WorldWideScience

Sample records for glycylglycine

  1. Gibbs energy of the resolvation of glycylglycine and its anion in aqueous solutions of dimethylsulfoxide at 298.15 K

    Science.gov (United States)

    Naumov, V. V.; Isaeva, V. A.; Kuzina, E. N.; Sharnin, V. A.

    2012-12-01

    Gibbs energies for the transfer of glycylglycine and glycylglycinate ions from water to water-dimethylsulfoxide solvents are determined from the interface distribution of substances between immiscible phases in the composition range of 0.00 to 0.20 molar fractions of DMSO at 298.15 K. It is shown that with a rise in the concentration of nonaqueous components in solution, we observe the solvation of dipeptide and its anion, due mainly to the destabilization of the carboxyl group.

  2. Densities and solubilities of Glycylglycine and Glycyl-L-Alanine in Aqueous Electrolyte Solutions

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Mollerup, Jørgen; Rudolph, E. Susanne J.

    2004-01-01

    Solubilities of glycylglycine and glycyl-L-alanine in aqueous electrolyte solutions containing 0-6 molal NaCl, 0-1 molal Na2SO4, and 0-1 molal (NH4)(2)SO4, have been determined experimentally at 298.15 K and atmospheric pressure. The solubility of glycylglycine and glycyl-L-alanine in pure water...... is 1.74 and 4.78 mol/kg of water, respectively. The solubility of glycylglycine in salt solutions of NaCl, Na2SO4, and (NH4)(2)SO4 show a moderate salting-in effect. The solubility of glycyl-L-alanine show a minor or no salting-in effect at low salt concentrations and a moderate salting-out effect...... at higher salt concentrations in NaCl and Na2SO4, and in (NH4)(2)SO4 the solubility is almost constant. The densities of the solutions have been determined experimentally, and the volume expansions by dissolving salt and dipeptide in water have been calculated. (C) 2003 Elsevier B.V. All rights reserved....

  3. Calculated yields of ammonia in the radiolysis of deoxygenated solutions of glycylglycine

    International Nuclear Information System (INIS)

    Bolch, W.E.; Turner, J.E.; Yoshida, H.; Jacobson, K.B.

    1988-01-01

    This paper presents detailed Monte Carlo simulations of physical and chemical interactions occurring within electron tracks in deoxygenated solutions of glycylglycine. Hydrated electrons produced within these tracks react with the solute to produce ammonia and a peptide secondary free radical. Calculated yields of ammonia are presented for a range of solute concentrations and electron energies. Excellent agreement is found between calculated and measured yields of ammonia in solutions irradiated by 250-kVp x-rays and 60 Co gamma rays. 12 refs., 5 figs

  4. Enthalpy of dilution and volumetric properties of N-glycylglycine in aqueous xylitol solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Liu Min; Wang Lili; Li Guangqian; Dong Lina; Sun Dezhi; Zhu Lanying; Di Youying

    2011-01-01

    Highlights: → Enthalpies of dilution of N-glycylglycine in aqueous xylitol solutions were determined at 298.15 K. → The homogeneous enthalpic interaction coefficients were calculated. → Apparent molar volumes of the ternary systems were calculated from the data of densities. → Limiting partial molar volumes and limiting partial molar volumes of transfer were deduced. - Abstract: The enthalpy of dilution of N-glycylglycine (Δ dil H m ) in aqueous xylitol solutions has been determined by means of flow-mix isothermal microcalorimetry at the temperature of 298.15 K. The homogeneous enthalpic interaction coefficients (h 2 , h 3 , and h 4 ) which characterize the interactions of examined N-glycylglycine in aqueous xylitol solutions have been calculated according to the excess enthalpy concept based on the values of dilution enthalpy. It has been found that the enthalpic pair interaction coefficients (h 2 ) in the systems investigated are negative and become less negative as the molality of xylitol increases. Values of the density (ρ) of the ternary homogeneous systems were also measured with a quartz vibrating-tube densimeter at the temperature of 298.15 K. The values of the apparent molar volume (V φ ) of the ternary systems were calculated from the data of density, which have been used to deduce limiting partial molar volumes of N-glycylglycine (V φ o ) and limiting partial molar volumes of transfer (Δ trs V φ o ) from water to aqueous xylitol solutions at different concentrations. The results have been discussed based on solute-solute interactions and solvation effects.

  5. Enthalpy of dilution and volumetric properties of N-glycylglycine in aqueous xylitol solutions at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Liu Min, E-mail: panpanliumin@163.co [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Wang Lili; Li Guangqian; Dong Lina; Sun Dezhi [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Zhu Lanying [College of Life Science and Bioengineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Di Youying [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China)

    2011-06-15

    Highlights: Enthalpies of dilution of N-glycylglycine in aqueous xylitol solutions were determined at 298.15 K. The homogeneous enthalpic interaction coefficients were calculated. Apparent molar volumes of the ternary systems were calculated from the data of densities. Limiting partial molar volumes and limiting partial molar volumes of transfer were deduced. - Abstract: The enthalpy of dilution of N-glycylglycine ({Delta}{sub dil}H{sub m}) in aqueous xylitol solutions has been determined by means of flow-mix isothermal microcalorimetry at the temperature of 298.15 K. The homogeneous enthalpic interaction coefficients (h{sub 2}, h{sub 3}, and h{sub 4}) which characterize the interactions of examined N-glycylglycine in aqueous xylitol solutions have been calculated according to the excess enthalpy concept based on the values of dilution enthalpy. It has been found that the enthalpic pair interaction coefficients (h{sub 2}) in the systems investigated are negative and become less negative as the molality of xylitol increases. Values of the density ({rho}) of the ternary homogeneous systems were also measured with a quartz vibrating-tube densimeter at the temperature of 298.15 K. The values of the apparent molar volume (V{sub {phi}}) of the ternary systems were calculated from the data of density, which have been used to deduce limiting partial molar volumes of N-glycylglycine (V{sub {phi}}{sup o}) and limiting partial molar volumes of transfer ({Delta}{sub trs}V{sub {phi}}{sup o}) from water to aqueous xylitol solutions at different concentrations. The results have been discussed based on solute-solute interactions and solvation effects.

  6. Dependence of the enthalpies of formation of glycylglycinate complexes of nickel(II) on the composition of a mixed water-dimethylsulfoxide solvent

    Science.gov (United States)

    Naumov, V. V.; Kovaleva, Yu. A.; Isaeva, V. A.; Usacheva, T. R.; Sharnin, V. A.

    2014-06-01

    The heat effects of the complexation reactions of nickel(II) with a glycylglycinate ion in a water-dimethylsulfoxide solvent in a range of compositions of 0.00-0.60 molar parts of dimethylsulfoxide (DMSO) (an ionic strength of 0.1 was maintained using sodium perchlorate) were determined by means of calorimetry at 298.15 K. It is established that the exothermicity of complexation reactions rises by the first two steps and falls upon the addition of a third glycylglycinate anion with an increase in the concentration of DMSO. It is shown that the formation of mono- and bis-glycylglycinate complexes of nickel(II) in a water-DMSO solvent is determined mostly by the enthalpic contribution. It is concluded that the formation of tris-ligand complexes is more associated with the entropic contribution.

  7. Measuring the enthalpies of interaction between glycine, L-cysteine, glycylglycine, and sodium dodecyl sulfate in aqueous solutions

    Science.gov (United States)

    Badelin, V. G.; Mezhevoi, I. N.; Tyunina, E. Yu.

    2017-03-01

    Calorimetric measurements of enthalpies of solution Δsol H m for glycine, L-cysteine, and glycylglycine in aqueous solutions of sodium dodecyl sulfate (SDS) with concentrations of up to 0.05 mol kg-1 are made. Standard enthalpy of solution Δsol H 0 and enthalpy of transfer Δtr H 0 of the dipeptide from water into mixed solvent are calculated. The calculated enthalpy coefficients of paired interactions of amino acids and dipeptide with SDS prove to be positive. Hydrophobic interactions between the biomolecules and SDS are found to have a major impact on the enthalpies of interaction in the three-component systems under study, within the indicated range of concentrations.

  8. Enthalpic interactions of N-glycylglycine with xylitol in aqueous sodium chloride and potassium chloride solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Liu Min; Wang Lili; Zhu Lanying; Li Hui; Sun Dezhi; Di Youying; Li Linwei

    2010-01-01

    The mixing enthalpies of N-glycylglycine with xylitol and their respective enthalpies of dilution in aqueous sodium chloride and potassium chloride solutions have been determined by using flow-mix isothermal microcalorimetry at the temperature of 298.15 K. These experimental results have been used to determine the heterotactic enthalpic interaction coefficients (h xy , h xxy , and h xyy ) according to the McMillan-Mayer theory. It has been found that the heterotactic enthalpic pairwise interaction coefficients h xy between N-glycylglycine and xylitol in aqueous sodium chloride and potassium chloride solutions are negative and become less negative with an increase in the molality of sodium chloride or potassium chloride. The results are discussed in terms of solute-solute and solute-solvent interactions.

  9. Enthalpic interactions of N-glycylglycine with xylitol in aqueous sodium chloride and potassium chloride solutions at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Liu Min, E-mail: panpanliumin@163.co [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Wang Lili [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Zhu Lanying [College of Life Science and Bioengineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Li Hui; Sun Dezhi; Di Youying; Li Linwei [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China)

    2010-07-15

    The mixing enthalpies of N-glycylglycine with xylitol and their respective enthalpies of dilution in aqueous sodium chloride and potassium chloride solutions have been determined by using flow-mix isothermal microcalorimetry at the temperature of 298.15 K. These experimental results have been used to determine the heterotactic enthalpic interaction coefficients (h{sub xy}, h{sub xxy}, and h{sub xyy}) according to the McMillan-Mayer theory. It has been found that the heterotactic enthalpic pairwise interaction coefficients h{sub xy} between N-glycylglycine and xylitol in aqueous sodium chloride and potassium chloride solutions are negative and become less negative with an increase in the molality of sodium chloride or potassium chloride. The results are discussed in terms of solute-solute and solute-solvent interactions.

  10. Physicochemical Behavior of Some Amino Acids/Glycylglycine in Aqueous D-Galactose Solutions at Different Temperatures

    Science.gov (United States)

    Ali, Anwar; Patel, Rajan; Shahjahan; Ansari, Nizamul Haque

    2010-03-01

    The apparent molar volumes {(overline{V_2})} for glycine (Gly), l-alanine (Ala), phenylalanine (Phe), and glycylglycine (Gly-Gly) in 0.10 m aqueous d-galactose solutions have been determined from density measurements at (298.15, 303.15, 308.15, and 313.15) K. The data for {(overline{V_2})} were utilized to estimate the partial molar volume at infinite dilution {(overline{V_2^0})} , and experimental slope {(S_v^ast)} . The transfer volume, {(overline{V2^0}_(tr))} , and hydration number, ( n H) were also evaluated. The viscosity data were used to evaluate A- and B-coefficients of the Jones-Dole equation, the free energy of activation of viscous flow per mole of the solvent {left(Δ μ1^{0ast} right)} and the solute {left(Δ μ 2^{0ast} right)} . The molar refractivity ( R D) was calculated from refractive index data. The results were discussed in terms of hydrophilic-ionic, hydrophilic-hydrophobic, and hydrophobic-hydrophobic interactions, and structure-making/-breaking ability of the solute (AAs/peptide) in aqueous d-galactose solutions.

  11. A new dermocosmetic containing retinaldehyde, delta-tocopherol glucoside and glycylglycine oleamide for managing naturally aged skin: results from in vitro to clinical studies

    Directory of Open Access Journals (Sweden)

    Rouvrais C

    2017-02-01

    Full Text Available Céline Rouvrais,1,* Daniel Bacqueville,2,* Patrick Bogdanowicz,2,* Marie-José Haure,2 Laure Duprat,2 Christine Coutanceau,3 Nathalie Castex-Rizzi,2 Hélène Duplan,2 Valérie Mengeaud,1 Sandrine Bessou-Touya2 1Clinical Skin Research Center, 2Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse, 3Laboratoire Dermatologique Avène, Lavaur, France *These authors contributed equally to this work Introduction: Natural aging of skin tissues, the addition of the cumulative action of the time and radiation exposure result in skin atrophy, wrinkles and degeneration of the extracellular matrix (ECM. The aim of the study was to investigate the beneficial effect of a combination containing retinaldehyde (RAL, delta-tocopherol glucoside (delta-TC and glycylglycine oleamide (GGO and of a dermocosmetic containing the combination. Materials and methods: The protective effect of the combination was assessed through in vitro gene expression of ultraviolet (UV-irradiated fibroblasts. A skin aging assay using UV light on ex vivo skin samples and a clinical study conducted in 36 women aged from 35 to 55 years with a minimum of level 4 to a maximum of level 6 on the crow’s feet photoscale assessed the antiaging effect of the dermocosmetic. Results: When added to UV-irradiated fibroblasts, the combination substantially improved the ECM in activating the elastin fiber production (fibrillin 2, fibulin 1 and 5 and lysyl ­oxidase-like 2 as well as that of proteins involved in the cellular ECM interactions (integrin β1, paxillin and actin a2. An ex vivo photodamaged human skin model showed that the dermocosmetic formulation containing the combination of the active ingredients protected the elastic network against UV-induced alterations including both elastin and fibrillin-rich fibers in the dermis. A daily application of the dermocosmetic for 2 months on naturally aged skin resulted in a statistically significant improvement (p<0.05 of visible

  12. A new dermocosmetic containing retinaldehyde, delta-tocopherol glucoside and glycylglycine oleamide for managing naturally aged skin: results from in vitro to clinical studies.

    Science.gov (United States)

    Rouvrais, Céline; Bacqueville, Daniel; Bogdanowicz, Patrick; Haure, Marie-José; Duprat, Laure; Coutanceau, Christine; Castex-Rizzi, Nathalie; Duplan, Hélène; Mengeaud, Valérie; Bessou-Touya, Sandrine

    2017-01-01

    Natural aging of skin tissues, the addition of the cumulative action of the time and radiation exposure result in skin atrophy, wrinkles and degeneration of the extracellular matrix (ECM). The aim of the study was to investigate the beneficial effect of a combination containing retinaldehyde (RAL), delta-tocopherol glucoside (delta-TC) and glycylglycine ole-amide (GGO) and of a dermocosmetic containing the combination. The protective effect of the combination was assessed through in vitro gene expression of ultraviolet (UV)-irradiated fibroblasts. A skin aging assay using UV light on ex vivo skin samples and a clinical study conducted in 36 women aged from 35 to 55 years with a minimum of level 4 to a maximum of level 6 on the crow's feet photoscale assessed the antiaging effect of the dermocosmetic. When added to UV-irradiated fibroblasts, the combination substantially improved the ECM in activating the elastin fiber production ( fibrillin 2 , fibulin 1 and 5 and lysyl oxidase-like 2 ) as well as that of proteins involved in the cellular ECM interactions ( integrin b1 , paxillin and actin a2 ). An ex vivo photodamaged human skin model showed that the dermocosmetic formulation containing the combination of the active ingredients protected the elastic network against UV-induced alterations including both elastin and fibrillin-rich fibers in the dermis. A daily application of the dermocosmetic for 2 months on naturally aged skin resulted in a statistically significant improvement ( p care of naturally aged skin in women aged 35-55 years.

  13. Partial molar volumes of L-alanine, DL-serine, DL-threonine, L-histidine, glycine, and glycylglycine in water, NaCl, and DMSO aqueous solutions at T 298.15 K

    International Nuclear Information System (INIS)

    Yuan Quan; Li Zhifen; Wang Baohuai

    2006-01-01

    The apparent molar volumes of L-alanine, DL-serine, DL-threonine, L-histidine, glycine, and glycylglycine in water and in the aqueous solutions of NaCl and DMSO with various concentrations at T = 298.15 K have been measured by the precise vibrating-tube digital densimeter. The calculated partial molar volumes at infinite dilution have been used to obtain corresponding transfer volumes from water to various solutions. The experimental results show that the standard partial molar volumes of the above amino acids and peptide at the dilute DMSO aqueous solutions are very close to those in water. However, the volumes show several types of variations with the increase of the concentrations of DMSO due to different types of side chain of amino acids, which should be discussed specifically. The NaCl changes considerably the infinite dilution standard partial molar volumes of the above amino acids and peptide in the aqueous solutions. The infinite dilution standard partial molar volumes of the each amino acids and peptide increase with the concentrations of NaCl. The experimental results have been rationalized by a cosphere overlap model

  14. Speciation Studies of Some Toxic Metal Complexes of Glycylglycine ...

    African Journals Online (AJOL)

    NICO

    mixtures apart from its established utility in understanding ... Chemical speciation of metals is important for an understand- ... Titrations with differ- ent ratios (1:2.5, 1:3.5 and 1:5) of metal-ligand were performed with 0.4 mol L–1 sodium hydroxide solution. The mixtures obtained from PG and water are non-ideal due.

  15. A chimeric LysK-lysostaphin fusion enzyme lysing Staphylococcus aureus cells: a study of both kinetics of inactivation and specifics of interaction with anionic polymers

    Science.gov (United States)

    A staphylolytic fusion protein (K-L) was created, harboring three unique lytic activities comprised of the LysK CHAP endopeptidase, and amidase domains, and the lysostaphin glycyl-glycine endopeptidase domain. To assess the potential of possible therapeutic applications, the kinetic behavior of K-L...

  16. Distribution coefficients of amino acid, peptide and enzyme in respect to aqueous two phase system composed of dextran, polyethylene glycol and water; Dekisutoran+poriechiren gurikoru+mizu karanaru suiseinisokei ni taisuru aminosan, pepuchido oyobi koso no bunpai keisu

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Yoshio [Kyushu University, Fukuoka (Japan); Kakizaka, Keijiro; Shindo, Takashi; Ishida, Otetsu; Arai, Yasuhiko

    1999-01-05

    Distribution coefficients of five kinds of amino acids (aspartic acid, asparagines, methionine, cysteine and cytidine) and two kinds of peptides (glycylglycine and hexane glycine) were measured. These distribution coefficients are in good correlation with the osmosis viral expression. The interaction parameter in the osmosis viral expression can be estimated by hydrophilic group parameter. The distribution coefficient of {alpha}-amylase was estimated by the osmosis viral expression using the above-mentioned hydrophilic group parameter, and the estimated value showed substantially good correspondence with the actually measured value, but for the distribution coefficient of {beta}-amylase, no coincidence was found. (translated by NEDO)

  17. Comparison of biomolecule desorption yields for low and high energy primary ions

    International Nuclear Information System (INIS)

    Kamensky, I.; Hakansson, P.; Sundqvist, B.; McNeal, C.J.; MacFarlane, R.

    1982-01-01

    Ion induced desorption yields of molecular ions from samples of cesium iodide, glycylglycine, ergosterol, bleomycin and a trinucleoside diphosphate have been studied using primary beams of 54 MeV 63 Cu 9+ and 3 keV 133 Cs + . Mass analysis was performed with a time-of-flight technique. Each sample was studied with the same spectrometer for both low and high energy primary ions and without opening of the vacuum chamber in between the measurements. The results show that fast heavy ions give larger yields for all samples studied and that the yield ratios for high to low energy desorption increase with the mass of the sample molecule. (orig.)

  18. Chlorine-Resistant Polyamide Reverse Osmosis Membrane with Monitorable and Regenerative Sacrificial Layers.

    Science.gov (United States)

    Huang, Hai; Lin, Saisai; Zhang, Lin; Hou, Li'an

    2017-03-22

    Improving chlorine stability is a high priority for aromatic polyamide (PA) reverse osmosis (RO) membranes especially in long-term desalination. In this Research Article, PA RO membranes of sustainable chlorine resistance was synthesized. Glycylglycine (Gly) was grafted onto the membrane surface as a regenerative chlorine sacrificial layer, and the zeta-potential was used to monitor the membrane performance and to conduct timely regeneration operations for chlorinated Gly. The Gly-grafted PA membrane exhibited ameliorative chlorine resistance in which the N-H moiety of glycylglycine served as sacrificial pendants against chlorine attacks. Cyclic chlorination experiments, combined with FT-IR and XPS analysis, were carried out to characterize the membrane. Results indicated that the resulting N-halamines could be fast regenerated by a simple alkaline reduction step (pH 10). A synchronous relationship between the zeta-potential and the chlorination extent of the sacrificial layer was observed. This indicated that the zeta-potential can be used as an on-site sensor to conduct a timely regeneration operation. The intrinsic mechanism of the surface sacrificial process was also studied.

  19. Radiolysis of water in the vicinity of passive surfaces

    International Nuclear Information System (INIS)

    Moreau, S.; Fenart, M.; Renault, J.P.

    2014-01-01

    Highlights: • HO° production through water radiolysis is enhanced near metal surfaces. • Hastelloy and Stainless steel surfaces can also produce HO° radicals through hydrogen peroxide activation. • There is a deficit in solvated electron production compared to hydroxyl radicals near metal surfaces. - Abstract: Porous metals were used to describe the water radiolysis in the vicinity of metal surfaces. The hydroxyl radical production under gamma irradiation was measured by benzoate scavenging in water confined in a 200 nm porous Ni base alloy or in Stainless steel. The presence of the metallic surfaces changed drastically the HO° production level and lifetime. The solvated electron production was measured via glycylglycine scavenging for Stainless steel and was found to be significantly smaller than hydroxyl production. These observations imply that interfacial radiolysis may deeply impact the corrosion behavior of the SS and Ni based alloys

  20. Synthesis and magnetic properties of heteronuclear 3d-4f compound

    International Nuclear Information System (INIS)

    Cristovao, B.; Ferenc, W.

    2007-01-01

    A novel heteronuclear 3d-4f compound having formula NdCu 3 L 3 ·13H 2 O (where H 3 L = Schiff base derived from 5-bromosalicylaldehyde and glycylglycine and L 3 = C 11 H 8 N 2 O 4 Br) was obtained. It was characterized by elemental and thermal analyses and magnetic measurements. The Cu(II)-Nd(III) compound is stable up to 323 K. During dehydration process the water molecules are lost in two stages. The magnetic susceptibility data for this complex change with temperature according to the Curie-Weiss law with Θ = -35 K. The magnetic moment values decrease from 5.00μ B at 303 K to 4.38μB at 76 K. (author)

  1. Molecularly imprinted solid-phase extraction of glutathione from urine samples

    International Nuclear Information System (INIS)

    Song, Renyuan; Hu, Xiaoling; Guan, Ping; Li, Ji; Zhao, Na; Wang, Qiaoli

    2014-01-01

    Molecularly imprinted polymer (MIP) particles for glutathione were synthesized through iniferter-controlled living radical precipitation polymerization (IRPP) under ultraviolet radiation at ambient temperature. Static adsorption, solid-phase extraction, and high-performance liquid chromatography were carried out to evaluate the adsorption properties and selective recognition characteristics of the polymers for glutathione and its structural analogs. The obtained IRPP-MIP particles exhibited a regularly spherical shape, rapid binding kinetics, high imprinting factor, and high selectivity compared with the MIP particles prepared using traditional free-radical precipitation polymerization. The selective separation and enrichment of glutathione from the mixture of glycyl-glycine and glutathione disulfide could be achieved on the IRPP-MIP cartridge. The recoveries of glutathione, glycyl-glycine, and glutathione disulfide were 95.6% ± 3.65%, 29.5% ± 1.26%, and 49.9% ± 1.71%, respectively. The detection limit (S/N = 3) of glutathione was 0.5 mg·L −1 . The relative standard deviations (RSDs) for 10 replicate detections of 50 mg·L −1 of glutathione were 5.76%, and the linear range of the calibration curve was 0.5 mg·L −1 to 200 mg·L −1 under optimized conditions. The proposed approach was successfully applied to determine glutathione in spiked human urine samples with recoveries of 90.24% to 96.20% and RSDs of 0.48% to 5.67%. - Highlights: • Imprinted polymer particles were prepared by IRPP at ambient temperature. • High imprinting factor, high selectivity, and rapid binding kinetics were achieved. • Selective solid-phase extraction of glutathione from human urine samples

  2. Clustered DNA damage induced by proton and heavy ion irradiation

    International Nuclear Information System (INIS)

    Davidkova, M.; Pachnerova Brabcova, K; Stepan, V.; Vysin, L.; Sihver, L.; Incerti, S.

    2014-01-01

    Ionizing radiation induces in DNA strand breaks, damaged bases and modified sugars, which accumulate with increasing density of ionizations in charged particle tracks. Compared to isolated DNA damage sites, the biological toxicity of damage clusters can be for living cells more severe. We investigated the clustered DNA damage induced by protons (30 MeV) and high LET radiation (C 290 MeV/u and Fe 500 MeV/u) in pBR322 plasmid DNA. To distinguish between direct and indirect pathways of radiation damage, the plasmid was irradiated in pure water or in aqueous solution of one of the three scavengers (coumarin-3-carboxylic acid, dimethylsulfoxide, and glycylglycine). The goal of the contribution is the analysis of determined types of DNA damage in dependence on radiation quality and related contribution of direct and indirect radiation effects. The yield of double strand breaks (DSB) induced in the DNA plasmid-scavenger system by heavy ion radiation was found to decrease with increasing scavenging capacity due to reaction with hydroxyl radical, linearly with high correlation coefficients. The yield of non-DSB clusters was found to occur twice as much as the DSB. Their decrease with increasing scavenging capacity had lower linear correlation coefficients. This indicates that the yield of non-DSB clusters depends on more factors, which are likely connected to the chemical properties of individual scavengers. (authors)

  3. A recursive microfluidic platform to explore the emergence of chemical evolution

    Directory of Open Access Journals (Sweden)

    David Doran

    2017-08-01

    Full Text Available We propose that a chemically agnostic approach to explore the origin of life, using an automated recursive platform based on droplet microfluidics, could be used to induce artificial chemical evolution by iterations of growth, speciation, selection, and propagation. To explore this, we set about designing an open source prototype of a fully automated evolution machine, comprising seven modules. These modules are a droplet generator, droplet transfer, passive and active size sorting, splitter, incubation chamber, reservoir, and injectors, all run together via a LabVIEWTM program integration system. Together we aim for the system to be used to drive cycles of droplet birth, selection, fusion, and propagation. As a proof of principle, in addition to the working individual modules, we present data showing the osmotic exchange of glycylglycine containing and pure aqueous droplets, showing that the fittest droplets exhibit higher osomolarity relative to their neighbours, and increase in size compared to their neighbours. This demonstrates the ability of our platform to explore some different physicochemical conditions, combining the efficiency and unbiased nature of automation with our ability to select droplets as functional units based on simple criteria.

  4. Evaluation of sup(99m)Tc labeled amino acids as radiopharmaceuticals, 4. S-substituted cysteines and N-substituted iminodiacetic acids

    Energy Technology Data Exchange (ETDEWEB)

    Karube, Yoshiharu; Maeda, Tatsuo; Ohya, Masato; Sugata, Setsuro; Kono, Akira (Kyushu Cancer Center Research Inst., Fukuoka (Japan)); Matsushima, Yoshikazu

    1982-06-01

    Sixteen sup(99m)Tc labeled ligands were evaluated as scintigraphic agents. The ligands studied were cysteine, glutathione, their S-substituted derivatives, lysine-N sup(epsilon), N sup(epsilon)-diacetic acid, glycylglycine-N,N-diacetic acid, glycylglycylglycine-N,N-diacetic acid, taurine-N,N-diacetic acid, hydrazine-N,N-diacetic acid, ethylenediamine-N,N-diacetic acid, and propylne-1,3-diamine-N/sup 1/-,N/sup 1/-diacetic acid. The ligands were labeled with sup(99m)Tc by the SnCl/sub 2/ method with more than 95% yield. The in vivo behavior of the sup(99m)Tc labeled ligands were studied in golden hamsters and dogs. The organ distribution in golden hamsters indicated clearance both by hepatobiliary and renal systems. The pancreas/blood ratios were much lower in the sup(99m)Tc ligands than in /sup 75/Se-selenomethionine. Scintigraphic studies in dogs showed that the liver and kidneys were well visualized but the accumulation by the pancreas was not sufficient for clear visualization.

  5. Feedback inhibition of ammonium (methylammonium) ion transport in Escherichia coli by glutamine and glutamine analogs

    International Nuclear Information System (INIS)

    Jayakumar, A.; Hong, J.S.; Barnes, E.M. Jr.

    1987-01-01

    When cultured with glutamate or glutamine as the nitrogen source, Escherichia coli expresses a specific ammonium (methylammonium) transport system. Over 95% of the methylammonium transport activity in washed cells was blocked by incubation with 100 μM L-glutamine in the presence of chloramphenicol (100 μg/ml). The inhibition of transport by L-glutamine was noncompetitive with respect to the [ 14 C]methylammonium substrate. D-Glutamine had no significant effect. The glutamine analogs γ-L-glutamyl hydroxamate and γ-L-glutamyl hydrazide were also noncompetitive inhibitors of methylammonium transport, suggesting that glutamine metabolism is not required. The role of the intracellular glutamine pool in the regulation of ammonium transport was investigated by using mutants carrying defects in the operon of glnP, the gene for the glutamine transporter. The glnP mutants had normal rates of methylammonium transport but were refractory to glutamine inhibition. Glycylglycine, a noncompetitive inhibitor of methylammonium uptake in wild-type cells, was equipotent in blocking transport in glnP mutants. Although ammonium transport is also subject to repression by growth of E. coli in the presence of ammonia, this phenomenon is unrelated to glutamine inhibition

  6. Synthesis, formulation of nucleo-equipment and biological studies of the 99m Tc-MAG3

    International Nuclear Information System (INIS)

    Reyes H, L.; Lezama C, J.; Ferro F, G.

    1991-10-01

    Technetium-99m-mercaptoacetyl glycylglycylglycine ( 99m Tc-MAG 3 ) is introduced to replace o-iodohippurate (OIH) for renal function studies. In this paper we present the synthesis, labelling and biological evaluation of 99m Tc- MAG 3 prepared in our laboratory. The precursor s-benzoyl-mercaptoacetyl glycyl glycylglycine (Bz-MAG 3 ) was synthesized by condensation of glycylglycylglycine with chloroacetyl chloride to obtain chloroacetyl glycylglycylglycine and this product was condensate with sodium thiobenzoate. The Bz-MAG 3 was characterized by IR and NMR. The labelling with 99m Tc was carried out at pH 9.0 using stannous chloride as a reducing agent with heating to boiling for 15 min. The benzoyl group is lost in this step, forming 99m Tc-MAG 3 complex with radiochemical purity of 99%. The biodistribution properties were evaluated in mice and a rapid renal extraction was apparent at the 10 minutes value (51.65% of the injected dose). The radiotracer was administered to 5 patients showing a good biological behavior. Based on these results, the 99m Tc-MAG 3 is expected to have widespread clinical utility in Mexico. (Author)

  7. Synthesis, formulation of nucleo-equipment and biological studies of the {sup 99m} Tc-MAG{sub 3}; Sintesis, formulacion de nucleo-equipos y estudios biologicos de la {sup 99m} Tc-MAG{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Reyes H, L; Lezama C, J; Ferro F, G

    1991-10-15

    Technetium-99m-mercaptoacetyl glycylglycylglycine ({sup 99m}Tc-MAG{sub 3}) is introduced to replace o-iodohippurate (OIH) for renal function studies. In this paper we present the synthesis, labelling and biological evaluation of {sup 99m}Tc- MAG{sub 3} prepared in our laboratory. The precursor s-benzoyl-mercaptoacetyl glycyl glycylglycine (Bz-MAG{sub 3} ) was synthesized by condensation of glycylglycylglycine with chloroacetyl chloride to obtain chloroacetyl glycylglycylglycine and this product was condensate with sodium thiobenzoate. The Bz-MAG{sub 3} was characterized by IR and NMR. The labelling with {sup 99m}Tc was carried out at pH 9.0 using stannous chloride as a reducing agent with heating to boiling for 15 min. The benzoyl group is lost in this step, forming {sup 99m}Tc-MAG{sub 3} complex with radiochemical purity of 99%. The biodistribution properties were evaluated in mice and a rapid renal extraction was apparent at the 10 minutes value (51.65% of the injected dose). The radiotracer was administered to 5 patients showing a good biological behavior. Based on these results, the {sup 99m}Tc-MAG{sub 3} is expected to have widespread clinical utility in Mexico. (Author)

  8. Changes in intestinal absorption of nutrients and brush border glycoproteins after total parenteral nutrition in rats.

    Science.gov (United States)

    Miura, S; Tanaka, S; Yoshioka, M; Serizawa, H; Tashiro, H; Shiozaki, H; Imaeda, H; Tsuchiya, M

    1992-01-01

    The effect of total parenteral nutrition on nutrients absorption and glycoprotein changes of brush border membrane was examined in rat small intestine. In total parenteral nutrition rats, a marked decrease in activity of brush border enzymes was observed mainly in the proximal and middle segments of the intestine. Galactose perfusion of jejunal segment showed that hexose absorption was significantly inhibited, while intestinal absorption of glycine or dipeptide, glycylglycine was not significantly affected by total parenteral nutrition treatment. When brush border membrane glycoprotein profile was examined by [3H]-glucosamine or [3H]-fucose incorporation into jejunal loops, significant changes were observed in the glycoprotein pattern of brush border membrane especially in the high molecular weight range over 120 kDa after total parenteral nutrition treatment, suggesting strong dependency of glycoprotein synthesis on luminal substances. Molecular weight of sucrase isomaltase in brush border membrane detected by specific antibody showed no significant difference, however, in total parenteral nutrition and control rats. Also, molecular weight of specific sodium glucose cotransporter of intestinal brush border membrane detected by selective photoaffinity labelling was not altered in total parenteral nutrition rats. It may be that prolonged absence of oral food intake may produce significant biochemical changes in brush border membrane glycoprotein and absorptive capacity of small intestine, but these changes were not observed in all brush border membrane glycoproteins. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1582592

  9. The formation of amino acid and dipeptide complexes with α-cyclodextrin and cucurbit[6]uril in aqueous solutions studied by titration calorimetry

    International Nuclear Information System (INIS)

    Buschmann, H.-J.; Schollmeyer, E.; Mutihac, L.

    2003-01-01

    The complex stabilities and the thermodynamic data for the complexation of α-cyclodextrin and cucurbit[6]uril with some amino acids (glycine, L-alanine, L-valine, L-phenylalanine, 6-amino hexanoic acid, 8-amino octanoic acid, 11-amino undecanoic acid) and dipeptides (glycyl-glycine, glycyl-L-valine, glycyl-L-leucine and glycyl-L-phenylalanine) have been determined in aqueous solution by calorimetric titrations. The complex formation with α-cyclodextrin is mainly favoured by entropic contributions due to the release of water molecules from the cavity of the ligand. The values of the reaction enthalpies are small with the exception of 11-amino undecanoic acid. In case of the ligand cucurbit[6]uril, ion-dipole interactions between the protonated amino groups of the amino acids and the carbonyl groups take place. By steric reasons these interactions are lowered for native amino acids because the polar carboxylic groups are always located outside the hydrophobic cavity of cucurbit[6]uril. The complexes of both ligands with dipeptides in water are characterised by hydrophobic interactions and in case of cucurbit[6]uril by additional ion-dipole interactions

  10. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne, E-mail: egarand@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706 (United States)

    2015-11-28

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ions having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.

  11. Crystal Structure of the LasA Virulence Factor from Pseudomonas aeruginosa: Substrate Specificity and Mechanism of M23 Metallopeptidases

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, James; Murphy, Loretta M.; Conners, Rebecca; Sessions, Richard B.; Gamblin, Steven J. (Wales); (Bristol Med Sci); (NIMR)

    2010-09-21

    Pseudomonas aeruginosa is an opportunist Gram-negative bacterial pathogen responsible for a wide range of infections in immunocompromized individuals and is a leading cause of mortality in cystic fibrosis patients. A number of secreted virulence factors, including various proteolytic enzymes, contribute to the establishment and maintenance of Pseudomonas infection. One such is LasA, an M23 metallopeptidase related to autolytic glycylglycine endopeptidases such as Staphylococcus aureus lysostaphin and LytM, and to DD-endopeptidases involved in entry of bacteriophage to host bacteria. LasA is implicated in a range of processes related to Pseudomonas virulence, including stimulating ectodomain shedding of the cell surface heparan sulphate proteoglycan syndecan-1 and elastin degradation in connective tissue. Here we present crystal structures of active LasA as a complex with tartrate and in the uncomplexed form. While the overall fold resembles that of the other M23 family members, the LasA active site is less constricted and utilizes a different set of metal ligands. The active site of uncomplexed LasA contains a five-coordinate zinc ion with trigonal bipyramidal geometry and two metal-bound water molecules. Using these structures as a starting point, we propose a model for substrate binding by LasA that explains its activity against a wider range of substrates than those used by related lytic enzymes, and offer a catalytic mechanism for M23 metallopeptidases consistent with available structural and mutagenesis data. Our results highlight how LasA is a structurally distinct member of this endopeptidase family, consistent with its activity against a wider range of substrates and with its multiple roles in Pseudomonas virulence.

  12. Thermodynamics of the interactions of some amino acids and peptides with dodecyltrimethylammonium bromide and tetradecyltrimethylammonium bromide

    International Nuclear Information System (INIS)

    Talele, Paurnima; Kishore, Nand

    2014-01-01

    Highlights: • Interactions of amino acids and peptides were studied with two cationic surfactants. • Partial molar properties and hydration numbers did not change significantly. • Measured properties indicate balance of polar and non-polar interactions. • Peptide bonds did not strengthen the extent of polar interactions with surfactant. • Results provide quantitative fine details of cationic surfactant–amino acids/peptides interactions. -- Abstract: The values of apparent molar volume V 2,ϕ and apparent molar adiabatic compressibility K S,2,ϕ of amino acids glycine, L-alanine, DL-α-amino-n-butyric acid, L-valine, L-leucine and peptides glycyl-glycine, glycyl-glycyl-glycine and glycyl-leucine have been determined in aqueous solutions of cationic surfactants dodecyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB) by means of density and sound velocity measurements. The heat evolved or absorbed (q) during the course of interactions of amino acids and peptides with the aqueous solutions of surfactants were determined by isothermal titration calorimetry at T = 298.15 K. The values of standard partial molar volume V 2,m 0 and standard partial molar adiabatic compressibility K s,2,m 0 at infinite dilution were calculated from the values of V 2,ϕ and K S,2,ϕ . Similarly the values of limiting enthalpies of dilution (Δ dil H 0 ) of the amino acids/peptides were calculated from heat evolved or absorbed during calorimetric experiments. The standard partial molar quantities of transfer from water to aqueous surfactant solutions have been used to identify the interactions of amino acids and peptides with surfactants in terms of ionic–ionic, ionic–hydrophobic and hydrophobic–hydrophobic group interactions

  13. Isolation and Characterisation of Some Microalgae Bioactive Molecules

    Directory of Open Access Journals (Sweden)

    Emeka Ugoala

    2016-12-01

    Full Text Available This study involved the isolation, structure elucidation, and biological screening of secondary metabolites in freshwater microalgae for bioactive and chemically novel compounds. Isolates were fractionated and purified from the methanol, ethyl acetate, dichloromethane, petroleum ether and aqueous extracts of microalgae via column chromatography technique over silica gel using a gradient mixture of solvents. The chemical structures of isolated compounds have been elucidated using Solid-state cross polarization (CP and magic angle spinning (MAS 13C-NMR spectroscopic technique at spectrometer frequency at a field strength corresponding to 91.3695 MHz for 13C and 363.331 MHz for 1H. Of the nine compounds isolated, eight have a glycan skeleton with attached amino acids units. Two of the eight contain beta amino acids units. These are not very common metabolites but hold promise as drug leads. The elements of diversity in the isolates were the gluco and manno configurations of the pyranose ring, the α-configurations at the anomeric centre, and the positions of the carbohydrate and amino acid sectors in the ring. These molecules are not easily available through gene technology since they are post translational products resulting from the activity of glycosyl hydrolases and transferases. The chemical shifts were rationalized in terms of the number of sugar residues, the sugar ring structures, the positions and anomeric configurations of the inter-sugar linkages. Considering all the NMR data, it was concluded that the compounds were glycylglycylglycylglycine, α-D-glucopyranosyl-2-amino-4-methylpentanoic acid, α-D-glucopyranosyl-2-methylamino-4-methylpentanoic acid, α-D-glucopyranosyl-2-amino-4-methylpentanoate, α-D-glucopyranosyl-glycylglycine, α-D-glucopyranosyl-3-aminobutanoic acid, α-D-glucopyranosyl-2,4,7-triaminooctantrioic acid, α-D-mannopyranosyl-2-amino-3-methylbutanoic acid and α-D-mannopyranosyl-3-aminobutanoic acid.

  14. A Chimeric LysK-Lysostaphin Fusion Enzyme Lysing Staphylococcus aureus Cells: a Study of Both Kinetics of Inactivation and Specifics of Interaction with Anionic Polymers.

    Science.gov (United States)

    Filatova, Lyubov Y; Donovan, David M; Ishnazarova, Nadiya T; Foster-Frey, Juli A; Becker, Stephen C; Pugachev, Vladimir G; Balabushevich, Nadezda G; Dmitrieva, Natalia F; Klyachko, Natalia L

    2016-10-01

    A staphylolytic fusion protein (chimeric enzyme K-L) was created, harboring three unique lytic activities composed of the LysK CHAP endopeptidase, and amidase domains, and the lysostaphin glycyl-glycine endopeptidase domain. To assess the potential of possible therapeutic applications, the kinetic behavior of chimeric enzyme K-L was investigated. As a protein antimicrobial, with potential antigenic properties, the biophysical effect of including chimeric enzyme K-L in anionic polymer matrices that might help reduce the immunogenicity of the enzyme was tested. Chimeric enzyme K-L reveals a high lytic activity under the following optimal ( opt ) conditions: pH opt 6.0-10.0, t opt 20-30 °C, NaCl opt 400-800 mM. At the working temperature of 37 °C, chimeric enzyme K-L is inactivated by a monomolecular mechanism and possesses a high half-inactivation time of 12.7 ± 3.0 h. At storage temperatures of 22 and 4 °C, a complex mechanism (combination of monomolecular and bimolecular mechanisms) is involved in the chimeric enzyme K-L inactivation. The optimal storage conditions under which the enzyme retains 100 % activity after 140 days of incubation (4 °C, the enzyme concentration of 0.8 mg/mL, pH 6.0 or 7.5) were established. Chimeric enzyme K-L is included in complexes with block-copolymers of poly-L-glutamic acid and polyethylene glycol, while the enzyme activity and stability are retained, thus suggesting methods to improve the application of this fusion as an effective antimicrobial agent.

  15. The 11th Werner Brandt workshop on charged particle penetration phenomena

    International Nuclear Information System (INIS)

    1989-09-01

    This report contains the following papers: energy loss of a charged particle moving near the surface of a superlattice; image states on insulators; potential barrier for tunneling electrons in STM; elastic and inelastic interaction in STEM; excitonic interaction in GaAs/GaA ell As quantum wells; recoil saturation of the self-energy in atomic systems; review of convoy electron phenomena; transport theory for convoy electrons and Rydberg electrons in solids; electron emission from collective excitation of solids by heavy ion impact; ECC cusp shapes for H + and He ++ on atomic and molecular targets; scanning tunneling microscopy and spectroscopy; new directions in scanning-tunneling microscopy; inner-shell excitation by channeled electrons; Cherenkov x-rays: recent experimental results; radiative electron capture; optical, mass, and auger spectra from e-bombarded KBr; calculated Bethe stopping powers for protons in metals; energy deposition by partially stripped ions; enhanced electron-capture and charge variation of molecular ions; electronic sputtering; mechanism of H n + and H - desorption during fast ion bombardment; on the calculation of wave-number vector- and frequency-dependent dielectric response function for cubic ice; a core plasma model of track structure in insulators; phase effects for electrons in liquid water and water vapor; physical and chemical interactions in irradiated water containing DNA; track core effects in heavy ion radiolysis; an analytic representation of the radial distribution of dose from energetic heavy ions in water, Si, LiF, and NaI; and calculated yields of ammonia in the radiolysis of deoxygenated solutions of glycylglycine

  16. Radiation-induced chemical evolution of glycine to (Gly)2, (Gly)3, and (Gly)4

    International Nuclear Information System (INIS)

    Matsui, T.; Izumi, Y.; Kamohara, M.; Nakagawa, K.; Yokoya, A.

    2006-01-01

    Recently amino acids were detected from some meteorites. Since these amino acids were found after hydrolysis, some oligopeptides were possibly formed in space. A simulation experiment of chemical evolution from Glycine (Gly) to Glycylglycine ((Gly)2) was reported by Kaneko et al. In this work, we irradiated (Gly)2 with 8 eV vacuum ultraviolet photons or with 530 eV soft X-ray photons and examined absolute values of quantum yield of radiation-induced chemical evolution from Gly2 to Glycylglycylglycine ((Gly)3) and Glycylglycylglycylglycine ((Gly)4). Thin films of (Gly)2 were prepared on quartz plate or CuBe plate with a vacuum evaporation technique. These samples were irradiated by 8 eV photons from a Xe 2 * excimer lamp or by 530 eV soft X-ray photons at SPring-8 Synchrotron Radiation Facility. Irradiated samples were analyzed with a high performance liquid chromatography HPLC. Decomposition of (Gly)2 and production of Gly, (Gly)3 and (Gly)4 were observed. Quantum yield Y was defined to be N = Y N 0 , where N is the number of produced or decomposed molecule, and N 0 is the number of (Gly)2 molecules excited by photons. Obtained results by 8 eV irradiation were summarized in Table 1. The similar magnitude of decomposition of (Gly)2 may show that yield of the primary breaking reaction upon photo-excitation is of similar magnitude. It should be noted that (Gly)3 and (Gly)4 was produced by irradiation with the yield of 10 -4 without any catalysis. For soft X-ray irradiation, yield of Gly was tentatively determined to be about 40. This largervalue than that for 8 eV irradiation may originate from large energy of incident soft X-ray photons just like a result reported by Simakov et al. We will discuss in detail at the conference. (authors)

  17. Novel biocompatible polymeric blends for bone regeneration: Material and matrix design and development

    Science.gov (United States)

    Deng, Meng

    The first part of the work presented in this dissertation is focused on the design and development of novel miscible and biocompatible polyphosphazene-polyester blends as candidate materials for scaffold-based bone tissue engineering applications. Biodegradable polyesters such as poly(lactide-co-glycolide) (PLAGA) are among the most widely used polymeric materials for bone tissue engineering. However, acidic degradation products resulting from the bulk degradation mechanism often lead to catastrophic failure of the structure integrity, and adversely affect biocompatibility both in vitro and in vivo. One promising approach to circumvent these limitations is to blend PLAGA with other macromolecules that can buffer the acidic degradation products with a controlled degradation rate. Biodegradable polyphosphazenes (PPHOS), a new class of biomedical materials, have proved to be superior candidate materials to achieve this objective due to their unique buffering degradation products. A highly practical blending approach was adopted to develop novel biocompatible, miscible blends of these two polymers. In order to achieve this miscibility, a series of amino acid ester, alkoxy, aryloxy, and dipeptide substituted PPHOS were synthesized to promote hydrogen bonding interactions with PLAGA. Five mixed-substituent PPHOS compositions were designed and blended with PLAGA at different weight ratios producing candidate blends via a mutual solvent method. Preliminary characterization identified two specific side groups namely glycylglycine dipeptide and phenylphenoxy that resulted in improved blend miscibility and enhanced in vitro osteocompatibility. These findings led to the synthesis of a mixed-substituent polyphosphazene poly[(glycine ethyl glycinato)1(phenylphenoxy)1phosphazene] (PNGEGPhPh) for blending with PLAGA. Two dipeptide-based blends having weight ratios of PNGEGPhPh to PLAGA namely 25:75 (Matrix1) and 50:50 (Matrix2) were fabricated. Both of the blends were