Sample records for glycylglycine

  1. Enthalpies of glycylglycinate ion transfer from water to a water-ethanol solvent

    Isaeva, V. A.; Naumov, V. V.; Sharnin, V. A.


    The heat effects of mixing a sodium glycylglycinate water solution with a solvent containing from 0.0 to 0.8 mole fraction of ethanol are measured by means of calorimetry at 298.15 K. The enthalpies of sodium glycylglycinate and glycylglycinate ion transfer from water to water-ethanol solutions of different compositions are calculated. The increase of the concentration of nonaqueous component in solution leads to higher endothermicity of glycylglycinate ion transfer, resulting in weaker solvation. The contribution from the enthalpy of glycylglycinate ion resolvation to the heat effects of its complexation reactions with transition metal ions is assessed.

  2. Fragmentations of protonated cyclic-glycylglycine and cyclic-alanylalanine

    Shek, P. Y. I.; Lau, J. K. C.; Zhao, J. F.; Grzetic, J.; Verkerk, U. H.; Oomens, J.; Hopkinson, A. C.; Siu, K. W. M.


    Collision-induced dissociation has been used to study the fragmentations of two protonated diketopiperazines, protonated cyclic-glycylglycine and cyclic-alanylalanine. Protonated cyclo-AA lost CO and (CO + NH3) at low collision energies, channels attributed to dissociation of the O-protonated

  3. Monte Carlo simulation of indirect damage to biomolecules irradiated in aqueous solution: The radiolysis of glycylglycine

    Bolch, W.E.; Turner, J.E.; Yoshida, H.; Jacobson, K.B.; Hamm, R.N.; Wright, H.A.; Ritchie, R.H.; Klots, C.E.


    A Monte Carlo computer code is developed for simulating the radiolysis of glycylglycine in both oxygenated and deoxygenated aqueous solution. Second, this model is used to calculate the yields of various products in solutions irradiated either by 250-kVp X-rays or by /sup 60/Co gamma rays. Third, calculated product yields are compared to measured yields where available. The Monte Carlo computer codes used in this study are modified and extended versions of three existing simulation codes, written at the Oak Ridge National Laboratory (ORNL), which simulate irradiations of pure liquid water. The ORNL codes calculate the formation, diffusion, and reaction of free radicals and other species along charged-particle tracks in liquid water. As part of this research, these codes are extended to simulate irradiation of pure oxygenated water, oxygenated glycylglycine solutions, and deoxygenated glycylglycine solutions. 80 refs., 38 figs., 8 tabs.

  4. Densities and solubilities of Glycylglycine and Glycyl-L-Alanine in Aqueous Electrolyte Solutions

    Breil, Martin Peter; Mollerup, Jørgen; Rudolph, E. Susanne J.


    is 1.74 and 4.78 mol/kg of water, respectively. The solubility of glycylglycine in salt solutions of NaCl, Na2SO4, and (NH4)(2)SO4 show a moderate salting-in effect. The solubility of glycyl-L-alanine show a minor or no salting-in effect at low salt concentrations and a moderate salting-out effect...

  5. All-atom Molecular Dynamics Simulationsand NMR Spectroscopy Study on Interactions and Structures in N-Glycylglycine Aqueous Solution

    Rong Zhang; Wen-juan Wu; Jing-man Huang; Xin Meng


    All-atom molecular dynamics (MD) simulation and the NMR spectra are used to investigate the interactions in N-glycylglycine aqueous solution.Different types of atoms exhibit different capability in forming hydrogen bonds by the radial distribution function analysis.Some typical dominant aggregates are found in different types of hydrogen bonds by the statistical hydrogen-bonding network.Moreover,temperature-dependent NMR are used to compare with the results of the MD simulations.The chemical shifts of the three hydrogen atoms all decrease with the temperature increasing which reveals that the hydrogen bonds are dominant in the glycylglycine aqueous solution.And the NMR results show agreement with the MD simulations.All-atom MD simulations and NMR spectra are successful in revealing the structures and interactions in the N-glycylglycine-water mixtures.

  6. Oxidation of glycylglycine by ferricyanide in acid medium: Kinetics and mechanism

    Krishna K. Yerneni


    Full Text Available The oxidative degradation of glycylglycine (GlyGly to formic acid, ammonium ion, and carbon dioxide occurs when it reacts with ferricyanide in acid medium, which has been studied spectrophotometrically at 303 nm at constant temperature. Kinetic runs have been performed under a pseudo-first-order condition of [GlyGly]0 >> [ferricyanide]0. The experimental rate law obtained for the redox reaction is: rate = kı [$ \\text{Fe(CN}^{3 - }_{6} $] [GlyGly]x [H+]y[Pd(II]0, where x and y are fractional orders. Effects of ionic strength and dielectric constant are also investigated. Activation parameters have been evaluated using Arrhenius and Eyring plots. A probable mechanism has been proposed and the derived rate law is consistent with the kinetic data.

  7. Graphene oxide reduced and modified by environmentally friendly glycylglycine and its excellent catalytic performance

    Zhang, Congcong; Chen, Mingxi; Xu, Xiaoyang; Zhang, Li; Zhang, Lei; Xia, Fengling; Li, Xichuan; Liu, Yu; Hu, Wenping; Gao, Jianping


    An environmentally friendly new approach to prepare reduced graphene oxide (RGO) was developed by using glycylglycine (gly-gly) as both a reducing and stabilizing agent. Graphene oxide (GO) was transformed to RGO with the appropriate pH, temperature and reducing agent/GO ratio. The RGO was characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermo-gravimetric analysis, x-ray diffraction, x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy. The RGO aqueous suspension showed extraordinary stability in the absence of any external stabilizing reagents. The XPS analysis showed that this excellent stability is due to modifications of the RGO nanosheets by the gly-gly molecules. The modified RGO complex with copper shows good catalytic performance for reduction of 4-nitrophenol to 4-aminophenol.

  8. Measuring the enthalpies of interaction between glycine, L-cysteine, glycylglycine, and sodium dodecyl sulfate in aqueous solutions

    Badelin, V. G.; Mezhevoi, I. N.; Tyunina, E. Yu.


    Calorimetric measurements of enthalpies of solution Δsol H m for glycine, L-cysteine, and glycylglycine in aqueous solutions of sodium dodecyl sulfate (SDS) with concentrations of up to 0.05 mol kg-1 are made. Standard enthalpy of solution Δsol H 0 and enthalpy of transfer Δtr H 0 of the dipeptide from water into mixed solvent are calculated. The calculated enthalpy coefficients of paired interactions of amino acids and dipeptide with SDS prove to be positive. Hydrophobic interactions between the biomolecules and SDS are found to have a major impact on the enthalpies of interaction in the three-component systems under study, within the indicated range of concentrations.

  9. Results from in vitro and ex vivo skin aging models assessing the antiglycation and anti-elastase MMP-12 potential of glycylglycine oleamide

    Bogdanowicz P


    Full Text Available Patrick Bogdanowicz, Marie-José Haure, Isabelle Ceruti, Sandrine Bessou-Touya, Nathalie Castex-Rizzi Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse, France Background: Glycation is an aging reaction of naturally occurring sugars with dermal proteins. Type I collagen and elastin are most affected by glycation during intrinsic chronological aging. Aim: To study the in vitro and ex vivo assays in human skin cells and explants and the antiaging effects of glycylglycine oleamide (GGO. Materials and methods: The antiglycation effect of GGO was assessed in a noncellular in vitro study on collagen and, ex vivo, by immunohistochemical staining on human skin explants (elastin network glycation. The ability of GGO to contract fibroblasts was assessed in a functional assay, and its anti-elastase (MMP-12 activity was compared to that of oleic acid alone, glycylglycine (GG alone, and oleic acid associated with GG. Results: In vitro, GGO reduced the glycation of type I collagen. Ex vivo, GGO restored the expression of fibrillin-1 inhibited by glycation. Furthermore, GGO induced a tissue retraction of almost 30%. Moreover, the MMP-12 activity was inhibited by up to 60%. Conclusion: Under the present in vitro and ex vivo conditions, GGO prevents glycation of the major structural proteins of the dermis, helping to reduce the risk of rigidification. By maintaining the elastic function of the skin, GGO may be a promising sparring partner for other topical antiaging agents. Keywords: extracellular matrix, glycylglycine oleamide, glycation, fibrillin-1, matrix metalloproteinase-12, skin aging

  10. Thermodynamics of the formation of complexes of copper(II) ions and glycylglycine in aqueous solutions at 298 K according to calorimetry data

    Kochergina, L. A.; Emel'yanov, A. V.


    Heat effects of the interaction between glycylglycine and copper(II) nitrate solutions are measured by direct calorimetry at a [metal] : [ligand] ratio of 1 : 5 and at different pH values of the solution. The measurements are made at a temperature of 298.15 K and ionic strengths of 0.25, 0.50, and 0.75. KNO3 is used as a background electrolyte. The thermodynamic characteristics of complex formation by the peptide and copper(II) ions in aqueous solutions are determined. Standard enthalpies of the formation of complex particles in aqueous solutions are calculated.

  11. A new dermocosmetic containing retinaldehyde, delta-tocopherol glucoside and glycylglycine oleamide for managing naturally aged skin: results from in vitro to clinical studies

    Rouvrais C


    Full Text Available Céline Rouvrais,1,* Daniel Bacqueville,2,* Patrick Bogdanowicz,2,* Marie-José Haure,2 Laure Duprat,2 Christine Coutanceau,3 Nathalie Castex-Rizzi,2 Hélène Duplan,2 Valérie Mengeaud,1 Sandrine Bessou-Touya2 1Clinical Skin Research Center, 2Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse, 3Laboratoire Dermatologique Avène, Lavaur, France *These authors contributed equally to this work Introduction: Natural aging of skin tissues, the addition of the cumulative action of the time and radiation exposure result in skin atrophy, wrinkles and degeneration of the extracellular matrix (ECM. The aim of the study was to investigate the beneficial effect of a combination containing retinaldehyde (RAL, delta-tocopherol glucoside (delta-TC and glycylglycine oleamide (GGO and of a dermocosmetic containing the combination. Materials and methods: The protective effect of the combination was assessed through in vitro gene expression of ultraviolet (UV-irradiated fibroblasts. A skin aging assay using UV light on ex vivo skin samples and a clinical study conducted in 36 women aged from 35 to 55 years with a minimum of level 4 to a maximum of level 6 on the crow’s feet photoscale assessed the antiaging effect of the dermocosmetic. Results: When added to UV-irradiated fibroblasts, the combination substantially improved the ECM in activating the elastin fiber production (fibrillin 2, fibulin 1 and 5 and lysyl ­oxidase-like 2 as well as that of proteins involved in the cellular ECM interactions (integrin β1, paxillin and actin a2. An ex vivo photodamaged human skin model showed that the dermocosmetic formulation containing the combination of the active ingredients protected the elastic network against UV-induced alterations including both elastin and fibrillin-rich fibers in the dermis. A daily application of the dermocosmetic for 2 months on naturally aged skin resulted in a statistically significant improvement (p<0.05 of visible

  12. Cytoplasmic expression of mature glycylglycine endopeptidase lysostaphin with an amino terminal hexa-histidine in a soluble and catalytically active form in Escherichia coli.

    Sharma, Rahul; Sharma, Poonam R; Choudhary, Manohar L; Pande, Amit; Khatri, Ghan Shyam


    Methicillin-resistant Staphylococcus aureus is a major problem in the world, causing hospital acquired infections and the infections/pathogenesis in community. Lysostaphin is a novel therapeutic molecule to kill the multidrug-resistant S. aureus. Mature lysostaphin is a single polypeptide (approximately 27 kDa) chain metalloprotease glycylglycine endopeptidase, capable of specifically hydrolyzing penta-glycine crosslinks present in the peptidoglycan of the S. aureus cell wall. The mature lysostaphin gene of Staphylococcus simulans has been cloned and overexpressed in the cytoplasm of E. coli with amino terminal hexa-histidine as a fusion partner under the transcriptional control of bacteriophage T7 phi 10 promoter/lac operator and ribosome binding site. The transformed E. coli BL21 (lambdaDE3) cells produced catalytically active soluble (His)6-lysostaphin fusion protein in the cytoplasm representing approximately 20% of the total cellular proteins. The fusion protein was purified to homogeneity using a single chromatographic step of IMAC on Ni-NTA agarose. The present cloning, expression, and purification procedure of recombinant lysostaphin from a non-pathogenic organism E. coli enables preparation of large quantity of r-lysostaphin for structure function studies and evaluation of its clinical potential in therapy and prophylaxis of staphylococcal infections.

  13. A new ternary copper(II) complex derived from 2-(2'-pyridyl)benzimidazole and glycylglycine: synthesis, characterization, DNA binding and cleavage, antioxidation and HSA interaction.

    Fu, Xia-Bing; Lin, Zi-Hua; Liu, Hai-Feng; Le, Xue-Yi


    A new ternary copper(II)-dipeptide complex [Cu(glygly)(HPB)(Cl)]⋅2H2O (glygly=glycylglycine anion, HPB=2-(2'-pyridyl)benzimidazole) has been synthesized and characterized. The DNA interaction of the complex was studied by spectroscopic methods, viscosity, and electrophoresis measurements. The antioxidant activity was also investigated using the pyrogallol autoxidation assay. Besides, the interaction of the complex with human serum albumin (HSA) in vitro was examined by multispectroscopic techniques. The complex partially intercalated to CT-DNA with a high binding constant (Kb=7.28×10(5) M(-1)), and cleaved pBR322 DNA efficiently via an oxidative mechanism in the presence of Vc, with the HO· and O2(-) as the active species, and the SOD as a promoter. Furthermore, the complex shows a considerable SOD-like activity with the IC50 value of 3.8386 μM. The complex exhibits desired binding affinity to HSA, in which hydrogen bond or vander Waals force played a major role. The alterations of HSA secondary structure induced by the complex were confirmed by UV-visible, CD, synchronous fluorescence and 3D fluorescence spectroscopy.

  14. Thermodynamic characteristics of the dissolution of glycine, glycylglycine, and glycylglycylglycine in aqueous solutions of sodium dodecyl sulfate at T = 298.15 K

    Smirnov, V. I.; Badelin, V. G.


    the enthalpies of dissolution of glycine (Gly), glycylglycine (GlyGly), and glycylglycylglycine (GlyGlyGly) are measured in aqueous solutions of sodium dodecyl sulfate (SDS) at SDS concentrations m = 0-0.7 mol kg-1 and T = 298.15 K by means of calorimetry. The obtained data are used to calculate the standard values of enthalpies of dissolution (Δsol H m ) and enthalpies of transfer (Δtr H m ) of glycine and its oligomers from water to SDS aqueous solutions. The dependences of Δsol H m and Δtr H m on SDS concentration in an aqueous solution at a constant concentration of glycine and its oligomers are determined. A comparative analysis of the thermodynamic characteristics of Gly, GlyGly, and GlyGlyGly transfer within the studied range of SDS concentrations is performed. The results are interpreted in terms of ion-ion, ion-polar, and hydrophobic interactions between SDS and molecules of glycine and its oligomers.

  15. Studies of enthalpy-entropy compensation, partial entropies, and Kirkwood-Buff integrals for aqueous solutions of glycine, L-leucine, and glycylglycine at 298.15 K.

    Kurhe, Deepti N; Dagade, Dilip H; Jadhav, Jyoti P; Govindwar, Sanjay P; Patil, Kesharsingh J


    Densities and osmotic coefficient measurements for dilute aqueous solutions of glycine, l-leucine, and glycylglycine have been reported at 298.15 K. The partial molar volumes and activity coefficients of solute as well as solvent have been estimated using the density and osmotic coefficient data, respectively. Excess and mixing thermodynamic properties, such as Gibbs free energy, enthalpy, and entropy changes, have been obtained using the activity data from this study and the heat data reported in the literature. The concentration enthalpy-entropy compensation effects have been observed for the studied systems, and the compensation temperatures are reported. It has been observed that the excess free energy change for all the studied systems is almost the same over the studied concentration range, showing that the differences in properties of such solutions are largely decided by the enthalpy-entropy effects. These results, along with partial entropy data, show the effects of the presence of hydrophobic interactions and water structure making effect in the case of aqueous solutions of l-leucine. The application of the Starikov-Norden enthalpy-entropy compensation model yielded information about a "hidden Carnot cycle" and the existence of multiple microphases. Application of the Kirkwood-Buff (KB) theory of solutions for the studied systems yields pair correlation functions between the components. The variation of Kirkwood-Buff integrals with concentration further signifies the concentration dependence of the hydrophobic hydration and interactions in the solution phase. The osmotic second virial coefficients have also been obtained using the KB theory and show good agreement with those obtained using the McMillan-Mayer theory of solutions. The mean square concentration fluctuations is estimated using the KB theory, which gives information about the microheterogeneity in the solution phase, which further reflects the presence of hydration and solute association.

  16. Metal ion effects on the kinetics of abiotic formation of glycylglycine and diketopiperazine under the simulated conditions of the Lost City hydrothermal field

    Sakata, K.; Yabuta, H.


    Introduction: The Lost City hydrothermal field has been recently discovered in 2000 and known for its characteristic conditions that differs from the typical hydrothermal vents, such as alkaline pH, low temperature (> ~90°C), metal ion compositions [1, 2]. The hydrothermal system is suggested as a plausible environment for the origin and evolution of life in the early Earth [3]. In our previous study, it was revealed that the dimerization of glycine (Gly) in aqueous solution reached the maximum rate in alkaline solution at pH 9.8 [4], supporting the above hypothesis from the perspective of abiotic chemistry. In this study, the heating experiments of Gly were conducted under the conditions simulating the metal ion composition of the Lost City, in order to evaluate the effects of metal ions on the kinetics of the formation of glycylglycine (GlyGly) and diketopiperazine (DKP). Experimental: Eight milliliter of 100 mM aqueous solutions of Gly at pH 9.3 with MgCl2 : MgSO4 : CaCl2 : NaCl : NaOH concentration ratio (mM) of 9.4 : 4.6 : 23 : 35 : 470 (solution A) were put into Teflon bottles and heated at 120, 140, 160 and 180°C for 1 to 5 days. For comparison, 100 mM aqueous solutions of Gly at pH 9.3 with 32 mM NaOH (solution B) and at pH 6.0 without NaOH (solution C) were heated at 140°C for 14 days. After heating, each sample was diluted and analyzed by HPLC. In this experiment, the four reaction pathways were considered: 2 Gly → GlyGly (the second order), GlyGly → DKP (the first order), DKP → GlyGly (the first order), GlyGly → 2 Gly (the first order). The rate constants were determined by fitting the changes of the concentrations of Gly, GlyGly, and DKP with increasing heating time. Results and discussion: The concentration of GlyGly in solution A at equilibrium was 25 % lower than that in solution B, although the formation rates of GlyGly were similar values for solutions A and B, 1.25 ×10-9 and 0.93 ×10-9 l mol-1 s-1, respectively. This observation is

  17. Potentiometric and DFT studies of Cu(II) complexes with glycylglycine and methionine of interest for the brain chemistry

    Vilhena, Felipe S.; Felcman, Judith; Szpoganicz, Bruno; Miranda, Fabio S.


    A large number of copper (II) complexes have been used as mimetic models for metalloproteins and metalloenzymes. Due to the lack of structural information about copper (II) complexes in aqueous solution, the coordination environment of this metal is not well established. In this work, pKa values of the complexes in the Cu:GlyGly, Cu:Met and Cu:GlyGly:Met systems were calculated by potentiometric titration at 25 °C and ionic strength of 0.1 mol L-1. The coordination modes of the ligands were explored for the main hydrolytic species throught RI-PBE/def2-SVP/COSMO level. In the Cu:GlyGly system, DFT results indicated that the NamineNpept coordination of dipeptide is 2.1 kcal mol-1 more stable than the tridentate NamineNpeptOcarboxy coordination moiety. The deprotonation of the peptide nitrogen is 13.7 kcal mol-1 more favorable than the hydrolysis of the water molecule coordinated to the metal. In the Cu:GlyGly:Met system, the sulfur atom does not belong to the copper (II) coordination sphere. Once the copper ion is incorporated into peptides, another ligand as methionine could bind to this system and carry an antioxidant site to different brain regions.

  18. Theoretical Study of the Sensitivity-Improvement Effect of Phosphoryl Group in Mass Spectrometry of Small Peptides


    It was found that phosphorylation of small peptide could improve the sensitivity in mass spectrometry. Density functional theory calculations showed that the energy for the protonation of N-(O, O′-dimethyl) phosphoryl glycylglycine is lower than that of glycylglycine. These could help to understanding the experimental results.

  19. A chimeric LysK-lysostaphin fusion enzyme lysing Staphylococcus aureus cells: a study of both kinetics of inactivation and specifics of interaction with anionic polymers

    A staphylolytic fusion protein (K-L) was created, harboring three unique lytic activities comprised of the LysK CHAP endopeptidase, and amidase domains, and the lysostaphin glycyl-glycine endopeptidase domain. To assess the potential of possible therapeutic applications, the kinetic behavior of K-L...

  20. Genetic basis for the resistance of Staphylococcus aureus to peptidoglycan hydrolase by comparative transcriptome and whole genome sequence analysis

    Background: Lysostaphin is a glycyl-glycine bacteriocin peptidoglycan hydrolase secreted by Staphylococcus simulans for degrading the peptidoglycan moieties in Staphylococcus aureus cell walls which result in cell lysis. There are known mechanisms of resistance to lysostaphin, e.g. serine in place...

  1. AFRRI (Armed Forces Radiobiology Research Institute) Reports, January, February and March 1988. First quarter 1988


    8217 ond experimnrt a, potassium Icrrocyanide solution (0. 1 M ) containing MNP (00 M ) and glycylglycine (0. 1 M ) were photolyzed generating tile F.SR...and antihistamine. Ex.perientia 33, MD. 1047-1048. CHAPUT. R. L., AND WISE. D. (1969). Miniature Pig In- DUPONT., A.. AND) MERANt). Y. (1978). Enzyme ...decarboxylase. the enzyme that converts histidine to histamine. is localized in different regions ofthe brain (23): histamine activates adenylate cyclase

  2. Organic Nitrogen Utilization by Phytoplankton: The Role of Cell-Surface Deaminases


    For COCCOII, ethanolamine, ethylamine, glycylglycine, 4-aminobutyric acid, putrescine , 3-amino-l- propanol, and L-ornithine supported H202 production...H H H HH H + I I I I + H3N-C-C-C-C--NH 3 PUTRESCINE I I I I H HH H POSSIBLE AMINE OXIDASE SUBSTRATES 121 Figure 4: Hydrogen peroxide production from... Putrescine utilization by bacteria in seawater has received some attention (Hoefle, 1984), but concentration levels are not well characterized. One

  3. Effect of dipolar ions on the entropy-driven polymerization of tobacco mosaic virus protein.

    Lauffer, M A; Shalaby, R A


    The effect of the dipolar ions, glycine, glycylglycine, and glycylglycylglycine on the polymerization of tobacco mosaic virus (TMV) protein has been studied by the methods of light scattering and ultracentrifugation. All three dipolar ions promote polymerization. The major reaction in the early stage is transition from the 4 S to the 20 S state. As in the absence of dipolar ions, the polymerization is enhanced by an increase in temperature; it is endothermic and therefore entropy-driven. The effect of the dipolar ions can be understood in terms of their action as salting-out agents; they increase the activity coefficient of TMV A protein, the 4 S material, and thus shift the equilibrium toward the 20 S state. The salting-out constants, K, for the reaction in 0.10 ionic strength phosphate buffer at pH 6.7 was found by the light scattering method to be 1.6 for glycine, 2.5 for glycylglycine, and 2.5 for glycylglycylglycine. A value of 2.7 was obtained by the ultracentrifugation method for glycylglycine in phosphate buffer at 0.1 ionic strength and pH 6.8 at 10 degrees C. For both glycine and glycylglycine, K increases when the ionic strength of the phosphate buffer is decreased. This result suggests that electrolytes decrease the activity coefficient of the dipolar ions, a salting-in phenomenon. However, the salting-in constants evaluated from these results are substantially higher than those previously determined by solubility measurements. The effect of glycine and glycylglycine on polymerization was studied at pH values between 6.2 and 6.8. The effectiveness of both dipolar ions is approximately 50% greater at pH 6.8 than at pH 6.2. The variation of the extent of polymerization with pH in the presence of the dipolar ions is consistent with the interpretation that approximately one hydrogen ion is bound for half of the polypeptide units in the polymerized A protein.

  4. Prebiotic synthesis of histidyl-histidine

    Shen, C.; Mills, T.; Oro, J.


    Histidyl-histidine (His-His) has been synthesized in a yield of up to 14.4% under plausible prebiotic conditions using histidine (His), cyanamide, and 4-amino-5-imidazole carboxamide. A trace amount of His trimer was also detected. Because the imidazole group of His is involved in a number of important enzymatic reactions, and His-His has been shown to catalyze the prebiotic synthesis of glycyl-glycine, we expect this work will stimulate further studies on the catalytic activities of simple His-containing peptides in prebiotic reactions.

  5. Distribution coefficients of amino acid, peptide and enzyme in respect to aqueous two phase system composed of dextran, polyethylene glycol and water; Dekisutoran+poriechiren gurikoru+mizu karanaru suiseinisokei ni taisuru aminosan, pepuchido oyobi koso no bunpai keisu

    Iwai, Yoshio [Kyushu University, Fukuoka (Japan); Kakizaka, Keijiro; Shindo, Takashi; Ishida, Otetsu; Arai, Yasuhiko


    Distribution coefficients of five kinds of amino acids (aspartic acid, asparagines, methionine, cysteine and cytidine) and two kinds of peptides (glycylglycine and hexane glycine) were measured. These distribution coefficients are in good correlation with the osmosis viral expression. The interaction parameter in the osmosis viral expression can be estimated by hydrophilic group parameter. The distribution coefficient of {alpha}-amylase was estimated by the osmosis viral expression using the above-mentioned hydrophilic group parameter, and the estimated value showed substantially good correspondence with the actually measured value, but for the distribution coefficient of {beta}-amylase, no coincidence was found. (translated by NEDO)

  6. Glycine cleavage powers photoheterotrophic growth of Chloroflexus aurantiacus in the absence of H2

    Lian eHe


    Full Text Available Chloroflexus aurantiacus is an anoxygenic phototrophic bacterium. Its unique CO2 fixation pathway and primitive light-harvesting antenna complexes have attracted extensive research attentions. In this work, we investigated the photoheterotrophic growth of C. aurantiacus J-10-fl using acetate (at 55 oC and without H2(g. The results indicate that glycine can promote anaerobic biomass production in a minimal medium by 3~5 folds. Via 13C-metabolite analysis, we observed that glycine was involved in serine synthesis. Instead of being used as a major carbon source, glycine was degraded to produce C1 units and NAD(PH. Tracer experiments also suggest that photoheterotrophic cultures growing with a exogenous glycine source exhibited capabilities of assimilating CO2 via multiple routes (including the 3-hydroxypropionate pathway. Finally, glycylglycine, a commonly used culture buffer, could also release glycine via thermal or enzymatic degradation to significantly enhance photoheterotrophic growth of C. aurantiacus.

  7. N-( p-Ethynylbenzoyl) derivatives of amino acid and dipeptide methyl esters - Synthesis and structural study

    Eißmann, Frank; Weber, Edwin


    A series of N-( p-ethynylbenzoyl) derivatives ( 1-4) of the amino acids glycine and L-alanine as well as the dipeptides glycylglycine and L-alanylglycine has been synthesized via a two-step reaction sequence including the reaction of an appropriate N-( p-bromobenzoyl) precursor with trimethylsilylacetylene followed by deprotection of the trimethylsilyl protecting group, respectively. X-ray crystal structures of the amino acid and dipeptide methyl esters 1-4 are reported. The amide and peptide bonds within each molecular structure are planar and adopt the trans-configuration. The packing structures are governed by N sbnd H⋯O interactions leading to the formation of characteristic strand motifs. Further stabilization results from weaker C sbnd H⋯O and C sbnd H⋯π contacts.

  8. Controlled Formation and Vibrational Characterization of Large Solvated Ionic Clusters in Cryogenic Ion Traps

    Garand, Etienne; Marsh, Brett; Voss, Jonathan; Duffy, Erin M.


    An experimental approach for the formation of solvated ionic clusters and their vibrational spectroscopy will be presented. This recently developed apparatus combines an electrospray ionization source, two temperature controlled cryogenic ion traps and a time-of-flight infrared photofragmentation spectrometer, to allow for a universal and controlled formation and characterization of solvent clusters around ionic core as well as product of ion-molecule reaction. Recent results on the spectroscopy of such solvated ions, will be presented and discussed. In particular, this talk will present the structural evolution of glycylglycine as a function of stepwise solvation, and show how the presence of just a few water can modify the geometry of this model peptide. I will also present results solvation of ion that do not form hydrogen bond or strongly interactions with the solvent.

  9. Anodically generated manganese(III) sulphate for the oxidation of dipeptides in aqueous sulphuric acid medium: A kinetic study

    M N Kumara; D Channe Gowda; A Thimme Gowda; K S Rangappa


    The kinetic of oxidation of dipeptides (DP) namely valyl-glycine (Val-Gly), alanyl-glycine (Ala-Gly) and glycyl-glycine (Gly-Gly), by Mn(III) have been studied in the presence of sulphate ions in acid medium at 26°C. The reaction was followed spectrophotometrically at max = 500 nm. A firstorder dependence of the rate on both [Mn(III)]$_o$ and [DP]o was observed. The rate is independent of the concentration of reduction product, Mn(II) and hydrogen ions. The effects of varying the dielectric constant of the medium and addition of anions such as sulphate, chloride and perchlorate were studied. The activation parameters have been evaluated using Arrhenius and Eyring plots. The oxidation products were isolated and characterized. A mechanism involving the reaction of DP with Mn(III) in the ratelimiting step is suggested. An apparent correlation was noted between the rate of oxidation and the hydrophobicity of these dimers, where increased hyphobicity results in increased rate of oxidation.

  10. Synthesis, formulation of nucleo-equipment and biological studies of the {sup 99m} Tc-MAG{sub 3}; Sintesis, formulacion de nucleo-equipos y estudios biologicos de la {sup 99m} Tc-MAG{sub 3}

    Reyes H, L.; Lezama C, J.; Ferro F, G


    Technetium-99m-mercaptoacetyl glycylglycylglycine ({sup 99m}Tc-MAG{sub 3}) is introduced to replace o-iodohippurate (OIH) for renal function studies. In this paper we present the synthesis, labelling and biological evaluation of {sup 99m}Tc- MAG{sub 3} prepared in our laboratory. The precursor s-benzoyl-mercaptoacetyl glycyl glycylglycine (Bz-MAG{sub 3} ) was synthesized by condensation of glycylglycylglycine with chloroacetyl chloride to obtain chloroacetyl glycylglycylglycine and this product was condensate with sodium thiobenzoate. The Bz-MAG{sub 3} was characterized by IR and NMR. The labelling with {sup 99m}Tc was carried out at pH 9.0 using stannous chloride as a reducing agent with heating to boiling for 15 min. The benzoyl group is lost in this step, forming {sup 99m}Tc-MAG{sub 3} complex with radiochemical purity of 99%. The biodistribution properties were evaluated in mice and a rapid renal extraction was apparent at the 10 minutes value (51.65% of the injected dose). The radiotracer was administered to 5 patients showing a good biological behavior. Based on these results, the {sup 99m}Tc-MAG{sub 3} is expected to have widespread clinical utility in Mexico. (Author)

  11. Abiogenic Syntheses of Lipoamino Acids and Lipopeptides and their Prebiotic Significance

    Sproul, Gordon


    Researchers have formed peptide bonds under a variety of presumed prebiotic conditions. Here it is proposed that these same conditions would have also formed amide bonds between fatty acids and amino acids, producing phosphate-free amphipathic lipoamino acids and lipopeptides. These compounds are known to form vesicles and are ubiquitous in living organisms. They could represent molecules that provided protection by membranes as well as possibilities for proto-life metabolism . It is here demonstrated that when a fatty acid is heated with various amino acids, optimally in the presence of suitable salts or minerals, lipoamino acids are formed. Magnesium and potassium carbonates as well as iron (II) sulfide are found to be particularly useful in these reactions. In this manner N-lauroylglycine, N-lauroylalanine, N-stearoylalanine and several other lipoamino acids have been synthesized. Similarly, when glycylglycine was heated with lauric acid in the presence of magnesium carbonate, the lipopeptide N-lauroylglycylglycine was formed. Such compounds are proposed to have been critical precursors to the development of life.

  12. Metabolomics profiling for identification of novel potential markers in early prediction of preeclampsia.

    Sylwia Kuc

    Full Text Available OBJECTIVE: The first aim was to investigate specific signature patterns of metabolites that are significantly altered in first-trimester serum of women who subsequently developed preeclampsia (PE compared to healthy pregnancies. The second aim of this study was to examine the predictive performance of the selected metabolites for both early onset [EO-PE] and late onset PE [LO-PE]. METHODS: This was a case-control study of maternal serum samples collected between 8+0 and 13+6 weeks of gestation from 167 women who subsequently developed EO-PE n = 68; LO-PE n = 99 and 500 controls with uncomplicated pregnancies. Metabolomics profiling analysis was performed using two methods. One has been optimized to target eicosanoids/oxylipins, which are known inflammation markers and the other targets compounds containing a primary or secondary biogenic amine group. Logistic regression analyses were performed to predict the development of PE using metabolites alone and in combination with first trimester mean arterial pressure (MAP measurements. RESULTS: Two metabolites were significantly different between EO-PE and controls (taurine and asparagine and one in case of LO-PE (glycylglycine. Taurine appeared the most discriminative biomarker and in combination with MAP predicted EO-PE with a detection rate (DR of 55%, at a false-positive rate (FPR of 10%. CONCLUSION: Our findings suggest a potential role of taurine in both PE pathophysiology and first trimester screening for EO-PE.

  13. Solvation and hydrogen bonding in alanine- and glycine-containing dipeptides probed using solution- and solid-state NMR spectroscopy.

    Bhate, Manasi P; Woodard, Jaie C; Mehta, Manish A


    The NMR chemical shift is a sensitive reporter of peptide secondary structure and its solvation environment, and it is potentially rich with information about both backbone dihedral angles and hydrogen bonding. We report results from solution- and solid-state (13)C and (15)N NMR studies of four zwitterionic model dipeptides, L-alanyl-L-alanine, L-alanyl-glycine, glycyl-L-alanine, and glycyl-glycine, in which we attempt to isolate structural and environmental contributions to the chemical shift. We have mapped hydrogen-bonding patterns in the crystalline states of these dipeptides using the published crystal structures and correlated them with (13)C and (15)N magic angle spinning chemical shift data. To aid in the interpretation of the solvated chemical shifts, we performed ab initio quantum chemical calculations to determine the low-energy conformers and their chemical shifts. Assuming low energy barriers to interconversion between thermally accessible conformers, we compare the Boltzmann-averaged chemical shifts with the experimentally determined solvated-state shifts. The results allow us to correlate the observed differences in chemical shifts between the crystalline and solvated states to changes in conformation and hydrogen bonding that occur upon solvation.

  14. ENDOR and ELDOR studies of x-irradiated polycrystalline dipeptides, myosin, and actomyosin

    Hwang, J.S. (Univ. of Alabama, Tuscaloosa); Dickinson, A.C.; Kispert, L.D.


    ENDOR and ELDOR studies have been carried out for nine dipeptide powders as well as powders of myosin and actomyosin x ray irradiated at 77/sup 0/K in an attempt to characterize the final radical stable upon annealing between 183 and 260/sup 0/K. The dipeptides studied were glycylglycine, L-alanylglycine, glycyl-L-alanine, L-alanyl-L-alanine, glycyl-L-aspartic acid, glycyl-L-glutamic acid, glycyl-L-methionine, glycyl-L-serine, and L-lysyl-L-lysine. Nitrogen ENDOR spectra have been observed between 1 and 8 MHz for each powder and the nitrogen hyperfine and quadrupole tensor has been estimated. Analysis of the ENDOR, ELDOR, and ESR spectra indicates at least one of the final radicals in the dipeptide powders (except Gly-Gly, and possibly Gly-Glu, Gly-Ser) to be the decarboxylation product NH/sub 2/CHRCONHCHR' rather than just the abstraction type (NH/sub 3//sup +/-CHRONHCR'COO/sup -/) previously identified in irradiated dipeptide ices. A decarboxylation type radical is also present as a final radical in the irradiated myosin and actomyosin.

  15. Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: synthesis, structural characterization, and antibacterial activity.

    Geeta, B; Shravankumar, K; Reddy, P Muralidhar; Ravikrishna, E; Sarangapani, M; Reddy, K Krishna; Ravinder, V


    A binucleating new Schiff-base ligand with a phenylene spacer, afforded by the condensation of glycyl-glycine and o-phthalaldehyde has been served as an octadentate N₄O₄ ligand in designing some binuclear complexes of cobalt(II), nickel(II), copper(II), and palladium(II). The binding manner of the ligand to the metal and the composition and geometry of the metal complexes were examined by elemental analysis, conductivity measurements, magnetic moments, IR, ¹H, ¹³C NMR, ESR and electronic spectroscopies, and TGA measurements. There are two different coordination/chelation environments present around two metal centers of each binuclear complex. The composition of the complexes in the coordination sphere was found to be [M₂(L)(H(2)O)₄] (where M=Co(II) and Ni(II)) and [M₂(L)] (where M=Cu(II) and Pd(II)). In the case of Cu(II) complexes, ESR spectra provided further information to confirm the binuclear structure and the presence of magnetic interactions. All the above metal complexes have shown moderate to good antibacterial activity against Gram-positive and Gram-negative bacteria.

  16. Dipeptides and Diketopiperazines in the Yamato-791198 and Murchison Carbonaceous Chondrites

    Shimoyama, Akira; Ogasawara, Ryo


    The Yamato-791198 and Murchison carbonaceous chondrites were analyzed for dipeptides and diketopiperazines as well as amino acids and hydantoins by gas chromatography combined with mass spectrometry. Glycylglycine (gly-gly) and cyclo(gly-gly) were detected at the concentrations of 11 and 18 pmol g^-1, respectively, in Yamato-791198, and 4 and 23 pmol g^-1, respectively, in Murchison. No other dipeptide and diketopiperazine were detected. Five hydantoins were detected at 8 to 65 pmol g^-1 in Yamato-791198 and seven in Murchison at 6 to 104 pmol g^-1. Total concentration of the glycine (gly) dimers is approximately four orders of magnitude less than the concentration of free gly in Yamato-791198, and three orders of magnitude less than that in Murchison. The absence of L- and LL-stereoisomers of dipeptides consisting of protein amino acids indicates that gly-gly and cyclo(gly-gly) detected are native to the chondrites and not from terrestrial contaminants. A possibility was discussed that the gly dimers might have been formed by condensation of gly monomers but not formed through N-carboxyanhydrides of gly.

  17. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne, E-mail: [Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706 (United States)


    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ions having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.

  18. Metabolomics Profiling for Identification of Novel Potential Markers in Early Prediction of Preeclampsia

    Kuc, Sylwia; Koster, Maria P. H.; Pennings, Jeroen L. A.; Hankemeier, Thomas; Berger, Ruud; Harms, Amy C.; Dane, Adrie D.; Schielen, Peter C. J. I.; Visser, Gerard H. A.; Vreeken, Rob J.


    Objective The first aim was to investigate specific signature patterns of metabolites that are significantly altered in first-trimester serum of women who subsequently developed preeclampsia (PE) compared to healthy pregnancies. The second aim of this study was to examine the predictive performance of the selected metabolites for both early onset [EO-PE] and late onset PE [LO-PE]. Methods This was a case-control study of maternal serum samples collected between 8+0 and 13+6 weeks of gestation from 167 women who subsequently developed EO-PE n = 68; LO-PE n = 99 and 500 controls with uncomplicated pregnancies. Metabolomics profiling analysis was performed using two methods. One has been optimized to target eicosanoids/oxylipins, which are known inflammation markers and the other targets compounds containing a primary or secondary biogenic amine group. Logistic regression analyses were performed to predict the development of PE using metabolites alone and in combination with first trimester mean arterial pressure (MAP) measurements. Results Two metabolites were significantly different between EO-PE and controls (taurine and asparagine) and one in case of LO-PE (glycylglycine). Taurine appeared the most discriminative biomarker and in combination with MAP predicted EO-PE with a detection rate (DR) of 55%, at a false-positive rate (FPR) of 10%. Conclusion Our findings suggest a potential role of taurine in both PE pathophysiology and first trimester screening for EO-PE. PMID:24873829

  19. Peptide assisted synthesis and functionalization of gold nanoparticles and their adsorption by chitosan particles in aqueous dispersion

    Nimrodh Ananth, A.; Umapathy, S.; Ghosh, G.; Ramprasath, Tharmarajan; Jothi Rajan, M. A.


    We have reported a novel method of synthesis of gold nanoparticles (GNPs), using two different peptides, e.g. glutathione (GSH) and glycyl-glycine (GG), as reducing agents. The formation of GNPs was observed with the development of the surface plasmon resonance (SPR) peak in UV-visible spectrum. The nanoparticles phase has been investigated using powder x-ray diffraction (XRD) method and has been seen to be single phase. The as-synthesized GNPs were not fully covered by the used peptides as seen by the thermogravimetry analysis (TGA), and therefore, trisodium citrate (TSC) has been used further as a ‘filler’ agent for GNPs to become well dispersible in aqueous medium. The Fourier transform infrared (FTIR) spectroscopy method has confirmed the presence of peptides and TSC coatings on the nanoparticles’ surface. In comparison, the GNPs formed using GG have been observed to be more stable than those formed using GSH. The nanoparticle size was measured using XRD, dynamic light scattering (DLS) and transmission electron microscopy (TEM). These dispersions were further used to investigate the interaction between the GNPs and chitosan (CS) microparticles. The effects of this interaction were studied using UV-visible spectroscopy, DLS and FTIR. XRD and TEM showed that GNPs were uptaken by CS microparticles.

  20. Antibacterial and Antifungal Studies on Some Schiff Base Complexes of Zinc(II).

    Joseyphus, R Selwin; Nair, M Sivasankaran


    Two Schiff base ligands L1and L2 were obtained by the condensation of glycylglycine respectively with imidazole-2-carboxaldehyde and indole-3-carboxaldehyde and their complexes with Zn(II) were prepared and characterized by microanalytical, conductivity measurement, IR, UV-Vis., XRD and SEM. The molar conductance measurement indicates that the Zn(II) complexes are 1: 1electrolytes. The IR data demonstrate the tetradentate binding of L1and tridentate binding of L2. The XRD data show that Zn(II) complexes with L1and L2 have the crystallite sizes of 53 and 61nm respectively. The surface morphology of the complexes was studied using SEM. The in vitro biological screening effects of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumaniae, Proteus vulgaris and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans by the disc diffusion method. A comparative study of inhibition values of the Schiff base ligands and their complexes indicates that the complexes exhibit higher antimicrobial activity than the free ligands. Zinc ions are proven to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium.

  1. Validation of a Liquid Chromatography Tandem Mass Spectrometry Method for Targeted Degradation Compounds of Ethanolamine Used in CO2 Capture: Application to Real Samples

    Cuzuel Vincent


    Full Text Available In the field of greenhouse gas emission, a promising approach consists in CO2 storage and capture. However most of the processes are based on amine solutions which are likely to degrade and produce potentially harmful compounds. So there is a need for analytical methods to identify and quantify these products. Monoethanolamine was used as a model compound for the amines used for CO2 capture. A liquid chromatography tandem mass spectrometry method was developed and validated for the quantification of six products of degradation of monoethanolamine (Glycine, N-(2-hydroxyethylglycine, N-glycylglycine, bicine, N,N′-bis-(2-hydroxyethyl urea (BHE Urea, and diethanolamine that were systematically detected with a LC-MS Scan method in real samples from CO2 capture and storage processes. The main difficulty of this study and its originality ly in the strategy developed to overcome the complexity of the matrix which is a mix of water and amine (70/30: the combined use of deuterated internal standards and a recent chemiometric approach to validate the method, i.e. the accuracy profile. For five compounds it was possible to validate the method with acceptance limits of 20%. This method was then successfully applied to real samples from pilot plant and lab-scale experiments.

  2. Montanide ISA 720 vaccines: quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations.

    Miles, Aaron P; McClellan, Holly A; Rausch, Kelly M; Zhu, Daming; Whitmore, Michael D; Singh, Sanjay; Martin, Laura B; Wu, Yimin; Giersing, Birgitte K; Stowers, Anthony W; Long, Carole A; Saul, Allan


    Montanide ISA 720 is an experimental adjuvant, formulated as water-in-oil emulsions, that induces high antibody titers in several animal species. It has been used in human vaccine trials with malaria and HIV vaccines. The heightened response is likely due, in part, to the formation of a depot at the injection site. However, post-formulation modifications were seen with seven proteins tested during storage of ISA 720 formulations at 37 degrees C for 1 week and two proteins stored longer at 4 degrees C. Potency studies in mice, in which the stored vaccines were diluted into placebo emulsions for appropriate dosing, indicated that this instability could lead to loss of immunogenicity in the post-injection depot, limiting the allowable storage time of preformed vaccines. We describe point-of-injection formulation for ISA 720 vaccines that meets the requirement for in vitro stability. For preformed vaccines, addition of glycine or glycylglycine prevented antigen modification on storage at 37 degrees C, providing a potential way of stabilizing antigen/ISA 720 formulations for in vitro storage and the post-injection depot.

  3. Metabolomic Characterizations of Liver Injury Caused by Acute Arsenic Toxicity in Zebrafish.

    Caixia Li

    Full Text Available Arsenic is one of the most common metalloid contaminants in groundwater and it has both acute and chronic toxicity affecting multiple organs. Details of the mechanism of arsenic toxicity are still lacking and profile studies at metabolic level are very limited. Using gas chromatography coupled with mass spectroscopy (GC/MS, we first generated metabolomic profiles from the livers of arsenic-treated zebrafish and identified 34 significantly altered metabolite peaks as potential markers, including four prominent ones: cholic acid, glycylglycine, glycine and hypotaurine. Combined results from GC/MS, histological examination and pathway analyses suggested a series of alterations, including apoptosis, glycogenolysis, changes in amino acid metabolism and fatty acid composition, accumulation of bile acids and fats, and disturbance in glycolysis related energy metabolism. The alterations in glycolysis partially resemble Warburg effect commonly observed in many cancer cells. However, cellular damages were not reflected in two conventional liver function tests performed, Bilirubin assay and alanine aminotransferase (ALT assay, probably because the short arsenate exposure was insufficient to induce detectable damage. This study demonstrated that metabolic changes could reflect mild liver impairments induced by arsenic exposure, which underscored their potential in reporting early liver injury.

  4. Hexaaquamanganese(II bis{[N-(3-methoxy-2-oxidobenzylideneglycylglycinato]copper(II} hexahydrate

    Long-Wei Lei


    Full Text Available The ligand N-(2-hydroxy-3-methoxybenzylideneglycylglycine (H3L, a Schiff base derived from glycylglycine and 3-methoxysalicylaldehyde, was used in the synthesis of a new organic–inorganic coordination complex, [Mn(H2O6][Cu(C12H11N2O5]2·6H2O. The MnII atom is located on an inversion center and is coordinated to six water molecules in a slightly distorted octahedral geometry. The CuII atom is chelated by the tetradentate Schiff base ligand in a distorted CuN2O2 square-planar coordination. In the crystal structure, the complex [Mn(H2O6]2+ cations and the [CuL]− anions are arranged in columns parallel to the a axis and are held together by O—H...O hydrogen bonding. Additional hydrogen bonds of the same type further link the columns into a three-dimensional network.

  5. An Evaluation of the Critical Parameters for Abiotic Peptide Synthesis in Submarine Hydrothermal Systems

    Cleaves, H. J.; Aubrey, A. D.; Bada, J. L.


    It has been proposed that oligopeptides may be formed in submarine hydrothermal systems (SHSs). Oligopeptides have been synthesized previously under simulated SHS conditions which are likely geochemically implausible. We have herein investigated the oligomerization of glycine under SHS-like conditions with respect to the limitations imposed by starting amino acid concentration, heating time, and temperature. When 10-1 M glycine solutions were heated at 250°C for diketopiperazine (DKP) were detectable. At 200°C, less oligomerization was noted. Peptides beyond glycylglycine (gly2) and DKP were not detected below 150°C. At 10-2 M initial glycine concentration and below, only gly2, DKP, and gly3 were detected, and then only above 200°C at < 20 min reaction time. Gly3 was undetectable at longer reaction times. The major parameters limiting peptide synthesis in SHSs appear to be concentration, time, and temperature. Given the expected low concentrations of amino acids, the long residence times and range of temperatures in SHSs, it is unlikely that SHS environments were robust sources of even simple peptides. Possible unexplored solutions to the problems presented here are also discussed.

  6. Partial purification and properties of thiamine pyrophosphokinase from pig brain.

    Peterson, J W; Gubler, C J; Kuby, S A


    Pig brain thiamine pyrophosphokinase (ATP: thiamine pyrophosphotransferase, EC was purified 260-fold over extracts of brain acetone powder. A direct, radiometric assay was used to follow the purification. By isoelectric focusing, the purified enzyme appeared to have an isoionic point of approx. pH 4.2, but these preparations were still not homogeneous by disc-gel electrophoresis nor by analytical ultracentrifugation. The purified enzyme has a broad pH optimum extending from pH 8.3 to 9.3 in 0.028 M phosphate/glycylglycine buffers. For optimal enzymatic activity, the ratio of magnesium to ATP must be fixed at 0.6, which suggests that for this ATP-pyrophosphoryl transfer reaction, the enzymatically preferred reactant may be Mg(ATP)6-/2. A preliminary study of the kinetics of the reaction reveals that the enzyme may function via a partial "ping-pong" mechanism; on this basis, dissociation constants for ATPt and for thiamine were evaluated. Pyrithiamine, butylthiamine, ethylthiamine, and oxythiamine appeared to be competitive inhibitors with respect to thiamine as the variable substrate, and their inhibitor dissociation constants were calculated. The relatively poor affinity of oxythiamine to the enzyme emphasizes the 4-amino group in the pyrimidine ring as one of the specificity requirements for thiamine pyrophosphokinase. Preliminary values for the apparent equilibrium coefficient of the thiamine pyrophosphokinase-catalyzed reaction, in terms of total species, has been approximated at several initial concentrations of reactants: e.g. K'eq,app = (see article) 9.66 - 10(-3) M; and [Th]initial - 1 - 10(-6) and 2 - 10(-6) M, respectively, where TDP, Th, t and eq represent thiamine diphosphate, thiamine, total concentration and equilibrium concentration, respectively.

  7. Crystal Structure of the LasA Virulence Factor from Pseudomonas aeruginosa: Substrate Specificity and Mechanism of M23 Metallopeptidases

    Spencer, James; Murphy, Loretta M.; Conners, Rebecca; Sessions, Richard B.; Gamblin, Steven J. (Wales); (Bristol Med Sci); (NIMR)


    Pseudomonas aeruginosa is an opportunist Gram-negative bacterial pathogen responsible for a wide range of infections in immunocompromized individuals and is a leading cause of mortality in cystic fibrosis patients. A number of secreted virulence factors, including various proteolytic enzymes, contribute to the establishment and maintenance of Pseudomonas infection. One such is LasA, an M23 metallopeptidase related to autolytic glycylglycine endopeptidases such as Staphylococcus aureus lysostaphin and LytM, and to DD-endopeptidases involved in entry of bacteriophage to host bacteria. LasA is implicated in a range of processes related to Pseudomonas virulence, including stimulating ectodomain shedding of the cell surface heparan sulphate proteoglycan syndecan-1 and elastin degradation in connective tissue. Here we present crystal structures of active LasA as a complex with tartrate and in the uncomplexed form. While the overall fold resembles that of the other M23 family members, the LasA active site is less constricted and utilizes a different set of metal ligands. The active site of uncomplexed LasA contains a five-coordinate zinc ion with trigonal bipyramidal geometry and two metal-bound water molecules. Using these structures as a starting point, we propose a model for substrate binding by LasA that explains its activity against a wider range of substrates than those used by related lytic enzymes, and offer a catalytic mechanism for M23 metallopeptidases consistent with available structural and mutagenesis data. Our results highlight how LasA is a structurally distinct member of this endopeptidase family, consistent with its activity against a wider range of substrates and with its multiple roles in Pseudomonas virulence.

  8. Mechanistic Investigations of Oxidation of Some Dipeptides by Sodium N-chloro-p-toluenesulfonamide in Alkaline Medium: A Kinetic Study



    The kinetics of oxidation of five dipeptides (DPP) viz., glycylglycine (Gly-Gly), L-alanyl-L-alanine (Ala-Ala),L-valyl-L-valine (Val-Val), L-leucyl-L-leucine (Leu-Leu) and phenylglycyl-phenylglycine (Phg-Phg) by sodium N-chloro-p-toluenesuifonamide or chloramine-T (CAT) in NaOH medium was studied at 308 K. The reactions follow identical kinetics for all the dipeptides, being first-order dependence each on [CAT]o, [DPP]o and fractional-order on [OH-]. Addition of p-toluenesulfonamide or halide ions (CI- or Br-) has no significant effect on the rate of reaction. The reaction rate was found to increase with increase in ionic strength of the medium. The solvent isotope effect was studied using D2O. The activation parameters for the reaction were computed from Arrhenius plots. Equilibrium and decomposition constants were evaluated. The oxidation products of the dipeptides were identiffed as their corresponding aldehydes. An isokinetic relationship was observed with β=352 K, indicating that enthalpy factors control the reaction rate. CH3C6H4SO2NCl- of the oxidant has been postulated as the reactive oxidizing species. Under comparable experimental conditions, the rate of oxidation of the dipeptides increases in the order: Phg-Phg>Ala-Ala>Val-Val>Leu-Leu>Gly-Gly. The kinetics of oxidation of the dipeptides have also been compared with those of their corresponding monomer amino acids. The observed results have been explained by a plausible mechanism and the related rate law has been deduced.

  9. Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids.

    Vasantha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama


    Protein folding/unfolding is a fascinating study in the presence of cosolvents, which protect/disrupt the native structure of protein, respectively. The structure and stability of proteins and their functional groups may be modulated by the addition of cosolvents. Ionic liquids (ILs) are finding a vast array of applications as novel cosolvents for a wide variety of biochemical processes that include protein folding. Here, the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of protein model compounds from water to ILs through solubility measurements as a function of IL concentration at 25 °C have been exploited to quantify and interpret biomolecular interactions between model compounds of glycine peptides (GPs) with ammonium based ILs. The investigated aqueous systems consist of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), tetraglycine (Gly(4)), and cyclic glycylglycine (c(GG)) in the presence of six ILs such as diethylammonium acetate (DEAA), diethylammonium hydrogen sulfate (DEAS), triethylammonium acetate (TEAA), triethylammonium hydrogen sulfate (TEAS), triethylammonium dihydrogen phosphate (TEAP), and trimethylammonium acetate (TMAA). We have observed positive values of ΔG'(tr) for GPs from water to ILs, indicating that interactions between ILs and GPs are unfavorable, which leads to stabilization of the structure of model protein compounds. Moreover, our experimental data ΔG'(tr) is used to obtain transfer free energies (Δg'(tr)) of the peptide backbone unit (or glycyl unit) (-CH(2)C═ONH-), which is the most numerous group in globular proteins, from water to IL solutions. To obtain the mechanism events of the ILs' role in enhancing the stability of the model compounds, we have further obtained m-values for GPs from solubility limits. These results explicitly elucidate that all alkyl ammonium ILs act as stabilizers for model compounds through the exclusion of ILs from model compounds of

  10. pH-sensitive transformation of the peptidic bolaamphiphile self-assembly: exploitation for the pH-triggered chemical reaction.

    Kwak, Jinyoung; Lee, Sang-Yup


    Control of the macroscopic self-assembled structure of the amphiphilic molecule has been a challenging issue in micro/nanotechnologies. In this study, the microtubular self-assembly of a novel peptidic bolaamphiphile, bis(N-α-amido-glycylglycine)-1,10-decene dicarboxylate, which undergoes reversible structural transformation between microtubes and precipitates as a function of pH, was exploited for pH-triggered chemical release. At neutral and basic conditions above a pH of 6, the peptidic bolaamphiphilic molecule self-assembled to form tubular structures several hundreds of micrometers in length. When the solution became acidic below a pH of 4, the tubular assembly disintegrated to form aggregated precipitates. The reversible transformation of precipitate to microtube was achieved by raising the pH above 6. From the Raman spectroscopy results, it was revealed that the hydrogen bonds of the amide group and carboxylate were enhanced under the acidic conditions. These variation of the hydrogen bonds resulted in precipitation of peptidic bolaamphiphilic molecules while rupturing the microtubular structure. The pH-sensitive microscopic structural transformation was exploited for release of a chemical in which the pH-triggered release of a model chemical, a fluorescence dye of ANS, was demonstrated. The ANS dye was released gradually with decreasing pH, which suggests gradual disintegration of the microtubular self-assembly. Furthermore, this pH-triggered release of a chemical was exploited for the chemical reaction of gold ion reduction to produce solid clusters. This study demonstrated the reversible transformation of peptidic bolaamphiphile and its application as a pH-sensitive host matrix.

  11. Isolation and Characterisation of Some Microalgae Bioactive Molecules

    Emeka Ugoala


    Full Text Available This study involved the isolation, structure elucidation, and biological screening of secondary metabolites in freshwater microalgae for bioactive and chemically novel compounds. Isolates were fractionated and purified from the methanol, ethyl acetate, dichloromethane, petroleum ether and aqueous extracts of microalgae via column chromatography technique over silica gel using a gradient mixture of solvents. The chemical structures of isolated compounds have been elucidated using Solid-state cross polarization (CP and magic angle spinning (MAS 13C-NMR spectroscopic technique at spectrometer frequency at a field strength corresponding to 91.3695 MHz for 13C and 363.331 MHz for 1H. Of the nine compounds isolated, eight have a glycan skeleton with attached amino acids units. Two of the eight contain beta amino acids units. These are not very common metabolites but hold promise as drug leads. The elements of diversity in the isolates were the gluco and manno configurations of the pyranose ring, the α-configurations at the anomeric centre, and the positions of the carbohydrate and amino acid sectors in the ring. These molecules are not easily available through gene technology since they are post translational products resulting from the activity of glycosyl hydrolases and transferases. The chemical shifts were rationalized in terms of the number of sugar residues, the sugar ring structures, the positions and anomeric configurations of the inter-sugar linkages. Considering all the NMR data, it was concluded that the compounds were glycylglycylglycylglycine, α-D-glucopyranosyl-2-amino-4-methylpentanoic acid, α-D-glucopyranosyl-2-methylamino-4-methylpentanoic acid, α-D-glucopyranosyl-2-amino-4-methylpentanoate, α-D-glucopyranosyl-glycylglycine, α-D-glucopyranosyl-3-aminobutanoic acid, α-D-glucopyranosyl-2,4,7-triaminooctantrioic acid, α-D-mannopyranosyl-2-amino-3-methylbutanoic acid and α-D-mannopyranosyl-3-aminobutanoic acid.

  12. Genetically Modified Collagen-like Triple helix Protein as Biomimetic Template to Fabricate Metal/Semiconductor Nanowires

    Bai, Hanying

    collagen-like triple helix that is monodisperse, easily mineralized with metal/ semiconductor precursors, and therefore can be applied as a rigid biomolecular template for metal/semiconductor nanowire fabrications. Moreover the production of triple helix can be large scaled up by means of the cell multiplication. As continued work based on previous study of the application of C7 glycylglycine bolaamphiphilic peptide, the self-assembly of doughnut-shaped nanoreactors from monomer peptides with silica precursors was studied, and uniform size silica (SiO2) nanoparticles were obtained. Possible mechanism in terms of chelating and catalysis functions of the peptide was formulated. Keyword: Collagen-like Triple Helix, Nanowire, Fabrication, Recombinant, Biotemplate.

  13. Effects of pH and temperature on dimerization rate of glycine: Evaluation of favorable environmental conditions for chemical evolution of life

    Sakata, Kasumi; Kitadai, Norio; Yokoyama, Tadashi


    To evaluate favorable environmental conditions for the chemical evolution of life, we studied the effects of pH and temperature on the dimerization rate of glycine (Gly: NH 2-CH 2-COOH), one of the simplest amino acids. Gly dimerizes to form glycylglycine (GlyGly), and GlyGly further reacts to form diketopiperazine (DKP). Gly solutions with pH ranging from 3.1 to 10.9 were heated for 1-14 days at 140 °C, and changes in concentrations of Gly, GlyGly, and DKP were evaluated. At pH 9.8, the experiments were conducted at 120, 140, 160, and 180 °C. The dimerization rate of Gly was nearly constant at pH 3-7 and increased with increasing pH from 7 to 9.8 and then decreased with further increases in pH. To elucidate the reason for this pH dependency, we evaluated the role of the three dissociation states of Gly (cationic state: Gly +, zwitterionic state: Gly ±, and anionic state: Gly -). For pH >6, the dominant forms are Gly ± and Gly -, and the molar fraction of Gly ± decreases and that of Gly - increases with increasing pH. The dimerization rate was determined for each dissociation state. The reaction between Gly ± and Gly - was found to be the fastest; the rate constant of the reaction between Gly ± and Gly - was 10 times the size of that between Gly - and Gly - and 98 times that between Gly ± and Gly ±. The dimerization rate became greatest at pH 9.8 because the molar fractions of Gly ± and Gly - are approximately equal at this pH. The dimerization rate increased with temperature, and an activation energy of 88 kJ mol -1 was obtained. Based on these results and previous reports on the stability of amino acids under hydrothermal conditions, we determined that Gly dimerizes most efficiently under alkaline pH (˜9.8) at about 150 °C.

  14. Garlic γ-glutamyl transpeptidases that catalyze deglutamylation of biosynthetic intermediate of alliin

    Naoko eYoshimoto


    Full Text Available S-Alk(enyl-L-cysteine sulfoxides are pharmaceutically important secondary metabolites produced by plants that belong to the genus Allium. Biosynthesis of S-alk(enyl-L-cysteine sulfoxides is initiated by S-alk(enylation of glutathione, which is followed by the removal of glycyl and γ-glutamyl groups and S-oxygenation. However, most of the enzymes involved in the biosynthesis of S-alk(enyl-L-cysteine sulfoxides in Allium plants have not been identified. In this study, we identified three genes, AsGGT1, AsGGT2, and AsGGT3, from garlic (Allium sativum that encode γ-glutamyl transpeptidases catalyzing the removal of the γ-glutamyl moiety from a putative biosynthetic intermediate of S-allyl-L-cysteine sulfoxide (alliin. The recombinant proteins of AsGGT1, AsGGT2, and AsGGT3 exhibited considerable deglutamylation activity toward a putative alliin biosynthetic intermediate, γ-glutamyl-S-allyl-L-cysteine, whereas these proteins showed very low deglutamylation activity toward another possible alliin biosynthetic intermediate, γ-glutamyl-S-allyl-L-cysteine sulfoxide. The deglutamylation activities of AsGGT1, AsGGT2, and AsGGT3 toward γ-glutamyl-S-allyl-L-cysteine were elevated in the presence of the dipeptide glycylglycine as a γ-glutamyl acceptor substrate, although these proteins can act as hydrolases in the absence of a proper acceptor substrate, except water. The apparent Km values of AsGGT1, AsGGT2, and AsGGT3 for γ-glutamyl-S-allyl-L-cysteine were 86 μM, 1.1 mM, and 9.4 mM, respectively. Subcellular distribution of GFP-fusion proteins transiently expressed in onion cells suggested that AsGGT2 localizes in the vacuole, whereas AsGGT1 and AsGGT3 possess no apparent transit peptide for localization to intracellular organelles. The different kinetic properties and subcellular localizations of AsGGT1, AsGGT2, and AsGGT3 suggest that these three GGTs may contribute differently to the biosynthesis of alliin in garlic.

  15. Preparation of platinum(IV) complexes with dipeptide and diimine. X-ray crystal structure and 195Pt NMR spectra.

    Watabe, Masatoshi; Fukuda, Hiroto; Kitsukawa, Koichiro; Nakajima, Hiroshi; Yukawa, Yasuhiko; Igarashi, Satoshi; Fujii, Yuki; Takayama, Toshio


    We prepared platinum(IV) complexes containing dipeptide and diimine or diamine, the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complex, where -N,N,O means dipeptide coordinated as a tridentate chelate, dipeptide=glycylglycine (NH(2)CH(2)CON(-)CH(2)COO(-), digly, where two protons of dipeptide are detached when the dipeptide coordinates to metal ion as a tridentate chelate), glycyl-L-alanine (NH(2)CH(2)CON(-)CHCH(3)COO(-), gly-L-ala), L-alanylglycine (NH(2)CH CH(3)CON(-)CH(2)COO(-), L-alagly), or L-alanyl-L-alanine (NH(2)CHCH(3)CON(-)CHCH(3)COO(-), dil-ala), and diimine or diamine=bipyridine (bpy), ethylenediamine (en), N-methylethylenediamine (N-Me-en), or N,N'-dimethylethylenediamine (N,N'-diMe-en). In the complexes containing gly-L-ala or dil-ala, two separate peaks of the (195)Pt NMR spectra of the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complexes appeared in, but in the complexes containing digly or L-alagly, one peak which contained two overlapped signals appeared. One of the two complexes containing gly-L-ala and bpy, [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3), crystallized and was analyzed. This complex has the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions of a=9.7906(3)A, b=11.1847(2)A, c=16.6796(2)A, Z=4. The crystal data revealed that this [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex has the near- (Cl, CH(3)) configuration of two possible isomers. Based on elemental analysis, the other complex must have the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) configuration. The (195)Pt NMR chemical shifts of the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex and the far- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex are 0 ppm and -19 ppm, respectively (0 ppm for the Na(2)[PtCl(6)] signal). The additive property of the (195)Pt NMR chemical shift is discussed. The (195)Pt NMR chemical shifts of [PtCl(dipeptide-N,N,O)(bpy)]Cl appeared at a higher field when the H attached to the dipeptide carbon atom was replaced with a

  16. [Cu(Gly-Gly)(Im)]·2H2O的合成、晶体结构及热化学性质%Synthesis of [Cu(Gly-Gly)(Im)]·2H2O with Its Crystal Structure and Thermochemical Characteristics

    赵艳茹; 王宏胜


    Complex [Cu(Gly-Gly)(Im)] -2H2O(s) was prepared by mixing the solution of copper sulfate pentahydrate, glycylglycine and imidazole. The crystal structure of [Cu (Gly-Gly) (Im)] ? 2H2O was determined by X-Ray single crystal diffraction. The crystal belongs monoclinic with space group P2,/n and unit-cell parameters are a= 1.0213(6)nm, b =0.7023(4)nm, c =1.591 l(9)nm, /3=102.393(9)°, V = 1.1147(1 l)nm3, and 2= 4, respectively. The dissolution enthalpies of CuSO4-5H2O(s)+Gly-Gly(s) + Na2SO4(s), Im(s) and [Cu(Gly-Gly) (Im)]· 2H2O(s), 2NaHSO4 · H2O(s) have been determined in 2mol/L HC1 solution by the classical solution calorimetry. According to Hess law, a thermochemical cycle is designed. By calculation, the reaction enthalpy of CuSO4-5H2O(s) + Gly-Gly (s) + Im(s) + Na2SO4(s) =[Cu (Gly-Glv)(Im)]-2H2O(s) + 2Na ·HSO4 · H2O(s) + H2O(1) is calculated, ΔΗθm(298.15K)=(36.763,4±1.132,5)kJ/mol, and furthermore the standard formation enthalpy of [Cu(Gly-Gly)(Im)] · 2H20(s) has also been calculated, ΔΗθm([Cu(Gly-Gly)(Im)]-2H2O(s), 298.15K)=(-l,770.3± 1.4)kJ/mol.%以五水硫酸铜、甘氨酰甘氨酸(Gly-Gly)、咪唑(Im)为原料,制备了甘氨酰甘氨酸咪唑铜配合物,通过×射线单晶衍射测定了配合物的结构.该晶体属单斜晶系,P21/n空间群,a=1.0213(6)nm,b=-0.7023(4)nm,c=1.5911 (9)nm,/3=102.393(9)°,V=1.1147(11)nm3,Z=4.用溶解量热法分别测定了CuSO4· 5H2O(s)+Gly-Gly(s)+Na2SO4(s)、lm(s)和[Cu(Gly-Gly)(Im)]· 2H2O(s)、NaHSO4·H2O(s)在2mol/L HCl中的溶解焓.根据Hess定律设计了一个热化学循环,计算得到CuSO4·5H2O(s)+Gly-Gly(s)+lm(s)+Na2SO4(s)=[Cu(Gly-Gly)(Im)]·2H2O(s)+2NaHSO4· H2O(s)+H2O(I)的反应焓△rHθm(298.15K) =(36.7634±1.1325)kJ/mol,进而求出[Cu(GlyGly)(Im)]·2H2O(s)的标准生成焓△fHθm{[Cu(Gly-Gly)(Im)]· 2H2O(s),298.15K}=(-1770.3±1.4)kJ/mol.

  17. Interactions between glycine derivatives and mineral surfaces: Implications for the origins of life on planetary surfaces

    Marshall-Bowman, K. J.; Cleaves, H. J.; Sverjensky, D. A.; Hazen, R. M.


    Various mechanisms could have delivered amino acids to the prebiotic Earth (Miller and Orgel 1974). The polymerization of amino acids may have been important for the origin of life, as peptides may have been components for the first self-replicating systems (Kauffman 1971; Yao et al 1998). Though amino acid concentrations in the primitive oceans were likely too dilute for significant oligomerization to occur (Cleaves et al 2009), mineral surface adsorption may have concentrated these biomolecules (Bernal 1951; Lambert 2008). Few studies have examined the catalytic effects of mineral surfaces on aqueous peptide oligomerization or degradation. As unactivated amino acid polymerization is thermodynamically unfavorable and kinetically slow in aqueous solution, we studied the reverse reaction of polymer degradation to measure potential mineral catalysis. Glycine (G) derivatives glycylglycine (GG), diketopiperazine (DKP), and glycylglycylglycine (GGG) were reacted with different minerals (calcite, hematite, montmorillonite, rutile, amorphous silica, and pyrite) in the presence of 0.05 M pH 8.1 KHCO3 buffer and 0.1 M NaCl as background electrolyte. Experiments were performed by reacting the aqueous amino acid derivative-mineral mixtures in a thermostatted oven (modified to accommodate a mechanical rotator) at 25°, 50° or 70°C. Samples were removed after 30, 60, 90, and 140 hours. Samples were then analyzed using high performance liquid chromatography to quantify the products. Besides mineral catalysis, it was determined that degradation of GGG proceeds principally via a GGG → DKP + G mechanism, rather than via GGG → GG + G. Below 70°C kinetics were generally too sluggish to detect catalytic activity over reasonable laboratory time-scales at this pH. At 70°C, pyrite was the only mineral with detectible catalytic effects on the degradation of GGG. GGG degraded ~ 1.5 - 4 x faster in the presence of pyrite than in control reactions, depending on the ratio of solution

  18. Novel biocompatible polymeric blends for bone regeneration: Material and matrix design and development

    Deng, Meng

    The first part of the work presented in this dissertation is focused on the design and development of novel miscible and biocompatible polyphosphazene-polyester blends as candidate materials for scaffold-based bone tissue engineering applications. Biodegradable polyesters such as poly(lactide-co-glycolide) (PLAGA) are among the most widely used polymeric materials for bone tissue engineering. However, acidic degradation products resulting from the bulk degradation mechanism often lead to catastrophic failure of the structure integrity, and adversely affect biocompatibility both in vitro and in vivo. One promising approach to circumvent these limitations is to blend PLAGA with other macromolecules that can buffer the acidic degradation products with a controlled degradation rate. Biodegradable polyphosphazenes (PPHOS), a new class of biomedical materials, have proved to be superior candidate materials to achieve this objective due to their unique buffering degradation products. A highly practical blending approach was adopted to develop novel biocompatible, miscible blends of these two polymers. In order to achieve this miscibility, a series of amino acid ester, alkoxy, aryloxy, and dipeptide substituted PPHOS were synthesized to promote hydrogen bonding interactions with PLAGA. Five mixed-substituent PPHOS compositions were designed and blended with PLAGA at different weight ratios producing candidate blends via a mutual solvent method. Preliminary characterization identified two specific side groups namely glycylglycine dipeptide and phenylphenoxy that resulted in improved blend miscibility and enhanced in vitro osteocompatibility. These findings led to the synthesis of a mixed-substituent polyphosphazene poly[(glycine ethyl glycinato)1(phenylphenoxy)1phosphazene] (PNGEGPhPh) for blending with PLAGA. Two dipeptide-based blends having weight ratios of PNGEGPhPh to PLAGA namely 25:75 (Matrix1) and 50:50 (Matrix2) were fabricated. Both of the blends were