WorldWideScience

Sample records for glyoxal

  1. Isotope separation by selective photodissociation of glyoxal

    International Nuclear Information System (INIS)

    Marling, J.B.

    1976-01-01

    Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation in a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope

  2. Glyoxal contribution to aerosols over Los Angeles

    Science.gov (United States)

    Balcerak, Ernie

    2012-01-01

    Laboratory and field studies have indicated that glyoxal (chemical formula OCHCHO), an atmospheric oxidation product of isoprene and aromatic compounds, may contribute to secondary organic aerosols in the atmosphere, which can block sunlight and affect atmospheric chemistry. Some aerosols are primary aerosols, emitted directly into the atmosphere, while others are secondary, formed through chemical reactions in the atmosphere. Washenfelder et al. describe in situ glyoxal measurements from Pasadena, Calif., near Los Angeles, made during summer 2010. They used three different methods to calculate the contribution of glyoxal to secondary atmospheric aerosol and found that it is responsible for 0-0.2 microgram per cubic meter, or 0-4%, of the secondary organic aerosol mass. The researchers also compared their results to those of a previous study that calculated the glyoxal contribution to aerosol for Mexico City. Mexico City had higher levels of organic aerosol mass from glyoxal. They suggest that the lower contribution of glyoxal to aerosol concentrations for Los Angeles may be due to differences in the composition or water content of the aerosols above the two cities. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2011JD016314, 2011)

  3. Artemesia annua extract prevents glyoxal-induced cell injury in ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of Artemesia annua extract on glyoxal-induced injury in retinal microvascular endothelial cells (HRECs). Methods: HRECs were cultured in a medium containing 500 μM glyoxal or glyoxal plus 50μM Artemesia annua extract, or in the medium alone for 24 h. Apoptosis was analysed by flow ...

  4. Computational study of the effect of glyoxal-sulfate clustering on the Henry's Law coefficient of glyoxal

    DEFF Research Database (Denmark)

    Kurtén, Theo; Elm, Jonas; Prisle, Nønne L.

    2015-01-01

    . Although the glyoxal molecule interacts only weakly with sulfate, its hydrated forms (C2O3H4 and C2O4H6) form strong complexes with sulfate, displacing water molecules from the solvation shell and increasing the uptake of glyoxal into sulfate-containing aqueous solutions, including sulfate...... coefficient enhancement and found it to be in reasonable agreement with experimental results. This indicates that the complexation of glyoxal hydrates with sulfate can explain the observed uptake enhancement....

  5. Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007

    Directory of Open Access Journals (Sweden)

    A. J. Huisman

    2011-09-01

    Full Text Available We present roughly one month of high time-resolution, direct, in situ measurements of gas-phase glyoxal acquired during the BEARPEX 2007 field campaign. The research site, located on a ponderosa pine plantation in the Sierra Nevada mountains, is strongly influenced by biogenic volatile organic compounds (BVOCs; thus this data adds to the few existing measurements of glyoxal in BVOC-dominated areas. The short lifetime of glyoxal of ~1 h, the fact that glyoxal mixing ratios are much higher during high temperature periods, and the results of a photochemical model demonstrate that glyoxal is strongly influenced by BVOC precursors during high temperature periods.

    A zero-dimensional box model using near-explicit chemistry from the Leeds Master Chemical Mechanism v3.1 was used to investigate the processes controlling glyoxal chemistry during BEARPEX 2007. The model showed that MBO is the most important glyoxal precursor (~67 %, followed by isoprene (~26 % and methylchavicol (~6 %, a precursor previously not commonly considered for glyoxal production. The model calculated a noon lifetime for glyoxal of ~0.9 h, making glyoxal well suited as a local tracer of VOC oxidation in a forested rural environment; however, the modeled glyoxal mixing ratios over-predicted measured glyoxal by a factor 2 to 5. Loss of glyoxal to aerosol was not found to be significant, likely as a result of the very dry conditions, and could not explain the over-prediction. Although several parameters, such as an approximation for advection, were found to improve the model measurement discrepancy, reduction in OH was by far the most effective. Reducing model OH concentrations to half the measured values decreased the glyoxal over-prediction from a factor of 2.4 to 1.1, as well as the overprediction of HO2 from a factor of 1.64 to 1.14. Our analysis has shown that glyoxal is particularly sensitive to OH concentration compared to other BVOC oxidation products. This

  6. Glyoxal bis(guanylhydrazone) as an inhibitor of polyamine biosynthesis in tumour cells.

    OpenAIRE

    Seppänen, P; Fagerström, R; Alhonen-Hongisto, L; Elo, H; Lumme, P; Jänne, J

    1984-01-01

    Glyoxal bis(guanylhydrazone), the parent compound of methylglyoxal bis(guanylhydrazone), was synthesized and tested for its ability to inhibit the biosynthesis of polyamines. It was found to be a powerful competitive inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), yet the lack of the methyl group at the glyoxal portion increased the apparent Ki value for the enzyme by about 30-fold in comparison with methylglyoxal bis(guanylhydrazone). Glyoxal bis(guanylhydrazone) inhibited diami...

  7. The continental source of glyoxal estimated by the synergistic use of spaceborne measurements and inverse modelling

    Directory of Open Access Journals (Sweden)

    A. Richter

    2009-11-01

    Full Text Available Tropospheric glyoxal and formaldehyde columns retrieved from the SCIAMACHY satellite instrument in 2005 are used with the IMAGESv2 global chemistry-transport model and its adjoint in a two-compound inversion scheme designed to estimate the continental source of glyoxal. The formaldehyde observations provide an important constraint on the production of glyoxal from isoprene in the model, since the degradation of isoprene constitutes an important source of both glyoxal and formaldehyde. Current modelling studies underestimate largely the observed glyoxal satellite columns, pointing to the existence of an additional land glyoxal source of biogenic origin. We include an extra glyoxal source in the model and we explore its possible distribution and magnitude through two inversion experiments. In the first case, the additional source is represented as a direct glyoxal emission, and in the second, as a secondary formation through the oxidation of an unspecified glyoxal precursor. Besides this extra source, the inversion scheme optimizes the primary glyoxal and formaldehyde emissions, as well as their secondary production from other identified non-methane volatile organic precursors of anthropogenic, pyrogenic and biogenic origin.

    In the first inversion experiment, the additional direct source, estimated at 36 Tg/yr, represents 38% of the global continental source, whereas the contribution of isoprene is equally important (30%, the remainder being accounted for by anthropogenic (20% and pyrogenic fluxes. The inversion succeeds in reducing the underestimation of the glyoxal columns by the model, but it leads to a severe overestimation of glyoxal surface concentrations in comparison with in situ measurements. In the second scenario, the inferred total global continental glyoxal source is estimated at 108 Tg/yr, almost two times higher than the global a priori source. The extra secondary source is the largest contribution to the global glyoxal

  8. The food processing contaminant glyoxal promotes tumour growth in the multiple intestinal neoplasia (Min) mouse model.

    Science.gov (United States)

    Svendsen, Camilla; Høie, Anja Hortemo; Alexander, Jan; Murkovic, Michael; Husøy, Trine

    2016-08-01

    Glyoxal is formed endogenously and at a higher rate in the case of hyperglycemia. Glyoxal is also a food processing contaminant and has been shown to be mutagenic and genotoxic in vitro. The tumourigenic potential of glyoxal was investigated using the multiple intestinal neoplasia (Min) mouse model, which spontaneously develops intestinal tumours and is susceptible to intestinal carcinogens. C57BL/6J females were mated with Min males. Four days after mating and throughout gestation and lactation, the pregnant dams were exposed to glyoxal through drinking water (0.0125%, 0.025%, 0.05%, 0.1%) or regular tap water. Female and male offspring were housed separately from PND21 and continued with the same treatment. One group were only exposed to 0.1% glyoxal from postnatal day (PND) 21. There was no difference in the number of intestinal tumours between control and treatment groups. However, exposure to 0.1% glyoxal starting in utero and at PND21 caused a significant increase in tumour size in the small intestine for male and female mice in comparison with respective control groups. This study suggests that glyoxal has tumour growth promoting properties in the small intestine in Min mice. Copyright © 2016 Norwegian Institute of Public Health. Published by Elsevier Ltd.. All rights reserved.

  9. Glyoxal bis(guanylhydrazone) as an inhibitor of polyamine biosynthesis in tumour cells.

    Science.gov (United States)

    Seppänen, P; Fagerström, R; Alhonen-Hongisto, L; Elo, H; Lumme, P; Jänne, J

    1984-07-15

    Glyoxal bis(guanylhydrazone), the parent compound of methylglyoxal bis(guanylhydrazone), was synthesized and tested for its ability to inhibit the biosynthesis of polyamines. It was found to be a powerful competitive inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), yet the lack of the methyl group at the glyoxal portion increased the apparent Ki value for the enzyme by about 30-fold in comparison with methylglyoxal bis(guanylhydrazone). Glyoxal bis(guanylhydrazone) inhibited diamine oxidase (EC 1.4.3.6) activity as effectively as did methylglyoxal bis(guanylhydrazone). The cellular accumulation curves of glyoxal bis(guanylhydrazone) in L1210 cells were practically superimposable with those of methylglyoxal bis(guanylhydrazone), and the uptake of both compounds was distinctly stimulated by a prior treatment with 2-difluoromethylornithine. The drug decreased the concentration of spermidine in a dose-dependent manner and, in contrast with methylglyoxal bis(guanylhydrazone), without a concomitant accumulation of putrescine. The fact that putrescine concentrations were decreased in cells exposed to glyoxal bis(guanylhydrazone) was, at least in part, attributable to an inhibition of ornithine decarboxylase (EC 4.1.1.17) activity in cells treated with the compound. Under these experimental conditions equivalent concentrations of methylglyoxal bis(guanylhydrazone) [1,1'-[(methylethanediylidine)dinitrilo]diguanidine] elicited large increases in the enzyme activity. When combined with difluoromethylornithine, glyoxal bis(guanylhydrazone) potentiated the growth-inhibitory effect of that drug. Taking into consideration the proven anti-leukaemic activity of glyoxal bis(guanylhydrazone), its effectiveness to inhibit spermidine biosynthesis (without raising the concentration of putrescine) as well as its suitability for combined use with inhibitors of ornithine decarboxylase, this drug is apparently worthy of further testing in tumour-bearing animals, especially in

  10. Glyoxal Crosslinking of Cell-Seeded Chitosan/Collagen Hydrogels for Bone Regeneration

    Science.gov (United States)

    Wang, Limin; Stegemann, Jan P.

    2011-01-01

    Chitosan and collagen are natural biomaterials that have been used extensively in tissue engineering, both separately and as composite materials. Most methods to fabricate chitosan/collagen composites use freeze drying and chemical crosslinking to create stable porous scaffolds, which subsequently can be seeded with cells. In this study, we directly embedded human bone marrow stem cells (hBMSC) in chitosan/collagen materials by initiating gelation using β-glycerophosphate at physiological temperature and pH. We further examined the use of glyoxal, a dialdehyde with relatively low toxicity, to crosslink these materials and characterized the resulting changes in matrix and cell properties. The cytocompatibility of glyoxal and the crosslinked gels were investigated in terms of hBMSC metabolic activity, viability, proliferation, and osteogenic differentiation. These studies revealed that glyoxal was cytocompatible at concentrations below about 1 mM for periods of exposure up to 15 h, though the degree of cell spreading and proliferation were dependent on matrix composition. Glyoxal-crosslinked matrices were stiffer and compacted less than uncrosslinked controls. It was further demonstrated that hBMSC can attach and proliferate in 3D matrices composed of 50/50 chitosan/collagen, and that these materials supported osteogenic differentiation in response to stimulation. Such glyoxal-crosslinked chitosan/collagen composite materials may find utility as cell delivery vehicles for enhancing the repair of bone defects. PMID:21345389

  11. Hydrolysis of glyoxal in water-restricted environments: formation of organic aerosol precursors through formic acid catalysis.

    Science.gov (United States)

    Hazra, Montu K; Francisco, Joseph S; Sinha, Amitabha

    2014-06-12

    The hydrolysis of glyoxal involving one to three water molecules and also in the presence of a water molecule and formic acid has been investigated. Our results show that glyoxal-diol is the major product of the hydrolysis and that formic acid, through its ability to facilitate intermolecular hydrogen atom transfer, is considerably more efficient than water as a catalyst in the hydrolysis process. Additionally, once the glyoxal-diol is formed, the barrier for further hydrolysis to form the glyoxal-tetrol is effectively reduced to zero in the presence of a single water and formic acid molecule. There are two important implications arising from these findings. First, the results suggest that under the catalytic influence of formic acid, glyoxal hydrolysis can impact the growth of atmospheric aerosols. As a result of enhanced hydrogen bonding, mediated through their polar OH functional groups, the diol and tetrol products are expected to have significantly lower vapor pressure than the parent glyoxal molecule; hence they can more readily partition into the particle phase and contribute to the growth of secondary organic aerosols. In addition, our findings provide insight into how glyoxal-diol and glyoxal-tetrol might be formed under atmospheric conditions associated with water-restricted environments and strongly suggest that the formation of these precursors for secondary organic aerosol growth is not likely restricted solely to the bulk aqueous phase as is currently assumed.

  12. Rate Coefficients for the OH + (CHO)2 (Glyoxal) Reaction Between 240 and 400 K

    Science.gov (United States)

    Feierabend, K. J.; Talukdar, R. K.; Zhu, L.; Ravishankara, A. R.; Burkholder, J. B.

    2006-12-01

    Glyoxal (CHO)2, the simplest dialdehyde, is an end product formed in the atmospheric oxidation of biogenic hydrocarbons, for example, isoprene. As such, glyoxal plays a role in regional air quality and ozone production in certain locations. Glyoxal is lost in the atmosphere via UV photolysis and reaction with OH. However, the currently available rate coefficient data for the OH + glyoxal reaction is limited to a single room- temperature measurement made using the relative rate method. A determination of the rate coefficient temperature dependence is therefore needed for a more complete interpretation of the atmospheric processing of glyoxal. This study reports the rate coefficient for the OH + (CHO)2 reaction measured under pseudo- first-order conditions in OH ([(CHO)2] > 1000 [OH]0). OH radicals were produced using 248 nm pulsed laser photolysis of H2O2 or HNO3 and detected by pulsed laser induced fluorescence. The concentration of glyoxal in the reactor was determined using three independent techniques; gas flow rates as well as in situ UV and IR absorption. The total pressure in the reactor was varied from 40 to 300 Torr (He), and the rate coefficient was found to be independent of pressure over the temperature range studied. The rate coefficient exhibits a negative temperature dependence between 240 and 400 K consistent with the dependence previously observed for many other aldehydes. Our room-temperature rate coefficient is smaller than the relative rate value that is currently recommended for use in atmospheric model calculations. Our measured rate coefficients are discussed with respect to those for other aldehydes. The atmospheric implications of our work will also be discussed.

  13. In vitro degradation behaviour of biodegradable soy plastics : effects of crosslinking with glyoxal and thermal treatment

    NARCIS (Netherlands)

    Vaz, C.M.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2003-01-01

    In-vitro degradation of soy-derived protein materials, non-crosslinked (SItp), crosslinked with glyoxal (X-SItp) or submitted to heat treatment (24TT-SItp), was studied with either an isotonic saline solution without enzymatic activity or containing bacterial collagenase. The changes in weight of

  14. Processing and characterization of biodegradable soy plastics: Effects of crosslinking with glyoxal and thermal treatment

    NARCIS (Netherlands)

    Vaz, C.M.; Doeveren, van P.F.N.M.; Yilmaz, G.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2005-01-01

    Processing and modification routes to produce and to improve properties of biodegradable plastics from soy isolate were studied. Soy isolate, acid-treated and crosslinked soy were subsequently compounded, extruded, and injection molded. Acetic acid and glyoxal were examined concerning their

  15. Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry

    Directory of Open Access Journals (Sweden)

    J. P. DiGangi

    2012-10-01

    Full Text Available We present simultaneous fast, in-situ measurements of formaldehyde and glyoxal from two rural campaigns, BEARPEX 2009 and BEACHON-ROCS, both located in Pinus Ponderosa forests with emissions dominated by biogenic volatile organic compounds (VOCs. Despite considerable variability in the formaldehyde and glyoxal concentrations, the ratio of glyoxal to formaldehyde, RGF, displayed a very regular diurnal cycle over nearly 2 weeks of measurements. The only deviations in RGF were toward higher values and were the result of a biomass burning event during BEARPEX 2009 and very fresh anthropogenic influence during BEACHON-ROCS. Other rapid changes in glyoxal and formaldehyde concentrations have hardly any affect on RGF and could reflect transitions between low and high NO regimes. The trend of increased RGF from both anthropogenic reactive VOC mixtures and biomass burning compared to biogenic reactive VOC mixtures is robust due to the short timescales over which the observed changes in RGF occurred. Satellite retrievals, which suggest higher RGF for biogenic areas, are in contrast to our observed trends. It remains important to address this discrepancy, especially in view of the importance of satellite retrievals and in situ measurements for model comparison. In addition, we propose that RGF represents a useful metric for biogenic or anthropogenic reactive VOC mixtures and, in combination with absolute concentrations of glyoxal and formaldehyde, furthermore represents a useful metric for the extent of anthropogenic influence on overall reactive VOC processing via NOx. In particular, RGF yields information about not simply the VOCs dominating reactivity in an airmass, but the VOC processing itself that is directly coupled to ozone and secondary organic aerosol production.

  16. Characterization and Optimization of the Glyoxalation of a Methanol-Fractionated Alkali Lignin using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Aikfei Ang

    2015-06-01

    Full Text Available The glyoxalation of a methanol-fractionated alkali lignin was executed at 60 °C for 8 h with different amounts of glyoxal (40% in water and 30% NaOH. The weights of the lignin and water were fixed at 10.0 and 15.0 g, respectively. The gel permeation chromatography (GPC results indicated that depolymerization of lignin molecules occurred during the glyoxalation process. However, a higher polydispersity index (Mw/Mn of all glyoxalated lignins compared to the unmodified lignin (ML showed that lignin polymers with a variety of chain lengths were generated through the crosslinking and through the repolymerization of lignin molecules via methylene (CH2 bridges and new, strong C-C bonds after the condensation reaction. This was confirmed by thermogravimetry analysis (TGA. Optimum amounts of glyoxal and NaOH to be used in the glyoxalation process were ascertained by quantifying the intensity of relative absorbance for the CH2 bands obtained from FT-IR spectra and by using response surface methodology (RSM and central composite design (CCD, which facilitated the development of a lignin with appropriate reactivity for wood adhesive formulation. The experimental values were in good agreement with the predicted ones, and the model was highly significant, with a coefficient of determination of 0.9164. The intensity of the relative absorbance for the CH2 band of 0.42 was obtained when the optimum amounts of glyoxal and NaOH, i.e., 0.222 and 0.353, respectively, were used in the glyoxalation process.

  17. The dimers of glyoxal and acrolein with H 2O and HF: Negative intramolecular coupling and blue-shifted C-H stretch

    Science.gov (United States)

    Karpfen, Alfred; Kryachko, Eugene S.

    2010-04-01

    The structures and the vibrational spectra of the hydrogen-bonded complexes: glyoxal-H 2O, glyoxal-HF, acrolein-H 2O, and acrolein-HF, are investigated within the MP2/aug-cc-pVTZ computational approach. It is demonstrated that the calculated blue shifts of the C-H stretching frequencies in the glyoxal-H 2O complexes are only indirectly pertinent to hydrogen bonding to the C-H group. The comparison with the glyoxal-HF and the acrolein-HF complexes reveals that these blue shifts are a direct consequence of a negative intramolecular coupling between vicinal C dbnd O and C-H bonds in the aldehyde groups of isolated glyoxal and acrolein molecules. To support this interpretation, the halogen-bonded complexes glyoxal-BrF and acrolein-BrF are discussed.

  18. Quantitative determination of glycine in aqueous solution using glutamate dehydrogenase-immobilized glyoxal agarose beads.

    Science.gov (United States)

    Keskin, Semra Yilmazer; Keskin, Can Serkan

    2014-01-01

    In this study, an enzymatic procedure for the determination of glycine (Gly) was developed by using a column containing immobilized glutamate dehydrogenase (GDH) on glyoxal agarose beads. Ammonia is produced from the enzymatic reactions between Gly and GDH with NAD(+) in phosphate buffer medium. The indophenol blue method was used for ammonia detection based on the spectrophotometric measurements of blue-colored product absorbing at 640 nm. The calibration graph is linear in the range of 0.1-10 mM of Gly concentrations. The effect of pH, temperature, and time interval was studied to find column stability, and also the interference effects of other amino acids was investigated. The interaction between GDH and glyoxal agarose beads was analyzed by Fourier transform infrared (FTIR) spectroscopy. The morphology of the immobilized and non-immobilized agarose beads were characterized by atomic force microscopy (AFM).

  19. Aerosol-Forming Reactions of Glyoxal, Methylglyoxal and Amino Acids in Clouds

    Science.gov (United States)

    de Haan, D. O.; Smith, K. W.; Stroik, D. R.; Corrigan, A. L.; Lee, F. E.; Phan, J. T.; Conley, A. C.

    2008-12-01

    Glyoxal and methylglyoxal are two common aldehydes present in fog and cloud water. Amino acids are present in clouds at similar concentrations. Here we present bulk and aerosol mass spectroscopic data demonstrating that irreversible reactions between glyoxal and amino acids, triggered by droplet evaporation, produce N-derivatized imidazole compounds along with deeply colored Maillard reaction products. These reactions can occur in the dark and in the absence of oxidants. Reactions between methylglyoxal and amino acids produce analogous methylated products plus oligomers with masses up to m/z = 1000. These reactions, which go to completion on the 10-min-timescale of cloud processing, could be significant sources of secondary organic aerosol and humic-like substances (HULIS or brown carbon).

  20. Glyoxal and methylglyoxal Setschenow salting constants in sulfate, nitrate, and chloride solutions

    DEFF Research Database (Denmark)

    Waxman, Eleanor M.; Elm, Jonas; Kurtén, Theo

    2015-01-01

    Knowledge about Setschenow salting constants, KS, the exponential dependence of Henry's Law coefficients on salt concentration, is of particular importance to predict secondary organic aerosol (SOA) formation from soluble species in atmospheric waters with high salt concentrations, such as aerosols....... We have measured KS of glyoxal and methylglyoxal for the atmospherically relevant salts (NH4)2SO4, NH4NO3, NaNO3, and NaCl and find that glyoxal consistently "salts-in" (KS of -0.16, -0.06, -0.065, -0.1 molality(-1), respectively) while methylglyoxal "salts-out" (KS of +0.16, +0.075, +0.02, +0.......06 molality(-1)). We show that KS values for different salts are additive and present an equation for use in atmospheric models. Additionally, we have performed a series of quantum chemical calculations to determine the interactions between glyoxal/methylglyoxal monohydrate with Cl(-), NO3(-), SO4(2-), Na...

  1. A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes☆

    Science.gov (United States)

    Pun, Pamela Boon Li; Logan, Angela; Darley-Usmar, Victor; Chacko, Balu; Johnson, Michelle S.; Huang, Guang W.; Rogatti, Sebastian; Prime, Tracy A.; Methner, Carmen; Krieg, Thomas; Fearnley, Ian M.; Larsen, Lesley; Larsen, David S.; Menger, Katja E.; Collins, Yvonne; James, Andrew M.; Kumar, G.D. Kishore; Hartley, Richard C.; Smith, Robin A.J.; Murphy, Michael P.

    2014-01-01

    The glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal, and disruption of mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear owing to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells, and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography–tandem mass spectrometry, enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycemia both in cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging. PMID:24316194

  2. A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes.

    Science.gov (United States)

    Pun, Pamela Boon Li; Logan, Angela; Darley-Usmar, Victor; Chacko, Balu; Johnson, Michelle S; Huang, Guang W; Rogatti, Sebastian; Prime, Tracy A; Methner, Carmen; Krieg, Thomas; Fearnley, Ian M; Larsen, Lesley; Larsen, David S; Menger, Katja E; Collins, Yvonne; James, Andrew M; Kumar, G D Kishore; Hartley, Richard C; Smith, Robin A J; Murphy, Michael P

    2014-02-01

    The glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal, and disruption of mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear owing to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells, and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography-tandem mass spectrometry, enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycemia both in cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    Directory of Open Access Journals (Sweden)

    R. Thalman

    2010-12-01

    Full Text Available The combination of Cavity Enhanced Absorption Spectroscopy (CEAS with broad-band light sources (e.g. Light-Emitting Diodes, LEDs lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0. We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420–490 nm to measure nitrogen dioxide (NO2, glyoxal (CHOCHO, methyl glyoxal (CH3COCHO, iodine oxide (IO, water vapour (H2O and oxygen dimers (O4. We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3–7 × 10−7cm−1. Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype

  4. Evidence of a natural marine source of oxalic acid and a possible link to glyoxal

    Science.gov (United States)

    Rinaldi, Matteo; Decesari, Stefano; Carbone, Claudio; Finessi, Emanuela; Fuzzi, Sandro; Ceburnis, Darius; O'Dowd, Colin D.; Sciare, Jean; Burrows, John P.; Vrekoussis, Mihalis; Ervens, Barbara; Tsigaridis, Kostas; Facchini, Maria Cristina

    2011-08-01

    This paper presents results supporting the existence of a natural source of oxalic acid over the oceans. Oxalate was detected in "clean-sector" marine aerosol samples at Mace Head (Ireland) (53°20'N, 9°54'W) during 2006, and at Amsterdam Island (37°48'S, 77°34'E) from 2003 to 2007, in concentrations ranging from 2.7 to 39 ng m-3 and from 0.31 to 17 ng m-3, respectively. The oxalate concentration showed a clear seasonal trend at both sites, with maxima in spring-summer and minima in fall-winter, being consistent with other marine biogenic aerosol components (e.g., methanesulfonic acid, non-sea-salt sulfate, and aliphatic amines). The observed oxalate was distributed along the whole aerosol size spectrum, with both a submicrometer and a supermicrometer mode, unlike the dominant submicrometer mode encountered in many polluted environments. Given its mass size distribution, the results suggest that over remote oceanic regions oxalate is produced through a combination of different formation processes. It is proposed that the cloud-mediated oxidation of gaseous glyoxal, recently detected over remote oceanic regions, may be an important source of submicrometer oxalate in the marine boundary layer. Supporting this hypothesis, satellite-retrieved glyoxal column concentrations over the two sampling sites exhibited the same seasonal concentration trend of oxalate. Furthermore, chemical box model simulations showed that the observed submicrometer oxalate concentrations were consistent with the in-cloud oxidation of typical marine air glyoxal mixing ratios, as retrieved by satellite measurements, at both sites.

  5. Conformational study of glyoxal bis(amidinohydrazone) by ab initio methods

    Science.gov (United States)

    Mannfors, B.; Koskinen, J. T.; Pietilä, L.-O.

    1997-08-01

    We report the first ab initio molecular orbital study on the ground state of the endiamine tautomer of glyoxal bis(amidinohydrazone) (or glyoxal bis(guanylhydrazone), GBG) free base. The calculations were performed at the following levels of theory: Hartree-Fock, second-order Møller-Plesset perturbation theory and density functional theory (B-LYP and B3-LYP) as implemented in the Gaussian 94 software. The standard basis set 6-31G(d) was found to be sufficient. The default fine grid of Gaussian 94 was used in the density functional calculations. Molecular properties, such as optimized structures, total energies and the electrostatic potential derived (CHELPG) atomic charges, were studied as functions of C-C and N-N conformations. The lowest energy conformation was found to be all- trans, in agreement with the experimental solid-state structure. The second conformer with respect to rotation around the central C-C bond was found to be the cis conformer with an MP2//HF energy of 4.67 kcal mol -1. For rotation around the N-N bond the energy increased monotonically from the trans conformation to the cis conformation, the cis energy being very high, 22.01 kcal mol -1 (MP2//HF). The atomic charges were shown to be conformation dependent, and the bond charge increments and especially the conformational changes of the bond charge increments were found to be easily transferable between structurally related systems.

  6. Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

    Directory of Open Access Journals (Sweden)

    B. Ervens

    2010-09-01

    Full Text Available This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions that form secondary organic aerosol (SOA in aqueous aerosol particles. Recent laboratory results on glyoxal reactions are reviewed and a consistent set of empirical reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreversible reactions in aqueous inorganic and water-soluble organic aerosol seeds. Products of these processes include (a oligomers, (b nitrogen-containing products, (c photochemical oxidation products with high molecular weight. These additional aqueous phase processes enhance the SOA formation rate in particles and yield two to three orders of magnitude more SOA than predicted based on reaction schemes for dilute aqueous phase (cloud chemistry for the same conditions (liquid water content, particle size.

    The application of the new module including detailed chemical processes in a box model demonstrates that both the time scale to reach aqueous phase equilibria and the choice of rate constants of irreversible reactions have a pronounced effect on the predicted atmospheric relevance of SOA formation from glyoxal. During day time, a photochemical (most likely radical-initiated process is the major SOA formation pathway forming ∼5 μg m−3 SOA over 12 h (assuming a constant glyoxal mixing ratio of 300 ppt. During night time, reactions of nitrogen-containing compounds (ammonium, amines, amino acids contribute most to the predicted SOA mass; however, the absolute predicted SOA masses are reduced by an order of magnitude as compared to day time production. The contribution of the ammonium reaction significantly increases in moderately acidic or neutral particles (5 < pH < 7.

    Glyoxal uptake into ammonium sulfate seed under dark conditions can be represented with a single reaction parameter keffupt that does not depend

  7. Glyoxal Vertical Column Retrievals from the GOME-2/METOP-A European Spaceborne Sensor and Comparisons with the IMAGESv2 CT Model

    Science.gov (United States)

    Lerot, C.; Stavrakou, T.; de Smedt, I.; Muller, J. J.; van Roozendael, M.

    2010-12-01

    Glyoxal is mostly formed in our atmosphere as an intermediate product in the oxidation of non-methane volatile organic compounds (NMVOC). To a lesser extent, it is also directly emitted from biomass burning events and from fossil- and bio-fuel combustion processes. Several studies have estimated its atmospheric lifetime to 2-3 hours, which makes of glyoxal a good indicator for short-lived NMVOC emissions. Glyoxal is also known to be a precursor for secondary organic aerosols and could help to reduce the gap between observations and models for organic aerosol abundances. The three absorption bands of glyoxal in the visible region allow applying the DOAS (Differential Optical Absorption Spectroscopy) technique to retrieve its vertical column densities from the nadir backscattered light measurements performed by the GOME-2 satellite sensor. This instrument has been launched in October 2006 on board of the METOP-A platform and is characterized by a spatial resolution of 80 km x 40 km and by a large scan-width (1920 km) leading to a global coverage reached in 1.5 day. The GOME-2 glyoxal retrieval algorithm developed at BIRA-IASB accounts for the liquid water absorption and provides geophysically sound column measurements not only over lands but also over oceanic regions where spectral interferences between glyoxal and liquid water have been shown to be significant. The a-priori glyoxal vertical distribution required for the slant to vertical column conversion is provided by the global chemical transport model IMAGESv2. The highest glyoxal vertical column densities are mainly observed in continental tropical regions, while the mid-latitude columns strongly depend on the season with maximum values during warm months. An anthropogenic signature is also observed in highly populated regions of Asia. Comparisons with glyoxal columns simulated with IMAGESv2 in different regions of the world generally point to a missing glyoxal source in current models. As already reported from

  8. The influence of natural and anthropogenic secondary sources on the glyoxal global distribution

    International Nuclear Information System (INIS)

    Myriokefalitakis, S.; Kanakidou, M.; Vrekoussis, M.; Wittrock, F.; Richter, A.; Burrows, J.P.; Tsigaridis, K.; Bruhl, C.; Volkamer, R.

    2008-01-01

    Glyoxal, the smallest dicarbonyl, which has recently been observed from space, is expected to provide indications on volatile organic compounds (VOC) oxidation and secondary aerosol formation in the troposphere. Glyoxal (CHOCHO) is known to be mostly of natural origin and is produced during biogenic VOC oxidation. However, a number of anthropogenically emitted hydrocarbons, like acetylene and aromatics, have been positively identified as CHOCHO precursors. The present study investigates the contribution of pollution to the CHOCHO levels by taking into account the secondary chemical formation of CHOCHO from precursors emitted from biogenic, anthropogenic and biomass burning sources. The impact of potential primary land emissions of CHOCHO is also investigated. A global 3-dimensional chemistry transport model of the troposphere (TM4-ECPL) able to simulate the gas phase chemistry coupled with all major aerosol components is used. The secondary anthropogenic contribution from fossil fuel and industrial VOCs emissions oxidation to the CHOCHO columns is found to reach 20-70% in the industrialized areas of the Northern Hemisphere and 3-20% in the tropics. This secondary CHOCHO source is on average three times larger than that from oxidation of VOCs from biomass burning sources. The chemical production of CHOCHO is calculated to equal to about 56 Tgy -1 with 70% being produced from biogenic hydrocarbons oxidation, 17% from acetylene, 11% from aromatic chemistry and 2% from ethene and propene. CHOCHO is destroyed in the troposphere primarily by reaction with OH radicals (23%) and by photolysis (63%), but it is also removed from the atmosphere through wet (8%) and dry deposition (6%). Potential formation of secondary organic aerosol through CHOCHO losses on/in aerosols and clouds is neglected here due to the significant uncertainties associated with the underlying chemistry. The global annual mean CHOCHO burden and lifetime in the model domain are estimated to be 0.02 Tg

  9. The influence of natural and anthropogenic secondary sources on the glyoxal global distribution

    Directory of Open Access Journals (Sweden)

    S. Myriokefalitakis

    2008-08-01

    Full Text Available Glyoxal, the smallest dicarbonyl, which has recently been observed from space, is expected to provide indications on volatile organic compounds (VOC oxidation and secondary aerosol formation in the troposphere. Glyoxal (CHOCHO is known to be mostly of natural origin and is produced during biogenic VOC oxidation. However, a number of anthropogenically emitted hydrocarbons, like acetylene and aromatics, have been positively identified as CHOCHO precursors. The present study investigates the contribution of pollution to the CHOCHO levels by taking into account the secondary chemical formation of CHOCHO from precursors emitted from biogenic, anthropogenic and biomass burning sources. The impact of potential primary land emissions of CHOCHO is also investigated. A global 3-dimensional chemistry transport model of the troposphere (TM4-ECPL able to simulate the gas phase chemistry coupled with all major aerosol components is used.

    The secondary anthropogenic contribution from fossil fuel and industrial VOCs emissions oxidation to the CHOCHO columns is found to reach 20–70% in the industrialized areas of the Northern Hemisphere and 3–20% in the tropics. This secondary CHOCHO source is on average three times larger than that from oxidation of VOCs from biomass burning sources. The chemical production of CHOCHO is calculated to equal to about 56 Tg y−1 with 70% being produced from biogenic hydrocarbons oxidation, 17% from acetylene, 11% from aromatic chemistry and 2% from ethene and propene. CHOCHO is destroyed in the troposphere primarily by reaction with OH radicals (23% and by photolysis (63%, but it is also removed from the atmosphere through wet (8% and dry deposition (6%. Potential formation of secondary organic aerosol through CHOCHO losses on/in aerosols and clouds is neglected here due to the significant uncertainties associated with the underlying chemistry. The global annual mean CHOCHO burden and lifetime in the model

  10. An antibody that confers plant disease resistance targets a membrane-bound glyoxal oxidase in Fusarium.

    Science.gov (United States)

    Song, Xiu-Shi; Xing, Shu; Li, He-Ping; Zhang, Jing-Bo; Qu, Bo; Jiang, Jin-He; Fan, Chao; Yang, Peng; Liu, Jin-Long; Hu, Zu-Quan; Xue, Sheng; Liao, Yu-Cai

    2016-05-01

    Plant germplasm resources with natural resistance against globally important toxigenic Fusarium are inadequate. CWP2, a Fusarium genus-specific antibody, confers durable resistance to different Fusarium pathogens that infect cereals and other crops, producing mycotoxins. However, the nature of the CWP2 target is not known. Thus, investigation of the gene coding for the CWP2 antibody target will likely provide critical insights into the mechanism underlying the resistance mediated by this disease-resistance antibody. Immunoblots and mass spectrometry analysis of two-dimensional electrophoresis gels containing cell wall proteins from Fusarium graminearum (Fg) revealed that a glyoxal oxidase (GLX) is the CWP2 antigen. Cellular localization studies showed that GLX is localized to the plasma membrane. This GLX efficiently catalyzes hydrogen peroxide production; this enzymatic activity was specifically inhibited by the CWP2 antibody. GLX-deletion strains of Fg, F. verticillioides (Fv) and F. oxysporum had significantly reduced virulence on plants. The GLX-deletion Fg and Fv strains had markedly reduced mycotoxin accumulation, and the expression of key genes in mycotoxin metabolism was downregulated. This study reveals a single gene-encoded and highly conserved cellular surface antigen that is specifically recognized by the disease-resistance antibody CWP2 and regulates both virulence and mycotoxin biosynthesis in Fusarium species. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Laser induced fluorescence and phosphorescence of matrix isolated glyoxal - Evidence for exciplex formation in the A 1Au and a 3Au states

    Science.gov (United States)

    Van Ijzendoorn, L. J.; Baas, F.; Koernig, S.; Greenberg, J. M.; Allamandola, L. J.

    1986-01-01

    Laser-induced fluorescence and phosphorescence as well as infrared and visible absorption spectra of glyoxal in Ar, N2, and CO matrices are presented and analyzed. Glyoxal in its first excited electronic state is shown to form an exciplex with its nearest neighbors in all three matrices, and transitions normally forbidden dominate the emission spectra. The spectral characteristics of these complexes are similar to those of the Ar-glyoxal complex found in supersonic beam experiments. Due to the matrix cage effect, no vibrational predissociation is observed. The phosphorescence lifetime is determined and an upper limit is given for the fluorescence lifetime. This, in combination with the relative intensities of fluorescence and phosphorescence, can be used to place limits on the quantum yields of the various relaxation processes.

  12. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.

    Science.gov (United States)

    Sumner, Andrew J; Woo, Joseph L; McNeill, V Faye

    2014-10-21

    The reactive uptake of glyoxal by atmospheric aerosols is believed to be a significant source of secondary organic aerosol (SOA). Several recent laboratory studies have been performed with the goal of characterizing this process, but questions remain regarding the effects of photochemistry on SOA growth. We applied GAMMA (McNeill et al. Environ. Sci. Technol. 2012, 46, 8075-8081), a photochemical box model with coupled gas-phase and detailed aqueous aerosol-phase chemistry, to simulate aerosol chamber studies of SOA formation by the uptake of glyoxal by wet aerosol under dark and irradiated conditions (Kroll et al. J. Geophys. Res. 2005, 110 (D23), 1-10; Volkamer et al. Atmos. Chem. Phys. 2009, 9, 1907-1928; Galloway et al. Atmos. Chem. Phys. 2009, 9, 3331- 306 3345 and Geophys. Res. Lett. 2011, 38, L17811). We find close agreement between simulated SOA growth and the results of experiments conducted under dark conditions using values of the effective Henry's Law constant of 1.3-5.5 × 10(7) M atm(-1). While irradiated conditions led to the production of some organic acids, organosulfates, and other oxidation products via well-established photochemical mechanisms, these additional product species contribute negligible aerosol mass compared to the dark uptake of glyoxal. Simulated results for irradiated experiments therefore fell short of the reported SOA mass yield by up to 92%. This suggests a significant light-dependent SOA formation mechanism that is not currently accounted for by known bulk photochemistry, consistent with recent laboratory observations of SOA production via photosensitizer chemistry.

  13. Formaldehyde and Glyoxal Measurements as Tracers of Oxidation Chemistry in the Amazon Basin

    Science.gov (United States)

    Thayer, M. P.; Dorris, M. R.; Keutsch, F. N.; Springston, S. R.; Jimenez, J. L.; Palm, B. B.; Seco, R.; Kim, S.; Yee, L.; Wernis, R. A.; Goldstein, A. H.; Isaacman-VanWertz, G. A.; Liu, Y.; Martin, S. T.

    2015-12-01

    Formaldehyde (HCHO) and glyoxal (CHOCHO) are important tracers for oxidative processes in the atmosphere such as oxidation of volatile organic compounds (VOCs) and production of HO2 radicals by photolysis or reaction with OH. Products of VOC oxidation and radical cycling, such as aerosols and tropospheric ozone, have direct impacts on human health. During the Green Ocean Amazon campaign (GoAmazon2014/5), HCHO and CHOCHO measurements were obtained together with OH, RO2+HO2, CO, CO2, O3, NOx, (o)VOCs, and aerosol particle size distribution. HCHO concentration was measured by the Madison FIber Laser-Induced Fluorescence (FILIF) instrument, while CHOCHO concentrations were collected by the Madison Laser-Induced Phosphorescence (Mad-LIP) instrument. Here we present data collected during 2014 at the T3 field site, 60 km to the west of Manaus, Brazil (3°12'47.82"S, 60°35'55.32"W). The T3 GoAmazon site varies between sampling strictly pristine (biogenic) emissions and influence from anthropogenic emissions from Manaus, depending on meteorological conditions. Here we present overall trends and regimes observed during the campaign, with a focus on HCHO, CHOCHO, and related species within the context of VOC oxidation and secondary pollutant production. We acknowledge the support from the Central Office of the Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA), the Instituto Nacional de Pesquisas da Amazonia (INPA), and the Universidade do Estado do Amazonia (UEA). The work was conducted under 001030/2012-4 of the Brazilian National Council for Scientific and Technological Development (CNPq). Data were collected from the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a U.S. Department of Energy Office of Science user facility sponsored by the Office of Biological and Environmental Research. Additionally, we acknowledge logistical support from the ARM Climate Research Facility. Additional funding from: NSF GRFP DGE-1256259, and NSF AGS-1051338

  14. A novel source of methylglyoxal and glyoxal in retina: implications for age-related macular degeneration.

    Science.gov (United States)

    Yoon, Kee Dong; Yamamoto, Kazunori; Ueda, Keiko; Zhou, Jilin; Sparrow, Janet R

    2012-01-01

    Aging of retinal pigment epithelial (RPE) cells of the eye is marked by accumulations of bisretinoid fluorophores; two of the compounds within this lipofuscin mixture are A2E and all-trans-retinal dimer. These pigments are implicated in pathological mechanisms involved in some vision-threatening disorders including age-related macular degeneration (AMD). Studies have shown that bisretinoids are photosensitive compounds that undergo photooxidation and photodegradation when irradiated with short wavelength visible light. Utilizing ultra performance liquid chromatography (UPLC) with electrospray ionization mass spectrometry (ESI-MS) we demonstrate that photodegradation of A2E and all-trans-retinal dimer generates the dicarbonyls glyoxal (GO) and methylglyoxal (MG), that are known to modify proteins by advanced glycation endproduct (AGE) formation. By extracellular trapping with aminoguanidine, we established that these oxo-aldehydes are released from irradiated A2E-containing RPE cells. Enzyme-linked immunosorbant assays (ELISA) revealed that the substrate underlying A2E-containing RPE was AGE-modified after irradiation. This AGE deposition was suppressed by prior treatment of the cells with aminoguanidine. AGE-modification causes structural and functional impairment of proteins. In chronic diseases such as diabetes and atherosclerosis, MG and GO modify proteins by non-enzymatic glycation and oxidation reactions. AGE-modified proteins are also components of drusen, the sub-RPE deposits that confer increased risk of AMD onset. These results indicate that photodegraded RPE bisretinoid is likely to be a previously unknown source of MG and GO in the eye.

  15. A neutral glyoxal gel electrophoresis method for the detection and semi-quantitation of DNA single-strand breaks.

    Science.gov (United States)

    Pachkowski, Brian; Nakamura, Jun

    2013-01-01

    Single-strand breaks are among the most prevalent lesions found in DNA. Traditional electrophoretic methods (e.g., the Comet assay) used for investigating these lesions rely on alkaline conditions to denature DNA prior to electrophoresis. However, the presence of alkali-labile sites in DNA can result in the introduction of additional single-strand breaks upon alkali treatment during DNA sample processing. Herein, we describe a neutral glyoxal gel electrophoresis assay which is based on alkali-free DNA denaturation and is suitable for qualitative and semi-quantitative analyses of single-strand breaks in DNA isolated from different organisms.

  16. Heterologous Expression of Phanerochaete chrysoporium Glyoxal Oxidase and its Application for the Coupled Reaction with Manganese Peroxidase to Decolorize Malachite Green

    Science.gov (United States)

    Son, Yu-Lim; Kim, Hyoun-Young; Thiyagarajan, Saravanakumar; Xu, Jing Jing

    2012-01-01

    cDNA of the glx1 gene encoding glyoxal oxidase (GLX) from Phanerochaete chrysosporium was isolated and expressed in Pichia pastoris. The recombinant GLX (rGLX) produces H2O2 over 7.0 nmol/min/mL using methyl glyoxal as a substrate. Use of rGLX as a generator of H2O2 improved the coupled reaction with recombinant manganese peroxidase resulting in decolorization of malachite green up to 150 µM within 90 min. PMID:23323052

  17. Effect of coffee filtrate, methylglyoxal, glyoxal, and caffeine on Salmonella typhimurium and S. enteritidis survival in ground chicken breasts.

    Science.gov (United States)

    Maletta, Anne B; Were, Lilian M

    2012-02-01

    The antimicrobial effect of roasted coffee filtrate (CF) and dicarbonyls on Salmonella Typhimurium and Salmonella Enteritidis in raw ground chicken breast meat (GCB) was investigated. Coffee was brewed and filtered before addition to GCB. Coffee filtrate with and without added caffeine, methylglyoxal, and/or glyoxal was added to GCB and then inoculated with Salmonella Typhimurium and Salmonella Enteritidis. Ground chicken samples were stomached with peptone water at days 1, 3, 5, and 7, plated on XLD agar with a TSA overlay, and Salmonella survivors were enumerated. CF alone gave less than a 1 Log reduction in all runs compared to control GCB with no treatment. Methylglyoxal (2.28 mg/g GCB) had the greatest antimicrobial effect against Salmonella Typhimurium and Salmonella Enteritidis in GCB with average Log reductions of 2.27 to 3.23, respectively, over the 7 d duration of the experiment compared to control GCB with no treatment. A 1 Log reduction was observed in GCB with CF, 0.93 mg glyoxal, and 1 mg caffeine/g chicken compared to the control and GCB with only CF. Heat-produced coffee compounds could potentially reduce Salmonella in retail ground chicken and chicken products. © 2011 Institute of Food Technologists®

  18. Multi-year MAX-DOAS observations of formaldehyde and glyoxal in Phimai, Thailand

    Science.gov (United States)

    Hoque, H. M. S.; Irie, H.; Shimizu, A.; Damiani, A.

    2017-12-01

    The first long-term Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations were performed in Phimai, Thailand (15.18 °N, 102.56 °E), a site in Southeast Asia, where ground-based remote sensing observations of trace gases and aerosols are very limited. Vertical profile information of eight components was retrieved independently using the Japanese MAX-DOAS profile retrieval algorithm, version 2 (JM2). Here we focus on the two organic compounds, formaldehyde (HCHO) and glyoxal (CHOCHO), and study their volume mixing ratio data in the lowest layer (0-1 km) of our retrieved vertical profiles. In addition to the systematic climatological analysis of HCHO and CHOCHO, we also report the ratio of CHOCHO to HCHO, RGF, which is suggested to be an important tracer of changes of the volatile organic compound (VOC) emission sources. Higher concentration of HCHO and CHOCHO was observed during the dry season (January-April), whereas the concentration level was close to the background level during the wet season (June-September). Such enhancements correspond well the influence of the pronounced seasonal variation of biomass burning activity. The RGF for the Phimai site was estimated to be 0.030±0.010. Our estimated RGF during the dry season ( 0.025±0.008) was lower than that in the wet season ( 0.033±0.012). This change in the RGF is consistent with the satellite retrievals, suggesting a higher RGF for strong biogenic emission sources. While the site can be characterized as environment with a low nitrogen dioxide (NO2) concentration level ( 1 ppbv), the impact of biomass burning on the lower RGF during the dry season was confirmed by occasional enhancement of the NO2 level as an anthropogenic tracer. The results are further supported by additional error analyses for the cloud influence. Our findings are expected to be used to reduce model uncertainties related to VOC chemistry and secondary organic aerosol (SOA) formation

  19. DNA synthesis in HeLa cells and isolated nuclei after treatment with an inhibitor of spermidine synthesis, methyl glyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Krokan, H; Eriksen, A

    1977-02-01

    Addition of methyl glyoxal bis(guanylhydrazone) to HeLa S3 suspension cultures resulted in increased putrescine levels and decreased spermidine and spermine levels preceding a drop in incorporation of [3H]thymidine, [3H]uridine and [14C]leucine into macromolecules. When putrescine, spermidine, spermine or cadaverine was added simultaneously with methyl glyoxal bis(guanylhydrazone), the drug had no detectable effect on the synthesis of macromolecules. In nuclei isolated from cells treated with methyl glyoxal bis(guanylhydrazone) the reduction in the rate of DNA synthesis was equal to the reduction of [3H]thymidine incorporation in the corresponding whole cells. The capability of the nuclei to synthesize DNA could not be restored by adding spermidine or spermine to the system in vitro. The rate of DNA chain elongation was only reduced slightly by methyl glyoxal bis(guanylhydrazone) indicating that decreased levels of spermidine and spermine lead to a decrease in the number of replication units active in DNA synthesis within each cell.

  20. Laser induced fluorescence and phosphorescence of matrix isolated glyoxal: Evidence for exciplex formation in the  1Au and  3Au states

    NARCIS (Netherlands)

    IJzendoorn, van L.J.; Allamandola, L.J.; Baas, F.; Koernig, S.; Greenberg, J.M.

    1986-01-01

    Laser-induced fluorescence (¿1Au¿¿1Ag) and phosphorescence (¿3Au¿¿1Ag) as well as absorption and excitation spectra of glyoxal in Ar, N2, and CO matrices have been measured at 12 K. Supplementary infrared absorption spectra have also been taken. Although the dominant band in the absorption and

  1. H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase.

    Science.gov (United States)

    Hammel, K E; Mozuch, M D; Jensen, K A; Kersten, P J

    1994-11-15

    Oxidative C alpha-C beta cleavage of the arylglycerol beta-aryl ether lignin model 1-(3,4-dimethoxy-phenyl)-2-phenoxypropane-1,3-diol (I) by Phanerochaete chrysosporium lignin peroxidase in the presence of limiting H2O2 was enhanced 4-5-fold by glyoxal oxidase from the same fungus. Further investigation showed that each C alpha-C beta cleavage reaction released 0.8-0.9 equiv of glycolaldehyde, a glyoxal oxidase substrate. The identification of glycolaldehyde was based on 13C NMR spectrometry of reaction product obtained from beta-, gamma-, and beta,gamma-13C-substituted I, and quantitation was based on an enzymatic NADH-linked assay. The oxidation of glycolaldehyde by glyoxal oxidase yielded 0.9 oxalate and 2.8 H2O2 per reaction, as shown by quantitation of oxalate as 2,3-dihydroxyquinoxaline after derivatization with 1,2-diaminobenzene and by quantitation of H2O2 in coupled spectrophotometric assays with veratryl alcohol and lignin peroxidase. These results suggest that the C alpha-C beta cleavage of I by lignin peroxidase in the presence of glyoxal oxidase should regenerate as many as 3 H2O2. Calculations based on the observed enhancement of LiP-catalyzed C alpha-C beta cleavage by glyoxal oxidase showed that approximately 2 H2O2 were actually regenerated per cleavage of I when both enzymes were present. The cleavage of arylglycerol beta-aryl ether structures by ligninolytic enzymes thus recycles H2O2 to support subsequent cleavage reactions.

  2. Determination of gaseous and particulate carbonyls (glycolaldehyde, hydroxyacetone, glyoxal, methylglyoxal, nonanal and decanal in the atmosphere at Mt. Tai

    Directory of Open Access Journals (Sweden)

    K. Kawamura

    2013-05-01

    Full Text Available Gaseous and particulate semi-volatile carbonyl compounds were determined every three hours in the atmosphere of Mount Tai (elevation, 1534 m in the North China Plain during 2–5, 23–24 and 25 June 2006 under clear sky conditions. Using a two-step filter cartridge in a series, particulate carbonyls were first collected on a quartz filter and then gaseous carbonyls were collected on a quartz filter impregnated with O-benzylhydroxylamine (BHA. After the two-step derivatization with BHA and N,O-Bis(trimethylsilyltrifluoroacetamide (BSTFA, carbonyl derivatives were measured using a gas chromatography. The gaseous concentrations were obtained as follow: glycolaldehyde (range 0–826 ng m−3, average 303 ng m−3, hydroxyacetone (0–579 ng m−3, 126 ng m−3, glyoxal (46–1200 ng m−3, 487 ng m−3, methylglyoxal (88–2690 ng m−3, 967 ng m−3, n-nonanal (0–500 ng m−3, 89 ng m−3, and n-decanal (0–230 ng m−3, 39 ng m−3. These concentrations are among the highest ever reported in the urban and forest atmosphere. We found that gaseous α-dicarbonyls (glyoxal and methylglyoxal are more than 20 times more abundant than particulate carbonyls and that glycolaldehyde is one order of magnitude more abundant than in aerosol phase. In contrast, hydroxyacetone and normal aldehydes (nonanal and decanal are equally present in both phases. Time-resolved variations of carbonyls did not show any a clear diurnal pattern, except for hydroxyacetone. We found that glyoxal, methylglyoxal and glycolaldehyde positively correlated with levoglucosan (a tracer of biomass burning, suggesting that a contribution from field burning of agricultural wastes (wheat crops is significant for the bifunctional carbonyls in the atmosphere of Mt. Tai. Upward transport of the pollutants to the mountaintop from the low lands in the North China Plain is a major process to control the distributions of carbonyls in the upper atmosphere over Mt. Tai.

  3. Formation yields of glyoxal and methylglyoxal from the gas-phase OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes as a function of NO2 concentration.

    Science.gov (United States)

    Nishino, Noriko; Arey, Janet; Atkinson, Roger

    2010-09-23

    Aromatic hydrocarbons comprise 20% of non-methane volatile organic compounds in urban areas and are transformed mainly by atmospheric chemical reactions with OH radicals during daytime. In this work we have measured the formation yields of glyoxal and methylglyoxal from the OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes over the NO2 concentration range (0.2-10.3) × 1013 molecules cm(-3). For toluene, o-, m-, and p-xylene, and 1,3,5-trimethylbenzene, the yields showed a dependence on NO2, decreasing with increasing NO2 concentration and with no evidence for formation of glyoxal or methylglyoxal from the reactions of the OH-aromatic adducts with NO2. In contrast, for 1,2,3- and 1,2,4-trimethylbenzene the glyoxal and methylglyoxal formation yields were independent of the NO2 concentration within the experimental uncertainties. Extrapolations of our results to NO2 concentrations representative of the ambient atmosphere results in the following glyoxal and methylglyoxal yields, respectively: for toluene, 26.0 ± 2.2% and 21.5 ± 2.9%; for o-xylene, 12.7 ± 1.9% and 33.1 ± 6.1%; for m-xylene, 11.4 ± 0.7% and 51.5 ± 8.5%; for p-xylene, 38.9 ± 4.7% and 18.7 ± 2.2%; for 1,2,3-trimethylbenzene, 4.7 ± 2.4% and 15.1 ± 3.3%; for 1,2,4-trimethylbenzene, 8.7 ± 1.6% and 27.2 ± 8.1%; and for 1,3,5-trimethylbenzene, 58.1 ± 5.3% (methylglyoxal).

  4. Fire emissions constrained by the synergistic use of formaldehyde and glyoxal SCIAMACHY columns in a two-compound inverse modelling framework

    Science.gov (United States)

    Stavrakou, T.; Muller, J.; de Smedt, I.; van Roozendael, M.; Vrekoussis, M.; Wittrock, F.; Richter, A.; Burrows, J.

    2008-12-01

    Formaldehyde (HCHO) and glyoxal (CHOCHO) are carbonyls formed in the oxidation of volatile organic compounds (VOCs) emitted by plants, anthropogenic activities, and biomass burning. They are also directly emitted by fires. Although this primary production represents only a small part of the global source for both species, yet it can be locally important during intense fire events. Simultaneous observations of formaldehyde and glyoxal retrieved from the SCIAMACHY satellite instrument in 2005 and provided by the BIRA/IASB and the Bremen group, respectively, are compared with the corresponding columns simulated with the IMAGESv2 global CTM. The chemical mechanism has been optimized with respect to HCHO and CHOCHO production from pyrogenically emitted NMVOCs, based on the Master Chemical Mechanism (MCM) and on an explicit profile for biomass burning emissions. Gas-to-particle conversion of glyoxal in clouds and in aqueous aerosols is considered in the model. In this study we provide top-down estimates for fire emissions of HCHO and CHOCHO precursors by performing a two- compound inversion of emissions using the adjoint of the IMAGES model. The pyrogenic fluxes are optimized at the model resolution. The two-compound inversion offers the advantage that the information gained from measurements of one species constrains the sources of both compounds, due to the existence of common precursors. In a first inversion, only the burnt biomass amounts are optimized. In subsequent simulations, the emission factors for key individual NMVOC compounds are also varied.

  5. Ammonium addition (and aerosol pH) has a dramatic impact on the volatility and yield of glyoxal secondary organic aerosol.

    Science.gov (United States)

    Ortiz-Montalvo, Diana L; Häkkinen, Silja A K; Schwier, Allison N; Lim, Yong B; McNeill, V Faye; Turpin, Barbara J

    2014-01-01

    Glyoxal is an important precursor to secondary organic aerosol (SOA) formed through aqueous chemistry in clouds, fogs, and wet aerosols, yet the gas-particle partitioning of the resulting mixture is not well understood. This work characterizes the volatility behavior of the glyoxal precursor/product mix formed after aqueous hydroxyl radical oxidation and droplet evaporation under cloud-relevant conditions for 10 min, thus aiding the prediction of SOA via this pathway (SOACld). This work uses kinetic modeling for droplet composition, droplet evaporation experiments and temperature-programmed desorption aerosol-chemical ionization mass spectrometer analysis of gas-particle partitioning. An effective vapor pressure (p'L,eff) of ∼10(-7) atm and an enthalpy of vaporization (ΔHvap,eff) of ∼70 kJ/mol were estimated for this mixture. These estimates are similar to those of oxalic acid, which is a major product. Addition of ammonium until the pH reached 7 (with ammonium hydroxide) reduced the p'L,eff to 80 kJ/mol, at least in part via the formation of ammonium oxalate. pH 7 samples behaved like ammonium oxalate, which has a vapor pressure of ∼10(-11) atm. We conclude that ammonium addition has a large effect on the gas-particle partitioning of the mixture, substantially enhancing the yield of SOACld from glyoxal.

  6. Secondary organic aerosol formation from semi- and intermediate-volatility organic compounds and glyoxal: Relevance of O/C as a tracer for aqueous multiphase chemistry

    Science.gov (United States)

    Waxman, Eleanor M.; Dzepina, Katja; Ervens, Barbara; Lee-Taylor, Julia; Aumont, Bernard; Jimenez, Jose L.; Madronich, Sasha; Volkamer, Rainer

    2013-03-01

    The role of aqueous multiphase chemistry in the formation of secondary organic aerosol (SOA) remains difficult to quantify. We investigate it here by testing the rapid formation of moderate oxygen-to-carbon (O/C) SOA during a case study in Mexico City. A novel laboratory-based glyoxal-SOA mechanism is applied to the field data, and explains why less gas-phase glyoxal mass is observed than predicted. Furthermore, we compare an explicit gas-phase chemical mechanism for SOA formation from semi- and intermediate-volatility organic compounds (S/IVOCs) with empirical parameterizations of S/IVOC aging. The mechanism representing our current understanding of chemical kinetics of S/IVOC oxidation combined with traditional SOA sources and mixing of background SOA underestimates the observed O/C by a factor of two at noon. Inclusion of glyoxal-SOA with O/C of 1.5 brings O/C predictions within measurement uncertainty, suggesting that field observations can be reconciled on reasonable time scales using laboratory-based empirical relationships for aqueous chemistry.

  7. Analysis of glyoxal, methylglyoxal and dimethylglyoxal in beverages and edible products by mekc using meso-stilbenediamine as derivatizing reagent

    International Nuclear Information System (INIS)

    Mirza, M.; Chaudhary, M.A.; Khuhawar, M.Y.; Arain, R.

    2013-01-01

    Summary: The reactive alpha-diketones; glyoxal (Go), methylglyoxal (MGo) and dimethyglyoxal (DMGo) were determined from wines, beers, whisky, coffee, tea, soy sauce, juices and yoghurt by micellar electrokinetic chromatography (MEKC) using meso-stilbenediamine (meso-SD) as derivatizing reagent. The separation was carried out from uncoated fused silica capillary with effective length 39 cm x 75 micro m internal diameter (id), applied voltage 20 kV and photodiode detection at 228 nm. SDS was used as micellar medium at pH 8, and sodium tetraborate (0.1M) as buffer. The amounts of Go, MGo, and DMGo in Pakistani wines and beers were found within 1.31-6.49 micro g /mL with RSD 1.2 -3.7 %. The amount of Go, MGo and DMGo in food products (Brewed Coffee, Instant Coffee, Instant Tea, Soy sauce, Orange juice , Apple juice and Yoghurt) found were within 0.043-3.42 micro g /mL or micro g /g with RSD 1.1-3.9 %. The analysis was repeatable and reproducible using MEKC. Samples of wine and apple juice were also analyzed by using standard addition method and recoveries were calculated within 96.3-98.5 % with RSD 1.8-2.6 %. (author)

  8. Analysis, distribution, and dietary exposure of glyoxal and methylglyoxal in cookies and their relationship with other heat-induced contaminants.

    Science.gov (United States)

    Arribas-Lorenzo, Gema; Morales, Francisco J

    2010-03-10

    Thermal processing of food leads to the formation of dicarbonyls such as glyoxal (GO) and methylglyoxal (MGO), which are potentially harmful because they are precursors of advanced glycation end products (AGEs). GO and MGO formation was examined during the baking process of cookies as cookies are a widely distributed food commodity in Western diets. GO and MGO were chromatographically analyzed after employment of an improved method of derivatization with orthophenylenediamine to produce stable quinoxaline derivatives. Sample extraction, cleanup, and chromatographic conditions were evaluated to provide an in-house validated procedure for GO and MGO analysis in cookies. Quantification limits were set at 1.5 and 2 mg/kg for GO and MGO, respectively, with an average recovery of 103% and a calculated precision lower than 7%. Studies were carried out both on laboratory-scale cookies under controlled conditions and on commercial samples as well. GO and MGO values in commercial cookies ranged from 4.8 to 26.0 mg/kg and from 3.7 to 81.4 mg/kg, respectively. Commercial cookies made from ammonium bicarbonate and fructose showed the highest levels of MGO. Dicarbonyls were rapidly formed on the upper side of the cookie regardless of the shape or thickness of the samples, confirming there was a surface effect. Under controlled baking conditions, the formations of GO and MGO were linearly correlated with baking time. MGO formation was related with acrylamide, a heat-processing contaminant, in commercial cookies, but this relationship was not observed for 5-hydroxymethylfurfural. Dietary exposure of the Spanish population to GO and MGO from cookies was estimated to be 213 and 216 microg/person/day, respectively.

  9. A Biosensor Based on Immobilization of Horseradish Peroxidase in Chitosan Matrix Cross-linked with Glyoxal for Amperometric Determination of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Gui-Xiang Wang

    2005-05-01

    Full Text Available An amperometric biosensor for hydrogen peroxide (H2O2 was developed viaan easy and effective enzyme immobilization method with the “sandwich” configuration:ferrocene-chitosan: HRP: chitosan-glyoxal using a glassy carbon electrode as the basicelectrode. In order to prevent the loss of immobilized HRP under optimized conditions,the biosensor surface was cross-linked with glyoxal. Ferrocene was selected andimmobilized on the glassy carbon electrode surface as a mediator. The fabricationprocedure was systematically optimized to improve the biosensor performance. Thebiosensor had a fast response of less than 10 s to H2O2, with a linear range of 3.5×10-5 to1.1×10-3 M, and a detection limit of 8.0×10-6 M based on S/N = 3.

  10. GOME-2 observations of oxygenated VOCs: what can we learn from the ratio glyoxal to formaldehyde on a global scale?

    Directory of Open Access Journals (Sweden)

    M. Vrekoussis

    2010-11-01

    Full Text Available Collocated data sets of glyoxal (CHO.CHO and formaldehyde (HCHO were retrieved for the first time from measurements of the Global Ozone Monitoring Experiment-2 (GOME-2 during the first two years of operation in 2007 and 2008. Both oxygenated Volatile Organic Compounds, OVOC, are key intermediate species produced during the oxidation of precursor hydrocarbons. Their short lifetime of a few hours in the lower troposphere links them to emission sources and makes them useful tracers of photochemical activity. The global composite maps of GOME-2 HCHO and CHO.CHO have strong similarities confirming their common atmospheric and/or surface sources. The highest column amounts of these OVOCs are recorded over regions with enhance biogenic emissions (e.g. tropical forests in South America, Africa and Indonesia. Enhanced OVOC values are also present over areas of anthropogenic activity and biomass burning (e.g. over China, N. America, Europe and Australia. The ratio of CHO.CHO to HCHO, RGF, has been used, for the first time on a global scale, to classify the sources according to biogenic and/or anthropogenic emissions of the precursors; RGF between 0.040 to 0.060 point to the existence of biogenic emissions with the highest values being observed at the highest Enhanced Vegetation Index, EVI. RGFs below 0.040 are indicative of anthropogenic emissions and associated with high levels of NO2. This decreasing tendency of RGF with increasing NO2 is also observed when analyzing data for individual large cities, indicating that it is a common feature. The results obtained for RGF from GOME-2 data are compared with the findings based on regional SCIAMACHY observations showing good agreement. This is explained by the excellent correlation of the global retrieved column amounts of CHO.CHO and HCHO from the GOME-2 and SCIAMACHY instruments for the period 2007

  11. Identification of light absorbing oligomers from glyoxal and methylglyoxal aqueous processing: a comparative study at the molecular level

    Science.gov (United States)

    Finessi, Emanuela; Hamilton, Jacqueline; Rickard, Andrew; Baeza-Romero, Maria; Healy, Robert; Peppe, Salvatore; Adams, Tom; Daniels, Mark; Ball, Stephen; Goodall, Iain; Monks, Paul; Borras, Esther; Munoz, Amalia

    2014-05-01

    Numerous studies point to the reactive uptake of gaseous low molecular weight carbonyls onto atmospheric waters (clouds/fog droplets and wet aerosols) as an important SOA formation route not yet included in current models. However, the evaluation of these processes is challenging because water provides a medium for a complex array of reactions to take place such as self-oligomerization, aldol condensation and Maillard-type browning reactions in the presence of ammonium salts. In addition to adding to SOA mass, aqueous chemistry products have been shown to include light absorbing, surface-active and high molecular weight oligomeric species, and can therefore affect climatically relevant aerosol properties such as light absorption and hygroscopicity. Glyoxal (GLY) and methylglyoxal (MGLY) are the gaseous carbonyls that have perhaps received the most attention to date owing to their ubiquity, abundance and reactivity in water, with the majority of studies focussing on bulk physical properties. However, very little is known at the molecular level, in particular for MGLY, and the relative potential of these species as aqueous SOA precursors in ambient air is still unclear. We have conducted experiments with both laboratory solutions and chamber-generated particles to simulate the aqueous processing of GLY and MGLY with ammonium sulphate (AS) under typical atmospheric conditions and investigated their respective aging products. Both high performance liquid chromatography coupled with UV-Vis detection and ion trap mass spectrometry (HPLC-DAD-MSn) and high resolution mass spectrometry (FTICRMS) have been used for molecular identification purposes. Comprehensive gas chromatography with nitrogen chemiluminescence detection (GCxGC-NCD) has been applied for the first time to these systems, revealing a surprisingly high number of nitrogen-containing organics (ONs), with a large extent of polarities. GCxGC-NCD proved to be a valuable tool to determine overall amount and rates of

  12. Similarities in STXM-NEXAFS Spectra of Atmospheric Particles and Secondary Organic Aerosol Generated from Glyoxal, α-Pinene, Isoprene, 1,2,4-Trimethylbenzene, and d-Limonene

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, Kabindra M.; Liu, Shang; Takahama, Satoshi; Russell, Lynn M.; Keutsch, Frank N.; Galloway, Melissa M.; Shilling, John E.; Hiranuma, Naruki; Song, Chen; Kim, Hwajin; Paulson, Suazanne E.; Pfaffenberger, Lisa; Barmet, Peter; Slowik, J. G.; Prevot, A. S. H.; Dommen, J.; Baltensperger, Urs

    2013-02-06

    Functional group composition of particles produced in smog chambers are examined using scanning transmission X-ray microscopy (STXM) with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in order to identify characteristic spectral signatures for secondary organic aerosol (SOA). Glyoxal uptake studies showed absorption for mainly alkyl, carbon-nitrogen (C-N), and carboxylic carbonyl groups. The SOA formed from the photooxidation of α-pinene (with and without isoprene) showed stronger absorptions for alkyl and carbonyl groups than the glyoxal studies. The mass ratio of carbonyl to acid group was larger in α-pinene-only experiments relative to the mixed α-pinene-isoprene experiments. The chamber particle spectra were compared with the ambient particle spectra from multiple field campaigns to understand the potential SOA sources. One hundred nineteen particles from six field campaigns had spectral features that were considered similar to the chamber-SOA particles: MILAGRO-2006 (9 particles), VOCALS-2008 (42 particles), Whistler-2008 (22 particles), Scripps Pier-2009 (9 particles), Bakersfield-2010 (25 particles), and Whistler-2010 (12 particles). These similarities with SOA formed from glyoxal, α-pinene (with and without isoprene), 1,2,4-trimethylbenzene, and limonene provide spectroscopic evidence of SOA products from these precursors in ambient particles.

  13. Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: application to real-time, in situ monitoring of glyoxal and nitrogen dioxide.

    Science.gov (United States)

    Fang, Bo; Zhao, Weixiong; Xu, Xuezhe; Zhou, Jiacheng; Ma, Xiao; Wang, Shuo; Zhang, Weijun; Venables, Dean S; Chen, Weidong

    2017-10-30

    This article describes the development and field application of a portable broadband cavity enhanced spectrometer (BBCES) operating in the spectral range of 440-480 nm for sensitive, real-time, in situ measurement of ambient glyoxal (CHOCHO) and nitrogen dioxide (NO 2 ). The instrument utilized a custom cage system in which the same SMA collimators were used in the transmitter and receiver units for coupling the LED light into the cavity and collecting the light transmitted through the cavity. This configuration realised a compact and stable optical system that could be easily aligned. The dimensions and mass of the optical layer were 676 × 74 × 86 mm 3 and 4.5 kg, respectively. The cavity base length was about 42 cm. The mirror reflectivity at λ = 460 nm was determined to be 0.9998, giving an effective absorption pathlength of 2.26 km. The demonstrated measurement precisions (1σ) over 60 s were 28 and 50 pptv for CHOCHO and NO 2 and the respective accuracies were 5% and 4%. By applying a Kalman adaptive filter to the retrieved concentrations, the measurement precisions of CHOCHO and NO 2 were improved to 8 pptv and 40 pptv in 21 s.

  14. A perspective on SOA generated in aerosol water from glyoxal and methylglyoxal and its impacts on climate-relevant aerosol properties

    Science.gov (United States)

    Sareen, N.; McNeill, V. F.

    2011-12-01

    In recent years, glyoxal and methylglyoxal have emerged to be potentially important SOA precursors with significant implications for climate-related aerosol properties. Here we will discuss how the chemistry of these and similar organic compounds in aerosol water can affect the aerosol optical and cloud formation properties. Aqueous-phase SOA production from glyoxal and methylglyoxal is a potential source of strongly light-absorbing organics, or "brown carbon". We characterized the kinetics of brown carbon formation from these precursors in mixtures of ammonium sulfate and water using UV-Vis spectrophotometry. This mechanism has been incorporated into a photochemical box model with coupled gas phase-aqueous aerosol chemistry. Methylglyoxal and related compounds also may impact an aerosol's ability to act as a cloud condensation nucleus. We recently showed via pendant drop tensiometry and aerosol chamber studies that uptake of methylglyoxal from the gas phase driven by aqueous-phase oligomerization chemistry is a potentially significant, previously unidentified source of surface-active organic material in aerosols. Results from pendant drop tensiometry showed significantly depressed surface tension in methylglyoxal-ammonium sulfate solutions. We further found that ammonium sulfate particles exposed to gas-phase methylglyoxal in a 3.5 m3 aerosol reaction chamber activate into cloud droplets at sizes up to 15% lower at a given supersaturation than do pure ammonium sulfate particles. The observed enhancement exceeds that predicted based on Henry's Law and our measurements of surface tension depression in bulk solutions, suggesting that surface adsorption of methylglyoxal plays a role in determining CCN activity. Methylglyoxal and similar gas-phase surfactants may be an important and overlooked source of enhanced CCN activity in the atmosphere. To characterize the SOA products formed in these solutions, an Aerosol Chemical Ionization Mass Spectrometer (CIMS) was used

  15. Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Pastor-Belda, M; Fernández-García, A J; Campillo, N; Pérez-Cárceles, M D; Motas, M; Hernández-Córdoba, M; Viñas, P

    2017-08-04

    Glyoxal (GO) and methylglyoxal (MGO) are α-oxoaldehydes that can be used as urinary diabetes markers. In this study, their levels were measured using a sample preparation procedure based on salting-out assisted liquid-liquid extraction (SALLE) and dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography-mass spectrometry (GC-MS). The effect of the derivatization reaction with 2,3-diaminonaphthalene, the addition of acetonitrile and sodium chloride to urine, and the DLLME step using the acetonitrile extract as dispersant solvent and carbon tetrachloride as extractant solvent were carefully optimized. Quantification was performed by the internal standard method, using 5-bromo-2-chloroanisole. The intraday and interday precisions were lower than 6%. Limits of detection were 0.12 and 0.06ngmL -1 , and enrichment factors 140 and 130 for GO and MGO, respectively. The concentrations of these α-oxoaldehydes in urine were between 0.9 and 35.8ngg -1 levels (creatinine adjusted). A statistical comparison of the analyte contents of urine samples from non-diabetic and diabetic patients pointed to significant differences (P=0.046, 24 subjects investigated), particularly regarding MGO, which was higher in diabetic patients. The novelty of this study compared with previous procedures lies in the treatment of the urine sample by SALLE based on the addition of acetonitrile and sodium chloride to the urine. The DLLME procedure is performed with a sedimented drop of the extractant solvent, without a surfactant reagent, and using acetonitrile as dispersant solvent. Separation of the analytes was performed using GC-MS detection, being the analytes unequivocal identified. The proposed procedure is the first microextraction method applied to the analysis of urine samples from diabetic and non-diabetic patients that allows a clear differentiation between both groups using a simple analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, glyoxylic acid and glyoxal in tropical aerosols: implications for photochemical processes of organic aerosols

    Directory of Open Access Journals (Sweden)

    Stelyus L. Mkoma

    2014-10-01

    Full Text Available Tropical aerosols of PM2.5 and PM10 were collected at a rural site in Morogoro, Tanzania (East Africa, and analysed for stable carbon isotopic composition (δ13C of dicarboxylic acids (C2–C9, glyoxylic acid (ωC2 and glyoxal (Gly using gas chromatography/isotope ratio mass spectrometer. PM2.5 samples showed that δ13C of oxalic (C2 acid are largest (mean, −18.3±1.7‰ followed by malonic (C3, −19.6±1.0‰ and succinic (C4, −21.8±2.2‰ acids, whereas those in PM10 are a little smaller: −19.9±3.1‰ (C2, −20.2±2.7‰ (C3 and −23.3±3.2‰ (C4. The δ13C of C2–C4 diacids showed a decreasing trend with an increase in carbon numbers. The higher δ13C values of oxalic acid can be explained by isotopic enrichment of 13C in the remaining C2 due to the atmospheric decomposition of oxalic acid or its precursors. δ13C of ωC2 and Gly that are precursors of oxalic acid also showed larger values (mean, −22.5‰ and −20.2‰, respectively in PM2.5 than those (−26.7‰ and −23.7‰ in PM10. The δ13C values of ωC2 and Gly are smaller than those of C2 in both PM2.5 and PM10. On the other hand, azelaic acid (C9; mean, −28.5‰ is more depleted in 13C, which is consistent with the previous knowledge; that is, C9 is produced by the oxidation of unsaturated fatty acids emitted from terrestrial higher plants. A significant enrichment of 13C in oxalic acid together with its negative correlations with relative abundance of C2 in total diacids and ratios of water-soluble organic carbon and organic carbon further support that a photochemical degradation of oxalic acid occurs during long-range transport from source regions.

  17. GLYOXAL - DISINFECTANT OF WIDE RANGE OF ANTIMICROBIAL ACTION Глиоксаль – дезинфектант широкого спектра антимикробного действия

    OpenAIRE

    Kolytchev N. M.; Arzhakov V. N.; Arzhakov P. V.; Serikbaev R. Y.; Kuchkina M. A.

    2013-01-01

    The article gives brief information about the development of the domestic technology of industrial synthesis of glyoxal and presents the results of the bactericidal properties of it on various micro-organisms and depending on the structure of the treated surface

  18. Tetradentate-arm Schiff base derived from the condensation reaction of 3,3′-dihydroxybenzidine, glyoxal/diacetyl and 2-aminophenol: Designing, structural elucidation and properties of their binuclear metal(II complexes

    Directory of Open Access Journals (Sweden)

    E. Akila

    2017-05-01

    Full Text Available The novel binuclear Schiff base complexes were prepared by the reaction of 3,3′-dihydroxybenzidine, glyoxal/diacetyl and 2-aminophenol in 1:2:2 M ratio. The binucleating Schiff base ligand and its complexes of Cu(II, Ni(II and VO(II ions were characterized by elemental analysis, molar conductance, 1H NMR, infrared, electronic spectra, cyclic voltammetry, thermal, magnetic and EPR studies. The low molar conductance values of the complexes support the non-electrolytic in nature. In IR spectra, the comparison of shift in frequency of the complexes with the ligand reveals the coordination of donor atom to the metal atom. The binuclear nature of the complexes is assessed from their magnetic susceptibility values. The electronic and EPR spectra of the metal complexes provide information about the geometry of the complexes and are in good agreement with the proposed square planar geometry for Cu(II, Ni(II and square pyramidal for VO(II complexes. Molecular modeling has been used to suggest the structure of the complexes. The DNA cleavage ability of the complexes was monitored by gel electrophoresis using supercoiled pUC18 DNA. The metal complexes were screened for their antibacterial activities against pathogenic bacteria like Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Bacillus subtilis. The activity data show that the metal complexes are more potent activity than the parent Schiff base ligand against microorganisms.

  19. Highly efficient quenching of tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence by ozone using formaldehyde, methylglyoxal, and glyoxalate as co-reactants and its application to ozone sensing.

    Science.gov (United States)

    Gao, Ying; Liu, Xiaoyun; Qi, Wenjing; Gao, Wenyue; Li, Yunhui; Xu, Guobao

    2015-06-21

    Most electrochemiluminescence (ECL) systems require high concentrations of quencher to totally quench ECL. In this study, we found that ozone can quench tris(2,2'-bipyridyl)ruthenium(II) ECL using formaldehyde, methylglyoxal, or glyoxalate as co-reactants at a glassy carbon electrode with remarkable efficiencies even when the concentration of ozone is merely 0.25% of that of the co-reactant. The strongest quenching is observed with the tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL system. The tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL intensities decrease linearly with the ozone concentration over the range of 0.025-25 μM (r = 0.9947) with a limit of detection of 8 nM. The method is more sensitive and faster than most methods. It shows high selectivity in the presence of other ROS or oxidants and some metal ions, such as H2O2, ClO(-), Mg(2+), Ni(2+), etc. The method exhibits high recoveries for the detection of ozone in a ventilated photocopy room.

  20. CSN1S2 protein of goat milk inhibits the decrease of viability and increases the proliferation of MC3T3E1 pre-osteoblast cell in methyl glyoxal exposure

    Directory of Open Access Journals (Sweden)

    Choirunil Chotimah

    2015-03-01

    Full Text Available Objective: To investigate whether the CNS1S2 protein of goat milk is able to inhibit the toxicity of methyl glyoxal (MG towards MC3T3E1 pre-osteoblast cells. Methods: At confluency, pre-osteoblast cells were divided into five groups which included control (untreated, pre-osteoblast cells exposed to 5 µmol/L MG, pre-osteoblast cells exposed to MG in the presence of CSN1S2 protein at doses of 0.025, 0.050, and 0.100 mg/L, respectively. Analysis of reactive oxygen species was done with 2,7-dichlorodihydrofluorescein diacetate fluorochrome. The proliferation and viability of MC3T3E1 cells were measured by trypan blue staining. Malondialdehyde analysis was done colorimetrically. Results: Cell's viabilities were significantly lower in MG+0.050 mg/L CSN1S2 protein of goat milk compared to MG group (P<0.05. MG+0.100 mg/L CSN1S2 protein of goat milk significantly increased the cells viability compared to MG group (P<0.05. The levels of proliferation were significantly higher in MG+0.100 mg/L CSN1S2 protein of goat milk compared to control group and all treatment groups, respectively (P<0.05. Conclusions: High dose of CSN1S2 protein of goat milk (0.100 mg/L in high MG environment inhibits the decrease of viability due to the increases of the proliferation of MC3T3E1 preosteoblast cell.

  1. Artemesia annua extract prevents glyoxal-induced cell injury in ...

    African Journals Online (AJOL)

    However, treatment of HRECs with Artemesia annua extract ... Artemesia annua can potentially be used for the development of a new drug for the prevention ..... species down regulate glucose transport system in ... hypoxic conditions and its effects on the blood-retinal ... brain beta-amyloid precursor protein in a rat model of.

  2. Diagnosis of rare inherited glyoxalate metabolic disorders through in-situ analysis of renal stones

    Science.gov (United States)

    Jacob, D. E.; Grohe, B.; Hoppe, B.; Beck, B. B.; Tessadri, R.

    2012-04-01

    The primary hyperoxalurias type I - III constitute rare autosomal-recessive inherited disorders of the human glyoxylate metabolism. By mechanisms that are ill understood progressive nephrocalcinosis and recurrent urolithiasis (kidney stone formation) often starting in early childhood, along with their secondary complications results in loss of nephron mass which progresses to end-stage renal failure over time. In the most frequent form, end-stage renal failure (ESRF) is the rule and combined liver/kidney transplantation respectively pre-emptive liver transplantation are the only causative treatment today. Hence, this contributes significantly to healthcare costs and early diagnosis is extremely important for a positive outcome for the patient. We are developing a stone-based diagnostic method by in-detail multi-methods investigation of the crystalline moiety in concert with urine and stone proteomics. Stone analysis will allow faster analysis at low-impact for the patients in the early stages of the disease. First results from combined spectroscopic (Raman, FTIR)and geochemical micro-analyses (Electron Microprobe and Laser Ablation ICP-MS) are presented here that show significant differences between stones from hyperoxaluria patients and those formed by patients without this disorder (idiopathic stones). Major differences exist in chemistry as well as in morphology and phase composition of the stones. Ca/P ratios and Mg contents differentiate between oxalate-stones from hyperoxaluria patients and idiopathic stones. Results show that also within the different subtypes of primary hyperoxaluria significant differences can be found in stone composition. These imply differences in stone formation which could be exploited for new therapeutic pathways. Furthermore, the results provide important feedback for suspected but yet unconfirmed cases of primary hyperoxaluria when used in concert with the genetic methods routinely applied.

  3. Glyoxal Oxidation Mechanism: Implications for the Reactions HCO + O2 and OCHCHO + HO2

    DEFF Research Database (Denmark)

    Fassheber, Nancy; Friedrichs, Gernot; Marshall, Paul

    2015-01-01

    density ranges. HCO concentration–time profiles have been detected by frequency modulation spectroscopy at a wavelength of λ = 614.752 nm. The temperature range of available direct rate constant data of the high-temperature key reaction HCO + O2 → CO + HO2 has been extended up to 1705 K and confirms.......73 kJ/mol/RT). At intermediate temperatures, the reaction OCHCHO + HO2 becomes more important. A detailed reanalysis of previous experimental data as well as more recent theoretical predictions favor the formation of a recombination product in contrast to the formerly assumed dominating and fast OH......-forming channel. Modeling results of the present study support the formation of HOCH(OO)CHO and provide a 2 orders of magnitude lower rate constant estimate for the OH channel. Hence, low-temperature generation of chain carriers has to be attributed to secondary reactions of HOCH(OO)CHO....

  4. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Larsen, Simon Asbjørn; Kassem, Moustapha; Rattan, Suresh

    2012-01-01

    ). Furthermore, the in vitro differentiation potential of hMSC-TERT to become functional osteoblasts was highly reduced in GO-treated stem cells, as determined by alkaline phosphatase (ALP) activity and mineralized matrix (MM) formation. Conclusions The results of our study imply that an imbalanced glucose...... physiological metabolite produced by the auto-oxidation of glucose, and can form covalent adducts known as advanced glycation endproducts (AGE). We have previously reported that GO accelerates ageing and causes premature senescence in normal human skin fibroblasts. Results Using a bone marrow-derived telomerase...

  5. Bioinorganic Relevance of Some Cobalt(II Complexes with Thiophene-2-glyoxal Derived Schiff Bases

    Directory of Open Access Journals (Sweden)

    Prashant Singh

    2009-01-01

    Full Text Available Complexes of Co(II with two new Schiff bases TEAB [2-hydroxy-4-{[2-oxo-2-(thiophen-2-ylethylidene]amino}benzoic acid] and TEPC [N-[2-oxo-2-(thiophen-2-ylethylidene]pyridine-3-carboxamide] have been synthesized and characterized with the help of elemental analysis, magnetic, mass, 1H-NMR, 13C-NMR, IR and electronic spectral data. IR spectra manifest the coordination of the ligand to the metal ion through the carbonyl oxygen, azomethine nitrogen and thienyl sulphur atoms. With the help of electronic spectral data various ligand field parameters were also calculated. All these studies reveal the distorted octahedral Co(II complexes. Synthesized compounds have also been screened against some micro organisms viz, Escherichia coli, Proteus vulgaris, Aspergillus niger and Aspergillus flavus with the help of ‘filter paper disc’ technique. It has been observed that the antimicrobial activities of metal complexes are higher than that of the free ligand.

  6. Efficient One-Pot Synthesis of Indol-3-yl-Glycines via Uncatalyzed Friedel-Crafts Reaction in Water

    Directory of Open Access Journals (Sweden)

    Mehdi Ghandi

    2009-03-01

    Full Text Available The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  7. Efficient one-pot synthesis of indol-3-yl-glycines via uncatalyzed Friedel-Crafts reaction in water.

    Science.gov (United States)

    Ghandi, Mehdi; Taheri, Abuzar

    2009-03-05

    The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  8. Ligninolytic enzymes in the coal solubilizing deuteromycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Moenkemann, H.; Scheel, T.; Hoelker, U.; Ludwig, S.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst.

    1997-12-31

    Evidence is presented for the lignite induced expression of lignin peroxidases, manganese-dependent peroxidases, laccases and glyoxal oxidases in the coal solubilizing fungi Trichoderma atroviride and Fusarium oxysporum under different growth conditions. (orig.)

  9. Orientation dependence in collision induced electronic relaxation studied through van der Waals complexes with isomeric structures. Invited feature article

    International Nuclear Information System (INIS)

    Cheng, P.Y.; Lapierre, L.; Ju, S.S.; DeRose, P.; Dai, H.L.

    1994-01-01

    Weakly bound molecular complexes with more than one well-defined structures provide us with an unique opportunity to investigate dynamic processes induced by intermolecular interactions with specific orientations. The relative orientation of the two interacting molecules or atoms is defined by the complex structure. The effect of the orientation in the spin changing collisions glyoxal (S 1 ) + Ar → glyoxal (T 1 ) + Ar and acetylene (S 1 ) + Ar → acetylene (T) + Ar have been studied by measuring the intersystem crossing (ISC) rates of the glyoxal(S 1 ).Ar and acetylene(S 1 ).Ar complexes with different isomeric structures. Results show that there is a strong orientation dependence in the ISC of glyoxal(S 1 ) induced by interaction with the Ar atom: the Ar atom positioned in the molecular plane is much more effective than in the out-of-plane position in inducing the S 1 → T 1 transition of glyoxal. On the other hand, studies of acetylene(S 1 ).Ar complexes indicate that the Ar-induced ISC rates are nearly identical for the in-plane and out-of-plane positions. Orientation dependence in the collision induced vibrational relaxation process C 2 H 2 (S 1 , v i ) + Ar → C 2 H 2 (S 1 , v f i ) + Ar is also studied by measuring the vibrational predissociation rates of the acetylene(S 1 ).Ar complex isomers. The results indicate that collisions of C 2 H 2 (S 1 , v 3 = 3, 4) with Ar at two orthogonal orientations are equally effective in causing vibrational relaxation of C 2 H 2 . (orig.)

  10. Formation of semisolid, oligomerized aqueous SOA: lab simulations of cloud processing.

    Science.gov (United States)

    Hawkins, Lelia N; Baril, Molly J; Sedehi, Nahzaneen; Galloway, Melissa M; De Haan, David O; Schill, Gregory P; Tolbert, Margaret A

    2014-02-18

    Glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone form N-containing and oligomeric compounds during simulated cloud processing with small amines. Using a novel hygroscopicity tandem differential mobility analysis (HTDMA) system that allows varied humidification times, the hygroscopic growth (HG) of each of the resulting products of simulated cloud processing was measured. Continuous water uptake (gradual deliquescence) was observed beginning at ∼ 40% RH for all aldehyde-methylamine products. Particles containing ionic reaction products of either glyoxal or glycine were most hygroscopic, with HG between 1.16 and 1.20 at 80% RH. Longer humidification times (up to 20 min) produced an increase in growth factors for glyoxal-methylamine (19% by vol) and methylglyoxal-methylamine (8% by vol) aerosol, indicating that unusually long equilibration times can be required for HTDMA measurements of such particles. Glyoxal- and methylglyoxal-methylamine aerosol particles shattered in Raman microscopy impact-flow experiments, revealing that the particles were semisolid. Similar experiments on glycolaldehyde- and hydroxyacetone-methylamine aerosol found that the aerosol particles were liquid when dried for glyoxal > glycolaldehyde = hydroxyacetone, likely caused by the speed of oligomer formation in each system.

  11. Primary atmospheric oxidation mechanism for toluene.

    Science.gov (United States)

    Baltaretu, Cristian O; Lichtman, Eben I; Hadler, Amelia B; Elrod, Matthew J

    2009-01-08

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique at temperatures ranging from 228 to 298 K. A major dienedial-producing pathway was detected for the first time for toluene oxidation, and glyoxal and methylglyoxal were found to be minor primary oxidation products. The results suggest that secondary oxidation processes involving dienedial and epoxide primary products are likely responsible for previous observations of glyoxal and methylglyoxal products from toluene oxidation. Because the dienedial-producing pathway is a null cycle for tropospheric ozone production and glyoxal and methylglyoxal are important secondary organic aerosol precursors, these new findings have important implications for the modeling of toluene oxidation in the atmosphere.

  12. Complex permittivity and conductivity of poly (p-phenylenediazo ...

    Indian Academy of Sciences (India)

    Conducting polymer composites were prepared by in situ polymerization of glyoxal and -phenylenediamine in different solvents containing different amounts of PVC, and silica. The microwave conductivity and complex permittivity of each sample was measured. The effect of dopants like HClO4 and HCl on these dielectric ...

  13. Biochemical properties and crystal structure of ethylmethylglyoxal bis(guanylhydrazone) sulfate--an extremely powerful novel inhibitor of adenosylmethionine decarboxylase.

    Science.gov (United States)

    Elo, H; Mutikainen, I; Alhonen-Hongisto, L; Laine, R; Jänne, J; Lumme, P

    1986-01-01

    Ethylmethylglyoxal bis(guanylhydrazone) (EMGBG) sulfate, an analog of the well-known anti-leukemic drug methylglyoxal bis(guanylhydrazone), was synthesized. It was shown to be an extremely powerful competitive inhibitor of eukaryotic S-adenosylmethionine decarboxylase, with an apparent Ki value 12 nM. Thus, it appears to be the most powerful known inhibitor of the enzyme, being almost an order of magnitude more powerful than the corresponding ethylglyoxal derivative. It neither inhibited the proliferation of mouse L1210 leukemia cells in vitro, nor did it potentiate the growth inhibition produced by alpha-difluoromethyl ornithine. In this respect, its properties are closely related to those of dimethylglyoxal, ethylglyoxal and propylglyoxal bis(guanylhydrazones), while in striking contrast to those of the antiproliferative glyoxal and methylglyoxal analogs. EMGBG also inhibited intestinal diamine oxidase activity (Ki 0.7 microM). EMGBG sulfate was crystallized from water, giving orthorhombic crystals (space group Pbcn). Their crystal and molecular structure was determined by X-ray diffraction methods. The carbon-nitrogen double bonds between the ethylmethylglyoxal part and the aminoguanidine moieties were found to have the same configuration as they are known to have in the salts of glyoxal, methylglyoxal and propylglyoxal bis(guanylhydrazones). The glyoxal bis(guanylhydrazone) chain of the EMGBG cation deviated strongly from planarity, thus differing dramatically from the corresponding chains of the glyoxal, methylglyoxal and propylglyoxal analogs.

  14. Development of a Gastroretentive Drug Delivery System based on ...

    African Journals Online (AJOL)

    Erah

    Purpose: The aim of this work was to synthesize superporous hydrogels of rosiglitazone using chitosan and to study its swelling behaviour for application as a gastroretentive drug delivery system. Methods: Chitosan superporous hydrogels were synthesized using glyoxal as a crosslinking agent by gas blowing method.

  15. Glyoxylic compounds as radiosensitizers of hypoxic cells

    International Nuclear Information System (INIS)

    Cornago, M.P.; Lopez Zumel, M.C.; Alvarez, M.V.; Izquierdo, M.C.

    1990-01-01

    The radiosensitizing effect of five glyoxal derivatives on the survival of TC-SV40 cells has been measured, under aerobic and hypoxic conditions. A toxicity study was previously performed in order to use nontoxic concentrations. The OER for the TC-SV40 cells was 2.74. None of the glyoxylic compounds showed radiosensitizing activity under aerobic conditions while in hypoxia their radiosensitizing factors decreased in the order phenylglyoxylic acid (1.68 at 8 x 10(-3) mole dm-3) greater than phenylglyoxal (1.55 at 5 x 10(-6) mole dm-3) greater than 2-2' furil (1.48 at 5 x 10(-5) mole dm-3) greater than glyoxylic acid (1.39 at 1 x 10(-3) mole dm-3) greater than glyoxal (1.30 at 5 x 10(-5) mole dm-3). The dose-modifying factors were also determined at two equimolar concentrations 5 x 10(-5) and 5 x 10(-6) mole dm-3. A concentration effect was noticed for all the compounds although their relative radiosensitizing activity kept, independently of the concentration, the same order noted above. Glyoxals with aromatic or heterocyclic rings exert a greater radiosensitization than the others. The acidic compounds have less radiosensitizing activity than their aldehydic counterparts. Interaction of these glyoxals with NPSH cellular groups was tested and the low degree of inhibition shows that this mechanism would contribute very little, if any, to the radiosensitization effect

  16. changes in activities of enzymes of glutamate metabolism in rat ...

    African Journals Online (AJOL)

    Eth. j Sci. & Technci 4(1 ; 45-56. 2006. iSSN 1816-3375 phenyi glyoxal etc (Elliot, 1951; ..... B. and Watson. ... In: Keler, L. J. Jr., Garattini, S., Kare, M.R., Reynolds, ... Patel, A J, Weir, M.D., Hunt, A., Tahourdin, C.S.M. and Thomas, D G.J. (1985).

  17. Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium

    Science.gov (United States)

    Amber Vanden Wymelenberg; Grzegorz Sabat; Michael Mozuch; Philip J. Kersten; Dan Cullen; Robert A. Blanchette

    2006-01-01

    The white rot basidiomycete Phanerochaete chrysosporium produces an array of nonspecific extracellular enzymes thought to be involved in lignin degradation, including lignin peroxidases, manganese peroxidases, and the H2O2-generating copper radical oxidase, glyoxal oxidase (GLX). Preliminary analysis of the P. chrysosporium draft genome had identified six sequences...

  18. Molten globule of hemoglobin proceeds into aggregates and advanced glycated end products.

    Directory of Open Access Journals (Sweden)

    Afshin Iram

    Full Text Available Conformational alterations of bovine hemoglobin (Hb upon sequential addition of glyoxal over a range of 0-90% v/v were investigated. At 20% v/v glyoxal, molten globule (MG state of Hb was observed by altered tryptophan fluorescence, high ANS binding, existence of intact heme, native-like secondary structure as depicted by far-UV circular dichroism (CD and ATR-FTIR spectra as well as loss in tertiary structure as confirmed by near-UV CD spectra. In addition, size exclusion chromatography analysis depicted that MG state at 20% v/v glyoxal corresponded to expanded pre-dissociated dimers. Aggregates of Hb were detected at 70% v/v glyoxal. These aggregates of Hb had altered tryptophan environment, low ANS binding, exposed heme, increased β-sheet secondary structure, loss in tertiary structure, enhanced thioflavin T (ThT fluorescence and red shifted Congo Red (CR absorbance. On incubating Hb with 30% v/v glyoxal for 0-20 days, advanced glycation end products (AGEs were detected on day 20. These AGEs were characterised by enhanced tryptophan fluorescence at 450 nm, exposure of heme, increase in intermolecular β-sheets, enhanced ThT fluorescence and red shift in CR absorbance. Comet assay revealed aggregates and AGEs to be genotoxic in nature. Scanning electron microscopy confirmed the amorphous structure of aggregates and branched fibrils of AGEs. The transformation of α-helix to β-sheet usually alters the normal protein to amyloidogenic resulting in a variety of protein conformational disorders such as diabetes, prion and Huntington's.

  19. Different efflux rates may determine the cellular accumulation of various bis(guanylhydrazones).

    Science.gov (United States)

    Alhonen-Hongisto, L; Fagerström, R; Laine, R; Elo, H; Jänne, J

    1984-01-01

    Three bis(guanylhydrazones) (those of methylglyoxal, glyoxal and ethylglyoxal) were compared for their affinity for the putative polyamine carrier and for their cellular retention in L1210 mouse leukaemia cells. All the bis(guanylhydrazones) inhibited equally effectively the uptake of spermidine by the tumour cells, indicating that the compounds had roughly equal affinity for the polyamine carrier. The fact that methylglyoxal bis(guanylhydrazone) and glyoxal bis(guanylhydrazone) were much more effectively concentrated in the animal cells than was ethylglyoxal bis(guanylhydrazone) was obviously attributable to the finding that the efflux rate of ethylglyoxal bis(guanylhydrazone) greatly exceeded that of the other bis(guanylhydrazones). The rate of efflux of the drugs was slowed down if the tumour cells were treated with 2-difluoromethylornithine before exposure to the bis(guanylhydrazones). These results suggest that intracellular binding of the bis(guanylhydrazones) determines their cellular accumulation. PMID:6431972

  20. Bisulfite compounds as metabolic inhibitors: nonspecific effects on membranes

    Energy Technology Data Exchange (ETDEWEB)

    Luettge, U; Osmond, C B; Ball, E; Brinckmann, E; Kinze, G

    1972-01-01

    Bisulfite compounds are shown to be nonspecific inhibitors of photosynthetic processes and of ion transport in green tissues. CO/sub 2/ fixation and light-dependent transient changes in external pH are inhibited about 50% by 5 x 10/sup -4/M glyoxal-Na-bisulfite. Chloride uptake in the light and in the dark is inhibited to the same extent at this concentration. At 5 x 10/sup -3/M the inhibitor reduces ATP levels in the light and in the dark, and the effects on glycolate oxidase and PEP carboxylase are observed. The extent of inhibition is dependent on time of treatment with glyoxal-Na-bisulfite and freshly prepared NaHSO/sub 3/ is equally as effective as the addition compound. Possible explanations of the bisulfite effects and the relationships to SO/sub 2/ effects on photosynthesis are discussed.

  1. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system.

    Science.gov (United States)

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-11-15

    The study describes the kinetics of the formation and degradation of α-dicarbonyl compounds in glucose/wheat flour system heated under low moisture conditions. Changes in the concentrations of glucose, fructose, individual free amino acids, lysine and arginine residues, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural, glyoxal, methylglyoxal and diacetyl concentrations were determined to form a multiresponse kinetic model for isomerisation and degradation reactions of glucose. Degradation of Amadori product mainly produced 1-deoxyglucosone. Formation of 3-deoxyglucosone proceeded directly from glucose and also Amadori product degradation. Glyoxal formation was predominant from glucosone while methylglyoxal and diacetyl originated from 1-deoxyglucosone. Formation of 5-hydroxymethyl-2-furfural from fructose was found to be a key step. Multi-response kinetic modelling of Maillard reaction and caramelisation simultaneously indicated quantitatively predominant parallel and consecutive pathways and rate limiting steps by estimating the reaction rate constants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    products. In this study, we have examined the effect of glucose and carbonyl compounds (methylglyoxal, glyoxal, glycolaldehyde, and hydroxyacetone), and glycation products arising from reaction of these materials with model proteins, on the activity of three key cellular enzymes: glyceraldehyde-3-phosphate...... dehydrogenase (GAPDH), glutathione reductase, and lactate dehydrogenase, both in isolation and in cell lysates. In contrast to glucose (1M, both fresh and aged for 8 weeks), which had no effect, marked inhibition of all three enzymes was observed with methylglyoxal and glyoxal. GAPDH was also inhibited...... by glycolaldehyde and hydroxyacetone. Incubation of these enzymes with proteins that had been preglycated with methylglyoxal, but not glucose, also resulted in significant time- and concentration-dependent inhibition with both isolated enzymes and cell lysates. This inhibition was not metal ion, oxygen, superoxide...

  3. DNA damage by carbonyl stress in human skin cells

    International Nuclear Information System (INIS)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L.

    2003-01-01

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the α-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N ε -(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress

  4. DNA damage by carbonyl stress in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L

    2003-01-28

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the {alpha}-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N{sup {epsilon}}-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.

  5. Characterisation and optimisation of a sample preparation method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    Science.gov (United States)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-06-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds. Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). With the present method quantification can be carried out for each carbonyl compound originating from fog, cloud and rain or sampled from the gas- and particle phase in water. Detection limits between 0.01 and 0.17 μmol L-1 were found, depending on carbonyl compounds. Furthermore, best results were found for the derivatisation with a PFBHA concentration of 0.43 mg mL-1 for 24 h followed by a subsequent extraction with dichloromethane for 30 min at pH = 1. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione after a reaction time of 5 h.

  6. Characterisation and optimisation of a method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    Science.gov (United States)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-01-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds (VOC). Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. Thus a method was systematically characterised and improved to quantify carbonyl compounds. Quantification with the present method can be carried out for each carbonyl compound sampled in the aqueous phase regardless of their source. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). The main advantage of the improved method presented in this study is the low detection limit in the range of 0.01 and 0.17 μmol L-1 depending on carbonyl compounds. Furthermore best results were found for extraction with dichloromethane for 30 min followed by derivatisation with PFBHA for 24 h with 0.43 mg mL-1 PFBHA at a pH value of 3. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione.

  7. Applications of ortho-phenylisonitrile and ortho-N-Boc aniline for the two-step preparation of novel bis-heterocyclic chemotypes.

    Science.gov (United States)

    Xu, Zhigang; Shaw, Arthur Y; Nichol, Gary S; Cappelli, Alexandra P; Hulme, Christopher

    2012-08-01

    Concise routes to five pharmacologically relevant bis-heterocyclic scaffolds are described. Significant molecular complexity is generated in a mere two synthetic operations enabling access to each scaffold. Routes are often improved by microwave irradiation and all utilize isocyanide-based multi-component reaction methods to incorporate the required diversity elements. Common reagents in all initial condensation reactions include 2-(N-Boc-amino)-phenyl-isocyanide 1, mono-Boc-phenylenediamine 2 and ethyl glyoxalate 3.

  8. Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    P. S. Chhabra

    2010-05-01

    Full Text Available The elemental composition of laboratory chamber secondary organic aerosol (SOA from glyoxal uptake, α-pinene ozonolysis, isoprene photooxidation, single-ring aromatic photooxidation, and naphthalene photooxidation is evaluated using Aerodyne high-resolution time-of-flight mass spectrometer data. SOA O/C ratios range from 1.13 for glyoxal uptake experiments to 0.30–0.43 for α-pinene ozonolysis. The elemental composition of α-pinene and naphthalene SOA is also confirmed by offline mass spectrometry. The fraction of organic signal at m/z 44 is generally a good measure of SOA oxygenation for α-pinene/O3, isoprene/high-NOx, and naphthalene SOA systems. The agreement between measured and estimated O/C ratios tends to get closer as the fraction of organic signal at m/z 44 increases. This is in contrast to the glyoxal uptake system, in which m/z 44 substantially underpredicts O/C. Although chamber SOA has generally been considered less oxygenated than ambient SOA, single-ring aromatic- and naphthalene-derived SOA can reach O/C ratios upward of 0.7, well within the range of ambient PMF component OOA, though still not as high as some ambient measurements. The spectra of aromatic and isoprene-high-NOx SOA resemble that of OOA, but the spectrum of glyoxal uptake does not resemble that of any ambient organic aerosol PMF component.

  9. Amides are novel protein modifications formed by physiological sugars.

    Science.gov (United States)

    Glomb, M A; Pfahler, C

    2001-11-09

    The Maillard reaction, or nonenzymatic browning, proceeds in vivo, and the resulting protein modifications (advanced glycation end products) have been associated with various pathologies. Despite intensive research only very few structures have been established in vivo. We report here for the first time N(6)-[2-[(5-amino-5-carboxypentyl)amino]-2-oxoethyl]lysine (GOLA) and N(6)-glycoloyllysine (GALA) as prototypes for novel amide protein modifications produced by reducing sugars. Their identity was confirmed by independent synthesis and coupled liquid chromatography/mass spectrometry. Model reactions with N(alpha)-t-butoxycarbonyl-lysine showed that glyoxal and glycolaldehyde are immediate precursors, and reaction pathways are directly linked to N(epsilon)-carboxymethyllysine via glyoxal-imine structures. GOLA, the amide cross-link, and 1,3-bis(5-amino-5-carboxypentyl)imidazolium salt (GOLD), the imidazolium cross-link, share a common intermediate. The ratio of GOLA to GOLD is greater when glyoxal levels are low at constant lysine concentrations. GOLA and GALA formation from the Amadori product of glucose and lysine depends directly upon oxidation. With the advanced glycation end product inhibitors aminoguanidine and pyridoxamine we were able to dissect oxidative fragmentation of the Amadori product as a second mechanism of GOLA formation exactly coinciding with N(epsilon)-carboxymethyllysine synthesis. In contrast, the formation of GALA appears to depend solely upon glyoxal-imines. After enzymatic hydrolysis GOLA was found at 66 pmol/mg of brunescent lens protein. This suggests amide protein modifications as important markers of pathophysiological processes.

  10. Global and Seasonal Distributions of CHOCHO and HCHO Observed by the Ozone Monitoring Instrument on EOS Aura

    Science.gov (United States)

    Kurosu, T. P.; Fu, T.; Volkamer, R.; Millet, D. B.; Chance, K.

    2006-12-01

    Over the two years since its launch in July 2004, the Ozone Monitoring Instrument (OMI) on EOS Aura has demonstrated the capability to routinely monitor the volatile organic compounds (VOCs) formaldehyde (HCHO) and glyoxal (CHOCHO). OMI's daily global coverage and spatial resolution as high as 13x24 km provides a unique data set of these molecules for the study of air quality from space. We present the first study of global seasonal distributions of CHOCHO from space, derived from a year of OMI observations. CHOCHO distributions are compared to simultaneous retrievals of HCHO from OMI, providing a first indication of seasonally resolved ratios of these VOCs on a global scale. Satellite retrievals are compared to global simulations of HCHO and CHOCHO, based on current knowledge of sources and sinks, using the GEOS-Chem global chemistry and transport model. Formaldehyde is both directly emitted and also produced from the oxidation of many VOCs, notably biogenic isoprene, and is removed by photolysis and oxidation. Precursors of glyoxal include isoprene, monoterpenes, and aromatics from anthropogenic, biogenic, and biomass burning emissions; it is removed by photolysis, oxidation by OH, dry/wet deposition, and aerosol uptake. As a case study, satellite observations will also be compared to ground-based measurements taken during the Pearl River Delta 2006 field campaign near Guangzhou, China, where high glyoxal concentrations are frequently observed from space.

  11. Production of oil palm (Elaeis guineensis) fronds lignin-derived non-toxic aldehyde for eco-friendly wood adhesive.

    Science.gov (United States)

    Hazwan Hussin, M; Samad, Noraini Abdul; Latif, Nur Hanis Abd; Rozuli, Nurul Adilla; Yusoff, Siti Baidurah; Gambier, François; Brosse, Nicolas

    2018-07-01

    Lignocellulosic materials can significantly contribute to the development of eco-friendly wood adhesives. In this work, glyoxal-phenolic resins for plywood were prepared using organosolv lignin, which was isolated from black liquor recovered from organosolv pulping of oil palm fronds (OPF) and considered to be an alternative to phenol. Glyoxal, which is a dialdehyde obtained from several natural resources, was used as substitute for formaldehyde. The structure of organosolv lignin and the resins were characterized by FTIR and NMR, and for thermal stability by TGA and DSC. The resins were further studied for their viscosity, pH, solids content and gel times. The resins performance as wood adhesive was further established from mechanical test in terms of tensile strength and modulus of elasticity (MOE) to obtain the optimum ratios of organosolv lignin, which replaces phenol in organosolv lignin phenol glyoxal (OLPG) resins. The adhesive composition having 50% (w/w) of phenol substituted by organosolv lignin, termed as 50% OLPG showed highest adhesive strength compared to phenol formaldehyde (PF) commercial adhesive. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Photochemical organonitrate formation in wet aerosols

    Science.gov (United States)

    Lim, Yong Bin; Kim, Hwajin; Kim, Jin Young; Turpin, Barbara J.

    2016-10-01

    Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal- and OH-containing ammonium sulfate or sulfuric acid particles in the presence of NOx and O3 at high and low relative humidity. Particles were analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). During the 3 h irradiation, OH oxidation products of glyoxal that are also produced in dilute aqueous solutions (e.g., oxalic acids and tartaric acids) were formed in both ammonium sulfate (AS) aerosols and sulfuric acid (SA) aerosols. However, the major products were organonitrogens (CHNO), organosulfates (CHOS), and organonitrogen sulfates (CHNOS). These were also the dominant products formed in the dark chamber, indicating non-radical formation. In the humid chamber (> 70 % relative humidity, RH), two main products for both AS and SA aerosols were organonitrates, which appeared at m / z- 147 and 226. They were formed in the aqueous phase via non-radical reactions of glyoxal and nitric acid, and their formation was enhanced by photochemistry because of the photochemical formation of nitric acid via reactions of peroxy radicals, NOx and OH during the irradiation.

  13. The effect of additives on red cell 2,3 diphosphoglycerate levels in CPDA preservatives.

    Science.gov (United States)

    Vora, S; West, C; Beutler, E

    1989-01-01

    Forty-two chemical substances, chosen because they might influence red cell metabolism, were screened for effect on red cell adenosine triphosphate and 2,3 diphosphoglycerate (2,3 DPG) levels during storage in CPD or CPDA-1 at 4 degrees C. Of these substances, six appeared on initial screening to increase 2,3 DPG levels during storage; on repeated examination, four compounds, i.e., oxalate, glyoxalate, ethyl oxaloacetate, and L-phenylalanyl-L-alanine, consistently increased 2,3 DPG levels during storage. It was shown that glyoxalate was converted rapidly to oxalate in blood, presumably through the lactate dehydrogenase reaction. Ethyl oxaloacetate is known to hydrolyze, giving rise to oxalate. Thus, the effect of both glyoxalate and ethyl oxaloacetate can be explained by the formation of oxalate, a compound already known to increase 2,3 DPG levels. The effect of L-phenylalanyl-L-alanine remains to be explained, but it may be hydrolyzed to L-alanine and L-phenylalanine, both of which are thought to have the capacity to increase red cell 2,3 DPG levels by inhibiting pyruvate kinase activity.

  14. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    International Nuclear Information System (INIS)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian; Jin, Yongdong

    2014-01-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g −1 under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed

  15. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian, E-mail: sjli000616@scu.edu.cn; Jin, Yongdong, E-mail: jinyongdong@scu.edu.cn

    2014-04-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g{sup −1} under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed.

  16. Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry

    Science.gov (United States)

    Yang, Xue; Xue, Likun; Wang, Tao; Wang, Xinfeng; Gao, Jian; Lee, Shuncheng; Blake, Donald R.; Chai, Fahe; Wang, Wenxing

    2018-01-01

    Carbonyls are an important group of volatile organic compounds (VOCs) that play critical roles in tropospheric chemistry. To better understand the formation mechanisms of carbonyl compounds, extensive measurements of carbonyls and related parameters were conducted in Beijing in summer 2008. Formaldehyde (11.17 ± 5.32 ppbv), acetone (6.98 ± 3.01 ppbv), and acetaldehyde (5.27 ± 2.24 ppbv) were the most abundant carbonyl species. Two dicarbonyls, glyoxal (0.68 ± 0.26 ppbv) and methylglyoxal (MGLY; 1.10 ± 0.44 ppbv), were also present in relatively high concentrations. An observation-based chemical box model was used to simulate the in situ production of formaldehyde, acetaldehyde, glyoxal, and MGLY and quantify their contributions to ozone formation and ROx budget. All four carbonyls showed similar formation mechanisms but exhibited different precursor distributions. Alkenes (mainly isoprene and ethene) were the dominant precursors of formaldehyde, while both alkenes (e.g., propene, i-butene, and cis-2-pentene) and alkanes (mainly i-pentane) were major precursors of acetaldehyde. For dicarbonyls, both isoprene and aromatic VOCs were the dominant parent hydrocarbons of glyoxal and MGLY. Photolysis of oxygenated VOCs was the dominant source of ROx radicals (approximately >80% for HO2 and approximately >70% for RO2) in Beijing. Ozone production occurred under a mixed-control regime with carbonyls being the key VOC species. Overall, this study provides some new insights into the formation mechanisms of carbonyls, especially their parent hydrocarbon species, and underlines the important role of carbonyls in radical chemistry and ozone pollution in Beijing. Reducing the emissions of alkenes and aromatics would be an effective way to mitigate photochemical pollution in Beijing.

  17. The pH Dependence of Brown Carbon Formation in Maillard Chemistry

    Science.gov (United States)

    Hawkins, L. N.; Welsh, H.; Alexander, M. V.

    2017-12-01

    Secondary organic aerosol (SOA) composes a non-negligible fraction of brown carbon (BrC), and typically appears as small, nitrated aromatics or larger, highly functionalized humic-like substances (HULIS). Both nitrated aromatics and HULIS contain nitrogen, indicating the importance of nitrogen to light-absorbing aerosol. It is therefore unsurprising that BrC, when generated in aqueous phase reactions (aqBrC) between amines and small aldehydes, often resembles atmospheric HULIS. The effects of pH and aqueous phase oxidation on absorptivity and composition were simulated using bulk (microliter) samples under a variety of experimental conditions, including evaporation. The system of amines and small aldehydes included methylamine, ammonium sulfate, glyoxal, and methylglyoxal. Chemical composition of these products was characterized using an Aerosol Chemical Speciation Monitor (ACSM) and a desorption-based atmospheric pressure chemical ionization (APCI) spectrometer. The results of this study indicate that methylamine and methylglyoxal form the most absorptive BrC, cloud processing serves to increase BrC absorptivity, and the generated BrC is highly persistent to oxidative and photodegradation. Lowering the pH to values below 6 reduces absorptivity at shorter wavelengths, but produces a new shoulder beyond 400 nm indicating new chromophore formation. Results of this research also show that evaporation increased formation of large molecular fragments (m/z > 100). Furthermore, the mass spectra showed significant formation of these larger fragments in methylamine systems with little evidence for similar compounds in ammonium sulfate systems. Systems with methylglyoxal had higher absorptivity than all other systems, although in both methylamine and ammonium sulfate systems, glyoxal appeared to result in a higher percentage of large fragments than methylglyoxal. Lastly, hydroxyl radical degradation seemed to have a minimal effect on absorptivity and composition, although

  18. The tritium labelling of organic molecules by heterogeneous catalytic exchange; El marcado de moleculas organicas con tritio por intercambio catalitico heterogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Angoso Marina, M; Kaiser Ruiz del Olmo, F.

    1977-07-01

    The influence of the temperature at 65 degree centigree and 120 degree centigree on the labelling of three organic molecules with tritium was studied. The compounds were: benzoic acid, de phenyl glyoxal and 2,3-tetramethylene-4-pantothenyl-7-oxo diacetin.The method employed was the heterogeneous catalytic exchange between tritiated water and the organic compound. The purification was made by thin-layer chromatography and the concentration, purity and specific activity of the products were determined by counting and ultraviolet techniques. The thermal stability and the radiolytic effects on labelled benzoic acid were also considered. (Author) 9 refs.

  19. The tritium labelling of organic molecules by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Angoso Marina, M.; Kaiser Ruiz del Olmo, F.

    1977-01-01

    The influence of the temperature at 65 degree centigree and 120 degree centigree on the labelling of three organic molecules with tritium was studied. The compounds were: benzoic acid, de phenyl glyoxal and 2,3-tetramethylene-4-pantothenyl-7-oxo diacetin.The method employed was the heterogeneous catalytic exchange between tritiated water and the organic compound. The purification was made by thin-layer chromatography and the concentration, purity and specific activity of the products were determined by counting and ultraviolet techniques. The thermal stability and the radiolytic effects on labelled benzoic acid were also considered. (Author) 9 refs

  20. Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system

    DEFF Research Database (Denmark)

    Santos-Moriano, Paloma; Woodley, John; Plou, Francisco J.

    2016-01-01

    A chitosanolytic activity found in a commercial α-amylase from Bacillus amylolyquefaciens (BAN) was covalently immobilized onto glyoxal agarose beads (25% recovery of activity) and assessed for the continuous production of chitooligosaccharides (COS). The immobilization did not change the reactio......, the productivity of the PBR at the lowest dilution rate was 37 gCOS L−1 h−1, with a conversion yield of 73%. In contrast, at the highest dilution rate, the productivity was nearly 200 gCOS L−1 h−1, but the conversion yield dropped to around 40%....

  1. Components of the ligninolytic system of Fusarium oxysporum and Trichoderma atroviride

    Energy Technology Data Exchange (ETDEWEB)

    Moenkemann, H.; Hoelker, U.; Hoefer, M. [Universitaet Bonn, Bonn (Germany). Botanisches Institut

    1997-11-01

    The ligninolytic system in the two deuteromycetous fungi Fusarium oxysporum and Trichoderma atroviride, which are able to solubilize low-rank coal, has been proved to have several components. Analysis of the chromosomal DNA of these fungi revealed distinct bands with probes coding for three ligninase isoenzymes, glyoxal oxidase and arylalcohol dehydrogenase of the basidiomycete Phanerochaete chrysosporium. These data constitute a strong indication for the existence in F. oxysporum and T. atroviride of a ligninolytic system comparable to that in P. chrysosporium that may be involved in the process of coal solubilization. 11 refs., 3 figs.

  2. MALDI-TOF and 13C NMR Analysis of Tannin–Furanic–Polyurethane Foams Adapted for Industrial Continuous Lines Application

    Directory of Open Access Journals (Sweden)

    Maria Cecilia Basso

    2014-12-01

    Full Text Available Mixed phenolic-polyurethane-type rigid foams were developed using tannin-furfuryl alcohol natural materials co-reacted with polymeric isocyanate in the proportions imposed by the limitations inherent to continuous industrial plants for polyurethane foams. A variety of different copolymerization oligomers formed. Urethanes appeared to have been formed with two flavonoid tannin sites, mainly at the flavonoid hydroxyl group at C3, but also, although less, on the phenolic hydroxyl groups of the flavonoid oligomers. Urethanes are also formed with (i glyoxal in the formulation, be it pre-reacted or not with the tannin; (ii with phenolsulfonic acid and (iii with furfural. This latter one, however, greatly favors reaction with the A-ring of the flavonoids through a methylene bridge rather than reaction with the isocyanate groups to form urethanes. All of the materials appeared to have co-reacted in a manner to form urethane and methylene bridges between all of the main components used. Thus, the tannin, the furfuryl alcohol, the isocyanate, the glyoxal and even the phenol sulfonic acid hardener formed a number of mixed species linked by the two bridge types. Several mixed species comprised of 2, 3 and even 4 co-reacted different components have been observed.

  3. Biochemical characterization of propylglyoxal bis(guanylhydrazone). Facile synthesis of monoalkylglyoxal bis(guanylhydrazones).

    Science.gov (United States)

    Elo, H; Laine, R; Alhonen-Hongisto, L; Jänne, J; Mutikainen, I; Lumme, P

    1985-01-01

    Propylglyoxal bis(guanylhydrazone) sulfate, a novel analog of the well-known antileukemic drug methylglyoxal bis(guanylhydrazone), has been prepared from 2,2-dibromopentanal, and the compound has been characterized biochemically. Although it is a powerful inhibitor of S-adenosylmethionine decarboxylase, its Ki value (0.2 microM) is considerably higher than that of ethylglyoxal bis(guanylhydrazone) (0.06 microM). The compound is only poorly taken up by tumor cells, and its accumulation is not stimulated by a prior exposure of the tumor cells to difluoromethylornithine, a compound that causes polyamine depletion. Thus, the uptake characteristics of the compound are similar to those of ethylglyoxal bis(guanylhydrazone), but in striking contrast to those of methylglyoxal and glyoxal bis(guanylhydrazones). Since the configuration of the double bonds in glyoxal, methylglyoxal and propylglyoxal bis(guanylhydrazones) has been shown to be identical, the different uptake characteristics are probably only due to differences in side chain size and/or hydrophobicity.

  4. Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants.

    Science.gov (United States)

    Zhong, Xin; Cui, Chongwei; Yu, Shuili

    2017-07-01

    Carbonyl compounds can occur alpha-hydrogens or beta-diketones substitution reactions with disinfectants contributed to halogenated by-products formation. The objective of this research was to study the occurrence and fate of carbonyl compounds as ozonation by-products at two full-scale drinking water treatment plants (DWTPs) using different disinfectants for one year. The quality of the raw water used in both plants was varied according to the season. The higher carbonyl compounds concentrations were found in raw water in spring. Up to 15 (as the sum of both DWTPs) of the 24 carbonyl compounds selected for this work were found after disinfection. The dominant carbonyl compounds were formaldehyde, glyoxal, methyl-glyoxal, fumaric, benzoic, protocatechuic and 3-hydroxybenzoic acid at both DWTPs. In the following steps in each treatment plant, the concentration patterns of these carbonyl compounds differed depending on the type of disinfectant applied. Benzaldehyde was the only aromatic aldehyde detected after oxidation with ozone in spring. As compared with DWTP 1, five new carbonyl compounds were formed (crotonaldehyde, benzaldehyde, formic, oxalic and malonic acid) disinfection by ozone, and the levels of the carbonyl compounds increased. In addition, pre-ozonation (PO) and main ozonation (OZ) increased the levels of carbonyl compounds, however coagulation/flocculation (CF), sand filtration (SF) and granular activated carbon filtration (GAC) decreased the levels of carbonyl compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Colour removal and carbonyl by-production in high dose ozonation for effluent polishing.

    Science.gov (United States)

    Mezzanotte, V; Fornaroli, R; Canobbio, S; Zoia, L; Orlandi, M

    2013-04-01

    Experimental tests have been conducted to investigate the efficiency and the by-product generation of high dose ozonation (10-60 mg O3 L(-1)) for complete colour removal from a treated effluent with an important component of textile dyeing wastewater. The effluent is discharged into an effluent-dominated stream where no dilution takes place, and, thus, the quality requirement for the effluents is particularly strict. 30, 60 and 90 min contact times were adopted. Colour was measured as absorbance at 426, 558 and 660 nm wavelengths. pH was monitored throughout the experiments. The experimental work showed that at 50 mg L(-1) colour removal was complete and at 60 mg O3 L(-1) the final aldehyde concentration ranged between 0.72 and 1.02 mg L(-1). Glyoxal and methylglyoxal concentrations were directly related to colour removal, whereas formaldehyde, acetaldehyde, acetone and acrolein were not. Thus, the extent of colour removal can be used to predict the increase in glyoxal and methylglyoxal concentrations. As colour removal can be assessed by a simple absorbance measurement, in contrast to the analysis of specific carbonyl compounds, which is much longer and complex, the possibility of using colour removal as an indicator for predicting the toxic potential of ozone by-products for textile effluents is of great value. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Mini MAX-DOAS Measurements of Air Pollutants over China

    Science.gov (United States)

    Staadt, Steffen; Hao, Nan; Trautmann, Thomas

    2016-08-01

    This study continues the work of Clémer et al., (2010) and is aimed to improve trace gas retrievals with mini MAX-DOAS measurements in Nanjing. Based on that work, aerosol extinction vertical profiles are retrieved using the bePRO inversion algorithm developed by the Royal Belgian Institute for Space Aeronomy (BIRA- IASB). Afterwards, the tropospheric trace gas vertical profiles and vertical column densities (VCDs) are retrieved by applying the optimal estimation method to the O4 MAX-DOAS measurements. The Profiles for N O2 , S O2 , glyoxal, formaldehyde and nitrous acid are obtained with different results and different settings for the DOAS measurement. The AODs show small positive correlation against the AERONET values. For NO2, the retrieval shows reasonable concentrations in winter as opposed to summer and has small positive correlations with GOME-2 data. The SO2 VCDs are not correlated with the GOME-2 data, due to high uncertainties from MAX-DOAS and satellite retrievals, while the vertical mixing ratios (VMR) show good agreement with in-situ data (SORPES) at Nanjing. Nitrous acid shows a maximum in winter and a minimum in summer, while glyoxal has its maximum in August and September.

  7. One electron oxidation of Ni(II)-iminodiacetate by carbonate radical

    International Nuclear Information System (INIS)

    Mandal, P.C.; Bardhan, D.K.; Bhattacharyya, S.N.

    1995-01-01

    Reactions of carbonate radical (CO 3 - ), generated by photolysis or by radiolysis of a carbonate solution with nickel(II)-iminodiacetate (Ni(II)IDA) were studied at pH 10.5 and ionic strength (I)=0.2 mol x dm -3 . The stable product arising from the ligand degradation in the complex is mainly glyoxalic acid. Time-resolved spectroscopy and transient kinetics were studied using flash photolysis. From the kinetic data it was suggested that the carbonate radical initially reacts with Ni(III)IDA with a rate constant (2.4.±0.4) x 10 6 dm 3 x mol -1 x s -1 to form a Ni(II)IDA species which, however, undergoes a first-order transformation (k=2.7 x 10 2 x s -1 ) to give a radical intermediate of the type Ni(II)RNHCHCO - 2 ) which rapidly forms an adduct containing a Ni-C bond. This adduct decays very slowly to give rise to glyoxalic acid. From a consideration of equilibrium between Ni(II)IDA and Ni(III)IDA, the one electron reduction potential for the Ni(III)IDA/Ni(II)IDA couple was determined to be 1.467 V. (author) 30 refs.; 5 figs

  8. Novel α-Oxoamide Advanced-Glycation Endproducts within the N6-Carboxymethyl Lysine and N6-Carboxyethyl Lysine Reaction Cascades.

    Science.gov (United States)

    Baldensperger, Tim; Jost, Tobias; Zipprich, Alexander; Glomb, Marcus A

    2018-02-28

    The highly reactive α-dicarbonyl compounds glyoxal and methylglyoxal are major precursors of posttranslational protein modifications in vivo. Model incubations of N 2 -t-Boc-lysine and either glyoxal or methylglyoxal were used to further elucidate the underlying mechanisms of the N 6 -carboxymethyl lysine and N 6 -carboxyethyl lysine reaction cascades. After independent synthesis of the authentic reference standards, we were able to detect N 6 -glyoxylyl lysine and N 6 -pyruvoyl lysine for the first time by HPLC-MS 2 analyses. These two novel amide advanced-glycation endproducts were exclusively formed under aerated conditions, suggesting that they were potent markers for oxidative stress. Analogous to the well-known Strecker degradation pathway, leading from amino acids to Strecker acids, the oxidation of an enaminol intermediate is suggested to be the key mechanistic step. A highly sensitive workup for the determination of AGEs in tissues was developed. In support of our hypothesis, the levels of N 6 -glyoxylyl lysine and N 6 -pyruvoyl lysine in rat livers indeed correlated with liver cirrhosis and aging.

  9. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi.

    Science.gov (United States)

    González, Laura; García-Huertas, Paola; Triana-Chávez, Omar; García, Gabriela Andrea; Murta, Silvane Maria Fonseca; Mejía-Jaramillo, Ana M

    2017-12-01

    The improvement of Chagas disease treatment is focused not only on the development of new drugs but also in understanding mechanisms of action and resistance to drugs conventionally used. Thus, some strategies aim to detect specific changes in proteins between sensitive and resistant parasites and to evaluate the role played in these processes by functional genomics. In this work, we used a natural Trypanosoma cruzi population resistant to benznidazole, which has clones with different susceptibilities to this drug without alterations in the NTR I gene. Using 2DE-gel electrophoresis, the aldo-keto reductase and the alcohol dehydrogenase proteins were found up regulated in the natural resistant clone and therefore their possible role in the resistance to benznidazole and glyoxal was investigated. Both genes were overexpressed in a drug sensitive T. cruzi clone and the biological changes in response to these compounds were evaluated. The results showed that the overexpression of these proteins enhances resistance to benznidazole and glyoxal in T. cruzi. Moreover, a decrease in mitochondrial and cell membrane damage was observed, accompanied by a drop in the intracellular concentration of reactive oxygen species after treatment. Our results suggest that these proteins are involved in the mechanism of action of benznidazole. © 2017 John Wiley & Sons Ltd.

  10. Effects of Relative Humidity on Ozone and Secondary Organic Aerosol Formation from the Photooxidation of Benzene and Ethylbenzene

    Science.gov (United States)

    Jia, L.; Xu, Y.

    2012-12-01

    The formation of ozone and secondary organic aerosol from benzene-NOx and ethylbenzene-NOx irradiations was investigated under different levels of relative humidity (RH) in a smog chamber. The results show that the increase in RH can greatly reduce the maximum O3 by the transformation of -NO2 and -ONO2-containing products into the particle phase. In benzene irradiations, the SOA number concentration increases over 26 times as RH rises from ethylbenzene irradiations, ethylglyoxal favors the formation of monohydrate, which limits the RH effects. During evaporating processes, the lost substances have similar structures for both benzene and ethylbenzene. This demonstrates that ethyl-containing substances are very stable and difficult to evaporate. For benzene some of glyoxal hydrates are left to form C-O-C and C=O-containing species like hemiacetal and acetal after evaporation, whereas for ethylbenzene, glyoxal favors cross reactions with ethylglyoxal during the evaporating process. It is concluded that the increase in RH can irreversibly enhance the yields of SOA from both benzene and ethylbenzene.

  11. High-dose thiamine therapy counters dyslipidemia and advanced glycation of plasma protein in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Karachalias, Nikolaos; Babaei-Jadidi, Roya; Kupich, Christian; Ahmed, Naila; Thornalley, Paul J

    2005-06-01

    The streptozotocin-induced (STZ) diabetic rat experimental model of diabetes on insulin maintenance therapy exhibits dyslipidemia, mild thiamine deficiency, and increased plasma protein advanced glycation end products (AGEs). The reversal of thiamine deficiency by high-dose thiamine and S-benzoylthiamine monophosphate (benfotiamine) prevented the development of incipient nephropathy. Recently, we reported that high-dose thiamine (but not benfotiamine) countered diabetic dyslipidemia. To understand further the differences between the effects of thiamine and benfotiamine therapy, we quantified the levels of the AGEs in plasma protein. We found hydroimidazolone AGE residues derived from glyoxal and methylglyoxal, G-H1 and MG-H1, were increased 115% and 68% in STZ diabetic rats, with respect to normal controls, and were normalized by both thiamine and benfotiamine; whereas N-carboxymethyl-lysine (CML) and N-carboxyethyl-lysine (CEL) residues were increased 74% and 118% in STZ diabetic rats and were normalized by thiamine only. The lack of effect of benfotiamine on plasma CML and CEL residue concentrations suggests there may be important precursors of plasma protein CML and CEL residues other than glyoxal and methylglyoxal. These are probably lipid-derived aldehydes.

  12. Analysis and Chemistry of Novel Protein Oxidation Markers in Vivo.

    Science.gov (United States)

    Henning, Christian; Liehr, Kristin; Girndt, Matthias; Ulrich, Christof; Glomb, Marcus A

    2018-05-09

    Proteins continually undergo spontaneous oxidation reactions, which lead to changes in structure and function. The quantitative assessment of protein oxidation adducts provides information on the level of exposure to reactive precursor compounds with a high oxidizing potential and reactive oxygen species (ROS). In the present work, we introduce N 6 -(2-hydroxyethyl)lysine as a novel marker based on the ratio of glycolaldehyde and its oxidized form glyoxal. The high analytical potential was proven with a first set of patients undergoing hemodialysis versus healthy controls, in comparison with well-established parameters for oxidative stress. In vitro experiments with N 1 - t-BOC-lysine and N 1 - t-BOC-arginine enlightened the mechanistic relationship of glycolaldehyde and glyoxal. Oxidation was strongly dependent on the catalytic action of the ε-amino moiety of lysine. Investigations on the formation of N 6 -carboxymethyl lysine revealed glycolaldehyde-imine as the more reactive precursor, even though an additional oxidative step is required. As a result, a novel and very effective alternative mechanism was unraveled.

  13. Raman scattering signatures of the unusual vibronic interaction of molecules in liquid helium-3

    Energy Technology Data Exchange (ETDEWEB)

    Tehver, I., E-mail: imbi.tehver@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Benedek, G. [Donostia International Physics Center (DIPC) and University of the Basque Country (EHU), Paseo de Lardizabal 4, 20018 Donostia/San Sebastian (Spain); Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Hizhnyakov, V. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2015-10-16

    Highlights: • Theory of resonance Raman scattering (RRS) of molecules in {sup 3}He liquid is proposed. • Fermi excitations give essential contribution to RRS. • RRS spectra of glyoxal molecule in {sup 3}He droplets are calculated. - Abstract: Light scattering in quantum liquid helium-3 may involve a unique mechanism – the creation and annihilation of atom excitations across the Fermi level. The density of states of particle–hole excitations in the low-energy limit is strongly enhanced as compared to that of collective excitations of phonons in helium-3. This makes possible to directly observe Fermi excitations in the resonant Raman scattering (RRS) by {sup 3}He droplets doped by impurity molecules. The RRS spectra essentially depend on the excitation frequency. In case of excitation in the anti-Stokes side of absorption the first order RRS is directly determined by the particle–hole excitations in the vicinity of the impurity molecule and the contribution of phonons mainly given by the localized spherical vibration. The calculations are made for a {sup 3}He droplet doped by a glyoxal molecule.

  14. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities.

    Science.gov (United States)

    Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H 2 SO 4 ) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1 H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal

  15. Application of the generalized multi structural (GMS) wave function to photoelectron spectra and electron scattering processes

    International Nuclear Information System (INIS)

    Nascimento, M.A.C. do

    1992-01-01

    A Generalized Multi Structural (GMS) wave function is presented which combines the advantages of the SCF-MO and VB models, preserving the classical chemical structures but optimizing the orbitals in a self-consistent way. This wave function is particularly suitable to treat situations where the description of the molecular state requires localized wave functions. It also provides a very convenient way of treating the electron correlation problem, avoiding large CI expansions. The final wave functions are much more compact and easier to interpret than the ones obtained by the conventional methods, using orthogonal orbitals. Applications of the GMS wave function to the study of the photoelectron spectra of the trans-glyoxal molecule and to electron impact excitation processes in the nitrogen molecule are presented as an illustration of the method. (author)

  16. Rationalization of Benzazole-2-carboxylate versus Benzazine-3-one/Benzazine-2,3-dione Selectivity Switch during Cyclocondensation of 2-Aminothiophenols/Phenols/Anilines with 1,2-Biselectrophiles in Aqueous Medium.

    Science.gov (United States)

    Dhameliya, Tejas M; Chourasiya, Sumit S; Mishra, Eshan; Jadhavar, Pradeep S; Bharatam, Prasad V; Chakraborti, Asit K

    2017-10-06

    The cyclocondensation reaction of 2-aminothiophenols with 1,2-biselectrophiles such as ethyl glyoxalate and diethyl oxalate in aqueous medium leads to the formation of benzothiazole-2-carboxylates via the 5-endo-trig process contrary to Baldwin's rule. On the other hand, the reaction of 2-aminophenols/anilines produced the corresponding benzazine-3-ones or benzazine-2,3-diones via the 6-exo-trig process in compliance with Baldwin's rule. The mechanistic insights of these cyclocondensation reactions using the hard-soft acid-base principle, quantum chemical calculations (density functional theory), and orbital interaction studies rationalize the selectivity switch of benzothiazole-2-carboxylates versus benzazine-3-ones/benzazine-2,3-diones. The presence of water facilitates these cyclocondensation reactions by lowering of the energy barrier.

  17. Convenient on water synthesis of novel derivatives of dicoumarol as functional vitamin K depleter by Fe3O4 magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Saeed Khodabakhshi

    2017-05-01

    Full Text Available The Fe3O4 nanoparticles were successfully prepared and characterized by X-ray diffraction (XRD, Fourier transform-infrared (FT-IR, and transmission electron microscopy (TEM. The magnetic property of the prepared nanoparticles was investigated by magnetization analysis and the measured magnetization of NPs was found to be considerably lower than the values measured from bulk magnetite. The catalytic efficiency of the prepared nanoparticles was subsequently investigated as a magnetically recyclable and safe catalyst for the green synthesis of new dicoumarols via the one-pot condensation of 4-hydroxycoumarin with aryl glyoxals on water. Catalyst loadings can be as low as 2 mol% to give good yields of the corresponding products. This present method has many advantages, such as the high product yield, avoidance of toxic organic solvents, and simple work-up procedure.

  18. Simultaneous determination of oxygen and cadmium in cadmium and cadmium compounds

    International Nuclear Information System (INIS)

    Imaeda, K.; Kuriki, T.; Ohsawa, K.; Ishii, Y.

    1977-01-01

    Cadmium and its compounds were analysed for oxygen and cadmium by a modification of the Schutze-Unterzaucher method. Oxygen in some compounds such as cadmium oxide, nitrate and sulphate could not be determined by the usual method. The method of adding carbon was employed for the determination of total oxygen. Total oxygen could be determined by the addition of 5 mg of carbon to a sample boat and heating at 950 0 . The determination was also carried out by addition of naphthalene (2 mg). It was found that the cadmium powder and cadmium flake used contained ca. 1 and 0.15% oxygen, respectively. Oxygen and cadmium in cadmium and its compounds were simultaneously determined by the addition of 2 mg of naphthalene. Cadmium was determined colorimetrically by use of glyoxal-bis-(2-hydroxyanil). Oxygen and cadmium in the samples could be determined simultaneously with an average error of -0.02 and -0.22%, respectively. (author)

  19. Protein modification and replicative senescence of WI-38 human embryonic fibroblasts

    DEFF Research Database (Denmark)

    Ahmed, Emad K; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter

    2010-01-01

    reflects a preferential accumulation of damaged proteins within the mitochondria during cellular senescence. Accumulation of AGE-modified proteins could be explained by the senescence-associated decreased activity of glyoxalase-I, the major enzyme involved in the detoxification of the glycating agents...... methylglyoxal and glyoxal, in both cytosol and mitochondria. This finding suggests a role of detoxification systems in the age-related build-up of damaged proteins. Moreover, the oxidized protein repair system methionine sulfoxide reductase was more affected in the mitochondria than in the cytosol during......Summary Oxidized proteins as well as proteins modified by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and by glycation (AGE) have been shown to accumulate with aging in vivo and during replicative senescence in vitro. To better understand the mechanisms by which these damaged proteins...

  20. Copper(II)-bis(thiosemicarbazonato) complexes as anti-chlamydial agents.

    Science.gov (United States)

    Marsh, James W; Djoko, Karrera Y; McEwan, Alastair G; Huston, Wilhelmina M

    2017-09-29

    Lipophilic copper (Cu)-containing complexes have shown promising antibacterial activity against a range of bacterial pathogens. To examine the susceptibility of the intracellular human pathogen Chlamydia trachomatis to copper complexes containing bis(thiosemicarbazone) ligands [Cu(btsc)], we tested the in vitro effect of CuII-diacetyl- and CuII-glyoxal-bis[N(4)-methylthiosemicarbazonato] (Cu(atsm) and Cu(gtsm), respectively) on C. trachomatis. Cu(atsm) and to a greater extent, Cu(gtsm), prevented the formation of infectious chlamydial progeny. Impacts on host cell viability and respiration were also observed in addition to the Chlamydia impacts. This work suggests that copper-based complexes may represent a new lead approach for future development of new therapeutics against chlamydial infections, although host cell impacts need to be fully explored. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Imobilização da lacase em micropartículas de quitosana obtidas por spray drying e usadas na construção de biossensores Immobilization of laccase in microparticles of chitosan obtained by spray drying and used in the biosensors construction

    Directory of Open Access Journals (Sweden)

    Inês Rosane Welter Zwirtes de Oliveira

    2009-01-01

    Full Text Available Biosensors based on laccase immobilized on microparticles of chitosan crosslinked with tripolyphosphate (biosensor I and glyoxal (biosensor II obtained by spray drying for the determinations of rutin in pharmaceutical formulations were developed. Under optimized operational conditions (pH 4.0, frequency of 30 Hz, pulse amplitude of 40 mV and scan increment of 2.0 mV two analytical curves were obtained for both biosensors showing a detection limit of 6.2x10-8 mol L-1 for biosensor (I and 2.0x10-8 mol L-1 for biosensor (II. The recovery of rutin from pharmaceutical sample ranged from 90.7 to 105.0% and the lifetime of these biosensors were 4 months (at least 400 determinations.

  2. Effects of gamma-radiation on the degradiation of substituted aromatics and of industrial waste water

    International Nuclear Information System (INIS)

    Gilbert, E.

    1976-01-01

    The radiation induced degradation of non-biodegradable organic compounds is demonstrated on chlorophenoles and 4-chlorocresole. The oxidation in aqueous solution (c=10 -3 mole/l) with air at doses up to one Mrad results in a complete dechlorination. The organic chlorine is converted to chloride. The influence of inorganic salts (c=10 -1 mole/l) on the irradiation of 2,4,6-trichlorophenole was investigated. The following organic compounds have been identified in the case of 4-chlorocresole as oxidation products: oxalic acid, formic acid, acetic acid, mesoxalic acid, glyoxal, mesoxalic acid semialdehyde. In addition to this, two types of industrial waste water were irradiated, one containing 2,4-dichlorophenole and 4-chlorocresole and another anthrachinonic dye. To oxidize 200 ppm of organic ompounds with a TOC and COD reduction of 50 - 70% 1 Mrad is needed. To eliminate 20 mg COD/1/0,2 Mrad on an average 20 mg oxygen have been consumed. (author)

  3. Nitroreductase catalyzed biotransformation of CL-20

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal

    2004-01-01

    Previously, we reported that a salicylate 1-monooxygenase from Pseudomonas sp. ATCC 29352 biotransformed CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane) (C 6 H 6 N 12 O 12 ) and produced a key metabolite with mol. wt. 346Da corresponding to an empirical formula of C 6 H 6 N 10 O 8 which spontaneously decomposed in aqueous medium to produce N 2 O, NH4+, and HCOOH [Appl. Environ. Microbiol. (2004)]. In the present study, we found that nitroreductase from Escherichia coli catalyzed a one-electron transfer to CL-20 to form a radical anion (CL-20 - ) which upon initial N-denitration also produced metabolite C 6 H 6 N 10 O 8 . The latter was tentatively identified as 1,4,5,8-tetranitro-1,3a,4,4a,5,7a,8,8a-octahydro-diimidazo[4,5-b:4',5'-e] pyrazine [IUPAC] which decomposed spontaneously in water to produce glyoxal (OHCCHO) and formic acid (HCOOH). The rates of CL-20 biotransformation under anaerobic and aerobic conditions were 3.4+/-0.2 and 0.25+/-0.01nmolmin -1 mg of protein -1 , respectively. The product stoichiometry showed that each reacted CL-20 molecule produced about 1.8 nitrite ions, 3.3 molecules of nitrous oxide, 1.6 molecules of formic acid, 1.0 molecule of glyoxal, and 1.3 ammonium ions. Carbon and nitrogen products gave mass-balances of 60% and 81%, respectively. A comparative study between native-, deflavo-, and reconstituted-nitroreductase showed that FMN-site was possibly involved in the biotransformation of CL-20

  4. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-05-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration and microfiltration separation characteristics, but recently, there have been attempts to widen their pool of applications in nanofiltration processes. In this work, a novel method for preparing high performance composite RC membranes was developed. These membranes reveal molecular weight cut-offs (MWCO) of less than 250 daltons, which possibly put them ahead of all commercial RC membranes and in competition with high performance nanofiltration membranes. The membranes were prepared by acidic hydrolysis of dip-coated trimethylsilyl cellulose (TMSC) films. TMSC, with a degree of silylation (DS) of 2.8, was prepared from microcrystalline cellulose by reaction with hexamethyldisilazane under the homogeneous conditions of LiCl/DMAC solvent system. Effects of parameters, such as coating solution concentration and drying rates, were investigated. It was concluded that higher TMSC concentrations as well as higher solvent evaporation rates favor better MWCOs, mainly due to increase in the selective layer thickness. Successful cross-linking of prepared membranes with glyoxal solutions, in the presence of boric acid as a catalyst, resulted in MWCOs less than 250 daltons. The suitability of this crosslinking reaction for large scale productions was already proven in the manufacturing of durable-press fabrics. For us, the inexpensive raw materials as well as the low reaction times and temperatures were of interest. Moreover, the non-toxic nature of glyoxal is a key advantage in medical and pharmaceutical applications. The membranes prepared in this work are strong candidates for separation of small organic solutes from organic solvents streams in pharmaceutical industries. Their hydrophilicity, compared to typical nanofiltration membranes, offer

  5. Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kazuhiko, E-mail: takedaq@hiroshima-u.ac.jp [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Katoh, Shinya; Mitsui, Yumi; Nakano, Shinichi [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Nakatani, Nobutake [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Department of Environmental and Symbiotic Sciences, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501 (Japan); Sakugawa, Hiroshi [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan)

    2014-09-15

    We studied the spatial distributions of and the diurnal variations in four low molecular weight (LMW) carbonyl compounds, formaldehyde, acetaldehyde, propionaldehyde, and glyoxal, in coastal seawater. The samples were taken from the coastal areas of Hiroshima Bay, the Iyo Nada, and the Bungo Channel, western Japan. The formaldehyde, acetaldehyde, and glyoxal concentrations were higher in the northern part of Hiroshima Bay than at offshore sampling points in the Iyo Nada and the Bungo Channel. These three compounds were found at much higher concentrations in the surface water than in deeper water layers in Hiroshima Bay. It is noteworthy that propionaldehyde was not detected in any of the seawater samples, the concentrations present being lower than the detection limit (1 nanomole per liter (nM)) of the high performance liquid chromatography (HPLC) system we used. Photochemical and biological experiments were performed in the laboratory to help understand the characteristic distributions and fates of the LMW carbonyl compounds. The primary process controlling their fate in the coastal environment appears to be their biological consumption. The direct photo degradation of propionaldehyde, initiated by ultraviolet (UV) absorption, was observed, although formaldehyde and acetaldehyde were not degraded by UV irradiation. Our results suggest that the degradation of the LMW carbonyl compounds by photochemically formed hydroxyl radicals is relatively insignificant in the study area. Atmospheric deposition is a possible source of soluble carbonyl compounds in coastal surface seawater, but it may not influence the carbonyl concentrations in offshore waters. - Highlights: • Low molecular weight (LMW) carbonyl compounds in coastal seawater were determined. • Photochemical productions of LMW carbonyl compounds in seawater were observed. • LMW carbonyl compounds were largely consumed biologically. • Photochemical degradation was relatively insignificant in the study area.

  6. Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors

    International Nuclear Information System (INIS)

    Takeda, Kazuhiko; Katoh, Shinya; Mitsui, Yumi; Nakano, Shinichi; Nakatani, Nobutake; Sakugawa, Hiroshi

    2014-01-01

    We studied the spatial distributions of and the diurnal variations in four low molecular weight (LMW) carbonyl compounds, formaldehyde, acetaldehyde, propionaldehyde, and glyoxal, in coastal seawater. The samples were taken from the coastal areas of Hiroshima Bay, the Iyo Nada, and the Bungo Channel, western Japan. The formaldehyde, acetaldehyde, and glyoxal concentrations were higher in the northern part of Hiroshima Bay than at offshore sampling points in the Iyo Nada and the Bungo Channel. These three compounds were found at much higher concentrations in the surface water than in deeper water layers in Hiroshima Bay. It is noteworthy that propionaldehyde was not detected in any of the seawater samples, the concentrations present being lower than the detection limit (1 nanomole per liter (nM)) of the high performance liquid chromatography (HPLC) system we used. Photochemical and biological experiments were performed in the laboratory to help understand the characteristic distributions and fates of the LMW carbonyl compounds. The primary process controlling their fate in the coastal environment appears to be their biological consumption. The direct photo degradation of propionaldehyde, initiated by ultraviolet (UV) absorption, was observed, although formaldehyde and acetaldehyde were not degraded by UV irradiation. Our results suggest that the degradation of the LMW carbonyl compounds by photochemically formed hydroxyl radicals is relatively insignificant in the study area. Atmospheric deposition is a possible source of soluble carbonyl compounds in coastal surface seawater, but it may not influence the carbonyl concentrations in offshore waters. - Highlights: • Low molecular weight (LMW) carbonyl compounds in coastal seawater were determined. • Photochemical productions of LMW carbonyl compounds in seawater were observed. • LMW carbonyl compounds were largely consumed biologically. • Photochemical degradation was relatively insignificant in the study area

  7. Potential Trace Metal–Organic Complexation in the Atmosphere

    Directory of Open Access Journals (Sweden)

    Hiroshi Okochi

    2002-01-01

    Full Text Available It is possible that metal–organic complexation enhances the uptake of gaseous organic compounds and the solubility of metals in aerosols and atmospheric water. We investigated potential atmospheric organic ligands and the enhanced uptake of hydroxy-, oxo-, and dicarboxylic acids as well as dicarbonyls into atmospheric aqueous aerosol. We examined complexation with transition metals (iron, manganese, nickel, copper, zinc and lead on the basis of available references and our experimental data. Humic-like substances are most likely ligands in the atmosphere, although this is a poorly characterized material. A number of polycarboxylic acids and hydroxy forms (e.g., citric and tartronic acids effectively complex metals such as copper in atmospheric aerosols. The simple equilibrium model calculations show that the effect of the complexation on the gas–aqueous phase partition of gaseous atmospheric ligands is quite small for the ligands with the high physical Henry’s law constants, e.g., dicarboxylic acids represented by oxalic acid, even if they have high affinity with metal ions. The lower Henry’s law constants of the α-dicarbonyls, such as glyoxal and methylglyoxal, mean that the complexation could lead to profound increases in their partition into the aqueous phase. Despite quantum mechanical arguments for copper–glyoxal complexes, experiments showed no evidence of complexation between either hydrated or unhydrated α-dicarbonyls and the cupric ion. By contrast the β-dicarbonyl, malondialdehyde, has properties that would allow it to partition into atmospheric water via the complexation with metal ions under some conditions.

  8. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    Science.gov (United States)

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Association of peripheral neuropathy with circulating advanced glycation end products, soluble receptor for advanced glycation end products and other risk factors in patients with type 2 diabetes.

    Science.gov (United States)

    Aubert, C E; Michel, P-L; Gillery, P; Jaisson, S; Fonfrede, M; Morel, F; Hartemann, A; Bourron, O

    2014-11-01

    The pathogenesis of diabetic peripheral neuropathy remains uncertain and nonenzymatic glycoxidation is one of the contributing mechanisms. The aim of this study was to assess the respective relationship of diabetic peripheral neuropathy with glycoxidation, compared with other identified risk factors, in patients with type 2 diabetes. We included 198 patients with type 2 diabetes and high risk for vascular complications. Circulating concentrations of three advanced glycation end products (carboxymethyllysine, methyl-glyoxal-hydroimidazolone-1, pentosidine) and of their soluble receptor (sRAGE) were measured. Peripheral neuropathy was assessed by the neuropathy disability score and by the monofilament test and defined as either an abnormal monofilament test and/or a neuropathy disability score ≥6. Multivariate regression analyses were performed adjusting for potential confounding factors for neuropathy: age, gender, diabetes duration, current smoking, systolic blood pressure, waist circumference, height, peripheral arterial occlusive disease, glycated haemoglobin, estimated glomerular filtration rate and lipid profile. Prevalence of peripheral neuropathy was 20.7%. sRAGE and carboxymethyllysine were independently and positively associated with the presence of peripheral neuropathy. No significant association was found between peripheral neuropathy and methyl-glyoxal-hydroimidazolone-1 or pentosidine. Waist circumference, height and peripheral arterial occlusive disease were independently associated with peripheral neuropathy. Carboxymethyllysine and sRAGE were independently associated with peripheral neuropathy in patients with type 2 diabetes. Although the conclusions are limited by the absence of a healthy control population, this study confirms the relationship between advanced glycoxidation and diabetic peripheral neuropathy, independently of other risk factors. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Determination of Chemical Compounds Generated from Second-generation E-cigarettes Using a Sorbent Cartridge Followed by a Two-step Elution Method.

    Science.gov (United States)

    Uchiyama, Shigehisa; Senoo, Yui; Hayashida, Hideki; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2016-01-01

    We developed an analytical method for analyzing electronic cigarette (E-cigarette) smoke, and measured the carbonyl compounds and volatile organic compounds generated by 10 brands of second-generation E-cigarettes. A glass filter (Cambridge filter pad) for particulate matter and a solid sorbent tube packed with Carboxen-572 for gaseous compounds were used to collect E-cigarette smoke. These were then analyzed using a two-step elution method with carbon disulfide and methanol, followed by high-performance liquid chromatography (HPLC) and gas chromatography mass spectrometry (GC/MS). Formaldehyde (FA), acetaldehyde (AA), acetone (AC), acrolein (ACR), propanal (PA), acetol (AT), glyoxal (GO), and methyl glyoxal (MGO) were detected by HPLC in some E-cigarettes. Propylene glycol (PG), glycerol (GLY), and some esters were detected by GC/MS. GO and MGO exist mainly as particulate matter. AA, AC, ACR, PA, and AT exist mainly as gaseous compounds. FA exists as both particulate matter and gaseous compounds. These carbonyl compounds have carbon numbers C1 - C3. The main components of E-liquid are PG (C3) and GLY (C3). Therefore, the oxidation of liquids, such as PG and GLY in E-cigarettes upon incidental contact with the heating element in E-cigarette, is suggested as being a possible cause for carbonyl generation. When the puff number exceeds a critical point, carbonyl generation rapidly increases and then remains constant. The results of this study are now being used to determine the following E-cigarette smoking protocol: puff volume, 55 mL; puff duration, 2 s; and puff number, 30. E-cigarette analysis revealed very large variation in carbonyl concentration among not only different brands, but also different samples of the same product. Typical distributions of carbonyl concentration were not observed in any of the E-cigarettes tested, and the mean values greatly differed from median values.

  11. Hydrogen-rich water inhibits glucose and α,β -dicarbonyl compound-induced reactive oxygen species production in the SHR.Cg-Leprcp/NDmcr rat kidney

    Directory of Open Access Journals (Sweden)

    Katakura Masanori

    2012-07-01

    Full Text Available Abstract Background Reactive oxygen species (ROS production induced by α,β-dicarbonyl compounds and advanced glycation end products causes renal dysfunction in patients with type 2 diabetes and metabolic syndrome. Hydrogen-rich water (HRW increases the H2 level in blood and tissues, thus reducing oxidative stress in animals as well as humans. In this study, we investigated the effects of HRW on glucose- and α,β-dicarbonyl compound-induced ROS generation in vitro and in vivo. Methods Kidney homogenates from Wistar rats were incubated in vitro with glucose and α,β-dicarbonyl compounds containing HRW, following which ROS levels were measured. In vivo animal models of metabolic syndrome, SHR.Cg-Leprcp/NDmcr rats, were treated with HRW for 16 weeks, following which renal ROS production and plasma and renal α,β-dicarbonyl compound levels were measured by liquid chromatograph mass spectrometer. Results HRW inhibited glucose- and α,β-dicarbonyl compound-induced ROS production in kidney homogenates from Wistar rats in vitro. Furthermore, SHR.Cg-Leprcp/NDmcr rats treated with HRW showed a 34% decrease in ROS production. Moreover, their renal glyoxal, methylglyoxal, and 3-deoxyglucosone levels decreased by 81%, 77%, and 60%, respectively. Positive correlations were found between renal ROS levels and renal glyoxal (r = 0.659, p = 0.008 and methylglyoxal (r = 0.782, p = 0.001 levels. Conclusion These results indicate that HRW inhibits the production of α,β-dicarbonyl compounds and ROS in the kidneys of SHR.Cg-Leprcp/NDmcr rats. Therefore, it has therapeutic potential for renal dysfunction in patient with type 2 diabetes and metabolic syndrome.

  12. Sink or Swim: Ions and Organics at the Ice-Air Interface.

    Science.gov (United States)

    Hudait, Arpa; Allen, Michael T; Molinero, Valeria

    2017-07-26

    The ice-air interface is an important locus of environmental chemical reactions. The structure and dynamics of the ice surface impact the uptake of trace gases and kinetics of reactions in the atmosphere and snowpack. At tropospheric temperatures, the ice surface is partially premelted. Experiments indicate that ions increase the liquidity of the ice surface but hydrophilic organics do not. However, it is not yet known the extent of the perturbation solutes induce at the ice surface and what is the role of the disordered liquid-like layer in modulating the interaction between solutes and their mobility and aggregation at the ice surface. Here we use large-scale molecular simulations to investigate the effect of ions and glyoxal, one of the most abundant oxygenated volatile organic compounds in the atmosphere, on the structure, dynamics, and solvation properties of the ice surface. We find that the premelted surface of ice has unique solvation properties, different from those of liquid water. The increase in surface liquidity resulting from the hydration of ions leads to a water-mediated attraction of ions at the ice surface. Glyoxal molecules, on the other hand, perturb only slightly the surface of ice and do not experience water-driven attraction. They nonetheless accumulate as dry agglomerates at the ice surface, driven by direct interactions between the organic molecules. The enhanced attraction and clustering of ions and organics at the ice surface may play a significant role in modulating the mechanism and rate of heterogeneous chemical reactions occurring at the surface of atmospheric ice particles.

  13. Small molecules as tracers in atmospheric secondary organic aerosol

    Science.gov (United States)

    Yu, Ge

    Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and

  14. Identification and quantification of six major α-dicarbonyl process contaminants in high-fructose corn syrup.

    Science.gov (United States)

    Gensberger, Sabrina; Mittelmaier, Stefan; Glomb, Marcus A; Pischetsrieder, Monika

    2012-07-01

    High-fructose corn syrup (HFCS) is a widely used liquid sweetener produced from corn starch by hydrolysis and partial isomerization of glucose to fructose. During these processing steps, sugars can be considerably degraded, leading, for example, to the formation of reactive α-dicarbonyl compounds (α-DCs). The present study performed targeted screening to identify the major α-DCs in HFCS. For this purpose, α-DCs were selectively converted with o-phenylendiamine to the corresponding quinoxaline derivatives, which were analyzed by liquid chromatography with hyphenated diode array-tandem mass spectrometry (LC-DAD-MS/MS) detection. 3-Deoxy-D-erythro-hexos-2-ulose (3-deoxyglucosone), D-lyxo-hexos-2-ulose (glucosone), 3-deoxy-D-threo-hexos-2-ulose (3-deoxygalactosone), 1-deoxy-D-erythro-hexos-2,3-diulose (1-deoxyglucosone), 3,4-dideoxyglucosone-3-ene, methylglyoxal, and glyoxal were identified by enhanced mass spectra as well as MS/MS product ion spectra using the synthesized standards as reference. Addition of diethylene triamine pentaacetic acid and adjustment of the derivatization conditions ensured complete derivatization without de novo formation for all identified α-DCs in HFCS matrix except for glyoxal. Subsequently, a ultra-high performance LC-DAD-MS/MS method was established to quantify 3-deoxyglucosone, glucosone, 3-deoxygalactosone, 1-deoxyglucosone, 3,4-dideoxyglucosone-3-ene, and methylglyoxal in HFCS. Depending on the α-DC compound and concentration, the recovery ranged between 89.2% and 105.8% with a relative standard deviation between 1.9% and 6.5%. Subsequently, the α-DC profiles of 14 commercial HFCS samples were recorded. 3-Deoxyglucosone was identified as the major α-DC with concentrations up to 730 μg/mL HFCS. The total α-DC content ranged from 293 μg/mL to 1,130 μg/mL HFCS. Significantly different α-DC levels were not detected between different HFCS specifications, but between samples of various manufacturers indicating that the

  15. Gas-phase ozonolysis of the monoterpenoids ( S)-(+)-carvone, ( R)-(-)-carvone, (-)-carveol, geraniol and citral

    Science.gov (United States)

    Nunes, Fabíola Maria N.; Veloso, M. C. C.; de P. Pereira, P. A.; de Andrade, J. B.

    Biogenic emissions of volatile organic compounds (VOCs) play a fundamental role in atmospheric chemistry. Vegetation is the most abundant natural source of VOCs, while terpenoids, as limonene, α and β pinene and mircene, top the plants emission list. Much interest has been demonstrated in oxidation and photooxidation reactions of VOCs, particularly of monoterpenoids, owing to their diversity and to uncertainties regarding their mechanism of reaction. Quantification of primary carbonylic compounds, as well as of biradical reaction components, is highly relevant to the understanding of the major reactions. In this context, taking into account both structural factors and the fact that these compounds are found in the essential oils of plants typically found in Brazil and that they may be present in the atmosphere from emission by the plants, the monoterpenoids ( S)-(+)-carvone, ( R)-(-)-carvone, (-)-carveol, geraniol and citral (a mixture of the isomers geranial and neral) were selected for this study. The ozonolysis reactions of the monoterpenoids were carried out under dark conditions for all experiments, due to their photochemical reactivity. The analysis of the results lets us propose a mechanism by which these reactions occur. The observed results of the ozonolysis of S and R carvone suggest that the stereochemistry of asymmetric carbon does not affect either in the yields of both formaldehyde and of OH radicals produced in the reaction, or in the reactivity of these compounds, for which the rate constants were in the scale of 10 -6 s -1. We found that, in the (-)-carveol's cis and trans mixture, even though the hydroxyl in the axial position—in the case of trans-(C) and cis-(D') isomers—favors the attack by the ozone molecule on the external double bond, thus increasing the mixture's reactivity (k=2.0×10-4s), it affects the average production of formaldehyde. The presence of geraniol and citral led to the production of formaldehyde, propanone, glyoxal

  16. Assessment of Satellite Capabilities to Detect Impacts of Oil and Natural Gas Activity by Analysis of SONGNEX 2015 Aircraft Measurements

    Science.gov (United States)

    Thayer, M. P.; Keutsch, F. N.; Wolfe, G.; St Clair, J. M.; Hanisco, T. F.; Aikin, K. C.; Brown, S. S.; Dubé, W.; Eilerman, S. J.; Gilman, J.; De Gouw, J. A.; Koss, A.; Lerner, B. M.; Neuman, J. A.; Peischl, J.; Ryerson, T. B.; Thompson, C. R.; Veres, P. R.; Warneke, C.; Washenfelder, R. A.; Wild, R. J.; Womack, C.; Yuan, B.; Zarzana, K. J.

    2017-12-01

    In the last decade, the rate of domestic energy production from oil and natural gas has grown dramatically, resulting in increased concurrent emissions of methane and other volatile organic compounds (VOCs). Products of VOC oxidation and radical cycling, such as tropospheric ozone (O3) and secondary organic aerosols (SOA), have detrimental impacts on human health and climate. The ability to monitor these emissions and their impact on atmospheric composition from remote-sensing platforms will benefit public health by improving air quality forecasts and identifying localized drivers of tropospheric pollution. New satellite-based instruments, such as TROPOMI (October 2017 launch) and TEMPO (2019-2021 projected launch), will be capable of measuring chemical species related to energy drilling and production on unprecedented spatial and temporal scales, however there is need for improved assessments of their capabilities with respect to specific applications. We use chemical and physical parameters measured via aircraft in the boundary layer and free troposphere during the Shale Oil and Natural Gas Nexus (SONGNEX 2015) field campaign to view chemical enhancements over tight oil and shale gas basins from a satellite perspective. Our in-situ data are used to calculate the planetary boundary layer contributions to the column densities for formaldehyde, glyoxal, O3, and NO2. We assess the spatial resolution and chemical precisions necessary to resolve various chemical features, and compare these limits to TEMPO and TROPOMI capabilities to show the degree to which their retrievals will be able to discern the signatures of oil and natural gas activity.

  17. Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS

    Energy Technology Data Exchange (ETDEWEB)

    Pachkowski, Brian F. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States); Tano, Keizo [Research Reactor Institute, Kyoto University, Kumatori (Japan); Afonin, Valeriy [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States); Elder, Rhoderick H. [School of Environment and Life Sciences, University of Salford, Greater Manchester (United Kingdom); Takeda, Shunichi [Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto (Japan); Watanabe, Masami [Research Reactor Institute, Kyoto University, Kumatori (Japan); Swenberg, James A. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States); Nakamura, Jun, E-mail: ynakamur@email.unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States)

    2009-12-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a base excision repair (BER) protein that binds to DNA single strand breaks (SSBs) and subsequently synthesizes and transfers poly(ADP-ribose) polymers to various nuclear proteins. Numerous biochemical studies have implicated PARP-1 as a modulator of BER; however, the role of PARP-1 in BER in living cells remains unclear partly due to lack of accurate quantitation of BER intermediates existing in cells. Since DT40 cells, chicken B lymphocytes, naturally lack PARP-2, DT40 cells allow for the investigation of the PARP-1 null phenotype without confounding by PARP-2. To test the hypothesis that PARP-1 is necessary for efficient BER during methylmethane sulfonate (MMS) exposure in vertebrate cells, intact DT40 cells and their isogenic PARP-1 null counterparts were challenged with different exposure scenarios for phenotypic characterization. With chronic exposure, PARP-1 null cells exhibited sensitivity to MMS but with an acute exposure did not accumulate base lesions or AP sites to a greater extent than wild-type cells. However, an increase in SSB content in PARP-1 null cell DNA, as indicated by glyoxal gel electrophoresis under neutral conditions, suggested the presence of BER intermediates. These data suggest that during exposure, PARP-1 impacts the stage of BER after excision of the deoxyribosephosphate moiety from the 5' end of DNA strand breaks by polymerase {beta}.

  18. Transferrin coupled azanthraquinone enhances the killing effect on trypanosomes. The role of lysosomal mannosidase

    Directory of Open Access Journals (Sweden)

    Nok A.J.

    2002-12-01

    Full Text Available Partially purified azanthraquinone (AQ extract from Mitracarpus scaber was coupled to bovine transferrin (Tf using azidophenyl glyoxal (APG. The AQ-APG-Tf conjugate was found to possess an enhanced in vitro trypanocidal activity against Trypanosoma congolense and T. brucei brucei. At low concentrations of 0.39-90 mg/ml, the conjugate diminished the growth of T. congolense and T. b. brucei dose dependently at the logarithmic phase. Both parasites were more sensitive to AQ-APG-Tf than to the free (AQ extract. Growth inhibition on the parasites by the free extract was observed at 20-200 mg/ml. The total activity of the lysosomal enzyme a-mannosidase was reduced in the T. congolense cells treated with AQ-APG-Tf in a dose related pattern. However, the activity of the mannosidase in the T. b. brucei treated cells is less affected. The AQ-APG-Tf is more effective on a mannosidase than free AQ, eight and four fold for T. congolense and T. b. brucei respectively. The results are discussed as regards the potency of using transferrin as suitable drug carrier in the chemotherapy of Human sleeping sickness.

  19. Molecular action mechanism against apoptosis by aqueous extract from guava budding leaves elucidated with human umbilical vein endothelial cell (HUVEC) model.

    Science.gov (United States)

    Hsieh, Chiu-Lan; Huang, Chien-Ning; Lin, Yuh-Charn; Peng, Robert Y

    2007-10-17

    Chronic cardiovascular and neurodegenerative complications induced by hyperglycemia have been considered to be associated most relevantly with endothelial cell damages (ECD). The protective effects of the aqueous extract of Psidium guajava L. budding leaves (PE) on the ECD in human umbilical vein endothelial cell (HUVEC) model were investigated. Results revealed that glyoxal (GO) and methylglyoxal (MGO) resulting from the glycative and autoxidative reactions of the high blood sugar glucose (G) evoked a huge production of ROS and NO, which in turn increased the production of peroxynitrite, combined with the activation of the nuclear factor kappaB (NFkappaB), leading to cell apoptosis. High plasma glucose activated p38-MAPK, and high GO increased the expressions of p38-MAPK and JNK-MAPK, whereas high MGO levels induced the activity of ERK-MAPK. Glucose and dicarbonyl compounds were all found to be good inducers of intracellular PKCs, which together with MAPK acted as the upstream triggering factor to activate NFkappaB. Conclusively, high plasma glucose together with dicarbonyl compounds can trigger the signaling pathways of MAPK and PKC and induce cell apoptosis through ROS and peroxynitrite stimulation and finally by NFkappaB activation. Such effects of PE were ascribed to its high plant polyphenolic (PPP) contents, the latter being potent ROS inhibitors capable of blocking the glycation of proteins, which otherwise could have brought forth severe detrimental effects to the cells.

  20. Free α-dicarbonyl compounds in coffee, barley coffee and soy sauce and effects of in vitro digestion.

    Science.gov (United States)

    Papetti, Adele; Mascherpa, Dora; Gazzani, Gabriella

    2014-12-01

    α-Dicarbonyl (α-DC) compounds were characterised in roasted (coffee, barley coffee) and in fermented (soy sauce) food matrices. Glyoxal (GO), methylglyoxal (MGO), diacetyl (DA) and 3-deoxyglucosone (3-DG) were found in all samples, and hydroxypyruvaldehyde and 5-hydroxypentane-2,3-dione in barley and soy. Cis and trans 3,4-dideoxyglucosone-3-ene (3,4-DGE) isomers and 4-glucosyl-5,6-dihydroxy-2-oxohexanal (4-G,3-DG) were found only in barley, and 3,4-DGE only in soy sauce with molasses. GO, MGO, and DA were quantified. Findings indicate that i) α-DC profiles depend on the food matrix and any technological treatments applied; ii) α-DC quantitation by HPLC requires matrix-specific, validated methods; iii) GO and MGO were the most abundant α-DCs; and iv) barley coffee was the matrix richest in α-DCs both qualitatively and quantitatively. In vitro simulated digestion reduced (coffee) or strongly increased (barley, soy sauce) free α-DC content. These findings suggest that α-DC bioavailability could actually depend not on food content but rather on reactions occurring during digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. YqhD. A broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, Laura R. [Iowa State Univ., Ames, IA (United States). Dept. of Chemical and Biological Engineering

    2011-01-15

    The Escherichia coli NADPH-dependent aldehyde reductase YqhD has contributed to a variety of metabolic engineering projects for production of biorenewable fuels and chemicals. As a scavenger of toxic aldehydes produced by lipid peroxidation, YqhD has reductase activity for a broad range of short-chain aldehydes, including butyraldehyde, glyceraldehyde, malondialdehyde, isobutyraldehyde, methylglyoxal, propanealdehyde, acrolein, furfural, glyoxal, 3-hydroxypropionaldehyde, glycolaldehyde, acetaldehyde, and acetol. This reductase activity has proven useful for the production of biorenewable fuels and chemicals, such as isobutanol and 1,3- and 1,2-propanediol; additional capability exists for production of 1-butanol, 1-propanol, and allyl alcohol. A drawback of this reductase activity is the diversion of valuable NADPH away from biosynthesis. This YqhD-mediated NADPH depletion provides sufficient burden to contribute to growth inhibition by furfural and 5-hydroxymethyl furfural, inhibitory contaminants of biomass hydrolysate. The structure of YqhD has been characterized, with identification of a Zn atom in the active site. Directed engineering efforts have improved utilization of 3-hydroxypropionaldehyde and NADPH. Most recently, two independent projects have demonstrated regulation of yqhD by YqhC, where YqhC appears to function as an aldehyde sensor. (orig.)

  2. Effects of bis(guanylhydrazones) on the activity and expression of ornithine decarboxylase.

    Science.gov (United States)

    Nikula, P; Alhonen-Hongisto, L; Jänne, J

    1985-01-01

    Derivatives of glyoxal bis(guanylhydrazone) (GBG), such as methylglyoxal bis(guanylhydrazone) and ethylglyoxal bis(guanylhydrazone), are potent inhibitors of S-adenosylmethionine decarboxylase (EC 4.1.1.50), the key enzyme required for the synthesis of spermidine and spermine. These compounds, but not the parent compound, induce a massive accumulation of putrescine, partly by blocking the conversion of putrescine into spermidine, but also by strikingly stimulating ornithine decarboxylase (ODC; EC 4.1.1.17) activity. The mechanism of the stimulation of ODC activity and enhanced accumulation of the enzyme protein apparently involved a distinct stabilization of the enzyme against intracellular degradation. However, although the parent compound GBG also stabilized ODC, it powerfully inhibited the enzyme activity and the accumulation of immunoreactive protein in cultured L1210 leukaemia cells. Kinetic considerations indicated that, in addition to the stabilization, all three compounds, GBG in particular, inhibited the expression of ODC. It is unlikely that the decreased rate of synthesis of ODC was attributable to almost unaltered amounts of mRNA in drug-treated cells, thus supporting the view that especially GBG apparently depressed the expression of ODC at some post-transcriptional level. Images PMID:4062886

  3. Ethylglyoxal bis(guanylhydrazone) as an inhibitor of polyamine biosynthesis in L1210 leukemia cells.

    Science.gov (United States)

    Seppänen, P; Ruohola, H; Jänne, J

    1984-04-16

    Ethylglyoxal bis(guanylhydrazone), a close derivative of the known anti-cancer drug methylglyoxal bis(guanylhydrazone), is also a powerful inhibitor of S-adenosylmethionine decarboxylase (EC 4.1.1.50), the enzyme needed for the synthesis of spermidine and spermine. There were, however, marked differences between the ethyl and methyl derivatives of glyoxal bis(guanylhydrazone) when tested in cultured L1210 cells. The cellular accumulation of ethylglyoxal bis(guanylhydrazone) represented only a fraction (20-25%) of that of the methyl derivative. Moreover, polyamine depletion, which is known to strikingly stimulate the uptake of methylglyoxal bis(guanylhydrazone), decreased, if anything, the uptake of ethylglyoxal bis(guanylhydrazone) by L1210 cells. The compound produced spermidine and spermine depletion fully comparable to that achieved with methylglyoxal bis(guanylhydrazone) at micromolar concentrations. Ethylglyoxal bis(guanylhydrazone) was growth-inhibitory to L1210 cells and produced an additive antiproliferative action when used together with 2-difluoromethylornithine. Ethylglyoxal bis(guanylhydrazone) was distinctly less effective than methylglyoxal bis(guanylhydrazone) in releasing bound polyamines from isolated cell organelles in vitro. Ethylglyoxal bis(guanylhydrazone) was also devoid of the early and profound mitochondrial toxicity typical to methylglyoxal bis(guanylhydrazone). These findings may indicate that this compound is a more specific inhibitor of polyamine biosynthesis with less intracellular polyamine 'receptor-site' activity than methylglyoxal bis(guanylhydrazone).

  4. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells1

    Science.gov (United States)

    Miller, Aaron L; Johnson, Betty H; Medh, Rheem D; Townsend, Courtney M; Thompson, E Brad

    2002-01-01

    Abstract Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone (Dex) and two polyamine inhibitors, difluoromethylornithine (DFMO) and methyl glyoxal bis guanylhydrazone (MGBG), on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity. PMID:11922393

  5. Diethylglyoxal bis(guanylhydrazone): a novel highly potent inhibitor of S-adenosylmethionine decarboxylase with promising properties for potential chemotherapeutic use.

    Science.gov (United States)

    Elo, H; Mutikainen, I; Alhonen-Hongisto, L; Laine, R; Jänne, J

    1988-07-01

    Diethylglyoxal bis(guanylhydrazone) (DEGBG), a novel analog of the antileukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) was synthesized. It was found to be the most powerful inhibitor of yeast S-adenosylmethionine decarboxylase (AdoMetDC) so far studied (Ki approx. 9 nM). This property, together with the finding that the compound is a weaker inhibitor of intestinal diamine oxidase than are MGBG and its glyoxal, ethylglyoxal and ethylmethylglyoxal analogs, makes the compound a promising candidate as a polyamine antimetabolite for chemotherapy studies. DEGBG was also found to potentiate the antiproliferative effect of the ornithine decarboxylase inhibitor alpha-difluoromethyl ornithine against mouse L1210 leukemia cells in vitro. DEGBG increased several-fold the intracellular putrescine concentration of cultured L1210 cells, just as MGBG and its ethylglyoxal analog are known to do. The results strongly suggest that DEGBG is worth further studies. Combined with previous studies, they also made possible the construction of some empirical rules concerning the structure-activity relationships of bis(guanylhydrazone) type inhibitors of AdoMetDC. The identity of DEGBG was confirmed by a single-crystal X-ray analysis and by 1H- and 13C-NMR spectroscopy. It consisted of the same isomer as MGBG and several of its analogs are known to consist of.

  6. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells

    Directory of Open Access Journals (Sweden)

    Aaron L. Miller

    2002-01-01

    Full Text Available Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone. (20Dex and two polyamine inhibitors, difluoromethylornithine. (20DFMO and methyl glyoxal bis guanylhydrazone. (20MGBG, on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase. (20ODC, the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity.

  7. Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics.

    Directory of Open Access Journals (Sweden)

    Andrea Trochine

    2014-05-01

    Full Text Available The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn. Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi.

  8. Electrospray ionization mass spectrometric investigations of [alpha]-dicarbonyl compounds--Probing intermediates formed in the course of the nonenzymatic browning reaction of l-ascorbic acid

    Science.gov (United States)

    Schulz, Anke; Trage, Claudia; Schwarz, Helmut; Kroh, Lothar W.

    2007-05-01

    A new method is presented which allows the simultaneous detection of various [alpha]-dicarbonyl compounds generated in the course of the nonenzymatic browning reaction initiated by thermal treatment of l-ascorbic acid, namely: glyoxal, methylglyoxal, diacetyl, 3-deoxy-l-pentosone, and l-threosoneE 3-Deoxy-l-threosone was successfully identified as a new C4-[alpha]-dicarbonyl structure for the first time in the degradation of Vitamin C by application of this non-chromatographic mass spectrometric approach. Moreover, a more detailed elucidation of the mechanistic scenario with respect to the oxidative and nonoxidative pathways is presented by using dehydro-l-ascorbic acid and 2,3-diketo-l-gulonic acid instead of l-ascorbic acid as a starting material. Furthermore, the postulated pathways are corroborated with the aid of 13C-isotopic labeling studies. The investigations were extended to baby food, and the successful detection of [alpha]-dicarbonyl compounds characteristic for Vitamin C degradation proved the matrix tolerance of the introduced method.

  9. Characterization of metabolic network of oxalic acid biosynthesis through RNA seq data analysis of developing spikes of finger millet (Eleusine coracana): Deciphering the role of key genes involved in oxalate formation in relation to grain calcium accumulation.

    Science.gov (United States)

    Akbar, Naved; Gupta, Supriya; Tiwari, Apoorv; Singh, K P; Kumar, Anil

    2018-04-05

    In the present study, we identified seven major genes of oxalic acid biosynthesis pathway (SGAT, GGAT, ICL, GLO, MHAR, APO and OXO) from developing spike transcriptome of finger millet using rice as a reference. Sequence alignment of identified genes showed high similarity with their respective homolog in rice except for OXO and GLO. Transcript abundance (FPKM) reflects the higher accumulation of identified genes in GP-1 (low calcium genotype) as compared to GP-45 (high calcium genotype) which was further confirmed by qRT-PCR analysis, indicating differential oxalate formation in both genotypes. Determination of oxalic acid and tartaric acid content in developing spikes explain that higher oxalic acid content in GP-1 however, tartaric acid content was more in GP-45. Higher calcium content in GP-45 and lower oxalate accumulation may be due to the diversion of more ascorbic acid into tartaric acid and may correspond to less formation of calcium oxalate. Our results suggest that more than one pathway for oxalic acid biosynthesis might be present in finger millet with probable predominance of ascorbate-tartarate pathway rather than glyoxalate-oxalate conversion. Thus, finger millet can be use as an excellent model system for understanding more specific role of nutrients-antinutrients interactions, as evident from the present study. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries.

    Science.gov (United States)

    Hu, Chuangang; Xiao, Ying; Zhao, Yang; Chen, Nan; Zhang, Zhipan; Cao, Minhua; Qu, Liangti

    2013-04-07

    Highly nitrogen-doped carbon capsules (hN-CCs) have been successfully prepared by using inexpensive melamine and glyoxal as precursors via solvothermal reaction and carbonization. With a great promise for large scale production, the hN-CCs, having large surface area and high-level nitrogen content (N/C atomic ration of ca. 13%), possess superior crossover resistance, selective activity and catalytic stability towards oxygen reduction reaction for fuel cells in alkaline medium. As a new anode material in lithium-ion battery, hN-CCs also exhibit excellent cycle performance and high rate capacity with a reversible capacity of as high as 1046 mA h g(-1) at a current density of 50 mA g(-1) after 50 cycles. These features make the hN-CCs developed in this study promising as suitable substitutes for the expensive noble metal catalysts in the next generation alkaline fuel cells, and as advanced electrode materials in lithium-ion batteries.

  11. Synthesis and Characterization of Some New Bis-Pyrazolyl-Thiazoles Incorporating the Thiophene Moiety as Potent Anti-Tumor Agents

    Directory of Open Access Journals (Sweden)

    Sobhi M. Gomha

    2016-09-01

    Full Text Available A new series of 1,4-bis(1-(5-(aryldiazenylthiazol-2-yl-5-(thiophen-2-yl-4,5-dihydro-1H-pyrazol-3-ylbenzenes 3a–i were synthesized via reaction of 5,5′-(1,4-phenylenebis(3-(thiophen-2-yl-4,5-dihydro-1H-pyrazole-1-carbothioamide (1 with hydrazonoyl halides 2a–i. In addition, reaction of 1 with ethyl chloroacetate afforded bis-thiazolone derivative 8 as the end product. Reaction of compound 8 with methyl glyoxalate gave bis-thiazolone derivative 10. The structures of the newly synthesized compounds were established on the basis of spectroscopic evidences and their alternative syntheses. All the synthesized compounds were evaluated for their anti-tumor activities against hepatocellular carcinoma (HepG2 cell lines, and the results revealed promising activities of compounds 3g, 5e, 3e, 10, 5f, 3i, and 3f with IC50 equal 1.37 ± 0.15, 1.41 ± 0.17, 1.62 ± 0.20, 1.86 ± 0.20, 1.93 ± 0.08, 2.03 ± 0.25, and 2.09 ± 0.19 μM, respectively.

  12. Genotoxicity of formaldehyde: Molecular basis of DNA damage and mutation

    Directory of Open Access Journals (Sweden)

    Masanobu eKawanishi

    2014-09-01

    Full Text Available Formaldehyde is commonly used in the chemical industry and is present in the environment, such as vehicle emissions, some building materials, food and tobacco smoke. It also occurs as a natural product in most organisms, the sources of which include a number of metabolic processes. It causes various acute and chronic adverse effects in humans if they inhale its fumes. Among the chronic effects on human health, we summarize data on genotoxicity and carcinogenicity in this review, and we particularly focus on the molecular mechanisms involved in the formaldehyde mutagenesis. Formaldehyde mainly induces N-hydroxymethyl mono-adducts on guanine, adenine and cytosine, and N-methylene crosslinks between adjacent purines in DNA. These crosslinks are types of DNA damage potentially fatal for cell survival if they are not removed by the nucleotide excision repair pathway. In the previous studies, we showed evidence that formaldehyde causes intra-strand crosslinks between purines in DNA using a unique method (Matsuda et al. Nucleic Acids Res. 26, 1769-1774,1998. Using shuttle vector plasmids, we also showed that formaldehyde as well as acetaldehyde induces tandem base substitutions, mainly at 5’-GG and 5’-GA sequences, which would arise from the intra-strand crosslinks. These mutation features are different from those of other aldehydes such as crotonaldehyde, acrolein, glyoxal and methylglyoxal. These findings provide molecular clues to improve our understanding of the genotoxicity and carcinogenicity of formaldehyde.

  13. Product Analysis of the {OH} Oxidation of Acrolein and Methacrolein in the Presence of {NO}

    Science.gov (United States)

    Dransfield, T. J.; Sprengnether, M. M.; Huang, Y.; Donahue, N. M.; Demerjian, K. L.; Anderson, J. G.

    2002-12-01

    The oxidation of acrolein and methacrolein by OH in the presence of high NO was studied under "wall-less" conditions in Harvard's High Pressure Flow System. The experiment was conducted at 450 torr with a reaction time of several seconds. In the present work, first stage products are formed at 1013 molecules/cm3 levels and analyzed in-situ by FTIR spectroscopy. The use of Reaction Modulation Spectroscopy allows for accurate measurement of the very small(~1%) change in unsaturated aldehyde and NO reactants, in addition to product concentrations. Observed products from the acrolein oxidation include: formaldehyde(CH2O), glyoxal(CHOCHO), glycolaldehyde(CH2OHCHO), ketene(CH2CO), nitrogen dioxide, carbon dioxide and carbon monoxide. The methacrolein oxidation produces: formaldehyde, methylgyloxal(CH3COCHO), hydroxyacetone(CH2OHC(O)CH3), ketene, nitrogen dioxide, carbon dioxide and carbon monoxide. Both reactions also produce peroxynitrates and alkylnitrates that have proven difficult to spectrally resolve. We observe elevated yields of ketene relative to previously published experiments conducted on longer timescales. We interpret this as evidence of rapid ketene removal in these systems. The mechanisms for ketene formation are discussed.

  14. Applications of fibrous substrates containing insolubilized phase change polymers

    Science.gov (United States)

    Vigo, Tyrone L.; Bruno, Joseph S.

    1993-01-01

    Incorporation of polyethylene glycols into fibrous substrates produces several improved functional properties when they are insolubilized by crosslinking with a methylolamide resin or by polyacetal formation by their reaction with glyoxal. The range of molecular weights of polyols that may be insolubilized is broad as are the curing conditions (0.25-10 min at 80-200C). Most representative fiber types and blends (natural and synthetic) and all types of fabric constructions (woven, nonwoven and knit) have been modified by incorporation of the bound polyols. The most novel property is the thermal adaptability of the modified substrates to many climatic conditions. This adaptability is due to the high latent heat of the crosslinked polyols that function as phase change materials, the hydrophilic nature of the crosslinked polymer and its enhanced thermal conductivity. Other enhanced properties imparted to fabrics include flex and flat abrasion, antimicrobial activity, reduced static charge, resistance to oily soils, resiliency, wind resistance and reduced lint loss. Applications commercialized in the U.S. and Japan include sportswear and skiwear. Several examples of electric sets of properties useful for specific end uses are given. In addition, other uses are biomedical horticultural, aerospace, indoor insulation, automotive interiors and components and packaging material.

  15. Effects of additives on 2,4,6-trinitrotoluene (TNT) removal and its mineralization in aqueous solution by gamma irradiation

    International Nuclear Information System (INIS)

    Lee, Byungjin; Jeong, Seung-Woo

    2009-01-01

    The effects of additives (i.e., methanol, EDTA, mannitol, thiourea, nitrous oxide, oxygen and ozone) on gamma irradiation of 2,4,6-trinitrotoluene (TNT) were investigated to elucidate the initial reaction mechanism of TNT degradation and suggest an practical method for complete by-product removal. All additives, except thiourea, significantly increased the TNT removal efficiency by gamma irradiation. The overall results of the additive experiments implied that the TNT decomposition would be initiated by ·OH, e aq - , and HO 2 ·/O 2 · - , and also implied that ·H did not have any direct effect on the TNT decomposition. Additions of methanol and nitrous oxide were more effective in TNT removal than the other additives, achieving complete removal of TNT at doses below 20 kGy. Total organic carbon (TOC) of the irradiated solution was analyzed to evaluate the degree of TNT mineralization under the additive conditions. TOC under the nitrous oxide addition was removed rapidly, and complete TNT mineralization was thus achieved at 50 kGy. Methanol addition was very effective in the TNT removal, but it was not effective in reduction in TOC. Trinitrobenzene (TNB), oxalic acid and glyoxalic acid were detected as radiolytic organic by-products, while ammonia and nitrate were detected as radiolytic inorganic by-products. The most efficient TNT removal and its mineralization by gamma irradiation would be achieved by supersaturating the solution with nitrous oxide before irradiation.

  16. Effect of Different Flours on the Formation of Hydroxymethylfurfural, Furfural, and Dicarbonyl Compounds in Heated Glucose/Flour Systems

    Directory of Open Access Journals (Sweden)

    Marta Mesías

    2017-02-01

    Full Text Available Traditional cereal-based foods usually include wheat flour in their formulations; however, the search for new products with new ingredients providing different properties to foods is widely pursued by food companies. Replacement of wheat by other flours can modify both nutritional properties and organoleptic characteristics of the final baked food, but can also impact the formation of potentially harmful compounds. The effect of the type of flour on the formation of furfurals and dicarbonyl compounds was studied in a dough model system during baking that contains water or glucose in order to promote the Maillard reaction and caramelization. The formation of methylglyoxal and glyoxal was significantly reduced in spelt and teff formulations compared to wheat flour formulations, respectively. In contrast, samples formulated with oat, teff, and rye showed a significant increase in the levels of 3-deoxyglucosone. Similarly, spelt and teff formulations presented significantly higher concentrations of hydroxymethylfurfural, and spelt, teff, and rye presented higher concentrations of furfural. Therefore, the formation of process contaminants and undesirable compounds in new food products formulated with different flours replacing the traditional wheat flour should be considered carefully in terms of food safety.

  17. Effects of Sodium Chloride, Potassium Chloride and Calcium Chloride on the Formation of α-Dicarbonyl Compounds, Furfurals and Development of Browning in Cookies during Baking.

    Science.gov (United States)

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-10-02

    Effect of NaCl, KCl, CaCl2, NaHCO3, and NH4HCO3 on the formation of glucosone, 1-deoxyglucosone, 3-deoxyglucosone, glyoxal, methylglyoxal, diacetyl, 5-hydroxymethyl-2-furfural, 2-furfural and browning were investigated in cookies. Presence of 1.5% NaCl, 1% KCl, and 1% CaCl2 on flour basis had no effect on α-dicarbonyl compounds, except 1-deoxyglucosone increased in the presence of KCl and CaCl2. The increase in 5-hydroxymethyl-2-furfural formation in the presence of NaCl, KCl, and CaCl2 did not relate to 3-deoxyglucosone formation and pH changes. NaCl, KCl, and CaCl2 increased browning in cookies. Model reaction systems indicated that NaCl, KCl, and CaCl2 enhance browning by increasing furfurals in caramelization. NaCl, KCl, and CaCl2 decreased browning intensity in heated glucose-glycine system. Usage of CaCl2 in cookies may considerably increase furfurals but not α-dicarbonyl compounds. Sodium reduction can be obtained by replacement with potassium without sacrificing the desired consequences of caramelization in sugar rich bakeries.

  18. The detection and specifity of class specific antibodies to whole bacteria cells using a solid phase radioimmunoassay

    International Nuclear Information System (INIS)

    Czerkinsky, C.; Rees, A.S.; Bergimeier, L.A.; Challacombe, S.J.

    1983-01-01

    A solid phase radioimmunoassay has been developed which can be used for the detection of isotype specific antibodies to whole bacteria and other particulate antigens, and is applicable to a variety of species. Bacteria are bound to the solid phase by the use either of antibodies, or of methyl glyoxal. Both methods result in a sensitive and reproducible assay, and bacteria do not appear to desorb from the solid phase. The specificity of antibodies to whole bacteria was examined by absorption of antisera with various species of bacteria and retesting, or by determining the binding of antisera to various bacteria bound to the solid phase. Both methods revealed specificity for the bacteria examined. Inhibition studies showed that antibodies to Streptococcus mutans whole cells could be inhibited by purified cell surface antigens glucosyltransferase and antigen I/II, but only minimally by lipoteichoic acid, c polysaccharide or dextran. In murine antisera antibodies of the IgG, IgM, and IgA classes could be detected at amounts of less than 1 ng/ml. (author)

  19. Airborne mapping of Seoul's atmosphere: Trace gas measurements from GeoTASO during KORUS-AQ

    Science.gov (United States)

    Nowlan, C. R.; Al-Saadi, J. A.; Castellanos, P.; Chance, K.; Gonzalez Abad, G.; Janz, S. J.; Judd, L.; Kowalewski, M. G.; Liu, X.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a pushbroom airborne remote sensing instrument capable of making measurements of air quality and ocean color using backscattered UV and visible light. GeoTASO is an airborne test-bed for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, which will measure air quality over North America and Asia, respectively. GeoTASO also acts as a satellite analogue during field campaigns. GeoTASO flew on the NASA Langley Research Center UC-12 aircraft during the Korea-United States Air Quality Study in May-June 2016, collecting spectra over South Korea during 30 flights over 19 flight days. These observations can be used to derive 2-D maps of tropospheric trace gases including ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, nitrous acid and glyoxal below the aircraft at spatial resolutions between 250 m x 250 m and 1 km x 1 km, depending on the gas. We present spatially resolved trace gas retrievals over Seoul and its surrounding industrial regions, and comparisons with correlative satellite and campaign data.

  20. Oxidation of Cu(II) aminopolycarboxylates by carbonate radical. A flash photolysis study

    International Nuclear Information System (INIS)

    Mandal, P.C.; Bardhan, D.K.

    1999-01-01

    Reactions of carbonate radical (CO 3 -. ) generated by photolysis or by radiolysis of a carbonate solution, with Cu(II) complexes of aminopolycarboxylic acids viz., Cu(II)ethylenediamine tetraacetate [Cu II EDTA] 2- and Cu(II)-iminodiacetate [Cu II IDA] were studied at pH 10.5 and ionic strength 0.2 mol x dm -3 . Time-resolved spectroscopy and kinetics for the transients were studied using flash photolysis and stable products arising from the ligand degradation of the complex were ascertained by steady-state radiolysis experiments. From the kinetic data it is observed that CO 3 -. radical reacts initially with Cu II -complex to form a transient intermediate having maximum absorption at 335 nm and 430 nm. From the subsequent reactions of this intermediate it was assigned to be Cu III .species. This Cu(III) species undergoes intermolecular electron transfer with the Cu II -complex to give a radical intermediate which again slowly reacts with Cu II -complex to give a long lived species containing Cu-C bond. This long lived species, however, slowly decomposed to give glyoxalic reaction between Cu III -complex and a suitable donor, the one electron reduction potential for [Cu III EDTA] 1- /[Cu II EDTA] 2- and [Cu III IDA] +1 /Cu II IDA was determined. (author)

  1. Carbonyl Compounds Generated from Electronic Cigarettes

    Directory of Open Access Journals (Sweden)

    Kanae Bekki

    2014-10-01

    Full Text Available Electronic cigarettes (e-cigarettes are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.

  2. Glycation Reactions of Casein Micelles.

    Science.gov (United States)

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles.

  3. Gelled composition procedures for hydraulic degradation of a subterrestrial formation and for displacing petroleum in such a formation by use of the composition. Gelert sammensetning, fremgangsmaate til hydraulisk oppbrytning av en underjordisk formasjon ved bruk av sammensetningen og fremgangsmaate til fortrengning av olje inne i en underjordisk formasjon ved bruk av sammensetningen

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, B L

    1984-09-17

    This is a claim for a gelled compositions suitable as fracture fluids and water diversion agents comprising water, a polymeric viscosifier an aldehyde component, and at least one phenolic component such as resorcinol, catechol, and the like, as well as selected oxidized phenolic materials such as 1,4-benzoquinone of natural or synthetic origin and natural and modified tannins. The gelled compositions can additionally contain gel stabilizers and chemical buffering agents. Claim: Gelled composition suitable as fracture fluids and water diversion agents consisting essentially of: (A) Water, (B) A water-thickening amount of a water-dispersible polymer selected from the group consisting of cellulose ethers, polyacrylamides, and bipolysaccharides or heteropolysaccharides produced by the action of bacteria of the genus xanthomonas upon carbohydrate, (C) A small, but effective amount in the range of 0.02 to 2 weight percent, of at least one aldehyde component selected from the group consisting of aliphatic monoaldhydes having from one to about 10 carbon atoms per molecule, glyoxal, glutaraldehyde, and terepththaldehyde, and (D) A small, but effective amount in the range of 0.005 to 2 weight percent of at least one phenolic compound selected from the group consisting of phenol, catechol, resorcinol, phloroglucinol, pyrogallol, 4,4'-diphenyl, 1,3 dihydroxynapthalene, 1,4-benzoquinone, hydroquinone, quinhydrone, and quebracho which amounts of aldehyde (C) and phenolic compound (D) are sufficient to cause gelation of an aqueous dispersion of polymer (B) and formsaid gelled composition. 5 drawings, 11 tables.

  4. Morphological Changes and Immunohistochemical Expression of RAGE and its Ligands in the Sciatic Nerve of Hyperglycemic Pig (Sus Scrofa

    Directory of Open Access Journals (Sweden)

    Judyta K. Juranek

    2010-09-01

    Full Text Available The aim of our project was to study the effect of streptozotocin (STZ—induced hyperglycemia on sciatic nerve morphology, blood plasma markers and immunohistochemical expression of RAGE (the Receptor for Advanced Glycation End-products, and its ligands—S100B and Carboxymethyl Lysine (CML-advanced glycation endproduct (AGE in the laboratory pig. Six months after STZ—injections, blood plasma measurements, morphometric analysis of sciatic nerve fiber density, immunofluorescent distribution of potential molecular neuropathy contributors, ELISA measurement of plasma AGE level and HPLC analysis of sciatic nerve levels of one of the pre-AGE and the glycolysis intermediate products—methyl-glyoxal (MG were performed. The results of our study revealed that STZ—injected animals displayed elevated levels of plasma glucose, gamma glutamyl transferase (GGT and triglycerides. The sciatic nerve of STZ-injected pigs revealed significantly lower numbers of small-diameter myelinated fibers, higher immunoreactivity for RAGE and S100B and increased levels of MG as compared to control animals. Our results correspond to clinical findings in human patients with hyperglycemia/diabetes-evoked peripheral neuropathy and suggest that the domestic pig may be a suitable large animal model for the study of mechanisms underlying hyperglycemia-induced neurological complications in the peripheral nerve and may serve as a relevant model for the pre-clinical assessment of candidate drugs in neuropathy.

  5. Detection and specifity of class specific antibodies to whole bacteria cells using a solid phase radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Czerkinsky, C.; Rees, A.S.; Bergimeier, L.A.; Challacombe, S.J. (Guy' s Hospital Medical and Dental Schools, London (UK))

    1983-07-01

    A solid phase radioimmunoassay has been developed which can be used for the detection of isotype specific antibodies to whole bacteria and other particulate antigens, and is applicable to a variety of species. Bacteria are bound to the solid phase by the use either of antibodies, or of methyl glyoxal. Both methods result in a sensitive and reproducible assay, and bacteria do not appear to desorb from the solid phase. The specificity of antibodies to whole bacteria was examined by absorption of antisera with various species of bacteria and retesting, or by determining the binding of antisera to various bacteria bound to the solid phase. Both methods revealed specificity for the bacteria examined. Inhibition studies showed that antibodies to Streptococcus mutans whole cells could be inhibited by purified cell surface antigens glucosyltransferase and antigen I/II, but only minimally by lipoteichoic acid, c polysaccharide or dextran. In murine antisera antibodies of the IgG, IgM, and IgA classes could be detected at amounts of less than 1 ng/ml.

  6. Chitosan/alginate based multilayers to control drug release from ophthalmic lens.

    Science.gov (United States)

    Silva, Diana; Pinto, Luís F V; Bozukova, Dimitriya; Santos, Luís F; Serro, Ana Paula; Saramago, Benilde

    2016-11-01

    In this study we investigated the possibility of using layer-by-layer deposition, based in natural polymers (chitosan and alginate), to control the release of different ophthalmic drugs from three types of lens materials: a silicone-based hydrogel recently proposed by our group as drug releasing soft contact lens (SCL) material and two commercially available materials: CI26Y for intraocular lens (IOLs) and Definitive 50 for SCLs. The optimised coating, consisting in one double layer of (alginate - CaCl2)/(chitosan+glyoxal) topped with a final alginate-CaCl2 layer to avoid chitosan degradation by tear fluid proteins, proved to have excellent features to control the release of the anti-inflammatory, diclofenac, while keeping or improving the physical properties of the lenses. The coating leads to a controlled release of diclofenac from SCL and IOL materials for, at least, one week. Due to its high hydrophilicity (water contact angle≈0) and biocompatibility, it should avoid the use of further surface treatments to enhance the useŕs comfort. However, the barrier effect of this coating is specific for diclofenac, giving evidence to the need of optimizing the chemical composition of the layers in view of the desired drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Protein carbonylation sites in bovine raw milk and processed milk products.

    Science.gov (United States)

    Milkovska-Stamenova, Sanja; Mnatsakanyan, Ruzanna; Hoffmann, Ralf

    2017-08-15

    During thermal treatment of milk, proteins are oxidized, which may reduce the nutritional value of milk, abolish protein functions supporting human health, especially important for newborns, and yield potentially harmful products. The side chains of several amino acids can be oxidized to reactive carbonyls, which are often used to monitor oxidative stress in organisms. Here we mapped protein carbonylation sites in raw milk and different brands of pasteurized, ultra high temperature (UHT) treated milk, and infant formulas (IFs) after digesting the precipitated proteins with trypsin. Reactive carbonyls were derivatized with O-(biotinylcarbazoylmethyl)hydroxylamine to enrich the modified peptides by avidin-biotin affinity chromatography and analyze them by nanoRP-UPLC-ESI-MS. Overall, 53 unique carbonylated peptides (37 carbonylation sites, 15 proteins) were identified. Most carbonyls were derived from dicarbonyls (mainly glyoxal). The number of carbonylation sites increased with the harsher processing from raw milk (4) to pasteurized (16) and UHT milk (16) and to IF (24). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. High Serum Advanced Glycation End Products Are Associated with Decreased Insulin Secretion in Patients with Type 2 Diabetes: A Brief Report

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Okura

    2017-01-01

    Full Text Available Objective. Advanced glycation end products (AGEs are important in the pathophysiology of type 2 diabetes mellitus (T2DM. They directly cause insulin secretory defects in animal and cell culture models and may promote insulin resistance in nondiabetic subjects. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry method for measuring AGEs in human serum. Here, we use this method to investigate the relationship between AGEs and insulin secretion and resistance in patients with T2DM. Methods. Our study involved 15 participants with T2DM not on medication and 20 nondiabetic healthy participants. We measured the AGE carboxyethyllysine (CEL, carboxymethyllysine (CML, and methyl-glyoxal-hydro-imidazolone (MG-H1. Plasma glucose and insulin were measured in these participants during a meal tolerance test, and the glucose disposal rate was measured during a euglycemic-hyperinsulinemic clamp. Results. CML and CEL levels were significantly higher in T2DM than non-DM participants. CML showed a significant negative correlation with insulin secretion, HOMA-%B, and a significant positive correlation with the insulin sensitivity index in T2DM participants. There was no correlation between any of the AGEs measured and glucose disposal rate. Conclusions. These results suggest that AGE might play a role in the development or prediction of insulin secretory defects in type 2 diabetes.

  9. Fate of CL-20 in sandy soils: Degradation products as potential markers of natural attenuation

    International Nuclear Information System (INIS)

    Monteil-Rivera, Fanny; Halasz, Annamaria; Manno, Dominic; Kuperman, Roman G.; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2009-01-01

    Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degradation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively identified as CH 2 =N-C(=N-NO 2 )-CH=N-CHO or its isomer N(NO 2 )=CH-CH=N-CO-CH=NH. Due to their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of CL-20 in soil. - Two key intermediates of CL-20 degradation are potential markers of its natural attenuation in soil

  10. Physico-mechanical properties of plywood bonded with ecological adhesives from Acacia mollissima tannins and lignosulfonates

    Science.gov (United States)

    Rhazi, Naima; Oumam, Mina; Sesbou, Abdessadek; Hannache, Hassan; Charrier-El Bouhtoury, Fatima

    2017-06-01

    The objective of this research was to develop ecological adhesives for bonding plywood panels using lignosulfonates, a common waste product of the wood pulp industry, and natural tannin extracted from Moroccan bark of Acacia mollissima using different process. Natural tannin and lignin were used in wood adhesives formulation to substitute resins based on phenol and formaldehyde. To achieve this, the lignosulfonates were glyoxalated to enhance their reactivity and the used tannins obtained by three different extraction methods were compared with commercial mimosa tannin. The proportion of Acacia mollissima tannins and lignosulfonates, the pressing time, the pressing temperature, and the pressure used were studied to improve mechanical properties, and bonding quality of plywood panel. The properties of plywood panels produced with these adhesives were tested in accordance with normative tests. Thus, the tensile strength, and the shear strength were measured. The results showed that the performance of the plywood panels made using biobased tannin adhesives was influenced by physical conditions such as pressure, press temperature as well as by chemical conditions, such as the tannin-lignin ratio. It exhibited excellent mechanical properties comparable to commercially available phenol-formaldehyde plywood adhesives. This study showed that biobased adhesives formulations presented good and higher mechanical performance and no formaldehyde emission. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  11. Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air

    Science.gov (United States)

    Obermeyer, Genevieve; Aschmann, Sara M.; Atkinson, Roger; Arey, Janet

    To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.

  12. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde.

    Science.gov (United States)

    Ridpath, John R; Nakamura, Ayumi; Tano, Keizo; Luke, April M; Sonoda, Eiichiro; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Gillespie, David A F; Sale, Julian E; Yamazoe, Mitsuyoshi; Bishop, Douglas K; Takata, Minoru; Takeda, Shunichi; Watanabe, Masami; Swenberg, James A; Nakamura, Jun

    2007-12-01

    Formaldehyde is an aliphatic monoaldehyde and is a highly reactive environmental human carcinogen. Whereas humans are continuously exposed to exogenous formaldehyde, this reactive aldehyde is a naturally occurring biological compound that is present in human plasma at concentrations ranging from 13 to 97 micromol/L. It has been well documented that DNA-protein crosslinks (DPC) likely play an important role with regard to the genotoxicity and carcinogenicity of formaldehyde. However, little is known about which DNA damage response pathways are essential for cells to counteract formaldehyde. In the present study, we first assessed the DNA damage response to plasma levels of formaldehyde using chicken DT40 cells with targeted mutations in various DNA repair genes. Here, we show that the hypersensitivity to formaldehyde is detected in DT40 mutants deficient in the BRCA/FANC pathway, homologous recombination, or translesion DNA synthesis. In addition, FANCD2-deficient DT40 cells are hypersensitive to acetaldehyde, but not to acrolein, crotonaldehyde, glyoxal, and methylglyoxal. Human cells deficient in FANCC and FANCG are also hypersensitive to plasma levels of formaldehyde. These results indicate that the BRCA/FANC pathway is essential to counteract DPCs caused by aliphatic monoaldehydes. Based on the results obtained in the present study, we are currently proposing that endogenous formaldehyde might have an effect on highly proliferating cells, such as bone marrow cells, as well as an etiology of cancer in Fanconi anemia patients.

  13. Unraveling the in vitro secretome of the phytopathogen Botrytis cinerea to understand the interaction with its hosts

    Directory of Open Access Journals (Sweden)

    Raquel eGonzález-Fernández

    2015-10-01

    Full Text Available Botrytis cinerea is a necrotrophic fungus with high adaptability to different environments and hosts. It secretes a large number of extracellular proteins, which favor plant tissue penetration and colonization, thus contributing to virulence. Secretomics is a proteomics sub-discipline which study the secreted proteins and their secretion mechanisms, so-called secretome. By using proteomics as experimental approach, many secreted proteins by B. cinerea have been identified from in vitro experiments, and belonging to different functional categories: i cell wall-degrading enzymes such as pectinesterases, and endo-polygalacturonases; ii proteases involved in host protein degradation such as an aspartic protease; iii proteins related to the oxidative burst such as glyoxal oxidase; iv proteins which may induce the plant hypersensitive response such as a cerato-platanin domain-containing protein; and v proteins related to production and secretion of toxins such as malate dehydrogenase. In this mini-review, we made an overview of the proteomics contribution to the study and knowledge of the B. cinerea extracellular secreted proteins based on our current work carried out from in vitro experiments, and recent published papers both in vitro and in planta studies on this fungi. We hypothesize on the putative functions of these secreted proteins, and their connection to the biology of the B. cinerea interaction with its hosts.

  14. Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation.

    Science.gov (United States)

    Lacoste, Clément; El Hage, Roland; Bergeret, Anne; Corn, Stéphane; Lacroix, Patrick

    2018-03-15

    Alginate derived from seaweed is a natural polysaccharide able to form stable gel through carbohydrate functional groups largely used in the food and pharmaceutical industry. This article deals with the use of sodium alginate as an adhesive binder for wood fibres/textile waste fibres biocomposites. Several aldehyde-based crosslinking agents (glyoxal, glutaraldehyde) were compared for various wood/textile waste ratios (100/0, 50/50, 60/40, 70/30 and 0/100 in weight). The fully biomass derived composites whose properties are herewith described satisfy most of the appropriate requirements for building materials. They are insulating with a thermal conductivity in the range 0.078-0.089 W/m/K for an average density in the range 308-333 kg/m3 according to the biocomposite considered. They are semi-rigid with a maximal mechanical strength of 0.84 MPa under bending and 0.44 MPa under compression for 60/40 w/w wood/textile waste biocomposites with a glutaraldehyde crosslinking agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of Different Flours on the Formation of Hydroxymethylfurfural, Furfural, and Dicarbonyl Compounds in Heated Glucose/Flour Systems.

    Science.gov (United States)

    Mesías, Marta; Morales, Francisco J

    2017-02-16

    Traditional cereal-based foods usually include wheat flour in their formulations; however, the search for new products with new ingredients providing different properties to foods is widely pursued by food companies. Replacement of wheat by other flours can modify both nutritional properties and organoleptic characteristics of the final baked food, but can also impact the formation of potentially harmful compounds. The effect of the type of flour on the formation of furfurals and dicarbonyl compounds was studied in a dough model system during baking that contains water or glucose in order to promote the Maillard reaction and caramelization. The formation of methylglyoxal and glyoxal was significantly reduced in spelt and teff formulations compared to wheat flour formulations, respectively. In contrast, samples formulated with oat, teff, and rye showed a significant increase in the levels of 3-deoxyglucosone. Similarly, spelt and teff formulations presented significantly higher concentrations of hydroxymethylfurfural, and spelt, teff, and rye presented higher concentrations of furfural. Therefore, the formation of process contaminants and undesirable compounds in new food products formulated with different flours replacing the traditional wheat flour should be considered carefully in terms of food safety.

  16. Effect of Sodium Chloride on α-Dicarbonyl Compound and 5-Hydroxymethyl-2-furfural Formations from Glucose under Caramelization Conditions: A Multiresponse Kinetic Modeling Approach.

    Science.gov (United States)

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-08-17

    This study aimed to investigate the kinetics of α-dicarbonyl compound formation in glucose and glucose-sodium chloride mixture during heating under caramelization conditions. Changes in the concentrations of glucose, fructose, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural (HMF), glyoxal, methylglyoxal, and diacetyl were determined. A comprehensive reaction network was built, and the multiresponse model was compared to the experimentally observed data. Interconversion between glucose and fructose became 2.5 times faster in the presence of NaCl at 180 and 200 °C. The effect of NaCl on the rate constants of α-dicarbonyl compound formation varied across the precursor and the compound itself and temperature. A decrease in rate constants of 3-deoxyglucosone and 1-deoxyglucosone formations by the presence of NaCl was observed. HMF formation was revealed to be mainly via isomerization to fructose and dehydration over cyclic intermediates, and the rate constants increase 4-fold in the presence of NaCl.

  17. Use of Soy Flour-Tannin Adhesive for Particleboard (Dry Condition

    Directory of Open Access Journals (Sweden)

    Saman Ghahri

    2017-05-01

    Full Text Available In this research soy flour- tannin adhesives were used in particleboard preparation, successfully. Tow type of different tannins Mimosa (as condensed tannin and Chestnut (as hydrolysable tannins were used for soy resin modification. For this purpose, mimosa and chestnut tannin were added to soy adhesive with 5, 10 and 15 percent based on dry weight of soy flour. 9 percent Glyoxal was used based on dry weight of tannin for accelerate tannin reaction’s with soyflour components. Prepared soy-tannin adhesives were used in particle board manufacturing with 350×300×14 mm3 dimansion and 0.7 g/cm3 nominal density. Results of viscosity measurment showed that addition of each of tannins decreased visocosity of soy adhesive. In this study, result of thermo-mechanical analyze indicated that chestnut cloud improve adhesion behavior of soy adhesive better than mimosa. Also, Using of tannins in soy adhesive composition increase internal bonding and bending properties in manufactured particleboards.

  18. Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS.

    Science.gov (United States)

    Pachkowski, Brian F; Tano, Keizo; Afonin, Valeriy; Elder, Rhoderick H; Takeda, Shunichi; Watanabe, Masami; Swenberg, James A; Nakamura, Jun

    2009-12-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a base excision repair (BER) protein that binds to DNA single strand breaks (SSBs) and subsequently synthesizes and transfers poly(ADP-ribose) polymers to various nuclear proteins. Numerous biochemical studies have implicated PARP-1 as a modulator of BER; however, the role of PARP-1 in BER in living cells remains unclear partly due to lack of accurate quantitation of BER intermediates existing in cells. Since DT40 cells, chicken B lymphocytes, naturally lack PARP-2, DT40 cells allow for the investigation of the PARP-1 null phenotype without confounding by PARP-2. To test the hypothesis that PARP-1 is necessary for efficient BER during methylmethane sulfonate (MMS) exposure in vertebrate cells, intact DT40 cells and their isogenic PARP-1 null counterparts were challenged with different exposure scenarios for phenotypic characterization. With chronic exposure, PARP-1 null cells exhibited sensitivity to MMS but with an acute exposure did not accumulate base lesions or AP sites to a greater extent than wild-type cells. However, an increase in SSB content in PARP-1 null cell DNA, as indicated by glyoxal gel electrophoresis under neutral conditions, suggested the presence of BER intermediates. These data suggest that during exposure, PARP-1 impacts the stage of BER after excision of the deoxyribosephosphate moiety from the 5' end of DNA strand breaks by polymerase beta.

  19. Swelling and tensile properties of starch glycerol system with various crosslinking agents

    Science.gov (United States)

    Mohamed, R.; Mohd, N.; Nurazzi, N.; Siti Aisyah, M. I.; Fauzi, F. Mohd

    2017-07-01

    Brittle properties of starch had been overcome by the modification process. In this work, sago starch is being modified with variable amount of plasticiser, namely glycerol at 20 and 40% and crosslinking agent had been added to the system. The film of the modification and characterizations of the starch glycerol system with various crosslinking systems were produced by casting method. The film properties of the starch glycerol system were then characterized by tensile strength (mechanical properties) and swelling (physical properties). The modification of the starch glycerol had improved that system by increasing the tensile strength, modulus however lowering its elongation. The increasing in percentage of the water absorption and also swelling are due to the intrinsic hydroxyl groups presence from the starch and glycerol itself that can attract more water to the system. Upon crosslinking, films casted with chemicals namely, glyoxal, malonic acid, borax, PEG were characterised. It was found that, all the film of sago starch crosslinked and undergoing easy film formation. From this modification, borax and malonic acid crosslinking agent had been determined as the best crosslinking agent to the starch glycerol system.

  20. Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible "prebiotic" conditions

    Science.gov (United States)

    Delidovich, I. V.; Taran, O. P.; Simonov, A. N.; Matvienko, L. G.; Parmon, V. N.

    2011-08-01

    The article analyzes new and previously reported data on several catalytic and photochemical processes yielding biologically important molecules. UV-irradiation of formaldehyde aqueous solution yields acetaldehyde, glyoxal, glycolaldehyde and glyceraldehyde, which can serve as precursors of more complex biochemically relevant compounds. Photolysis of aqueous solution of acetaldehyde and ammonium nitrate results in formation of alanine and pyruvic acid. Dehydration of glyceraldehyde catalyzed by zeolite HZSM-5-17 yields pyruvaldehyde. Monosaccharides are formed in the course of the phosphate-catalyzed aldol condensation reactions of glycolaldehyde, glyceraldehyde and formaldehyde. The possibility of the direct synthesis of tetroses, keto- and aldo-pentoses from pure formaldehyde due to the combination of the photochemical production of glycolahyde and phosphate-catalyzed carbohydrate chain growth is demonstrated. Erythrulose and 3-pentulose are the main products of such combined synthesis with selectivity up to 10%. Biologically relevant aldotetroses, aldo- and ketopentoses are more resistant to the photochemical destruction owing to the stabilization in hemiacetal cyclic forms. They are formed as products of isomerization of erythrulose and 3-pentulose. The conjugation of the concerned reactions results in a plausible route to the formation of sugars, amino and organic acids from formaldehyde and ammonia under presumed 'prebiotic' conditions.

  1. Applications of fibrous substrates containing insolubilized phase change polymers

    Science.gov (United States)

    Vigo, Tyrone L.; Bruno, Joseph S.

    1993-02-01

    Incorporation of polyethylene glycols into fibrous substrates produces several improved functional properties when they are insolubilized by crosslinking with a methylolamide resin or by polyacetal formation by their reaction with glyoxal. The range of molecular weights of polyols that may be insolubilized is broad as are the curing conditions (0.25-10 min at 80-200C). Most representative fiber types and blends (natural and synthetic) and all types of fabric constructions (woven, nonwoven and knit) have been modified by incorporation of the bound polyols. The most novel property is the thermal adaptability of the modified substrates to many climatic conditions. This adaptability is due to the high latent heat of the crosslinked polyols that function as phase change materials, the hydrophilic nature of the crosslinked polymer and its enhanced thermal conductivity. Other enhanced properties imparted to fabrics include flex and flat abrasion, antimicrobial activity, reduced static charge, resistance to oily soils, resiliency, wind resistance and reduced lint loss. Applications commercialized in the U.S. and Japan include sportswear and skiwear. Several examples of electric sets of properties useful for specific end uses are given. In addition, other uses are biomedical horticultural, aerospace, indoor insulation, automotive interiors and components and packaging material.

  2. DAF in diabetic patients is subject to glycation/inactivation at its active site residues.

    Science.gov (United States)

    Flückiger, Rudolf; Cocuzzi, Enzo; Nagaraj, Ram H; Shoham, Menachem; Kern, Timothy S; Medof, M Edward

    2018-01-01

    Decay accelerating factor (DAF or CD55) is a cell associated C3 and C5 convertase regulator originally described in terms of protection of self-cells from systemic complement but now known to modulate adaptive T cell responses. It is expressed on all cell types. We investigated whether nonenzymatic glycation could impair its function and potentially be relevant to complications of diabetes mellitus and other conditions that result in nonenzymatic glycation including cancer, Alzheimer's disease, and aging. Immunoblots of affinity-purified DAF from erythrocytes of patients with diabetes showed pentosidine, glyoxal-AGEs, carboxymethyllysine, and argpyrimidine. HPLC/MS analyses of glucose modified DAF localized the sites of AGE modifications to K 125 adjacent to K 126 , K 127 at the junction of CCPs2-3 and spatially near R 96 , and R 100 , all identified as being critical for DAF's function. Functional analyses of glucose or ribose treated DAF protein showed profound loss of its regulatory activity. The data argue that de-regulated activation of systemic complement and de-regulated activation of T cells and leukocytes could result from non-enzymatic glycation of DAF. Copyright © 2017. Published by Elsevier Ltd.

  3. Characterization of Aldehyde Crosslinked Kenaf Regenerated Cellulose Film

    Directory of Open Access Journals (Sweden)

    Hatika Kaco

    2015-08-01

    Full Text Available Regenerated cellulose film with better mechanical properties was successfully produced by introducing aldehyde crosslinker during the regeneration process. The cellulose source material was derived from kenaf core powder and dissolved in LiOH/urea solvent at −13 °C to form a cellulose solution. The cellulose solution was cast and coagulated in a crosslinker bath at different percentages of glutaraldehyde (GA and glyoxal (GX to form a regenerated cellulose film. According to Fourier transform infrared spectroscopy (FTIR spectra, the hydroxyl group of the cellulose was reduced, reducing the percentage of swelling as the percentage of crosslinker was increased. X-ray diffraction (XRD patterns showed that the crystallinity index of the crosslinked film was decreased. The pore size of the films decreased as the percentage of crosslinker was increased, resulting in decreased film transparency. The pore volume and percentage of swelling in water of the films also increased with decreases in the pore size as the percentage of crosslinker was increased. The tensile strengths of the GA- and GX-crosslinked films increased by 20 and 15% with the addition of 20% of each crosslinker, respectively.

  4. Increased Dicarbonyl Stress as a Novel Mechanism of Multi-Organ Failure in Critical Illness

    Directory of Open Access Journals (Sweden)

    Bas C. T. van Bussel

    2017-02-01

    Full Text Available Molecular pathological pathways leading to multi-organ failure in critical illness are progressively being unravelled. However, attempts to modulate these pathways have not yet improved the clinical outcome. Therefore, new targetable mechanisms should be investigated. We hypothesize that increased dicarbonyl stress is such a mechanism. Dicarbonyl stress is the accumulation of dicarbonyl metabolites (i.e., methylglyoxal, glyoxal, and 3-deoxyglucosone that damages intracellular proteins, modifies extracellular matrix proteins, and alters plasma proteins. Increased dicarbonyl stress has been shown to impair the renal, cardiovascular, and central nervous system function, and possibly also the hepatic and respiratory function. In addition to hyperglycaemia, hypoxia and inflammation can cause increased dicarbonyl stress, and these conditions are prevalent in critical illness. Hypoxia and inflammation have been shown to drive the rapid intracellular accumulation of reactive dicarbonyls, i.e., through reduced glyoxalase-1 activity, which is the key enzyme in the dicarbonyl detoxification enzyme system. In critical illness, hypoxia and inflammation, with or without hyperglycaemia, could thus increase dicarbonyl stress in a way that might contribute to multi-organ failure. Thus, we hypothesize that increased dicarbonyl stress in critical illness, such as sepsis and major trauma, contributes to the development of multi-organ failure. This mechanism has the potential for new therapeutic intervention in critical care.

  5. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    Science.gov (United States)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  6. MECHANICAL PROPERTIES OF PVA NANOFIBER TEXTILES WITH INCORPORATED NANODIAMONDS, COPPER AND SILVER IONS

    Directory of Open Access Journals (Sweden)

    Kateřina Indrová

    2015-02-01

    Full Text Available The unique properties of nanotextiles based on poly(vinyl-alcohol (PVA manufactured using electrospinning method have been known and exploited for many years. Recently, the enrichment of nanofiber textiles with nanoparticles, such as ions or nanodiamond particles (NDP, has become a popular way to modify the textile mechanical, chemical and physical properties. The aim of our study is to investigate the macromechanical properties of PVA nanotextiles enriched with NDP, silver (Ag and copper (Cu ions. The nanofiber textiles of a various surface weight were prepared from 16% PVA solution, while glyoxal and phosphoric acid were used as cross-linking agents. The copper and silver ions were diluted in aqueous solution and NDP were dispersed into the fibers by ultrasound homogenization. All but one set of samples were exposed to the temperature of 140 °C for 10 minutes. The samples without thermal stabilization exhibited significantly lower elastic stiffness and tensile strength. Moreover, the results of tensile testing indicate that the addition of dispersed nanoparticles has a minor effect on the mechanical properties of textiles and contributes rather to their reinforcement. On the other hand, the lack of thermal stabilization results in a poor interconnection of individual nanofiber layers and the non-stabilized textiles exhibit a lower elastic stiffness and reduced tensile strength.

  7. Chemical cleaning of AGR boilers

    International Nuclear Information System (INIS)

    Moore, S.V.; Moore, W.; Rantell, A.

    1978-01-01

    AGR boilers are likely to require post service chemical cleaning to remove accumulated oxides at intervals of 15 - 35 kh. The need to clean will be based on an assessment of such factors as the development of flow imbalances through parallel tubes induced by the formation of rough oxide surfaces, an increasing risk of localised corrosion as the growth of porous oxides proceeds and the risk of tube blockage caused by the exfoliation of steam-grown oxides. The study has shown what heterogeneous multilayer oxides possessing a range of physical and chemical properties form on the alloy steels. They include porous and compact magnetites, chromium spinels and sesquioxide. Ammoniated citric acid has been shown to remove deposited and water-grown magnetites from the carbon and alloy steels but will not necessarily remove the substituted spinels grown on the alloy steels or the potentially spalling steam-grown magnetite on the A1SI 316 superheater. Citric acid supplemented with the reducing agent glyoxal completely removes all oxides from the boiler except the protective inner spinel formed on the 316. Removal of the spinels and compact magnetites occurs more by undercutting and physical detachment than by the dissolution. (author)

  8. Proteomic characterization of intermediate and advanced glycation end-products in commercial milk samples.

    Science.gov (United States)

    Renzone, Giovanni; Arena, Simona; Scaloni, Andrea

    2015-03-18

    The Maillard reaction consists of a number of chemical processes affecting the structure of the proteins present in foods. We previously accomplished the proteomic characterization of the lactosylation targets in commercial milk samples. Although characterizing the early modification derivatives, this analysis did not describe the corresponding advanced glycation end-products (AGEs), which may be formed from the further oxidation of former ones or by reaction of oxidized sugars with proteins, when high temperatures are exploited. To fill this gap, we have used combined proteomic procedures for the systematic characterization of the lactosylated and AGE-containing proteins from the soluble and milk fat globule membrane fraction of various milk products. Besides to confirm all lactulosyl-lysines described previously, 40 novel lactosylation sites were identified. More importantly, 308 additional intermediate and advanced glyco-oxidation derivatives (including cross-linking adducts) were characterized in 31 proteins, providing the widest qualitative inventory of modified species ascertained in commercial milk samples so far. Amadori adducts with glucose/galactose, their dehydration products, carboxymethyllysine and glyoxal-, 3-deoxyglucosone/3-deoxygalactosone- and 3-deoxylactosone-derived dihydroxyimidazolines and/or hemiaminals were the most frequent derivatives observed. Depending on thermal treatment, a variable number of modification sites was identified within each protein; their number increased with harder food processing conditions. Among the modified proteins, species involved in assisting the delivery of nutrients, defense response against pathogens and cellular proliferation/differentiation were highly affected by AGE formation. This may lead to a progressive decrease of the milk nutritional value, as it reduces the protein functional properties, abates the bioavailability of the essential amino acids and eventually affects food digestibility. These aspects

  9. Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign

    Directory of Open Access Journals (Sweden)

    G. Li

    2011-04-01

    suburban area. In the non-traditional SOA model, the aging process of primary organic components considerably decreases the OH levels in simulations and further impacts the SOA formation. If the aging process in the non-traditional model does not have feedback on the OH in the gas-phase chemistry, the SOA production is enhanced by more than 10% compared to the simulations with the OH feedback during daytime, and the gap between the simulations and observations in the urban area is around 3 μg m−3 or 20% on average during late morning and early afternoon, within the uncertainty from the AMS measurements and PMF analysis. In addition, glyoxal and methylglyoxal can contribute up to approximately 10% of the observed SOA mass in the urban area and 4% in the suburban area. Including the non-OH feedback and the contribution of glyoxal and methylglyoxal, the non-traditional SOA model can explain up to 83% of the observed SOA in the urban area, and the underestimation during late morning and early afternoon is reduced to 0.9 μg m−3 or 6% on average. Considering the uncertainties from measurements, emissions, meteorological conditions, aging of semi-volatile and intermediate volatile organic compounds, and contributions from background transport, the non-traditional SOA model is capable of closing the gap in SOA mass between measurements and models.

  10. Application of lignocellulolytic fungi for bioethanol production from renewable biomass

    Directory of Open Access Journals (Sweden)

    Jović Jelena M.

    2015-01-01

    Full Text Available Pretreatment is a necessary step in the process of conversion of lignocellulosic biomass to ethanol; by changing the structure of lignocellulose, enhances enzymatic hydrolysis, but, often, it consumes large amounts of energy and/or needs an application of expensive and toxic chemicals, which makes the process economically and ecologically unfavourable. Application of lignocellulolytic fungi (from the class Ascomycetes, Basidiomycetes and Deuteromycetes is an attractive method for pre-treatment, environmentally friendly and does not require the investment of energy. Fungi produce a wide range of enzymes and chemicals, which, combined in a variety of ways, together successfully degrade lignocellulose, as well as aromatic polymers that share features with lignin. On the basis of material utilization and features of a rotten wood, they are divided in three types of wood-decay fungi: white rot, brown rot and soft rot fungi. White rot fungi are the most efficient lignin degraders in nature and, therefore, have a very important role in carbon recycling from lignified wood. This paper describes fungal mechanisms of lignocellulose degradation. They involve oxidative and hydrolytic mechanisms. Lignin peroxidase, manganese peroxidase, laccase, cellobiose dehydrogenase and enzymes able to catalyze formation of hydroxyl radicals (•OH such as glyoxal oxidase, pyranose-2-oxidase and aryl-alcohol oxidase are responsible for oxidative processes, while cellulases and hemicellulases are involved in hydrolytic processes. Throughout the production stages, from pre-treatment to fermentation, the possibility of their application in the technology of bioethanol production is presented. Based on previous research, the advantages and disadvantages of biological pre-treatment are pointed out.

  11. Evaluation of New and Proposed Organic Aerosol Sources and Mechanisms using the Aerosol Modeling Testbed. MILAGRO, CARES, CalNex, BEACHON, and GVAX

    Energy Technology Data Exchange (ETDEWEB)

    Hodzic, Alma [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Jimenez, Jose L. [Univ. of Colorado, Boulder, CO (United States)

    2015-04-09

    This work investigated the formation and evolution of organic aerosols (OA) arising from anthropogenic and biogenic sources in a framework that combined state-of-the-science process and regional modeling, and their evaluation against advanced and emerging field measurements. Although OA are the dominant constituents of submicron particles, our understanding of their atmospheric lifecycle is limited, and current models fail to describe the observed amounts and properties of chemically formed secondary organic aerosols (SOA), leaving large uncertainties on the effects of SOA on climate. Our work has provided novel modeling constraints on sources, formation, aging and removal of SOA by investigating in particular (i) the contribution of trash burning emissions to OA levels in a megacity, (ii) the contribution of glyoxal to SOA formation in aqueous particles in California during CARES/CalNex and over the continental U.S., (iii) SOA formation and regional growth over a pine forest in Colorado and its sensitivity to anthropogenic NOx levels during BEACHON, and the sensitivity of SOA to (iv) the sunlight exposure during its atmospheric lifetime, and to (v) changes in solubility and removal of organic vapors in the urban plume (MILAGRO, Mexico City), and over the continental U.S.. We have also developed a parameterization of water solubility for condensable organic gases produced from major anthropogenic and biogenic precursors based on explicit chemical modeling, and made it available to the wider community. This work used for the first time constraints from the explicit model GECKO-A to improve SOA representation in 3D regional models such as WRF-Chem.

  12. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms

    Science.gov (United States)

    Massange-Sánchez, Julio A.; Palmeros-Suárez, Paola A.; Espitia-Rangel, Eduardo; Rodríguez-Arévalo, Isaac; Sánchez-Segura, Lino; Martínez-Gallardo, Norma A.; Alatorre-Cobos, Fulgencio; Tiessen, Axel; Délano-Frier, John P.

    2016-01-01

    Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms. PMID:27749893

  13. A Perspective on Reagent Diversity and Non-covalent Binding of Reactive Carbonyl Species (RCS and Effector Reagents in Non-enzymatic Glycation (NEG: Mechanistic Considerations and Implications for Future Research

    Directory of Open Access Journals (Sweden)

    Kenneth J. Rodnick

    2017-06-01

    Full Text Available This perspective focuses on illustrating the underappreciated connections between reactive carbonyl species (RCS, initial binding in the nonenzymatic glycation (NEG process, and nonenzymatic covalent protein modification (here termed NECPM. While glucose is the central species involved in NEG, recent studies indicate that the initially-bound glucose species in the NEG of human hemoglobin (HbA and human serum albumin (HSA are non-RCS ring-closed isomers. The ring-opened glucose, an RCS structure that reacts in the NEG process, is most likely generated from previously-bound ring-closed isomers undergoing concerted acid/base reactions while bound to protein. The generation of the glucose RCS can involve concomitantly-bound physiological species (e.g., inorganic phosphate, water, etc.; here termed effector reagents. Extant NEG schemes do not account for these recent findings. In addition, effector reagent reactions with glucose in the serum and erythrocyte cytosol can generate RCS (e.g., glyoxal, glyceraldehyde, etc.. Recent research has shown that these RCS covalently modify proteins in vivo via NECPM mechanisms. A general scheme that reflects both the reagent and mechanistic diversity that can lead to NEG and NECPM is presented here. A perspective that accounts for the relationships between RCS, NEG, and NECPM can facilitate the understanding of site selectivity, may help explain overall glycation rates, and may have implications for the clinical assessment/control of diabetes mellitus. In view of this perspective, concentrations of ribose, fructose, Pi, bicarbonate, counter ions, and the resulting RCS generated within intracellular and extracellular compartments may be of importance and of clinical relevance. Future research is also proposed.

  14. Overexpression of Grain Amaranth (Amaranthus hypochondriacus AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms.

    Directory of Open Access Journals (Sweden)

    Julio A Massange-Sánchez

    Full Text Available Two grain amaranth transcription factor (TF genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII conferred tolerance to water-deficit stress (WS in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS. WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI provided salt-stress (SS tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms.

  15. Improving organic aerosol treatments in CESM/CAM5: Development, application, and evaluation

    Science.gov (United States)

    Glotfelty, Timothy; He, Jian; Zhang, Yang

    2017-06-01

    New treatments for organic aerosol (OA) formation have been added to a modified version of the CESM/CAM5 model (CESM-NCSU). These treatments include a volatility basis set treatment for the simulation of primary and secondary organic aerosols (SOAs), a simplified treatment for organic aerosol (OA) formation from glyoxal, and a parameterization representing the impact of new particle formation (NPF) of organic gases and sulfuric acid. With the inclusion of these new treatments, the concentration of oxygenated organic aerosol increases by 0.33 µg m-3 and that of primary organic aerosol (POA) decreases by 0.22 µg m-3 on global average. The decrease in POA leads to a reduction in the OA direct effect, while the increased OOA increases the OA indirect effects. Simulations with the new OA treatments show considerable improvement in simulated SOA, oxygenated organic aerosol (OOA), organic carbon (OC), total carbon (TC), and total organic aerosol (TOA), but degradation in the performance of HOA. In simulations of the current climate period, despite some deviations from observations, CESM-NCSU with the new OA treatments significantly improves the magnitude, spatial pattern, seasonal pattern of OC and TC, as well as, the speciation of TOA between POA and OOA. Sensitivity analysis reveals that the inclusion of the organic NPF treatment impacts the OA indirect effects by enhancing cloud properties. The simulated OA level and its impact on the climate system are most sensitive to choices in the enthalpy of vaporization and wet deposition of SVOCs, indicating that accurate representations of these parameters are critical for accurate OA-climate simulations.

  16. Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation

    Science.gov (United States)

    Ortiz-Montalvo, Diana L.; Schwier, Allison N.; Lim, Yong B.; McNeill, V. Faye; Turpin, Barbara J.

    2016-04-01

    The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (radOH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (ΔHvap,eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 ± 7) × 10-7 atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The ΔHvap,eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10-30 min of aqueous oxidation (one cloud cycle) the majority of the MGly + radOH precursor/product mix (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10-12 M radOH (or >12 h at 10-14 M) is needed before low volatility ammonium oxalate exceeds pyruvate.

  17. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature.

    Science.gov (United States)

    Li, Wei; Maloney, Ronald E; Aw, Tak Yee

    2015-08-01

    We previously demonstrated that in normal glucose (5mM), methylglyoxal (MG, a model of carbonyl stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6h after cell transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH) synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG-occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG-occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Transcriptome analysis of cytoplasmic male sterility and restoration in CMS-D8 cotton.

    Science.gov (United States)

    Suzuki, Hideaki; Rodriguez-Uribe, Laura; Xu, Jiannong; Zhang, Jinfa

    2013-10-01

    A global view of differential expression of genes in CMS-D8 of cotton was presented in this study which will facilitate the understanding of cytoplasmic male sterility in cotton. Cytoplasmic male sterility (CMS) is a maternally inherited trait in higher plants which is incapable of producing functional pollen. However, the male fertility can be restored by one or more nuclear-encoded restorer genes. A genome-wide transcriptome analysis of CMS and restoration in cotton is currently lacking. In this study, Affymetrix GeneChips© Cotton Genome Array containing 24,132 transcripts was used to compare differentially expressed (DE) genes of flower buds at the meiosis stage between CMS and its restorer cotton plants conditioned by the D8 cytoplasm. A total of 458 (1.9 %) of DE genes including 127 up-regulated and 331 down-regulated ones were identified in the CMS-D8 line. Quantitative RT-PCR was used to validate 10 DE genes selected from seven functional categories. The most frequent DE gene group was found to encode putative proteins involved in cell wall expansion, such as pectinesterase, pectate lyase, pectin methylesterase, glyoxal oxidase, polygalacturonase, indole-3-acetic acid-amino synthetase, and xyloglucan endo-transglycosylase. Genes in cytoskeleton category including actin, which plays a key role in cell wall expansion, cell elongation and cell division, were also highly differentially expressed between the fertile and CMS plants. This work represents the first study in utilizing microarray to identify CMS-related genes by comparing overall DE genes between fertile and CMS plants in cotton. The results provide evidence that many CMS-associated genes are mainly involved in cell wall expansion. Further analysis will be required to elucidate the molecular mechanisms of male sterility which will facilitate the development of new hybrid cultivars in cotton.

  19. Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2008-06-01

    Full Text Available A new denuder-filter sampling technique has been used to investigate the gas/particle partitioning behaviour of the carbonyl products from the photooxidation of isoprene and 1,3,5-trimethylbenzene. A series of experiments was performed in two atmospheric simulation chambers at atmospheric pressure and ambient temperature in the presence of NOx and at a relative humidity of approximately 50%. The denuder and filter were both coated with the derivatizing agent O-(2,3,4,5,6-pentafluorobenzyl-hydroxylamine (PFBHA to enable the efficient collection of gas- and particle-phase carbonyls respectively. The tubes and filters were extracted and carbonyls identified as their oxime derivatives by GC-MS. The carbonyl products identified in the experiments accounted for around 5% and 10% of the mass of secondary organic aerosol formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene respectively.

    Experimental gas/particle partitioning coefficients were determined for a wide range of carbonyl products formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene and compared with the theoretical values based on standard absorptive partitioning theory. Photooxidation products with a single carbonyl moiety were not observed in the particle phase, but dicarbonyls, and in particular, glyoxal and methylglyoxal, exhibited gas/particle partitioning coefficients several orders of magnitude higher than expected theoretically. These findings support the importance of heterogeneous and particle-phase chemical reactions for SOA formation and growth during the atmospheric degradation of anthropogenic and biogenic hydrocarbons.

  20. Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign

    Directory of Open Access Journals (Sweden)

    N. Sareen

    2016-11-01

    Full Text Available Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols, leading to the formation of secondary organic aerosol (SOAAQ. Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere into water at Brent, Alabama, during the 2013 Southern Oxidant and Aerosol Study (SOAS. Hydroxyl (OH⚫ radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92 to 179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS. Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS spectra and tandem MS (MS–MS fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (as salts and

  1. High-level theoretical characterization of the vinoxy radical (•CH2CHO) + O2 reaction

    Science.gov (United States)

    Weidman, Jared D.; Allen, Ryan T.; Moore, Kevin B.; Schaefer, Henry F.

    2018-05-01

    Numerous processes in atmospheric and combustion chemistry produce the vinoxy radical (•CH2CHO). To understand the fate of this radical and to provide reliable energies needed for kinetic modeling of such processes, we have examined its reaction with O2 using highly reliable theoretical methods. Utilizing the focal point approach, the energetics of this reaction and subsequent reactions were obtained using coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)] extrapolated to the complete basis set limit. These extrapolated energies were appended with several corrections including a treatment of full triples and connected quadruple excitations, i.e., CCSDT(Q). In addition, this study models the initial vinoxy radical + O2 reaction for the first time with multireference methods. We predict a barrier for this reaction of approximately 0.4 kcal mol-1. This result agrees with experimental findings but is in disagreement with previous theoretical studies. The vinoxy radical + O2 reaction produces a 2-oxoethylperoxy radical which can undergo a number of unimolecular reactions. Abstraction of a β-hydrogen (a 1,4-hydrogen shift) and dissociation back to reactants are predicted to be competitive to each other due to their similar barriers of 21.2 and 22.3 kcal mol-1, respectively. The minimum-energy β-hydrogen abstraction pathway produces a hydroperoxy radical (QOOH) that eventually decomposes to formaldehyde, CO, and •OH. Two other unimolecular reactions of the peroxy radical are α-hydrogen abstraction (38.7 kcal mol-1 barrier) and HO2• elimination (43.5 kcal mol-1 barrier). These pathways lead to glyoxal + •OH and ketene + HO2• formation, respectively, but they are expected to be uncompetitive due to their high barriers.

  2. The Major Chromophore Arising from Glucose Degradation and Oxidative Stress Occurrence during Lens Proteins Glycation Induced by Glucose

    Directory of Open Access Journals (Sweden)

    Felipe Ávila

    2017-12-01

    Full Text Available Glucose autoxidation has been proposed as a key reaction associated with deleterious effects induced by hyperglycemia in the eye lens. Little is known about chromophores generated during glucose autoxidation. In this study, we analyzed the effect of oxidative and dicarbonyl stress in the generation of a major chromophore arising from glucose degradation (GDC and its association with oxidative damage in lens proteins. Glucose (5 mM was incubated with H2O2 (0.5–5 mM, Cu2+ (5–50 μM, glyoxal (0.5–5 mM or methylglyoxal (0.5–5 mM at pH 7.4, 5% O2, 37 °C, from 0 to 30 days. GDC concentration increased with incubation time, as well as when incubated in the presence of H2O2 and/or Cu2+, which were effective even at the lowest concentrations. Dicarbonylic compounds did not increase the levels of GDC during incubations. 1H, 13C and FT-IR spectra from the purified fraction containing the chromophore (detected by UV/vis spectroscopy showed oxidation products of glucose, including gluconic acid. Lens proteins solutions (10 mg/mL incubated with glucose (30 mM presented increased levels of carboxymethyl-lysine and hydrogen peroxide that were associated with GDC increase. Our results suggest a possible use of GDC as a marker of autoxidative reactions occurring during lens proteins glycation induced by glucose.

  3. Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor

    International Nuclear Information System (INIS)

    Chen, Xiaodong; Li, Dawei; Li, Guohui; Luo, Lei; Ullah, Naseeb; Wei, Qufu; Huang, Fenglin

    2015-01-01

    Graphical abstract: (A) Formation mechanism of A-CZNF and (B) reaction principle and formation mechanism of A-CZUF biosensor. - Highlights: • We utilized the hydrophobic protein nanofibers to fabricate a laccase-based biosensor for the first time. • The composite containing gold nanoparticles was prepared by combining electrospinning and one-step reduction method, which is a novel nanomaterial. • It is noticeable that the laccase biosensor showed a high electrochemical response and electrochemical activity toward catechol. • The novel biosensor will offer a simple, convenient and high efficient method for detecting polyphenolic compounds in environment. - Abstract: A novel laccase biosensor based on a new composite of laccase–gold nanoparticles (Au NPs)-crosslinked zein ultrafine fibers (CZUF) has been fabricated for catechol determination in real solution samples. Firstly, crosslinked zein ultrafine fibers containing gold nanoparticles (A-CZUF) were prepared by combining electrospinning and one-step reduction method using poly(ethyleneimine) (PEI) as reducing and crosslinking agent. A smooth morphology and relative average distribution of A-CZUF were depicted by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The Fourier transform infrared spectroscopy (FT-IR) analysis indicated that PEI molecules attached to the surface of the zein ultrafine fibers via the reaction of functional groups between PEI and glyoxal. The results obtained from ultraviolet visible spectroscopy (UV–vis spectroscopy), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA) for A-CZUF confirmed the existence of Au NPS coated on the surface of CZUF. Square wave voltammetry (SWV) and cyclic voltammetry (CV) were used to detect the electrochemical performance of the proposed biosensor. The results demonstrated that this biosensor possessed a high sensitive detection to catechol, which was attributed to the direct electron transfer (DET

  4. Identification of the intermediates of in vivo oxidation of 1 ,4-dioxane by monooxygenase-containing bacteria.

    Science.gov (United States)

    Mahendra, Shaily; Petzold, Christopher J; Baidoo, Edward E; Keasling, Jay D; Alvarez-Cohen, Lisa

    2007-11-01

    1,4-dioxane is a probable human carcinogen and an emerging water contaminant. Monooxygenase-expressing bacteria have been shown to degrade dioxane via growth-supporting as well as cometabolic mechanisms. In this study, the intermediates of dioxane degradation by monooxygenase-expressing bacteria were determined by triple quadrupole-mass spectrometry and Fourier transform ion cyclotron resonance-mass spectrometry. The major intermediates were identified as 2-hydroxyethoxyacetic acid (HEAA), ethylene glycol, glycolate, and oxalate. Studies with uniformly labeled 14C dioxane showed that over 50% of the dioxane was mineralized to CO2 by CB1190, while 5% became biomass-associated after 48 h. Volatile organic acids and non-volatiles, respectively, accounted for 20 and 11% of the radiolabeled carbon. Although strains cometabolizing dioxane exhibited limited transformation capacities, nearly half of the initial dioxane was recovered as CO2. On the basis of these analytical results, we propose a pathway for dioxane oxidation by monooxygenase-expressing cells in which dioxane is first converted to 2-hydroxy-1,4-dioxane, which is spontaneously oxidized to HEAA. During a second monooxygenation step, HEAA is further hydroxylated, resulting in a mixture of dihydroxyethoxyacetic acids with a hydroxyl group at the ortho or para position. After cleavage of the second ether bond, small organic molecules such as ethylene glycol, glycolate, glyoxalate, and oxalate are progressively formed, which are then mineralized to CO2 via common cellular metabolic pathways. Bioremediation of dioxane via this pathway is not expected to cause an accumulation of toxic compounds in the environment.

  5. Different approaches to the toxicological evaluation of irradiated starch

    International Nuclear Information System (INIS)

    Truhaut, R.; Saint-Lebe, L.

    1978-01-01

    The toxicological evaluation of irradiated starch is performed either through long-term experiments on rats (24 months) and mice (18 months) or through determination of the semichronic toxicity in rats (6 months) of previously identified and determined radiation-induced products. A trial with five groups each of 80 rats (40 males and 40 females; controls receiving the diet raw or cooked; other animals receiving the diet raw after irradiation to 300krad and raw or cooked after irradiation to 600krad) consists of a toxicity test and a study of the reproductive functions. The trial with mice - the same number of animals divided into three groups (standard control, control and 300krad) - consists of a study of the reproductive functions with an examination of teratogenicity and the study of cancerogenic and mutagenic potentiality. In no case have the authors found significant differences between the groups. Of the 35 starch radiolysis products so far identified the authors considered nine (formic acid, hydrogen peroxide, methyl alcohol, acetaldehyde, formaldehyde, glycolaldehyde, glyceraldehyde, malonaldehyde and glyoxal). After an acute and subacute toxicity trial with a mixture of the nine compounds, a six-month semichronic toxicity trial was carried out with four groups of animals (15 males and 15 females). The daily uptake of 0.3g of the mixture per kilogram was found to have no effect on the rats. This daily uptake corresponds to a quantity of radiolytic products 800 times greater than what would be taken up by a baby consuming 30g of irradiated starch (300krad) and is below the threshold of true general toxicity, which is masked here by the caustic effect of the formic acid. (author)

  6. The in vitro transcription of a rainbow trout (Salmo gairdnerii) protamine gene. II. Controlled mutation of the cap site region.

    Science.gov (United States)

    Jankowski, J M; Dixon, G H

    1985-02-01

    A series of plasmids containing new fusion genes in which the trout protamine gene is placed under the control of the complete herpes virus (HSV-1) tk promoter Pvu II-Bgl II fragment (pM8), or a shortened thymidine kinase (tk) promoter in which the region between the TATA box and the cap site is altered by using the Pvu II-Mlu I fragment (pM7), have been constructed. An additional recombinant plasmid was constructed in which the Bgl II-Ava II fragment of the protamine gene containing the entire protamine promoter but missing the protamine coding region was cloned into pBR322 between the Xho II 1666 and Hind III sites (pP5). For in vitro transcription, a HeLa cell lysate system was prepared and the RNA transcription products, after glyoxalation, were electrophoretically analyzed on 5% polyacrylamide gels. In constructing pM8 the DNA sequence between the tk promoter and the cap site was present while in pM7 it was deleted. Similar multiple transcripts were seen in both cases, indicating that the region between the promoter and the cap site has no effect upon transcription in vitro. The multiple transcripts appear to be due to the presence of a cryptic promoter in the complementary strand of the protamine gene. The activity of this cryptic promoter has been confirmed by comparison of the transcription of plasmid pP5, in which the protamine mRNA coding region has been deleted, with a previously described plasmid, pJBRP (Jankowski JM and Dixon GH (1984) Can. J. Biochem. Cell. Biol. 62, 291-300), containing the intact protamine gene.

  7. Simulation of photochemical pollutants in summer 2013 in China

    Science.gov (United States)

    Zhang, H.; Guo, H.; Hu, J.

    2016-12-01

    Rapid economic growth and associated emissions increase in China have led to severe air pollution in recent decades. Photochemical pollutants are secondary formed pollutants in the atmosphere with the existence of sunlight. Ozone (O3) is adverse to human health and ecosystems and secondary organic aerosol (SOA) is a major component of fine particulate matter (PM2.5) that affects human health, visibility, and climate. In this work, the Community Multi-scale Air Quality (CMAQ) model was used to investigate the formation of O3 and SOA in three episodes from June to August 2013. Compared with observation data, O3 performance meets the EPA criteria of mean normalized bias (MNB) within ± 0.15 in major parts of China including five megacities. The diurnal variation of O3 had similar trend with the temperature. The August episode has the highest O3 concentrations of 100 ppb in North China Plain while the July episode has the lowest concentrations of 50 ppb. SOA concentrations were up to 35-40 μgm-3 at different cities in different episodes. Biogenic SOA was the majority with the contributions from glyoxal (GLY), methylglyoxal (MGLY), isoprene epoxydiol (IEPOX) and oligomers (OLGM) of 70%. Isopleth found that NOx controls O3 concentration in most areas of China. Reducing VOC would have minor effects on O3 concentrations while reducing NOx could largely reduce O3 concentration except for urban areas such as Shanghai and Guangzhou. On the contrary, SOA was controlled by VOCs in cities such as Beijing, Shanghai, and Xi'an. This study provides valuable information for designing effective control strategies for O3 and particulate matter in China.

  8. Improving organic aerosol treatments in CESM/CAM5: Development, application, and evaluation

    Science.gov (United States)

    Glotfelty, Timothy; He, Jian

    2017-01-01

    Abstract New treatments for organic aerosol (OA) formation have been added to a modified version of the CESM/CAM5 model (CESM‐NCSU). These treatments include a volatility basis set treatment for the simulation of primary and secondary organic aerosols (SOAs), a simplified treatment for organic aerosol (OA) formation from glyoxal, and a parameterization representing the impact of new particle formation (NPF) of organic gases and sulfuric acid. With the inclusion of these new treatments, the concentration of oxygenated organic aerosol increases by 0.33 µg m−3 and that of primary organic aerosol (POA) decreases by 0.22 µg m−3 on global average. The decrease in POA leads to a reduction in the OA direct effect, while the increased OOA increases the OA indirect effects. Simulations with the new OA treatments show considerable improvement in simulated SOA, oxygenated organic aerosol (OOA), organic carbon (OC), total carbon (TC), and total organic aerosol (TOA), but degradation in the performance of HOA. In simulations of the current climate period, despite some deviations from observations, CESM‐NCSU with the new OA treatments significantly improves the magnitude, spatial pattern, seasonal pattern of OC and TC, as well as, the speciation of TOA between POA and OOA. Sensitivity analysis reveals that the inclusion of the organic NPF treatment impacts the OA indirect effects by enhancing cloud properties. The simulated OA level and its impact on the climate system are most sensitive to choices in the enthalpy of vaporization and wet deposition of SVOCs, indicating that accurate representations of these parameters are critical for accurate OA‐climate simulations. PMID:29104733

  9. Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China.

    Science.gov (United States)

    Cao, Fang; Zhang, Shi-Chun; Kawamura, Kimitaka; Liu, Xiaoyan; Yang, Chi; Xu, Zufei; Fan, Meiyi; Zhang, Wenqi; Bao, Mengying; Chang, Yunhua; Song, Wenhuai; Liu, Shoudong; Lee, Xuhui; Li, Jun; Zhang, Gan; Zhang, Yan-Lin

    2017-12-01

    Fine particulate matter (PM2.5) samples were collected using a high-volume air sampler and pre-combusted quartz filters during May 2013 to January 2014 at a background rural site (47 ∘ 35 N, 133 ∘ 31 E) in Sanjiang Plain, Northeast China. A homologous series of dicarboxylic acids (C 2 -C 11 ) and related compounds (oxoacids, α-dicarbonyls and fatty acids) were analyzed by using a gas chromatography (GC) and GC-MS method employing a dibutyl ester derivatization technique. Intensively open biomass-burning (BB) episodes during the harvest season in fall were characterized by high mass concentrations of PM2.5, dicarboxylic acids and levoglucosan. During the BB period, mass concentrations of dicarboxylic acids and related compounds were increased by up to >20 times with different factors for different organic compounds (i.e., succinic (C 4 ) acid > oxalic (C 2 ) acid > malonic (C 3 ) acid). High concentrations were also found for their possible precursors such as glyoxylic acid (ωC 2 ), 4-oxobutanoic acid, pyruvic acid, glyoxal, and methylglyoxal as well as fatty acids. Levoglucosan showed strong correlations with carbonaceous aerosols (OC, EC, WSOC) and dicarboxylic acids although such good correlations were not observed during non-biomass-burning seasons. Our results clearly demonstrate biomass burning emissions are very important contributors to dicarboxylic acids and related compounds. The selected ratios (e.g., C 3 /C 4 , maleic acid/fumaric acid, C 2 /ωC 2 , and C 2 /levoglucosan) were used as tracers for secondary formation of organic aerosols and their aging process. Our results indicate that organic aerosols from biomass burning in this study are fresh without substantial aging or secondary production. The present chemical characteristics of organic compounds in biomass-burning emissions are very important for better understanding the impacts of biomass burning on the atmosphere aerosols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Perturbation of human coronary artery endothelial cell redox state and NADPH generation by methylglyoxal.

    Directory of Open Access Journals (Sweden)

    Philip E Morgan

    Full Text Available Diabetes is associated with elevated plasma glucose, increased reactive aldehyde formation, oxidative damage, and glycation/glycoxidation of biomolecules. Cellular detoxification of, or protection against, such modifications commonly requires NADPH-dependent reducing equivalents (e.g. GSH. We hypothesised that reactive aldehydes may modulate cellular redox status via the inhibition of NADPH-generating enzymes, resulting in decreased thiol and NADPH levels. Primary human coronary artery endothelial cells (HCAEC were incubated with high glucose (25 mM, 24 h, 37°C, or methylglyoxal (MGO, glyoxal, or glycolaldehyde (100-500 µM, 1 h, 37°C, before quantification of intracellular thiols and NADPH-generating enzyme activities. Exposure to MGO, but not the other species examined, significantly (P<0.05 decreased total thiols (∼35%, further experiments with MGO showed significant losses of GSH (∼40% and NADPH (∼10%; these changes did not result in an immediate loss of cell viability. Significantly decreased (∼10% NADPH-producing enzyme activity was observed for HCAEC when glucose-6-phosphate or 2-deoxyglucose-6-phosphate were used as substrates. Cell lysate experiments showed significant MGO-dose dependent inhibition of glucose-6-phosphate-dependent enzymes and isocitrate dehydrogenase, but not malic enzyme. Analysis of intact cell or lysate proteins showed that arginine-derived hydroimidazolones were the predominant advanced glycation end-product (AGE formed; lower levels of N(ε-(carboxyethyllysine (CEL and N(ε-(carboxymethyllysine (CML were also detected. These data support a novel mechanism by which MGO exposure results in changes in redox status in human coronary artery endothelial cells, via inhibition of NADPH-generating enzymes, with resultant changes in reduced protein thiol and GSH levels. These changes may contribute to the endothelial cell dysfunction observed in diabetes-associated atherosclerosis.

  11. Development of High-Throughput Method for Measurement of Vascular Nitric Oxide Generation in Microplate Reader.

    Science.gov (United States)

    Abd El-Hay, Soad S; Colyer, Christa L

    2017-01-13

    Despite the importance of nitric oxide (NO) in vascular physiology and pathology, a high-throughput method for the quantification of its vascular generation is lacking. By using the fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM), we have optimized a simple method for the determination of the generation of endothelial nitric oxide in a microplate format. A nitric oxide donor was used (3-morpholinosydnonimine hydrochloride, SIN-1). Different factors affecting the method were studied, such as the effects of dye concentration, different buffers, time of reaction, gain, and number of flashes. Beer's law was linear over a nanomolar range (1-10 nM) of SIN-1 with wavelengths of maximum excitation and emission at 495 and 525 nm; the limit of detection reached 0.897 nM. Under the optimized conditions, the generation of rat aortic endothelial NO was measured by incubating DAF-FM with serial concentrations (10-1000 µM) of acetylcholine (ACh) for 3 min. To confirm specificity, N ω -Nitro-l-arginine methyl ester (l-NAME)-the standard inhibitor of endothelial NO synthase-was found to inhibit the ACh-stimulated generation of NO. In addition, vessels pre-exposed for 1 h to 400 µM of the endothelial damaging agent methyl glyoxal showed inhibited NO generation when compared to the control stimulated by ACh. The capability of the method to measure micro-volume samples makes it convenient for the simultaneous handling of a very large number of samples. Additionally, it allows samples to be run simultaneously with their replicates to ensure identical experimental conditions, thus minimizing the effect of biological variability.

  12. Extending the spectrum of α-dicarbonyl compounds in vivo.

    Science.gov (United States)

    Henning, Christian; Liehr, Kristin; Girndt, Matthias; Ulrich, Christof; Glomb, Marcus A

    2014-10-10

    Maillard α-dicarbonyl compounds are known as central intermediates in advanced glycation end product (AGE) formation. Glucose is the primary source of energy for the human body, whereas l-threo-ascorbic acid (vitamin C) is an essential nutrient, involved in a variety of enzymatic reactions. Thus, the Maillard degradation of glucose and ascorbic acid is of major importance in vivo. To understand the complex mechanistic pathways of AGE formation, it is crucial to extend the knowledge on plasma concentrations of reactive key α-dicarbonyl compounds (e.g. 1-deoxyglucosone). With the present work, we introduce a highly sensitive LC-MS/MS multimethod for human blood plasma based on derivatization with o-phenylenediamine under acidic conditions. The impact of workup and reaction conditions, particularly of pH, was thoroughly evaluated. A comprehensive validation provided the limit of detection, limit of quantitation, coefficients of variation, and recovery rates. The method includes the α-dicarbonyls 1-deoxyglucosone, 3-deoxyglucosone, glucosone, Lederer's glucosone, dehydroascorbic acid, 2,3-diketogulonic acid, 1-deoxypentosone, 3-deoxypentosone, 3,4-dideoxypentosone, pentosone, 1-deoxythreosone, 3-deoxythreosone, threosone, methylglyoxal, glyoxal; the α-keto-carboxylic acids pyruvic acid and glyoxylic acid; and the dicarboxylic acid oxalic acid. The method was then applied to the analyses of 15 healthy subjects and 24 uremic patients undergoing hemodialysis. The comparison of the results revealed a clear shift in the product spectrum. In most cases, the plasma levels of target analytes were significantly higher. Thus, this is the first time that a complete spectrum of α-dicarbonyl compounds relevant in vivo has been established. The results provide further insights into the chemistry of AGE formation and will be helpful to find specific markers to differentiate between the various precursors of glycation. © 2014 by The American Society for Biochemistry and

  13. Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound.

    Science.gov (United States)

    Biemel, Klaus M; Friedl, D Alexander; Lederer, Markus O

    2002-07-12

    Glycation reactions leading to protein modifications (advanced glycation end products) contribute to various pathologies associated with the general aging process and long term complications of diabetes. However, only few relevant compounds have so far been detected in vivo. We now report on the first unequivocal identification of the lysine-arginine cross-links glucosepane 5, DOGDIC 6, MODIC 7, and GODIC 8 in human material. For their accurate quantification by coupled liquid chromatography-electrospray ionization mass spectrometry, (13)C-labeled reference compounds were synthesized independently. Compounds 5-8 are formed via the alpha-dicarbonyl compounds N(6)-(2,3-dihydroxy-5,6-dioxohexyl)-l-lysinate (1a,b), 3-deoxyglucosone (), methylglyoxal (), and glyoxal (), respectively. The protein-bound dideoxyosone 1a,b seems to be of prime significance for cross-linking because it presumably is not detoxified by mammalian enzymes as readily as 2-4. Hence, the follow-up product glucosepane 5 was found to be the dominant compound. Up to 42.3 pmol of 5/mg of protein was identified in human serum albumin of diabetics; the level of 5 correlates markedly with the glycated hemoglobin HbA(1c). In the water-insoluble fraction of lens proteins from normoglycemics, concentration of 5 ranges between 132.3 and 241.7 pmol/mg. The advanced glycoxidation end product GODIC 8 is elevated significantly in brunescent lenses, indicating enhanced oxidative stress in this material. Compounds 5-8 thus appear predestined as markers for pathophysiological processes.

  14. The cytosolic glyoxalases of Plasmodium falciparum are dispensable during asexual blood-stage development

    Directory of Open Access Journals (Sweden)

    Cletus A. Wezena

    2017-11-01

    Full Text Available The enzymes glyoxalase 1 and 2 (Glo1 and Glo2 are found in most eukaryotes and catalyze the glutathione-dependent conversion of 2-oxoaldehydes to 2-hydroxycarboxylic acids. Four glyoxalases are encoded in the genome of the malaria parasite Plasmodium falciparum, the cytosolic enzymes PfGlo1 and PfcGlo2, the apicoplast enzyme PftGlo2, and an inactive Glo1-like protein that also carries an apicoplast-targeting sequence. Inhibition or knockout of the Plasmodium glyoxalases was hypothesized to lead to an accumulation of 2-oxoaldehydes and advanced glycation end-products (AGE in the host-parasite unit and to result in parasite death. Here, we generated clonal P. falciparum strain 3D7 knockout lines for PFGLO1 and PFcGLO2 using the CRISPR-Cas9 system. Although 3D7Δglo1 knockout clones had an increased susceptibility to external glyoxal, all 3D7Δglo1 and 3D7Δcglo2 knockout lines were viable and showed no significant growth phenotype under standard growth conditions. Furthermore, the lack of PfcGlo2, but not PfGlo1, increased gametocyte commitment in the knockout lines. In summary, PfGlo1 and PfcGlo2 are dispensable during asexual blood-stage development while the loss of PfcGlo2 may induce the formation of transmissible gametocytes. These combined data show that PfGlo1 and PfcGlo2 are most likely not suited as targets for selective drug development.

  15. Reactive carbonyl compounds impair wound healing by vimentin collapse and loss of the primary cilium.

    Science.gov (United States)

    Rodríguez-Ribera, Lara; Slattery, Craig; Mc Morrow, Tara; Marcos, Ricard; Pastor, Susana

    2017-10-01

    In renal pathologies tubulo-interstitial fibrosis results from an aberrant wound-healing ability where the normal epithelial tissue is substituted for scar tissue caused by accumulation of extracellular matrix proteins (ECM). During the wound-healing process, epithelial cells may undergo epithelial-mesenchymal transition (EMT) acquiring a mesenchymal-like phenotype that allows cells to migrate and re-epithelialize the wound site. It has been reported that chronic inflammation and uremic milieu are involved in wound-healing and enhanced kidney damage in chronic kidney disease (CKD) patients. In this study we evaluated reactive carbonyl compounds (RCC) effects on renal wound healing. The compounds resulting from carbonyl stress evaluated in this study were glyoxal (GO), methylglyoxal (MGO), malondialdehyde (MDA) and 4-hydroxy-hexenal (HHE). Wound repair ability was evaluated by the wound healing assay using HK-2 cells. EMT was evaluated by morphological, protein and transcriptional changes using microscopy, western blot, zymography and RT-qPCR. Changes in the vimentin network and primary cilia were assessed by immunofluorescence. Our data demonstrated that MDA and GO delay wound closure mediated by vimentin disruption, which caused collagen I mRNA decrease, and deciliation. In contrast, HHE treatment (and MGO to a minor degree) induced morphological changes and increased mesenchymal marker expression and gelatinase activity in HK-2 cells. In this study, we have demonstrated for the first time that exposure to RCC differentially affects wound healing in proximal tubular epithelia. A better comprehension of effects of uremic toxins on wound healing and fibrosis and migration is necessary to seek mechanisms to slow down renal fibrosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.

    Science.gov (United States)

    Franden, Mary Ann; Jayakody, Lahiru N; Li, Wing-Jin; Wagner, Neil J; Cleveland, Nicholas S; Michener, William E; Hauer, Bernhard; Blank, Lars M; Wierckx, Nick; Klebensberger, Janosch; Beckham, Gregg T

    2018-06-07

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylene glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and

  17. Electron affinity and excited states of methylglyoxal

    Science.gov (United States)

    Dauletyarov, Yerbolat; Dixon, Andrew R.; Wallace, Adam A.; Sanov, Andrei

    2017-07-01

    Using photoelectron imaging spectroscopy, we characterized the anion of methylglyoxal (X2A″ electronic state) and three lowest electronic states of the neutral methylglyoxal molecule: the closed-shell singlet ground state (X1A'), the lowest triplet state (a3A″), and the open-shell singlet state (A1A″). The adiabatic electron affinity (EA) of the ground state, EA(X1A') = 0.87(1) eV, spectroscopically determined for the first time, compares to 1.10(2) eV for unsubstituted glyoxal. The EAs (adiabatic attachment energies) of two excited states of methylglyoxal were also determined: EA(a3A″) = 3.27(2) eV and EA(A1A″) = 3.614(9) eV. The photodetachment of the anion to each of these two states produces the neutral species near the respective structural equilibria; hence, the a3A″ ← X2A″ and A1A″ ← X2A″ photodetachment transitions are dominated by intense peaks at their respective origins. The lowest-energy photodetachment transition, on the other hand, involves significant geometry relaxation in the X1A' state, which corresponds to a 60° internal rotation of the methyl group, compared to the anion structure. Accordingly, the X1A' ← X2A″ transition is characterized as a broad, congested band, whose vertical detachment energy, VDE = 1.20(4) eV, significantly exceeds the adiabatic EA. The experimental results are in excellent agreement with the ab initio predictions using several equation-of-motion methodologies, combined with coupled-cluster theory.

  18. Historic records of organic compounds from a high Alpine glacier: influences of biomass burning, anthropogenic emissions, and dust transport

    Directory of Open Access Journals (Sweden)

    C. Müller-Tautges

    2016-01-01

    Full Text Available Historic records of α-dicarbonyls (glyoxal, methylglyoxal, carboxylic acids (C6–C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid, and ions (oxalate, formate, calcium were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6–C12 in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs. The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.

  19. Hydrogen transfer reactions of interstellar Complex Organic Molecules

    Science.gov (United States)

    Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.

    2018-06-01

    Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.

  20. Melamine derivatives as effective corrosion inhibitors for mild steel in acidic solution: Chemical, electrochemical, surface and DFT studies

    Science.gov (United States)

    Verma, Chandrabhan; Haque, J.; Ebenso, Eno E.; Quraishi, M. A.

    2018-06-01

    In present study two condensation products of melamine (triazine) and glyoxal namely, 2,2-bis(4,6-diamino-1,3,5-triazin-2-ylamino)acetaldehyde (ME-1) and (N2,N2‧E,N2,N2‧E)-N2,N2‧-(ethane-1,2-diylidene)-bis-(1,3,5-triazine-2,4,6-triamine) (ME-2) are tested as mild steel corrosion inhibitors in acidic solution (1M HCl). The inhibition efficiency of ME-1 and ME-2 increases with increase in their concentrations and maximum values of 91.47% and 94.88% were derived, respectively at 100 mgL-1 (34.20 × 10-5 M) concentration. Adsorption of ME-1 and ME-2 on the surface of metal obeyed the Langmuir adsorption isotherm. Polarization investigation revealed that ME-1 and ME-2 act as mixed type inhibitors with minor cathodic prevalence. The chemical and electrochemical analyses also supported by surface characterization methods where significant smoothness in the surface morphologies was observed in the images of SEM and AFM spectra. Several DFT indices such as EHOMO and ELUMO, ΔE, η, σ, χ, μ and ΔN were derived for both ME-1 and ME-2 molecules and correlated with experimental results. The DFT studies have also been carried out for protonated or cationic form of the inhibitor molecules by considering that in acidic medium the heteroatoms of organic inhibitors easily undergo protonation. The experimental and density functional theory (DFT) studies (neutral and protonated) were in good agreement.

  1. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-08-01

    Full Text Available We previously demonstrated that in normal glucose (5 mM, methylglyoxal (MG, a model of carbonyl stress induced brain microvascular endothelial cell (IHEC dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC. Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia; moreover, barrier function remained disrupted 6 h after cell transfer to normal glucose media (acute glycemic fluctuation. Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG–occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG–occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes.

  2. 3 dimensional distributions of NO2, CHOCHO, and HCHO measured by the University of Colorado 2D-MAX-DOAS during MAD-CAT

    Science.gov (United States)

    Ortega, Ivan; Sinreich, Roman; Volkamer, Rainer

    2014-05-01

    We present results of 2 dimensional Multi Axis-DOAS (2D-MAX-DOAS) measurements to infer 3-dimensional measurements of trace gases by characterizing boundary layer vertical profiles and near surface azimuth horizontal distribution of NO2 (14 angles covering 360°). We combine the established optimal estimation inversion with a new parameterization approach; the first method to derive NO2 tropospheric vertical profiles and boundary layer height and the second one to retrieve the azimuth horizontal distribution of near surface NO2 mixing ratios, both at multiple wavelengths (350 nm, 450 nm, and 560 nm). This was conducted for three cloud-free days in the framework of the intensive Multi Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany 2013. By retrieving NO2 at multiple wavelengths range-resolved distributions of NO2 are derived using an 'Onion-peeling' approach, i.e., exploiting the fact that the optical path lengths at different wavelengths probe different horizontal air masses. We also measure glyoxal (CHOCHO) and formaldehyde (HCHO) distributions, and present to our knowledge the first 3-dimesional trace-gas distribution measurements of CHOCHO by a ground-based instrument. We expand the 2D-MAX-DOAS capabilities to calculate azimuth ratios of HCHO-to-NO2 (RFN) and CHOCHO-to-NO2 (RGN) to pinpoint volatile organic compound (VOC) oxidation chemistry and CHOCHO-to-HCHO (RGF) ratios as an indicator of biogenic and/or anthropogenic VOC emissions. The results of RFN correlate well with RGN and we identify azimuth variations that indicate gradients in the VOC/NOx chemistry that leads to O3 and secondary aerosol production. While there is a clear diurnal pattern in the RFN and RGN, no such variations are observed in the RGF, which shows rather constant values below 0.04 throughout the day, consistent with previous measurements, and indicative of urban air masses.

  3. Energy restriction and Roux-en-Y gastric bypass reduce postprandial α-dicarbonyl stress in obese women with type 2 diabetes.

    Science.gov (United States)

    Maessen, Dionne E; Hanssen, Nordin M; Lips, Mirjam A; Scheijen, Jean L; Willems van Dijk, Ko; Pijl, Hanno; Stehouwer, Coen D; Schalkwijk, Casper G

    2016-09-01

    Dicarbonyl compounds are formed as byproducts of glycolysis and are key mediators of diabetic complications. However, evidence of postprandial α-dicarbonyl formation in humans is lacking, and interventions to reduce α-dicarbonyls have not yet been investigated. Therefore, we investigated postprandial α-dicarbonyl levels in obese women without and with type 2 diabetes. Furthermore, we evaluated whether a diet very low in energy (very low calorie diet [VLCD]) or Roux-en-Y gastric bypass (RYGB) reduces α-dicarbonyl stress in obese women with type 2 diabetes. In lean (n = 12) and obese women without (n = 27) or with type 2 diabetes (n = 27), we measured the α-dicarbonyls, methylglyoxal (MGO), glyoxal (GO) and 3-deoxyglucosone (3-DG), and glucose in fasting and postprandial plasma samples obtained during a mixed meal test. Obese women with type 2 diabetes underwent either a VLCD or RYGB. Three weeks after the intervention, individuals underwent a second mixed meal test. Obese women with type 2 diabetes had higher fasting and particularly higher postprandial plasma α-dicarbonyl levels, compared with those without diabetes. After three weeks of a VLCD, postprandial α-dicarbonyl levels in diabetic women were significantly reduced (AUC MGO -14%, GO -16%, 3-DG -25%), mainly through reduction of fasting plasma α-dicarbonyls (MGO -13%, GO -13%, 3-DG -33%). Similar results were found after RYGB. This study shows that type 2 diabetes is characterised by increased fasting and postprandial plasma α-dicarbonyl stress, which can be reduced by improving glucose metabolism through a VLCD or RYGB. These data highlight the potential to reduce reactive α-dicarbonyls in obese individuals with type 2 diabetes. ClinicalTrials.gov NCT01167959.

  4. An improvement of LLNA:DA to assess the skin sensitization potential of chemicals.

    Science.gov (United States)

    Zhang, Hongwei; Shi, Ying; Wang, Chao; Zhao, Kangfeng; Zhang, Shaoping; Wei, Lan; Dong, Li; Gu, Wen; Xu, Yongjun; Ruan, Hongjie; Zhi, Hong; Yang, Xiaoyan

    2017-01-01

    We developed a modified local lymph node assay based on ATP (LLNA:DA), termed the Two-Stage LLNA:DA, to further reduce the animal numbers in the identification of sensitizers. In the Two-Stage LLNA:DA procedure, 13 chemicals ranging from non-sensitizers to extreme sensitizers were selected. The first stage used reduced LLNA:DA (rLLNA:DA) to screen out sensitive chemicals. The second stage used LLNA:DA based on OECD 442 (A) to classify those potential sensitizers screened out in the first stage. In the first stage, the SIs of the methyl methacrylate, salicylic acid, methyl salicylate, ethyl salicylate, isopropanol and propanediol were below 1.8 and need not to be tested in the second step. Others continued to be tested by LLNA:DA. In the second stage, sodium lauryl sulphate and xylene were classified as weak sensitizers. a-hexyl cinnamic aldehyde and eugenol were moderate sensitizers. Benzalkonium chloride and glyoxal were strong sensitizers, and phthalic anhydride was an extreme sensitizer. The 9/9, 11/12, 10/11, and 8/13 (positive or negative only) categories of the Two-Stage LLNA:DA were consistent with those from the other methods (LLNA, LLNA:DA, GPMT/BT and HMT/HPTA), suggesting that Two-Stage LLNA:DA have a high coincidence rate with reported data. In conclusion, The Two-Stage LLNA:DA is in line with the "3R" rules, and can be a modification of LLNA:DA but needs more study.

  5. NCTC 2544 and IL-18 production: a tool for the identification of contact allergens.

    Science.gov (United States)

    Corsini, Emanuela; Galbiati, Valentina; Mitjans, Montserrat; Galli, Corrado L; Marinovich, Marina

    2013-04-01

    Progress in understanding the mechanisms of skin sensitization, provides us with the opportunity to develop in vitro tests as an alternative to in vivo sensitization testing. Keratinocytes play a key role in all phases of skin sensitization. We have recently identified interleukin-18 (IL-18) production in keratinocyte as a potentially useful endpoint for determination of contact sensitization potential of low molecular weight chemicals. The aim of the present article is to further exploit the performance of the NCTC 2544 assay. NCTC 2544 is a commercially available skin epithelial-like cell line originating from normal human skin, which posses a good expression of cytochrome P450-dependent enzymatic activities. Cells were exposed to contact allergens (2-bromo-2-bromomethyl glutaronitrile, cinnamaldehyde, citral, diethylmaleate, dinitrochlorobenzene, glyoxal, 2-mercaptobenzothiazole, nickel sulfate, 4-nitrobenzylbromide, oxazolone, penicillin G, resorcinol, tetramethylthiuram disulfide), to pre- pro-haptens (cinnamyl alcohol, eugenol, isoeugenol, p-phenylediamine), to respiratory allergens (ammonium hexachloroplatinate, diphenylmethane diisocyanate, glutaraldehyde, hexamethylenediisocyanate, maleic anhydride, trimellitic anhydride) and to irritants (benzaldehyde, cholorobenzene, diethylphtalate, hydrobenzoic acid, lactic acid, octanoic acid, phenol, salicylic acid, sodium lauryl sulphate, sulfamic acid). Cell associated IL-18 was evaluated 24 later by ELISA. At not-cytotoxic concentrations (cell viability higher of 80%, as assessed by MTT reduction assay), all contact sensitizers, including pre-pro-haptens, induced a dose-related increase in IL-18, whereas both irritants, with the exception of sulfamic acid, and respiratory allergens failed. A total of 33 chemicals were tested, with an overall accuracy of 97%. Overall, results obtained indicated that cell-associated IL-18 might provide an in vitro tool for identification and discrimination of contact vs. respiratory

  6. Secondary Organic Aerosol Formation from Acetylene (C2H2: seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase

    Directory of Open Access Journals (Sweden)

    P. J. Ziemann

    2009-03-01

    Full Text Available The lightest Non Methane HydroCarbon (NMHC, i.e., acetylene (C2H2 is found to form secondary organic aerosol (SOA. Contrary to current belief, the number of carbon atoms, n, for a NMHC to act as SOA precursor is lowered to n=2 here. The OH-radical initiated oxidation of C2H2 forms glyoxal (CHOCHO as the highest yield product, and >99% of the SOA from C2H2 is attributed to CHOCHO. SOA formation from C2H2 and CHOCHO was studied in a photochemical and a dark simulation chamber. Further, the experimental conditions were varied with respect to the chemical composition of the seed aerosols, mild acidification with sulphuric acid (SA, 3

  7. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.

    Science.gov (United States)

    Olami, Hilla; Zilberman, Meital

    2016-02-01

    Interest in the development of new bioresorbable structures for various tissue engineering applications is on the rise. In the current study, we developed and studied novel soy protein-based porous blends as potential new scaffolds for such applications. Soy protein has several advantages over the various types of natural proteins employed for biomedical applications due to its low price, non-animal origin and relatively long storage time and stability. In the present study, blends of soy protein with other polymers (gelatin, pectin and alginate) were added and chemically cross-linked using the cross-linking agents carbodiimide or glyoxal, and the porous structure was obtained through lyophilization. The resulting blend porous structures were characterized using environmental scanning microscopy, and the cytotoxicity of these scaffolds was examined in vitro. The biocompatibility of the scaffolds was also evaluated in vitro by seeding and culturing human fibroblasts on these scaffolds. Cell growth morphology and adhesion were examined histologically. The results show that these blends can be assembled into porous three-dimensional structures by combining chemical cross-linking with freeze-drying. The achieved blend structures combine suitable porosity with a large pore size (100-300 µm). The pore structure in the soy-alginate scaffolds possesses adequate interconnectivity compared to that of the soy-gelatin scaffolds. However, porous structure was not observed for the soy-pectin blend, which presented a different structure with significantly lower porosities than all other groups. The in vitro evaluation of these porous soy blends demonstrated that soy-alginate blends are advantageous over soy-gelatin blends and exhibited adequate cytocompatibility along with better cell infiltration and stability. These soy protein scaffolds may be potentially useful as a cellular/acellular platform for skin regeneration applications. © The Author(s) 2015.

  8. Evaluation of two commercial and three home-made fixatives for the substitution of formalin: a formaldehyde-free laboratory is possible.

    Science.gov (United States)

    Zanini, Cristina; Gerbaudo, Elisa; Ercole, Elisabetta; Vendramin, Anna; Forni, Marco

    2012-09-04

    Formaldehyde (HCHO) is a gas (available as a 37% concentrated solution, stabilized with methanol). The 10% dilution (approximately 4% formaldehyde) has been used as a fixative since the end of the 19th century. Alternative fixatives are also commercially available or may be prepared in-house in laboratories. Statements by the IARC, along with other USA agencies (CalEPA, RoC/NTP) on the carcinogenicity of formaldehyde for humans renders its substitution in Pathology Departments necessary since the annual use of formalin may exceed 3,500 liters for a medium-large laboratory. To achieve a "formalin-free laboratory" we tested straightforward-to-make fixatives along with registered reagents offered as formalin substitutes. More than two hundreds specimens were fixed in parallel with in-laboratory made fixatives PAGA (Polyethylenglycol, ethyl Alcohol, Glycerol, Acetic acid), two zinc-based fixatives (ZBF, Z7), and commercially-available alternatives (RCL2 and CellBlock). Tissue micro arrays were used for morphological and immunohistochemical comparison. Extraction of RNA was carried out to evaluate preservation of nucleic acids. Differences compared to formalin fixation were evident in alcohol-based fixatives, mainly restricted to higher stain affinity and considerable tissue shrinkage. Conversely, nuclear detail was superior with these alcohol-based formulas compared to formalin or glyoxale-based recipes. RNA extraction was superior for Z7, PAGA and RCL2 with regard to concentration but relatively comparable regarding quality. Abolition of the human carcinogen formaldehyde from pathology laboratories is possible even in contexts whereby commercial alternatives to formalin are unavailable or are too expensive for routine use, and aspiration devices are lacking or not adequately serviced. The use of known formulations, possibly with simple and not-noxious ("alimentary grade") constituents, comparable with registered proprietary products, may expand the search for the

  9. Continuous monitoring of bisulfide variation in microdialysis effluents by on-line droplet-based microfluidic fluorescent sensor.

    Science.gov (United States)

    Zhu, Xiaocui; Xu, Lei; Wu, Tongbo; Xu, Anqin; Zhao, Meiping; Liu, Shaorong

    2014-05-15

    We demonstrate a novel fluorescent sensor for real-time and continuous monitoring of the variation of bisulfide in microdialysis effluents by using a nanoparticle-glutathione-fluorescein isothiocyanate (AuNP-GSH-FITC) probe coupled with on-line droplet-based microfluidic chip. The AuNP-GSH-FITC fluorescent probe was firstly developed and used for bisulfide detection in bulk solution by quantitative real-time PCR, which achieved a linear working range from 0.1 μM to 5.0 μM and a limit of detection of ~50 nM. The response time was less than 2 min. With the aid of co-immobilized thiol-polyethylene glycol, the probe exhibited excellent stability and reproducibility in high salinity solutions, including artificial cerebrospinal fluids (aCSF). By adding 0.1% glyoxal to the probe solution, the assay allowed quantification of bisulfide in the presence of cysteine at the micro-molarity level. Using the AuNP-GSH-FITC probe, a droplet-based microfluidic fluorescent sensor was further constructed for online monitoring of bisulfide variation in the effluent of microdialysis. By using fluorescence microscope-charge-coupled device camera as the detector, the integrated microdialysis/microfluidic chip device achieved a detection limit of 2.0 μM and a linear response from 5.0 μM to 50 μM for bisulfide in the tested sample. The method was successfully applied for the on-line measurement of bisulfide variation in aCSF and serum samples. It will be a very useful tool for tracking the variation of bisulfide or hydrogen sulfide in extracellular fluids. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Quantitative analysis of aldehydes in canned vegetables using static headspace-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Serrano, María; Gallego, Mercedes; Silva, Manuel

    2017-11-17

    Volatile aldehydes appear in canned vegetables as constituents and some of them can also be present as disinfection by-products (DBPs) because of the contact between vegetables and treated water. This paper describes two static headspace-gas chromatography-mass spectrometry (SHS-GC-MS) methods to determine 15 aldehydes in both the solid and the liquid phases of canned vegetables. The treatment for both phases of samples was carried out simultaneously into an SHS unit, including the leaching of the aldehydes (from the vegetable), their derivatization and volatilization of the oximes formed. Detection limits were obtained within the range of 15-400μg/kg and 3-40μg/L for aldehydes in the solid and the liquid phases of the food, respectively. The relative standard deviation was lower than 7% -for the whole array of the target analytes-, the trueness evaluated by recovery experiments provided %recoveries between 89 and 99% and short- and long-term stability studies indicated there was no significant variation in relative peak areas of all aldehydes in both phases of canned vegetables after their storing at 4°C for two weeks. The study of the origin of the 15 aldehydes detected between both phases of canned vegetables showed that: i) the presence of 13 aldehydes -at average concentrations of 2.2-39μg/kg and 0.25-71μg/L for the solid and the liquid phases, respectively- is because they are natural constituents of vegetables; and ii) the presence of glyoxal and methylglyoxal -which are mainly found in the liquid phase (average values, 1.4-4.1μg/L)- is ascribed to the use of treated water, thereby being DBPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems.

    Science.gov (United States)

    Zhang, Yu; Xie, Jianping; Liu, Miaomiao; Tian, Zhe; He, Zhili; van Nostrand, Joy D; Ren, Liren; Zhou, Jizhong; Yang, Min

    2013-10-15

    It is widely demonstrated that antibiotics in the environment affect microbial community structure. However, direct evidence regarding the impacts of antibiotics on microbial functional structures in wastewater treatment systems is limited. Herein, a high-throughput functional gene array (GeoChip 3.0) in combination with quantitative PCR and clone libraries were used to evaluate the microbial functional structures in two biological wastewater treatment systems, which treat antibiotic production wastewater mainly containing oxytetracycline. Despite the bacteriostatic effects of antibiotics, the GeoChip detected almost all key functional gene categories, including carbon cycling, nitrogen cycling, etc., suggesting that these microbial communities were functionally diverse. Totally 749 carbon-degrading genes belonging to 40 groups (24 from bacteria and 16 from fungi) were detected. The abundance of several fungal carbon-degrading genes (e.g., glyoxal oxidase (glx), lignin peroxidase or ligninase (lip), manganese peroxidase (mnp), endochitinase, exoglucanase_genes) was significantly correlated with antibiotic concentrations (Mantel test; P functional genes have been enhanced by the presence of antibiotics. However, from the fact that the majority of carbon-degrading genes were derived from bacteria and diverse antibiotic resistance genes were detected in bacteria, it was assumed that many bacteria could survive in the environment by acquiring antibiotic resistance and may have maintained the position as a main player in nutrient removal. Variance partitioning analysis showed that antibiotics could explain 24.4% of variations in microbial functional structure of the treatment systems. This study provides insights into the impacts of antibiotics on microbial functional structure of a unique system receiving antibiotic production wastewater, and reveals the potential importance of the cooperation between fungi and bacteria with antibiotic resistance in maintaining the

  12. Aspartic acid functions as carbonyl trapper to inhibit the formation of advanced glycation end products by chemical chaperone activity.

    Science.gov (United States)

    Prasanna, Govindarajan; Saraswathi, N T

    2016-05-01

    Advanced glycation end products (AGEs) were implicated in pathology of numerous diseases. In this study, we present the bioactivity of aspartic acid (Asp) to inhibit the AGEs. Hemoglobin and bovine serum albumin (BSA) were glycated with glucose, fructose, and ribose in the presence and absence of Asp (100-200 μM). HbA1c inhibition was investigated using human blood and characterized by micro-column ion exchange chromatography. The effect of methyl glyoxal (MG) on hemoglobin and BSA was evaluated by fluorescence spectroscopy and gel electrophoresis. The effect of MG on red blood cells morphology was characterized by scanning electron micrographs. Molecular docking was performed on BSA with Asp. Asp is capable of inhibiting the formation of fluorescent AGEs by reacting with the reducing sugars. The presence of Asp as supplement in whole blood reduced the HbA1c% from 8.8 to 6.1. The presence of MG showed an increase in fluorescence and the presence of Asp inhibited the glycation thereby the fluorescence was quenched. MG also affected the electrophoretic mobility of hemoglobin and BSA by forming high molecular weight aggregates. Normal RBCs showed typical biconcave shape. MG modified RBCs showed twisted and elongated shape whereas the presence of ASP tends to protect RBC from twisting. Asp interacted with arginine residues of bovine serum albumin particularly ARG 194, ARG 198, and ARG 217 thereby stabilized the protein complex. We conclude that Asp has dual functions as a chemical chaperone to stabilize protein and as a dicarbonyl trapper, and thereby it can prevent the complications caused by glycation.

  13. Fogwater chemistry at Riverside, California

    Science.gov (United States)

    Munger, J. William; Collett, Jeff; Daube, Bruce; Hoffmann, Michael R.

    Fog, aerosol, and gas samples were collected during the winter of 1986 at Riverside, California. The dominant components of the aerosol were NH 4+, NO 3-, and SO 42-. Gaseous NH 3 was frequently present at levels equal to or exceeding the aerosol NH 4+. Maximum level were 3800, 3100, 690 and 4540 neq m -3 for NH 4+, NO 32- and NH 3(g), respectively. The fogwater collected at Riverside had very high concentrations, particularly of the major aerosol components. Maximum concentrations were 26,000 29,000 and 6200 μM for NH 4+, NO 3- and SO 42-, respectively. pH values in fogwater ranged from 2.3 to 5.7. Formate and acetate concentrations as high as 1500 and 580 μM, respectively, were measured. The maximum CH 2O concentration was 380 μM. Glyoxal and methylglyoxal were found in all the samples; their maximum concentrations were 280 and 120 μM, respectively. Comparison of fogwater and aerosol concentrations indicates that scavenging of precursor aerosol by fog droplets under the conditions at Riverside is less than 100% efficient. The chemistry at Riverside is controlled by the balance between HNO 3 production from NO x emitted throughout the Los Angeles basin and NH 3 emitted from dairy cattle feedlots just west of Riverside. The balance is controlled by local mixing. Acid fogs result at Riverside when drainage flows from the surrounding mountains isolate the site from the NH 3 source. Continued formation of HNO 3(g) in this air mass eventually depletes the residual NH 3(g). A simple box model that includes deposition, fog scavenging, and dilution is used to assess the effect of curtailing the dairy cattle feedlot operations. The calculations suggest that the resulting reduction of NH 3 levels would decrease the total NO 3- in the atmosphere, but nearly all remaining NO 3- would exist as HNO 3. Fogwater in the basin would be uniformly acidic.

  14. The chemical composition of fogs and clouds in Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Munger, J.W.

    1989-01-01

    The major inorganic species in cloud and fog water samples were NH{sub 4}{sup +}, H{sup +}, NO{sub 3}{sup {minus}}, and SO{sub 4}{sup 2{minus}}. Concentrations in fog water samples were 1 - 10 {times} 10{sup {minus}3} M; pH values ranged from {approx equal} 2 to 6. Nitrate usually exceeded sulfate. Acidity depended on the availability of NH{sub 3} from agricultural operations. Stratus cloudwater had somewhat lower concentrations; pH values were in the range 3-4. The major factors accounting for variation in fog- or cloudwater composition were the preexisting aerosol and gas concentrations and variations in liquid water content. Deposition and entrainment or advection of different air masses were also important during extended cloud or fog episodes. The droplet size dependence of cloudwater composition was investigated on one occasion in an intercepted coastal stratus clouds. Concentrations of S(IV) and CH{sub 2}O in the range 100-1000 {mu}M were observed in fogwater from urban sites in Southern California. Lower concentrations were observed in stratus clouds. The high levels of S(IV) and CH{sub 2}O were attributed to the formation of hydroxymethanesulfonate (HMSA), the S(IV) adduct of CH{sub 2}O. Direct measurements of HMSA in fogwater samples from Bakersfield, CA were made by ion-pairing chromatography. Glyoxal and methyglyoxal were observed at concentrations comparable to CH{sub 2}O in fogwater samples from Riverside, CA and in stratus cloudwater samples from sites along the Santa Barbara Channel.

  15. Modelling organic particles in the atmosphere

    International Nuclear Information System (INIS)

    Couvidat, Florian

    2012-01-01

    Organic aerosol formation in the atmosphere is investigated via the development of a new model named H 2 O (Hydrophilic/Hydrophobic Organics). First, a parameterization is developed to take into account secondary organic aerosol formation from isoprene oxidation. It takes into account the effect of nitrogen oxides on organic aerosol formation and the hydrophilic properties of the aerosols. This parameterization is then implemented in H 2 O along with some other developments and the results of the model are compared to organic carbon measurements over Europe. Model performance is greatly improved by taking into account emissions of primary semi-volatile compounds, which can form secondary organic aerosols after oxidation or can condense when temperature decreases. If those emissions are not taken into account, a significant underestimation of organic aerosol concentrations occurs in winter. The formation of organic aerosols over an urban area was also studied by simulating organic aerosols concentration over the Paris area during the summer campaign of Megapoli (July 2009). H 2 O gives satisfactory results over the Paris area, although a peak of organic aerosol concentrations from traffic, which does not appear in the measurements, appears in the model simulation during rush hours. It could be due to an underestimation of the volatility of organic aerosols. It is also possible that primary and secondary organic compounds do not mix well together and that primary semi volatile compounds do not condense on an organic aerosol that is mostly secondary and highly oxidized. Finally, the impact of aqueous-phase chemistry was studied. The mechanism for the formation of secondary organic aerosol includes in-cloud oxidation of glyoxal, methylglyoxal, methacrolein and methylvinylketone, formation of methyltetrols in the aqueous phase of particles and cloud droplets, and the in-cloud aging of organic aerosols. The impact of wet deposition is also studied to better estimate the

  16. Continuous Packed Bed Reactor with Immobilized β-Galactosidase for Production of Galactooligosaccharides (GOS

    Directory of Open Access Journals (Sweden)

    Barbara Rodriguez-Colinas

    2016-11-01

    Full Text Available The β-galactosidase from Bacillus circulans was covalently attached to aldehyde-activated (glyoxal agarose beads and assayed for the continuous production of galactooligosaccharides (GOS in a packed-bed reactor (PBR. The immobilization was fast (1 h and the activity of the resulting biocatalyst was 97.4 U/g measured with o-nitrophenyl-β-d-galactopyranoside (ONPG. The biocatalyst showed excellent operational stability in 14 successive 20 min reaction cycles at 45 °C in a batch reactor. A continuous process for GOS synthesis was operated for 213 h at 0.2 mL/min and 45 °C using 100 g/L of lactose as a feed solution. The efficiency of the PBR slightly decreased with time; however, the maximum GOS concentration (24.2 g/L was obtained after 48 h of operation, which corresponded to 48.6% lactose conversion and thus to maximum transgalactosylation activity. HPAEC-PAD analysis showed that the two major GOS were the trisaccharide Gal-β(1→4-Gal-β(1→4-Glc and the tetrasaccharide Gal-β(1→4-Gal-β(1→4-Gal-β(1→4-Glc. The PBR was also assessed in the production of GOS from milk as a feed solution. The stability of the bioreactor was satisfactory during the first 8 h of operation; after that, a decrease in the flow rate was observed, probably due to partial clogging of the column. This work represents a step forward in the continuous production of GOS employing fixed-bed reactors with immobilized β-galactosidases.

  17. Development of High-Throughput Method for Measurement of Vascular Nitric Oxide Generation in Microplate Reader

    Directory of Open Access Journals (Sweden)

    Soad S. Abd El-Hay

    2017-01-01

    Full Text Available Background: Despite the importance of nitric oxide (NO in vascular physiology and pathology, a high-throughput method for the quantification of its vascular generation is lacking. Objective: By using the fluorescent probe 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM, we have optimized a simple method for the determination of the generation of endothelial nitric oxide in a microplate format. Methods: A nitric oxide donor was used (3-morpholinosydnonimine hydrochloride, SIN-1. Different factors affecting the method were studied, such as the effects of dye concentration, different buffers, time of reaction, gain, and number of flashes. Results: Beer’s law was linear over a nanomolar range (1–10 nM of SIN-1 with wavelengths of maximum excitation and emission at 495 and 525 nm; the limit of detection reached 0.897 nM. Under the optimized conditions, the generation of rat aortic endothelial NO was measured by incubating DAF-FM with serial concentrations (10–1000 µM of acetylcholine (ACh for 3 min. To confirm specificity, Nω-Nitro-l-arginine methyl ester (l-NAME—the standard inhibitor of endothelial NO synthase—was found to inhibit the ACh-stimulated generation of NO. In addition, vessels pre-exposed for 1 h to 400 µM of the endothelial damaging agent methyl glyoxal showed inhibited NO generation when compared to the control stimulated by ACh. Conclusions: The capability of the method to measure micro-volume samples makes it convenient for the simultaneous handling of a very large number of samples. Additionally, it allows samples to be run simultaneously with their replicates to ensure identical experimental conditions, thus minimizing the effect of biological variability.

  18. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids

    Science.gov (United States)

    Schaub, Patrick; Rodriguez-Franco, Marta; Cazzonelli, Christopher Ian; Álvarez, Daniel; Wüst, Florian

    2018-01-01

    The net amounts of carotenoids accumulating in plant tissues are determined by the rates of biosynthesis and degradation. While biosynthesis is rate-limited by the activity of PHYTOENE SYNTHASE (PSY), carotenoid losses are caused by catabolic enzymatic and non-enzymatic degradation. We established a system based on non-green Arabidopsis callus which allowed investigating major determinants for high steady-state levels of β-carotene. Wild-type callus development was characterized by strong carotenoid degradation which was only marginally caused by the activity of carotenoid cleavage oxygenases. In contrast, carotenoid degradation occurred mostly non-enzymatically and selectively affected carotenoids in a molecule-dependent manner. Using carotenogenic pathway mutants, we found that linear carotenes such as phytoene, phytofluene and pro-lycopene resisted degradation and accumulated while β-carotene was highly susceptible towards degradation. Moderately increased pathway activity through PSY overexpression was compensated by degradation revealing no net increase in β-carotene. However, higher pathway activities outcompeted carotenoid degradation and efficiently increased steady-state β-carotene amounts to up to 500 μg g-1 dry mass. Furthermore, we identified oxidative β-carotene degradation products which correlated with pathway activities, yielding β-apocarotenals of different chain length and various apocarotene-dialdehydes. The latter included methylglyoxal and glyoxal as putative oxidative end products suggesting a potential recovery of carotenoid-derived carbon for primary metabolic pathways. Moreover, we investigated the site of β-carotene sequestration by co-localization experiments which revealed that β-carotene accumulated as intra-plastid crystals which was confirmed by electron microscopy with carotenoid-accumulating roots. The results are discussed in the context of using the non-green calli carotenoid assay system for approaches targeting high

  19. Study of organic radicals through anion photoelectron velocity-map imaging spectroscopy

    Science.gov (United States)

    Dixon, Andrew Robert

    We report preliminary results on the photoelectron imaging of phenylcarbene, cyanophenylcarbene, and chlorophenylcarbene anions. Triplet phenylcarbene is observed to have an EA of ≤ 0.83 eV, considerably lower than the previously indirectly-determined value. Transitions to the singlet and triplet ground state of both cyanophenylcarbene and chlorophenylcarbene are observable, though unidentified bands make full assignment difficult. Cyanophenylcarbene is found to have a triplet ground-state, with a tentative EA of 2.04 eV. Chlorophenylcarbene is found to have a singlet ground-state. The phenyl-group is found to favor the singlet state slightly. The cyanofluoromethyl radical, FC(H)CN, was estimated to have an EA of 1.53 +/- 0.08 eV, by a combination of experimental and theoretical results.. With similar methodology, we report the adiabatic electron affinity of the cyanobenzyl radical, EA(PhCHCN) = 1.90 +/- 0.01 eV, and assign an upper limit of the EA for the chlorobenzyl radical, EA(PhCHCl) ≤ 1.12 eV. These values were used to estimate the C-H bond dissociation energy (BDE)s for these substituted methanes. Fluoroacetonitrile was found to have a BDE of D H198 = 90.7 +/- 2.8 kcal mol□1. The C-H bond dissociation energies at the benzyl-alpha sites of the phenylmethanes are determined as 80.9 +/- 2.3 kcal mol-1 for benzyl nitrile and an upper limit of 84.2 kcal mol-1 for benzyl chloride. These results are discussed in terms of substituent interactions in a simple MO framework and in relation to other similar molecules, including recently reported results for chloroacetonitrile. The 532 nm photoelectron spectrum of glyoxal provides the first direct spectroscopic determination of the adiabatic electron affinity, EA = 1.10(2) eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy (VDE) of the glyoxal radical anion is determined as VDE = 1

  20. Effect of cross-linking on properties and release characteristics of sodium salicylate-loaded electrospun poly(vinyl alcohol) fibre mats

    International Nuclear Information System (INIS)

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2007-01-01

    Cross-linking of electrospun (e-spun) fibre mats (beaded fibre morphology with the average diameter of the fibre segments between beads being ∼108 nm) of poly(vinyl alcohol) (PVA) containing sodium salicylate (SS), used as the model drug, was achieved by exposing the fibre mats to the vapour from 5.6 M aqueous solution of either glutaraldehyde or glyoxal for various exposure time intervals, followed by a heat treatment in a vacuum oven. With increasing the exposure time in the cross-linking chamber, the morphology of the e-spun fibre mats gradually changed from a porous to dense structure. Both the degree of swelling and the percentage of weight loss of the cross-linked fibre mats (i.e. ∼200-530% and ∼15-57%, respectively) were lower than those of the untreated ones (i.e. ∼610% and ∼67%, respectively). Cross-linking was also responsible for the monotonic increase in the storage moduli of the cross-linked SS-loaded e-spun PVA fibre mats with increasing exposure time in the cross-linking chamber. The release characteristic of the model drug from the SS-loaded e-spun PVA fibre mats both before and after cross-linking was assessed by the transdermal diffusion through a pig skin method. The cumulative release of the drug from these matrices could be divided into two stages: 0-4 and 4-72 h, in which the amount of SS released in the first stage increased very rapidly, while it was much slower in the second stage. Cross-linking slowed down the release of SS from the drug-loaded fibre mats appreciably and both the rate of release and the total amount of the drug released were decreasing functions of the exposure time interval in the cross-linking chamber. Lastly, the cross-linked SS-loaded e-spun PVA fibre mats were non-toxic to normal human dermal fibroblasts

  1. Evaluation of two commercial and three home-made fixatives for the substitution of formalin: a formaldehyde–free laboratory is possible

    Directory of Open Access Journals (Sweden)

    Zanini Cristina

    2012-09-01

    Full Text Available Abstract Background Formaldehyde (HCHO is a gas (available as a 37% concentrated solution, stabilized with methanol. The 10% dilution (approximately 4% formaldehyde has been used as a fixative since the end of the 19th century. Alternative fixatives are also commercially available or may be prepared in-house in laboratories. Statements by the IARC, along with other USA agencies (CalEPA, RoC/NTP on the carcinogenicity of formaldehyde for humans renders its substitution in Pathology Departments necessary since the annual use of formalin may exceed 3,500 liters for a medium-large laboratory. To achieve a “formalin-free laboratory” we tested straightforward-to-make fixatives along with registered reagents offered as formalin substitutes. Methods More than two hundreds specimens were fixed in parallel with in-laboratory made fixatives PAGA (Polyethylenglycol, ethyl Alcohol, Glycerol, Acetic acid, two zinc-based fixatives (ZBF, Z7, and commercially-available alternatives (RCL2 and CellBlock. Tissue micro arrays were used for morphological and immunohistochemical comparison. Extraction of RNA was carried out to evaluate preservation of nucleic acids. Results Differences compared to formalin fixation were evident in alcohol-based fixatives, mainly restricted to higher stain affinity and considerable tissue shrinkage. Conversely, nuclear detail was superior with these alcohol-based formulas compared to formalin or glyoxale-based recipes. RNA extraction was superior for Z7, PAGA and RCL2 with regard to concentration but relatively comparable regarding quality. Conclusions Abolition of the human carcinogen formaldehyde from pathology laboratories is possible even in contexts whereby commercial alternatives to formalin are unavailable or are too expensive for routine use, and aspiration devices are lacking or not adequately serviced. The use of known formulations, possibly with simple and not-noxious (“alimentary grade” constituents, comparable with

  2. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowski, Daniel J.; Jones, Jenny M. [Energy and Resources Research Institute, School of Process, Environmental and Materials Engineering (SPEME), University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2008-09-15

    Cell-wall components (cellulose, hemicellulose (oat spelt xylan), lignin (Organosolv)), and model compounds (levoglucosan (an intermediate product of cellulose decomposition) and chlorogenic acid (structurally similar to lignin polymer units)) have been investigated to probe in detail the influence of potassium on their pyrolysis behaviours as well as their uncatalysed decomposition reaction. Cellulose and lignin were pretreated to remove salts and metals by hydrochloric acid, and this dematerialized sample was impregnated with 1% of potassium as potassium acetate. Levoglucosan, xylan and chlorogenic acid were mixed with CH{sub 3}COOK to introduce 1% K. Characterisation was performed using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In addition to the TGA pyrolysis, pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) analysis was introduced to examine reaction products. Potassium-catalysed pyrolysis has a huge influence on the char formation stage and increases the char yields considerably (from 7.7% for raw cellulose to 27.7% for potassium impregnated cellulose; from 5.7% for raw levoglucosan to 20.8% for levoglucosan with CH{sub 3}COOK added). Major changes in the pyrolytic decomposition pathways were observed for cellulose, levoglucosan and chlorogenic acid. The results for cellulose and levoglucosan are consistent with a base catalysed route in the presence of the potassium salt which promotes complete decomposition of glucosidic units by a heterolytic mechanism and favours its direct depolymerization and fragmentation to low molecular weight components (e.g. acetic acid, formic acid, glyoxal, hydroxyacetaldehyde and acetol). Base catalysed polymerization reactions increase the char yield. Potassium-catalysed lignin pyrolysis is very significant: the temperature of maximum conversion in pyrolysis shifts to lower temperature by 70 K and catalysed polymerization reactions increase the char yield from 37% to 51%. A similar trend

  3. Insights into lignin degradation and its potential industrial applications.

    Science.gov (United States)

    Abdel-Hamid, Ahmed M; Solbiati, Jose O; Cann, Isaac K O

    2013-01-01

    -phenolic lignin model compounds. In addition to the peroxidases and laccases, fungi produce other accessory oxidases such as aryl-alcohol oxidase and the glyoxal oxidase that generate the hydrogen peroxide required by the peroxidases. Lignin-degrading enzymes have attracted the attention for their valuable biotechnological applications especially in the pretreatment of recalcitrant lignocellulosic biomass for biofuel production. The use of lignin-degrading enzymes has been studied in various applications such as paper industry, textile industry, wastewater treatment and the degradation of herbicides. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Substantial Underestimation of Post-harvest Burning Emissions in East China as Seen by Multi-species Space Observations

    Science.gov (United States)

    Stavrakou, T.; Muller, J. F.; Bauwens, M.; De Smedt, I.; Lerot, C.; Van Roozendael, M.

    2015-12-01

    columns from the GOME-2 instrument. The contribution of crop fires to the observed glyoxal and NO2 columns from OMI, and methanol columns from IASI is also investigated and discussed.

  5. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    Science.gov (United States)

    Zoogman, P.; Liu, X.; Suleiman, R. M.; Pennington, W. F.; Flittner, D. E.; Al-Saadi, J. A.; Hilton, B. B.; Nicks, D. K.; Newchurch, M. J.; Carr, J. L.; hide

    2016-01-01

    TEMPO (Tropospheric Emissions: Monitoring of Pollution) was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (approximately 2.1 kilometers N/S by 4.4 kilometers E/W at 36.5 degrees N, 100 degrees W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide),water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the

  6. Feasibility of digital image colorimetry--application for water calcium hardness determination.

    Science.gov (United States)

    Lopez-Molinero, Angel; Tejedor Cubero, Valle; Domingo Irigoyen, Rosa; Sipiera Piazuelo, Daniel

    2013-01-15

    Interpretation and relevance of basic RGB colors in Digital Image-Based Colorimetry have been treated in this paper. The studies were carried out using the chromogenic model formed by the reaction between Ca(II) ions and glyoxal bis(2-hydroxyanil). It produced orange-red colored solutions in alkaline media. Individual basic color data (RGB) and also the total intensity of colors, I(tot), were the original variables treated by Factorial Analysis. Te evaluation evidenced that the highest variance of the system and the highest analytical sensitivity were associated to the G color. However, after the study by Fourier transform the basic R color was recognized as an important feature in the information. It was manifested as an intrinsic characteristic that appeared differentiated in terms of low frequency in Fourier transform. The Principal Components Analysis study showed that the variance of the system could be mostly retained in the first principal component, but was dependent on all basic colors. The colored complex was also applied and validated as a Digital Image Colorimetric method for the determination of Ca(II) ions. RGB intensities were linearly correlated with Ca(II) in the range 0.2-2.0 mg L(-1). In the best conditions, using green color, a simple and reliable method for Ca determination could be developed. Its detection limit was established (criterion 3s) as 0.07 mg L(-1). And the reproducibility was lower than 6%, for 1.0 mg L(-1) Ca. Other chromatic parameters were evaluated as dependent calibration variables. Their representativeness, variance and sensitivity were discussed in order to select the best analytical variable. The potentiality of the procedure as a field and ready-to-use method, susceptible to be applied 'in situ' with a minimum of experimental needs, was probed. Applications of the analysis of Ca in different real water samples were carried out. Water of the city net, mineral bottled, and natural-river were analyzed and results were

  7. Atmospheric oxidation mechanism of toluene.

    Science.gov (United States)

    Wu, Runrun; Pan, Shanshan; Li, Yun; Wang, Liming

    2014-06-26

    The atmospheric oxidation mechanism of toluene initiated by OH radical addition is investigated by quantum chemistry calculations at M06-2X, G3MP2-RAD, and ROCBS-QB3 levels and by kinetics calculation by using transition state theory and unimolecular reaction theory coupled with master equation (RRKM-ME). The predicted branching ratios are 0.15, 0.59, 0.05, and 0.14 for OH additions to ipso, ortho, meta, and para positions (forming R1-R4 adducts), respectively. The fate of R2, R4, and R1 is investigated in detail. In the atmosphere, R2 reacts with O2 either by irreversible H-abstraction to form o-cresol (36%), or by reversible recombination to R2-1OO-syn and R2-3OO-syn, which subsequently cyclize to bicyclic radical R2-13OO-syn (64%). Similarly, R4 reacts with O2 with branching ratios of 61% for p-cresol and 39% for R4-35OO-syn, while reaction of R1 and O2 leads to R1-26OO-syn. RRKM-ME calculations show that the reactions of R2/R4 with O2 have reached their high-pressure limits at 760 Torr and the formation of R2-16O-3O-s is only important at low pressure, i.e., 5.4% at 100 Torr. The bicyclic radicals (R2-13OO-syn, R4-35OO-syn, and R1-26OO-syn) will recombine with O2 to produce bicyclic alkoxy radicals after reacting with NO. The bicyclic alkoxy radicals would break the ring to form products methylglyoxal/glyoxal (MGLY/GLY) and their corresponding coproducts butenedial/methyl-substituted butenedial as proposed in earlier studies. However, a new reaction pathway is found for the bicyclic alkoxy radicals, leading to products MGLY/GLY and 2,3-epoxybutandial/2-methyl-2,3-epoxybutandial. A new mechanism is proposed for the atmospheric oxidation mechanism of toluene based on current theoretical and previous theoretical and experimental results. The new mechanism predicts much lower yield of GLY and much higher yield of butenedial than other atmospheric models and recent experimental measurements. The new mechanism calls for detection of proposed products 2

  8. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    Directory of Open Access Journals (Sweden)

    E. A. Marais

    2016-02-01

    Full Text Available Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA, but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS and ground-based (SOAS observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx  ≡  NO + NO2 over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2 react significantly with both NO (high-NOx pathway and HO2 (low-NOx pathway, leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA and formaldehyde (a product of isoprene oxidation. Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA from the low-NOx pathway and glyoxal (28 % from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation, but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume. The US Environmental Protection Agency (EPA projects 2013–2025 decreases in

  9. Artichoke (Cynara cardunculus L. var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents.

    Science.gov (United States)

    Maietta, Mariarosa; Colombo, Raffaella; Lavecchia, Roberto; Sorrenti, Milena; Zuorro, Antonio; Papetti, Adele

    2017-10-01

    The role of polyphenolic compounds extractable from artichoke solid wastes in the formation of advanced glycation end products (AGEs) was studied. Outer bracts and stems were extracted using different water-ethanol mixtures and HPLC-DAD analyses indicated aqueous and hydro-alcoholic 20:80 stem extracts as the richest in polyphenols. The samples were characterized in their phenolic composition (using mass spectrometry) and antioxidant capacity. Antiglycative capacity was evaluated by in vitro BSA-sugars (glucose, fructose, and ribose) and BSA-methylglyoxal (MGO) tests, formation of Amadori products assay, direct glyoxal (GO) and MGO trapping capacity. Results indicated both extracts as effective inhibitors of fructosamine formation and antiglycative agents. In particular, aqueous extract showed the best activity in the systems containing glucose and fructose, differently from ethanolic extract, that was demonstrated able to better inhibit AGEs formation when ribose or MGO act as precursors. Ethanolic extract was also shown to be able to trap MGO and GO, with efficiency increasing after 24hours of incubation time. These activities are partially correlated with the antioxidant effect of the extract, as demonstrated by the scavenger capacity against ABTS cation and DPPH stable radicals; this relationship is evident when the model system, containing protein incubated with ribose or MGO, is considered. The different activities of the tested extracts could probably be ascribed to the different composition in chlorogenic acids (CQAs), being aqueous extract richer in 1-CQA, 3-CQA, and 1,3-di-CQA, and ethanolic extract in 5-CQA, caffeic acid, 1,5-di-CQA. These findings support further investigations to study the stability of the different CQAs in simil-physiological conditions and the feasibility of artichoke waste as antiglycative agents in food or pharmacological preparations. 5-caffeoylquinic acid (PubChem CID 5280633); 3-caffeoylquinic acid (PubChem CID 1794427); 1

  10. Size Distributions and Formation Pathways of Organic and Inorganic Constituents in Spring Aerosols from Okinawa Island in the Western North Pacific Rim: An Outflow Region of Asian Dusts

    Science.gov (United States)

    Deshmukh, D. K.; Lazaar, M.; Kawamura, K.; Kunwar, B.; Tachibana, E.; Boreddy, S. K. R.

    2015-12-01

    Size-segregated aerosols (9-stages) were collected at Okinawa Island in the western North Pacific Rim in spring 2008. The samples were analyzed for diacids (C2-C12), ω-oxoacids (ωC2-ωC9), a-dicarbonyls (C2-C3), organic carbon (OC), water-soluble OC (WSOC) and major ions to understand the sources and atmospheric processes in the outflow region of Asian pollutants. The molecular distribution of diacids showed the predominance of oxalic acid (C2) followed by malonic and succinic acids in all the size-segregated aerosols. ω-Oxoacids showed the predominance of glyoxylic acid (ωC2) whereas glyoxal (Gly) was more abundant than methylglyoxal in all the sizes. The abundant presence of sulfate as well as phthalic and adipic acids in Okinawa aerosols suggested a significant contribution of anthropogenic sources in East Asia via long-range atmospheric transport. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 µm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 µm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. An important mechanism for the formation of these organic species in Okinawa aerosols is probably gas phase oxidation of VOCs and subsequent in-cloud processing during long-range transport. Their characteristics size distribution implies that fine particles enriched with these organic and inorganic species could act as CCN to develop the cloud cover over the western North Pacific. The major peak of C9 and ωC9 on coarse mode suggest that they are produced by photooxidation of unsaturated fatty acids mainly derived from phytoplankton via heterogeneous reactions on sea spray particles. This study demonstrates that anthropogenic aerosols emitted from East Asia have significant influence on the compositions of organic and inorganic aerosols in the western North Pacific Rim.

  11. Overview and preliminary results of the Surface Ocean Aerosol Production (SOAP campaign

    Directory of Open Access Journals (Sweden)

    C. S. Law

    2017-11-01

    Full Text Available Establishing the relationship between marine boundary layer (MBL aerosols and surface water biogeochemistry is required to understand aerosol and cloud production processes over the remote ocean and represent them more accurately in earth system models and global climate projections. This was addressed by the SOAP (Surface Ocean Aerosol Production campaign, which examined air–sea interaction over biologically productive frontal waters east of New Zealand. This overview details the objectives, regional context, sampling strategy and provisional findings of a pilot study, PreSOAP, in austral summer 2011 and the following SOAP voyage in late austral summer 2012. Both voyages characterized surface water and MBL composition in three phytoplankton blooms of differing species composition and biogeochemistry, with significant regional correlation observed between chlorophyll a and DMSsw. Surface seawater dimethylsulfide (DMSsw and associated air–sea DMS flux showed spatial variation during the SOAP voyage, with maxima of 25 nmol L−1 and 100 µmol m−2 d−1, respectively, recorded in a dinoflagellate bloom. Inclusion of SOAP data in a regional DMSsw compilation indicates that the current climatological mean is an underestimate for this region of the southwest Pacific. Estimation of the DMS gas transfer velocity (kDMS by independent techniques of eddy covariance and gradient flux showed good agreement, although both exhibited periodic deviations from model estimates. Flux anomalies were related to surface warming and sea surface microlayer enrichment and also reflected the heterogeneous distribution of DMSsw and the associated flux footprint. Other aerosol precursors measured included the halides and various volatile organic carbon compounds, with first measurements of the short-lived gases glyoxal and methylglyoxal in pristine Southern Ocean marine air indicating an unidentified local source. The application of a real-time clean sector

  12. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    Science.gov (United States)

    Deshmukh, Dhananjay K.; Kawamura, Kimitaka; Lazaar, Manuel; Kunwar, Bhagawati; Boreddy, Suresh K. R.

    2016-04-01

    Size-segregated aerosols (nine stages from 11.3 µm in diameter) were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid, and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC), and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, and MSA-). In all the size-segregated aerosols, oxalic acid (C2) was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65-1.1 µm) whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at coarse mode (3.3-4.7 µm). Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2-C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r = 0.86-0.99), indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r = 0.82-0.95) further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r = 0.85-0.96), which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  13. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    Directory of Open Access Journals (Sweden)

    D. K. Deshmukh

    2016-04-01

    Full Text Available Size-segregated aerosols (nine stages from < 0.43 to > 11.3 µm in diameter were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2–C12, ω-oxoacids (ωC2–ωC9, pyruvic acid, benzoic acid, and α-dicarbonyls (C2–C3 as well as water-soluble organic carbon (WSOC, organic carbon (OC, and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl−, NO3−, SO42−, and MSA−. In all the size-segregated aerosols, oxalic acid (C2 was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2 was the dominant oxoacid and glyoxal (Gly was more abundant than methylglyoxal. Diacids (C2–C5, ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65–1.1 µm whereas azelaic (C9 and 9-oxononanoic (ωC9 acids peaked at coarse mode (3.3–4.7 µm. Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2–C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r =  0.86–0.99, indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r =  0.82–0.95 further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r =  0.85–0.96, which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9 and oxoacid (ωC9 with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  14. Evaluation of two commercial and three home-made fixatives for the substitution of formalin: a formaldehyde–free laboratory is possible

    Science.gov (United States)

    2012-01-01

    Background Formaldehyde (HCHO) is a gas (available as a 37% concentrated solution, stabilized with methanol). The 10% dilution (approximately 4% formaldehyde) has been used as a fixative since the end of the 19th century. Alternative fixatives are also commercially available or may be prepared in-house in laboratories. Statements by the IARC, along with other USA agencies (CalEPA, RoC/NTP) on the carcinogenicity of formaldehyde for humans renders its substitution in Pathology Departments necessary since the annual use of formalin may exceed 3,500 liters for a medium-large laboratory. To achieve a “formalin-free laboratory” we tested straightforward-to-make fixatives along with registered reagents offered as formalin substitutes. Methods More than two hundreds specimens were fixed in parallel with in-laboratory made fixatives PAGA (Polyethylenglycol, ethyl Alcohol, Glycerol, Acetic acid), two zinc-based fixatives (ZBF, Z7), and commercially-available alternatives (RCL2 and CellBlock). Tissue micro arrays were used for morphological and immunohistochemical comparison. Extraction of RNA was carried out to evaluate preservation of nucleic acids. Results Differences compared to formalin fixation were evident in alcohol-based fixatives, mainly restricted to higher stain affinity and considerable tissue shrinkage. Conversely, nuclear detail was superior with these alcohol-based formulas compared to formalin or glyoxale-based recipes. RNA extraction was superior for Z7, PAGA and RCL2 with regard to concentration but relatively comparable regarding quality. Conclusions Abolition of the human carcinogen formaldehyde from pathology laboratories is possible even in contexts whereby commercial alternatives to formalin are unavailable or are too expensive for routine use, and aspiration devices are lacking or not adequately serviced. The use of known formulations, possibly with simple and not-noxious (“alimentary grade”) constituents, comparable with registered

  15. Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons

    Science.gov (United States)

    Mkoma, S. L.; Kawamura, K.

    2013-02-01

    Atmospheric aerosol samples of PM2.5 and PM10 were collected during the wet and dry seasons in 2011 from a rural site in Tanzania and analysed for water-soluble dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, and fatty acids using a gas chromatography/flame ionization detector (GC/FID) and GC/mass spectrometry. Here we report the molecular composition and sources of diacids and related compounds for wet and dry seasons. Oxalic acid (C2) was found as the most abundant diacid species followed by succinic and/or malonic acids whereas glyoxylic acid and glyoxal were the dominant ketoacid and α-dicarbonyl, respectively in both seasons in PM2.5 and PM10. Mean concentration of C2 in PM2.5 (121 ± 47 ng m-3) was lower in wet season than dry season (258 ± 69 ng m-3). Similarly, PM10 samples showed lower concentration of C2 (169 ± 42 ng m-3) in wet season than dry season (292 ± 165 ng m-3). Relative abundances of C2 in total diacids were 65% and 67% in PM2.5 and 65% and 64% in PM10 in the wet and dry seasons, respectively. Total concentrations of diacids (289-362 ng m-3), ketoacids (37.8-53.7 ng m-3), and α-dicarbonyls (5.7-7.8 ng m-3) in Tanzania are higher than those reported at a rural background site in Nylsvley (South Africa) but comparable or lower than those reported from sites in Asia and Europe. Diacids and ketoacids were found to be present mainly in PM2.5 in both seasons (total α-dicarbonyls in the dry season), suggesting a production of organic acids from pyrogenic sources and photochemical oxidations. Averaged contributions of total diacids to aerosol total carbon were 1.4% in PM2.5 and 2.1% in PM10 during wet season and 3.3% in PM2.5 and 3.9% in PM10 during dry season whereas those to water-soluble organic carbon were 2.2% and 4.7% in PM2.5 during wet season and 3.1% and 5.8% in PM10 during dry season. The higher ratios in dry season suggest an enhanced photochemical oxidation of organic precursors probably via heterogeneous reactions on

  16. Tropospheric emissions: Monitoring of pollution (TEMPO)

    Science.gov (United States)

    Zoogman, P.; Liu, X.; Suleiman, R. M.; Pennington, W. F.; Flittner, D. E.; Al-Saadi, J. A.; Hilton, B. B.; Nicks, D. K.; Newchurch, M. J.; Carr, J. L.; Janz, S. J.; Andraschko, M. R.; Arola, A.; Baker, B. D.; Canova, B. P.; Chan Miller, C.; Cohen, R. C.; Davis, J. E.; Dussault, M. E.; Edwards, D. P.; Fishman, J.; Ghulam, A.; González Abad, G.; Grutter, M.; Herman, J. R.; Houck, J.; Jacob, D. J.; Joiner, J.; Kerridge, B. J.; Kim, J.; Krotkov, N. A.; Lamsal, L.; Li, C.; Lindfors, A.; Martin, R. V.; McElroy, C. T.; McLinden, C.; Natraj, V.; Neil, D. O.; Nowlan, C. R.; O`Sullivan, E. J.; Palmer, P. I.; Pierce, R. B.; Pippin, M. R.; Saiz-Lopez, A.; Spurr, R. J. D.; Szykman, J. J.; Torres, O.; Veefkind, J. P.; Veihelmann, B.; Wang, H.; Wang, J.; Chance, K.

    2017-01-01

    TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution ( 2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring

  17. Heterogeneous photochemistry of imidazole-2-carboxaldehyde: HO2 radical formation and aerosol growth

    Directory of Open Access Journals (Sweden)

    L. González Palacios

    2016-09-01

    Full Text Available The multiphase chemistry of glyoxal is a source of secondary organic aerosol (SOA, including its light-absorbing product imidazole-2-carboxaldehyde (IC. IC is a photosensitizer that can contribute to additional aerosol ageing and growth when its excited triplet state oxidizes hydrocarbons (reactive uptake via H-transfer chemistry. We have conducted a series of photochemical coated-wall flow tube (CWFT experiments using films of IC and citric acid (CA, an organic proxy and H donor in the condensed phase. The formation rate of gas-phase HO2 radicals (PHO2 was measured indirectly by converting gas-phase NO into NO2. We report on experiments that relied on measurements of NO2 formation, NO loss and HONO formation. PHO2 was found to be a linear function of (1 the [IC]  ×  [CA] concentration product and (2 the photon actinic flux. Additionally, (3 a more complex function of relative humidity (25 %  <  RH  <  63 % and of (4 the O2 ∕ N2 ratio (15 %  <  O2 ∕ N2  <  56 % was observed, most likely indicating competing effects of dilution, HO2 mobility and losses in the film. The maximum PHO2 was observed at 25–55 % RH and at ambient O2 ∕ N2. The HO2 radicals form in the condensed phase when excited IC triplet states are reduced by H transfer from a donor, CA in our system, and subsequently react with O2 to regenerate IC, leading to a catalytic cycle. OH does not appear to be formed as a primary product but is produced from the reaction of NO with HO2 in the gas phase. Further, seed aerosols containing IC and ammonium sulfate were exposed to gas-phase limonene and NOx in aerosol flow tube experiments, confirming significant PHO2 from aerosol surfaces. Our results indicate a potentially relevant contribution of triplet state photochemistry for gas-phase HO2 production, aerosol growth and ageing in the atmosphere.

  18. Atmospheric measurements of hydroperoxides and aldehydes during field campaigns : new results due to improvement of measurements techniques

    Science.gov (United States)

    François, S.; Sowka, I.; Poulain, L.; Monod, A.; Wortham, H.

    2003-04-01

    Hydroperoxides and aldehydes are considered as atmospheric reservoirs of OH, HO_2 and RO_2 radicals and can reflect the oxidizing levels of the atmosphere. They are considered as important gas phase photo-oxidants present in the atmosphere. However, the atmospheric role of these compounds can vary from one species to another, therefore it is essential to investigate their measurement and speciation in the atmosphere. Atmospheric measurements were realized during two different field campaigns in the Marseilles area (France). Hydroperoxides were trapped in aqueous phase, with a glass coil and analyzed by HPLC/fluorescence detector with post column derivatization. Aldehydes were trapped in a liquid phase containing 2-4 DNPH, with a mist chamber and analyzed by HPLC/UV. The analytical techniques provided individual separation and quantification of seven hydroperoxides (hydrogen peroxide, hydroxymethyl hydroperoxide, bis(hydroxymethyl) peroxide, 1-hydroxyethyl hydroperoxide, methyl hydroperoxide, ethyl hydroperoxide and peroxyacetic acid) and eleven volatile aldehydes (formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, crotonaldehyde, butyraldehyde, benzaldehyde, glyoxal, valeraldehyde and methylglyoxal). The first field campaign was part of the ESCOMPTE project (June 4th to July 16th 2001). During this campaign five different sampling sites, at low altitudes (<= 285 m), were investigated (maritime, urban, sub-industrial, biogenic and rural sites) and atmospheric measurements were realized during photochemical air pollution events. The second field campaign was part of the BOND project (July 2nd to July 14th 2002). Atmospheric measurements of hydroperoxides were carried out on one biogenic site, at altitude 690 m. The measurement system was improved allowing online sampling and analysis. During these field campaigns collection efficiencies were better than 96% for hydroperoxides, and from 78% to 96% for aldehydes. Detection limits were between 7,3× 10-3

  19. The Chemical Composition of Fogs and Clouds in Southern California.

    Science.gov (United States)

    Munger, James William

    Fog and clouds are frequent occurrences in Southern California. Their chemical composition is of interest due to their potential role in the transformation of sulfur and nitrogen oxides to sulfuric and nitric acid and in the subsequent deposition of those acids. In addition, cloud and fog droplets may be involved in the chemistry of low-molecular-weight carboxylic acids and carbonyl compounds. The major inorganic species in cloud and fogwater samples were NH_4^+, H ^+, NO_3^-, and SO_4^{2-}. Concentrations in fogwater samples were 1-10 times 10^ {-3} M; pH values ranged from ~eq2 to 6. Nitrate usually exceeded sulfate. Acidity depended on the availability of of NH_3 from agricultural operations. Stratus cloudwater had somewhat lower concentrations; pH values were in the range 3-4. The major factors accounting for variation in fog- or cloudwater composition were the preexisting aerosol and gas concentrations and variations in liquid water content. Deposition and entrainment or advection of different air masses were also important during extended cloud or fog episodes. The droplet size dependence of cloudwater composition was investigated on one occasion in an intercepted coastal stratus clouds. The observations were consistent with the hypothesis that small droplets form on small secondary aerosol composed of H_2SO _4, HNO_3, and their NH_4^+ salts, while large droplets form on large sea-salt and soil-dust aerosol. Species that can exist in the gas phase, such as HCl and HNO _3, may be found in either droplet-size fraction. Concentrations of S(IV) and CH_2 O in the range 100-1000 μm were observed in fogwater from urban sites in Southern California. Lower concentrations were observed in stratus clouds. The high levels of S(IV) and CH_2 O were attributed to the formation of hydroxymethanesulfonate (HMSA), the S(IV) adduct of CH_2O. Direct measurement of HMSA in fogwater samples from Bakersfield, CA were made by ion-pairing chromatography. Glyoxal and methylglyoxal

  20. Characterizing the Sources and Processing of Submicron Aerosols at a Coastal Site near Houston, TX, with a Specific Focus on the Impact of Regional Shipping Emissions

    Science.gov (United States)

    Schulze, B.; Wallace, H. W., IV; Bui, A.; Flynn, J. H., III; Erickson, M. H.; Griffin, R. J.

    2017-12-01

    The Texas Gulf Coast region historically has been influenced heavily by regional shipping emissions. However, the effects of the recent establishment of the North American Emissions Control Area (ECA) on aerosol properties in this region are presently unknown. In order to understand better the current sources and processing mechanisms influencing coastal aerosol near Houston, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed for three weeks at a coastal location during May-June 2016. Total mass loadings of organic and inorganic non-refractory aerosol components during onshore flow periods were similar to those published before establishment of the regulations. Using estimated methanesulfonic acid (MSA) mass loadings and published biogenic MSA:non-sea-salt-sulfate (nss-SO4) ratios, we determined that over 70% of nss-SO4 over the Gulf was from anthropogenic sources, predominantly shipping emissions. Mass spectral analysis indicated that for periods with similar backward-trajectory-averaged meteorological conditions, air masses influenced by shipping emissions have an increased mass fraction of ions related to carboxylic acids and a significantly larger oxygen-to-carbon (O:C) ratio than air masses that stay within the ECA boundary, suggesting that shipping emissions impact marine organic aerosol (OA) oxidation state. Amine fragment mass loadings were positively correlated with anthropogenic nss-SO4 during onshore flow, implying anthropogenic-biogenic interaction in marine OA production. Five OA factors were resolved by positive matrix factorization, corresponding to a hydrocarbon-like OA, a semi-volatile OA, and three different oxygenated organic aerosols ranked by their O:C ratio (OOA-1, OOA-2, and OOA-3). OOA-1 constituted the majority of OA mass during a period likely influenced by aqueous-phase processing and may be linked to local glyoxal/methylglyoxal-related sources. OOA-2 was produced within the Houston urban region and was

  1. The uptake of HO2 radicals to organic aerosols

    Science.gov (United States)

    Matthews, Pascale; Krapf, Manuel; Dommen, Josef; George, Ingrid; Whalley, Lisa; Ingham, Trevor; Baeza-Romero, Maria Teresa; Ammann, Markus; Heard, Dwayne

    2014-05-01

    HOx (OH + HO2) radicals are responsible for the majority of the oxidation in the troposphere and control the concentrations of many trace species in the atmosphere. There have been many field studies where the measured HO2 concentrations have been smaller than the concentration predicted by model calculations [1,2]. The difference has often been attributed to HO2 uptake by aerosols. Organics are a major component of aerosols accounting for 10 - 70 % of their mass [3]. However, there have been very few laboratory studies measuring HO2 uptake onto organic aerosols [4]. Uptake coefficients (γ) were measured for a range of aerosols using a Fluorescence Assay By Gas Expansion (FAGE) detector combined with an aerosol flow tube. HO2 was injected into the flow tube using a moveable injector which allowed first order HO2 decays to be measured along the flow tube both with and without aerosols. Laboratory generated aerosols were made using an atomiser or by homogeneous nucleation. Secondary organic aerosols (SOA) were made using the Paul Scherrer Institute smog chamber and also by means of a Potential Aerosol Mass (PAM) chamber. The total aerosol surface area was then measured using a Scanning Mobility Particle Sizer (SMPS). Experiments were carried out on aerosols containing glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid and squalene. The HO2 uptake coefficients for these species were measured in the range of γ contained elevated levels of transition metal ions. For humic acid the uptake coefficient was highly dependent on humidity and this may be explained by the liquid water content of the aerosols. Measurements were also performed on copper doped aerosols containing different organics. An uptake coefficient of 0.23 ± 0.07 was measured for copper doped ammonium sulphate, however, this was reduced to 0.008 ± 0.009 when EDTA was added in a 1:1 ratio with copper and 0.003 ± 0.004 when oxalic acid was added in a 10:1 ratio with copper. SOA aerosols were

  2. Contributions of primary and secondary biogenic VOC tototal OH reactivity during the CABINEX (Community Atmosphere-Biosphere INteractions Experiments-09 field campaign

    Directory of Open Access Journals (Sweden)

    S. Kim

    2011-08-01

    Full Text Available We present OH reactivity measurements using the comparative reactivity method with a branch enclosure technique for four different tree species (red oak, white pine, beech and red maple in the UMBS PROPHET tower footprint during the Community Atmosphere Biosphere INteraction EXperiment (CABINEX field campaign in July of 2009. Proton Transfer Reaction-Mass Spectrometry (PTR-MS was sequentially used as a detector for OH reactivity and BVOC concentrations including isoprene and monoterpenes (MT for enclosure air. Therefore, the measurement dataset contains both measured and calculated OH reactivity from well-known BVOC. The results indicate that isoprene and MT, and in one case a sesquiterpene, can account for the measured OH reactivity. Significant discrepancy between measured OH reactivity and calculated OH reactivity from isoprene and MT is found for the red maple enclosure dataset but it can be reconciled by adding reactivity from emission of a sesquiterpene, α-farnesene, detected by GC-MS. This leads us to conclude that no significant unknown BVOC emission contributed to ambient OH reactivity from these trees at least during the study period. However, this conclusion should be followed up by more comprehensive side-by-side intercomparison between measured and calculated OH reactivity and laboratory experiments with controlled temperature and light environments to verify effects of those essential parameters towards unknown/unmeasured reactive BVOC emissions. This conclusion leads us to explore the contribution towards ambient OH reactivity (the dominant OH sink in this ecosystem oxidation products such as hydroxyacetone, glyoxal, methylglyoxal and C4 and C5-hydroxycarbonyl using recently published isoprene oxidation mechanisms (Mainz Isoprene Mechanism II and Leuven Isoprene Mechanism. Evaluation of conventionally unmeasured first generation oxidation products of isoprene and their possible contribution to ambient missing OH reactivity

  3. Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface.

    Science.gov (United States)

    Tinel, Liselotte; Rossignol, Stéphanie; Ciuraru, Raluca; George, Christian

    2015-04-01

    Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface. Liselotte Tinel, Stéphanie Rossignol, Raluca Ciuraru and Christian George Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France Recently the surface microlayer (SML) has received growing attention for its role in the deposition and emission of trace gases. This SML is presumably a highly efficient environment for photochemical reactions thanks to its physical and chemical properties, showing enrichment in chromophores [1]. Still, little is known about the possible photochemical processes that could influence the emission and deposition of volatile organic compounds (VOCs) in the SML. A recent study underlines the particularity of the presence of an organic microlayer, showing enhanced formation of peptide bonds at the air-water interface, although this reaction is thermodynamically disfavoured in bulk water [2]. Also, emissions of small gas phase carbonyl compounds formed photochemically by dissolved organic matter have been measured above natural water and glyoxal, for example, measured above the open ocean is thought to be photochemically produced [3, 4]. This study presents the results of a set of laboratory studies set up in order to better understand the role of the SML in the photochemical production of VOCs. Recently, our group has shown the formation of VOCs by light driven reactions in a small quartz reactor (14mL) containing aqueous solutions of humic acids (HA) in the presence of an organic (artificial or natural) microlayer [5]. The main VOCs produced were oxidized species, such as aldehydes, ketones and alcohols, as classically can be expected by the oxidation of the organics present at the interface initiated by triplet excited chromophores present in the HA. But also alkenes, dienes, including isoprene and

  4. Radiation-Induced Polymerization of Aldehydes and Ketones; Polymerisation radiochimique des aldehydes et des cetones; Radiatsionnaya polimerizatsiya al'degidov i ketonov; Polimerizacion radioinducida de aldehidos y cetonas

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K.; Yamaoka, H.; Fujiwara, K.; Sakamoto, M.; Mori, S.; Natori, T.; Yoshida, H.; Okamura, S. [Japanese Association for Radiation Research on Polymers, Neyagawa Osaka (Japan); Kyoto University, Kyoto (Japan)

    1963-11-15

    Several kinds of aldehydes and ketones are polymerized by irradiation. Formaldehyde can be polymerized into high molecular weight polyoxymethylene by radiation-induced polymerization in the liquid phase at low temperatures. The polymerization mechanism is considered to be a cationic chain reaction both in the case of bulk and of solution in methylenechloride and toluene, but to be anionic in ethylether. Acetaldehyde and propionaldehyde are recognized as being hardly polymerized in the pure liquid phase, but easily polymerized in the presence of {gamma}-alumina. In the solid state polymerization, crystalline polymers are obtained as the stable- for- heat-treatment form under suitableconditions. Glyoxal can be polymerized into a three-dimensional network polymer. With formaldehyde it can be copolymerized into some cross-linked polyoxymethylene. Acetones such as chloroor bromoacetone and methylethylketone or diacetyl can be polymerized in the solid state into polymers which are unstable. Ketene can be polymerized into a polyester-type polymer with liquid phase polymerization; polyketone is obtained additionally when polymerization is carried out in the solid state. The copolymer with formaldehyde is slightly more stable. Dimethylketene can be easily polymerized both in the liquid and solid states into polyacetal. All these polymerizations are special examples of radiation-induced reactions and the reaction kinetics are interesting. Some details of this are discussed here. (author) [French] Plusieurs sortes d'aldehydes et de cetones se polymerisent sous l'effet des rayons gamma. L'aldehyde formique peut se transformer en polyoxymethylene de poids moleculaire eleve par polymerisation radiochimique en phase liquide a basses temperatures. On pense que la polymerisation est une reaction cationique en chaine lorsqu'il s'agit de masses ou de solutions dans du chlorure de methylene et du toluene, mais une reaction anionique en chaule dans une solution d'ether ethylique. L

  5. Biochemical and chemical characterization of phenylglyoxal bis(guanylhydrazone), an aromatic analogue of mitoguazone.

    Science.gov (United States)

    Elo, H; Koskinen, M; Mutikainen, I; Tilus, P; Lampio, A; Keso, L; Vainio, A; Joutsjoki, V; Alli, K; Yliniva, A

    1996-10-01

    Since little has been known about the properties of aromatic analogues of the antineoplastic agent methylglyoxal bis(guanylhydrazone) (MGBG), an investigation was performed on phenylglyoxal bis(guanylhydrazone) (PhGBG). PhGBG competitively inhibited yeast adenosylmethionine decarboxylase (AdoMetDC) with a Ki of 65 microM. As compared to MGBG (Ki 0.23 microM), PhGBG is a much weaker inhibitor, being even weaker than the unsubstituted congener glyoxal bis(guanylhydrazone) (GBG, Ki 18 microM). PhGBG inhibited porcine kidney diamine oxidase (DAO) non-competitively, being a more potent inhibitor (Ki 0.12 microM) than GBG (Ki 0.17 microM) or MGBG (Ki 0.33 microM). Thus, PhGBG has an unfavourably high ratio of Ki(AdoMetDC)/Ki(DAO) for potential use for selectively inhibiting polyamine biosynthesis. This does not exclude the possibility that PhGBG or other aromatic congeners might have therapeutic value since the corresponding ratio of the antileukaemic congeners GBG and MGBG is also high as compared to many aliphatic non-antileukaemic analogues. The pKa1 and pKa2 values of PhGBG dication were found to be 6.39 +/- 0.02 and 8.64 +/- 0.02 respectively, their difference being distinctly larger than in the case of GBG or its C-alkylated analogues. This may result from decreased stability of the dication form, caused by the resonance effect or possibly by the inductive effect of the phenyl group. The species distribution of PhGBG (proportion of free base 5.5%, predominant species the monocation) at 37 degrees C resembles that of GBG and MGBG but is clearly different from that of non-antileukaemic C-alkylated analogues. These similarities suggest that PhGBG and its derivatives may be worth antitumour screening. Depending on the conditions used in the crystallization, three different types of crystals of PhGBG sulphate were obtained. Crystallography indicated that, in two of the types, the crystal consisted exclusively of the anti-anti isomer, i.e. the same isomer as has been

  6. Oxidative capacity of the Mexico City atmosphere – Part 1: A radical source perspective

    Directory of Open Access Journals (Sweden)

    R. Volkamer

    2010-07-01

    Full Text Available A detailed analysis of OH, HO2 and RO2 radical sources is presented for the near field photochemical regime inside the Mexico City Metropolitan Area (MCMA. During spring of 2003 (MCMA-2003 field campaign an extensive set of measurements was collected to quantify time-resolved ROx (sum of OH, HO2, RO2 radical production rates from day- and nighttime radical sources. The Master Chemical Mechanism (MCMv3.1 was constrained by measurements of (1 concentration time-profiles of photosensitive radical precursors, i.e., nitrous acid (HONO, formaldehyde (HCHO, ozone (O3, glyoxal (CHOCHO, and other oxygenated volatile organic compounds (OVOCs; (2 respective photolysis-frequencies (J-values; (3 concentration time-profiles of alkanes, alkenes, and aromatic VOCs (103 compound are treated and oxidants, i.e., OH- and NO3 radicals, O3; and (4 NO, NO2, meteorological and other parameters. The ROx production rate was calculated directly from these observations; the MCM was used to estimate further ROx production from unconstrained sources, and express overall ROx production as OH-equivalents (i.e., taking into account the propagation efficiencies of RO2 and HO2 radicals into OH radicals.

    Daytime radical production is found to be about 10–25 times higher than at night; it does not track the abundance of sunlight. 12-h average daytime contributions of individual sources are: Oxygenated VOC other than HCHO about 33%; HCHO and O3 photolysis each about 20%; O3/alkene reactions and HONO photolysis each about 12%, other sources <3%. Nitryl chloride photolysis could potentially contribute ~15% additional radicals, while NO2* + water makes – if any – a very small contribution (~2%. The peak radical production of ~7.5 107 molec cm−3 s−1 is

  7. Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implication for PM2.5

    Science.gov (United States)

    Jaoui, M.; Lewandowski, M.; Docherty, K.; Offenberg, J. H.; Kleindienst, T. E.

    2014-06-01

    Secondary organic aerosol (SOA) was generated by irradiating 1,3-butadiene (13BD) in the presence of H2O2 or NOx. Experiments were conducted in a smog chamber operated in either flow or batch mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The chemical composition of the gas phase and SOA was analyzed using derivative-based methods (BSTFA, BSTFA + PFBHA, or DNPH) followed by gas chromatography-mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC) analysis of the derivative compounds. The analysis showed the occurrence of more than 60 oxygenated organic compounds in the gas and particle phases, of which 31 organic monomers were tentatively identified. The major identified products include glyceric acid, d-threitol, erythritol, d-threonic acid, meso-threonic acid, erythrose, malic acid, tartaric acid, and carbonyls including glycolaldehyde, glyoxal, acrolein, malonaldehyde, glyceraldehyde, and peroxyacryloyl nitrate (APAN). Some of these were detected in ambient PM2.5 samples and could potentially serve as organic markers of 1,3-butadiene (13BD). Furthermore, a series of oligoesters were detected and found to be produced from esterification reactions among compounds bearing alcoholic groups and compounds bearing acidic groups. Time profiles are provided for selected compounds. SOA was analyzed for organic mass to organic carbon (OM / OC) ratio, effective enthalpy of vaporization (ΔHvapeff), and aerosol yield. The average OM / OC ratio and SOA density were 2.7 ± 0.09 and 1.2 ± 0.05, respectively. The average ΔHvapeff was 26.1 ± 1.5 kJ mol-1, a value lower than that of isoprene SOA. The average laboratory SOA yield measured in this study at aerosol mass concentrations between 22.5 and 140.2 μg m-3 was 0.025 ± 0.011, a value consistent with the literature (0.021-0.178). While the focus of this study has been examination of the particle-phase measurements, the gas

  8. Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implications for PM2.5

    Science.gov (United States)

    Jaoui, M.; Lewandowski, M.; Docherty, K.; Offenberg, J. H.; Kleindienst, T. E.

    2014-12-01

    Secondary organic aerosol (SOA) was generated by irradiating 1,3-butadiene (13BD) in the presence of H2O2 or NOx. Experiments were conducted in a smog chamber operated in either flow or batch mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The chemical composition of the gas phase and SOA was analyzed using derivative-based methods (BSTFA, BSTFA + PFBHA, or DNPH) followed by gas chromatography-mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC) analysis of the derivative compounds. The analysis showed the occurrence of more than 60 oxygenated organic compounds in the gas and particle phases, of which 31 organic monomers were tentatively identified. The major identified products include glyceric acid, d-threitol, erythritol, d-threonic acid, meso-threonic acid, erythrose, malic acid, tartaric acid, and carbonyls including glycolaldehyde, glyoxal, acrolein, malonaldehyde, glyceraldehyde, and peroxyacryloyl nitrate (APAN). Some of these were detected in ambient PM2.5 samples, and could potentially serve as organic markers of 13BD. Furthermore, a series of oligoesters were detected and found to be produced through chemical reactions occurring in the aerosol phase between compounds bearing alcoholic groups and compounds bearing acidic groups. SOA was analyzed for organic mass to organic carbon (OM /OC) ratio, effective enthalpy of vaporization (Δ Hvapeff), and aerosol yield. The average OM /OC ratio and SOA density were 2.7 ± 0.09 and 1.2 ± 0.05, respectively. The average Δ Hvapeff was -26.08 ± 1.46 kJ mol-1, a value lower than that of isoprene SOA. The average laboratory SOA yield measured in this study at aerosol mass concentrations between 22.5 and 140.2 μg m-3 was 0.025 ± 0.011, a value consistent with the literature (0.021-0.178). While the focus of this study has been examination of the particle-phase measurements, the gas-phase photooxidation products have also been

  9. The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases

    Science.gov (United States)

    Lampel, J.; Frieß, U.; Platt, U.

    2015-09-01

    reduces the measurement error significantly and can cause apparent differential optical depth of up to 3 ×10-4. Its influence on the spectral retrieval of IO, glyoxal, water vapour and NO2 in the blue wavelength range is evaluated for M91. For measurements with a large Ring signal a significant and systematic bias of NO2 dSCDs (differential slant column densities) up to (-3.8 ± 0.4) × 1014 molec cm-2 is observed if this effect is not considered. The effect is typically negligible for DOAS fits with an RMS (root mean square) larger than 4 × 10-4.

  10. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2010-06-01

    downwind. Similar to aircraft observations, the predicted OA/ΔCO ratio for the ROB case increases from 20–30 μg sm−3 ppm−1 up to 60–70 μg sm−3 ppm−1 between a fresh and 1-day aged air mass, while the GRI case produces a 30% higher OA growth than observed. The predicted average O/C ratio of total OA for the ROB case is 0.16 at T0, substantially below observed value of 0.5. A much better agreement for O/C ratios and temporal variability (R2=0.63 is achieved with the updated GRI treatment. Both treatments show a deficiency in regard to POA ageing with a tendency to over-evaporate POA upon dilution of the urban plume suggesting that atmospheric HOA may be less volatile than assumed in these parameterizations. This study highlights the important potential role of S/IVOC chemistry in the SOA budget in this region, and highlights the need for further improvements in available parameterizations. The agreement observed in this study is not sufficient evidence to conclude that S/IVOC are the major missing SOA source in megacity environments. The model is still very underconstrained, and other possible pathways such as formation from very volatile species like glyoxal may explain some of the mass and especially increase the O/C ratio.

  11. SOA formation from the atmospheric oxidation of 2-methyl-3-buten-2-ol and its implications for PM2.5

    Directory of Open Access Journals (Sweden)

    W. A. Lonneman

    2012-02-01

    Full Text Available The formation of secondary organic aerosol (SOA generated by irradiating 2-methyl-3-buten-2-ol (MBO in the presence and/or absence of NOx, H2O2, and/or SO2 was examined. Experiments were conducted in smog chambers operated in either dynamic or static mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The structural characterization of gas and particulate products was investigated using BSTFA, BSTFA + PFBHA, and DNPH derivatization techniques followed by GC-MS and liquid chromatography analysis. This analysis showed the occurrence of more than 68 oxygenated organic compounds in the gas and particle phases, 28 of which were tentatively identified. The major components observed include 2,3-dihydroxyisopentanol (DHIP, 2-hydroxy-2-oxoisopentanol, 2,3-dihydroxy-3-methylbutanal, 2,3-dihydroxy-2-methylsuccinic acid, 2-hydroxy-2-methylpropanedioic acid, acetone, glyoxal, methylglyoxal, glycolaldehyde, and formaldehyde. Most of these oxygenated compounds were detected for the first time in this study. While measurements of the gas-phase photooxidation products have been made, the focus of this work has been an examination of the particle phase. SOA from some experiments was analyzed for the organic mass to organic carbon ratio (OM/OC, the effective enthalpy of vaporization (ΔHvapeff, and the aerosol yield. Additionally, aerosol size, volume, and number concentrations were measured by a Scanning Mobility Particle Sizer coupled to a Condensation Particle Counter system. The OM/OC ratio was 2.1 in the MBO/H2O2 system. The ΔHvapeff was 41 kJ mol−1, a value similar to that of isoprene SOA. The laboratory SOA yield measured in this study was 0.7% in MBO/H2O2 for an aerosol mass of 33 μg m−3. Secondary organic aerosol was found to be negligible under conditions with oxides of nitrogen (NOx present. Time profiles and proposed reaction schemes are provided for selected compounds. The contribution

  12. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    Science.gov (United States)

    Ortega, Ivan

    Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to

  13. Molecular distribution, seasonal variation, chemical transformation and sources of dicarboxylic acids and related compounds in atmospheric aerosols at remote marine Gosan site, Jeju Island

    Science.gov (United States)

    Kundu, S.; Kawamura, K.; Lee, M.

    2009-12-01

    : A homologous series of C2-C12 α, ω-dicarboxylic acids, ω-oxocarboxylic acids (C2-C9), pyruvic acid and α-dicarbonyls (C2-C3) were detected in atmospheric aerosols collected between April 2003 and April 2004 from remote marine Gosan site (33°29‧ N, 126°16‧ E) located in Jeju Island, South Korea. They were determined using a GC-FID and GC/MS. Total diacid concentration ranged from 130 to 1911 ng m-3 (av. 642 ng m-3), whereas total oxoacid concentration ranged from 7 to 155 ng m-3 (av. 43 ng m-3), and pyruvic acid and α-dicarbonyls ranged from 0.5 to 15 ng m-3 (av. 5 ng m-3) and 2-108 ng m-3 (av. 17.3 ng m-3), respectively. Oxalic (C2) acid was the most abundant in all seasons followed by malonic (C3) or succinic (C4) acid, and phthalic (Ph) acid. The concentration of diacids decreased with an increase in carbon number except for azelaic (C9) acid, which was more abundant than suberic (C8) acid. Glyoxylic acid was predominant ω-oxoacid contributing to 92% of total ω-oxoacid. Total diacids, oxoacids and dicarbonyls showed maximum concentrations in spring and occasionally in winter, while minimum concentrations were observed in summer. Air mass trajectory analysis suggests that either spring or winter maxima can be explained by strong continental outflow associated with cold front passages, while summer minima are associated with warm southerly flows, which transport clean marine air from low latitudes to Jeju Island. The comparison between total diacid concentration level of this study and other study results of urban and remote sites of East Asia reveals that Gosan site is more heavily influenced by the continental outflow from China. The seasonal variation of malonic/succinic (C3/C4), malic/succinic (hC4/C4), fumaric/maleic (F/M), oxalic/pyruvic (C2/Py) and oxalic/Glyoxal (C2/Gly) ratios showed maxima in summer due to an enhanced photo-production and degradation of diacids and related compounds. Throughout all seasons C3/C4 ratio at Gosan site, located

  14. Insight into Chemistry on Cloud/Aerosol Water Surfaces.

    Science.gov (United States)

    Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng

    2018-05-15

    , whereas on a water surface, the HNO 3 -mediated stepwise hydration of anti-CH 3 CHOO is dominantly observed. The high surface/volume ratio of interfacial water molecules at the aerosol water surface can significantly lower the energy barriers for the proton transfer reactions in the atmosphere. Such catalysis by the aerosol water surface is shown to cause the barrier-less formation of ammonium bisulfate from hydrated NH 3 and SO 3 molecules rather than from the reaction of H 2 SO 4 with NH 3 . Finally, an aerosol water droplet is a polar solvent, which would favorably interact with high polarity substrates. This can accelerate interconversion of different conformers (e.g., anti and syn) of atmospheric species, such as glyoxal, depending on their polarity. The results discussed here enable an improved understanding of atmospheric processes on the aerosol water surface.

  15. Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy

    Directory of Open Access Journals (Sweden)

    A. P. Sullivan

    2016-07-01

    Full Text Available Laboratory experiments suggest that water-soluble products from the gas-phase oxidation of volatile organic compounds can partition into atmospheric waters where they are further oxidized to form low volatility products, providing an alternative route for oxidation in addition to further oxidation in the gas phase. These products can remain in the particle phase after water evaporation, forming what is termed as aqueous secondary organic aerosol (aqSOA. However, few studies have attempted to observe ambient aqSOA. Therefore, a suite of measurements, including near-real-time WSOC (water-soluble organic carbon, inorganic anions/cations, organic acids, and gas-phase glyoxal, were made during the PEGASOS (Pan-European Gas-AeroSOls-climate interaction Study 2012 campaign in the Po Valley, Italy, to search for evidence of aqSOA. Our analysis focused on four periods: Period A on 19–21 June, Period B on 30 June and 1–2 July, Period C on 3–5 July, and Period D on 6–7 July to represent the first (Period A and second (Periods B, C, and D halves of the study. These periods were picked to cover varying levels of WSOC and aerosol liquid water. In addition, back trajectory analysis suggested all sites sampled similar air masses on a given day. The data collected during both periods were divided into times of increasing relative humidity (RH and decreasing RH, with the aim of diminishing the influence of dilution and mixing on SOA concentrations and other measured variables. Evidence for local aqSOA formation was only observed during Period A. When this occurred, there was a correlation of WSOC with organic aerosol (R2 = 0.84, aerosol liquid water (R2 = 0.65, RH (R2 = 0.39, and aerosol nitrate (R2 = 0.66. Additionally, this was only observed during times of increasing RH, which coincided with dark conditions. Comparisons of WSOC with oxygenated organic aerosol (OOA factors, determined from application of positive matrix

  16. Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons

    Directory of Open Access Journals (Sweden)

    S. L. Mkoma

    2013-02-01

    Full Text Available Atmospheric aerosol samples of PM2.5 and PM10 were collected during the wet and dry seasons in 2011 from a rural site in Tanzania and analysed for water-soluble dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, and fatty acids using a gas chromatography/flame ionization detector (GC/FID and GC/mass spectrometry. Here we report the molecular composition and sources of diacids and related compounds for wet and dry seasons. Oxalic acid (C2 was found as the most abundant diacid species followed by succinic and/or malonic acids whereas glyoxylic acid and glyoxal were the dominant ketoacid and α-dicarbonyl, respectively in both seasons in PM2.5 and PM10. Mean concentration of C2 in PM2.5 (121 ± 47 ng m−3 was lower in wet season than dry season (258 ± 69 ng m−3. Similarly, PM10 samples showed lower concentration of C2 (169 ± 42 ng m−3 in wet season than dry season (292 ± 165 ng m−3. Relative abundances of C2 in total diacids were 65% and 67% in PM2.5 and 65% and 64% in PM10 in the wet and dry seasons, respectively. Total concentrations of diacids (289–362 ng m−3, ketoacids (37.8–53.7 ng m−3, and α-dicarbonyls (5.7–7.8 ng m−3 in Tanzania are higher than those reported at a rural background site in Nylsvley (South Africa but comparable or lower than those reported from sites in Asia and Europe. Diacids and ketoacids were found to be present mainly in PM2.5 in both seasons (total α-dicarbonyls in the dry season, suggesting a production of organic acids from pyrogenic sources and photochemical oxidations. Averaged contributions of total diacids to aerosol total carbon were 1.4% in PM2.5 and 2.1% in PM10 during wet season and 3.3% in PM2.5 and 3.9% in PM10 during

  17. Size distributions of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons

    Science.gov (United States)

    Mkoma, S. L.; Kawamura, K.

    2012-09-01

    Atmospheric aerosol samples of PM2.5 and PM10 were collected during the wet and dry seasons in 2011 from a rural site in Tanzania and analysed for water-soluble dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids using a gas chromatography (GC) and GC/mass spectrometry. Here we report the size distribution and sources of diacids and related compounds for wet and dry seasons. Oxalic acid (C2) was found as the most abundant diacid species followed by succinic and/or malonic acids whereas glyoxylic acid and glyoxal were the dominant ketoacids and α-dicarbonyls, respectively in both seasons in PM2.5 and PM10. Mean concentration of C2 in PM2.5 (121.5± 46.6 ng m-3) was lower in wet season than dry season (258.1± 69.5 ng m-3). Similarly, PM10 samples showed lower concentration of C2 (168.6 ± 42.4 ng m-3) in wet season than dry season (292.4± 164.8 ng m-3). Relative abundances of C2 in total diacids were 65.4% and 67.1% in PM2.5 and 64.6% and 63.9% in PM10 in the wet and dry seasons, respectively. Total concentrations of diacids (289-362 m-3), ketoacids (37.8-53.7ng m-3), and α-dicarbonyls (5.7-7.8 ng m-3) in Tanzania are higher to those reported at a rural background site in Nylsvley (South Africa) but comparable or lower to those reported from sites in Asia and Europe. Diacids and ketoacids were found to be present mainly in the fine fraction in both seasons (total α-dicarbonyls in the dry season), suggesting a production of organic aerosols from pyrogenic sources and photochemical oxidations. The averaged contributions of total diacid carbon to aerosol total carbon were 1.4% in PM2.5 and 2.1% in PM10 in wet season and 3.3% in PM2.5 and 3.9% in PM10 in dry season whereas those to water-soluble organic carbon were 2.2% and 4.7% inPM2.5 and 3.1% and 5.8% in PM10 during the wet and dry seasons, respectively. These ratios suggest an enhanced photochemical oxidation of organic precursors and heterogeneous reactions on aerosols under strong solar

  18. Light absorption and the photoformation of hydroxyl radical and singlet oxygen in fog waters

    Science.gov (United States)

    Kaur, R.; Anastasio, C.

    2017-09-01

    The atmospheric aqueous-phase is a rich medium for chemical transformations of organic compounds, in part via photooxidants generated within the drops. Here we measure light absorption, photoformation rates and steady-state concentrations of two photooxidants - hydroxyl radical (•OH) and singlet molecular oxygen (1O2*) - in 8 illuminated fog waters from Davis, California and Baton Rouge, Louisiana. Mass absorption coefficients for dissolved organic compounds (MACDOC) in the samples are large, with typical values of 10,000-15,000 cm2 g-C-1 at 300 nm, and absorption extends to wavelengths as long as 450-600 nm. While nitrite and nitrate together account for an average of only 1% of light absorption, they account for an average of 70% of •OH photoproduction. Mean •OH photoproduction rates in fogs at the two locations are very similar, with an overall mean of 1.2 (±0.7) μM h-1 under Davis winter sunlight. The mean (±1σ) lifetime of •OH is 1.6 (±0.6) μs, likely controlled by dissolved organic compounds. Including calculated gas-to-drop partitioning of •OH, the average aqueous concentration of •OH is approximately 2 × 10-15 M (midday during Davis winter), with aqueous reactions providing approximately one-third of the hydroxyl radical source. At this concentration, calculated lifetimes of aqueous organics are on the order of 10 h for compounds with •OH rate constants of 1 × 1010 M-1 s-1 or higher (e.g., substituted phenols such as syringol (6.4 h) and guaiacol (8.4 h)), and on the order of 100 h for compounds with rate constants near 1 × 109 M-1 s-1 (e.g., isoprene oxidation products such as glyoxal (152 h), glyoxylic acid (58 h), and pyruvic acid (239 h)). Steady-state concentrations of 1O2* are approximately 100 times higher than those of •OH, in the range of (0.1-3.0) × 10-13 M. Since 1O2* is a more selective oxidant than •OH, it will only react appreciably with electron-rich species such as dimethyl furan (lifetime of 2.0 h) and

  19. Food and Environmental Protection Laboratory, Seibersdorf: Discrimination of honey of different floral origins by a combination of various chemical parameters; Stable Isotopes Applied to Authenticating Honey; The use of analyte protectants in pesticide residue analytical work

    International Nuclear Information System (INIS)

    Zora Jandrić, Zora; Frew, Russell; Abrahim, Aiman; Maestroni, Britt; Ochoa, Victoria

    2014-01-01

    honey valued for its non-peroxide antimicrobial activity (NPA).The NPA is thought to be due to high levels of methyl glyoxal (MGO) and it is the manuka honey with high levels of MGO that fail the C4 sugar adulteration test. Work by FEPL indicates that this is partly due to the beekeeping practice of feeding sugar to bees during the winter. However, that does not explain the late season failures, or that the extent of failure increases as manuka honey ages. The MGO levels in manuka increase with age and it has been shown that high MGO is correlated with high apparent C4 sugar content. Current research in this field in FEPL is focused on modifying the AOAC method to overcome these false positives in the C4 sugar adulteration. A method has been developed for the removal of MGO prior to the purification of the protein that is measured as internal standard. It is hoped that the removal of the MGO will eliminate the interference in the isotope test. Tests are now underway to establish the optimum conditions for the removal of MGO and to show that the additional procedure does not affect the isotopic composition of the purified protein. Once those tasks are completed the work will move to the validation stage and involve other laboratories to test the procedure. The FEPL is currently carrying out a study on method validation for the detection of several pesticides in potato samples. The extraction and clean-up method used is known as the Quick, Easy, Cheap, Effective Rugged and Safe (QuEchERS) for pesticide residue determination, and uses a gas chromatograph coupled to a mass selective detector (GC-MSD) for analyte separation and detection. According to the SANCO document (SANCO/12571/2013), matrix effects should be assessed at the initial method validation stage. Therefore as part of the calibration strategies for our method both matrix-matched and solvent calibrators were prepared

  20. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    -road vehicles: the MCMA motor vehicles produce abundant amounts of primary PM, elemental carbon, particle-bound polycyclic aromatic hydrocarbons, carbon monoxide and a wide range of air toxics; the feasibility of using eddy covariance techniques to measure fluxes of volatile organic compounds in an urban core and a valuable tool for validating local emissions inventory; a much better understanding of the sources and atmospheric loadings of volatile organic compounds; the first spectroscopic detection of glyoxal in the atmosphere; a unique analysis of the high fraction of ambient formaldehyde from primary emission sources; characterization of ozone formation and its sensitivity to VOCs and NOx; a much more extensive knowledge of the composition, size distribution and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models; evaluations of significant errors that can arise from standard air quality monitors for O3 and NO2; and the implementation of an innovative Markov Chain Monte Carlo method for inorganic aerosol modeling as a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. During the MILAGRO Campaign the collaborative team utilized a combination of central fixed sites and a mobile laboratory deployed throughout the MCMA to representative urban and boundary sites to measure trace gases and fine particles. Analysis of the extensive 2006 data sets has confirmed the key findings from MCMA-2002/2003; additionally MCMA-2006 provided more detailed gas and aerosol chemistry and wider regional scale coverage. Key results include an updated 2006 emissions inventory; extension of the flux system to measure fluxes of fine particles; better understanding of the sources and apportionment of aerosols, including contribution from biomass burning and industrial sources; a

  1. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong

    Science.gov (United States)

    Li, Yunchun

    Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they can be emitted from a variety of sources as well as formed from photochemical reactions of numerous precursors. This thesis work aims to improve the characterization of polar organic compounds and source apportionment analysis of fine organic carbon (OC) in Hong Kong, which consists of two parts: (1) An improved analytical method to determine monocarboxylic acids, dicarboxylic acids, ketocarboxylic acids, and dicarbonyls collected on filter substrates has been established. These oxygenated compounds were determined as their butyl ester or butyl acetal derivatives using gas chromatography-mass spectrometry. The new method made improvements over the original Kawamura method by eliminating the water extraction and evaporation steps. Aerosol materials were directly mixed with the BF 3/BuOH derivatization agent and the extracting solvent hexane. This modification improves recoveries for both the more volatile and the less water-soluble compounds. This improved method was applied to study the abundances and sources of these oxygenated compounds in PM2.5 aerosol samples collected in Hong Kong under different synoptic conditions during 2003-2005. These compounds account for on average 5.2% of OC (range: 1.4%-13.6%) on a carbon basis. Oxalic acid was the most abundant species. Six C2 and C3 oxygenated compounds, namely oxalic, malonic, glyoxylic, pyruvic acids, glyoxal, and methylglyoxal, dominated this suite of oxygenated compounds. More efforts are therefore suggested to focus on these small compounds in understanding the role of oxygenated

  2. Investigation on Possibility of Transferring OysterMushroom (Pleurotusostreatus Manganese Peroxidase Gene (mnp to the White Button Mushroom (Agaricusbisporus

    Directory of Open Access Journals (Sweden)

    Mojgan Parvandi

    2017-12-01

    Full Text Available Introduction: The white button mushroom does not produce remarkable yield in the third flash. Nutritional deficiency and the inability of this mushroom to efficient use of compost are mentioned as its reasons. Basically, compost includes two major food components, lignocellulose and microbial biomass. But this microbial biomass provides just 10% of button mushroom food needs. According to research studies, differentenzymes in both white button mushroom and oyster mushroom are responsible for decomposition of lignin compounds in compost media, from begin of mycelium grows to the end of fruiting. Lacasse, manganese peroxidase, lignin peroxidase, glyoxal oxidase enzymes contribute to degradation of lignin compounds in degradation mushroom has proven by researchers however itis dependent on mushroom types. Manganese peroxidase enzyme (EC. 1.11.1.13 is an extracellular parser lignin enzyme that has a central peroxidase core. Manganese peroxidase enzyme oxidizesMn2+ to Mn3+ and then Mn3+ oxidizes phenolic structure to fonoxile radical. Produced Mn3+ is very active and makes complex by chelating organic acids that is produced by mushrooms such as oxalate or malate. Mn3+ ions become stable by helping of these chelates and it can penetrate through materials such as wood. On the other hand, in recent years, plant biotechnology provides new solutions for old problems such as use of microorganisms, particularly using bacteria for gene transfer and improvement of superlatives. For a sample of this method, Agrobacterium-mediated transformation system can be noted. In addition, the use of suitable promoters for heterologous genes expression in suitable hosts is an important strategy in functional biotechnology that has been raised in edible mushroom genetic engineering. The lack of efficient and sufficient use of compost, low power of white button mushroom in competition with other rivals, lack of yield per area unit due to production costs, pests and diseases