapidity regions. An additional decay length based b-tag is also described and its preliminary performance is presented. (4 refs) .

  11. Topical ear drop self-medication practice among the Ear, Nose, and Throat patients in Ido Ekiti, Nigeria: A cross - sectional study.

    Science.gov (United States)

    Olajide, Toye Gabriel; Aremu, Kayode Shuaib; Esan, Olaide T; Dosunmu, Adepeju Oluwatona; Raji, Mustapha Muhammad

    2018-01-01

    Self-medication is a common habit in our country; Nigeria, especially among patients with otorhinolaryngological disorders. Medication when taken wrongly may bring dire consequences to the individual, such as masking developing diseases and may cause many other undesirable effects. The aim of this study was to determine the prevalence and to analyze topical ear drop self-medication practices among respondents attending the Ear, Nose, and Throat Clinic of Federal Teaching Hospital Ido Ekiti, Nigeria. A 6-month hospital based cross-sectional study was conducted among patients who were seen in the Ear, Nose, and Throat facility of Federal Teaching Hospital, Ido Ekiti from July to December 2016 to determine topical ear drop self-medication practices. A pretested semi-structured questionnaire was used to obtained information from respondents. A total of 162 respondents out of 493 patients seen during the study had otological problems. Of which 107 (66%) respondents had engaged in self-medication with topical ear drops. Their ages ranged between 2 and 83 years with a mean age of 36.6 ± 19.1 years. There were 75 males and 87 females. The major reason for self-medication was that their ailments were minor in about 40.2% and the most common indication for self-medication was ear blockage with hearing impairment (33.6%). Pharmacy/chemist shops (42%) were major sources of information for those that self-medicated. Chloramphenicol and gentamycin were the major drugs that were used by the respondents. Majority of the respondents in this study practiced self-medication using different topical ear drops. Major source of information on the topical ear drops used was from pharmacy/chemist shops. There is a need for adequate public health education to create awareness among people on the danger of self-medication and to enact or enforce the law to reduce access to over the counter drugs. Healthcare should be made available and avoidable at primary health-care level.

  12. Prevalence of external ear disorders in Belgian stray cats.

    Science.gov (United States)

    Bollez, Anouck; de Rooster, Hilde; Furcas, Alessandra; Vandenabeele, Sophie

    2018-02-01

    Objectives Feline otitis externa is a multifactorial dermatological disorder about which very little is known. The objective of this study was to map the prevalence of external ear canal disorders and the pathogens causing otitis externa in stray cats roaming around the region of Ghent, Belgium. Methods One hundred and thirty stray cats were randomly selected during a local trap-neuter-return programme. All cats were European Shorthairs. This study included clinical, otoscopic and cytological evaluation of both external ears of each cat. Prospective data used as parameters in this study included the sex, age and body condition score of each cat, as well as the presence of nasal and/or ocular discharge, and the results of feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) Snap tests. Results Remarkably, very few (sub)clinical problems of the external ear canal were found in the stray cat population. Malassezia species was by far the most common organism found in the external ear canals of the 130 stray cats. A total of 96/130 (74%) cats were found to have Malassezia species organisms present in one or both ears based on the cytological examination. No correlation was found between the parameters of sex, age, body condition score, the presence of nasal and/or ocular discharge and FIV and FeLV status, and the presence of parasites, bacteria or yeasts. Conclusions and relevance This study provides more information about the normal state of the external ear canal of stray cats. The ears of most stray cats are relatively healthy. The presence of Malassezia species organisms in the external ear canal is not rare among stray cats.

  13. The new DMT SAFEGUARD low-cost GNSS measuring system and its application in the field of geotechnical deformation and movement monitoring

    Science.gov (United States)

    Schröder, Daniel

    2017-04-01

    In the recent years an increasing awareness of geodetic measurement systems and their application for monitoring projects is clearly visible. With geodetic sensors it is possible to detect safety-related changes at monitoring objects with high temporal density, high accuracy and in a very reliable manner. Quality acquisitions, processing and storage of monitoring data as well as a professional on-site implementation are the most important requirements and challenges to contemporary systems in civil engineering, mining as well as oil and gas production. Monitoring measures provide important input for early warning, alarm, protection and verification of potential hazardous environments and therefore the risk management applied to projects have a significant influence. The implementation has to follow an optimization process incorporating necessary accuracy, reliability and economic efficiency. From the economical point of view the costs per observation point are crucial for most monitoring projects. Keeping in mind that the costs of classical high-end GNSS stations with a geodetic dual-frequency receiver is within the range of several 10,000 euro. Large monitoring networks with a high number of simultaneously observed points are very expensive and therefore eventually have to be cut back, substituted by compromising methods or totally withdrawn. A further development in the area of GNSS receivers could reduce this disadvantage. Within the last few years single-frequency receivers that record L1-signals of GPS/GLONASS and offer sub-centimeter positioning accuracies are increasingly offered on the market. The accuracy of GNSS measurements depends on many factors as the hardware itself as well as on external influences related to the measurement principals. The external influences can be strongly reduced or eliminated by appropriate measuring and processing methods. For a reliable monitoring system it is necessary that the results are comparable and consistent for each

  14. Image analysis of the inner ear with CT and MR imaging

    International Nuclear Information System (INIS)

    Kumakawa, Kohzoh; Takeda, Hidehiko; Mutoh, Naoko; Miyakawa, Kohichi; Yukawa, Kumiko; Funasaka, Sohtaro.

    1992-01-01

    Recent progress in magnetic resonance imaging (MRI) has made it possible to obtain detailed images of the inner ear by delineating the lymphatic fluid within the labyrinth. We analyzed CT scans and MR imaging in 70 ears manifesting profound deafness owing to inner ear lesions and compared their detective ability for inner ear lesions. The following results were obtained. CT scan examination showed slight to extensive ossification of the labyrinth in six ears (9%), whereas MRI examination revealed low to absent signal intensity of the inner ear in nine ears (13%). Therefore, it was concluded that MRI is more sensitive in detecting abnormalities of the inner ear than CT scan. MRI provided useful information as to whether the cochlear turn is filled with lymphatic fluid or obstructed. This point was one of the greatest advantages of MRI over CT scan. Abnormal findings in either or both the CT scan and the MRI were detected in suppurative labyrinthitis occurring secondary to chronic otitis media, bacterial meningitis and in inner ear trauma. However, such abnormal findings were not detected in patients with idiopathic progressive sensorineural hearing loss, ototoxity or sudden deafness. These findings should be taken into consideration in pre-operative assessment of cochlear implant candidates. (author)

  15. [HRCT imaging characterized of congenital abnormalities of the inner ear in 45 cases].

    Science.gov (United States)

    Wang, Jinling; Meng, Meijuan; Huan, Yi; Zhang, Jinsong

    2003-10-01

    To explore the high resolution CT (HRCT) image characterized of congenital abnormalities of the inner ear(CAIE), and its value in the diagnosis and treatment of CAIE. The clinic data and axial HRCT scans of CAIE in 45 cases were analyzed. In 45 CAIE patients, most of them were frequently associated with slowly progressive sensorineural hearing loss in childhood, 15 ears were fluctuating hearing loss. Seventeen ears were unilateral semicircular canal paralysis. HRCT showed that Michel type 3 cases(4 ears), Mondini type 25 cases(39 ears). Large vestibular aqueduct malformation not associated with anomalies of inner ears 13 cases(23 ears), anomalies of internal auditory canal 4 cases (5 ears). Thirteen ears were associated with outer and middle ear malformation. HRCT image has the important value in the diagnosis and treatment of CAIE, especially for the excerpt of indication of cochlear implantation.

  16. Acoustic impedances of ear canals measured by impedance tube

    DEFF Research Database (Denmark)

    Ciric, Dejan; Hammershøi, Dorte

    2007-01-01

    During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... in the transmission such as the earphone impedance. In order to determine the acoustic impedances of human ear canals, the standardized method for measurement of complex impedances used for the measurement of the audiometric earphone impedances is applied. It is based on the transfer function between two microphone...... locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the pressures at the open...

  17. CT colonography with rectal iodine tagging: Feasibility and comparison with oral tagging in a colorectal cancer screening population

    International Nuclear Information System (INIS)

    Neri, Emanuele; Mantarro, Annalisa; Faggioni, Lorenzo; Scalise, Paola; Bemi, Pietro; Pancrazi, Francesca; D’Ippolito, Giuseppe; Bartolozzi, Carlo

    2015-01-01

    Highlights: • In the group receiving rectal tagging, mean per-polyp sensitivity, specificity were 96.1% and 95.3%; while in the group receiving oral tagging, mean per-polyp sensitivity, specificity were 89.4% and 95.8%. The difference between the two groups was not statistically significant (p = 0.549). • Rectal tagging can be an effective alternative to oral tagging. • Rectal tagging allowed greater patient acceptance and lower overall examination time. - Abstract: Purpose: To evaluate feasibility, diagnostic performance, patient acceptance, and overall examination time of CT colonography (CTC) performed through rectal administration of iodinated contrast material. Materials and methods: Six-hundred asymptomatic subjects (male:female = 270:330; mean 63 years) undergoing CTC for colorectal cancer screening on an individual basis were consecutively enrolled in the study. Out of them, 503 patients (group 1) underwent CTC with rectal tagging, of which 55 had a total of 77 colonic lesions. The remaining 97 patients (group 2) were randomly selected to receive CTC with oral tagging of which 15 had a total of 20 colonic lesions. CTC findings were compared with optical colonoscopy, and per-segment image quality was visually assessed using a semi-quantitative score (1 = poor, 2 = adequate, 3 = excellent). In 70/600 patients (11.7%), CTC was performed twice with both types of tagging over a 5-year follow-up cancer screening program. In this subgroup, patient acceptance was rated via phone interview two weeks after CTC using a semi-quantitative scale (1 = poor, 2 = fair, 3 = average, 4 = good, 5 = excellent). Results: Mean per-polyp sensitivity, specificity, positive and negative predictive values of CTC with rectal vs oral tagging were 96.1% (CI 95% 85.4 ÷ 99.3%) vs 89.4% (CI 95% 65.4 ÷ 98.1%), 95.3% (CI 95% 90.7 ÷ 97.8%) vs 95.8% (CI 95% 87.6 ÷ 98.9%), 86.0% (CI 95% 73.6 ÷ 93.3) vs 85.0% (CI 95% 61.1 ÷ 96.0%), and 98.8% (CI 95% 95.3 ÷ 99.8%) vs 97.2% (CI 95% 89

  18. CT colonography with rectal iodine tagging: Feasibility and comparison with oral tagging in a colorectal cancer screening population

    Energy Technology Data Exchange (ETDEWEB)

    Neri, Emanuele, E-mail: emanuele.neri@med.unipi.it [Diagnostic and Interventional Radiology – Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa (Italy); Mantarro, Annalisa; Faggioni, Lorenzo; Scalise, Paola; Bemi, Pietro; Pancrazi, Francesca [Diagnostic and Interventional Radiology – Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa (Italy); D’Ippolito, Giuseppe [Federal University of São Paulo – Sena Madureira 1500 – Vila Mariana, UNIFESP, São Paulo, SP (Brazil); Bartolozzi, Carlo [Diagnostic and Interventional Radiology – Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa (Italy)

    2015-09-15

    Highlights: • In the group receiving rectal tagging, mean per-polyp sensitivity, specificity were 96.1% and 95.3%; while in the group receiving oral tagging, mean per-polyp sensitivity, specificity were 89.4% and 95.8%. The difference between the two groups was not statistically significant (p = 0.549). • Rectal tagging can be an effective alternative to oral tagging. • Rectal tagging allowed greater patient acceptance and lower overall examination time. - Abstract: Purpose: To evaluate feasibility, diagnostic performance, patient acceptance, and overall examination time of CT colonography (CTC) performed through rectal administration of iodinated contrast material. Materials and methods: Six-hundred asymptomatic subjects (male:female = 270:330; mean 63 years) undergoing CTC for colorectal cancer screening on an individual basis were consecutively enrolled in the study. Out of them, 503 patients (group 1) underwent CTC with rectal tagging, of which 55 had a total of 77 colonic lesions. The remaining 97 patients (group 2) were randomly selected to receive CTC with oral tagging of which 15 had a total of 20 colonic lesions. CTC findings were compared with optical colonoscopy, and per-segment image quality was visually assessed using a semi-quantitative score (1 = poor, 2 = adequate, 3 = excellent). In 70/600 patients (11.7%), CTC was performed twice with both types of tagging over a 5-year follow-up cancer screening program. In this subgroup, patient acceptance was rated via phone interview two weeks after CTC using a semi-quantitative scale (1 = poor, 2 = fair, 3 = average, 4 = good, 5 = excellent). Results: Mean per-polyp sensitivity, specificity, positive and negative predictive values of CTC with rectal vs oral tagging were 96.1% (CI{sub 95%} 85.4 ÷ 99.3%) vs 89.4% (CI{sub 95%} 65.4 ÷ 98.1%), 95.3% (CI{sub 95%} 90.7 ÷ 97.8%) vs 95.8% (CI{sub 95%} 87.6 ÷ 98.9%), 86.0% (CI{sub 95%} 73.6 ÷ 93.3) vs 85.0% (CI{sub 95%} 61.1 ÷ 96.0%), and 98.8% (CI{sub 95

  19. In-the-Ear Spiral Monopole Antenna for Hearing Instruments

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2014-01-01

    A novel in-the-ear (ITE) antenna solution for hearing instruments that operates at 2.45 GHz is presented. The antenna consists of a quarter wave monopole and a ground plane that are placed in the ear. The simulated path gain | S 21 |is − 86 dB and the measured path gain is − 80 dB. Simulations an...... and measurements show that the antenna covers the entire 2.40 – 2.48 GHz industrial, scientific and medical (ISM) band. It is the first ever ITE-antenna solution that demonstrates the possibility of establishing an ear-to-ear link by using a standard Bluetooth chip...

  20. Evaluation of the canine tympanic membrane by positive contrast ear canalography

    International Nuclear Information System (INIS)

    Trower, N.D.; Gregory, S.P.; Renfrew, H.; Lamb, C.R.

    1998-01-01

    Positive contrast ear canalography was described briefly in 1973 as a method for detecting rupture of the tympanic membrane in dogs with otitis media. The purpose of this study was to evaluate the sensitivity and usefulness of the technique. The ears of 10 normal canine cadavers and 31 dogs with clinical signs of ear disease were examined using otoscopy, radiography and contrast radiography after infusing 2 to 5 ml of positive contrast medium into the ear canals. These examinations were repeated in the cadavers after the tympanic membrane had been punctured with a Spreull needle. In the cadavers 14 of 19 (74 per cent) of the tympanic membranes were visible otoscopically; contrast medium did not enter the tympanic bulla of any of the ears before the tympanic membrane was ruptured, but was visible in the bulla in every ear after rupture. In the clinical study, 40 of 61 (66 per cent) of the tympanic membranes were visible otoscopically, and 12 appeared to be ruptured. Radiographic signs of otitis media (increased opacity and/or thickening of the tympanic bulla) were identified in seven ears. Canalography was positive for rupture of the tympanic membrane in 13 ears, including four in which it appeared to be intact otoscopically. In normal canine ears, canalography was a more accurate method for detecting iatrogenic tympanic membrane rupture than otoscopy. In dogs with ear disease, canalography may be more sensitive for otitis media than either otoscopy or survey radiography

  1. An Extended-Tag-Induced Matrix Factorization Technique for Recommender Systems

    Directory of Open Access Journals (Sweden)

    Huirui Han

    2018-06-01

    Full Text Available Social tag information has been used by recommender systems to handle the problem of data sparsity. Recently, the relationships between users/items and tags are considered by most tag-induced recommendation methods. However, sparse tag information is challenging to most existing methods. In this paper, we propose an Extended-Tag-Induced Matrix Factorization technique for recommender systems, which exploits correlations among tags derived by co-occurrence of tags to improve the performance of recommender systems, even in the case of sparse tag information. The proposed method integrates coupled similarity between tags, which is calculated by the co-occurrences of tags in the same items, to extend each item’s tags. Finally, item similarity based on extended tags is utilized as an item relationship regularization term to constrain the process of matrix factorization. MovieLens dataset and Book-Crossing dataset are adopted to evaluate the performance of the proposed algorithm. The results of experiments show that the proposed method can alleviate the impact of tag sparsity and improve the performance of recommender systems.

  2. A miniaturized laser-Doppler-system in the ear canal

    Science.gov (United States)

    Schmidt, T.; Gerhardt, U.; Kupper, C.; Manske, E.; Witte, H.

    2013-03-01

    Gathering vibrational data from the human middle ear is quite difficult. To this date the well-known acoustic probe is used to estimate audiometric parameters, e.g. otoacoustic emissions, wideband reflectance and the measurement of the stapedius reflex. An acoustic probe contains at least one microphone and one loudspeaker. The acoustic parameter determination of the ear canal is essential for the comparability of test-retest measurement situations. Compared to acoustic tubes, the ear canal wall cannot be described as a sound hard boundary. Sound energy is partly absorbed by the ear canal wall. In addition the ear canal features a complex geometric shape (Stinson and Lawton1). Those conditions are one reason for the inter individual variability in input impedance measurement data of the tympanic membrane. The method of Laser-Doppler-Vibrometry is well described in literature. Using this method, the surface velocity of vibrating bodies can be determined contact-free. Conventional Laser-Doppler-Systems (LDS) for auditory research are mounted on a surgical microscope. Assuming a free line of view to the ear drum, the handling of those laser-systems is complicated. We introduce the concept of a miniaturized vibrometer which is supposed to be applied directly in the ear canal for contact-free measurement of the tympanic membrane surface vibration. The proposed interferometer is based on a Fabry-Perot etalon with a DFB laser diode as light source. The fiber-based Fabry-Perot-interferometer is characterized by a reduced size, compared to e.g. Michelson-, or Mach-Zehnder-Systems. For the determination of the phase difference in the interferometer, a phase generated carrier was used. To fit the sensor head in the ear canal, the required shape of the probe was generated by means of the geometrical data of 70 ear molds. The suggested prototype is built up by a singlemode optical fiber with a GRIN-lens, acting as a fiber collimator. The probe has a diameter of 1.8 mm and a

  3. Graph based techniques for tag cloud generation

    DEFF Research Database (Denmark)

    Leginus, Martin; Dolog, Peter; Lage, Ricardo Gomes

    2013-01-01

    Tag cloud is one of the navigation aids for exploring documents. Tag cloud also link documents through the user defined terms. We explore various graph based techniques to improve the tag cloud generation. Moreover, we introduce relevance measures based on underlying data such as ratings...... or citation counts for improved measurement of relevance of tag clouds. We show, that on the given data sets, our approach outperforms the state of the art baseline methods with respect to such relevance by 41 % on Movielens dataset and by 11 % on Bibsonomy data set....

  4. Flavour Tagging developments within the LHCb experiment

    CERN Document Server

    Grabalosa, Marc

    Flavour Tagging at the LHCb experiment is a fundamental tool for the measurement of B oscillations and the study of CP violation. This document explains the development of different tagging techniques and the different strategies used to combine them to determine the flavour of the B meson as precisely as possible. The response of the tagging algorithms also needs to be optimized and calibrated. Both procedures are described using the available LHCb datasets corresponding to various integrated luminosities. First results on the tagging performances are shown for different control channels and physics measurements.

  5. A Personalized Tag-Based Recommendation in Social Web Systems

    DEFF Research Database (Denmark)

    Durao, Frederico; Dolog, Peter

    2009-01-01

    -based recommender system which suggests similar Web pages based on the similarity of their tags from a Web 2.0 tagging application. The proposed approach extends the basic similarity calculus with external factors such as tag popularity, tag representativeness and the affinity between user and tag. In order...... to study and evaluate the recommender system, we have conducted an experiment involving 38 people from 12 countries using data from Del.icio.us , a social bookmarking web system on which users can share their personal bookmarks......Tagging activity has been recently identified as a potential source of knowledge about personal interests, preferences, goals, and other attributes known from user models. Tags themselves can be therefore used for finding personalized recommendations of items. In this paper, we present a tag...

  6. CT analysis of 333 cases of congenital malformations of the external and middle ear

    International Nuclear Information System (INIS)

    Zou Xin; Li Qiang; Wang Zhenchang; Xian Junfang; Lan Baosen

    1997-01-01

    To analyze the different CT findings of congenital malformations of the external and middle ear, 333 cases including 404 ears with external and middle ear malformations diagnosed by high resolution CT (HRCT) were analysed according to the location and type of the malformation. In 404 ears, there were 364 ears with atresia of external auditory meatus, 40 ears with stenosis of external auditory meatus, 377 ears with malformation of the ossicles, 382 ears with stenosis of tympanum and 333 ears with anterior position of the mastoid segment of the facial canal. HRCT can show the location and type of external and middle ear malformation and provide valuable information for surgery

  7. Middle ear osteoma causing progressive facial nerve weakness: a case report.

    Science.gov (United States)

    Curtis, Kate; Bance, Manohar; Carter, Michael; Hong, Paul

    2014-09-18

    Facial nerve weakness is most commonly due to Bell's palsy or cerebrovascular accidents. Rarely, middle ear tumor presents with facial nerve dysfunction. We report a very unusual case of middle ear osteoma in a 49-year-old Caucasian woman causing progressive facial nerve deficit. A subtle middle ear lesion was observed on otoscopy and computed tomographic images demonstrated an osseous middle ear tumor. Complete surgical excision resulted in the partial recovery of facial nerve function. Facial nerve dysfunction is rarely caused by middle ear tumors. The weakness is typically due to a compressive effect on the middle ear portion of the facial nerve. Early recognition is crucial since removal of these lesions may lead to the recuperation of facial nerve function.

  8. The first neutron beam hits EAR2

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    On 25 July 2014, about a year after construction work began, the Experimental Area 2 (EAR2) of CERN’s neutron facility n_TOF recorded its first beam. Unique in many aspects, EAR2 will start its rich programme of experimental physics this autumn.   The last part of the EAR2 beamline: the neutrons come from the underground target and reach the top of the beamline, where they hit the samples. Built about 20 metres above the neutron production target, EAR2 is in fact a bunker connected to the n_TOF underground facilities via a duct 80 cm in diameter, where the beamline is installed. The feet of the bunker support pillars are located on the concrete structure of the n_TOF tunnel and part of the structure lies above the old ISR building. A beam dump located on the roof of the building completes the structure. Neutrons are used by physicists to study neutron-induced reactions with applications in a number of fields, including nuclear waste transmutation, nuclear technology, nuclear astrop...

  9. Influence of Ear Surface Area on Heat Tolerance of Composite ...

    African Journals Online (AJOL)

    Relative importance of ear surface area on heat tolerance of composite rabbit population was evaluated. The study was conducted during the dry and rainy seasons, climatic data were recorded to obtain categorical heat stress index. Physiological parameters, growth performance, ear length and ear width of the rabbits ...

  10. Magnetic resonance imaging in inflammatory lesions of the middle ear

    International Nuclear Information System (INIS)

    Tono, Tetsuya; Saku, Kazuaki; Miyanaga, Satoshi; Kano, Kiyo; Morimitsu, Tamotsu; Suzuki, Yukiko.

    1988-01-01

    Eighteen patients with chronic otitis media, middle ear cholesteatoma, and postoperative inflammatory diseases of the middle ear underwent high resolution computerized tomography (CT) and magnetic resonance imaging (MRI) before surgical exploration of the middle ear. Results showed that CT provides higher detail resolution in middle ear structures, but provides limited density resolution in displaying inflammatory soft tissue lesions. By contrast, MRI differentiates among soft tissue lesions such as fluid-filled spaces, granulation tissues, and cholesteatomatous debris. Cholesterin granulomas show a particularly characteristic signal pattern with a very high intensity area in both T1 and T2 weighted images. It is concluded that MRI is useful in differentiating soft tissue density masses when used in conjunction with CT in middle ear inflammatory diseases. (author)

  11. Sentiment topic mining based on comment tags

    Science.gov (United States)

    Zhang, Daohai; Liu, Xue; Li, Juan; Fan, Mingyue

    2018-03-01

    With the development of e-commerce, various comments based on tags are generated, how to extract valuable information from these comment tags has become an important content of business management decisions. This study takes HUAWEI mobile phone tags as an example using the sentiment analysis and topic LDA mining method. The first step is data preprocessing and classification of comment tag topic mining. And then make the sentiment classification for comment tags. Finally, mine the comments again and analyze the emotional theme distribution under different sentiment classification. The results show that HUAWEI mobile phone has a good user experience in terms of fluency, cost performance, appearance, etc. Meanwhile, it should pay more attention to independent research and development, product design and development. In addition, battery and speed performance should be enhanced.

  12. Interconnections between the Ears in Nonmammalian Vertebrates

    DEFF Research Database (Denmark)

    Feng, Albert S.; Christensen-Dalsgaard, J.

    2010-01-01

    Many of the nonmammalian vertebrates (anurans, lizards, crocodiles, and some bird species) have large, continuous air spaces connecting the middle ears and acoustically coupling the eardrums. Acoustical coupling leads to strongly enhanced directionality of the ear at frequencies where diffraction...... cues are negligible in small-sized animals. The chapter reviews the peripheral basis of directionality in these animal groups....

  13. The design and analysis of salmonid tagging studies in the Columbia Basin. Volume 2: Estimating salmonid survival with combined PIT-CWT tagging. Technical report

    International Nuclear Information System (INIS)

    Newman, K.

    1997-06-01

    Passive Integrated Transponder (PIT) tags and Coded Wire Tags (CWTs) in combination can provide information about salmonid survival that single tag releases may not. The release and recapture protocol affects which survival and recapture rates can be estimated and the precision of the estimates. For the particular case of Columbia river salmonids tagged with both PIT tags and CWTs, three different release and recapture protocols were evaluated. This report addresses the need to study the fate of salmon smolt in-river and their subsequent return as adults. Double-tagging procedures are investigated where PIT-tags would be used to provide in-river survival data during smolt outmigrations and coded-wire tags (CWT) used to provide adult return information. This report provides statistical models for the analysis of the joint data as well as recommendations on optimal tagging studies. Study costs and stress on smolt can be reduced by only PIT-tagging a subset of all the fish coded-wire-tagged, while retaining the information content and sampling precision

  14. A hypergraph model of social tagging networks

    International Nuclear Information System (INIS)

    Zhang, Zi-Ke; Liu, Chuang

    2010-01-01

    The past few years have witnessed the great success of a new family of paradigms, so-called folksonomy, which allows users to freely associate tags with resources and efficiently manage them. In order to uncover the underlying structures and user behaviors in folksonomy, in this paper, we propose an evolutionary hypergraph model for explaining the emerging statistical properties. The present model introduces a novel mechanism that can not only assign tags to resources, but also retrieve resources via collaborative tags. We then compare the model with a real-world data set: Del.icio.us. Indeed, the present model shows considerable agreement with the empirical data in the following aspects: power-law hyperdegree distributions, negative correlation between clustering coefficients and hyperdegrees, and small average distances. Furthermore, the model indicates that most tagging behaviors are motivated by labeling tags on resources, and the tag plays a significant role in effectively retrieving interesting resources and making acquaintances with congenial friends. The proposed model may shed some light on the in-depth understanding of the structure and function of folksonomy

  15. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2016-12-01

    Full Text Available Using mobile smart devices to provide urban location-based services (LBS with sub-meter-level accuracy (around 0.5 m is a major application field for future global navigation satellite system (GNSS development. Real-time kinematic (RTK positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10–20 m (achieved by the standard positioning services to about 3–5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50–80 km/h mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS were better than 0.15 m (horizontal and 0.25 m (vertical for the static test, and 0.30 m (horizontal and 0.45 m (vertical for the kinematic test.

  16. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  17. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2018-03-01

    Full Text Available This work assesses the estimation of surface volumetric soil moisture (VSM using the global navigation satellite system interferometric reflectometry (GNSS-IR technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m. The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 =  0.86 and RMSE  =  0.04 m3 m−3. It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  18. An Adaptive Low-Cost INS/GNSS Tightly-Coupled Integration Architecture Based on Redundant Measurement Noise Covariance Estimation.

    Science.gov (United States)

    Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan

    2017-09-05

    The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes.

  19. RFID Label Tag Design for Metallic Surface Environments

    Directory of Open Access Journals (Sweden)

    Ki Hwan Eom

    2011-01-01

    Full Text Available This paper describes a metal mount RFID tag that works reliably on metallic surfaces. The method proposes the use of commercial label type RFID tags with 2.5 mm thick Styrofoam103.7 with a relative permittivity of 1.03 attached on the back of the tag. In order to verify the performance of the proposed method, we performed experiments on an electric transformer supply chain system. The experimental results showed that the proposed tags can communicate with readers from a distance of 2 m. The recognition rates are comparable to those of commercial metallic mountable tags.

  20. Evolution and development of the vertebrate ear

    Science.gov (United States)

    Fritzsch, B.; Beisel, K. W.

    2001-01-01

    This review outlines major aspects of development and evolution of the ear, specifically addressing issues of cell fate commitment and the emerging molecular governance of these decisions. Available data support the notion of homology of subsets of mechanosensors across phyla (proprioreceptive mechanosensory neurons in insects, hair cells in vertebrates). It is argued that this conservation is primarily related to the specific transducing environment needed to achieve mechanosensation. Achieving this requires highly conserved transcription factors that regulate the expression of the relevant structural genes for mechanosensory transduction. While conserved at the level of some cell fate assignment genes (atonal and its mammalian homologue), the ear has also radically reorganized its development by implementing genes used for cell fate assignment in other parts of the developing nervous systems (e.g., neurogenin 1) and by evolving novel sets of genes specifically associated with the novel formation of sensory neurons that contact hair cells (neurotrophins and their receptors). Numerous genes have been identified that regulate morphogenesis, but there is only one common feature that emerges at the moment: the ear appears to have co-opted genes from a large variety of other parts of the developing body (forebrain, limbs, kidneys) and establishes, in combination with existing transcription factors, an environment in which those genes govern novel, ear-related morphogenetic aspects. The ear thus represents a unique mix of highly conserved developmental elements combined with co-opted and newly evolved developmental elements.