WorldWideScience

Sample records for glycan keratan sulfate

  1. The glycan keratan sulfate in inner ear crystals

    Science.gov (United States)

    Fermin, C. D.; Martin, D. S.; Li, Y. T.; Li, S. C.

    1995-01-01

    The otoconial matrix (OM) of chicks (Gallus domesticus) inner ear was analyzed. Histochemically the OM was reacted with phosphotungstic acid (PTA) and immunohistochemically with the monoclonal antibody antikeratan sulfate (antiKS). The OM was digested with the enzyme endo-beta-galactosidase (E beta Galase) or separated by 1D and 2D gel electrophoresis. PTA which reacts with glycoproteins precipitated the OM, suggesting that the OM contains glycoproteins. A central core in each crystal had no PTA staining, suggesting that the core lacked glycoproteins. Anti KS antibody stained the OM with increased density in older embryos as determined by color thresholding. E beta Galase, which cleaves the lactosamine repeating units in KS, decreased the immunostain by 30% in the OM and by 20% in the cartilage. The OM from the utricle, saccule and macula lagena contained similar molecular weight bands. Five dense bands in the OM were less dense in tissue and blood controls, suggesting that such bands are enriched in the OM. Isoelectric focusing of the OM showed a negatively charged high molecular weight smear not present in blood and faint in tissue controls. The high affinity of the OM for the cationic PTA stain, the strong immunohistochemical reaction of the OM with anti KS antibody and high molecular weight negative smear in 2D gels taken together suggest that: a) the OM contains large amounts of glycoproteins and glycans, one of which is keratan sulfate, because its immuno stain with antiKS antibody was decreased by the enzyme E beta Galase, b) the utricle, saccule and macula lagena may have similar composition, and c) the concentration of KS may increase gradually until complete mineralization of the OM is reached.

  2. Purification of Keratan Sulfate-endogalactosidase and its action on keratan sulfates of different origin.

    Science.gov (United States)

    Nakazawa, K; Suzuki, S

    1975-02-10

    A glycosidase which attacks corneal keratan sulfate was purified from extracts of Pseudomonas sp. IFO-13309. When corneal keratan sulfate was degraded by the purified enzyme, Sephadex G-50 chromatography indicated the presence of a number of oligosaccharides differing in size and sulfate content. The characterization of two major fractions of the oligosaccharides indicated that the point of enzyme attack is limited to the endo-beta-D-galactoside bonds in which nonsulfated D-galactose residues participate. The enzyme, unlike ordinary exo-beta-D-galactosidases, did not catalyze the hydrolysis of phenyl beta-D-galactoside. Moreover, beta-D-galactosyl-(1 leads to 3)-2-acetamido-2-deoxy-beta-D-glucosyl-(1 leads to 3)-beta-D-galactosyl-(1 leads to 4)-D-glucose ("lacto-N-tetraose") was completely refractory to the action of this enzyme, suggesting that a structure of the type, X-(1 leads to 3)-beta-D-galactosyl-(1 leads to 4)-Y, is not the only specificity-determining factor, i.e. neighboring sugars, X and Y, or even larger portions of substrate molecule must have an important effect. Compared with corneal keratan sulfate, keratan sulfates from human nucleus pulposus and shark cartilage were attacked at lower rates with a resultant production of oligosaccharides of relatively large size. The result is in agreement with the view that considerable variations exist in the structure of keratan sulfates of different origin, and further suggests that the enzyme may serve as a useful reagent in studying these variations.

  3. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Restaino, Odile Francesca, E-mail: odilefrancesca.restaino@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Finamore, Rosario, E-mail: rosario.finamore@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Diana, Paola, E-mail: paola.diana@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Marseglia, Mariacarmela, E-mail: marimars84@hotmail.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Vitiello, Mario, E-mail: mariovitiello.ita@gmail.com [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Casillo, Angela, E-mail: angela.casillo@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Bedini, Emiliano, E-mail: emiliano.bedini@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Parrilli, Michelangelo, E-mail: michelangelo.parrilli@unina.it [Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); and others

    2017-03-15

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  4. The effects of acid glycosaminoglycans on neonatal calvarian cultures--a role of keratan sulfate in Morquio syndrome?

    Science.gov (United States)

    Fang-Kircher, S G; Herkner, K; Windhager, R; Lubec, G

    1997-01-01

    Morquio syndrome (mucopolysaccharidosis IV) presents with multiple bone dysplasia and is characterized by the inability to degrade keratan sulfate due to deficient N-acetylgalactosamine-6-sulfate sulfatase in Morquio A syndrome and deficient beta-D-galactosidase in Morquio B syndrome. The aim of our study was to investigate into the pathogenetic mechanism as it is not clear whether the accumulation of keratan sulfate is toxic for osteoblasts or inhibits osteoblast activity as e.g. bone resorption. The glycosaminoglycans keratan sulfate, heparan sulfate, dermatan sulfate, chondroitin-4,6-sulfate and hyaluronic acid were tested in rat neonatal calvarian cultures for their effects on bone resorption, osteoblast activity and toxicity. Bone resorption was evaluated by calcium release into the medium, osteoblast activity by the determination of alkaline phosphatase and toxicity by measuring lactate dehydrogenase in the culture media. Keratan sulfate had no effect on bone resorption but inhibited osteoblast activity at the low, nontoxic concentration of 10 ng per ml organ culture supernatant significantly (pMorquio syndrome.

  5. A novel antibody for human induced pluripotent stem cells and embryonic stem cells recognizes a type of keratan sulfate lacking oversulfated structures.

    Science.gov (United States)

    Kawabe, Keiko; Tateyama, Daiki; Toyoda, Hidenao; Kawasaki, Nana; Hashii, Noritaka; Nakao, Hiromi; Matsumoto, Shogo; Nonaka, Motohiro; Matsumura, Hiroko; Hirose, Yoshinori; Morita, Ayaha; Katayama, Madoka; Sakuma, Makoto; Kawasaki, Nobuko; Furue, Miho Kusuda; Kawasaki, Toshisuke

    2013-03-01

    We have generated a monoclonal antibody (R-10G) specific to human induced pluripotent stem (hiPS)/embryonic stem (hES) cells by using hiPS cells (Tic) as an antigen, followed by differential screening of mouse hybridomas with hiPS and human embryonal carcinoma (hEC) cells. Upon western blotting with R-10G, hiPS/ES cell lysates gave a single but an unusually diffuse band at a position corresponding to >250 kDa. The antigen protein was isolated from the induced pluripotent stem (iPS) cell lysates with an affinity column of R-10G. The R-10G positive band was resistant to digestion with peptide N-glycanase F (PNGase F), neuraminidase, fucosidase, chondrotinase ABC and heparinase mix, but it disappeared almost completely on digestion with keratanase, keratanase II and endo-β-galactosidase, indicating that the R-10G epitope is a keratan sulfate. The carrier protein of the R-10G epitope was identified as podocalyxin by liquid chromatography/mass spectrometry (LC/MS/MS) analysis of the R-10G positive-protein band material obtained on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The R-10G epitope is a type of keratan sulfate with some unique properties. (1) The epitope is expressed only on hiPS/ES cells, i.e. not on hEC cells, unlike those recognized by the conventional hiPS/ES marker antibodies. (2) The epitope is a type of keratan sulfate lacking oversulfated structures and is not immunologically cross-reactive with high-sulfated keratan sulfate. (3) The R-10G epitope is distributed heterogeneously on hiPS cells, suggesting that a single colony of undifferentiated hiPS cells consists of different cell subtypes. Thus, R-10G is a novel antibody recognizing hiPS/ES cells, and should be a new molecular probe for disclosing the roles of glycans on these cells.

  6. Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro

    Science.gov (United States)

    Long, C. J.; Roth, M. R.; Tasheva, E. S.; Funderburgh, M.; Smit, R.; Conrad, G. W.; Funderburgh, J. L.

    2000-01-01

    Keratocytes of the corneal stroma produce a specialized extracellular matrix responsible for corneal transparency. Corneal keratan sulfate proteoglycans (KSPG) are unique products of keratocytes that are down-regulated in corneal wounds and in vitro. This study used cultures of primary bovine keratocytes to define factors affecting KSPG expression in vitro. KSPG metabolically labeled with [(35)S]sulfate decreased during the initial 2-4 days of culture in quiescent cultures with low serum concentrations (0.1%). Addition of fetal bovine serum, fibroblast growth factor-2 (FGF-2), transforming growth factor beta, or platelet derived growth factor all stimulated cell division, but only FGF-2 stimulated KSPG secretion. Combined with serum, FGF-2 also prevented serum-induced KSPG down-regulation. KSPG secretion was lost during serial subculture with or without FGF-2. Expression of KSPG core proteins (lumican, mimecan, and keratocan) was stimulated by FGF-2, and steady state mRNA pools for these proteins, particularly keratocan, were significantly increased by FGF-2 treatment. KSPG expression therefore is supported by exogenous FGF-2 and eliminated by subculture of the cells in presence of serum. FGF-2 stimulates KSPG core protein expression primarily through an increase in mRNA pools.

  7. Correlation between arthroscopic diagnosis of osteoarthritis and synovitis of the human temporomandibular joint and keratan sulfate levels in the synovial fluid.

    Science.gov (United States)

    Israel, H A; Diamond, B E; Saed-Nejad, F; Ratcliffe, A

    1997-03-01

    The specific aims of this investigation were to determine if there is a relationship between an arthroscopic diagnosis of synovitis and osteoarthritis, and if the presence of synovitis influences the level of cartilage degradation, as evidenced by keratan sulfate levels in the synovial fluid. Arthroscopic surgery was performed on 114 temporomandibular joints in 88 patients who had significant pain or dysfunction and whose condition had failed to improve with conservative treatment. Synovial fluid aspirates were obtained immediately before arthroscopy and used for the determination of keratan sulfate levels. Arthroscopic examination included assessment of the presence or absence of osteoarthritis and synovitis. Synovitis was present in 90% of joints, and osteoarthritis was present in 62% of joints examined arthroscopically. Both osteoarthritis and synovitis existed in 57% of the joints. Joints with an arthroscopic diagnosis of synovitis had significantly lower levels of keratan sulfate in the synovial fluid aspirates than joints with osteoarthritis. Synovial fluid aspirates from temporomandibular joints with osteoarthritis had significantly higher levels of keratan sulfate than synovial fluids from joints without osteoarthritis. Osteoarthritis and synovitis are common diagnoses and are often present concurrently in patients with symptomatic temporomandibular joints. Osteoarthritis is associated with elevated keratan sulfate levels; however, the elevation of keratan sulfate is less in patients with concomitant synovitis.

  8. Towards Keratan Sulfate - Chemoenzymatic Cascade Synthesis of Sulfated N-Acetyllactosamine (LacNAc) Glycan Oligomers

    Czech Academy of Sciences Publication Activity Database

    Lange, B.; Šimonová, Anna; Fischoeder, T.; Pelantová, Helena; Křen, Vladimír; Elling, L.

    2016-01-01

    Roč. 358, č. 4 (2016), s. 584-596 ISSN 1615-4150 R&D Projects: GA MŠk(CZ) LD13042; GA ČR GC15-02578J Institutional support: RVO:61388971 Keywords : biocatalysis * carbohydrates * glycoconjugates Subject RIV: CE - Biochemistry Impact factor: 5.646, year: 2016

  9. Podocalyxin as a major pluripotent marker and novel keratan sulfate proteoglycan in human embryonic and induced pluripotent stem cells.

    Science.gov (United States)

    Toyoda, Hidenao; Nagai, Yuko; Kojima, Aya; Kinoshita-Toyoda, Akiko

    2017-04-01

    Podocalyxin (PC) was first identified as a heavily sialylated transmembrane protein of glomerular podocytes. Recent studies suggest that PC is a remarkable glycoconjugate that acts as a universal glyco-carrier. The glycoforms of PC are responsible for multiple functions in normal tissue, human cancer cells, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). PC is employed as a major pluripotent marker of hESCs and hiPSCs. Among the general antibodies for human PC, TRA-1-60 and TRA-1-81 recognize the keratan sulfate (KS)-related structures. Therefore, It is worthwhile to summarize the outstanding chemical characteristic of PC, including the KS-related structures. Here, we review the glycoforms of PC and discuss the potential of PC as a novel KS proteoglycan in undifferentiated hESCs and hiPSCs.

  10. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  11. Phylogeny, structure, function, biosynthesis and evolution of sulfated galactose-containing glycans.

    Science.gov (United States)

    Pomin, Vitor H

    2016-03-01

    Glycans are ubiquitous components of all organisms. The specificity of glycan structures works in molecular recognition in multiple biological processes especially cell-cell and cell-matrix signaling events. These events are mostly driven by functional proteins whose activities are ultimately regulated by interactions with carbohydrate moieties of cell surface glycoconjugates. Galactose is a common composing monosaccharide in glycoconjugates. Sulfation at certain positions of the galactose residues does not only increase affinity for some binding proteins but also makes the structures of the controlling glycans more specific to molecular interactions. Here the phylogenetic distribution of glycans containing the sulfated galactose unit is examined across numerous multicellular organisms. Analysis includes autotrophs and heterotrophs from both terrestrial and marine environments. Information exists more regarding the marine species. Although future investigations in molecular biology must be still performed in order to assure certain hypotheses, empirical evidences based on structural biology of the sulfated galactose-containing glycans among different species particularly their backbone and sulfation patterns clearly indicate great specificity in terms of glycosyltransferase and sulfotransferase activity. This set of information suggests that evolution has shaped the biosynthetic machinery of these glycans somewhat related to their potential functions in the organisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A targeted glycan-related gene screen reveals heparan sulfate proteoglycan sulfation regulates WNT and BMP trans-synaptic signaling.

    Directory of Open Access Journals (Sweden)

    Neil Dani

    Full Text Available A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS 6-O-sulfotransferase (hs6st and sulfatase (sulf1, which bidirectionally control HS proteoglycan (HSPG sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased (hs6st and increased (sulf1 neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg and BMP (Glass Bottom Boat; Gbb ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects.

  13. Association of N-acetylgalactosamine-6-sulfate sulfatase with the multienzyme lysosomal complex of beta-galactosidase, cathepsin A, and neuraminidase. Possible implication for intralysosomal catabolism of keratan sulfate.

    Science.gov (United States)

    Pshezhetsky, A V; Potier, M

    1996-11-08

    N-Acetylgalactosamine-6-sulfate sulfatase (GALNS) catalyzes the first step of intralysosomal keratan sulfate (KS) catabolism. In Morquio type A syndrome GALNS deficiency causes the accumulation of KS in tissues and results in generalized skeletal dysplasia in affected patients. We show that in normal cells GALNS is in a 1.27-MDa complex with three other lysosomal hydrolases: beta-galactosidase, alpha-neuraminidase, and cathepsin A (protective protein). GALNS copurifies with the complex by different chromatography techniques: affinity chromatography on both cathepsin A-binding and beta-galactosidase-binding columns, gel filtration, and chromatofocusing. Anti-human cathepsin A rabbit antiserum coprecipitates GALNS together with cathepsin A, beta-galactosidase, and alpha-neuraminidase in both a purified preparation of the 1. 27-MDa complex and crude glycoprotein fraction from human placenta extract. Gel filtration analysis of fibroblast extracts of patients deficient in either beta-galactosidase (beta-galactosidosis) or cathepsin A (galactosialidosis), which accumulate KS, demonstrates that the 1.27-MDa complex is disrupted and that GALNS is present only in free homodimeric form. The GALNS activity and cross-reacting material are reduced in the fibroblasts of patients affected with galactosialidosis, indicating that the complex with cathepsin A may protect GALNS in the lysosome. We suggest that the 1.27-MDa complex of lysosomal hydrolases is essential for KS catabolism and that the disruption of this complex may be responsible for the KS accumulation in beta-galactosidosis and galactosialidosis patients.

  14. Electron Capture Dissociation of Divalent Metal-adducted Sulfated N-Glycans Released from Bovine Thyroid Stimulating Hormone

    Science.gov (United States)

    Zhou, Wen; Håkansson, Kristina

    2013-11-01

    Sulfated N-glycans released from bovine thyroid stimulating hormone (bTSH) were ionized with the divalent metal cations Ca2+, Mg2+, and Co by electrospray ionization (ESI). These metal-adducted species were subjected to infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) and the corresponding fragmentation patterns were compared. IRMPD generated extensive glycosidic and cross-ring cleavages, but most product ions suffered from sulfonate loss. Internal fragments were also observed, which complicated the spectra. ECD provided complementary structural information compared with IRMPD, and all observed product ions retained the sulfonate group, allowing sulfonate localization. To our knowledge, this work represents the first application of ECD towards metal-adducted sulfated N-glycans released from a glycoprotein. Due to the ability of IRMPD and ECD to provide complementary structural information, the combination of the two strategies is a promising and valuable tool for glycan structural characterization. The influence of different metal ions was also examined. Calcium adducts appeared to be the most promising species because of high sensitivity and ability to provide extensive structural information.

  15. Oxidative profile exhibited by Mucopolysaccharidosis type IVA patients at diagnosis: Increased keratan urinary levels

    Directory of Open Access Journals (Sweden)

    Bruna Donida

    2017-06-01

    Full Text Available Morquio A disease (Mucopolysaccharidosis type IVA, MPS IVA is one of the 11 mucopolysaccharidoses (MPSs, a heterogeneous group of inherited lysosomal storage disorders (LSDs caused by deficiency in enzymes need to degrade glycosaminoglycans (GAGs. Morquio A is characterized by a decrease in N-acetylgalactosamine-6-sulfatase activity and subsequent accumulation of keratan sulfate and chondroitin 6-sulfate in cells and body fluids. As the pathophysiology of this LSD is not completely understood and considering the previous results of our group concerning oxidative stress in Morquio A patients receiving enzyme replacement therapy (ERT, the aim of this study was to investigate oxidative stress parameters in Morquio A patients at diagnosis. It was studied 15 untreated Morquio A patients, compared with healthy individuals. The affected individuals presented higher lipid peroxidation, assessed by urinary 15-F2t-isoprostane levels and no protein damage, determined by sulfhydryl groups in plasma and di-tyrosine levels in urine. Furthermore, Morquio A patients showed DNA oxidative damage in both pyrimidines and purines bases, being the DNA damage positively correlated with lipid peroxidation. In relation to antioxidant defenses, affected patients presented higher levels of reduced glutathione (GSH and increased activity of glutathione peroxidase (GPx, while superoxide dismutase (SOD and glutathione reductase (GR activities were similar to controls. Our findings indicate that Morquio A patients present at diagnosis redox imbalance and oxidative damage to lipids and DNA, reinforcing the idea about the importance of antioxidant therapy as adjuvant to ERT, in this disorder.

  16. Galactose 6-sulfate sulfatase activity in Morquio syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yutaka, T.; Okada, S.; Kato, T.; Inui, K.; Yabuuhi, H. (Osaka Univ. (Japan). Faculty of Medicine)

    1982-07-01

    The authors have prepared a new substrate, o-..beta..-D-sulfo-galactosyl-(1-4)-..beta..-D-6-sulfo-2-acetamido-2-deoxyglucosyl-(1-4)-D-(1-/sup 3/H)galactitol, from shark cartilage keratan sulfate, for the assay of galactose 6-sulfate sulfatase activity. Using this substrate, they found there was a striking deficiency of galactose 6-sulfate sulfatase activity, in addition to the known deficiency of N-acetylgalactosamine 6-sulfate sulfatase, in the cultured skin fibroblasts of patients with Morquio syndrome. Their results could be explained by the hypothesis that accumulation of keratan sulfate and chondroitin 6-sulfate in Morquio syndrome is due to a deficiency of galactose 6-sulfate sulfatase and N-acetylgalactosamine 6-sulfate sulfatase activity, which are necessary for the degradation of these two mucopolysaccharides.

  17. Galactose 6-sulfate sulfatase activity in Morquio syndrome

    International Nuclear Information System (INIS)

    Yutaka, T.; Okada, S.; Kato, T.; Inui, K.; Yabuuhi, H.

    1982-01-01

    The authors have prepared a new substrate, o-β-D-sulfo-galactosyl-(1-4)-β-D-6-sulfo-2-acetamido-2-deoxyglucosyl-(1-4)-D-[1- 3 H]galactitol, from shark cartilage keratan sulfate, for the assay of galactose 6-sulfate sulfatase activity. Using this substrate, they found there was a striking deficiency of galactose 6-sulfate sulfatase activity, in addition to the known deficiency of N-acetylgalactosamine 6-sulfate sulfatase, in the cultured skin fibroblasts of patients with Morquio syndrome. Their results could be explained by the hypothesis that accumulation of keratan sulfate and chondroitin 6-sulfate in Morquio syndrome is due to a deficiency of galactose 6-sulfate sulfatase and N-acetylgalactosamine 6-sulfate sulfatase activity, which are necessary for the degradation of these two mucopolysaccharides. (Auth.)

  18. Printed glycan array

    DEFF Research Database (Denmark)

    Shilova, Nadezhda; Navakouski, Maxim; Khasbiullina, Nailya

    2012-01-01

    Using printed glycan array (PGA) we compared the results of antibody profiling in undiluted, moderately (1:15) and highly (1:100) diluted human blood serum. Undiluted serum is suitable for studying blood as a tissue in its native state, whereas to study the serum of newborns or small animals one...... usually has to dilute the starting material in order to have sufficient volume for PGA experimentation. The PGA used in this study allows for the use of whole serum without modifications to the protocol, and the background is surprisingly low. Antibodies profiles observed in undiluted serum versus 1......:15 dilution were similar, with only a limited number of new signals identified in the undiluted serum. However, unexpected irregularities were found when IgG and IgM are measured separately, namely, at a 1:15 dilution more intensive IgG signals for many glycans are observed. We believe that in conditions...

  19. CROSSWORK for Glycans: Glycan Identificatin Through Mass Spectrometry and Bioinformatics

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Thaysen-Andersen, Morten; Højrup, Peter

      We have developed "GLYCANthrope " - CROSSWORKS for glycans:  a bioinformatics tool, which assists in identifying N-linked glycosylated peptides as well as their glycan moieties from MS2 data of enzymatically digested glycoproteins. The program runs either as a stand-alone application or as a plug...

  20. Automated Glycan Assembly of Complex Oligosaccharides Related to Blood Group Determinants.

    Science.gov (United States)

    Hahm, Heung Sik; Liang, Chien-Fu; Lai, Chian-Hui; Fair, Richard J; Schuhmacher, Frank; Seeberger, Peter H

    2016-07-15

    Lactotetraosyl (Lc4) and neo-lactotetraosyl (nLc4) are backbones that are common to many glycans. Using automated glycan assembly, these common core structures were constructed and elaborated to access synthetically challenging glycans of biological relevance. The incorporation of α-fucoses is demonstrated for H-type I and II; α(1,3)-galactose epitopes were prepared, and the pentasaccharide HNK-1 required incorporation of a 3-O-sulfate. In addition to preparing the target structures, essential insights were gained regarding the relationships of glycosylating agents and nucleophiles as well as the linker stability.

  1. Applications of heparin and heparan sulfate microarrays.

    Science.gov (United States)

    Yin, Jian; Seeberger, Peter H

    2010-01-01

    Carbohydrate microarrays have become crucial tools for revealing the biological interactions and functions of glycans, primarily because the microarray format enables the investigation of large numbers of carbohydrates at a time. Heparan sulfate (HS) and heparin are the most structurally complex glycosaminoglycans (GAGs). In this chapter, we describe the preparation of a small library of HS/heparin oligosaccharides, and the fabrication of HS/heparin microarrays that have been used to establish HS/heparin-binding profiles. Fibroblast growth factors (FGFs), natural cytotoxicity receptors (NCRs), and chemokines were screened to illuminate the very important biological functions of these glycans. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. Chondroitin Sulfate

    Science.gov (United States)

    ... of osteoarthritis. There is some evidence that a skin cream containing chondroitin sulfate in combination with glucosamine sulfate, shark cartilage, and camphor can reduce osteoarthritis symptoms. However, ...

  3. Demonstration of immunogenic keratan sulphate in commercial chondroitin 6-sulphate from shark cartilage. Implications for ELISA assays

    DEFF Research Database (Denmark)

    Møller, H J; Møller-Pedersen, T; Damsgaard, T E

    1995-01-01

    The prototype monoclonal keratan sulphate (KS) antibody 5D4 that is widely used for detection of KS in tissues and biological fluids reacts strongly with commercial low grade shark cartilage chondroitin 6-sulphate. Characterization of the immunogenic material by chondroitinase ABC digestion, ELISA...... inhibition studies, immunoblotting and HPLC analyses confirmed the presence of substantial amounts of KS, probably as a large proteoglycan (> 120 kDa). Commercial and heterogenic glycosaminoglycan preparations therefore must be used with great caution in immunological analyses. On the other hand the shark...... cartilage chondroitin 6-sulphate is an easy accessible source of immunogenic KS that can be used as a reference standard and as coating antigen in KS-ELISAs. The concentration of immunogenic KS in synovial fluid measured with an ELISA based solely on reagents of shark cartilage chondroitin 6-sulphate...

  4. Improved method for drawing of a glycan map, and the first page of glycan atlas, which is a compilation of glycan maps for a whole organism.

    Directory of Open Access Journals (Sweden)

    Shunji Natsuka

    Full Text Available Glycan Atlas is a set of glycan maps over the whole body of an organism. The glycan map that includes data of glycan structure and quantity displays micro-heterogeneity of the glycans in a tissue, an organ, or cells. The two-dimensional glycan mapping is widely used for structure analysis of N-linked oligosaccharides on glycoproteins. In this study we developed a comprehensive method for the mapping of both N- and O-glycans with and without sialic acid. The mapping data of 150 standard pyridylaminated glycans were collected. The empirical additivity rule which was proposed in former reports was able to adapt for this extended glycan map. The adapted rule is that the elution time of pyridylamino glycans on high performance liquid chromatography (HPLC is expected to be the simple sum of the partial elution times assigned to each monosaccharide residue. The comprehensive mapping method developed in this study is a powerful tool for describing the micro-heterogeneity of the glycans. Furthermore, we prepared 42 pyridylamino (PA- glycans from human serum and were able to draw the map of human serum N- and O-glycans as an initial step of Glycan Atlas editing.

  5. Improve accuracy and sensibility in glycan structure prediction by matching glycan isotope abundance

    International Nuclear Information System (INIS)

    Xu Guang; Liu Xin; Liu Qingyan; Zhou Yanhong; Li Jianjun

    2012-01-01

    Highlights: ► A glycan isotope pattern recognition strategy for glycomics. ► A new data preprocessing procedure to detect ion peaks in a giving MS spectrum. ► A linear soft margin SVM classification for isotope pattern recognition. - Abstract: Mass Spectrometry (MS) is a powerful technique for the determination of glycan structures and is capable of providing qualitative and quantitative information. Recent development in computational method offers an opportunity to use glycan structure databases and de novo algorithms for extracting valuable information from MS or MS/MS data. However, detecting low-intensity peaks that are buried in noisy data sets is still a challenge and an algorithm for accurate prediction and annotation of glycan structures from MS data is highly desirable. The present study describes a novel algorithm for glycan structure prediction by matching glycan isotope abundance (mGIA), which takes isotope masses, abundances, and spacing into account. We constructed a comprehensive database containing 808 glycan compositions and their corresponding isotope abundance. Unlike most previously reported methods, not only did we take into count the m/z values of the peaks but also their corresponding logarithmic Euclidean distance of the calculated and detected isotope vectors. Evaluation against a linear classifier, obtained by training mGIA algorithm with datasets of three different human tissue samples from Consortium for Functional Glycomics (CFG) in association with Support Vector Machine (SVM), was proposed to improve the accuracy of automatic glycan structure annotation. In addition, an effective data preprocessing procedure, including baseline subtraction, smoothing, peak centroiding and composition matching for extracting correct isotope profiles from MS data was incorporated. The algorithm was validated by analyzing the mouse kidney MS data from CFG, resulting in the identification of 6 more glycan compositions than the previous annotation

  6. Glycans in Medicinal Chemistry: An Underexploited Resource.

    Science.gov (United States)

    Fernández-Tejada, Alberto; Cañada, F Javier; Jiménez-Barbero, Jesús

    2015-08-01

    The biological relevance of glycans as mediators of key physiological processes, including disease-related mechanisms, makes them attractive targets for a wide range of medical applications. Despite their important biological roles, especially as molecular recognition elements, carbohydrates have not been fully exploited as therapeutics mainly due to the scarcity of structure-activity correlations and their non-drug-like properties. A more detailed understanding of the complex carbohydrate structures and their associated functions should contribute to the development of new glycan-based pharmaceuticals. Recent significant progress in oligosaccharide synthesis and chemical glycobiology has renewed the interest of the medicinal chemistry community in carbohydrates. This promises to increase our possibilities to harness them in drug discovery efforts for the development of new and more effective, synthetic glycan-based therapeutics and vaccines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Exploring the specificities of glycan-binding proteins using glycan array data and the GlycoSearch software.

    Science.gov (United States)

    Kletter, Doron; Curnutte, Bryan; Maupin, Kevin A; Bern, Marshall; Haab, Brian B

    2015-01-01

    The glycan array is a powerful tool for investigating the specificities of glycan-binding proteins. By incubating a glycan-binding protein on a glycan array, the relative binding to hundreds of different oligosaccharides can be quantified in parallel. Based on these data, much information can be obtained about the preference of a glycan-binding protein for specific subcomponents of oligosaccharides or motifs. In many cases, the analysis and interpretation of glycan array data can be time consuming and imprecise if done manually. Recently we developed software, called GlycoSearch, to facilitate the analysis and interpretation of glycan array data based on the previously developed methods called Motif Segregation and Outlier Motif Analysis. Here we describe the principles behind the software, the use of the software, and an example application. The automated, objective, and precise analysis of glycan array data should enhance the value of the data for a broad range of research applications.

  8. Glycotherapy: new advances inspire a reemergence of glycans in medicine.

    Science.gov (United States)

    Hudak, Jason E; Bertozzi, Carolyn R

    2014-01-16

    The beginning of the 20(th) century marked the dawn of modern medicine with glycan-based therapies at the forefront. However, glycans quickly became overshadowed as DNA- and protein-focused treatments became readily accessible. The recent development of new tools and techniques to study and produce structurally defined carbohydrates has spurred renewed interest in the therapeutic applications of glycans. This review focuses on advances within the past decade that are bringing glycan-based treatments back to the forefront of medicine and the technologies that are driving these efforts. These include the use of glycans themselves as therapeutic molecules as well as engineering protein and cell surface glycans to suit clinical applications. Glycan therapeutics offer a rich and promising frontier for developments in the academic, biopharmaceutical, and medical fields. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Structural features of glycan recognition among viral pathogens.

    Science.gov (United States)

    Shanker, Sreejesh; Hu, Liya; Ramani, Sasirekha; Atmar, Robert L; Estes, Mary K; Venkataram Prasad, B V

    2017-06-01

    Recognition and binding to host glycans present on cellular surfaces is an initial and critical step in viral entry. Diverse families of host glycans such as histo-blood group antigens, sialoglycans and glycosaminoglycans are recognized by viruses. Glycan binding determines virus-host specificity, tissue tropism, pathogenesis and potential for interspecies transmission. Viruses including noroviruses, rotaviruses, enteroviruses, influenza, and papillomaviruses have evolved novel strategies to bind specific glycans often in a strain-specific manner. Structural studies have been instrumental in elucidating the molecular determinants of these virus-glycan interactions, aiding in developing vaccines and antivirals targeting this key interaction. Our review focuses on these key structural aspects of virus-glycan interactions, particularly highlighting the different strain-specific strategies employed by viruses to bind host glycans. Copyright © 2017. Published by Elsevier Ltd.

  10. Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis.

    Science.gov (United States)

    Nairn, Alison V; Aoki, Kazuhiro; dela Rosa, Mitche; Porterfield, Mindy; Lim, Jae-Min; Kulik, Michael; Pierce, J Michael; Wells, Lance; Dalton, Stephen; Tiemeyer, Michael; Moremen, Kelley W

    2012-11-02

    The abundance and structural diversity of glycans on glycoproteins and glycolipids are highly regulated and play important roles during vertebrate development. Because of the challenges associated with studying glycan regulation in vertebrate embryos, we have chosen to study mouse embryonic stem (ES) cells as they differentiate into embryoid bodies (EBs) or into extraembryonic endodermal (ExE) cells as a model for cellular differentiation. We profiled N- and O-glycan structures isolated from these cell populations and examined transcripts encoding the corresponding enzymatic machinery for glycan biosynthesis in an effort to probe the mechanisms that drive the regulation of glycan diversity. During differentiation from mouse ES cells to either EBs or ExE cells, general trends were detected. The predominance of high mannose N-glycans in ES cells shifted to an equal abundance of complex and high mannose structures, increased sialylation, and increased α-Gal termination in the differentiated cell populations. Whereas core 1 O-glycan structures predominated in all three cell populations, increased sialylation and increased core diversity characterized the O-glycans of both differentiated cell types. Increased polysialylation was also found in both differentiated cell types. Differences between the two differentiated cell types included greater sialylation of N-glycans in EBs, whereas α-Gal-capped structures were more prevalent in ExE cells. Changes in glycan structures generally, but not uniformly, correlated with alterations in transcript abundance for the corresponding biosynthetic enzymes, suggesting that transcriptional regulation contributes significantly to the regulation of glycan expression. Knowledge of glycan structural diversity and transcript regulation should provide greater understanding of the roles of protein glycosylation in vertebrate development.

  11. GlycReSoft: a software package for automated recognition of glycans from LC/MS data.

    Directory of Open Access Journals (Sweden)

    Evan Maxwell

    Full Text Available Glycosylation modifies the physicochemical properties and protein binding functions of glycoconjugates. These modifications are biosynthesized in the endoplasmic reticulum and Golgi apparatus by a series of enzymatic transformations that are under complex control. As a result, mature glycans on a given site are heterogeneous mixtures of glycoforms. This gives rise to a spectrum of adhesive properties that strongly influences interactions with binding partners and resultant biological effects. In order to understand the roles glycosylation plays in normal and disease processes, efficient structural analysis tools are necessary. In the field of glycomics, liquid chromatography/mass spectrometry (LC/MS is used to profile the glycans present in a given sample. This technology enables comparison of glycan compositions and abundances among different biological samples, i.e. normal versus disease, normal versus mutant, etc. Manual analysis of the glycan profiling LC/MS data is extremely time-consuming and efficient software tools are needed to eliminate this bottleneck. In this work, we have developed a tool to computationally model LC/MS data to enable efficient profiling of glycans. Using LC/MS data deconvoluted by Decon2LS/DeconTools, we built a list of unique neutral masses corresponding to candidate glycan compositions summarized over their various charge states, adducts and range of elution times. Our work aims to provide confident identification of true compounds in complex data sets that are not amenable to manual interpretation. This capability is an essential part of glycomics work flows. We demonstrate this tool, GlycReSoft, using an LC/MS dataset on tissue derived heparan sulfate oligosaccharides. The software, code and a test data set are publically archived under an open source license.

  12. Exploring the Glycans of Euglena gracilis.

    Science.gov (United States)

    O'Neill, Ellis C; Kuhaudomlarp, Sakonwan; Rejzek, Martin; Fangel, Jonatan U; Alagesan, Kathirvel; Kolarich, Daniel; Willats, William G T; Field, Robert A

    2017-12-15

    Euglena gracilis is an alga of great biotechnological interest and extensive metabolic capacity, able to make high levels of bioactive compounds, such as polyunsaturated fatty acids, vitamins and β-glucan. Previous work has shown that Euglena expresses a wide range of carbohydrate-active enzymes, suggesting an unexpectedly high capacity for the synthesis of complex carbohydrates for a single-celled organism. Here, we present an analysis of some of the carbohydrates synthesised by Euglena gracilis . Analysis of the sugar nucleotide pool showed that there are the substrates necessary for synthesis of complex polysaccharides, including the unusual sugar galactofuranose. Lectin- and antibody-based profiling of whole cells and extracted carbohydrates revealed a complex galactan, xylan and aminosugar based surface. Protein N -glycan profiling, however, indicated that just simple high mannose-type glycans are present and that they are partially modified with putative aminoethylphosphonate moieties. Together, these data indicate that Euglena possesses a complex glycan surface, unrelated to plant cell walls, while its protein glycosylation is simple. Taken together, these findings suggest that Euglena gracilis may lend itself to the production of pharmaceutical glycoproteins.

  13. Exploring the Glycans of Euglena gracilis

    Directory of Open Access Journals (Sweden)

    Ellis C. O’Neill

    2017-12-01

    Full Text Available Euglena gracilis is an alga of great biotechnological interest and extensive metabolic capacity, able to make high levels of bioactive compounds, such as polyunsaturated fatty acids, vitamins and β-glucan. Previous work has shown that Euglena expresses a wide range of carbohydrate-active enzymes, suggesting an unexpectedly high capacity for the synthesis of complex carbohydrates for a single-celled organism. Here, we present an analysis of some of the carbohydrates synthesised by Euglena gracilis. Analysis of the sugar nucleotide pool showed that there are the substrates necessary for synthesis of complex polysaccharides, including the unusual sugar galactofuranose. Lectin- and antibody-based profiling of whole cells and extracted carbohydrates revealed a complex galactan, xylan and aminosugar based surface. Protein N-glycan profiling, however, indicated that just simple high mannose-type glycans are present and that they are partially modified with putative aminoethylphosphonate moieties. Together, these data indicate that Euglena possesses a complex glycan surface, unrelated to plant cell walls, while its protein glycosylation is simple. Taken together, these findings suggest that Euglena gracilis may lend itself to the production of pharmaceutical glycoproteins.

  14. Two opposing roles of O-glycans in tumor metastasis

    Science.gov (United States)

    Tsuboi, Shigeru; Hatakeyama, Shingo; Ohyama, Chikara; Fukuda, Minoru

    2012-01-01

    Despite the high prevalence and poor outcome of patients with metastatic cancers, the processes of tumor metastasis still remain poorly understood. It has been shown that cell-surface carbohydrates attached to proteins through the amino acids serine or threonine (O-glycans) are involved in tumor metastasis, with the roles of O-glycans varying depending on their structures. Core2 O-glycans allow tumor cells to evade natural killer (NK) cells of the immune system and survive longer in the circulatory system, thereby promoting tumor metastasis. Core3 O-glycans or O-mannosyl glycans suppress tumor formation and metastasis by modulating integrin-mediated signaling. Here, we highlight recent advances in our understanding of the detailed molecular mechanisms by which O-glycans promote or suppress tumor metastasis. PMID:22425488

  15. Neutral glycans from sandfish skin can reduce friction of polymers

    OpenAIRE

    Vihar, Bo?tjan; Hanisch, Franz Georg; Baumgartner, Werner

    2016-01-01

    The lizard Scincus scincus, also known as sandfish, can move through aeolian desert sand in a swimming-like manner. A prerequisite for this ability is a special integument, i.e. scales with a very low friction for sand and a high abrasion resistance. Glycans in the scales are causally related to the low friction. Here, we analysed the glycans and found that neutral glycans with five to nine mannose residues are important. If these glycans were covalently bound to acrylic polymers like poly(me...

  16. Barium Sulfate

    Science.gov (United States)

    ... uses a computer to put together x-ray images to create cross-sectional or three dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque contrast media. It works by coating the esophagus, stomach, or ...

  17. GLYCAN-DIRECTED CAR-T CELLS.

    Science.gov (United States)

    Steentoft, Catharina; Migliorini, Denis; King, Tiffany R; Mandel, Ulla; June, Carl H; Posey, Avery D

    2018-01-23

    Cancer immunotherapy is rapidly advancing in the treatment of a variety of hematopoietic cancers, including pediatric acute lymphoblastic leukemia and diffuse large B cell lymphoma, with chimeric antigen receptor (CAR)-T cells. CARs are genetically encoded artificial T cell receptors that combine the antigen specificity of an antibody with the machinery of T cell activation. However, implementation of CAR technology in the treatment of solid tumors has been progressing much slower. Solid tumors are characterized by a number of challenges that need to be overcome, including cellular heterogeneity, immunosuppressive tumor microenvironment (TME), and, in particular, few known cancer-specific targets. Post-translational modifications that differentially occur in malignant cells generate valid cell surface, cancer-specific targets for CAR-T cells. We previously demonstrated that CAR-T cells targeting an aberrant O-glycosylation of MUC1, a common cancer marker associated with changes in cell adhesion, tumor growth, and poor prognosis, could control malignant growth in mouse models. Here, we discuss the field of glycan-directed CAR-T cells and review the different classes of antibodies specific for glycan-targeting, including the generation of high affinity O-glycopeptide antibodies. Finally, we discuss historic and recently investigated glycan targets for CAR-T cells and provide our perspective on how targeting the tumor glycoproteome and/or glycome will improve CAR-T immunotherapy. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Glycan family analysis for deducing N-glycan topology from single MS.

    Science.gov (United States)

    Goldberg, David; Bern, Marshall; North, Simon J; Haslam, Stuart M; Dell, Anne

    2009-02-01

    In the past few years, mass spectrometry (MS) has emerged as the premier tool for identification and quantification of biological molecules such as peptides and glycans. There are two basic strategies: single-MS, which uses a single round of mass analysis, and MS/MS (or higher order MS(n)), which adds one or more additional rounds of mass analysis, interspersed with fragmentation steps. Single-MS offers higher throughput, broader mass coverage and more direct quantitation, but generally much weaker identification. Single-MS, however, does work fairly well for the case of N-glycan identification, which are more constrained than other biological polymers. We previously demonstrated single-MS identification of N-glycans to the level of 'cartoons' (monosaccharide composition and topology) by a system that incorporates an expert's detailed knowledge of the biological sample. In this article, we explore the possibility of ab initio single-MS N-glycan identification, with the goal of extending single-MS, or primarily-single-MS, identification to non-expert users, novel conditions and unstudied tissues. We propose and test three cartoon-assignment algorithms that make inferences informed by biological knowledge about glycan synthesis. To test the algorithms, we used 71 single-MS spectra from a variety of tissues and organisms, containing more than 2800 manually annotated peaks. The most successful of the algorithms computes the most richly connected subgraph within a 'cartoon graph'. This algorithm uniquely assigns the correct cartoon to more than half of the peaks in 41 out of the 71 spectra.

  19. Comprehensive N-Glycan Profiling of Avian Immunoglobulin Y

    Science.gov (United States)

    Millán Martín, Silvia; Wormald, Mark R.; Zapatero-Rodríguez, Julia; Conroy, Paul J.; O’Kennedy, Richard J.; Rudd, Pauline M.; Saldova, Radka

    2016-01-01

    Recent exploitation of the avian immune system has highlighted its suitability for the generation of high-quality, high-affinity antibodies to a wide range of antigens for a number of therapeutic and biotechnological applications. The glycosylation profile of potential immunoglobulin therapeutics is species specific and is heavily influenced by the cell-line/culture conditions used for production. Hence, knowledge of the carbohydrate moieties present on immunoglobulins is essential as certain glycan structures can adversely impact their physicochemical and biological properties. This study describes the detailed N-glycan profile of IgY polyclonal antibodies from the serum of leghorn chickens using a fully quantitative high-throughput N-glycan analysis approach, based on ultra-performance liquid chromatography (UPLC) separation of released glycans. Structural assignments revealed serum IgY to contain complex bi-, tri- and tetra-antennary glycans with or without core fucose and bisects, hybrid and high mannose glycans. High sialic acid content was also observed, with the presence of rare sialic acid structures, likely polysialic acids. It is concluded that IgY is heavily decorated with complex glycans; however, no known non-human or immunogenic glycans were identified. Thus, IgY is a potentially promising candidate for immunoglobulin-based therapies for the treatment of various infectious diseases. PMID:27459092

  20. Glycan changes: cancer metastasis and anti-cancer vaccines

    Indian Academy of Sciences (India)

    MADHU

    constitute the most complex group molecules in living organisms. Glycosylation produces an abundant, diverse ... As for other macronutrients, the primary classification of dietary carbohydrates, as proposed at the Joint Food ... method is also used for glycan structure classification (Li et al. 2010). Glycans are predomi nantly ...

  1. A novel N-linked flagellar glycan from Methanococcus maripaludis.

    Science.gov (United States)

    Kelly, John; Logan, Susan M; Jarrell, Ken F; VanDyke, David J; Vinogradov, Evgeny

    2009-03-31

    The archaea Methanococcus maripaludis strain Mm900 produces flagella that are glycosylated with an N-linked tetrasaccharide. Mass spectrometric analysis of flagellar tryptic peptides identified a number of tryptic glycopeptides carrying a glycan of mass 1036.4Da, and fragmentation of the glycan oxonium ion indicated that the glycan was a tetrasaccharide. The glycan was purified, following extensive pronase digestion of flagellar filaments, by size-exclusion and anion-exchange chromatography. NMR spectroscopy revealed that the glycan had the following structure: Sug-4-beta-ManNAc3NAmA6Thr-4-beta-GlcNAc3NAcA-3-beta-GalNAc-Asn where Sug is a novel monosaccharide unit, (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-alpha-l-erythro-hexos-5-ulo-1,5-pyranose. This oligosaccharide has significant similarity to the oligosaccharide that was found previously in Methanococcus voltae.

  2. Glycan characterization of biopharmaceuticals: Updates and perspectives

    International Nuclear Information System (INIS)

    Planinc, Ana; Bones, Jonathan; Dejaegher, Bieke; Van Antwerpen, Pierre; Delporte, Cédric

    2016-01-01

    Therapeutic proteins are rapidly becoming the most promising class of pharmaceuticals on the market due to their successful treatment of a vast array of serious diseases, such as cancers and immune disorders. Therapeutic proteins are produced using recombinant DNA technology. More than 60% of therapeutic proteins are posttranslationally modified following biosynthesis by the addition of N- or O-linked glycans. Glycosylation is the most common posttranslational modifications of proteins. However, it is also the most demanding and complex posttranslational modification from the analytical point of view. Moreover, research has shown that glycosylation significantly impacts stability, half-life, mechanism of action and safety of a therapeutic protein. Considering the exponential growth of biotherapeutics, this present review of the literature (2009–2015) focuses on the characterization of protein glycosylation, which has witnessed an improvement in methodology. Furthermore, it discusses current issues in the fields of production and characterization of therapeutic proteins. This review also highlights the problem of non-standard requirements for the approval of biosimilars with regard to their glycosylation and discusses recent developments and perspectives for improved glycan characterization. - Highlights: • Biopharmaceuticals have emerged as the new class of blockbuster drugs in the pharmaceutical industry. • More than 60% of the approved biopharmaceuticals are glycosylated. • Glycosylation has an effect on the efficacy and the safety of therapeutic glycoproteins. • N-glycosylation characterization of therapeutic glycoproteins is a regulatory requirement. • Biosimilar releases are increasing and demonstration of comparability poses challenges for N-glycosylation characterization.

  3. Glycan characterization of biopharmaceuticals: Updates and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Planinc, Ana [Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universite Libre de Bruxelles (ULB), Brussels (Belgium); Bones, Jonathan [Characterisation and Comparability Laboratory, NIBRT – The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin (Ireland); Dejaegher, Bieke [Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, B-1050 Brussels (Belgium); Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Center for Pharmaceutical Research (CePhaR), Faculty of Medicines and Pharmacy, Vrije Universiteit Brussel - VUB, Laarbeeklaan 103, B-1090 Brussels (Belgium); Van Antwerpen, Pierre [Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universite Libre de Bruxelles (ULB), Brussels (Belgium); Delporte, Cédric, E-mail: cedric.delporte@ulb.ac.be [Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universite Libre de Bruxelles (ULB), Brussels (Belgium)

    2016-05-19

    Therapeutic proteins are rapidly becoming the most promising class of pharmaceuticals on the market due to their successful treatment of a vast array of serious diseases, such as cancers and immune disorders. Therapeutic proteins are produced using recombinant DNA technology. More than 60% of therapeutic proteins are posttranslationally modified following biosynthesis by the addition of N- or O-linked glycans. Glycosylation is the most common posttranslational modifications of proteins. However, it is also the most demanding and complex posttranslational modification from the analytical point of view. Moreover, research has shown that glycosylation significantly impacts stability, half-life, mechanism of action and safety of a therapeutic protein. Considering the exponential growth of biotherapeutics, this present review of the literature (2009–2015) focuses on the characterization of protein glycosylation, which has witnessed an improvement in methodology. Furthermore, it discusses current issues in the fields of production and characterization of therapeutic proteins. This review also highlights the problem of non-standard requirements for the approval of biosimilars with regard to their glycosylation and discusses recent developments and perspectives for improved glycan characterization. - Highlights: • Biopharmaceuticals have emerged as the new class of blockbuster drugs in the pharmaceutical industry. • More than 60% of the approved biopharmaceuticals are glycosylated. • Glycosylation has an effect on the efficacy and the safety of therapeutic glycoproteins. • N-glycosylation characterization of therapeutic glycoproteins is a regulatory requirement. • Biosimilar releases are increasing and demonstration of comparability poses challenges for N-glycosylation characterization.

  4. The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures

    Directory of Open Access Journals (Sweden)

    Dell Anne

    2007-08-01

    Full Text Available Abstract Background Carbohydrates play a critical role in human diseases and their potential utility as biomarkers for pathological conditions is a major driver for characterization of the glycome. However, the additional complexity of glycans compared to proteins and nucleic acids has slowed the advancement of glycomics in comparison to genomics and proteomics. The branched nature of carbohydrates, the great diversity of their constituents and the numerous alternative symbolic notations, make the input and display of glycans not as straightforward as for example the amino-acid sequence of a protein. Every glycoinformatic tool providing a user interface would benefit from a fast, intuitive, appealing mechanism for input and output of glycan structures in a computer readable format. Results A software tool for building and displaying glycan structures using a chosen symbolic notation is described here. The "GlycanBuilder" uses an automatic rendering algorithm to draw the saccharide symbols and to place them on the drawing board. The information about the symbolic notation is derived from a configurable graphical model as a set of rules governing the aspect and placement of residues and linkages. The algorithm is able to represent a structure using only few traversals of the tree and is inherently fast. The tool uses an XML format for import and export of encoded structures. Conclusion The rendering algorithm described here is able to produce high-quality representations of glycan structures in a chosen symbolic notation. The automated rendering process enables the "GlycanBuilder" to be used both as a user-independent component for displaying glycans and as an easy-to-use drawing tool. The "GlycanBuilder" can be integrated in web pages as a Java applet for the visual editing of glycans. The same component is available as a web service to render an encoded structure into a graphical format. Finally, the "GlycanBuilder" can be integrated into other

  5. Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite.

    Science.gov (United States)

    Prasanphanich, Nina Salinger; Luyai, Anthony E; Song, Xuezheng; Heimburg-Molinaro, Jamie; Mandalasi, Msano; Mickum, Megan; Smith, David F; Nyame, A Kwame; Cummings, Richard D

    2014-07-01

    Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcβ1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Glycan family analysis for deducing N-glycan topology from single MS

    OpenAIRE

    Goldberg, David; Bern, Marshall; North, Simon J.; Haslam, Stuart M.; Dell, Anne

    2008-01-01

    Motivation: In the past few years, mass spectrometry (MS) has emerged as the premier tool for identification and quantification of biological molecules such as peptides and glycans. There are two basic strategies: single-MS, which uses a single round of mass analysis, and MS/MS (or higher order MSn), which adds one or more additional rounds of mass analysis, interspersed with fragmentation steps. Single-MS offers higher throughput, broader mass coverage and more direct quantitation, but gener...

  7. Systems analysis of N-glycan processing in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Patrick Hossler

    2007-08-01

    Full Text Available N-glycosylation plays a key role in the quality of many therapeutic glycoprotein biologics. The biosynthesis reactions of these oligosaccharides are a type of network in which a relatively small number of enzymes give rise to a large number of N-glycans as the reaction intermediates and terminal products. Multiple glycans appear on the glycoprotein molecules and give rise to a heterogeneous product. Controlling the glycan distribution is critical to the quality control of the product. Understanding N-glycan biosynthesis and the etiology of microheterogeneity would provide physiological insights, and facilitate cellular engineering to enhance glycoprotein quality. We developed a mathematical model of glycan biosynthesis in the Golgi and analyzed the various reaction variables on the resulting glycan distribution. The Golgi model was modeled as four compartments in series. The mechanism of protein transport across the Golgi is still controversial. From the viewpoint of their holding time distribution characteristics, the two main hypothesized mechanisms, vesicular transport and Golgi maturation models, resemble four continuous mixing-tanks (4CSTR and four plug-flow reactors (4PFR in series, respectively. The two hypotheses were modeled accordingly and compared. The intrinsic reaction kinetics were first evaluated using a batch (or single PFR reactor. A sufficient holding time is needed to produce terminally-processed glycans. Altering enzyme concentrations has a complex effect on the final glycan distribution, as the changes often affect many reaction steps in the network. Comparison of the glycan profiles predicted by the 4CSTR and 4PFR models points to the 4PFR system as more likely to be the true mechanism. To assess whether glycan heterogeneity can be eliminated in the biosynthesis of biotherapeutics the 4PFR model was further used to assess whether a homogeneous glycan profile can be created through metabolic engineering. We demonstrate by

  8. A quantitative structure-activity relationship (QSAR) study on glycan array data to determine the specificities of glycan-binding proteins.

    Science.gov (United States)

    Xuan, Pengfei; Zhang, Yuehua; Tzeng, Tzuen-rong Jeremy; Wan, Xiu-Feng; Luo, Feng

    2012-04-01

    Advances in glycan array technology have provided opportunities to automatically and systematically characterize the binding specificities of glycan-binding proteins. However, there is still a lack of robust methods for such analyses. In this study, we developed a novel quantitative structure-activity relationship (QSAR) method to analyze glycan array data. We first decomposed glycan chains into mono-, di-, tri- or tetrasaccharide subtrees. The bond information was incorporated into subtrees to help distinguish glycan chain structures. Then, we performed partial least-squares (PLS) regression on glycan array data using the subtrees as features. The application of QSAR to the glycan array data of different glycan-binding proteins demonstrated that PLS regression using subtree features can obtain higher R(2) values and a higher percentage of variance explained in glycan array intensities. Based on the regression coefficients of PLS, we were able to effectively identify subtrees that indicate the binding specificities of a glycan-binding protein. Our approach will facilitate the glycan-binding specificity analysis using the glycan array. A user-friendly web tool of the QSAR method is available at http://bci.clemson.edu/tools/glycan_array.

  9. Decoding the Role of Glycans in Malaria

    Directory of Open Access Journals (Sweden)

    Pollyanna S. Gomes

    2017-06-01

    Full Text Available Complications arising from malaria are a concern for public health authorities worldwide, since the annual caseload in humans usually exceeds millions. Of more than 160 species of Plasmodium, only 4 infect humans, with the most severe cases ascribed to Plasmodium falciparum and the most prevalent to Plasmodium vivax. Over the past 70 years, since World War II, when the first antimalarial drugs were widely used, many efforts have been made to combat this disease, including vectorial control, new drug discoveries and genetic and molecular approaches. Molecular approaches, such as glycobiology, may lead to new therapeutic targets (both in the host and the parasites, since all interactions are mediated by carbohydrates or glycan moieties decorating both cellular surfaces from parasite and host cells. In this review, we address the carbohydrate-mediated glycobiology that directly affects Plasmodium survival or host resistance.

  10. A comparison of glycosaminoglycan distributions, keratan sulphate sulphation patterns and collagen fibril architecture from central to peripheral regions of the bovine cornea.

    Science.gov (United States)

    Ho, Leona T Y; Harris, Anthony M; Tanioka, Hidetoshi; Yagi, Naoto; Kinoshita, Shigeru; Caterson, Bruce; Quantock, Andrew J; Young, Robert D; Meek, Keith M

    2014-09-01

    This study investigated changes in collagen fibril architecture and the sulphation status of keratan sulphate (KS) glycosaminoglycan (GAG) epitopes from central to peripheral corneal regions. Freshly excised adult bovine corneal tissue was examined as a function of radial position from the centre of the cornea outwards. Corneal thickness, tissue hydration, hydroxyproline content, and the total amount of sulphated GAG were all measured. High and low-sulphated epitopes of keratan sulphate were studied by immunohistochemistry and quantified by ELISA. Chondroitin sulphate (CS) and dermatan sulphate (DS) distributions were observed by immunohistochemistry following specific enzyme digestions. Electron microscopy and X-ray fibre diffraction were used to ascertain collagen fibril architecture. The bovine cornea was 1021±5.42 μm thick at its outer periphery, defined as 9-12 mm from the corneal centre, compared to 844±8.10 μm at the centre. The outer periphery of the cornea was marginally, but not significantly, more hydrated than the centre (H=4.3 vs. H=3.7), and was more abundant in hydroxyproline (0.12 vs. 0.06 mg/mg dry weight of cornea). DMMB assays indicated no change in the total amount of sulphated GAG across the cornea. Immunohistochemistry revealed the presence of both high- and low-sulphated epitopes of KS, as well as DS, throughout the cornea, and CS only in the peripheral cornea before the limbus. Quantification by ELISA, disclosed that although both high- and low-sulphated KS remained constant throughout stromal depth at different radial positions, high-sulphated epitopes remained constant from the corneal centre to outer-periphery, whereas low-sulphated epitopes increased significantly. Both small angle X-ray diffraction and TEM analysis revealed that collagen fibril diameter remained relatively constant until the outer periphery was reached, after which fibrils became more widely spaced (from small angle x-ray diffraction analysis) and of larger diameter

  11. Glycan-mediated modification of the immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Pedersen, Anders E; Wandall, Hans H

    2013-01-01

    Aberrantly glycosylated tumor antigens represent promising targets for the development of anti-cancer vaccines, yet how glycans influence immune responses is poorly understood. Recent studies have demonstrated that GalNAc-glycosylation enhances antigen uptake by dendritic cells as well as CD4(+) T......-cell and humoral responses, but prevents CD8(+) T-cell activation. Here, we briefly discuss the relevance of glycans as candidate targets for anti-cancer vaccines....

  12. The Analysis of Sialylation, N-Glycan Branching, and Expression of O-Glycans in Seminal Plasma of Infertile Men

    Directory of Open Access Journals (Sweden)

    Ewa M. Kratz

    2015-01-01

    Full Text Available Carbohydrates are known to mediate some events involved in successful fertilization. Although some studies on the glycosylation of seminal plasma proteins are available, the total glycan profile was rarely analyzed as a feature influencing fertilization potential. In this work we aimed to compare some glycosylation traits in seminal plasma glycoproteins of fertile and infertile men. The following findings emerge from our studies: (1 in human seminal plasma the presence and alterations of O-linked glycans were observed; (2 the expression of SNA-reactive sialic acid significantly differs between asthenozoospermia and both normozoospermic (fertile and infertile groups; (3 the expression of PHA-L-reactive highly branched N-glycans was significantly lower in oligozoospermic patients than in both normozoospermic groups. Indication of the appropriate lectins that would enable the possibly precise determination of the glycan profile seems to be a good supplement to mass spectrum analysis. Extension of the lectin panel is useful for the further research.

  13. Development and application of an algorithm to compute weighted multiple glycan alignments.

    Science.gov (United States)

    Hosoda, Masae; Akune, Yukie; Aoki-Kinoshita, Kiyoko F

    2017-05-01

    A glycan consists of monosaccharides linked by glycosidic bonds, has branches and forms complex molecular structures. Databases have been developed to store large amounts of glycan-binding experiments, including glycan arrays with glycan-binding proteins. However, there are few bioinformatics techniques to analyze large amounts of data for glycans because there are few tools that can handle the complexity of glycan structures. Thus, we have developed the MCAW (Multiple Carbohydrate Alignment with Weights) tool that can align multiple glycan structures, to aid in the understanding of their function as binding recognition molecules. We have described in detail the first algorithm to perform multiple glycan alignments by modeling glycans as trees. To test our tool, we prepared several data sets, and as a result, we found that the glycan motif could be successfully aligned without any prior knowledge applied to the tool, and the known recognition binding sites of glycans could be aligned at a high rate amongst all our datasets tested. We thus claim that our tool is able to find meaningful glycan recognition and binding patterns using data obtained by glycan-binding experiments. The development and availability of an effective multiple glycan alignment tool opens possibilities for many other glycoinformatics analysis, making this work a big step towards furthering glycomics analysis. http://www.rings.t.soka.ac.jp. kkiyoko@soka.ac.jp. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  14. Reduction of the concentration and total amount of keratan sulphate in synovial fluid from patients with osteoarthritis during treatment with piroxicam.

    Science.gov (United States)

    Carroll, G J; Bell, M C; Laing, B A; McCappin, S; Blumer, C; Leslie, A

    1992-01-01

    To study the effects of piroxicam on cartilage metabolism in vivo, a three phase (placebo/piroxicam 20 mg/day by mouth/placebo) double blind controlled trial was conducted in patients with osteoarthritis of the knee joint. Twenty one patients were recruited, 19 of whom (11 women, eight men, median age 70 years) completed the treatment schedule. The knee joint under study was aspirated to dryness at four week intervals. Treatment with piroxicam was accompanied by a decrease in the pain score, an improvement in the functional index, and an increased range of movement. Reductions in the concentration (mean (SEM) 120 (6) to 110 (8) micrograms/ml) and the total amount (1.22 (0.34) to 0.99 (0.37) mg) of keratan sulphate, but not the effusion volume (9.4 (2.5) to 8.3 (2.6) ml) were observed during treatment with piroxicam. These findings are consistent with decreased proteoglycan catabolism during treatment with piroxicam. Neither depressed synthesis nor enhanced clearance of degraded proteoglycan fragments can be excluded, however. PMID:1632658

  15. Potential involvement of chondroitin sulfate A in the pathogenesis of ameloblastoma.

    Science.gov (United States)

    Li, Xiangjun; Kurita, Hiroshi; Xiao, Tiepeng; Iijima, Kyou; Kurashina, Kenji; Nakayama, Jun

    2017-06-01

    Ameloblastoma is classified as a benign odontogenic tumor characterized by locally invasive behavior and high risk of recurrence. Here, we evaluate a potential role for glycosaminoglycan, a structural component of cell membranes and extracellular matrix, in ameloblstoma pathogenesis. We subjected formalin-fixed, paraffin-embedded tissue sections of 34 cases of ameloblastoma, 10 of odontogenic keratocyst, and 17 of dentigerous cyst to immunohistochemistry using monoclonal antibodies recognizing chondroitin sulfate A (CS-A), heparan sulfate (HS), and keratan sulfate (KS). Expression levels of CS-A in epithelial component and stroma of ameloblastoma were significantly higher than those in odontogenic keratocyst and dentigerous cyst. Moreover, CS-A in ameloblastoma was more strongly expressed in stellate reticulum-like cells than in amelobast-like cells with statistical significance. On the other hand, expression levels of HS and KS in epithelial component and stroma of ameloblastoma were lower compared with CS-A. These results overall reveal that among these odontogenic lesions, CS-A is preferentially expessed in ameloblastoma, suggesting potential pathogenetic role probably in cytodifferention of tumor cells to stellate reticulum-like cells. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Use of co2 for the synthesis of cyclic glycocarbonates and linear polyglycocarbonates by polycondensation from glycans

    KAUST Repository

    Gnanou, Yves

    2016-10-20

    Provided herein are methods for synthesizing cyclic carbonates, glycocarbonates, and polyglycocarbonates by reacting polyol glycans with carbon dioxide. Synthesis can include selective polycondensation of polyol glycan hydroxyl moieties.

  17. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection.

    Directory of Open Access Journals (Sweden)

    Rami Sommerstein

    2015-11-01

    Full Text Available Arenaviruses such as Lassa virus (LASV can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein's globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy.

  18. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection

    Science.gov (United States)

    Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A.; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D.

    2015-01-01

    Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein’s globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy. PMID:26587982

  19. Improving N-Glycan Coverage using HPLC-MS with Electrospray Ionization at Subambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Marginean, Ioan; Kronewitter, Scott R.; Moore, Ronald J.; Slysz, Gordon W.; Monroe, Matthew E.; Anderson, Gordon A.; Tang, Keqi; Smith, Richard D.

    2012-10-01

    Human serum glycan profiling with mass spectrometry (MS) has been employed to study several disease conditions and is demonstrating promise for e.g. clinical biomarker discovery. However, the poor glycan ionization efficiency and the large dynamic range of glycan concentrations in human sera hinder comprehensive profiling. In particular, large glycans are problematic because they are present at low concentrations and prone to fragmentation. Here we show that the sub-ambient pressure ionization with nanoelectrospray (SPIN)-MS can expand the serum glycome profile when compared with the conventional atmospheric pressure electrospray ionization (ESI)-MS with a heated capillary inlet. Notably, the ions generated by the SPIN interface were observed at higher charge states for 50% of the annotated glycans. Out of a total of 130 detected glycans, 34 were only detected with the SPIN-MS, resulting in improved coverage of glycan families as well as of glycans with larger numbers of labile monosaccharides.

  20. Glycans modify mesenchymal stem cell differentiation to impact on the function of resulting osteoblasts

    OpenAIRE

    Wilson, Katherine M.; Jagger, Alistair M; Walker, Matthew; Seinkmane, Estere; Fox, James M.; Kröger, Roland; Genever, Paul; Ungar, Daniel

    2018-01-01

    Glycans are inherently heterogeneous, yet glycosylation is essential in eukaryotes, and glycans show characteristic cell type-dependent distributions. By using an immortalized human mesenchymal stromal cell (MSC) line model, we show that both N- and O-glycan processing in the Golgi functionally modulates early steps of osteogenic differentiation. We found that inhibiting O-glycan processing in the Golgi prior to the start of osteogenesis inhibited the mineralization capacity of the formed ost...

  1. Glycan Markers as Potential Immunological Targets in Circulating Tumor Cells.

    Science.gov (United States)

    Wang, Denong; Wu, Lisa; Liu, Xiaohe

    2017-01-01

    We present here an experimental approach for exploring a new class of tumor biomarkers that are overexpressed by circulating tumor cells (CTCs) and are likely targetable in immunotherapy against tumor metastasis. Using carbohydrate microarrays, anti-tumor monoclonal antibodies (mAbs) were scanned against a large panel of carbohydrate antigens to identify potential tumor glycan markers. Subsequently, flow cytometry and fiber-optic array scanning technology (FAST) were applied to determine whether the identified targets are tumor-specific cell-surface markers and are, therefore, likely suitable for targeted immunotherapy. Finally, the tumor glycan-specific antibodies identified were validated using cancer patients' blood samples for their performance in CTC-detection and immunotyping analysis. In this article, identifying breast CTC-specific glycan markers and targeting mAbs serve as examples to illustrate this tumor biomarker discovery strategy.

  2. Hyaluronan-binding region of aggrecan from pig laryngeal cartilage. Amino acid sequence, analysis of N-linked oligosaccharides and location of the keratan sulphate.

    Science.gov (United States)

    Barry, F P; Gaw, J U; Young, C N; Neame, P J

    1992-09-15

    The hyaluronan-binding region (HABR) was prepared from pig laryngeal cartilage aggrecan and the amino acid sequence was determined. The HABR had two N-termini: one N-terminal sequence was Val-Glu-Val-Ser-Glu-Pro (367 amino acids in total), and a second N-terminal sequence (Ala-Ile-Ser-Val-Glu-Val; 370 amino acids in total) was found to arise due to alternate cleavage by the signal peptidase. The N-linked oligosaccharides were analysed by examining their reactivity with a series of lectins. It was found that the N-linked oligosaccharide on loop A was of the mannose type, while that on loop B was of the complex type. No reactivity was detected between the N-linked oligosaccharide on loop B' and any of the lectins. The location of keratan sulphate (KS) in the HABR was determined by Edman degradation of the immobilized KS-containing peptide. The released amino acid derivatives were collected and tested for the presence of epitope to antibody 5-D-4. On the basis of 5-D-4 reactivity and sequencing yields, the KS chains are attached to threonine residues 352 and 357. There is no KS at threonine-355. This site is not in fact in G1, but about 16 amino acid residues into the interglobular domain. Comparison of the structure of the KS chain from the HABR and from the KS domain of pig laryngeal cartilage aggrecan was made by separation on polyacrylamide gels of the oligosaccharides arising from digestion with keratanase. Comparison of the oligosaccharide maps suggests that the KS chains from both parts of the aggrecan molecule have the same structure.

  3. A Capping Step During Automated Glycan Assembly Enables Access to Complex Glycans in High Yield.

    Science.gov (United States)

    Yu, Yang; Kononov, Andrew; Delbianco, Martina; Seeberger, Peter H

    2018-04-20

    The products of multi-step automated solid phase syntheses are purified after release from the resin. Capping of unreacted nucleophiles is commonplace in automated oligonucleotide synthesis to minimize accumulation of deletion sequences. To date, capping was not used routinely during automated glycan assembly (AGA) since previous capping protocols suffered from long reaction times and conditions incompatible with some protective groups. Here, a method using methanesulfonic acid and acetic anhydride for the fast and quantitative capping of hydroxyl groups that failed to be glycosylated is reported. Commonly used protective groups in AGA are stable under these capping conditions. The introduction of a capping step into the coupling cycle drastically improved overall yields by decreasing side-products and simplifying purification, while reducing building block consumption. To illustrate the method, the biologically important tetrasaccharide Lc4, as well as a 50-mer polymannoside were prepared. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. GlycoPattern: a web platform for glycan array mining.

    Science.gov (United States)

    Agravat, Sanjay B; Saltz, Joel H; Cummings, Richard D; Smith, David F

    2014-12-01

    GlycoPattern is Web-based bioinformatics resource to support the analysis of glycan array data for the Consortium for Functional Glycomics. This resource includes algorithms and tools to discover structural motifs, a heatmap visualization to compare multiple experiments, hierarchical clustering of Glycan Binding Proteins with respect to their binding motifs and a structural search feature on the experimental data. GlycoPattern is freely available on the Web at http://glycopattern.emory.edu with all major browsers supported. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Glycan bioengineering in immunogen design for tumor T antigen immunotargeting

    DEFF Research Database (Denmark)

    Sendra, Victor G; Zlocowski, Natacha; Ditamo, Yanina

    2009-01-01

    . Antibodies produced by glycan bioengineering recognize HT29, T47D, MCF7, and CT26 epithelial tumor cells. Epithelial tumor cell adhesion to T antigen-binding lectins and endothelial cells was lower in the presence of antibodies raised against the engineered immunogen. The immune response directed...... to the bioengineered glycoconjugate inhibited CT26 tumor cell proliferation and reduced tumor growth in an in vivo mouse model. These results show that TFD bioengineering is a useful immunogenic strategy with potential application in cancer therapy. The same approach can be extended to other glycan immunogens...

  6. N-glycan transition of the early developmental stage in Oryza sativa.

    Science.gov (United States)

    Horiuchi, Risa; Hirotsu, Naoki; Miyanishi, Nobumitsu

    2016-08-26

    N-Glycosylation is one of the post-translational modifications. In animals, N-glycans linked to proteins function in cell-cell recognition, sorting, transport, and other biological phenomena. However, in plants, N-glycan-mediated biological functions remain obscure. In a previous study, we showed that the main type of N-glycan transition is from the paucimannosidic to complex type before and after germination in Oryza sativa, suggesting that transitions of N-glycan, including those of glycoproteins and glycosyltransferases, are closely associated with plant growth. To further elucidate the relationship between N-glycan structure and plant growth, we analyzed the structures of N-glycans expressed in O. sativa seedlings grown under light conditions and performed comparative analyses of the structures in the shoot and root. The analyses show that fundamental N-glycan structures are common to the shoot and root, whereas paucimannosidic-type N-glycans dramatically decreased in the root grown under light conditions. Further, to investigate the effects of light on N-glycan structures in O. sativa seedlings, we analyzed N-glycan structures in O. sativa seedlings grown in the dark. Understandably, N-glycan expression in the root was almost unaffected by light. However, despite a marked difference in phenotype, N-glycan expression in the shoot was also unaffected by light. This result suggests that the shoot and root of O. sativa have different glycoproteins and distinct N-glycan synthetic systems. Thus, we propose that the N-glycan synthetic system of the O. sativa shoot is almost unaffected by light conditions and that many photosynthesis-related proteins are not modified by N-glycans. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The specificity of interactions between proteins and sulfated polysaccharides

    Directory of Open Access Journals (Sweden)

    Mulloy Barbara

    2005-01-01

    Full Text Available Sulfated polysaccharides are capable of binding with proteins at several levels of specificity. As highly acidic macromolecules, they can bind non-specifically to any basic patch on a protein surface at low ionic strength, and such interactions are not likely to be physiologically significant. On the other hand, several systems have been identified in which very specific substructures of sulfated polysaccharides confer high affinity for particular proteins; the best-known example of this is the pentasaccharide in heparin with high affinity for antithrombin, but other examples may be taken from the study of marine invertebrates: the importance of the fine structure of dermatan sulfate (DS to its interaction with heparin cofactor II (HCII, and the involvement of sea urchin egg-jelly fucans in species specific fertilization. A third, intermediate, kind of specific interaction is described for the cell-surface glycosaminoglycan heparan sulfate (HS, in which patterns of sulfate substitution can show differential affinities for cytokines, growth factors, and morphogens at cell surfaces and in the intracellular matrix. This complex interplay of proteins and glycans is capable of influencing the diffusion of such proteins through tissue, as well as modulating cellular responses to them.

  8. Differential N-glycan patterns identified in lung adenocarcinoma by N-glycan profiling of formalin-fixed paraffin-embedded (FFPE) tissue sections.

    Science.gov (United States)

    Wang, Xiaoning; Deng, Zaian; Huang, Chuncui; Zhu, Tong; Lou, Jiatao; Wang, Lin; Li, Yan

    2018-02-10

    N-glycan profiling is a powerful approach for analyzing the functional relationship between N-glycosylation and cancer. Current methods rely on either serum or fresh tissue samples; however, N-glycan patterns may differ between serum and tissue, as the proteins of serum originate from a variety of tissues. Furthermore, fresh tissue samples are difficult to ship and store. Here, we used a profiling method based on formalin-fixed paraffin-embedded (FFPE) tissue sections from lung adenocarcinoma patients. We found that our method was highly reproducible. We identified 58 N-glycan compositions from lung adenocarcinoma FFPE samples, 51 of which were further used for MS n -based structure prediction. We show that high mannose type N-glycans are upregulated, while sialylated N-glycans are downregulated in our FFPE lung adenocarcinoma samples, compared to the control samples. Our receiver operating characteristic (ROC) curve analysis shows that high mannose type and sialylated N-glycans are useful discriminators to distinguish between lung adenocarcinoma and control tissue. Together, our results indicate that expression levels of specific N-glycans correlate well with lung adenocarcinoma, and strongly suggest that our FFPE-based method will be useful for N-glycan profiling of cancer tissues. Glycosylation is one of the most important post-translational protein modifications, and is associated with several physiopathological processes, including carcinogenesis. In this study, we tested the feasibility of using formalin-fixed paraffin-embedded (FFPE) tissue sections to identify changes in N-glycan patterns and identified the differentially expressed N-glycans of lung adenocarcinoma. Our study shows that the FFPE-based N-glycan profiling method is useful for clinical diagnosis as well as identification of potential biomarkers, and our data expand current knowledge of differential N-glycan patterns of lung adenocarcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    Science.gov (United States)

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-04-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors.

  10. Chinks in the armor of the HIV-1 Envelope glycan shield: Implications for immune escape from anti-glycan broadly neutralizing antibodies.

    Science.gov (United States)

    Moyo, Thandeka; Ferreira, Roux-Cil; Davids, Reyaaz; Sonday, Zarinah; Moore, Penny L; Travers, Simon A; Wood, Natasha T; Dorfman, Jeffrey R

    2017-01-15

    Glycans on HIV-1 Envelope serve multiple functions including blocking epitopes from antibodies. We show that removal of glycan 301, a major target of anti-V3/glycan antibodies, has substantially different effects in two viruses. While glycan 301 on Du156.12 blocks epitopes commonly recognized by sera from chronically HIV-1-infected individuals, it does not do so on CAP45.G3, suggesting that removing the 301 glycan has a smaller effect on the integrity of the glycan shield in CAP45.G3. Changes in sensitivity to broadly neutralizing monoclonal antibodies suggest that the interaction between glycan 301 and the CD4 binding site differ substantially between these 2 viruses. Molecular modeling suggests that removal of glycan 301 likely exposes a greater surface area of the V3 and C4 regions in Du156.12. Our data indicate that the contribution of the 301 glycan to resistance to common neutralizing antibodies varies between viruses, allowing for easier selection for its loss in some viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Electrostatics and N-glycan-mediated membrane tethering of SCUBE1 is critical for promoting bone morphogenetic protein signalling.

    Science.gov (United States)

    Liao, Wei-Ju; Tsao, Ku-Chi; Yang, Ruey-Bing

    2016-03-01

    SCUBE1 (S1), a secreted and membrane-bound glycoprotein, has a modular protein structure composed of an N-terminal signal peptide sequence followed by nine epidermal growth factor (EGF)-like repeats, a spacer region and three cysteine-rich (CR) motifs with multiple potential N-linked glycosylation sites, and one CUB domain at the C-terminus. Soluble S1 is a biomarker of platelet activation but an active participant of thrombosis via its adhesive EGF-like repeats, whereas its membrane-associated form acts as a bone morphogenetic protein (BMP) co-receptor in promoting BMP signal activity. However, the mechanism responsible for the membrane tethering and the biological importance of N-glycosylation of S1 remain largely unknown. In the present study, molecular mapping analysis identified a polycationic segment (amino acids 501-550) in the spacer region required for its membrane tethering via electrostatic interactions possibly with the anionic heparan sulfate proteoglycans. Furthermore, deglycosylation by peptide N-glycosidase F treatment revealed that N-glycans within the CR motif are essential for membrane recruitment through lectin-mediated surface retention. Injection of mRNA encoding zebrafish wild-type but not N-glycan-deficient scube1 restores the expression of haematopoietic and erythroid markers (scl and gata1) in scube1-knockdown embryos. We describe novel mechanisms in targeting S1 to the plasma membrane and demonstrate that N-glycans are required for S1 functions during primitive haematopoiesis in zebrafish. © 2016 Authors; published by Portland Press Limited.

  12. Understanding the specificity of human Galectin-8C domain interactions with its glycan ligands based on molecular dynamics simulations.

    Science.gov (United States)

    Kumar, Sonu; Frank, Martin; Schwartz-Albiez, Reinhard

    2013-01-01

    Human Galectin-8 (Gal-8) is a member of the galectin family which shares an affinity for β-galactosides. The tandem-repeat Gal-8 consists of a N- and a C-terminal carbohydrate recognition domain (N- and C-CRD) joined by a linker peptide of various length. Despite their structural similarity both CRDs recognize different oligosaccharides. While the molecular requirements of the N-CRD for high binding affinity to sulfated and sialylated glycans have recently been elucidated by crystallographic studies of complexes with several oligosaccharides, the binding specificities of the C-CRD for a different set of oligosaccharides, as derived from experimental data, has only been explained in terms of the three-dimensional structure for the complex C-CRD with lactose. In this study we performed molecular dynamics (MD) simulations using the recently released crystal structure of the Gal-8C-CRD to analyse the three-dimensional conditions for its specific binding to a variety of oligosaccharides as previously defined by glycan-microarray analysis. The terminal β-galactose of disaccharides (LacNAc, lacto-N-biose and lactose) and the internal β-galactose moiety of blood group antigens A and B (BGA, BGB) as well as of longer linear oligosaccharide chains (di-LacNAc and lacto-N-neotetraose) are interacting favorably with conserved amino acids (H53, R57, N66, W73, E76). Lacto-N-neotetraose and di-LacNAc as well as BGA and BGB are well accommodated. BGA and BGB showed higher affinity than LacNAc and lactose due to generally stronger hydrogen bond interactions and water mediated hydrogen bonds with α1-2 fucose respectively. Our results derived from molecular dynamics simulations are able to explain the glycan binding specificities of the Gal-8C-CRD in comparison to those of the Gal-8N -CRD.

  13. Understanding the specificity of human Galectin-8C domain interactions with its glycan ligands based on molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Sonu Kumar

    Full Text Available Human Galectin-8 (Gal-8 is a member of the galectin family which shares an affinity for β-galactosides. The tandem-repeat Gal-8 consists of a N- and a C-terminal carbohydrate recognition domain (N- and C-CRD joined by a linker peptide of various length. Despite their structural similarity both CRDs recognize different oligosaccharides. While the molecular requirements of the N-CRD for high binding affinity to sulfated and sialylated glycans have recently been elucidated by crystallographic studies of complexes with several oligosaccharides, the binding specificities of the C-CRD for a different set of oligosaccharides, as derived from experimental data, has only been explained in terms of the three-dimensional structure for the complex C-CRD with lactose. In this study we performed molecular dynamics (MD simulations using the recently released crystal structure of the Gal-8C-CRD to analyse the three-dimensional conditions for its specific binding to a variety of oligosaccharides as previously defined by glycan-microarray analysis. The terminal β-galactose of disaccharides (LacNAc, lacto-N-biose and lactose and the internal β-galactose moiety of blood group antigens A and B (BGA, BGB as well as of longer linear oligosaccharide chains (di-LacNAc and lacto-N-neotetraose are interacting favorably with conserved amino acids (H53, R57, N66, W73, E76. Lacto-N-neotetraose and di-LacNAc as well as BGA and BGB are well accommodated. BGA and BGB showed higher affinity than LacNAc and lactose due to generally stronger hydrogen bond interactions and water mediated hydrogen bonds with α1-2 fucose respectively. Our results derived from molecular dynamics simulations are able to explain the glycan binding specificities of the Gal-8C-CRD in comparison to those of the Gal-8N -CRD.

  14. Variable Domain N-Linked Glycans Acquired During Antigen-Specific Immune Responses Can Contribute to Immunoglobulin G Antibody Stability

    Directory of Open Access Journals (Sweden)

    Fleur S. van de Bovenkamp

    2018-04-01

    Full Text Available Immunoglobulin G (IgG can contain N-linked glycans in the variable domains, the so-called Fab glycans, in addition to the Fc glycans in the CH2 domains. These Fab glycans are acquired following introduction of N-glycosylation sites during somatic hypermutation and contribute to antibody diversification. We investigated whether Fab glycans may—in addition to affecting antigen binding—contribute to antibody stability. By analyzing thermal unfolding profiles of antibodies with or without Fab glycans, we demonstrate that introduction of Fab glycans can improve antibody stability. Strikingly, removal of Fab glycans naturally acquired during antigen-specific immune responses can deteriorate antibody stability, suggesting in vivo selection of stable, glycosylated antibodies. Collectively, our data show that variable domain N-linked glycans acquired during somatic hypermutation can contribute to IgG antibody stability. These findings indicate that introducing Fab glycans may represent a mechanism to improve therapeutic/diagnostic antibody stability.

  15. Parallel analysis and orthogonal identification of N-glycans with different capillary electrophoresis mechanisms

    International Nuclear Information System (INIS)

    Feng, Hua-tao; Su, Min; Rifai, Farida Nur; Li, Pingjing; Li, Sam F.Y.

    2017-01-01

    The deep involvement of glycans or carbohydrate moieties in biological processes makes glycan patterns an important direction for the clinical and medicine researches. A multiplexing CE mapping method for glycan analysis was developed in this study. By applying different CE separation mechanisms, the potential of combined parallel applications of capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC) and capillary gel electrophoresis (CGE) for rapid and accurate identification of glycan was investigated. The combination of CZE and MEKC demonstrated enhancing chromatography separation capacity without the compromises of sample pre-treatment and glycan concentration. The separation mechanisms for multiplexing platform were selected based on the orthogonalities of the separation of glycan standards. MEKC method exhibited promising ability for the analysis of small GU value glycans and thus complementing the unavailability of CZE. The method established required only small amount of samples, simple instrument and single fluorescent labelling for sensitive detection. This integrated method can be used to search important glycan patterns appearing in biopharmaceutical products and other glycoproteins with clinical importance. - Highlights: • Cross-validation of analytes in complex samples was done with different CE separation mechanisms. • A simple strategy is used to confirm peak identification and extend capacity of CE separation. • The method uses small amount of sample, simple instrument and single fluorescent labeling. • Selection of mechanisms is based on orthogonalities of GU values of glycan standards. • Micellar electrokinetic chromatography was suitable for analysis of small or highly sialylated glycans.

  16. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G.

    Science.gov (United States)

    Stewart-Jones, Guillaume B E; Soto, Cinque; Lemmin, Thomas; Chuang, Gwo-Yu; Druz, Aliaksandr; Kong, Rui; Thomas, Paul V; Wagh, Kshitij; Zhou, Tongqing; Behrens, Anna-Janina; Bylund, Tatsiana; Choi, Chang W; Davison, Jack R; Georgiev, Ivelin S; Joyce, M Gordon; Kwon, Young Do; Pancera, Marie; Taft, Justin; Yang, Yongping; Zhang, Baoshan; Shivatare, Sachin S; Shivatare, Vidya S; Lee, Chang-Chun D; Wu, Chung-Yi; Bewley, Carole A; Burton, Dennis R; Koff, Wayne C; Connors, Mark; Crispin, Max; Baxa, Ulrich; Korber, Bette T; Wong, Chi-Huey; Mascola, John R; Kwong, Peter D

    2016-05-05

    The HIV-1-envelope (Env) trimer is covered by a glycan shield of ∼90 N-linked oligosaccharides, which comprises roughly half its mass and is a key component of HIV evasion from humoral immunity. To understand how antibodies can overcome the barriers imposed by the glycan shield, we crystallized fully glycosylated Env trimers from clades A, B, and G, visualizing the shield at 3.4-3.7 Å resolution. These structures reveal the HIV-1-glycan shield to comprise a network of interlocking oligosaccharides, substantially ordered by glycan crowding, that encase the protein component of Env and enable HIV-1 to avoid most antibody-mediated neutralization. The revealed features delineate a taxonomy of N-linked glycan-glycan interactions. Crowded and dispersed glycans are differently ordered, conserved, processed, and recognized by antibody. The structures, along with glycan-array binding and molecular dynamics, reveal a diversity in oligosaccharide affinity and a requirement for accommodating glycans among known broadly neutralizing antibodies that target the glycan-shielded trimer. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search.

    Directory of Open Access Journals (Sweden)

    Davide Alocci

    Full Text Available Resource description framework (RDF and Property Graph databases are emerging technologies that are used for storing graph-structured data. We compare these technologies through a molecular biology use case: glycan substructure search. Glycans are branched tree-like molecules composed of building blocks linked together by chemical bonds. The molecular structure of a glycan can be encoded into a direct acyclic graph where each node represents a building block and each edge serves as a chemical linkage between two building blocks. In this context, Graph databases are possible software solutions for storing glycan structures and Graph query languages, such as SPARQL and Cypher, can be used to perform a substructure search. Glycan substructure searching is an important feature for querying structure and experimental glycan databases and retrieving biologically meaningful data. This applies for example to identifying a region of the glycan recognised by a glycan binding protein (GBP. In this study, 19,404 glycan structures were selected from GlycomeDB (www.glycome-db.org and modelled for being stored into a RDF triple store and a Property Graph. We then performed two different sets of searches and compared the query response times and the results from both technologies to assess performance and accuracy. The two implementations produced the same results, but interestingly we noted a difference in the query response times. Qualitative measures such as portability were also used to define further criteria for choosing the technology adapted to solving glycan substructure search and other comparable issues.

  18. Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein

    Directory of Open Access Journals (Sweden)

    Anna-Janina Behrens

    2016-03-01

    Full Text Available The HIV-1 envelope glycoprotein trimer is covered by an array of N-linked glycans that shield it from immune surveillance. The high density of glycans on the trimer surface imposes steric constraints limiting the actions of glycan-processing enzymes, so that multiple under-processed structures remain on specific areas. These oligomannose glycans are recognized by broadly neutralizing antibodies (bNAbs that are not thwarted by the glycan shield but, paradoxically, target it. Our site-specific glycosylation analysis of a soluble, recombinant trimer (BG505 SOSIP.664 maps the extremes of simplicity and diversity of glycan processing at individual sites and reveals a mosaic of dense clusters of oligomannose glycans on the outer domain. Although individual sites usually minimally affect the global integrity of the glycan shield, we identify examples of how deleting some glycans can subtly influence neutralization by bNAbs that bind at distant sites. The network of bNAb-targeted glycans should be preserved on vaccine antigens.

  19. Parallel analysis and orthogonal identification of N-glycans with different capillary electrophoresis mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Hua-tao [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); NUS Environmental Research Institute, 5A Engineering Drive 1, T-Lab Building, Singapore 117411 (Singapore); Su, Min; Rifai, Farida Nur [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Li, Pingjing [NUS Environmental Research Institute, 5A Engineering Drive 1, T-Lab Building, Singapore 117411 (Singapore); Li, Sam F.Y., E-mail: chmlifys@nus.edu.sg [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); NUS Environmental Research Institute, 5A Engineering Drive 1, T-Lab Building, Singapore 117411 (Singapore)

    2017-02-08

    The deep involvement of glycans or carbohydrate moieties in biological processes makes glycan patterns an important direction for the clinical and medicine researches. A multiplexing CE mapping method for glycan analysis was developed in this study. By applying different CE separation mechanisms, the potential of combined parallel applications of capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC) and capillary gel electrophoresis (CGE) for rapid and accurate identification of glycan was investigated. The combination of CZE and MEKC demonstrated enhancing chromatography separation capacity without the compromises of sample pre-treatment and glycan concentration. The separation mechanisms for multiplexing platform were selected based on the orthogonalities of the separation of glycan standards. MEKC method exhibited promising ability for the analysis of small GU value glycans and thus complementing the unavailability of CZE. The method established required only small amount of samples, simple instrument and single fluorescent labelling for sensitive detection. This integrated method can be used to search important glycan patterns appearing in biopharmaceutical products and other glycoproteins with clinical importance. - Highlights: • Cross-validation of analytes in complex samples was done with different CE separation mechanisms. • A simple strategy is used to confirm peak identification and extend capacity of CE separation. • The method uses small amount of sample, simple instrument and single fluorescent labeling. • Selection of mechanisms is based on orthogonalities of GU values of glycan standards. • Micellar electrokinetic chromatography was suitable for analysis of small or highly sialylated glycans.

  20. Human Milk Contains Novel Glycans That Are Potential Decoy Receptors for Neonatal Rotaviruses*

    Science.gov (United States)

    Yu, Ying; Lasanajak, Yi; Song, Xuezheng; Hu, Liya; Ramani, Sasirekha; Mickum, Megan L.; Ashline, David J.; Prasad, B. V. Venkataram; Estes, Mary K.; Reinhold, Vernon N.; Cummings, Richard D.; Smith, David F.

    2014-01-01

    Human milk contains a rich set of soluble, reducing glycans whose functions and bioactivities are not well understood. Because human milk glycans (HMGs) have been implicated as receptors for various pathogens, we explored the functional glycome of human milk using shotgun glycomics. The free glycans from pooled milk samples of donors with mixed Lewis and Secretor phenotypes were labeled with a fluorescent tag and separated via multidimensional HPLC to generate a tagged glycan library containing 247 HMG targets that were printed to generate the HMG shotgun glycan microarray (SGM). To investigate the potential role of HMGs as decoy receptors for rotavirus (RV), a leading cause of severe gastroenteritis in children, we interrogated the HMG SGM with recombinant forms of VP8* domains of the RV outer capsid spike protein VP4 from human neonatal strains N155(G10P[11]) and RV3(G3P[6]) and a bovine strain, B223(G10P[11]). Glycans that were bound by RV attachment proteins were selected for detailed structural analyses using metadata-assisted glycan sequencing, which compiles data on each glycan based on its binding by antibodies and lectins before and after exo- and endo-glycosidase digestion of the SGM, coupled with independent MSn analyses. These complementary structural approaches resulted in the identification of 32 glycans based on RV VP8* binding, many of which are novel HMGs, whose detailed structural assignments by MSn are described in a companion report. Although sialic acid has been thought to be important as a surface receptor for RVs, our studies indicated that sialic acid is not required for binding of glycans to individual VP8* domains. Remarkably, each VP8* recognized specific glycan determinants within a unique subset of related glycan structures where specificity differences arise from subtle differences in glycan structures. PMID:25048705

  1. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  2. Heparin/heparan sulfates bind to and modulate neuronal L-type (Cav1.2) voltage-dependent Ca2+ channels

    DEFF Research Database (Denmark)

    Garau, Gianpiero; Magotti, Paola; Heine, Martin

    2015-01-01

    Our previous studies revealed that L-type voltage-dependent Ca2+ channels (Cav1.2 L-VDCCs) are modulated by the neural extracellular matrix backbone, polyanionic glycan hyaluronic acid. Here we used isothermal titration calorimetry and screened a set of peptides derived from the extracellular...... domains of Cav1.2α1 to identify putative binding sites between the channel and hyaluronic acid or another class of polyanionic glycans, such as heparin/heparan sulfates. None of the tested peptides showed detectable interaction with hyaluronic acid, but two peptides derived from the first pore...

  3. Facile metabolic glycan labeling strategy for exosome tracking.

    Science.gov (United States)

    Lee, Tae Sup; Kim, Young; Zhang, Weiqi; Song, In Ho; Tung, Ching-Hsuan

    2018-05-01

    Exosomes are nano-sized vesicles derived from the fusion of multivesicular bodies with the surrounding plasma membrane. Exosomes have various diagnostic and therapeutic potentials in cancer and other diseases, thus tracking exosomes is an important issue. Here, we report a facile exosome labeling strategy using a natural metabolic incorporation of an azido-sugar into the glycan, and a strain-promoted azide-alkyne click reaction. In culture, tetra-acetylated N-azidoacetyl-D-mannosamine (Ac 4 ManNAz) was spontaneously incorporated into glycans within the cells and later redistributed onto their exosomes. These azido-containing exosomes were then labeled with azadibenzylcyclooctyne (ADIBO)-fluorescent dyes by a bioorthogonal click reaction. Cellular uptake and the in vivo tracking of fluorescent labeled exosomes were evaluated in various cells and tumor bearing mice. Highly metastatic cancer-derived exosomes showed an increased self-homing in vitro and selective organ distribution in vivo. Our metabolic exosome labeling strategy could be a promising tool in studying the biology and distribution of exosomes, and optimizing exosome based therapeutic approaches. A facile and effective exosome labeling strategy was introduced by presenting azido moiety on the surface of exosome through metabolic glycan synthesis, and then conjugating a strain-promoted fluorescent dye. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Implementation of Glycan Remodeling to Plant-Made Therapeutic Antibodies.

    Science.gov (United States)

    Bennett, Lindsay D; Yang, Qiang; Berquist, Brian R; Giddens, John P; Ren, Zhongjie; Kommineni, Vally; Murray, Ryan P; White, Earl L; Holtz, Barry R; Wang, Lai-Xi; Marcel, Sylvain

    2018-01-31

    N -glycosylation profoundly affects the biological stability and function of therapeutic proteins, which explains the recent interest in glycoengineering technologies as methods to develop biobetter therapeutics. In current manufacturing processes, N -glycosylation is host-specific and remains difficult to control in a production environment that changes with scale and production batches leading to glycosylation heterogeneity and inconsistency. On the other hand, in vitro chemoenzymatic glycan remodeling has been successful in producing homogeneous pre-defined protein glycoforms, but needs to be combined with a cost-effective and scalable production method. An efficient chemoenzymatic glycan remodeling technology using a plant expression system that combines in vivo deglycosylation with an in vitro chemoenzymatic glycosylation is described. Using the monoclonal antibody rituximab as a model therapeutic protein, a uniform Gal2GlcNAc2Man3GlcNAc2 (A2G2) glycoform without α-1,6-fucose, plant-specific α-1,3-fucose or β-1,2-xylose residues was produced. When compared with the innovator product Rituxan ® , the plant-made remodeled afucosylated antibody showed similar binding affinity to the CD20 antigen but significantly enhanced cell cytotoxicity in vitro. Using a scalable plant expression system and reducing the in vitro deglycosylation burden creates the potential to eliminate glycan heterogeneity and provide affordable customization of therapeutics' glycosylation for maximal and targeted biological activity. This feature can reduce cost and provide an affordable platform to manufacture biobetter antibodies.

  5. Bridging Innate and Adaptive Antitumor Immunity Targeting Glycans

    Directory of Open Access Journals (Sweden)

    Anastas Pashov

    2010-01-01

    Full Text Available Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors led to the “altered self” hypothesis. This notion reflects a more fundamental principle underlying immune surveillance and integrating evolutionarily and mechanistically diverse elements of the immune system. Danger associated molecular patterns, including those generated by glycan remodeling, represent an instance of altered self. A prominent example is the modification of the tumor-associated antigen MUC1. Similar examples emphasize glycan reactivity patterns of antigen receptors as a phenomenon bridging innate and adaptive but also humoral and cellular immunity and providing templates for immunotherapies.

  6. Genetically engineered tissue to screen for glycan function in tissue formation

    DEFF Research Database (Denmark)

    M., Adamopoulou; E.M., Pallesen; A., Levann

    2017-01-01

    . We use genetic engineering with CRISPR/Cas9 combined with 3D organotypic skin models to examine how distinct glycans influence epithelial formation. We have performed knockout and knockin of more than 100 select genes in the genome of human immortalized human keratinocytes, enabling a systematic...... analysis of the impact of specific glycans in the formation and transformation of the human skin. The genetic engineered human skin models (GlycoSkin) was designed with and without all major biosynthetic pathways in mammalian glycan biosynthesis, including GalNAc-O-glycans, O-fucosylation, O......-mannosylation, with and without complex N-linked gly-cans, and with and without elongated glycosphingolipids. We believe that this is the first time tissue is developed presenting a repertoire of all human glycan structures in a com-binatorial design presenting all possible glycoforms in their native environment. Such genetic...

  7. The ceric sulfate dosimeter

    DEFF Research Database (Denmark)

    Bjergbakke, Erling

    1970-01-01

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation...

  8. Context-specific target definition in influenza a virus hemagglutinin-glycan receptor interactions.

    Science.gov (United States)

    Shriver, Zachary; Raman, Rahul; Viswanathan, Karthik; Sasisekharan, Ram

    2009-08-28

    Protein-glycan interactions are important regulators of a variety of biological processes, ranging from immune recognition to anticoagulation. An important area of active research is directed toward understanding the role of host cell surface glycans as recognition sites for pathogen protein receptors. Recognition of cell surface glycans is a widely employed strategy for a variety of pathogens, including bacteria, parasites, and viruses. We present here a representative example of such an interaction: the binding of influenza A hemagglutinin (HA) to specific sialylated glycans on the cell surface of human upper airway epithelial cells, which initiates the infection cycle. We detail a generalizable strategy to understand the nature of protein-glycan interactions both structurally and biochemically, using HA as a model system. This strategy combines a top-down approach using available structural information to define important contacts between glycans and HA, with a bottom-up approach using data-mining and informatics approaches to identify the common motifs that distinguish glycan binders from nonbinders. By probing protein-glycan interactions simultaneously through top-down and bottom-up approaches, we can scientifically validate a series of observations. This in turn provides additional confidence and surmounts known challenges in the study of protein-glycan interactions, such as accounting for multivalency, and thus truly defines concepts such as specificity, affinity, and avidity. With the advent of new technologies for glycomics-including glycan arrays, data-mining solutions, and robust algorithms to model protein-glycan interactions-we anticipate that such combination approaches will become tractable for a wide variety of protein-glycan interactions.

  9. Reductive Alkaline Release of N-Glycans Generates a Variety of Unexpected, Useful Products.

    Science.gov (United States)

    Figl, Rudolf; Altmann, Friedrich

    2018-02-01

    Release of O-glycans by reductive β-elimination has become routine in many glyco-analytical laboratories and concomitant release of N-glycans has repeatedly been observed. Revisiting this somewhat forgotten mode of N-glycan release revealed that all kinds of N-glycans including oligomannosidic and complex-type N-glycans from plants with 3-linked fucose and from mammals with or without 6-linked fucose and with sialic acid could be recovered. However, the mass spectra of the obtained products revealed very surprising facts. Even after 16 h incubation in 1 M sodium borohydride, a large part of the glycans occurred in reducing form. Moreover, about one third emerged in the form of the stable amino-functionalized 1-amino-1-deoxy-glycitol. When avoiding acidic conditions, considerable amounts of glycosylamine were observed. In addition, a compound with a reduced asparagine and de-N-acetylation products, in particular of sialylated glycans, was seen. The relative yields of the products reducing glycosylamine, reducing N-glycan, 1-amino-1-deoxy-glycitol or glycitol could be controlled by the release conditions, foremost by temperature and borohydride concentration. Thus, chemical release of N-glycans constitutes a cost-saving alternative to enzymatic hydrolysis for the preparation of precursors for the production of reference compounds for various formats of N-glycan analysis. Moreover, it allows to obtain a stable amino-functionalized glycan derivative, which can be employed to construct glycan arrays or affinity matrices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. In good company: association between fungal glycans generates molecular complexes with unique functions

    OpenAIRE

    Marcio eRodrigues; Marcio eRodrigues; Leonardo eNimrichter

    2012-01-01

    The biological properties of fungal immunogens have historically utilized testing of isolated molecules. Recent findings, however, indicate that fungal glycans differing in structure and function can interact to form hybrid complexes with unique properties. In the pathogenic yeast Cryptococcus neoformans, chitin-like molecules associate with capsular glucuronoxylomannan to form functionally distinct glycan complexes. Such interactions between glycans that result in the formation of structures...

  11. Heparan sulfate biosynthesis

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A B; Couchman, John R

    2012-01-01

    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests...... that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has......-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all...

  12. High-throughput profiling of anti-glycan humoral responses to SIV vaccination and challenge.

    Directory of Open Access Journals (Sweden)

    Christopher T Campbell

    Full Text Available Recent progress toward an HIV vaccine highlights both the potential of vaccines to end the AIDS pandemic and the need to boost efficacy by incorporating additional vaccine strategies. Although many aspects of the immune response can contribute to vaccine efficacy, the key factors have not been defined fully yet. A particular area that may yield new insights is anti-glycan immune responses, such as those against the glycan shield that HIV uses to evade the immune system. In this study, we used glycan microarray technology to evaluate anti-glycan antibody responses induced by SIV vaccination and infection in a non-human primate model of HIV infection. This comprehensive profiling of circulating anti-glycan antibodies found changes in anti-glycan antibody levels after both vaccination with the Ad5hr-SIV vaccine and SIV infection. Notably, SIV infection produced generalized declines in anti-glycan IgM antibodies in a number of animals. Additionally, some infected animals generated antibodies to the Tn antigen, which is a cryptic tumor-associated antigen exposed by premature termination of O-linked glycans; however, the Ad5hr-SIV vaccine did not induce anti-Tn IgG antibodies. Overall, this study demonstrates the potential contributions that glycan microarrays can make for HIV vaccine development.

  13. Comparative analysis of N-glycans in the ungerminated and germinated stages of Oryza sativa.

    Science.gov (United States)

    Horiuchi, Risa; Hirotsu, Naoki; Miyanishi, Nobumitsu

    2015-12-11

    All fundamental information such as signal transduction, metabolic control, infection, cell-to-cell signaling, and cell differentiation related to the growth of plants are preserved in germs. In preserving these information, glycans have a key role and are involved in the development and differentiation of organisms. Glycans which exist in rice germ are expected to have an important role in germination. In this study, we performed structural and correlation analysis of the N-glycans in rice germ before and after germination. Our results confirmed that the N-glycans in the ungerminated stage of the rice germ had low number of N-glycans consisting only of six kinds especially with high-mannose and paucimannose type N-glycans being 16.0% and 76.7%, respectively. On the other hand, after 48 hours germinated germ stage, there was an increase in the complex type N-glycans with the appearance of Lewis a structure, the most complex type and a decrease in paucimannose types. These results suggest that at least six kinds of N-glycans are utilized for long time preservation of rice seed, while the diversification of most complex types of N-glycans is produced an environment dependent for shoot formation of rice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity.

    Science.gov (United States)

    Liang, Wanai; Mao, Xuan; Peng, Xiaohui; Tang, Shunqing

    2014-01-30

    In this paper, the structural effects of two main red seaweed polysaccharides (agarose and carrageenan) and their sulfated derivatives on the anticoagulant activity and cytotoxicity were investigated. The substitution position rather than the substitution degree of sulfate groups shows the biggest impact on both the anticoagulant activity and the cell proliferation. Among them, C-2 of 3,6-anhydro-α-d-Galp is the most favorable position for substitution, whereas C-6 of β-d-Galp is the most disadvantageous. Moreover, the secondary structures of glycans also play a key role in biological activities. These demonstrations warrant that the red seaweed polysaccharides should be seriously considered in biomedical applications after carefully tailoring the sulfate groups. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Holothurian Fucosylated Chondroitin Sulfate

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2014-01-01

    Full Text Available Fucosylated chondroitin sulfate (FucCS is a structurally distinct glycosaminoglycan found in sea cucumber species. It has the same backbone composition of alternating 4-linked glucuronic acid and 3-linked N-acetyl galactosamine residues within disaccharide repeating units as regularly found in mammalian chondroitin sulfates. However, FucCS has also sulfated fucosyl branching units 3-O-linked to the acid residues. The sulfation patterns of these branches vary accordingly with holothurian species and account for different biological actions and responses. FucCSs may exhibit anticoagulant, antithrombotic, anti-inflammatory, anticancer, antiviral, and pro-angiogenic activities, besides its beneficial effects in hemodialysis, cellular growth modulation, fibrosis and hyperglycemia. Through an historical overview, this document covers most of the science regarding the holothurian FucCS. Both structural and medical properties of this unique GAG, investigated during the last 25 years, are systematically discussed herein.

  16. Ferrous Sulfate (Iron)

    Science.gov (United States)

    ... are allergic to ferrous sulfate, any other medications tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature and away from ...

  17. Hydrazine Sulfate (PDQ)

    Science.gov (United States)

    ... Recent Public Laws Careers Visitor Information Search Search Home About Cancer Cancer Treatment Complementary & Alternative Medicine (CAM) ... This causes tissues to die and muscle to waste away, and the patient loses weight. Hydrazine sulfate ...

  18. Piperidine-based glycodendrons as protein N-glycan prosthetics.

    Science.gov (United States)

    Hudak, Jason E; Belardi, Brian; Appel, Mason J; Solania, Angelo; Robinson, Peter V; Bertozzi, Carolyn R

    2016-10-15

    The generation of homogeneously glycosylated proteins is essential for defining glycoform-specific activity and improving protein-based therapeutics. We present a novel glycodendron prosthetic which can be site-selectively appended to recombinant proteins to create 'N-glycosylated' glycoprotein mimics. Using computational modeling, we designed the dendrimer scaffold and protein attachment point to resemble the native N-glycan architecture. Three piperidine-melamine glycodendrimers were synthesized via a chemoenzymatic route and attached to human growth hormone and the F c region of human IgG. These products represent a new class of engineered biosimilars bearing novel glycodendrimer structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2...... and CO2 on the direct sulfation of limestone corresponds to apparent reaction orders of about 0.2, 0.2 and -0.5, respectively. Water is observed to promote the sulfation reaction and increase the apparent reaction orders of SO2 and O-2. The influence of O-2 at high O-2 concentrations (> about 15...... %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid...

  20. Structural analysis of N- and O-glycans released from glycoproteins

    DEFF Research Database (Denmark)

    Jensen, Pia Hønnerup; Karlsson, Niclas G; Kolarich, Daniel

    2012-01-01

    released by PNGase F, isolated and reduced. Subsequently, O-glycans are chemically released from the same protein spot by reductive β-elimination. After desalting with cation exchange microcolumns, the glycans are separated and analyzed by porous graphitized carbon liquid chromatography...

  1. Sialyltransferase-Based Chemoenzymatic Histology for the Detection of N- and O-Glycans.

    Science.gov (United States)

    Lopez Aguilar, Aime; Meng, Lu; Hou, Xiaomeng; Li, Wei; Moremen, Kelley W; Wu, Peng

    2018-03-23

    Profiling specific glycans in histopathological samples is hampered by the lack of selective and sensitive tools for their detection. Here, we report on the development of chemoenzymatic histology of membrane polysaccharide (CHoMP)-based methods for the detection of O- and N-linked glycans on tissue sections via the use of sialyltransferases ST3Gal1 and ST6Gal1, respectively. Combining these two methods, we developed tandem labeling and double labeling strategies that permit the detection of unsialylated and sialylated glycans or the detection of O- and N-linked glycans on the same tissue section, respectively. We applied these methods to screen murine tissue specimens, human multiple-organ cancer arrays, and lymphoma and prostate cancer arrays. Using tandem labeling with ST6Gal1 to analyze N-glycans in a prostate cancer array, we found striking differences in expression patterns of both sialylated and unsialylated N-glycans between cancerous and healthy samples. Such differences were also observed between normal tissue from healthy donors and healthy tissue adjacent to tumors. Our double labeling technique identified significant differences in unsialylated O-glycans between B-cell and T-cell lymphomas and between B-cell lymphomas and normal adjacent lymph nodes. Remarkable differences were also detected between adjacent lymph nodes and spleen tissue samples. These new chemoenzymatic histology methods therefore provide valuable tools for the analysis of glycans in clinically relevant tissue samples.

  2. Corneal Sulfated Glycosaminoglycans and Their Effects on Trigeminal Nerve Growth Cone Behavior In Vitro: Roles for ECM in Cornea Innervation

    Science.gov (United States)

    Schwend, Tyler; Deaton, Ryan J.; Zhang, Yuntao; Caterson, Bruce; Conrad, Gary W.

    2012-01-01

    Purpose. Sensory trigeminal nerve growth cones innervate the cornea in a highly coordinated fashion. The purpose of this study was to determine if extracellular matrix glycosaminoglycans (ECM–GAGs), including keratan sulfate (KS), dermatan sulfate (DS), and chondroitin sulfate A (CSA) and C (CSC), polymerized in developing eyefronts, may provide guidance cues to nerves during cornea innervation. Methods. Immunostaining using antineuron-specific-β-tubulin and monoclonal antibodies for KS, DS, and CSA/C was performed on eyefronts from embryonic day (E) 9 to E14 and staining visualized by confocal microscopy. Effects of purified GAGs on trigeminal nerve growth cone behavior were tested using in vitro neuronal explant cultures. Results. At E9 to E10, nerves exiting the pericorneal nerve ring grew as tight fascicles, advancing straight toward the corneal stroma. In contrast, upon entering the stroma, nerves bifurcated repeatedly as they extended anteriorly toward the epithelium. KS was localized in the path of trigeminal nerves, whereas DS and CSA/C–rich areas were avoided by growth cones. When E10 trigeminal neurons were cultured on different substrates comprised of purified GAG molecules, their neurite growth cone behavior varied depending on GAG type, concentration, and mode of presentation (immobilized versus soluble). High concentrations of immobilized KS, DS, and CSA/C inhibited neurite growth to varying degrees. Neurites traversing lower, permissive concentrations of immobilized DS and CSA/C displayed increased fasciculation and decreased branching, whereas KS caused decreased fasciculation and increased branching. Enzymatic digestion of sulfated GAGs canceled their effects on trigeminal neurons. Conclusions. Data herein suggest that GAGs may direct the movement of trigeminal nerve growth cones innervating the cornea. PMID:23132805

  3. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield

    Energy Technology Data Exchange (ETDEWEB)

    Pejchal, Robert; Doores, Katie J.; Walker, Laura M.; Khayat, Reza; Huang, Po-Ssu; Wang, Sheng-Kai; Stanfield, Robyn L.; Julien, Jean-Philippe; Ramos, Alejandra; Crispin, Max; Depetris, Rafael; Katpally, Umesh; Marozsan, Andre; Cupo, Albert; Maloveste, Sebastien; Liu, Yan; McBride, Ryan; Ito, Yukishige; Sanders, Rogier W.; Ogohara, Cassandra; Paulson, James C.; Feizi, Ten; Scanlan, Christopher N.; Wong, Chi-Huey; Moore, John P.; Olson, William C.; Ward, Andrew B.; Poignard, Pascal; Schief, William R.; Burton, Dennis R.; Wilson, Ian A. (UWASH); (Progenics); (ICL); (Weill-Med); (NIH); (JSTA); (Scripps); (Oxford)

    2015-10-15

    The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man{sub 9} at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short {beta}-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.

  4. Profiling of Human Serum Glycans Associated with Liver Cancer and Cirrhosis by IMS–MS

    Science.gov (United States)

    Isailovic, D.; Kurulugama, R. T.; Plasencia, M. D.; Stokes, S. T.; Kyselova, Z.; Goldman, R.; Mechref, Y.; Novotny, M. V.; Clemmer, D. E.

    2013-01-01

    Aberrant glycosylation of human glycoproteins is related to various physiological states, including the onset of diseases such as cancer. Consequently, the search for glycans that could be markers of diseases or targets of therapeutic drugs has been intensive. Here, we describe a high-throughput ion mobility spectrometry/mass spectrometry analysis of N-linked glycans from human serum. Distributions of glycans are assigned according to their m/z values, while ion mobility distributions provide information about glycan conformational and isomeric composition. Statistical analysis of data from 22 apparently healthy control patients and 39 individuals with known diseases (20 with cirrhosis of the liver and 19 with liver cancer) shows that ion mobility distributions for individual m/z ions appear to be sufficient to distinguish patients with liver cancer or cirrhosis. Measurements of glycan conformational and isomeric distributions by IMS–MS may provide insight that is valuable for detecting and characterizing disease states. PMID:18237112

  5. Improved sample preparation for CE-LIF analysis of plant N-glycans.

    Science.gov (United States)

    Nagels, Bieke; Santens, Francis; Weterings, Koen; Van Damme, Els J M; Callewaert, Nico

    2011-12-01

    In view of glycomics studies in plants, it is important to have sensitive tools that allow one to analyze and characterize the N-glycans present on plant proteins in different species. Earlier methods combined plant-based sample preparations with CE-LIF N-glycan analysis but suffered from background contaminations, often resulting in non-reproducible results. This publication describes a reproducible and sensitive protocol for the preparation and analysis of plant N-glycans, based on a combination of the 'in-gel release method' and N-glycan analysis on a multicapillary DNA sequencer. Our protocol makes it possible to analyze plant N-glycans starting from low amounts of plant material with highly reproducible results. The developed protocol was validated for different plant species and plant cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Carbohydrate-functionalized surfactant vesicles for controlling the density of glycan arrays.

    Science.gov (United States)

    Pond, Monique A; Zangmeister, Rebecca A

    2012-03-15

    We report on the development of a method for rapidly characterizing the glycan binding properties of lectins. Catanionic surfactant vesicles, prepared from cationic and anionic surfactants, spontaneously formed in water and remained stable at room temperature for months. By varying the amount of glycoconjugate added during preparation, glycans were incorporated onto the outer surface of the vesicles in a controlled range of densities. The carbohydrate-functionalized vesicles were applied to commercially available, nitrocellulose-coated slides to generate glycan arrays. As proof of concept, the binding of two lectins, concanavalin A and peanut agglutinin, to the arrays was quantified using a biotin-avidin fluorescence sandwich assay. This facile method of preparing a glycan array by using vesicles to control the glycan density can be expanded to provide a platform for characterizing unknown lectins. Published by Elsevier B.V.

  7. Kinetics of N-Glycan Release from Human Immunoglobulin G (IgG) by PNGase F: All Glycans Are Not Created Equal.

    Science.gov (United States)

    Huang, Yining; Orlando, Ron

    2017-12-01

    The biologic activity of IgG molecules is modulated by its crystallizable fragment N-glycosylation, and thus, the analysis of IgG glycosylation is critical. A standard approach to analyze glycosylation of IgGs involves the release of the N-glycans by the enzyme peptide N-glycosidase F, which cleaves the linkage between the asparagine residue and innermost N-acetylglucosamine (GlcNAc) of all N-glycans except those containing a 3-linked fucose attached to the reducing terminal GlcNAc residue. The importance of obtaining complete glycan release for accurate quantitation led us to investigate the kinetics of this de-glycosylation reaction for IgG glycopeptides and to determine the effect of glycan structure and amino acid sequence on the rate of glycan release from glycopeptides of IgGs. This study revealed that the slight differences in amino acid sequences did not lead to a statistically different deglycosylation rate. However, statistically significant differences in the deglycosylation rate constants were observed between glycopeptides differing only in glycan structure ( i.e. , nonfucosylated, fucosylated, bisecting-GlcNAc, sialylated, etc .). For example, a single sialic acid residue was found to decrease the rate by a factor of 3. Similar reductions in rate were associated with the presence of a bisecting-GlcNAc. We predict the differences in release kinetics can lead to significant quantitative variations of the glycosylation study of IgGs.

  8. GlyTouCan: an accessible glycan structure repository.

    Science.gov (United States)

    Tiemeyer, Michael; Aoki, Kazuhiro; Paulson, James; Cummings, Richard D; York, William S; Karlsson, Niclas G; Lisacek, Frederique; Packer, Nicolle H; Campbell, Matthew P; Aoki, Nobuyuki P; Fujita, Akihiro; Matsubara, Masaaki; Shinmachi, Daisuke; Tsuchiya, Shinichiro; Yamada, Issaku; Pierce, Michael; Ranzinger, René; Narimatsu, Hisashi; Aoki-Kinoshita, Kiyoko F

    2017-10-01

    Rapid and continued growth in the generation of glycomic data has revealed the need for enhanced development of basic infrastructure for presenting and interpreting these datasets in a manner that engages the broader biomedical research community. Early in their growth, the genomic and proteomic fields implemented mechanisms for assigning unique gene and protein identifiers that were essential for organizing data presentation and for enhancing bioinformatic approaches to extracting knowledge. Similar unique identifiers are currently absent from glycomic data. In order to facilitate continued growth and expanded accessibility of glycomic data, the authors strongly encourage the glycomics community to coordinate the submission of their glycan structures to the GlyTouCan Repository and to make use of GlyTouCan identifiers in their communications and publications. The authors also deeply encourage journals to recommend a submission workflow in which submitted publications utilize GlyTouCan identifiers as a standard reference for explicitly describing glycan structures cited in manuscripts. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Syndecan heparan sulfate proteoglycans

    DEFF Research Database (Denmark)

    Gomes, Angélica Maciel; Sinkeviciute, Dovile; Multhaupt, Hinke A.B.

    2016-01-01

    Virtually all animal cells express heparan sulfate proteoglycans on the cell surface and in the extracellular matrix. Syndecans are a major group of transmembrane proteoglycans functioning as receptors that mediate signal transmission from the extracellular microenvironment to the cell. Their hep......Virtually all animal cells express heparan sulfate proteoglycans on the cell surface and in the extracellular matrix. Syndecans are a major group of transmembrane proteoglycans functioning as receptors that mediate signal transmission from the extracellular microenvironment to the cell....... Their heparan sulfate chains, due to their vast structural diversity, interact with a wide array of ligands including potent regulators of adhesion, migration, growth and survival. Frequently, ligands interact with cell surface heparan sulfate in conjunction with high affinity receptors. The consequent...... signaling can therefore be complex, but it is now known that syndecans are capable of independent signaling. This review is divided in two sections, and will first discuss how the assembly of heparan sulfate, the anabolic process, encodes information related to ligand binding and signaling. Second, we...

  10. A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity

    Energy Technology Data Exchange (ETDEWEB)

    Doores, Katie J.; Fulton, Zara; Hong, Vu; Patel, Mitul K.; Scanlan, Christopher N.; Wormald, Mark R.; Finn, M.G.; Burton, Dennis R.; Wilson, Ian A.; Davis, Benjamin G. (Scripps); (Oxford)

    2011-08-24

    Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12, their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.

  11. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells.

    Science.gov (United States)

    Nakano, Miyako; Saldanha, Rohit; Göbel, Anja; Kavallaris, Maria; Packer, Nicolle H

    2011-11-01

    Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.

  12. N-linked glycans are required on epithelial Na+ channel subunits for maturation and surface expression.

    Science.gov (United States)

    Kashlan, Ossama B; Kinlough, Carol L; Myerburg, Michael M; Shi, Shujie; Chen, Jingxin; Blobner, Brandon M; Buck, Teresa M; Brodsky, Jeffrey L; Hughey, Rebecca P; Kleyman, Thomas R

    2018-03-01

    Epithelial Na + channel (ENaC) subunits undergo N-linked glycosylation in the endoplasmic reticulum where they assemble into an αβγ complex. Six, 13, and 5 consensus sites (Asn-X-Ser/Thr) for N-glycosylation reside in the extracellular domains of the mouse α-, β-, and γ-subunits, respectively. Because the importance of ENaC N-linked glycans has not been fully addressed, we examined the effect of preventing N-glycosylation of specific subunits on channel function, expression, maturation, and folding. Heterologous expression in Xenopus oocytes or Fischer rat thyroid cells with αβγ-ENaC lacking N-linked glycans on a single subunit reduced ENaC activity as well as the inhibitory response to extracellular Na + . The lack of N-linked glycans on the β-subunit also precluded channel activation by trypsin. However, channel activation by shear stress was N-linked glycan independent, regardless of which subunit was modified. We also discovered that the lack of N-linked glycans on any one subunit reduced the total and surface levels of cognate subunits. The lack of N-linked glycans on the β-subunit had the largest effect on total levels, with the lack of N-linked glycans on the γ- and α-subunits having intermediate and modest effects, respectively. Finally, channels with wild-type β-subunits were more sensitive to limited trypsin proteolysis than channels lacking N-linked glycans on the β-subunit. Our results indicate that N-linked glycans on each subunit are required for proper folding, maturation, surface expression, and function of the channel.

  13. Host specific glycans are correlated with susceptibility to infection by lagoviruses, but not with their virulence.

    Science.gov (United States)

    Lopes, Ana M; Breiman, Adrien; Lora, Mónica; Le Moullac-Vaidye, Béatrice; Galanina, Oxana; Nyström, Kristina; Marchandeau, Stephane; Le Gall-Reculé, Ghislaine; Strive, Tanja; Neimanis, Aleksija; Bovin, Nicolai V; Ruvoën-Clouet, Nathalie; Esteves, Pedro J; Abrantes, Joana; Le Pendu, Jacques

    2017-11-29

    The rabbit hemorrhagic disease virus (RHDV) and the European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus , respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged and many non-pathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, non-pathogenic lagoviruses and EBHSV potentially play a role in determining host range and virulence of lagoviruses. We observed binding to A, B or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits ( Oryctolagus cuniculus ), that have recently been classified as GI strains. Yet, we could not explain the emergence of virulence since similar glycan specificities were found between several pathogenic and non-pathogenic strains. By contrast, EBHSV, recently classified as GII.1, bound to terminal β-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species ( Oryctolagus cuniculus, Lepus europaeus and Sylvilagus floridanus ) showed species-specific patterns regarding the susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagoviruses host specificity and range. IMPORTANCE Lagoviruses constitute a genus of the Caliciviridae family, comprising highly pathogenic viruses, RHDV and EBHSV, which infect rabbits and hares, respectively. Recently, non-pathogenic strains were discovered and new pathogenic strains have emerged. In addition, host

  14. Mutations in HNF1A Result in Marked Alterations of Plasma Glycan Profile

    DEFF Research Database (Denmark)

    Thanabalasingham, G.; Huffman, J. E.; Kattla, J. J.

    2013-01-01

    A recent genome-wide association study identified hepatocyte nuclear factor 1-alpha (HNF1A) as a key regulator of fucosylation. We hypothesized that loss-of-function HNF1A mutations causal for maturity-onset diabetes of the young (MOD?) would display altered fucosylation of N-linked glycans on pl...... undetected HNF1A mutations in patients with diabetes. In conclusion, glycan profiles are altered substantially in HNF1A-MODY, and the DG9-glycan index has potential clinical value as a diagnostic biomarker of HNF1A dysfunction. Diabetes 62:1329-1337, 2013...

  15. In good company: association between fungal glycans generates molecular complexes with unique functions

    Directory of Open Access Journals (Sweden)

    Marcio eRodrigues

    2012-07-01

    Full Text Available The biological properties of fungal immunogens have historically utilized testing of isolated molecules. Recent findings, however, indicate that fungal glycans differing in structure and function can interact to form hybrid complexes with unique properties. In the pathogenic yeast Cryptococcus neoformans, chitin-like molecules associate with capsular glucuronoxylomannan to form functionally distinct glycan complexes. Such interactions between glycans that result in the formation of structures with different functions strongly suggest that additional molecular complexes with unknown properties may exist in fungal pathogens. Moreover, the identification of these novel complexes has stimulated the search of new immunogens with potential to protect human and animal hosts against systemic mycoses.

  16. Aluminum Sulfate 18 Hydrate

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  17. DHEA-sulfate test

    Science.gov (United States)

    ... decrease in DHEA sulfate may be due to: Adrenal gland disorders that produce lower than normal amounts of adrenal ... and the A.D.A.M. Editorial team. Adrenal Gland Disorders Read more Ovarian Cysts Read more NIH MedlinePlus ...

  18. Protein Precipitation Using Ammonium Sulfate

    OpenAIRE

    Wingfield, Paul T.

    2001-01-01

    The basic theory of protein precipitation by addition of ammonium sulfate is presented and the most common applications are listed, Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution.

  19. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting ...... (sulfate:bicarbonate exchange) and self-exchange diffusion take place. Irrespective of the mechanism of transport, sulfate is probably transported as a monovalent anion species....

  20. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    International Nuclear Information System (INIS)

    Dallam, R.D.

    1987-01-01

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H 2 35 SO 4 ) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables

  1. Fibroblast invasive migration into fibronectin/fibrin gels requires a previously uncharacterized dermatan sulfate-CD44 proteoglycan

    DEFF Research Database (Denmark)

    Clark, Richard A F; Lin, Fubao; Greiling, Doris

    2004-01-01

    After tissue injury, fibroblast migration from the peri-wound collagenous stroma into the fibrin-laden wound is critical for granulation tissue formation and subsequent healing. Recently we found that fibroblast transmigration from a collagen matrix into a fibrin matrix required the presence...... of fibronectin. Several integrins-alpha 4 beta 1, alpha 5 beta 1, and alpha v beta 3-with known fibronectin binding affinity were necessary for this invasive migration. Here we examined another family of cell surface receptors: the proteoglycans. We found that dermatan sulfate was required for fibroblast...... including heparan sulfate and chondroitin sulfate, and as such can bind fibronectin. We found that CD44H, the non-spliced isoform of CD44, was necessary for fibroblast invasion into fibronectin/fibrin gels. Resting fibroblasts expressed mostly nonglycanated CD44H core protein, which became glycanated...

  2. An alpha-numeric code for representing N-linked glycan structures in secreted glycoproteins.

    Science.gov (United States)

    Yusufi, Faraaz Noor Khan; Park, Wonjun; Lee, May May; Lee, Dong-Yup

    2009-01-01

    Advances in high-throughput techniques have led to the creation of increasing amounts of glycome data. The storage and analysis of this data would benefit greatly from a compact notation for describing glycan structures that can be easily stored and interpreted by computers. Towards this end, we propose a fixed-length alpha-numeric code for representing N-linked glycan structures commonly found in secreted glycoproteins from mammalian cell cultures. This code, GlycoDigit, employs a pre-assigned alpha-numeric index to represent the monosaccharides attached in different branches to the core glycan structure. The present branch-centric representation allows us to visualize the structure while the numerical nature of the code makes it machine readable. In addition, a difference operator can be defined to quantitatively differentiate between glycan structures for further analysis. The usefulness and applicability of GlycoDigit were demonstrated by constructing and visualizing an N-linked glycosylation network.

  3. Divergent Chemoenzymatic Synthesis of Asymmetrical-Core-Fucosylated and Core-Unmodified N-Glycans

    NARCIS (Netherlands)

    Li, Tiehai; Huang, Min; Liu, Lin; Wang, Shuo; Moremen, Kelley W; Boons, Geert-Jan|info:eu-repo/dai/nl/088245489

    2016-01-01

    A divergent chemoenzymaytic approach for the preparation of core-fucosylated and core-unmodified asymmetrical N-glycans from a common advances precursor is described. An undecasaccharide was synthesized by sequential chemical glycosylations of an orthogonally protected core fucosylated

  4. Characterization of Conformational Ensembles of Protonated N-glycans in the Gas-Phase.

    Science.gov (United States)

    Re, Suyong; Watabe, Shigehisa; Nishima, Wataru; Muneyuki, Eiro; Yamaguchi, Yoshiki; MacKerell, Alexander D; Sugita, Yuji

    2018-01-26

    Ion mobility mass spectrometry (IM-MS) is a technique capable of investigating structural changes of biomolecules based on their collision cross section (CCS). Recent advances in IM-MS allow us to separate carbohydrate isomers with subtle conformational differences, but the relationship between CCS and atomic structure remains elusive. Here, we characterize conformational ensembles of gas-phase N-glycans under the electrospray ionization condition using molecular dynamics simulations with enhanced sampling. We show that the separation of CCSs between isomers reflects folding features of N-glycans, which are determined both by chemical compositions and protonation states. Providing a physicochemical basis of CCS for N-glycans helps not only to interpret IM-MS measurements but also to estimate CCSs of complex glycans.

  5. Direct chemoselective synthesis of glyconanoparticles from unprotected reducing glycans and glycopeptide aldehydes

    DEFF Research Database (Denmark)

    Thygesen, Mikkel Boas; Sørensen, Kasper Kildegaard; Cló, Emiliano

    2009-01-01

    Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell....

  6. Enzymes for N-Glycan Branching and Their Genetic and Nongenetic Regulation in Cancer

    Directory of Open Access Journals (Sweden)

    Yasuhiko Kizuka

    2016-04-01

    Full Text Available N-glycan, a fundamental and versatile protein modification in mammals, plays critical roles in various physiological and pathological events including cancer progression. The formation of N-glycan branches catalyzed by specific N-acetylglucosaminyltransferases [GnT-III, GnT-IVs, GnT-V, GnT-IX (Vb] and a fucosyltransferase, Fut8, provides functionally diverse N-glycosylated proteins. Aberrations of these branches are often found in cancer cells and are profoundly involved in cancer growth, invasion and metastasis. In this review, we focus on the GlcNAc and fucose branches of N-glycans and describe how their expression is dysregulated in cancer by genetic and nongenetic mechanisms including epigenetics and nucleotide sugar metabolisms. We also survey the roles that these N-glycans play in cancer progression and therapeutics. Finally, we discuss possible applications of our knowledge on basic glycobiology to the development of medicine and biomarkers for cancer therapy.

  7. Milk Glycans and Their Interaction with the Infant-Gut Microbiota.

    Science.gov (United States)

    Kirmiz, Nina; Robinson, Randall C; Shah, Ishita M; Barile, Daniela; Mills, David A

    2018-03-25

    Human milk is a unique and complex fluid that provides infant nutrition and delivers an array of bioactive molecules that serve various functions. Glycans, abundant in milk, can be found as free oligosaccharides or as glycoconjugates. Milk glycans are increasingly linked to beneficial outcomes in neonates through protection from pathogens and modulation of the immune system. Indeed, these glycans influence the development of the infant and the infant-gut microbiota. Bifidobacterium species commonly are enriched in breastfed infants and are among a limited group of bacteria that readily consume human milk oligosaccharides (HMOs) and milk glycoconjugates. Given the importance of bifidobacteria in infant health, numerous studies have examined the molecular mechanisms they employ to consume HMOs and milk glycans, thus providing insight into this unique enrichment and shedding light on a range of translational opportunities to benefit at-risk infants.

  8. Glycan Reader is improved to recognize most sugar types and chemical modifications in the Protein Data Bank.

    Science.gov (United States)

    Park, Sang-Jun; Lee, Jumin; Patel, Dhilon S; Ma, Hongjing; Lee, Hui Sun; Jo, Sunhwan; Im, Wonpil

    2017-10-01

    Glycans play a central role in many essential biological processes. Glycan Reader was originally developed to simplify the reading of Protein Data Bank (PDB) files containing glycans through the automatic detection and annotation of sugars and glycosidic linkages between sugar units and to proteins, all based on atomic coordinates and connectivity information. Carbohydrates can have various chemical modifications at different positions, making their chemical space much diverse. Unfortunately, current PDB files do not provide exact annotations for most carbohydrate derivatives and more than 50% of PDB glycan chains have at least one carbohydrate derivative that could not be correctly recognized by the original Glycan Reader. Glycan Reader has been improved and now identifies most sugar types and chemical modifications (including various glycolipids) in the PDB, and both PDB and PDBx/mmCIF formats are supported. CHARMM-GUI Glycan Reader is updated to generate the simulation system and input of various glycoconjugates with most sugar types and chemical modifications. It also offers a new functionality to edit the glycan structures through addition/deletion/modification of glycosylation types, sugar types, chemical modifications, glycosidic linkages, and anomeric states. The simulation system and input files can be used for CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Glycan Fragment Database in GlycanStructure.Org is also updated to provide an intuitive glycan sequence search tool for complex glycan structures with various chemical modifications in the PDB. http://www.charmm-gui.org/input/glycan and http://www.glycanstructure.org. wonpil@lehigh.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. Heterogeneity in glycan composition on the surface of HIV-1 envelope determines virus sensitivity to lectins

    Science.gov (United States)

    Jan, Muzafar; Upadhyay, Chitra; Alcami Pertejo, José; Hioe, Catarina E.

    2018-01-01

    Lectins that target N-glycans on the surface of HIV-1 envelope (Env) glycoprotein have the potential for use as antiviral agents. Although progress has been made in deciphering the molecular details of lectin and Env glycan interaction, further studies are needed to better understand Env glycan heterogeneity among HIV-1 isolates and its influence on virus-neutralization sensitivity to lectins. This study evaluated a panel of lectins with fine specificity for distinct oligosaccharides and assessed their ability to inhibit infection of HIV-1 viruses known to have differing sensitivity to anti-HIV Env antibodies. The results showed that HIV-1 isolates have different sensitivity to lectins specific for α1-3Man, α1-6Man, and α1-2Man binding lectins. Considering that lectins exclusively recognize the oligosaccharide components of virus Env, these data suggest that glycan heterogeneity among HIV-1 isolates may explain this differential sensitivity. To evaluate this further, chronic and acute viruses were produced in the presence of different glycosidase inhibitors to express more homogenous glycans. Viruses enriched for α1-2Man terminating Man5-9GlcNAc2 glycans became similarly sensitive to α1-2Man-binding lectins. The α1-3Man- and α1-6Man-binding lectins also were more potent against viruses expressing predominantly Man5GlcNAc2 and hybrid type glycans with terminal α1-3Man and α1-6Man. Furthermore, lectin-mediated inhibition was competitively alleviated by mannan and this effect was augmented by enrichment of mannose-type glycans on the virus. In addition, while Env of viruses enriched with mannose-type glycans were sensitive to Endo-H deglycosylation, Env of untreated viruses were partially resistant, indicating that HIV-1 Env glycans are heterogeneously comprised of complex, hybrid, and mannose types. Overall, our data demonstrate that HIV-1 isolates display differential sensitivity to lectins, in part due to the microheterogeneity of N-linked glycans

  10. Microarray glycan profiling reveals algal fucoidan epitopes in diverse marine metazoans

    DEFF Research Database (Denmark)

    Asunción Salmeán, Armando; Hervé, Cécile; Jørgensen, Bodil

    2017-01-01

    Despite the biological importance and pharmacological potential of glycans from marine organisms, there are many unanswered questions regarding their distribution, function, and evolution. Here we describe microarray-based glycan profiling of a diverse selection of marine animals using antibodies...... raised against fucoidan isolated from a brown alga. We demonstrate the presence of two fucoidan epitopes in six animals belonging to three phyla including Porifera, Molusca, and Chordata. We studied the spatial distribution of these epitopes in Cliona celata ("boring sponge") and identified...

  11. Structural characterization of complex O-linked glycans from insect-derived material.

    Science.gov (United States)

    Garenaux, Estelle; Maes, Emmanuel; Levêque, S; Brassart, Colette; Guerardel, Yann

    2011-07-01

    Although insects are among the most diverse groups of the animal kingdom and may be found in nearly all environments, one can observe an obvious lack of structural data on their glycosylation ability. Hymenoptera is the second largest of all insect orders with more than 110,000 identified species and includes the most famous examples of social insects' species such as wasps, bees and ants. In this report, the structural variety of O-glycans has been studied in two Hymenoptera species. In a previous study, we showed that major O-glycans from common wasp (Vespula germanica) salivary mucins correspond to T and Tn antigen, eventually substituted by phosphoethanolamine or phosphate groups. More detailed structural analysis performed by mass spectrometry revealed numerous minor O-glycan structures bearing Gal, GlcNAc, GalNAc and Fuc residues. Thus, in order to investigate glycosylation diversity in insects, we used common wasp nest (V. germanica) and hornet nest (Vespa cabro) as starting materials. These materials were submitted to reductive β-elimination and the released oligosaccharide-alditols further fractionated by multidimensional HPLC. Tandem mass spectrometry analyses combined with NMR data revealed the presence of various families of complex O-glycans differing accordingly to both core structures and external motifs. Glycans from wasp were characterized by the presence of core types 1 and 2, Lewis X and internal Gal-Gal motifs. We also observed unusual O-glycans containing a reducing GalNAc unit directly substituted by a fucose residue. In contrast, hornet O-glycans appeared as a rather homogeneous family of core 1 type O-glycans extended by galactose oligomers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Ultrafast and high-throughput N-glycan analysis for monoclonal antibodies

    OpenAIRE

    Yang, Xiaoyu; Kim, Sunnie Myung; Ruzanski, Richard; Chen, Yuetian; Moses, Sarath; Ling, Wai Lam; Li, Xiaojuan; Wang, Shao-Chun; Li, Huijuan; Ambrogelly, Alexandre; Richardson, Daisy; Shameem, Mohammed

    2016-01-01

    Glycosylation is a critical attribute for development and manufacturing of therapeutic monoclonal antibodies (mAbs) in the pharmaceutical industry. Conventional antibody glycan analysis is usually achieved by the 2-aminobenzamide (2-AB) hydrophilic interaction liquid chromatography (HILIC) method following the release of glycans. Although this method produces satisfactory results, it has limited use for screening a large number of samples because it requires expensive reagents and takes sever...

  13. Tegaserod Mimics the Neurostimulatory Glycan Polysialic Acid and Promotes Nervous System Repair

    Science.gov (United States)

    2014-01-01

    Steinhauser, C., 2004. Neural cell adhesion molecule-associated polysialic acid potentiates alpha-amino-3-hydroxy-5-methylisoxazole-4- propionic acid ...Tegaserod mimics the neurostimulatory glycan polysialic acid and promotes nervous system repairq J. Bushman a, B. Mishra b, M. Ezra a, S. Gul c, C...revised form 30 August 2013 Accepted 11 September 2013 Keywords: Polysialic acid Tegaserod Mimetic Peripheral nerve Regeneration Glycan Drug repurposing a

  14. The Impact of O-Glycan Chemistry on the Stability of Intrinsically Disordered Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prates, Erica T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guan, Xiaoyang [University of Colorado; Li, Yaohao [University of Colorado; Wang, Xinfeng [University of Colorado; Chaffey, Patrick K. [University of Colorado; Skaf, Munir S. [University of Campinas; Tan, Zhongping [University of Colorado

    2018-03-02

    Protein glycosylation is a diverse post-translational modification that serves myriad biological functions. O-linked glycans in particular vary widely in extent and chemistry in eukaryotes, with secreted proteins from fungi and yeast commonly exhibiting O-mannosylation in intrinsically disordered regions of proteins, likely for proteolysis protection, among other functions. However, it is not well understood why mannose is often the preferred glycan, and more generally, if the neighboring protein sequence and glycan have coevolved to protect against proteolysis in glycosylated intrinsically disordered proteins (IDPs). Here, we synthesized variants of a model IDP, specifically a natively O-mannosylated linker from a fungal enzyme, with a-O-linked mannose, glucose, and galactose moieties, along with a non-glycosylated linker. Upon exposure to thermolysin, O-mannosylation, by far, provides the highest extent of proteolysis protection. To explain this observation, extensive molecular dynamics simulations were conducted, revealing that the axial configuration of the C2-hydroxyl group (2-OH) of a-mannose adjacent to the glycan-peptide bond strongly influences the conformational features of the linker. Specifically, a-mannose restricts the torsions of the IDP main chain more than other glycans whose equatorial 2-OH groups exhibit interactions that favor perpendicular glycan-protein backbone orientation. We suggest that IDP stiffening due to O-mannosylation impairs protease action, with contributions from protein-glycan interactions, protein flexibility, and protein stability. Our results further imply that resistance to proteolysis is an important driving force for evolutionary selection of a-mannose in eukaryotic IDPs, and more broadly, that glycan motifs for proteolysis protection likely coevolve with the protein sequence to which they attach.

  15. Dissolution of sulfate scales

    Energy Technology Data Exchange (ETDEWEB)

    Hen, J.

    1991-11-26

    This patent describes a composition for the removal of sulfate scale from surfaces. It comprises: an aqueous solution of about 0.1 to 1.0 molar concentration of an aminopolycarboxylic acid (APCA) containing 1 to 4 amino groups or a salt thereof, and about 0.1 to 1.0 molar concentration of a second component which is diethylenetriaminepenta (methylenephosphonic acid) (DTPMP) or a salt thereof, or aminotri (methylenephosphonic acid) (ATMP) or a salt thereof as an internal phase enveloped by a hydrocarbon membrane phase which is itself emulsified in an external aqueous phase, the hydrocarbon membrane phase continuing a complexing agent weaker for the cations of the sulfate scale than the APCA and DTPMP or ATMP, any complexing agent for the cations in the external aqueous phase being weaker than that in the hydrocarbon membrane phase.

  16. Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells.

    Science.gov (United States)

    Escrevente, Cristina; Grammel, Nicolas; Kandzia, Sebastian; Zeiser, Johannes; Tranfield, Erin M; Conradt, Harald S; Costa, Júlia

    2013-01-01

    Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abundant sialoglycoprotein was found enriched in exosomes and it was identified by peptide mass fingerprinting and immunoblot as the galectin-3-binding protein (LGALS3BP). Exosomes were found to contain predominantly complex glycans of the di-, tri-, and tetraantennary type with or without proximal fucose and also high mannose glycans. Diantennary glycans containing bisecting N-acetylglucosamine were also detected. This work provides detailed information about glycoprotein and N-glycan composition of exosomes from ovarian cancer cells, furthermore it opens novel perspectives to further explore the functional role of glycans in the biology of exosomes.

  17. Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Cristina Escrevente

    Full Text Available Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abundant sialoglycoprotein was found enriched in exosomes and it was identified by peptide mass fingerprinting and immunoblot as the galectin-3-binding protein (LGALS3BP. Exosomes were found to contain predominantly complex glycans of the di-, tri-, and tetraantennary type with or without proximal fucose and also high mannose glycans. Diantennary glycans containing bisecting N-acetylglucosamine were also detected. This work provides detailed information about glycoprotein and N-glycan composition of exosomes from ovarian cancer cells, furthermore it opens novel perspectives to further explore the functional role of glycans in the biology of exosomes.

  18. Biological significance of complex N-glycans in plants and their impact on plant physiology.

    Science.gov (United States)

    Strasser, Richard

    2014-01-01

    Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of β1,2-xylose, core α1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signaling events. In contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review, I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.

  19. N-glycan sialylation in a silkworm-baculovirus expression system.

    Science.gov (United States)

    Suganuma, Masatoshi; Nomura, Tsuyoshi; Higa, Yukiko; Kataoka, Yukiko; Funaguma, Shunsuke; Okazaki, Hironobu; Suzuki, Takeo; Fujiyama, Kazuhito; Sezutsu, Hideki; Tatematsu, Ken-Ichiro; Tamura, Toshiki

    2018-02-09

    A silkworm-baculovirus system is particularly effective for producing recombinant proteins, including glycoproteins. However, N-glycan structures in silkworm differ from those in mammals. Glycoproteins in silkworm are secreted as pauci-mannose type N-glycans without sialic acid or galactose residues. Sialic acid on N-glycans plays important roles in protein functions. Therefore, we developed pathways for galactosylation and sialylation in silkworm. Sialylated N-glycans on proteins were successfully produced in silkworm by co-expressing galactosyltransferase and sialyltransferase and providing an external supply of a sialylation-related substrate. α2,3/α2,6 Sialylation to N-glycans was controlled by changing the type of sialyltransferase expressed in silkworm. Furthermore, the co-expression of N-acetylglucosaminyltransferase II facilitated the formation of additional di-sialylated N-glycan structures. Our results provide new information on the control of N-glycosylation in silkworm. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tongqing; Doria-Rose, Nicole A.; Cheng, Cheng; Stewart-Jones, Guillaume B. E.; Chuang, Gwo-Yu; Chambers, Michael; Druz, Aliaksandr; Geng, Hui; McKee, Krisha; Kwon, Young Do; O’Dell, Sijy; Sastry, Mallika; Schmidt, Stephen D.; Xu, Kai; Chen, Lei; Chen, Rita E.; Louder, Mark K.; Pancera, Marie; Wanninger, Timothy G.; Zhang, Baoshan; Zheng, Anqi; Farney, S. Katie; Foulds, Kathryn E.; Georgiev, Ivelin S.; Joyce, M. Gordon; Lemmin, Thomas; Narpala, Sandeep; Rawi, Reda; Soto, Cinque; Todd, John-Paul; Shen, Chen-Hsiang; Tsybovsky, Yaroslav; Yang, Yongping; Zhao, Peng; Haynes, Barton F.; Stamatatos, Leonidas; Tiemeyer, Michael; Wells, Lance; Scorpio, Diana G.; Shapiro, Lawrence; McDermott, Adrian B.; Mascola, John R.; Kwong, Peter D.

    2017-04-01

    While the HIV-1-glycan shield is known to shelter Env from the humoral immune response, its quantitative impact on antibody elicitation has been unclear. Here, we use targeted deglycosylation to measure the impact of the glycan shield on elicitation of antibodies against the CD4 supersite. We engineered diverse Env trimers with select glycans removed proximal to the CD4 supersite, characterized their structures and glycosylation, and immunized guinea pigs and rhesus macaques. Immunizations yielded little neutralization against wild-type viruses but potent CD4-supersite neutralization (titers 1: >1,000,000 against four-glycan-deleted autologous viruses with over 90% breadth against four-glycan-deleted heterologous strains exhibiting tier 2 neutralization character). To a first approximation, the immunogenicity of the glycan-shielded protein surface was negligible, with Env-elicited neutralization (ID50) proportional to the exponential of the protein-surface area accessible to antibody. Based on these high titers and exponential relationship, we propose site-selective deglycosylated trimers as priming immunogens to increase the frequency of site-targeting antibodies.

  1. Glycan Reader: Automated Sugar Identification and Simulation Preparation for Carbohydrates and Glycoproteins

    Science.gov (United States)

    Jo, Sunhwan; Song, Kevin C.; Desaire, Heather; MacKerell, Alexander D.; Im, Wonpil

    2011-01-01

    Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics. PMID:21815173

  2. Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation

    Directory of Open Access Journals (Sweden)

    Tongqing Zhou

    2017-04-01

    Full Text Available While the HIV-1-glycan shield is known to shelter Env from the humoral immune response, its quantitative impact on antibody elicitation has been unclear. Here, we use targeted deglycosylation to measure the impact of the glycan shield on elicitation of antibodies against the CD4 supersite. We engineered diverse Env trimers with select glycans removed proximal to the CD4 supersite, characterized their structures and glycosylation, and immunized guinea pigs and rhesus macaques. Immunizations yielded little neutralization against wild-type viruses but potent CD4-supersite neutralization (titers 1: >1,000,000 against four-glycan-deleted autologous viruses with over 90% breadth against four-glycan-deleted heterologous strains exhibiting tier 2 neutralization character. To a first approximation, the immunogenicity of the glycan-shielded protein surface was negligible, with Env-elicited neutralization (ID50 proportional to the exponential of the protein-surface area accessible to antibody. Based on these high titers and exponential relationship, we propose site-selective deglycosylated trimers as priming immunogens to increase the frequency of site-targeting antibodies.

  3. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    International Nuclear Information System (INIS)

    Sugumaran, G.; Silbert, J.E.

    1988-01-01

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent

  4. Poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan Aqueous Dispersions: Toward Electrically Conductive Bioactive Materials for Neural Interfaces.

    Science.gov (United States)

    Mantione, Daniele; Del Agua, Isabel; Schaafsma, Wandert; Diez-Garcia, Javier; Castro, Begona; Sardon, Haritz; Mecerreyes, David

    2016-08-01

    There is an actual need of advanced materials for the emerging field of bioelectronics. One commonly used material is the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ( PSS) due to its general use in organic electronics. However, depending on the application in bioelectronics, PSS is not fully biocompatible due to the high acidity of the residual sulfonate protons of PSS. In this paper, the synthesis and biocompatibility properties of new poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan ( GAG) aqueous dispersions and its resulting films are shown. Thus, negatively charged GAGs as an alternative to PSS are presented. Three different commercially available GAGs, hyaluronic acid, heparin, and chondroitin sulfate are used. Indeed, GAGs dispersions are prepared through an oxidative chemical polymerization in water. Biocompatibility assays of the GAGs coatings are performed using SH-SY5Y and CCF-STTG1 cell lines and with ATP and Ca(2+) . Results show full biocompatibility and a pronounced anti-inflammatory effect. This last characteristic becomes crucial if implanted in the body. These materials can be used for in vivo applications, as transistor or electrode for electrical recording and for all the possible situations when there is contact between electronic circuits and living tissues. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Off limits: sulfate below the sulfate-methane transition

    Science.gov (United States)

    Brunner, Benjamin; Arnold, Gail; Røy, Hans; Müller, Inigo; Jørgensen, Bo

    2016-07-01

    One of the most intriguing recent discoveries in biogeochemistry is the ubiquity of cryptic sulfur cycling. From subglacial lakes to marine oxygen minimum zones, and in marine sediments, cryptic sulfur cycling - the simultaneous sulfate consumption and production - has been observed. Though this process does not leave an imprint in the sulfur budget of the ambient environment - thus the term cryptic - it may have a massive impact on other element cycles and fundamentally change our understanding of biogeochemical processes in the subsurface. Classically, the sulfate-methane transition (SMT) in marine sediments is considered to be the boundary that delimits sulfate reduction from methanogenesis as the predominant terminal pathway of organic matter mineralization. Two sediment cores from Aarhus Bay, Denmark reveal the constant presence of sulfate (generally 0.1 to 0.2 mM) below the SMT. The sulfur and oxygen isotope signature of this deep sulfate (34S = 18.9‰, 18O = 7.7‰) was close to the isotope signature of bottom-seawater collected from the sampling site (34S = 19.8‰, 18O = 7.3‰). In one of the cores, oxygen isotope values of sulfate at the transition from the base of the SMT to the deep sulfate pool (18O = 4.5‰ to 6.8‰) were distinctly lighter than the deep sulfate pool. Our findings are consistent with a scenario where sulfate enriched in 34S and 18O is removed at the base of the SMT and replaced with isotopically light sulfate below. Here, we explore scenarios that explain this observation, ranging from sampling artifacts, such as contamination with seawater or auto-oxidation of sulfide - to the potential of sulfate generation in a section of the sediment column where sulfate is expected to be absent which enables reductive sulfur cycling, creating the conditions under which sulfate respiration can persist in the methanic zone.

  6. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Wang Aijie; Ren Nanqi; Wang Xu; Lee Duujong

    2008-01-01

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO 4 2- ) ratios. At a critical COD/SO 4 2- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO 4 2- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  7. Inhibition of PrPSc formation by synthetic O-sulfated glycopyranosides and their polymers.

    Science.gov (United States)

    Yamaguchi, Satoko; Nishida, Yoshihiro; Sasaki, Kenji; Kambara, Mikie; Kim, Chan-Lan; Ishiguro, Naotaka; Nagatsuka, Takehiro; Uzawa, Hirotaka; Horiuchi, Motohiro

    2006-10-20

    Sulfated glycosaminoglycans (GAGs) and sulfated glycans inhibit formation of the abnormal isoform of prion protein (PrPSc) in prion-infected cells and prolong the incubation time of scrapie-infected animals. Sulfation of GAGs is not tightly regulated and possible sites of sulfation are randomly modified, which complicates elucidation of the fundamental structures of GAGs that mediate the inhibition of PrPSc formation. To address the structure-activity relationship of GAGs in the inhibition of PrPSc formation, we screened the ability of various regioselectively O-sulfated glycopyranosides to inhibit PrPSc formation in prion-infected cells. Among the glycopyranosides and their polymers examined, monomeric 4-sulfo-N-acetyl-glucosamine (4SGN), and two glycopolymers, poly-4SGN and poly-6-sulfo-N-acetyl-glucosamine (poly-6SGN), inhibited PrPSc formation with 50% effective doses below 20 microg/ml, and their inhibitory effect became more evident with consecutive treatments. Structural comparisons suggested that a combination of an N-acetyl group at C-2 and an O-sulfate group at either O-4 or O-6 on glucopyranoside might be involved in the inhibition of PrPSc formation. Furthermore, polymeric but not monomeric 6SGN inhibited PrPSc formation, suggesting the importance of a polyvalent configuration in its effect. These results indicate that the synthetic sulfated glycosides are useful not only for the analysis of structure-activity relationship of GAGs but also for the development of therapeutics for prion diseases.

  8. A Panel of Recombinant Mucins Carrying a Repertoire of Sialylated O-Glycans Based on Different Core Chains for Studies of Glycan Binding Proteins

    Directory of Open Access Journals (Sweden)

    Reeja Maria Cherian

    2015-08-01

    Full Text Available Sialylated glycans serve as key elements of receptors for many viruses, bacteria, and bacterial toxins. The microbial recognition and their binding specificity can be affected by the linkage of the terminal sugar residue, types of underlying sugar chains, and the nature of the entire glycoconjugate. Owing to the pathobiological significance of sialylated glycans, we have engineered Chinese hamster ovary (CHO cells to secrete mucin-type immunoglobulin-fused proteins carrying terminal α2,3- or α2,6-linked sialic acid on defined O-glycan core saccharide chains. Besides stably expressing P-selectin glycoprotein ligand-1/mouse immunoglobulin G2b cDNA (PSGL-1/mIgG2b, CHO cells were stably transfected with plasmids encoding glycosyltransferases to synthesize core 2 (GCNT1, core 3 (B3GNT6, core 4 (GCNT1 and B3GNT6, or extended core 1 (B3GNT3 chains with or without the type 1 chain-encoding enzyme B3GALT5 and ST6GAL1. Western blot and liquid chromatography-mass spectrometry analysis confirmed the presence of core 1, 2, 3, 4, and extended core 1 chains carrying either type 1 (Galb3GlcNAc or type 2 (Galb4GlcNAc outer chains with or without α2,6-linked sialic acids. This panel of recombinant mucins carrying a repertoire of sialylated O-glycans will be important tools in studies aiming at determining the fine O-glycan binding specificity of sialic acid-specific microbial adhesins and mammalian lectins.

  9. 2-Amino-4-hydroxyethylaminoanisole sulfate

    DEFF Research Database (Denmark)

    Madsen, Jakob T; Andersen, Klaus E

    2016-01-01

    positive patch test reactions to the coupler 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. METHODS: Patch test results from the Allergen Bank database for eczema patients patch tested with 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014 were reviewed. RESULTS......: A total of 902 dermatitis patients (154 from the dermatology department and 748 from 65 practices) were patch tested with amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. Thirteen (1.4%) patients had a positive patch test reaction. Our results do not indicate irritant reactions....... CONCLUSIONS: 2-Amino-4-hydroxyethylaminoanisole sulfate is a new but rare contact allergen....

  10. Protective effect of exogenous chondroitin 4,6-sulfate in the acute degradation of articular cartilage in the rabbit.

    Science.gov (United States)

    Uebelhart, D; Thonar, E J; Zhang, J; Williams, J M

    1998-05-01

    The injection of 2.0 mg chymopapain into the adolescent rabbit knee causes severe loss of articular cartilage proteoglycans (PG). Although chondrocytes attempt to restore lost PG, failure to repair ensues. Pure chondroitin 4,6-sulfate (Condrosulf, IBSA Lugano, Switzerland) has been used in clinical studies of human osteoarthritis (OA) as a slow-acting drug for OA (SYSADOA). Using our model of articular cartilage injury, we examined the effects of oral and intramuscular administration of Condrosulf after chymopapain-induced cartilage injury. In this study, animals received an injection of 2.0 mg chymopapain (Chymodiactin, Boots Pharmaceuticals) into the left knee and were sacrificed after 84 days. The contralateral right knee served as a noninjected control. Some animals received oral Condrosulf while others received intramuscular injections of Condrosulf. Serum keratan sulfate (KS) levels were monitored to ensure degradation of the cartilage PG. Those animals not exhibiting at least a 100% increase of serum KS following chymopapain injection were excluded from the study. At sacrifice, cartilage PG contents were markedly reduced in animals receiving an injection of 2.0 mg chymopapain with no further treatment. In contrast, oral administration of Condrosulf beginning 11 days prior to chymopapain injury resulted in significantly higher (P = 0.0036) cartilage PG contents. Intramuscular administration of Condrosulf resulted in higher, but less significantly so (P = 0.0457), cartilage PG contents. These results suggest that daily Condrosulf treatment prior to and continuing after chymopapain injury may have a protective effect on the damaged cartilage, allowing it to continue to re-synthesize matrix PG after the treatment is discontinued.

  11. Physiological significance of Fuc and Sialic acid containing glycans in the body

    Directory of Open Access Journals (Sweden)

    Muhammad Ramzan Manwar Hussain

    2016-09-01

    Full Text Available Complex biomolecular machinery carrying diverse glycan chains are involved in a wide range of physiological activities including blood group determination, cancer recognition protein stabilization and sperm–egg interaction. Diversity of glycan chains, linked to lipids and proteins is due to isomeric and conformational modifications of various sugar residues, giving rise to unique carbohydrate structures with a wide range of anomeric linkages. This unique and significant structural diversity of naturally occurring oligosaccharide structures make them the best recognition markers for countless physiological activities. This is a challenging task to explore the relationship between biological processes and stereochemical behavior of sugar residues. Current review article is related with the physiological significance of glycans carrying fucose and/or sialic residues in complex biomolecular assemblies. Both the sugar units have a diverse range of anomery and linkages with the penultimate sugars. The existing literature and databases did not contain comprehensive information regarding structure–function relationship of glycans. Therefore, the current study is scheduled to debate on the structure–function relationship of glycans carrying Fuc and sialic acid in their backbone structures.

  12. Rapid release of N-linked glycans from glycoproteins by pressure-cycling technology.

    Science.gov (United States)

    Szabo, Zoltan; Guttman, András; Karger, Barry L

    2010-03-15

    The standard, well-established sample preparation protocol to release N-linked glycans from glycoproteins for downstream analysis requires relatively long deglycosylation times (from several hours to overnight) and relatively high endoglycosidase concentration (from 1:250 to 1:500 enzyme:substrate molar ratio). In this paper, we significantly improve this standard protocol by the use of pressure-cycling technology (PCT) to increase the speed and decrease the relative amount of PNGase F during the release of N-linked glycans from denatured glycoproteins. With the application of pressure cycling from atmospheric to as high as 30 kpsi, >95% release of the asparagine-linked glycans from bovine ribonuclease B, human transferrin, and polyclonal human immunoglobulin was rapidly achieved in a few minutes using as low as 1:2500 enzyme:substrate molar ratio. The deglycosylation rate was first examined by SDS-PAGE at the protein level. The released glycans were then quantitated by capillary electrophoresis with laser induced fluorescence detection (CE-LIF). This new sample preparation protocol readily supports large-scale glycan analysis of biopharmaceuticals with rapid deglycosylation times.

  13. The Role of Conserved N-Linked Glycans on Ebola Virus Glycoprotein 2.

    Science.gov (United States)

    Lennemann, Nicholas J; Walkner, Madeline; Berkebile, Abigail R; Patel, Neil; Maury, Wendy

    2015-10-01

    N-linked glycosylation is a common posttranslational modification found on viral glycoproteins (GPs) and involved in promoting expression, cellular attachment, protection from proteases, and antibody evasion. The GP subunit GP2 of filoviruses contains 2 completely conserved N-linked glycosylation sites (NGSs) at N563 and N618, suggesting that they have been maintained through selective pressures. We assessed mutants lacking these glycans for expression and function to understand the role of these sites during Ebola virus entry. Elimination of either GP2 glycan individually had a modest effect on GP expression and no impact on antibody neutralization of vesicular stomatitis virus pseudotyped with Ebola virus GP. However, loss of the N563 glycan enhanced entry by 2-fold and eliminated GP detection by a well-characterized monoclonal antibody KZ52. Loss of both sites dramatically decreased GP expression and abolished entry. Surprisingly, a GP that retained a single NGS at N563, eliminating the remaining 16 NGSs from GP1 and GP2, had detectable expression, a modest increase in entry, and pronounced sensitivity to antibody neutralization. Our findings support the importance of the GP2 glycans in GP expression/structure, transduction efficiency, and antibody neutralization, particularly when N-linked glycans are also removed from GP1. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Unique, polyfucosylated glycan-receptor interactions are essential for regeneration of Hydra magnipapillata.

    Science.gov (United States)

    Sahadevan, Sonu; Antonopoulos, Aristotelis; Haslam, Stuart M; Dell, Anne; Ramaswamy, Subramanian; Babu, Ponnusamy

    2014-01-17

    Cell-cell communications, cell-matrix interactions, and cell migrations play a major role in regeneration. However, little is known about the molecular players involved in these critical events, especially cell surface molecules. Here, we demonstrate the role of specific glycan-receptor interactions in the regenerative process using Hydra magnipapillata as a model system. Global characterization of the N- and O-glycans expressed by H. magnipapillata using ultrasensitive mass spectrometry revealed mainly polyfucosylated LacdiNAc antennary structures. Affinity purification showed that a putative C-type lectin (accession number Q6SIX6) is a likely endogenous receptor for the novel polyfucosylated glycans. Disruption of glycan-receptor interactions led to complete shutdown of the regeneration machinery in live Hydra. A time-dependent, lack-of-regeneration phenotype observed upon incubation with exogenous fuco-lectins suggests the involvement of a polyfucose receptor-mediated signaling mechanism during regeneration. Thus, for the first time, the results presented here provide direct evidence for the role of polyfucosylated glycan-receptor interactions in the regeneration of H. magnipapillata.

  15. A novel glycan modifies the flagellar filament proteins of the oral bacterium Treponema denticola.

    Science.gov (United States)

    Kurniyati, Kurni; Kelly, John F; Vinogradov, Evgeny; Robotham, Anna; Tu, Youbing; Wang, Juyu; Liu, Jun; Logan, Susan M; Li, Chunhao

    2017-01-01

    While protein glycosylation has been reported in several spirochetes including the syphilis bacterium Treponema pallidum and Lyme disease pathogen Borrelia burgdorferi, the pertinent glycan structures and their roles remain uncharacterized. Herein, a novel glycan with an unusual chemical composition and structure in the oral spirochete Treponema denticola, a keystone pathogen of periodontitis was reported. The identified glycan of mass 450.2 Da is composed of a monoacetylated nonulosonic acid (Non) with a novel extended N7 acyl modification, a 2-methoxy-4,5,6-trihydroxy-hexanoyl residue in which the Non has a pseudaminic acid configuration (L-glycero-L-manno) and is β-linked to serine or threonine residues. This novel glycan modifies the flagellin proteins (FlaBs) of T. denticola by O-linkage at multiple sites near the D1 domain, a highly conserved region of bacterial flagellins that interact with Toll-like receptor 5. Furthermore, mutagenesis studies demonstrate that the glycosylation plays an essential role in the flagellar assembly and motility of T. denticola. To our knowledge, this novel glycan and its unique modification sites have not been reported previously in any bacteria. © 2016 John Wiley & Sons Ltd.

  16. IgG N-glycans as potential biomarkers for determining galactose tolerance in Classical Galactosaemia.

    LENUS (Irish Health Repository)

    Coss, K P

    2012-02-01

    N-glycan processing and assembly defects have been demonstrated in untreated and partially treated patients with Classical Galactosaemia. These defects may contribute to the ongoing pathophysiology of this disease. The aim of this study was to develop an informative method of studying differential galactose tolerance levels and diet control in individuals with Galactosaemia, compared to the standard biochemical markers. Ten Galactosaemia adults with normal intellectual outcomes were analyzed in the study. Five subjects followed galactose liberalization, increments of 300 mg to 4000 mg\\/day over 16 weeks, and were compared to five adult Galactosaemia controls on a galactose restricted diet. All study subjects underwent clinical and biochemical monitoring of red blood cell galactose-1-phosphate (RBC Gal-1-P) and urinary galactitol levels. Serum N-glycans were isolated and analyzed by normal phase high-performance liquid chromatography (NP-HPLC) with galactosylation of IgG used as a specific biomarker of galactose tolerance. IgG N-glycan profiles showed consistent individual alterations in response to diet liberalization. The individual profiles were improved for all, but one study subject, at a galactose intake of 1000 mg\\/day, with decreases in agalactosylated (G0) and increases in digalactosylated (G2) N-glycans. We conclude that IgG N-glycan profiling is an improved method of monitoring variable galactosylation and determining individual galactose tolerance in Galactosaemia compared to the standard methods.

  17. Simple and Robust N-Glycan Analysis Based on Improved 2-Aminobenzoic Acid Labeling for Recombinant Therapeutic Glycoproteins.

    Science.gov (United States)

    Jeong, Yeong Ran; Kim, Sun Young; Park, Young Sam; Lee, Gyun Min

    2018-03-21

    N-glycans of therapeutic glycoproteins are critical quality attributes that should be monitored throughout all stages of biopharmaceutical development. To reduce both the time for sample preparation and the variations in analytical results, we have developed an N-glycan analysis method that includes improved 2-aminobenzoic acid (2-AA) labeling to easily remove deglycosylated proteins. Using this analytical method, 15 major 2-AA-labeled N-glycans of Enbrel ® were separated into single peaks in hydrophilic interaction chromatography mode and therefore could be quantitated. 2-AA-labeled N-glycans were also highly compatible with in-line quadrupole time-of-flight mass spectrometry (MS) for structural identification. The structures of 15 major and 18 minor N-glycans were identified from their mass values determined by quadrupole time-of-flight MS. Furthermore, the structures of 14 major N-glycans were confirmed by interpreting the MS/MS data of each N-glycan. This analytical method was also successfully applied to neutral N-glycans of Humira ® and highly sialylated N-glycans of NESP ® . Furthermore, the analysis data of Enbrel ® that were accumulated for 2.5 years demonstrated the high-level consistency of this analytical method. Taken together, the results show that a wide repertoire of N-glycans of therapeutic glycoproteins can be analyzed with high efficiency and consistency using the improved 2-AA labeling-based N-glycan analysis method. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Protein Precipitation Using Ammonium Sulfate.

    Science.gov (United States)

    2016-04-01

    The basic theory of protein precipitation by addition of ammonium sulfate is presented, and the most common applications are listed. Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution. Copyright © 2016 John Wiley & Sons, Inc.

  19. Off limits: sulfate below the sulfate-methane transition

    Directory of Open Access Journals (Sweden)

    Benjamin Brunner

    2016-07-01

    Full Text Available One of the most intriguing recent discoveries in biogeochemistry is the ubiquity of cryptic sulfur cycling. From subglacial lakes to marine oxygen minimum zones, and in marine sediments, cryptic sulfur cycling – the simultaneous sulfate consumption and production – has been observed. Though this process does not leave an imprint in the sulfur budget of the ambient environment – thus the term cryptic – it may have a massive impact on other element cycles and fundamentally change our understanding of biogeochemical processes in the subsurface.Classically, the sulfate-methane transition (SMT in marine sediments is considered to be the boundary that delimits sulfate reduction from methanogenesis as the predominant terminal pathway of organic matter mineralization. Two sediment cores from Aarhus Bay, Denmark reveal the constant presence of sulfate (generally 0.1 to 0.2 mM below the SMT. The sulfur and oxygen isotope signature of this deep sulfate (34S = 18.9‰, 18O = 7.7‰ was close to the isotope signature of bottom-seawater collected from the sampling site (34S = 19.8‰, 18O = 7.3‰. In one of the cores, oxygen isotope values of sulfate at the transition from the base of the SMT to the deep sulfate pool (18O = 4.5‰ to 6.8‰ were distinctly lighter than the deep sulfate pool.Our findings are consistent with a scenario where sulfate enriched in 34S and 18O is removed at the base of the SMT and replaced with isotopically light sulfate below. Here, we explore scenarios that explain this observation, ranging from sampling artifacts, such as contamination with seawater or auto-oxidation of sulfide – to the potential of sulfate generation in a section of the sediment column where sulfate is expected to be absent which enables reductive sulfur cycling, creating the conditions under which sulfate respiration can persist in the methanic zone.

  20. Anti-V3/Glycan and Anti-MPER Neutralizing Antibodies, but Not Anti-V2/Glycan Site Antibodies, Are Strongly Associated with Greater Anti-HIV-1 Neutralization Breadth and Potency.

    Science.gov (United States)

    Jacob, Rajesh Abraham; Moyo, Thandeka; Schomaker, Michael; Abrahams, Fatima; Grau Pujol, Berta; Dorfman, Jeffrey R

    2015-05-01

    The membrane-proximal external region (MPER), the V2/glycan site (initially defined by PG9 and PG16 antibodies), and the V3/glycans (initially defined by PGT121-128 antibodies) are targets of broadly neutralizing antibodies and potential targets for anti-HIV-1 antibody-based vaccines. Recent evidence shows that antibodies with moderate neutralization breadth are frequently attainable, with 50% of sera from chronically infected individuals neutralizing ≥ 50% of a large, diverse set of viruses. Nonetheless, there is little systematic information addressing which specificities are preferentially targeted among such commonly found, moderately broadly neutralizing sera. We explored associations between neutralization breadth and potency and the presence of neutralizing antibodies targeting the MPER, V2/glycan site, and V3/glycans in sera from 177 antiretroviral-naive HIV-1-infected (>1 year) individuals. Recognition of both MPER and V3/glycans was associated with increased breadth and potency. MPER-recognizing sera neutralized 4.62 more panel viruses than MPER-negative sera (95% prediction interval [95% PI], 4.41 to 5.20), and V3/glycan-recognizing sera neutralized 3.24 more panel viruses than V3/glycan-negative sera (95% PI, 3.15 to 3.52). In contrast, V2/glycan site-recognizing sera neutralized only 0.38 more panel viruses (95% PI, 0.20 to 0.45) than V2/glycan site-negative sera and no association between V2/glycan site recognition and breadth or potency was observed. Despite autoreactivity of many neutralizing antibodies recognizing MPER and V3/glycans, antibodies to these sites are major contributors to neutralization breadth and potency in this cohort. It may therefore be appropriate to focus on developing immunogens based upon the MPER and V3/glycans. Previous candidate HIV vaccines have failed either to induce wide-coverage neutralizing antibodies or to substantially protect vaccinees. Therefore, current efforts focus on novel approaches never before

  1. Major O-glycans from the nest of Vespula germanica contain phospho-ethanolamine.

    Science.gov (United States)

    Maes, Emmanuel; Garénaux, Estelle; Strecker, Gérard; Leroy, Yves; Wieruszeski, Jean-Michel; Brassart, Colette; Guérardel, Yann

    2005-08-15

    We describe here the structural deciphering of four wasp O-glycans. Following purification of a mixture of glycoproteins from nests of the common wasp Vespula germanica L. (Hymenoptera), their substituting O-glycans were liberated by reducing beta-elimination and characterised using a combination of high resolution NMR and mass spectrometry analyses. Besides ubiquitously found in the insect cells GalNAc-ol and Gal(beta1-3)GalNAc-ol compounds, two novel O-glycans carrying a 2-aminoethyl phosphate group were described for the first time here. We suggest that they present the following structures: Etn-P-(O-->6)-GalNAc-ol and Etn-P-(O-->6)-[Gal(beta1-3)]GalNAc-ol. In conjunction with previous studies, these results suggest that a 2-aminoethyl phosphate group may act as an alternative to sialic acid for conferring charges to glycoproteins.

  2. Online nanoliquid chromatography-mass spectrometry and nanofluorescence detection for high-resolution quantitative N-glycan analysis

    NARCIS (Netherlands)

    Kalay, H.; Ambrosini, M.; van Berkel, P.H.C.; Parren, P.W.H.I.; van Kooijk, Y.; Garcia Vallejo, J.J.

    2012-01-01

    The characterization of the repertoire of glycans at the quantitative and qualitative levels on cells and glycoproteins is a necessary step to the understanding of glycan functions in biology. In addition, there is an increasing demand in the field of biotechnology for the monitoring of

  3. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans.

    Science.gov (United States)

    Goetze, Andrew M; Liu, Y Diana; Zhang, Zhongqi; Shah, Bhavana; Lee, Edward; Bondarenko, Pavel V; Flynn, Gregory C

    2011-07-01

    Glycan structures attached to the C(H)2 domain of the Fc region of immunoglobulin G (IgG) are essential for specific effector functions but their role in modulating clearance is less clear. Clearance is of obvious importance for therapeutic monoclonal antibodies (Mabs) as it directly impacts efficacy. Here, we study the impact of Fc glycan structure on the clearance of four therapeutic human IgGs (one IgG1 and three IgG2s) in humans. The therapeutic IgGs were affinity purified from serum samples from human pharmacokinetic studies, and changes to the glycan profile over time were determined by peptide mapping employing high-resolution mass spectrometry. Relative levels of high-mannose 5 (M5) glycan decreased as a function of circulation time, whereas other glycans remained constant. These results demonstrate that therapeutic IgGs containing Fc high-mannose glycans are cleared more rapidly in humans than other glycan forms. The quantitative effect of this on pharmacokinetic area under the curve was calculated and shown to be relatively minor for three of the four molecules studied, but, depending on the dosing regimen and the relative level of the high-mannose glycan, this can also have significant impact. High-mannose content of therapeutic Mabs should be considered an important product quality attribute which may affect pharmacokinetic properties of therapeutic antibodies.

  4. Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xueyun; Zhang, Xing; Schocker, Nate; Renslow, Ryan S.; Orton, Daniel J.; Khamsi, Jamal; Ashmus, Roger A.; Almeida, Igor C.; Tang, Keqi; Costello, Catherine E; Smith, Richard D.; Michael, Katja; Baker, Erin M.

    2016-09-07

    Glycomics has become an increasingly important field of research since glycans play critical roles in biology processes ranging from molecular recognition and signaling to cellular communication. Glycans often conjugate with other biomolecules such as proteins and lipids, and alter their properties and functions, so understanding the effect glycans have on cellular systems is essential. However the analysis of glycans is extremely difficult due to their complexity and structural diversity (i.e., the number and identity of monomer units, and configuration of their glycosidic linkages and connectivities). In this work, we coupled ion mobility spectrometry with mass spectrometry (IMS-MS) to characterize glycan standards and biologically important isomers of synthetic αGal-containing O-glycans including glycotopes of the protozoan parasite Trypanosoma cruzi, which is the causative agent of Chagas disease. IMS-MS results showed significant differences for the glycan structural isomers when analyzed in positive and negative polarity and complexed with different metal cations. These results suggest specific metal ions or ion polarities could be used to target and baseline separate glycan isomers of interest with IMS-MS.

  5. Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells.

    Directory of Open Access Journals (Sweden)

    Y Lei

    Full Text Available DENV envelope glycoprotein (E is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells.

  6. Sulfation of von Willebrand factor

    International Nuclear Information System (INIS)

    Carew, J.A.; Browning, P.J.; Lynch, D.C.

    1990-01-01

    von Willebrand factor (vWF) is a multimeric adhesive glycoprotein essential for normal hemostasis. We have discovered that cultured human umbilical vein endothelial cells incorporate inorganic sulfate into vWF. Following immunoisolation and analysis by polyacrylamide or agarose gel electrophoresis, metabolically labeled vWF was found to have incorporated [35S]-sulfate into all secreted multimer species. The time course of incorporation shows that sulfation occurs late in the biosynthesis of vWF, near the point at which multimerization occurs. Quantitative analysis suggests the presence, on average, of one molecule of sulfate per mature vWF subunit. Virtually all the detectable sulfate is released from the mature vWF subunit by treatment with endoglycosidases that remove asparagine-linked carbohydrates. Sulfated carbohydrate was localized first to the N-terminal half of the mature subunit (amino acids 1 through 1,365) by partial proteolytic digestion with protease V8; and subsequently to a smaller fragment within this region (amino acids 273 through 511) by sequential digestions with protease V8 and trypsin. Thus, the carbohydrate at asparagine 384 and/or 468 appears to be the site of sulfate modification. Sodium chlorate, an inhibitor of adenosine triphosphate-sulfurylase, blocks sulfation of vWF without affecting either the ability of vWF to assemble into high molecular weight multimers or the ability of vWF multimers to enter Weible-Palade bodies. The stability of vWF multimers in the presence of an endothelial cell monolayer also was unaffected by the sulfation state. Additionally, we have found that the cleaved propeptide of vWF is sulfated on asparagine-linked carbohydrate

  7. N -Glycans on the receptor for advanced glycation end products influence amphoterin binding and neurite outgrowth.

    Science.gov (United States)

    Srikrishna, Geetha; Huttunen, Henri J; Johansson, Lena; Weigle, Bernd; Yamaguchi, Yu; Rauvala, Heikki; Freeze, Hudson H

    2002-03-01

    In this study we show that embryonic neurite growth-promoting protein amphoterin binds to carboxylated N -glycans previously identified on mammalian endothelial cells. Since amphoterin is a ligand for the receptor for advanced glycation end products (RAGE), and the ligand-binding V-domain of the receptor contains two potential N -glycosylation sites, we hypothesized that N -glycans on RAGE may mediate its interactions with amphoterin. In support of this, anti-carboxylate antibody mAbGB3.1 immunoprecipitates bovine RAGE, and PNGase F treatment reduces its molecular mass by 4.5 kDa, suggesting that the native receptor is a glycoprotein. The binding potential of amphoterin to RAGE decreases significantly in presence of soluble carboxylated glycans or when the receptor is deglycosylated. Oligosaccharide analysis shows that RAGE contains complex type anionic N -glycans with non-sialic acid carboxylate groups, but not the HNK-1 (3-sulfoglucuronyl beta1-3 galactoside) epitope. Consistent with the functional localization of RAGE and amphoterin at the leading edges of developing neurons, mAbGB3.1 stains axons and growth cones of mouse embryonic cortical neurons, and inhibits neurite outgrowth on amphoterin matrix. The carboxylated glycans themselves promote neurite outgrowth in embryonic neurons and RAGE-transfected neuroblastoma cells. This outgrowth requires full-length, signalling-competent RAGE, as cells expressing cytoplasmic domain-deleted RAGE are unresponsive. These results indicate that carboxylated N -glycans on RAGE play an important functional role in amphoterin-RAGE-mediated signalling.

  8. C-terminus glycans with critical functional role in the maturation of secretory glycoproteins.

    Directory of Open Access Journals (Sweden)

    Daniela Cioaca

    Full Text Available The N-glycans of membrane glycoproteins are mainly exposed to the extracellular space. Human tyrosinase is a transmembrane glycoprotein with six or seven bulky N-glycans exposed towards the lumen of subcellular organelles. The central active site region of human tyrosinase is modeled here within less than 2.5 Å accuracy starting from Streptomyces castaneoglobisporus tyrosinase. The model accounts for the last five C-terminus glycosylation sites of which four are occupied and indicates that these cluster in two pairs--one in close vicinity to the active site and the other on the opposite side. We have analyzed and compared the roles of all tyrosinase N-glycans during tyrosinase processing with a special focus on the proximal to the active site N-glycans, s6:N337 and s7:N371, versus s3:N161 and s4:N230 which decorate the opposite side of the domain. To this end, we have constructed mutants of human tyrosinase in which its seven N-glycosylation sites were deleted. Ablation of the s6:N337 and s7:N371 sites arrests the post-translational productive folding process resulting in terminally misfolded mutants subjected to degradation through the mannosidase driven ERAD pathway. In contrast, single mutants of the other five N-glycans located either opposite to the active site or into the N-terminus Cys1 extension of tyrosinase are temperature-sensitive mutants and recover enzymatic activity at the permissive temperature of 31°C. Sites s3 and s4 display selective calreticulin binding properties. The C-terminus sites s7 and s6 are critical for the endoplasmic reticulum retention and intracellular disposal. Results herein suggest that individual N-glycan location is critical for the stability, regional folding control and secretion of human tyrosinase and explains some tyrosinase gene missense mutations associated with oculocutaneous albinism type I.

  9. Distinct Roles of N- and O-Glycans in Cellulase Activity and Stability

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Amore, Antonella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Knott, Brandon C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Linger, Jeffrey G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); VanderWall, Todd A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shollenberger, Todd S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yarbrough, John M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hobdey, Sarah E. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Taylor III, Larry E. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Supekar, Nitin T. [University of Georgia; Shajahan, Asif [University of Georgia; Azadi, Parastoo [University of Georgia; Zhao, Peng [University of Georgia; Wells, Lance [University of Georgia; Tan, Zhongping [University of Colorado

    2017-12-11

    In nature, many microbes secrete mixtures of glycoside hydrolases, oxidoreductases, and accessory enzymes to deconstruct polysaccharides and lignin in plants. These enzymes are often decorated with N- and O-glycosylation, the roles of which have been broadly attributed to protection from proteolysis, as the extracellular milieu is an aggressive environment. Glycosylation has been shown to sometimes affect activity, but these effects are not fully understood. Here, we examine N- and O-glycosylation on a model, multimodular glycoside hydrolase family 7 cellobiohydrolase (Cel7A), which exhibits an O-glycosylated carbohydrate-binding module (CBM) and an O-glycosylated linker connected to an N- and O-glycosylated catalytic domain (CD) - a domain architecture common to many biomass-degrading enzymes. We report consensus maps for Cel7A glycosylation that include glycan sites and motifs. Additionally, we examine the roles of glycans on activity, substrate binding, and thermal and proteolytic stability. N-glycan knockouts on the CD demonstrate that N-glycosylation has little impact on cellulose conversion or binding, but does have major stability impacts. O-glycans on the CBM have little impact on binding, proteolysis, or activity in the whole-enzyme context. However, linker O-glycans greatly impact cellulose conversion via their contribution to proteolysis resistance. Molecular simulations predict an additional role for linker O-glycans, namely that they are responsible for maintaining separation between ordered domains when Cel7A is engaged on cellulose, as models predict a-helix formation and decreased cellulose interaction for the nonglycosylated linker. Overall, this study reveals key roles for N- and O-glycosylation that are likely broadly applicable to other plant cell-wall-degrading enzymes.

  10. Quantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Karunya Srinivasan

    Full Text Available Avian influenza subtypes such as H5, H7 and H9 are yet to adapt to the human host so as to establish airborne transmission between humans. However, lab-generated reassorted viruses possessing hemagglutinin (HA and neuraminidase (NA genes from an avian H9 isolate and other genes from a human-adapted (H3 or H1 subtype acquired two amino acid changes in HA and a single amino acid change in NA that confer respiratory droplet transmission in ferrets. We previously demonstrated for human-adapted H1, H2 and H3 subtypes that quantitative binding affinity of their HA to α2→6 sialylated glycan receptors correlates with respiratory droplet transmissibility of the virus in ferrets. Such a relationship remains to be established for H9 HA. In this study, we performed a quantitative biochemical characterization of glycan receptor binding properties of wild-type and mutant forms of representative H9 HAs that were previously used in context of reassorted viruses in ferret transmission studies. We demonstrate here that distinct molecular interactions in the glycan receptor-binding site of different H9 HAs affect the glycan-binding specificity and affinity. Further we show that α2→6 glycan receptor-binding affinity of a mutant H9 HA carrying Thr-189→Ala amino acid change correlates with the respiratory droplet transmission in ferrets conferred by this change. Our findings contribute to a framework for monitoring the evolution of H9 HA by understanding effects of molecular changes in HA on glycan receptor-binding properties.

  11. Glycan masking of Plasmodium vivax Duffy Binding Protein for probing protein binding function and vaccine development.

    Directory of Open Access Journals (Sweden)

    Sowmya Sampath

    Full Text Available Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP and the Duffy Antigen Receptor for Chemokines (DARC and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development.

  12. Glycomics meets artificial intelligence - Potential of glycan analysis for identification of seropositive and seronegative rheumatoid arthritis patients revealed.

    Science.gov (United States)

    Chocholova, Erika; Bertok, Tomas; Jane, Eduard; Lorencova, Lenka; Holazova, Alena; Belicka, Ludmila; Belicky, Stefan; Mislovicova, Danica; Vikartovska, Alica; Imrich, Richard; Kasak, Peter; Tkac, Jan

    2018-02-25

    In this study, one hundred serum samples from healthy people and patients with rheumatoid arthritis (RA) were analyzed. Standard immunoassays for detection of 10 different RA markers and analysis of glycan markers on antibodies in 10 different assay formats with several lectins were applied for each serum sample. A dataset containing 2000 data points was data mined using artificial neural networks (ANN). We identified key RA markers, which can discriminate between healthy people and seropositive RA patients (serum containing autoantibodies) with accuracy of 83.3%. Combination of RA markers with glycan analysis provided much better discrimination accuracy of 92.5%. Immunoassays completely failed to identify seronegative RA patients (serum not containing autoantibodies), while glycan analysis correctly identified 43.8% of these patients. Further, we revealed other critical parameters for successful glycan analysis such as type of a sample, format of analysis and orientation of captured antibodies for glycan analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Online coupling of high-resolution chromatography with extreme UV photon activation tandem mass spectrometry: Application to the structural investigation of complex glycans by dissociative photoionization

    International Nuclear Information System (INIS)

    Ropartz, David; Giuliani, Alexandre; Fanuel, Mathieu; Hervé, Cécile; Czjzek, Mirjam; Rogniaux, Hélène

    2016-01-01

    The activation of ions by extreme-energy photons (XUV) produced by a synchrotron radiation beamline is a powerful method for characterizing complex glycans using tandem mass spectrometry (MS). As previously described, this activation method leads to rich fragmentation spectra with many structurally valuable cross-ring cleavages while maintaining labile modifications on the glycan structures. However, until now, the tandem MS event was too long to be compatible with liquid chromatography elution times. In this work, the duty cycle of the activation and detection of fragments was shortened, and the background signal on the spectra was drastically reduced. Both improvements allowed, for the first time, the successful coupling of a UHPLC system to XUV-activated tandem MS. The approach was used to characterize a complex mixture of oligo-porphyrans, which are a class of highly sulfated oligosaccharides, in a fully automated way. Due to an enhanced dynamic range and an increased sensitivity, some hypothetical structures of low abundance have been unequivocally confirmed in this study and others have been revised. Some previously undescribed species of oligo-porphyrans that exhibit lateral branching have been fully resolved. This work contributes to the scarce knowledge of the structure of porphyrans in red algae and pushes the current capacities of XUV-activation tandem MS by demonstrating the possibility of a direct coupling with UHPLC. This study will considerably broaden the applicability and practicality of this method in many fields of analytical biology. - Highlights: • For the first time, XUV photon activation tandem MS was coupled to UHPLC. • The approach was used to characterize a complex mixture of biomolecules. • The MSMS duty cycle was compatible with elution times of UHPLC without compromised. • Minor species were characterized with an enhanced sensitivity and dynamic range. • These results broaden the application of the technique in many field of

  14. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  15. p-Cresyl Sulfate

    Directory of Open Access Journals (Sweden)

    Tessa Gryp

    2017-01-01

    Full Text Available If chronic kidney disease (CKD is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden.

  16. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    Science.gov (United States)

    Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  17. Heterogeneity in copper and glycan content of ceruloplasmin in human serum differs in health and disease

    DEFF Research Database (Denmark)

    Hansen, J.-E.S.; Heegaard, Peter M. H.; Jensen, S.P.

    1988-01-01

    types were different in copper content, and one type could reversibly be changed into the other. The glycan microheterogeneity of ceruloplasmin was analyzed by crossed affinommunoelectrophoresis with free Lens culinaris agglutinin (LCA) and wheat germ agglutinin (WGA). A third of the ceruloplasmin...

  18. Glycoprofiling of N-linked glycans of erythropoietin therapeutic protein expressed in Yarrowia lipolytica

    CSIR Research Space (South Africa)

    Kahari, D

    2008-11-01

    Full Text Available The CSIR Biosciences researchers are developing a platform for robust techniques for glyco-profiling of therapeutic glycoproteins. The extracellular lipase (Lip2) (Aloulou, A et al;2007) was used as a model in establishing and evaluating glycan...

  19. The HIV-1 Glycan Shield: Strategically Placed Kinks in the Armor Improve Antigen Design.

    Science.gov (United States)

    Karsten, Christina Beatrice; Alter, Galit

    2017-04-25

    Dense glycosylation on the HIV-1 envelope glycoprotein hampers the induction of broadly neutralizing antibodies against HIV-1. Zhou et al. remove key glycans to unmask sites of vulnerability and enable the induction of neutralizing antibodies. Copyright © 2017. Published by Elsevier Inc.

  20. The HIV-1 Glycan Shield: Strategically Placed Kinks in the Armor Improve Antigen Design

    Directory of Open Access Journals (Sweden)

    Christina Beatrice Karsten

    2017-04-01

    Full Text Available Dense glycosylation on the HIV-1 envelope glycoprotein hampers the induction of broadly neutralizing antibodies against HIV-1. Zhou et al. remove key glycans to unmask sites of vulnerability and enable the induction of neutralizing antibodies.

  1. Azahar: a PyMOL plugin for construction, visualization and analysis of glycan molecules

    Science.gov (United States)

    Arroyuelo, Agustina; Vila, Jorge A.; Martin, Osvaldo A.

    2016-08-01

    Glycans are key molecules in many physiological and pathological processes. As with other molecules, like proteins, visualization of the 3D structures of glycans adds valuable information for understanding their biological function. Hence, here we introduce Azahar, a computing environment for the creation, visualization and analysis of glycan molecules. Azahar is implemented in Python and works as a plugin for the well known PyMOL package (Schrodinger in The PyMOL molecular graphics system, version 1.3r1, 2010). Besides the already available visualization and analysis options provided by PyMOL, Azahar includes 3 cartoon-like representations and tools for 3D structure caracterization such as a comformational search using a Monte Carlo with minimization routine and also tools to analyse single glycans or trajectories/ensembles including the calculation of radius of gyration, Ramachandran plots and hydrogen bonds. Azahar is freely available to download from http://www.pymolwiki.org/index.php/Azahar and the source code is available at https://github.com/agustinaarroyuelo/Azahar.

  2. Viral hemagglutinin-esterases: Mediators of dynamic virion-glycan interactions

    NARCIS (Netherlands)

    Langereis, M.A.|info:eu-repo/dai/nl/304823597

    2011-01-01

    The sialic acids (Sias), a diverse family of 9-carbon sugars, are among the most important molecules of life. Commonly occurring as terminal residues of glycans on proteins and lipids, they are key elements of glycotopes of cellular lectins and there is accumulating evidence for them to act as

  3. Isomer Information from Ion Mobility Separation of High-Mannose Glycan Fragments.

    Science.gov (United States)

    Harvey, David J; Seabright, Gemma E; Vasiljevic, Snezana; Crispin, Max; Struwe, Weston B

    2018-03-05

    Extracted arrival time distributions of negative ion CID-derived fragments produced prior to traveling-wave ion mobility separation were evaluated for their ability to provide structural information on N-linked glycans. Fragmentation of high-mannose glycans released from several glycoproteins, including those from viral sources, provided over 50 fragments, many of which gave unique collisional cross-sections and provided additional information used to assign structural isomers. For example, cross-ring fragments arising from cleavage of the reducing terminal GlcNAc residue on Man 8 GlcNAc 2 isomers have unique collision cross-sections enabling isomers to be differentiated in mixtures. Specific fragment collision cross-sections enabled identification of glycans, the antennae of which terminated in the antigenic α-galactose residue, and ions defining the composition of the 6-antenna of several of the glycans were also found to have different cross-sections from isomeric ions produced in the same spectra. Potential mechanisms for the formation of the various ions are discussed and the estimated collisional cross-sections are tabulated. Graphical Abstract ᅟ.

  4. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides

    DEFF Research Database (Denmark)

    Luis, Ana S.; Briggs, Jonathon; Zhang, Xiaoyang

    2018-01-01

    the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific...

  5. Glycomics and glycoproteomics focused on aging and age-related diseases--Glycans as a potential biomarker for physiological alterations.

    Science.gov (United States)

    Miura, Yuri; Endo, Tamao

    2016-08-01

    Since glycosylation depends on glycosyltransferases, glycosidases, and sugar nucleotide donors, it is susceptible to the changes associated with physiological and pathological conditions. Therefore, alterations in glycan structures may be good targets and biomarkers for monitoring health conditions. Since human aging and longevity are affected by genetic and environmental factors such as diseases, lifestyle, and social factors, a scale that reflects various environmental factors is required in the study of human aging and longevity. We herein focus on glycosylation changes elucidated by glycomic and glycoproteomic studies on aging, longevity, and age-related diseases including cognitive impairment, diabetes mellitus, and frailty. We also consider the potential of glycan structures as biomarkers and/or targets for monitoring physiological and pathophysiological changes. Glycan structures are altered in age-related diseases. These glycans and glycoproteins may be involved in the pathophysiology of these diseases and, thus, be useful diagnostic markers. Age-dependent changes in N-glycans have been reported previously in cohort studies, and characteristic N-glycans in extreme longevity have been proposed. These findings may lead to a deeper understanding of the mechanisms underlying aging as well as the factors influencing longevity. Alterations in glycosylation may be good targets and biomarkers for monitoring health conditions, and be applicable to studies on age-related diseases and healthy aging. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. N-Glycosylation analysis of yeast Carboxypeptidase Y reveals the ultimate removal of phosphate from glycans at Asn368.

    Science.gov (United States)

    B S, Gnanesh Kumar; Surolia, Avadhesha

    2017-05-01

    Carboxypeptidase Y from Saccharomyces cerivisiae was characterized for its site specific N-glycosylation through mass spectrometry. The N-glycopeptides were derived using non specific proteases and are analysed directly on liquid chromatography coupled to ion trap mass spectrometer in tandem mode. The evaluation of glycan fragment ions and the Y 1 ions (peptide+HexNAc) +n revealed the glycan sequence and the corresponding site of attachment. We observed the microheterogeneity in N-glycans such as Man 11-15 GlcNAc 2 at Asn 13 , Man 8-12 GlcNAc 2 at Asn 87 , Man 9-14 GlcNAc 2 at Asn 168 and phosphorylated Man 12-17 GlcNAc 2 as well as Man 11-16 GlcNAc 2 at Asn 368 . The presence of N-glycans with Man <18 GlcNAc 2 indicated that in vacuoles the steady release of mannose/phospho mannose residues from glycans occurs initially at Asn 13 or Asn 168 followed by at Asn 368 . However, glycans at Asn 87 which comprises Man 8-12 residues as reported earlier remain intact suggesting its inaccessibility for a similar processing. This in turn indicates the interaction of the glycan at Asn 87 with the polypeptide chain implicating it in the folding of the protein. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Two-Dimensional N-Glycan Distribution Mapping of Hepatocellular Carcinoma Tissues by MALDI-Imaging Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Thomas W. Powers

    2015-10-01

    Full Text Available A new mass spectrometry imaging approach to simultaneously map the two-dimensional distribution of N-glycans in tissues has been recently developed. The method uses Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS to spatially profile the location and distribution of multiple N-linked glycan species released by peptide N-glycosidase F in frozen or formalin-fixed tissues. Multiple formalin-fixed human hepatocellular carcinoma tissues were evaluated with this method, resulting in a panel of over 30 N-glycans detected. An ethylation reaction of extracted N-glycans released from adjacent slides was done to stabilize sialic acid containing glycans, and these structures were compared to N-glycans detected directly from tissue profiling. In addition, the distribution of singly fucosylated N-glycans detected in tumor tissue microarray cores were compared to the histochemistry staining pattern of a core fucose binding lectin. As this MALDI-IMS workflow has the potential to be applied to any formalin-fixed tissue block or tissue microarray, the advantages and limitations of the technique in context with other glycomic methods are also summarized.

  8. Characterization of goat milk lactoferrin N-glycans and comparison with the N-glycomes of human and bovine milk.

    Science.gov (United States)

    Le Parc, Annabelle; Dallas, David C; Duaut, Solene; Leonil, Joelle; Martin, Patrice; Barile, Daniela

    2014-06-01

    Numerous milk components, such as lactoferrin, are recognized as health-promoting compounds. A growing body of evidence suggests that glycans could mediate lactoferrin's bioactivity. Goat milk lactoferrin is a candidate for infant formula supplementation because of its high homology with its human counterpart. The aim of this study was to characterize the glycosylation pattern of goat milk lactoferrin. After the protein was isolated from milk by affinity chromatography, N-glycans were enzymatically released and a complete characterization of glycan composition was carried out by advanced MS. The glycosylation of goat milk lactoferrin was compared with that of human and bovine milk glycoproteins. Nano-LC-Chip-Q-TOF MS data identified 65 structures, including high mannose, hybrid, and complex N-glycans. Among the N-glycan compositions, 37% were sialylated and 34% were fucosylated. The results demonstrated the existence of similar glycans in human and goat milk but also identified novel glycans in goat milk that were not present in human milk. These data suggest that goat milk could be a source of bioactive compounds, including lactoferrin that could be used as functional ingredients for food products beneficial to human nutrition. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Human pharmacokinetics of ethynyl estradiol 3-sulfate and 17-sulfate.

    Science.gov (United States)

    Goldzieher, J W; Mileikowsky, G; Newburger, J; Dorantes, A; Stavchansky, S A

    1988-01-01

    Pharmacokinetic parameters of ethynyl estradiol 3-sulfate (EE-3) and 17-sulfate (EE-17) were estimated. Each sulfate was administered orally and intravenously to five ovariectomized volunteer women. Blood samples were taken over a period of 24 h. Radioimmunoassay for free and sulfoconjugated ethynyl estradiol (EE) was performed. The analysis of the plasma concentrations obtained after administration of EE-3 and EE-17 indicates significant differences in their pharmacokinetic profiles. EE-3 is cleared more rapidly from the central compartment (systemic circulation), which may indicate that differences in protein binding, tissue binding, metabolism, and distribution exist between EE-3 and EE-17. It has been suggested that these conjugates are a slow-release reservoir for maintenance of blood levels of free EE itself. However, previous studies in baboons have shown that the half-lives of the free and sulfoconjugated EE are similar (ranging from 8.8 to 11.2 h), which is not consistent with this hypothesis. The t1/2 beta (mean 9.28 h) of the 17-sulfate after IV administration was almost identical in women and baboons, and similar to the t1/2 beta of free EE, confirming the previous observation. Only 3.4% of IV and 11.4% of the orally administered 17-sulfate appeared in the blood as free EE; with the 3-sulfate, the conversions were 13.7 and 20.7%, respectively, suggesting that these sulfates are not important slow-release reservoirs. The similarity of pharmacokinetic parameters between women and baboons suggests that this species of nonhuman primate is, in important respects, a suitable animal model for clinical pharmacology.

  10. Profiling of glycan receptors for minute virus of mice in permissive cell lines towards understanding the mechanism of cell recognition.

    Directory of Open Access Journals (Sweden)

    Sujata Halder

    Full Text Available The recognition of sialic acids by two strains of minute virus of mice (MVM, MVMp (prototype and MVMi (immunosuppressive, is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM. Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galβ1-4GlcNAc motif (Neu5Acα2-3Galβ1-4GlcNAc or 3'SIA-LN and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3'SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3'SIA-Le(X identified in a previous glycan microarray screen.

  11. Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants.

    Science.gov (United States)

    He, Xu; Galpin, Jason D; Tropak, Michael B; Mahuran, Don; Haselhorst, Thomas; von Itzstein, Mark; Kolarich, Daniel; Packer, Nicolle H; Miao, Yansong; Jiang, Liwen; Grabowski, Gregory A; Clarke, Lorne A; Kermode, Allison R

    2012-04-01

    There is a clear need for efficient methods to produce protein therapeutics requiring mannose-termination for therapeutic efficacy. Here we report on a unique system for production of active human lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45) using seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) mutant, which are deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101). Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding GCase. A gene cassette optimized for seed expression was used to generate the human enzyme in seeds of the cgl (C5) mutant, and the recombinant GCase was mainly accumulated in the apoplast. Importantly, the enzymatic properties including kinetic parameters, half-maximal inhibitory concentration of isofagomine and thermal stability of the cgl-derived GCase were comparable with those of imiglucerase, a commercially available recombinant human GCase used for enzyme replacement therapy in Gaucher patients. N-glycan structural analyses of recombinant cgl-GCase showed that the majority of the N-glycans (97%) were mannose terminated. Additional purification was required to remove ∼15% of the plant-derived recombinant GCase that possessed potentially immunogenic (xylose- and/or fucose-containing) N-glycans. Uptake of cgl-derived GCase by mouse macrophages was similar to that of imiglucerase. The cgl seed system requires no addition of foreign (non-native) amino acids to the mature recombinant GCase protein, and the dry transgenic seeds represent a stable repository of the therapeutic protein. Other strategies that may completely prevent plant-like complex N-glycans are discussed, including the use of a null cgl mutant.

  12. Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus.

    Science.gov (United States)

    Bradel-Tretheway, Birgit G; Liu, Qian; Stone, Jacquelyn A; McInally, Samantha; Aguilar, Hector C

    2015-07-01

    Hendra virus (HeV) and Nipah virus (NiV) are reportedly the most deadly pathogens within the Paramyxoviridae family. These two viruses bind the cellular entry receptors ephrin B2 and/or ephrin B3 via the viral attachment glycoprotein G, and the concerted efforts of G and the viral fusion glycoprotein F result in membrane fusion. Membrane fusion is essential for viral entry into host cells and for cell-cell fusion, a hallmark of the disease pathobiology. HeV G is heavily N-glycosylated, but the functions of the N-glycans remain unknown. We disrupted eight predicted N-glycosylation sites in HeV G by conservative mutations (Asn to Gln) and found that six out of eight sites were actually glycosylated (G2 to G7); one in the stalk (G2) and five in the globular head domain (G3 to G7). We then tested the roles of individual and combined HeV G N-glycan mutants and found functions in the modulation of shielding against neutralizing antibodies, intracellular transport, G-F interactions, cell-cell fusion, and viral entry. Between the highly conserved HeV and NiV G glycoproteins, similar trends in the effects of N-glycans on protein functions were observed, with differences in the levels at which some N-glycan mutants affected such functions. While the N-glycan in the stalk domain (G2) had roles that were highly conserved between HeV and NiV G, individual N-glycans in the head affected the levels of several protein functions differently. Our findings are discussed in the context of their contributions to our understanding of HeV and NiV pathogenesis and immune responses. Viral envelope glycoproteins are important for viral pathogenicity and immune evasion. N-glycan shielding is one mechanism by which immune evasion can be achieved. In paramyxoviruses, viral attachment and membrane fusion are governed by the close interaction of the attachment proteins H/HN/G and the fusion protein F. In this study, we show that the attachment glycoprotein G of Hendra virus (HeV), a deadly

  13. Tandem mass spectrometry of isomeric aniline-labeled N-glycans separated on porous graphitic carbon: Revealing the attachment position of terminal sialic acids and structures of neutral glycans.

    Science.gov (United States)

    Michael, Claudia; Rizzi, Andreas M

    2015-07-15

    Quantitative monitoring of changes in the N-glycome upon disease has gained significance in the context of biomarker discovery. Separation and quantification of isobaric glycan isomers can be attained by using high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS). Collision-induced dissociation (CID)-based fragmentation of separated isobaric glycans is evaluated in respect to its potential of providing fragment ions specific for the linkage positions of terminal sialic acids and the presence of intersecting GlcNAc moieties, respectively. N-Glycans were labeled via reductive amination using (12)C6-aniline and (13)C6-aniline as isotope-coded labeling reagents. The differently labeled glycans were merged and separated into various species using a porous graphitic carbon (PGC) stationary phase. Identification of structural features of separated isobaric isomers was performed by CID-based tandem mass spectrometry (MS/MS) carried out in a quadrupole time-of-flight (QqTOF) or a quadrupole ion-trap (IT) mass spectrometer. Working in the negative ion mode, new diagnostic CID fragment ions could be found that are indicative for the α2,6-type linkage of sialic acids. Other diagnostic ions, identified before as being indicative for the substitution of the 6-antenna, could be confirmed as being of relevance also in the case of aniline labeling. In the positive ion mode, CID fragment ions indicative for the structure of short neutral N-glycans were identified. One new diagnostic ion specific for the linkage position of the terminal sialic acids and one for the presence of bisecting GlcNAc in N-glycans were identified. The aniline label introduced for improved relative quantitation in MS(1) was found not to significantly alter the CID fragmentation patterns that were reported previously by other authors for unlabeled/reduced glycans or for glycans with more polar labels. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...... produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated...... disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional...

  15. Identification and characterization of isomeric N-glycans of human alfa-acid-glycoprotein by stable isotope labelling and ZIC-HILIC-MS in combination with exoglycosidase digestion

    Energy Technology Data Exchange (ETDEWEB)

    Mancera-Arteu, Montserrat; Giménez, Estela, E-mail: estelagimenez@ub.edu; Barbosa, José; Sanz-Nebot, Victòria

    2016-10-12

    In this study, a ZIC-HILIC-MS methodology for the analysis of N-glycan isomers was optimized to obtain greater detection sensitivity and thus identify more glycan structures in hAGP. In a second step, this method was combined with glycan reductive isotope labelling (GRIL) through [{sup 12}C{sub 6}]/[{sup 13}C{sub 6}]-aniline and exoglycosidase digestion to characterize the different glycan isomers. The GRIL method allows the peak areas resulting from two different labelled samples to be compared, since neither retention time shifts nor variations in the ionization of glycans between these samples are obtained. First, sialic acid linkage assignations were performed for most hAGP glycan isomers with α2-3 sialidase digestion. Bi-, tri- and tetraantennary glycan isomers with different terminal sialic acid linkages to galactose (α2-3 or α2-6) were assigned, and the potential of this technique for the structural characterization of isobaric isomers was therefore demonstrated. Furthermore, fucose linkage isomers of hAGP glycans were also characterized using this isotope-labelling approach in combination with α1-3,4 fucosidase and β1-4 galactosidase digestion. α1-3 antennary fucoses and α1-6 core fucosylation were detected in hAGP fucosylated glycans. These established methodologies can be extremely useful for patho-glycomic studies to characterize glycoproteins of biomedical interest and find novel glycan isomers that could be used as biomarkers in cancer research. - Highlights: • Enhanced sensitivity is obtained in the detection of glycan isomers. • GRIL strategy with exoglycosidase digestion reliably characterize glycan isomers. • Sialic acids and fucoses linkage-type were assigned in hAGP glycan isomers.

  16. Kinetic characterization of a novel endo-β-N-acetylglucosaminidase on concentrated bovine colostrum whey to release bioactive glycans.

    Science.gov (United States)

    Karav, Sercan; Parc, Annabelle Le; de Moura Bell, Juliana Maria Leite Nobrega; Rouquié, Camille; Mills, David A; Barile, Daniela; Block, David E

    2015-09-01

    EndoBI-1 is a recently isolated endo-β-N-acetylglucosaminidase, which cleaves the N-N'-diacetyl chitobiose moiety found in the N-glycan core of high mannose, hybrid and complex N-glycans. These N-glycans have selective prebiotic activity for a key infant gut microbe, Bifidobacterium longum subsp. infantis. The broad specificity of EndoBI-1 suggests the enzyme may be useful for many applications, particularly for deglycosylating milk glycoproteins in dairy processing. To facilitate its commercial use, we determined kinetic parameters for EndoBI-1 on the model substrates ribonuclease B and bovine lactoferrin, as well as on concentrated bovine colostrum whey. Km values ranging from 0.25 to 0.49, 0.43 to 1.00 and 0.90 to 3.18 mg/mL and Vmax values ranging from 3.5×10(-3) to 5.09×10(-3), 4.5×10(-3) to 7.75×10(-3) and 1.9×10(-2)to 5.2×10(-2) mg/mL×min were determined for ribonuclease B, lactoferrin and whey, respectively. In general, EndoBI-1 showed the highest apparent affinity for ribonuclease B, while the maximum reaction rate was the highest for concentrated whey. EndoBI-1-released N-glycans were quantified by a phenol-sulphuric total carbohydrate assay and the resultant N-glycan structures monitored by nano-LC-Chip-Q-TOF MS. The kinetic parameters and structural characterization of glycans released suggest EndoBI-1 can facilitate large-scale release of complex, bioactive glycans from a variety of glycoprotein substrates. Moreover, these results suggest that whey, often considered as a waste product, can be used effectively as a source of prebiotic N-glycans. Copyright © 2015. Published by Elsevier Inc.

  17. Sulfate reduction in freshwater peatlands

    International Nuclear Information System (INIS)

    Oequist, M.

    1996-01-01

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO 4 2- concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 μM. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 μM h -1 while in B and C they were 1 and 0.05 μM h -1 , respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 μg d -1 g -1 ) were found 10 cm below the water table, in B (ca. 1.0 μg d -1 g -1 ) in the vicinity of the water table, and in C (0.75 μg d -1 g -1 ) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m -2 d -1 , while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m -2 d -1 , respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination paper. 67 refs, 6 figs, 3 tabs

  18. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  19. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16

    Energy Technology Data Exchange (ETDEWEB)

    Pancera, Marie; Shahzad-ul-Hussan, Syed; Doria-Rose, Nicole A.; McLellan, Jason S.; Bailer, Robert T.; Dai, Kaifan; Loesgen, Sandra; Louder, Mark K.; Staupe, Ryan P.; Yang, Yongping; Zhang, Baoshan; Parks, Robert; Eudailey, Joshua; Lloyd, Krissey E.; Blinn, Julie; Alam, S. Munir; Haynes, Barton F.; Amin, Mohammed N.; Wang, Lai-Xi; Burton, Dennis R.; Koff, Wayne C.; Nabel, Gary J.; Mascola, John R.; Bewley, Carole A; Kwong, Peter D. [NIH; (Scripps); (Duke); (Maryland-MED); (IAVI)

    2013-08-05

    HIV-1 uses a diverse N-linked-glycan shield to evade recognition by antibody. Select human antibodies, such as the clonally related PG9 and PG16, recognize glycopeptide epitopes in the HIV-1 V1–V2 region and penetrate this shield, but their ability to accommodate diverse glycans is unclear. Here we report the structure of antibody PG16 bound to a scaffolded V1–V2, showing an epitope comprising both high mannose–type and complex-type N-linked glycans. We combined structure, NMR and mutagenesis analyses to characterize glycan recognition by PG9 and PG16. Three PG16-specific residues, arginine, serine and histidine (RSH), were critical for binding sialic acid on complex-type glycans, and introduction of these residues into PG9 produced a chimeric antibody with enhanced HIV-1 neutralization. Although HIV-1–glycan diversity facilitates evasion, antibody somatic diversity can overcome this and can provide clues to guide the design of modified antibodies with enhanced neutralization.

  20. Mannose7 Glycan Isomer Characterization by IMS-MS/MS Analysis

    Science.gov (United States)

    Zhu, Feifei; Lee, Sunyoung; Valentine, Stephen J.; Reilly, James P.; Clemmer, David E.

    2012-12-01

    The isomers of the Man7GlcNAc2 glycan obtained from bovine ribonuclease B have been characterized by ion mobility spectrometry-tandem mass spectrometry (IMS-MS/MS). In these experiments, [Man7 + 2Na]2+ precursors having different mobilities are selected by ion mobility spectrometry and analyzed by MS/MS techniques in an ion trap. The fragmentation spectra obtained for various precursor ions are specific, suggesting the isolation or enrichment of different glycan isomers. One fragment ion with a mass-to-charge ratio ( m/z) of 903.8 is found to correspond to the loss of an internal mannose residue of a specific isomer. Extracted fragment ion drift time distributions (XFIDTDs) yield distinctive precursor ion drift time profiles indicating the existence of four separate isomers as proposed previously.

  1. Extrinsic functions of lectin domains in O-N-acetylgalactosamine glycan biosynthesis

    DEFF Research Database (Denmark)

    Lorenz, Virginia; Ditamo, Yanina; Cejas, Romina B

    2016-01-01

    Glycan biosynthesis occurs mainly in Golgi. Molecular organization and functional regulation of this process are not well understood. We evaluated the extrinsic effect of lectin domains (β-trefoil fold) of polypeptide GalNAc-transferases (ppGalNAc-Ts) on catalytic activity of glycosyltransferases...... during O-GalNAc glycan biosynthesis. The presence of lectin domain T3lec or T4lec during ppGalNAc-T2 and ppGalNAc-T3 catalytic reaction had a clear inhibitory effect on GalNAc-T activity. Interaction of T3lec or T4lec with ppGalNAc-T2 catalytic domain was not mediated by carbohydrate. T3lec, but not T2...

  2. Mass spectrometric analysis of the immunodominant glycan epitope of Echinococcus granulosus antigen Ag5

    Science.gov (United States)

    Paschinger, Katharina; Gonzalez-Sapienza, Gualberto G.; Wilson, Iain B.H.

    2012-01-01

    In previous work we showed that Ag5, a major diagnostic antigen from the metacestode of Echinococcus granulosus, possesses a dominant sugar epitope that upon removal results in abolition of most of the antigen immunoreactivity with patient sera. Analysis of this glycan modification has now been performed by western blotting and mass spectrometry. Reactivity to both a specific monoclonal antibody (TEPC15) and human C-reactive protein as well as the presence of a modification of 165 mass units, as detected by mass spectrometry of both glycopeptides and released N-glycans, indicated that the immunodominant sugar epitope of the Ag5 38 kDa subunit is a biantennary structure modified by phosphorylcholine. We believe this is the first time that such a modification has been proven in cestodes and provides the structural basis for understanding the antigenicity of this major E. granulosus component. PMID:22342524

  3. Serum N-Glycans: A New Diagnostic Biomarker for Light Chain Multiple Myeloma.

    Directory of Open Access Journals (Sweden)

    Jie Chen

    Full Text Available The aim of this study was to evaluate the diagnostic and differential diagnostic power of serum N-glycans for light chain multiple myeloma (LCMM. A total of 167 cases of subjects, including 42 LCMM, 42 IgG myeloma, 41 IgA myeloma, and 42 healthy controls were recruited in this study. DNA sequencer-assisted fluorophore-assisted capillary electrophoresis (DSA-FACE was applied to determine the quantitive abundance of serum N-glycans. The core fucosylated, bisecting and sialylated modifications were analyzed in serum of LCMM patients (n=20 and healthy controls (n=20 randomly selected from the same cohort by lectin blot. Moreover, serum sialic acid (SA level was measured by enzymatic method. We found two N-glycan structures (NG1A2F, Peak3; NA2FB, Peak7 showed the optimum diagnostic efficacy with area under the ROC curve (AUC 0.939 and 0.940 between LCMM and healthy control. The sensitivity and specificity of Peak3 were 88.1% and 92.9%, while Peak7 were 92.9% and 97.6%, respectively. The abundance of Peak3 could differentiate LCMM from IgG myeloma with AUC 0.899, sensitivity 100% and specificity 76.2%, and Peak7 could be used to differentiate LCMM from IgA myeloma with AUC 0.922, sensitivity 92.9% and specificity 82.9%. Serum SA level was significantly higher in patients with LCMM than that in healthy controls. Moreover, the decreased core fucosylation, bisecting and increased sialylation characters of serum glycoproteins were observed in patients with LCMM. We concluded that serum N-glycan could provide a simple, reliable and non-invasive biomarker for LCMM diagnosis and abnormal glycosylation might imply a new potential therapeutic target in LCMM.

  4. Different site-specific N-glycan types in wheat (Triticum aestivum L.) PAP phytase

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Brinch-Pedersen, Henrik; Welinder, Karen Gjesing

    2011-01-01

    Phytase activity in grain is essential to make phosphate available to cell metabolism, and in food and feed. Cereals contain the purple acid phosphatase type of phytases (PAPhy). Mature wheat grain is dominated by TaPAPhy_a which, in the present work, has been characterized by extensive peptide...... sites the glycan consisted of a single GlcNAc residue. The mature protein is ca. 500 residues in size and appears to be truncated at the N- and C-termini....

  5. Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Karthik Viswanathan

    Full Text Available The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA. The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004 that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58 HA.

  6. Characterization of changes in serum anti-glycan antibodies in Crohn's disease--a longitudinal analysis.

    Directory of Open Access Journals (Sweden)

    Florian Rieder

    Full Text Available INTRODUCTION: Anti-glycan antibodies are a promising tool for differential diagnosis and disease stratification of patients with Crohn's disease (CD. We longitudinally assessed level and status changes of anti-glycan antibodies over time in individual CD patients as well as determinants of this phenomenon. METHODS: 859 serum samples derived from a cohort of 253 inflammatory bowel disease (IBD patients (207 CD, 46 ulcerative colitis (UC were tested for the presence of anti-laminarin (Anti-L, anti-chitin (Anti-C, anti-chitobioside (ACCA, anti-laminaribioside (ALCA, anti-mannobioside (AMCA and anti-Saccharomyces cerevisiae (gASCA antibodies by ELISA. All patients had at least two and up to eleven serum samples taken during the disease course. RESULTS: Median follow-up time for CD was 17.4 months (Interquartile range (IQR 8.0, 31.6 months and for UC 10.9 months (IQR 4.9, 21.0 months. In a subgroup of CD subjects marked changes in the overall immune response (quartile sum score and levels of individual markers were observed over time. The marker status (positive versus negative remained widely stable. Neither clinical phenotype nor NOD2 genotype was associated with the observed fluctuations. In a longitudinal analysis neither changes in disease activity nor CD behavior led to alterations in the levels of the glycan markers. The ability of the panel to discriminate CD from UC or its association with CD phenotypes remained stable during follow-up. In the serum of UC patients neither significant level nor status changes were observed. CONCLUSIONS: While the levels of anti-glycan antibodies fluctuate in a subgroup of CD patients the antibody status is widely stable over time.

  7. Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis

    Directory of Open Access Journals (Sweden)

    Angeliki Marietou

    2018-03-01

    Full Text Available The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.

  8. Tyrosine sulfation of the amino terminus of PSGL-1 is critical for enterovirus 71 infection.

    Directory of Open Access Journals (Sweden)

    Yorihiro Nishimura

    Full Text Available Enterovirus 71 (EV71 is one of the major causative agents of hand, foot, and mouth disease, a common febrile disease in children; however, EV71 has been also associated with various neurological diseases including fatal cases in large EV71 outbreaks particularly in the Asia Pacific region. Recently we identified human P-selectin glycoprotein ligand-1 (PSGL-1 as a cellular receptor for entry and replication of EV71 in leukocytes. PSGL-1 is a sialomucin expressed on the surface of leukocytes, serves as a high affinity counterreceptor for selectins, and mediates leukocyte rolling on the endothelium. The PSGL-1-P-selectin interaction requires sulfation of at least one of three clustered tyrosines and an adjacent O-glycan expressing sialyl Lewis x in an N-terminal region of PSGL-1. To elucidate the molecular basis of the PSGL-1-EV71 interaction, we generated a series of PSGL-1 mutants and identified the post-translational modifications that are critical for binding of PSGL-1 to EV71. We expressed the PSGL-1 mutants in 293T cells and the transfected cells were assayed for their abilities to bind to EV71 by flow cytometry. We found that O-glycosylation on T57, which is critical for PSGL-1-selectin interaction, is not necessary for PSGL-1 binding to EV71. On the other hand, site-directed mutagenesis at one or more potential tyrosine sulfation sites in the N-terminal region of PSGL-1 significantly impaired PSGL-1 binding to EV71. Furthermore, an inhibitor of sulfation, sodium chlorate, blocked the PSGL-1-EV71 interaction and inhibited PSGL-1-mediated viral replication of EV71 in Jurkat T cells in a dose-dependent manner. Thus, the results presented in this study reveal that tyrosine sulfation, but not O-glycosylation, in the N-terminal region of PSGL-1 may facilitate virus entry and replication of EV71 in leukocytes.

  9. Printed glycan array: antibodies as probed in undiluted serum and effects of dilution.

    Science.gov (United States)

    Shilova, Nadezhda; Navakouski, Maxim; Khasbiullina, Nailya; Blixt, Ola; Bovin, Nicolai

    2012-04-01

    Using printed glycan array (PGA) we compared the results of antibody profiling in undiluted, moderately (1:15) and highly (1:100) diluted human blood serum. Undiluted serum is suitable for studying blood as a tissue in its native state, whereas to study the serum of newborns or small animals one usually has to dilute the starting material in order to have sufficient volume for PGA experimentation. The PGA used in this study allows for the use of whole serum without modifications to the protocol, and the background is surprisingly low. Antibodies profiles observed in undiluted serum versus 1:15 dilution were similar, with only a limited number of new signals identified in the undiluted serum. However, unexpected irregularities were found when IgG and IgM are measured separately, namely, at a 1:15 dilution more intensive IgG signals for many glycans are observed. We believe that in conditions of moderate dilution IgG and IgM antibodies can compete with each other for antigen and as a result, the higher affinity anti-glycan IgGs give rise to more intense signals. Therefore depending on the purpose, different dilutions of serum will be optimal: in competitive 1:15 conditions the observed IgG/IgM ratio corresponds to their titer, whereas at 1:100 dilution the measured ratio corresponds to real molar concentration of IgG and IgM.

  10. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans.

    Directory of Open Access Journals (Sweden)

    Daniel Garrido

    2011-03-01

    Full Text Available Bifidobacterium longum subsp. infantis (B. infantis is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO. Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs, part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process.

  11. Synthetic Three-Component HIV-1 V3 Glycopeptide Immunogens Induce Glycan-Dependent Antibody Responses.

    Science.gov (United States)

    Cai, Hui; Orwenyo, Jared; Giddens, John P; Yang, Qiang; Zhang, Roushu; LaBranche, Celia C; Montefiori, David C; Wang, Lai-Xi

    2017-12-21

    Eliciting broadly neutralizing antibody (bNAb) responses against HIV-1 is a major goal for a prophylactic HIV-1 vaccine. One approach is to design immunogens based on known broadly neutralizing epitopes. Here we report the design and synthesis of an HIV-1 glycopeptide immunogen derived from the V3 domain. We performed glycopeptide epitope mapping to determine the minimal glycopeptide sequence as the epitope of V3-glycan-specific bNAbs PGT128 and 10-1074. We further constructed a self-adjuvant three-component immunogen that consists of a 33-mer V3 glycopeptide epitope, a universal T helper epitope P30, and a lipopeptide (Pam 3 CSK 4 ) that serves as a ligand of Toll-like receptor 2. Rabbit immunization revealed that the synthetic self-adjuvant glycopeptide could elicit substantial glycan-dependent antibodies that exhibited broader recognition of HIV-1 gp120s than the non-glycosylated V3 peptide. These results suggest that the self-adjuvant synthetic glycopeptides can serve as an important component to elicit glycan-specific antibodies in HIV vaccine design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity.

    Science.gov (United States)

    Cerliani, Juan P; Stowell, Sean R; Mascanfroni, Iván D; Arthur, Connie M; Cummings, Richard D; Rabinovich, Gabriel A

    2011-02-01

    Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.

  13. An adenovirus vector incorporating carbohydrate binding domains utilizes glycans for gene transfer.

    Directory of Open Access Journals (Sweden)

    Julius W Kim

    Full Text Available Vectors based on human adenovirus serotype 5 (HAdV-5 continue to show promise as delivery vehicles for cancer gene therapy. Nevertheless, it has become clear that therapeutic benefit is directly linked to tumor-specific vector localization, highlighting the need for tumor-targeted gene delivery. Aberrant glycosylation of cell surface glycoproteins and glycolipids is a central feature of malignant transformation, and tumor-associated glycoforms are recognized as cancer biomarkers. On this basis, we hypothesized that cancer-specific cell-surface glycans could be the basis of a novel paradigm in HAdV-5-based vector targeting.As a first step toward this goal, we constructed a novel HAdV-5 vector encoding a unique chimeric fiber protein that contains the tandem carbohydrate binding domains of the fiber protein of the NADC-1 strain of porcine adenovirus type 4 (PAdV-4. This glycan-targeted vector displays augmented CAR-independent gene transfer in cells with low CAR expression. Further, we show that gene transfer is markedly decreased in cells with genetic glycosylation defects and by inhibitors of glycosylation in normal cells.These data provide the initial proof-of-concept for HAdV-5 vector-mediated gene delivery based on the presence of cell-surface carbohydrates. Further development of this new targeting paradigm could provide targeted gene delivery based on vector recognition of disease-specific glycan biomarkers.

  14. 21 CFR 182.8997 - Zinc sulfate.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  15. Study of ammonium sulfates electric conductivity

    International Nuclear Information System (INIS)

    Dobrynin, D.V.; Tulegulov, A.D.

    2006-01-01

    In the work results of research of ammonium sulfate electroconductivity are given. The influence effecting on ammonium sulfate conductivity is investigated. The various circuits of inclusion tetra ohmmeter are given. (author)

  16. Biliary excretion of phenolphthalein sulfate in rats.

    Science.gov (United States)

    Tanaka, Hiroyuki; Sano, Naoyo; Takikawa, Hajime

    2003-08-01

    Glucuronide and glutathione conjugates have been reported to be substrates of multidrug resistance protein 2 (Mrp2), whereas sulfates of nonbile acid organic anions have never been reported as substrates of Mrp2. To further examine the substrate specificity of Mrp2, we examined the effects of bile acid sulfates on the biliary excretion of phenolphthalein sulfate in rats. The biliary excretion of phenolphthalein sulfate was markedly delayed in Eisai hyperbilirubinemic rats, an Mrp2-deficient strain, and was markedly inhibited by taurolithocholate-3-sulfate. The biliary excretion of leukotriene C(4) metabolites and sulfobromophthalein was inhibited by phenolphthalein sulfate infusion to some extent. These findings suggest that phenolphthalein sulfate is a unique sulfated nonbile acid organic anion which is a substrate of Mrp2. Copyright 2003 S. Karger AG, Basel

  17. The use of a xylosylated plant glycoprotein as an internal standard accounting for N-linked glycan cleavage and sample preparation variability.

    Science.gov (United States)

    Walker, S Hunter; Taylor, Amber D; Muddiman, David C

    2013-06-30

    Traditionally, free oligosaccharide internal standards are used to account for variability in glycan relative quantification experiments by mass spectrometry. However, a more suitable internal standard would be a glycoprotein, which could also control for enzymatic cleavage efficiency, allowing for more accurate quantitative experiments. Hydrophobic, hydrazide N-linked glycan reagents (both native and stable-isotope labeled) are used to derivatize and differentially label N-linked glycan samples for relative quantification, and the samples are analyzed by a reversed-phase liquid chromatography chip system coupled online to a Q-Exactive mass spectrometer. The inclusion of two internal standards, maltoheptaose (previously used) and horseradish peroxidase (HRP) (novel), is studied to demonstrate the effectiveness of using a glycoprotein as an internal standard in glycan relative quantification experiments. HRP is a glycoprotein containing a xylosylated N-linked glycan, which is unique from mammalian N-linked glycans. Thus, the internal standard xylosylated glycan could be detected without interference to the sample. Additionally, it was shown that differences in cleavage efficiency can be detected by monitoring the HRP glycan. In a sample where cleavage efficiency variation is minimal, the HRP glycan performs as well as maltoheptaose. Because the HRP glycan performs as well as maltoheptaose but is also capable of correcting and accounting for cleavage variability, it is a more versatile internal standard and will be used in all subsequent biological studies. Because of the possible lot-to-lot variation of an enzyme, differences in biological matrix, and variable enzyme activity over time, it is a necessity to account for glycan cleavage variability in glycan relative quantification experiments. Copyright © 2013 John Wiley & Sons, Ltd.

  18. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate and polymyxin B sulfate ophthalmic solution. 524.1484e Section 524.1484e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a...

  19. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  20. EFFECT OF MAGNESIUM SULFATE (A LAXATIVE) ON ...

    African Journals Online (AJOL)

    use with little success . Magnesium sulfate also known as Epsom salt or bitter salt is a hydrate salt with a chemical name of magnesium sulfate heptahydrate . Chemical formula is MgSO. 7HO and trade name is. Andrews liver salt. Dried magnesium sulfate is an osmotic laxative or a saline laxative that acts by increasing the.

  1. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  2. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... hydroxide or potassium carbonate. (b) The ingredient meets the specifications of the “Food Chemicals Codex... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg...

  3. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  4. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  5. Modeling and minimization of barium sulfate scale

    Science.gov (United States)

    Alan W. Rudie; Peter W. Hart

    2006-01-01

    The majority of the barium present in the pulping process exits the digester as barium carbonate. Barium carbonate dissolves in the bleach plant when the pH drops below 7 and, if barium and sulfate concentrations are too high, begins to precipitate as barium sulfate. Barium is difficult to control because a mill cannot avoid this carbonate-to-sulfate transition using...

  6. 21 CFR 184.1143 - Ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium sulfate. 184.1143 Section 184.1143 Food... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg... is prepared by the neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient meets...

  7. 21 CFR 582.1143 - Ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance...

  8. Diversity in Rotavirus–Host Glycan Interactions: A “Sweet” SpectrumSummary

    Directory of Open Access Journals (Sweden)

    Sasirekha Ramani

    2016-05-01

    Full Text Available Interaction with cellular glycans is a critical initial step in the pathogenesis of many infectious agents. Technological advances in glycobiology have expanded the repertoire of studies delineating host glycan–pathogen interactions. For rotavirus, the VP8* domain of the outer capsid spike protein VP4 is known to interact with cellular glycans. Sialic acid was considered the key cellular attachment factor for rotaviruses for decades. Although this is true for many rotavirus strains causing infections in animals, glycan array screens show that many human rotavirus strains bind nonsialylated glycoconjugates, called histo-blood group antigens, in a strain-specific manner. The expression of histo-blood group antigens is determined genetically and is regulated developmentally. Variations in glycan binding between different rotavirus strains are biologically relevant and provide new insights into multiple aspects of virus pathogenesis such as interspecies transmission, host range restriction, and tissue tropism. The genetics of glycan expression may affect susceptibility to different rotavirus strains and vaccine viruses, and impact the efficacy of rotavirus vaccination in different populations. A multidisciplinary approach to understanding rotavirus–host glycan interactions provides molecular insights into the interaction between microbial pathogens and glycans, and opens up new avenues to translate findings from the bench to the human population. Keywords: Rotavirus, VP8*, Glycans, Sia, Histo-Blood Group Antigens

  9. Turning-off Signaling by Siglecs, Selectins and Galectins: Chemical Inhibition of Glycan-dependent Interactions in Cancer

    Directory of Open Access Journals (Sweden)

    Alejandro Javier Cagnoni

    2016-05-01

    Full Text Available Aberrant glycosylation, a common feature associated with malignancy, has been implicated in important events during cancer progression. Our understanding of the role of glycans in cancer has grown exponentially in the last few years, concurrent with important advances in glycomics and glycoproteomic technologies, paving the way for the validation of a number of glycan structures as potential glycobiomarkers. However, the molecular bases underlying cancer-associated glycan modifications are still far from understood. Glycans exhibit a natural heterogeneity, crucial for their diverse functional roles as specific carriers of biologically-relevant information. This information is decoded by families of proteins named lectins, including siglecs, C-type lectin receptors (CLRs and galectins. Siglecs, sialic-acid binding transmembrane lectins, are primarily expressed on the surface of immune cells and differentially control innate and adaptive immune responses. Among CLRs, selectins are a family of cell adhesion molecules that mediate interactions between cancer cells and platelets, leukocytes and endothelial cells, thus facilitating tumor cell invasion and metastasis. Galectins, a family of soluble proteins that bind β-galactoside-containing glycans, have been implicated in diverse events associated with cancer biology such as apoptosis, homotypic cell aggregation, angiogenesis, cell migration and tumor-immune escape. Consequently, individual members of these lectin families have become promising targets for the design of novel anticancer therapies. During the past decade a number of inhibitors of lectin-glycan interactions have been developed including small-molecule inhibitors, multivalent saccharide ligands, and more recently peptides and peptidomimetics have offered alternatives for tackling tumor progression. In this article, we review the current status of the discovery and development of chemical lectin inhibitors and discuss novel strategies

  10. Identification of genes involved in the acetamidino group modification of the flagellin N-linked glycan of Methanococcus maripaludis.

    Science.gov (United States)

    Jones, Gareth M; Wu, John; Ding, Yan; Uchida, Kaoru; Aizawa, Shin-Ichi; Robotham, Anna; Logan, Susan M; Kelly, John; Jarrell, Ken F

    2012-05-01

    N-linked glycosylation of protein is a posttranslational modification found in all three domains of life. The flagellin proteins of the archaeon Methanococcus maripaludis are known to be modified with an N-linked tetrasaccharide consisting of N-acetylgalactosamine (GalNAc), a diacetylated glucuronic acid (GlcNAc3NAc), an acetylated and acetamidino-modified mannuronic acid with a substituted threonine group (ManNAc3NAmA6Thr), and a novel terminal sugar residue [(5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose]. To identify genes involved in biosynthesis of the component sugars of this glycan, three genes, mmp1081, mmp1082, and mmp1083, were targeted for in-frame deletion, based on their annotation and proximity to glycosyltransferase genes known to be involved in assembly of the glycan. Mutants carrying a deletion in any of these three genes remained flagellated and motile. A strain with a deletion of mmp1081 had lower-molecular-mass flagellins in Western blots. Mass spectrometry of purified flagella revealed a truncated glycan with the terminal sugar absent and the threonine residue and the acetamidino group missing from the third sugar. No glycan modification was seen in either the Δmmp1082 or Δmmp1083 mutant grown in complex Balch III medium. However, a glycan identical to the Δmmp1081 glycan was observed when the Δmmp1082 or Δmmp1083 mutant was grown under ammonia-limited conditions. We hypothesize that MMP1082 generates ammonia and tunnels it through MMP1083 to MMP1081, which acts as the amidotransferase, modifying the third sugar residue of the M. maripaludis glycan with the acetamidino group.

  11. A tetraantennary glycan with bisecting N-acetylglucosamine and the Sda antigen is the predominant N-glycan on bovine pregnancy-associated glycoproteins

    DEFF Research Database (Denmark)

    Klisch, Karl; Jeanrond, Evelyne; Pang, Poh-Choo

    2008-01-01

    assisted laser desorption ionisation-mass spectrometry (MALDI-MS) analysis and linkage analysis, we show that by far, the most abundant N-glycan of PAGs in midpregnancy is a tetraantennary core-fucosylated structure with a bisecting N-acetylglucosamine (GlcNAc). All four antennae consist of the Sd......(a)-antigen (NeuAcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc-). Immunohistochemistry with the mono- clonal antibody CT1, which recognizes the Sd(a)-antigen, shows that BNC granules contain the Sd(a)-antigen from gestation day (gd) 32 until a few days before parturition. Lectin histochemistry with Maackia amurensis...

  12. CROSSWORK for Glycans: Glycan Identificatin Through Mass Spectrometry and Bioinformatics. / Rasmussen, Morten ; Thaysen-Andersen, Morten ; Højrup, Peter. 2009

    DEFF Research Database (Denmark)

    Rasmussen, Morten

    automates the identification of both the glycopeptides and their N-linked glycosylation(s) from standard MS2 scans of glycoproteins. We have tested the efficiency of GLYCANthrope by searching MS2 data (CID mode) from 6 tryptically digested glycoproteins with a total of 11 known N-linked glycosylation sites......Chemical cross-linking is a useful method for deriving information on protein structure and protein-protein interaction. We have developed a method combining chemical cross-linking with mass-spectrometry and bioinformatics (CrossWork) to automate search and validation of cross-links in large......-scale experiments. Glycoproteins however have proposed a special challenge to the method, since the glycan moiety of any glycosylated residue tends to be heterogeneous within the same sample, which vastly complicates the search for cross-links . Here we present a new software application, GLYCANthrope, which...

  13. Loss of mucin-type O-glycans impairs the integrity of the glomerular filtration barrier in the mouse kidney.

    Science.gov (United States)

    Song, Kai; Fu, Jianxin; Song, Jianhua; Herzog, Brett H; Bergstrom, Kirk; Kondo, Yuji; McDaniel, J Michael; McGee, Samuel; Silasi-Mansat, Robert; Lupu, Florea; Chen, Hong; Bagavant, Harini; Xia, Lijun

    2017-10-06

    The kidney's filtration activity is essential for removing toxins and waste products from the body. The vascular endothelial cells of the glomerulus are fenestrated, flattened, and surrounded by podocytes, specialized cells that support glomerular endothelial cells. Mucin-type core 1-derived O- glycans ( O -glycans) are highly expressed on both glomerular capillary endothelial cells and their supporting podocytes, but their biological role is unclear. Biosynthesis of core 1-derived O -glycans is catalyzed by the glycosyltransferase core 1 β1,3-galactosyltransferase (C1galt1). Here we report that neonatal or adult mice with inducible deletion of C1galt1 ( iC1galt1 -/- ) exhibit spontaneous proteinuria and rapidly progressing glomerulosclerosis. Ultrastructural analysis of the glomerular filtration barrier components revealed that loss of O -glycans results in altered podocyte foot processes. Further analysis indicated that O -glycan is essential for the normal signaling function of podocalyxin, a podocyte foot process-associated glycoprotein. Our results reveal a new function of O -glycosylation in the integrity of the glomerular filtration barrier. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Contribution of N-linked glycans on HSV-2 gB to cell–cell fusion and viral entry

    International Nuclear Information System (INIS)

    Luo, Sukun; Hu, Kai; He, Siyi; Wang, Ping; Zhang, Mudan; Huang, Xin; Du, Tao; Zheng, Chunfu; Liu, Yalan; Hu, Qinxue

    2015-01-01

    HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell–cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 or N668 decreased cell–cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function. - Highlights: • N-linked glycan at N133 is important for gB intracellular trafficking and maturation. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal cell–cell fusion. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal viral entry

  15. Glycan characterization of the NIST RM monoclonal antibody using a total analytical solution: From sample preparation to data analysis.

    Science.gov (United States)

    Hilliard, Mark; Alley, William R; McManus, Ciara A; Yu, Ying Qing; Hallinan, Sinead; Gebler, John; Rudd, Pauline M

    Glycosylation is an important attribute of biopharmaceutical products to monitor from development through production. However, glycosylation analysis has traditionally been a time-consuming process with long sample preparation protocols and manual interpretation of the data. To address the challenges associated with glycan analysis, we developed a streamlined analytical solution that covers the entire process from sample preparation to data analysis. In this communication, we describe the complete analytical solution that begins with a simplified and fast N-linked glycan sample preparation protocol that can be completed in less than 1 hr. The sample preparation includes labelling with RapiFluor-MS tag to improve both fluorescence (FLR) and mass spectral (MS) sensitivities. Following HILIC-UPLC/FLR/MS analyses, the data are processed and a library search based on glucose units has been included to expedite the task of structural assignment. We then applied this total analytical solution to characterize the glycosylation of the NIST Reference Material mAb 8761. For this glycoprotein, we confidently identified 35 N-linked glycans and all three major classes, high mannose, complex, and hybrid, were present. The majority of the glycans were neutral and fucosylated; glycans featuring N-glycolylneuraminic acid and those with two galactoses connected via an α1,3-linkage were also identified.

  16. An Integrated Solution-Based Rapid Sample Preparation Procedure for the Analysis of N-Glycans From Therapeutic Monoclonal Antibodies.

    Science.gov (United States)

    Aich, Udayanath; Liu, Aston; Lakbub, Jude; Mozdzanowski, Jacek; Byrne, Michael; Shah, Nilesh; Galosy, Sybille; Patel, Pramthesh; Bam, Narendra

    2016-03-01

    Consistent glycosylation in therapeutic monoclonal antibodies is a major concern in the biopharmaceutical industry as it impacts the drug's safety and efficacy and manufacturing processes. Large numbers of samples are created for the analysis of glycans during various stages of recombinant proteins drug development. Profiling and quantifying protein N-glycosylation is important but extremely challenging due to its microheterogeneity and more importantly the limitations of existing time-consuming sample preparation methods. Thus, a quantitative method with fast sample preparation is crucial for understanding, controlling, and modifying the glycoform variance in therapeutic monoclonal antibody development. Presented here is a rapid and highly quantitative method for the analysis of N-glycans from monoclonal antibodies. The method comprises a simple and fast solution-based sample preparation method that uses nontoxic reducing reagents for direct labeling of N-glycans. The complete work flow for the preparation of fluorescently labeled N-glycans takes a total of 3 h with less than 30 min needed for the release of N-glycans from monoclonal antibody samples. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Contribution of N-linked glycans on HSV-2 gB to cell–cell fusion and viral entry

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Sukun [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Kai [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); He, Siyi; Wang, Ping; Zhang, Mudan; Huang, Xin [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Du, Tao [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Zheng, Chunfu [Soochow University, Institutes of Biology and Medical Sciences, Suzhou 215123 (China); Liu, Yalan [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Hu, Qinxue, E-mail: qhu@wh.iov.cn [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Institute for Infection and Immunity, St George' s University of London, London SW17 0RE (United Kingdom)

    2015-09-15

    HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell–cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 or N668 decreased cell–cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function. - Highlights: • N-linked glycan at N133 is important for gB intracellular trafficking and maturation. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal cell–cell fusion. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal viral entry.

  18. Tyramide Signal Amplification for Antibody-overlay Lectin Microarray: A Strategy to Improve the Sensitivity of Targeted Glycan Profiling

    Science.gov (United States)

    Meany, Danni L.; Hackler, Laszlo; Zhang, Hui; Chan, Daniel W.

    2011-01-01

    Antibody-overlay lectin microarray (ALM) has been used for targeted glycan profiling to identify disease-related protein glycoforms. In this context, high sensitivity is desired because it allows for the identification of disease-related glycoforms that are often present at low concentration. We describe a new Tyramide Signal Amplification (TSA) for Antibody-overlay Lectin Microarray procedure for sensitive profiling of glycosylation patterns. We demonstrated that TSA increased the sensitivity of the microarray over 100 times for glycan profiling using the model protein Prostate Specific Antigen (PSA). The glycan profile of PSA enriched from LNCAP cells, obtained at a sub-nanogram level with the aid of TSA, was consistent with the previous reports. We also established the glycan profile of Prostate Specific Membrane Antigen (PSMA) using the TSA and ALM. Thus, the Tyramide Signal Amplification for Antibody-overlay Lectin Microarray is a sensitive, rapid, comprehensive, and high-throughput method for targeted glycan profiling and can potentially be used for the identification of disease-related protein glycoforms. PMID:21133419

  19. An HPLC-MALDI MS method for N-glycan analyses using smaller size samples: application to monitor glycan modulation by medium conditions.

    Science.gov (United States)

    Gillmeister, Michael P; Tomiya, Noboru; Jacobia, Scott J; Lee, Yuan C; Gorfien, Stephen F; Betenbaugh, Michael J

    2009-12-01

    Existing HPLC methods can provide detailed structure and isomeric information, but are often slow and require large initial sample sizes. In this study, a previously established two-dimensional HPLC technique was adapted to a two-step identification method for smaller sample sizes. After cleavage from proteins, purification, and fluorescent labeling, glycans were analyzed on a 2-mm reverse phase HPLC column on a conventional HPLC and spotted onto a MALDI-TOF MS plate using an automated plate spotter to determine molecular weights. A direct correlation was found for 25 neutral oligosaccharides between the 2-mm Shim-Pack VP-ODS HPLC column (Shimadzu) and the 6-mm CLC-ODS column (Shimadzu) of the standard two- and three-dimensional methods. The increased throughput adaptations allowed a 100-fold reduction in required amounts of starting protein. The entire process can be carried out in 2-3 days for a large number of samples as compared to 1-2 weeks per sample for previous two-dimensional HPLC methods. The modified method was verified by identifying N-glycan structures, including specifying two different galactosylated positional isomers, of an IgG antibody from human sera samples. Analysis of tissue plasminogen activator (t-PA) from CHO cell cultures under varying culture conditions illustrated how the method can identify changes in oligosaccharide structure in the presence of different media environments. Raising glutamine concentrations or adding ammonia directly to the culture led to decreased galactosylation, while substituting GlutaMAX-I, a dipeptide of L-alanine and L-glutamine, resulted in structures with more galactosylation. This modified system will enable glycoprofiling of smaller glycoprotein samples in a shorter time period and allow a more rapid evaluation of the effects of culture conditions on expressed protein glycosylation.

  20. Role of Gal and GalNAc containing glycans in various physiological ...

    African Journals Online (AJOL)

    Muhammad Ramzan Manwar Hussain

    2011-09-28

    Sep 28, 2011 ... GalNAc, which has its specific physiological role in lectin binding or recognition process [23,46–53]. Physiological efficacy of these modifications and their association in various cellular phenomena are given below. 5.1. Physiological significance of sulfated Gal and GalNAc. Sulfated glycoconjugates occur ...

  1. Genetic heterogeneity and clinical variability in musculocontractural Ehlers-Danlos syndrome caused by impaired dermatan sulfate biosynthesis.

    Science.gov (United States)

    Syx, Delfien; Van Damme, Tim; Symoens, Sofie; Maiburg, Merel C; van de Laar, Ingrid; Morton, Jenny; Suri, Mohnish; Del Campo, Miguel; Hausser, Ingrid; Hermanns-Lê, Trinh; De Paepe, Anne; Malfait, Fransiska

    2015-05-01

    Bi-allelic variants in CHST14, encoding dermatan 4-O-sulfotransferase-1 (D4ST1), cause musculocontractural Ehlers-Danlos syndrome (MC-EDS), a recessive disorder characterized by connective tissue fragility, craniofacial abnormalities, congenital contractures, and developmental anomalies. Recently, the identification of bi-allelic variants in DSE, encoding dermatan sulfate epimerase-1 (DS-epi1), in a child with MC-EDS features, suggested locus heterogeneity for this condition. DS-epi1 and D4ST1 are crucial for biosynthesis of dermatan sulfate (DS) moieties in the hybrid chondroitin sulfate (CS)/DS glycosaminoglycans (GAGs). Here, we report four novel families with severe MC-EDS caused by unique homozygous CHST14 variants and the second family with a homozygous DSE missense variant, presenting a somewhat milder MC-EDS phenotype. The glycanation of the dermal DS proteoglycan decorin is impaired in fibroblasts from D4ST1- as well as DS-epi1-deficient patients. However, in D4ST1-deficiency, the decorin GAG is completely replaced by CS, whereas in DS-epi1-deficiency, still some DS moieties are present. The multisystemic abnormalities observed in our patients support a tight spatiotemporal control of the balance between CS and DS, which is crucial for multiple processes including cell differentiation, organ development, cell migration, coagulation, and connective tissue integrity. © 2015 WILEY PERIODICALS, INC.

  2. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe...... the process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation...... and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  3. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin

    Energy Technology Data Exchange (ETDEWEB)

    Byres, Emma; Paton, Adrienne W.; Paton, James C.; Löfling, Jonas C.; Smith, David F.; Wilce, Matthew C.J.; Talbot, Ursula M.; Chong, Damien C.; Yu, Hai; Huang, Shengshu; Chen, Xi; Varki, Nissi M.; Varki, Ajit; Rossjohn, Jamie; Beddoe, Travis (Emory-MED); (UCD); (Adelaide); (Monash)

    2009-01-30

    AB{sub 5} toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target-cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB{sub 5} toxin secreted by Shiga toxigenic Escherichia coli (STEC), which causes serious gastrointestinal disease in humans. SubAB causes haemolytic uraemic syndrome-like pathology in mice through SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesized in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite lack of Neu5Gc biosynthesis in humans, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, and the lack of Neu5Gc-containing body fluid competitors in humans, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin's receptor is generated by metabolic incorporation of an exogenous factor derived from food.

  4. Correlation between the glycan variations and defibrinogenating activities of acutobin and its recombinant glycoforms.

    Directory of Open Access Journals (Sweden)

    Ying-Ming Wang

    Full Text Available Acutobin isolated from Deinagkistrodon acutus venom has been used to prevent or treat stroke in patients. This defibrinogenating serine protease is a 39 kDa glycoprotein containing terminal disialyl-capped N-glycans. After sialidase treatment, the enzyme showed similar catalytic activities toward chromogenic substrate, and cleaved the Aα chain of fibrinogen as efficiently as the native acutobin did. However, the level of fibrinogen degradation products in mice after i.p.-injection of desialylated-acutobin was significantly lower than the level after acutobin injection, suggesting that the disialyl moieties may improve or prolong the half-life of acutobin. Two recombinant enzymes with identical protein structures and similar amidolytic activities to those of native acutobin were expressed from HEK293T and SW1353 cells and designated as HKATB and SWATB, respectively. Mass spectrometric profiling showed that their glycans differed from those of acutobin. In contrast to acutobin, HKATB cleaved not only the Aα chain but also the Bβ and γ chains of human fibrinogens, while SWATB showed a reduced α-fibrinogenase activity. Non-denaturing deglycosylation of these proteases by peptide N-glycosidase F significantly reduced their fibrinogenolytic activities and thermal stabilities. The in vivo defibrinogenating effect of HKATB was inferior to that of acutobin in mice. Taken together, our results suggest that the conjugated glycans of acutobin are involved in its interaction with fibrinogen, and that the selection of cells optimally expressing efficient glycoforms and further glycosylation engineering are desirable before a recombinant product can replace the native enzyme for clinical use.

  5. Introduction of tri-antennary N-glycans in Arabidopsis thaliana plants.

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J M; Callewaert, Nico; Weterings, Koen

    2012-04-01

    Because the pathway for protein synthesis is largely conserved between plants and animals, plants provide an attractive platform for the cost effective and flexible production of biopharmaceuticals. However, there are some differences in glycosylation between plants and humans that need to be considered before plants can be used as an efficient expression platform. In the presented research the human genes encoding α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) were introduced in the fast cycling model plant Arabidopsis thaliana to synthesize tri-antennary N-glycans. The GnT-IV and -V enzymes were targeted to the Golgi apparatus with plant-specific localization signals. The experiments were performed both in a wild type background, as well as in plants lacking β1,2-xylosyltransferase (XylT) and α1,3-fucosyltransferase (FucT) activity. Glycan analysis of endogenous proteins in the transgenic lines using CE-LIF showed that tri-antennary N-glycans could be produced in the XylT/FucT deficient line, while these structures were not found in the wild type background. Since β-N-acetylhexosaminidases, that remove terminal GlcNAcs, are active in A. thaliana plants, the specificity of these enzymes for different GlcNAc linkages was tested. The results showed that there is no pronounced preference of the A. thaliana hexosaminidases for human-type GlcNAc-linkages. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Hybridoma cell-culture and glycan profile dataset at various bioreactor conditions

    Directory of Open Access Journals (Sweden)

    Hemlata Bhatia

    2016-12-01

    Full Text Available This is an “11 factor-2 level-12 run” Plackett-Burman experimental design dataset. The dataset includes 11 engineering bioreactor parameters as input variables. These 11 factors were varied at 2 levels and 23 response variables that are glycan profile attributes, were measured “A Design Space Exploration for Control of Critical Quality Attributes of mAb” (H. Bhatia, E.K. Read, C.D. Agarabi, K.A. Brorson, S.C. Lute, S. Yoon S, 2016 [2].

  7. Structure and function of the N-linked glycans of HBP/CAP37/azurocidin

    DEFF Research Database (Denmark)

    Iversen, L F; Kastrup, Jette Sandholm Jensen; Bjørn, S E

    1999-01-01

    refined to an R-factor of 18.4% (R(free) 27.7%). The ng-HBP structure reveals that neither the secondary nor tertiary structure have changed due to the removal of the glycosylation, as compared to the previously determined glycosylated HBP structure. Although the primary events in N-linked glycosylation......), and only minor local structural differences are observed. Also, the overall stability of the protein seems to be unaffected by glycosylation, as judged by the B-factors derived from the two X-ray structures. The flexibility of a glycan site may be determined by the local polypeptide sequence and structure...

  8. Production of complex multiantennary N-glycans in Nicotiana benthamiana plants.

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J M; Pabst, Martin; Callewaert, Nico; Weterings, Koen

    2011-03-01

    In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions.

  9. Production of Complex Multiantennary N-Glycans in Nicotiana benthamiana Plants1[W][OA

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J.M.; Pabst, Martin; Callewaert, Nico; Weterings, Koen

    2011-01-01

    In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions. PMID:21233332

  10. Galalpha1-->4Gal-glycans are expressed on myofibrillar associated proteins

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Cläesson, M H

    1998-01-01

    NAcbeta- were used to detect terminal alpha-galactosylated glycoconjugates on muscle proteins. Electrotransfer of proteins, extracted from human masseter and biceps muscles, to nitrocellulose after polyacrylamide gel electrophoresis (PAGE) and incubation with anti-Pk (CD77) consistently showed two bands......-fixed human muscle displayed a CD77 reaction with highest accumulation of reaction product at the periphery of the fibers. This may be explained by the presence of Pk glycoconjugates on intermediate filaments in muscle fibers. In preparations of cat masseter muscle proteins the antibodies against P1Pk...... indicates that glycans carrying Galalpha1-4Galbeta1- epitopes are expressed on myofibrillar associated proteins....

  11. Structures of glycans bound to receptors from saturation transfer difference (STD) NMR spectroscopy: quantitative analysis by using CORCEMA-ST.

    Science.gov (United States)

    Enríquez-Navas, Pedro M; Guzzi, Cinzia; Muñoz-García, Juan C; Nieto, Pedro M; Angulo, Jesús

    2015-01-01

    Glycan-receptor interactions are of fundamental relevance for a large number of biological processes, and their kinetics properties (medium/weak binding affinities) make them appropriated to be studied by ligand observed NMR techniques, among which saturation transfer difference (STD) NMR spectroscopy has been shown to be a very robust and powerful approach. The quantitative analysis of the results from a STD NMR study of a glycan-receptor interaction is essential to be able to translate the resulting spectral intensities into a 3D molecular model of the complex. This chapter describes how to carry out such a quantitative analysis by means of the Complete Relaxation and Conformational Exchange Matrix Approach for STD NMR (CORCEMA-ST), in general terms, and an example of a previous work on an antibody-glycan interaction is also shown.

  12. Synthesis of peptidoglycan in the form of soluble glycan chains by growing protoplasts (autoplasts) of Streptococcus faecalis.

    Science.gov (United States)

    Rosenthal, R S; Shockman, G D

    1975-10-01

    Protoplasts (autoplasts) of Streptococcus faecalis were produced by the action of native autolytic N-acetylmuramidase in the absence of added peptidoglycan hydrolases and were grown in osmotically stabilized medium containing L-[3H]lysine and D-[14C]alanine. To reduce the level of muralytic hydrolysis of glycan chains during growth, heat-inactivated cell walls were added to the medium to bind autolytic enzyme, and tetracycline (1 mug/ml) was added to inhibit further enzyme synthesis. Under these conditions, protoplasts synthesized newly labeled peptidoglycan in the form of soluble, infrequently peptide cross-linked glycan chains which were released into the supernatant medium. These relatively large glycan chains were not transferred to exogenously added cell walls.

  13. NMR and Molecular Recognition of N-Glycans: Remote Modifications of the Saccharide Chain Modulate Binding Features.

    Science.gov (United States)

    Gimeno, Ana; Reichardt, Niels-Christian; Cañada, F Javier; Perkams, Lukas; Unverzagt, Carlo; Jiménez-Barbero, Jesús; Ardá, Ana

    2017-04-21

    Glycans play a key role as recognition elements in the communication of cells and other organisms. Thus, the analysis of carbohydrate-protein interactions has gained significant importance. In particular, nuclear magnetic resonance (NMR) techniques are considered powerful tools to detect relevant features in the interaction between sugars and their natural receptors. Here, we present the results obtained in the study on the molecular recognition of different mannose-containing glycans by Pisum sativum agglutinin. NMR experiments supported by Corcema-ST analysis, isothermal titration calorimetry (ITC) experiments, and molecular dynamics (MD) protocols have been successfully applied to unmask important binding features and especially to determine how a remote branching substituent significantly alters the binding mode of the sugar entity. These results highlight the key influence of common structural modifications in natural glycans on molecular recognition processes and underscore their importance for the development of biomedical applications.

  14. Specific glycan elements determine differential binding of individual egg glycoproteins of the human parasite Schistosoma mansoni by host C-type lectin receptors

    NARCIS (Netherlands)

    Meevissen, M.H.J.; Driessen, N.N.; Smits, H.H.; Versteegh, R.; van Vliet, S.J.; van Kooijk, Y.; Schramm, G.; Deelder, A.M.; de Haas, H.; Yazdanbakhsh, M.; Hokke, C.H.

    2012-01-01

    During infection with the blood fluke Schistosoma mansoni, glycan motifs present on glycoproteins of the parasite's eggs mediate immunomodulatory effects on the host. The recognition of these glycan motifs is primarily mediated by C-type lectin receptors on dendritic cells and other cells of the

  15. 3-Amino-1-phenyl-2-pyrazoline-5-ketone as a heterobifunctional chromogenic reagent to derivatize reducing glycans for subsequent online LC/MS analysis.

    Science.gov (United States)

    Lu, Yu; Wang, Chengjian; Liu, Rendan; Jin, Wanjun; Wen, Yanan; Huang, Linjuan; Wang, Zhongfu

    2018-03-07

    Sensitive analysis of glycans by liquid chromatography/mass spectrometry is significantly hampered by the lack of chromogenic or fluorescent groups on the glycan structures, as well as, their poor ionization properties. In the present, a heterobifunctional chromogenic reagent 3-amino-1-phenyl-2-pyrazoline-5-ketone (PAP) bearing amino and active methylene groups, which readily reacts with reducing glycans, was used for detection of the pre-column-labeled glycans via high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS). The PAP derivatives with active methylene and amino groups were obtained via reductive amination in acidic medium and condensation of an active PAP methylene group with the reducing end of glycans in alkaline medium, respectively, and the PAP derivatives could be further functionalized, e.g., via glycan microarray preparation. The conditions for the two reaction modes were optimized, the HPLC separation method of PAP derivatives was investigated, and the PAP derivatives of some glycans derived from biological samples were obtained and analyzed by ESI-MS and LC-MS. Using this new reagent, reducing glycans can be selectively derivatized by different reaction mechanisms, having great importance for functional glycomics studies. Copyright © 2018. Published by Elsevier Inc.

  16. Arsenite Regulates Prolongation of Glycan Residues of Membrane Glycoprotein: A Pivotal Study via Wax Physisorption Kinetics and FTIR Imaging

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lee

    2016-03-01

    Full Text Available Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type and short-chain (regular type glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein

  17. Disruption of O-GlcNAc cycling in C. elegans perturbs Nucleotide Sugar pools and Complex Glycans

    Directory of Open Access Journals (Sweden)

    Salil K Ghosh

    2014-11-01

    Full Text Available The carbohydrate modification of serine and threonine residues with O-linked beta-N-acetylglucosamine (O-GlcNAc is ubiquitous and governs cellular processes ranging from cell signaling to apoptosis. The O-GlcNAc modification along with other carbohydrate modifications, including N-linked and O-linked glycans, glycolipids, and sugar polymers, all require the use of the nucleotide sugar UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway. In this paper, we describe the biochemical consequences resulting from perturbation of the O-GlcNAc pathway in C. elegans lacking O-GlcNAc transferase and O-GlcNAcase activities. In ogt-1 null animals, steady-state levels of UDP-GlcNAc/UDP-GalNAc and UDP-glucose were substantially elevated. Transcripts of genes encoding for key members in the Hexosamine Biosynthetic Pathway (gfat-2, gna-2, C36A4.4 and trehalose metabolism (tre-1, tre-2, and tps-2 were elevated in ogt-1 null animals. While there is no evidence to suggest changes in the profile of N-linked glycans in the ogt-1 and oga-1 mutants, glycans insensitive to PNGase digestion (including O-linked glycans, glycolipids, and glycopolymers were altered in these strains. Our data supports that changes in O-GlcNAcylation alters nucleotide sugar production, overall glycan composition, and transcription of genes encoding glycan processing enzymes. These data along with our previous findings that disruption in O-GlcNAc cycling alters macronutrient storage underscores the noteworthy influence this posttranslational modification plays in nutrient sensing.

  18. Detection of Hanganutziu-Deicher antigens in O-glycans from pig heart tissues by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Jeong, Hee-Jin; Adhya, Mausumi; Park, Hae-Min; Kim, Yun-Gon; Kim, Byung-Gee

    2013-01-01

    In the α1,3-galactosyltransferase knockout (α-GalT KO) pig era, identification of the non-Gal epitopes is necessary for successful pig-to-human xenotransplantation. Recently, we successfully detected α-Gal epitopes as well as Hanganutziu-Deicher (H-D) antigens from the N-glycans in the pig heart tissues, which have been considered as promising non-Gal antigens. However, the profiling of O-glycan from pig heart tissues had not been performed owing to the difficulty of O-glycan preparation. In this study, we established the simple and sensitive method to profile O-glycans from pig heart aortic valve, aortic wall, pulmonary valve, pulmonary wall, and cardiac muscle tissues. To liberate O-glycans from the pig heart tissues, we used non-reductive β-elimination reagent and subsequently purified the glycans. After permethylation, the glycans were qualitatively analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The comprehensive O-glycan analysis method was successfully validated using model glycoproteins such as bovine serum fetuin (BSF) and bovine submaxillary gland mucin (BSM) glycoproteins, and their O-glycan profiles were in accordance with the data of previous studies. Next, we applied the method for O-glycan release and characterization to analysis of various pig heart tissues. As a result, total 39, 33, 24, 36, and 25 of O-glycans were detected from aortic valve, aortic wall, pulmonary valve, pulmonary wall, and cardiac muscle, respectively. Furthermore, four in aortic valve, one in aortic wall, one in pulmonary valve, one in pulmonary wall, and one in cardiac muscle were particularly determined as terminally N-glycolylneuraminic acid-linked O-glycans, which is considered to be the H-D antigens. Here, we initially described the O-glycan structures of various pig heart tissues, and additionally, the existence of H-D antigen type O-glycans was firstly identified. These results will be fundamental information

  19. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.

    2008-01-01

    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... to be a common modification and since then an increasing number of proteins have been identified as sulfated. The target proteins belong to the classes of secretory, plasma membrane, and lysosomal proteins, which reflects the intracellular localization of the enzymes catalyzing Tyr sulfation, the tyrosylprotein...... sulfotransferases (TPSTs).Traditionally, Tyr sulfation has been analyzed by incorporation of radiolabeled sulfate into target cells followed by purification of the target protein. Subsequently, the protein is degraded enzymatically or by alkaline hydrolysis followed by thin-layer electrophoresis to demonstrate...

  20. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.

    2008-01-01

    to be a common modification and since then an increasing number of proteins have been identified as sulfated. The target proteins belong to the classes of secretory, plasma membrane, and lysosomal proteins, which reflects the intracellular localization of the enzymes catalyzing Tyr sulfation, the tyrosylprotein......Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... sulfotransferases (TPSTs).Traditionally, Tyr sulfation has been analyzed by incorporation of radiolabeled sulfate into target cells followed by purification of the target protein. Subsequently, the protein is degraded enzymatically or by alkaline hydrolysis followed by thin-layer electrophoresis to demonstrate...

  1. Structure of cobalt sulfate tetrahydrate

    International Nuclear Information System (INIS)

    Kellersohn, T.

    1992-01-01

    Cobalt(II) sulfate tetrahydrate-d 8 , CoSO 4 -4D 2 O, mineralogical name aplowite, monoclinic, P2 1 /n a = 5.952 (1), b = 13.576 (2), c = 7.908 (1) A. The title compound belongs to the rozenite group of minerals. The characteristic structural units are [Co 2 (SO 4 ) 2 (D 2 O) 8 ] heteropolyhedral clusters which are linked by hydrogen bonds of medium strength. One of the water molecules is very asymmetrically bonded, with one H (D) atom being involved in a long bifurcated hydrogen bond. (orig.)

  2. Identification of an O-linked repetitive glycan chain of the polar flagellum flagellin of Azospirillum brasilense Sp7.

    Science.gov (United States)

    Belyakov, Alexei Ye; Burygin, Gennady L; Arbatsky, Nikolai P; Shashkov, Alexander S; Selivanov, Nikolai Yu; Matora, Larisa Yu; Knirel, Yuriy A; Shchyogolev, Sergei Yu

    2012-11-01

    This is the first report to have identified an O-linked repetitive glycan in bacterial flagellin, a structural protein of the flagellum. Studies by sugar analysis, Smith degradation, (1)H and (13)C NMR spectroscopy, and mass spectrometry showed that the glycan chains of the polar flagellum flagellin of the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp7 are represented by a polysaccharide with a molecular mass of 7.7 kDa, which has a branched tetrasaccharide repeating unit of the following structure: Copyright © 2012. Published by Elsevier Ltd.

  3. Uranium sorption from sulfate solutions by polyampholytes

    International Nuclear Information System (INIS)

    Rychkov, V.N.

    2003-01-01

    Uranium sorption from sulfate solutions by aminocarboxylic and aminophosphoric acid polyampholytes is studied. Effect of concentration of sulfuric acid, ammonium sulfate, ph value of solution and concentration of metal in solution on uranium absorptivity by ampholytes is studied. It is determined that sorption process is described satisfactorily by K d =KC p Z equation. Basing on calculated data on uranium ion state in sulfate solutions, analysis of results and data of IR spectroscopy conclusions about uranium sorption process mechanism are made [ru

  4. Effect of Fc-Glycan Structure on the Conformational Stability of IgG Revealed by Hydrogen/Deuterium Exchange and Limited Proteolysis.

    Science.gov (United States)

    Fang, Jing; Richardson, Jason; Du, Zhimei; Zhang, Zhongqi

    2016-02-16

    Human therapeutic immunoglobulin gamma (IgG) molecules contain an N-glycan on each of their Fc CH2 domains. These glycans include high-mannose, hybrid, and complex types. Recombinant IgG molecules containing high-mannose glycans have been shown to clear faster in human blood, and exhibit decreased thermal stability. The molecular mechanism behind these observations, however, is not well understood. In this work, we used hydrogen/deuterium exchange combined with mass spectrometry (HDX MS), as well as proteolytic degradation under a native-like condition, to assess the impact of different glycoforms on the molecular structure and stability of recombinant IgG1 and IgG2 molecules expressed from Chinese hamster ovary cells. Our HDX MS data indicate that the conformation of these IgG molecules was indeed influenced by the glycan structure. IgG molecules containing high-mannose and hybrid glycans showed more conformational flexibility in the CH2 domain. This conclusion was further supported by the analysis of glycopeptides released from these molecules by trypsin digestion under a native-like condition. The higher CH2 conformational flexibility of IgG molecules with high-mannose and hybrid glycans contributes to their decreased thermal stability. IgG molecules containing sialylated glycans in the CH2 domain exhibited similar enzymatic degradation behavior as high-mannose glycans, suggesting decreased CH2-domain stability compared to shorter complex glycans, likely resulting from steric effect that decreased the glycan-CH2 domain interaction.

  5. Expression of LacdiNAc Groups on N-Glycans among Human Tumors Is Complex

    Directory of Open Access Journals (Sweden)

    Kiyoko Hirano

    2014-01-01

    Full Text Available Aberrant glycosylation of proteins and lipids is one of the characteristic features of malignantly transformed cells. The GalNAcβ1 → 4GlcNAc (LacdiNAc or LDN group at the nonreducing termini of both N- and O-glycans is not generally found in mammalian cells. We previously showed that the expression level of the LacdiNAc group in N-glycans decreases dramatically during the progression of human breast cancer. In contrast, the enhanced expression of the LacdiNAc group has been shown to be associated with the progression of human prostate, ovarian, and pancreatic cancers. Therefore, the expression of the disaccharide group appears to be dependent on types of tumors. The mechanism of formation of the LacdiNAc group in human tumors and cancer cells has been studied, and two β4-N-acetylgalacto-saminyltransferases (β4GalNAcTs, β4GalNAcT3 and β4GalNAcT4, have been shown to be involved in the biosynthesis of this disaccharide group in a tissue-dependent manner. Transfection of the β4GalNAcT3 gene brought about significant changes in the malignant phenotypes of human neuroblastoma, indicating that this disaccharide group is important for suppressing the tumor growth.

  6. The function of the human interferon-beta 1a glycan determined in vivo

    DEFF Research Database (Denmark)

    Dissing-Olesen, Lasse; Thaysen-Andersen, Morten; Meldgaard, Michael

    2008-01-01

    the function of the rhIFN-beta1a glycan moiety and its individual carbohydrate residues, using the myxovirus resistance (Mx) mRNA as a biomarker in Mx-congenic mice. We showed that the Mx mRNA level in blood leukocytes peaked 3 h after s.c. administration of rhIFN-beta1a. In addition, a clear dose......-response relationship was confirmed, and the Mx response was shown to be receptor-mediated. Using specific glycosidases, different glycosylation analogs of rhIFN-beta1a were obtained, and their activities were determined. The glycosylated rhIFN-beta1a showed significantly higher activity than its deglycosylated...... counterpart, due to a protein stabilization/solubilization effect of the glycan. It is interesting to note that the terminating sialic acids were essential for these effects. Conclusively, the structure/bioactivity relationship of rhIFN-beta1a was determined in vivo, and it provided a novel insight...

  7. Glycan-binding profile and cell adhesion activity of American bullfrog (Rana catesbeiana) oocyte galectin-1.

    Science.gov (United States)

    Kawsar, Sarkar M A; Matsumoto, Ryo; Fujii, Yuki; Yasumitsu, Hidetaro; Uchiyama, Hideho; Hosono, Masahiro; Nitta, Kazuo; Hamako, Jiharu; Matsui, Taei; Kojima, Noriaki; Ozeki, Yasuhiro

    2009-01-01

    The glycan-binding profile of a beta-galactoside-binding 15 kDa lectin (Galectin-1) purified from the oocytes of the American bullfrog, Rana catesbeiana, was studied using 61 pyridyl-aminated oligosaccharides by frontal affinity chromatography. Human blood type-A-hexasaccharide (GalNAcalpha1-3(Fucalpha1-2)Galbeta;1-4GlcNAcbeta1-4Galbeta1-4Glc) was found to exhibit the strongest ligand binding to the galectin while Forssman antigen (GalNAcalpha1-3GalNAcbeta1-3Galalpha1-4Galbeta1-4Glc) and type-A-tetrasaccharide (GalNAcalpha1-3(Fucalpha1-2)Galbeta1-4GlcNAcbeta1-4Glc) were also extensively recognized. The kinetics of affinity of galectin-1 to type-A oligosaccharide was analysed by surface plasmon resonance using neoglycoprotein with type-A oligosaccharides. R. catesbeiana oocyte galectin adhered to human rhabdomyosarcoma cells dose dependently and the activity was specifically cancelled by the neoglycoprotein. It was concluded that galectin-1 from R. catesbeiana oocytes possesses different and rare glycan-binding properties from typical members in galectin family.

  8. Novel structural features of the immunocompetent ceramide phospho-inositol glycan core from Trichomonas vaginalis.

    Science.gov (United States)

    Heiss, Christian; Wang, Zhirui; Black, Ian; Azadi, Parastoo; Fichorova, Raina N; Singh, Bibhuti N

    2016-01-01

    The ceramide phosphoinositol glycan core (CPI-GC) of the lipophosphoglycan of Trichomonas vaginalis is a major virulent factor of this common genitourinary parasite. While its carbohydrate composition has been reported before, its structure has remained largely unknown. We isolated the glycan portions of CPI-GC by nitrous acid deamination and hydrofluoric acid treatment and investigated their structures by methylation analysis and 1- and 2-D NMR. We found that the α-anomer of galactose is a major constituent of CPI-GC. The β-anomer was found exclusively at the non-reducing end of CPI-GC side chains. Furthermore the data showed that the rhamnan backbone is more complex than previously thought and that the inositol residue at the reducing end is linked to a 4-linked α-glucuronic acid (GlcA) residue. This appears to be the most striking and novel feature of this GPI-anchor type molecule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    Science.gov (United States)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  10. Several N-Glycans on the HIV Envelope Glycoprotein gp120 Preferentially Locate Near Disulphide Bridges and Are Required for Efficient Infectivity and Virus Transmission.

    Directory of Open Access Journals (Sweden)

    Leen Mathys

    Full Text Available The HIV envelope glycoprotein gp120 contains nine disulphide bridges and is highly glycosylated, carrying on average 24 N-linked glycans. Using a probability calculation, we here demonstrate that there is a co-localization of disulphide bridges and N-linked glycans in HIV-1 gp120, with a predominance of N-linked glycans in close proximity to disulphide bridges, at the C-terminal side of the involved cysteines. Also, N-glycans are frequently found immediately adjacent to disulphide bridges in gp120 at the N-terminal side of the involved cysteines. In contrast, N-glycans at positions close to, but not immediately neighboring disulphide bridges seem to be disfavored at the N-terminal side of the involved cysteines. Such a pronounced co-localization of disulphide bridges and N-glycans was also found for the N-glycans on glycoprotein E1 of the hepatitis C virus (HCV but not for other heavily glycosylated proteins such as E2 from HCV and the surface GP from Ebola virus. The potential functional role of the presence of N-glycans near disulphide bridges in HIV-1 gp120 was studied using site-directed mutagenesis, either by deleting conserved N-glycans or by inserting new N-glycosylation sites near disulphide bridges. The generated HIV-1NL4.3 mutants were subjected to an array of assays, determining the envelope glycoprotein levels in mutant viral particles, their infectivity and the capture and transmission efficiencies of mutant virus particles by DC-SIGN. Three N-glycans located nearby disulphide bridges were found to be crucial for the preservation of several of these functions of gp120. In addition, introduction of new N-glycans upstream of several disulphide bridges, at locations where there was a significant absence of N-glycans in a broad variety of virus strains, was found to result in a complete loss of viral infectivity. It was shown that the N-glycan environment around well-defined disulphide bridges of gp120 is highly critical to allow

  11. Glycomic Analysis of Life Stages of the Human Parasite Schistosoma mansoni Reveals Developmental Expression Profiles of Functional and Antigenic Glycan Motifs.

    Science.gov (United States)

    Smit, Cornelis H; van Diepen, Angela; Nguyen, D Linh; Wuhrer, Manfred; Hoffmann, Karl F; Deelder, André M; Hokke, Cornelis H

    2015-07-01

    Glycans present on glycoproteins and glycolipids of the major human parasite Schistosoma mansoni induce innate as well as adaptive immune responses in the host. To be able to study the molecular characteristics of schistosome infections it is therefore required to determine the expression profiles of glycans and antigenic glycan-motifs during a range of critical stages of the complex schistosome lifecycle. We performed a longitudinal profiling study covering schistosome glycosylation throughout worm- and egg-development using a mass spectrometry-based glycomics approach. Our study revealed that during worm development N-glycans with Galβ1-4(Fucα1-3)GlcNAc (LeX) and core-xylose motifs were rapidly lost after cercariae to schistosomula transformation, whereas GalNAcβ1-4GlcNAc (LDN)-motifs gradually became abundant and predominated in adult worms. LeX-motifs were present on glycolipids up to 2 weeks of schistosomula development, whereas glycolipids with mono- and multifucosylated LDN-motifs remained present up to the adult worm stage. In contrast, expression of complex O-glycans diminished to undetectable levels within days after transformation. During egg development, a rich diversity of N-glycans with fucosylated motifs was expressed, but with α3-core fucose and a high degree of multifucosylated antennae only in mature eggs and miracidia. N-glycan antennae were exclusively LDN-based in miracidia. O-glycans in the mature eggs were also diverse and contained LeX- and multifucosylated LDN, but none of these were associated with miracidia in which we detected only the Galβ1-3(Galβ1-6)GalNAc core glycan. Immature eggs also exhibited short O-glycan core structures only, suggesting that complex fucosylated O-glycans of schistosome eggs are derived primarily from glycoproteins produced by the subshell envelope in the developed egg. Lipid glycans with multifucosylated GlcNAc repeats were present throughout egg development, but with the longer highly fucosylated

  12. Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine

    DEFF Research Database (Denmark)

    Scott, Nichollas E; Nothaft, Harald; Edwards, Alistair V G

    2012-01-01

    the synthesis of a rigidly conserved heptasaccharide that is attached to protein substrates or released as free oligosaccharide in the periplasm. Removal of N-glycosylation results in reduced virulence and impeded host cell attachment. Since the N-glycan is conserved, the N-glycosylation system is also...

  13. Correlative Fluorescence and Scanning Electron Microscopy of Labelled Core Fucosylated Glycans Using Cryosections Mounted on Carbon-Patterned Glass Slides.

    Science.gov (United States)

    Vancová, Marie; Nebesářová, Jana

    2015-01-01

    The aim of the study is co-localization of N-glycans with fucose attached to N-acetylglucosamine in α1,3 linkage, that belong to immunogenic carbohydrate epitopes in humans, and N-glycans with α1,6-core fucose typical for mammalian type of N-linked glycosylation. Both glycan epitopes were labelled in cryosections of salivary glands isolated from the tick Ixodes ricinus. Salivary glands secrete during feeding many bioactive molecules and influence both successful feeding and transmission of tick-borne pathogens. For accurate and reliable localization of labelled glycans in both fluorescence and scanning electron microscopes, we used carbon imprints of finder or indexed EM grids on glass slides. We discuss if the topographical images can provide information about labelled structures, the working setting of the field-emission scanning electron microscope and the influence of the detector selection (a below-the-lens Autrata improved YAG detector of back-scattered electrons; in-lens and conventional Everhart-Thornley detectors of secondary electrons) on the imaging of gold nanoparticles, quantum dots and osmium-stained membranes.

  14. A MALDI-MS-based quantitative targeted glycomics (MALDI-QTaG) for total N-glycan analysis.

    Science.gov (United States)

    Kim, Kyoung-Jin; Kim, Yoon-Woo; Hwang, Cheol-Hwan; Park, Han-Gyu; Yang, Yung-Hun; Koo, Miyoung; Kim, Yun-Gon

    2015-10-01

    To develop a sensitive and quantitative method for monitoring the abnormal glycosylation of clinical and biopharmaceutical products. MALDI-MS-based quantitative targeted glycomics (MALDI-QTaG) was proposed for sensitive and quantitative analysis of total N-glycans. The derivatization reactions (i.e., amidation of sialic acid and incorporation of a positive charge moiety into the reducing end) dramatically increased the linearity (R(2) > 0.99) and sensitivity (limit of detection is 0.5 pmol/glycoprotein) relative to underivatized glycans. In addition, the analytical strategy was chromatographic purification-free and non-laborious process accessible to the high-throughput analyses. We used MALDI-QTaG to analyze the N-glycans of α-fetoprotein (AFP) purified from normal cord blood and HCC cell line (Huh7 cells). The total percentages of core-fucosylated AFP N-glycans from Huh7 cells and normal cord blood were 98 and 18%, respectively. This MALDI-MS-based glycomics technology has wide applications in many clinical and bioengineering fields requiring sensitive, quantitative and fast N-glycosylation validation.

  15. Neuro-Compatible Metabolic Glycan Labeling of Primary Hippocampal Neurons in Noncontact, Sandwich-Type Neuron-Astrocyte Coculture.

    Science.gov (United States)

    Choi, Ji Yu; Park, Matthew; Cho, Hyeoncheol; Kim, Mi-Hee; Kang, Kyungtae; Choi, Insung S

    2017-12-20

    Glycans are intimately involved in several facets of neuronal development and neuropathology. However, the metabolic labeling of surface glycans in primary neurons is a difficult task because of the neurotoxicity of unnatural monosaccharides that are used as a metabolic precursor, hindering the progress of metabolic engineering in neuron-related fields. Therefore, in this paper, we report a neurosupportive, neuron-astrocyte coculture system that neutralizes the neurotoxic effects of unnatural monosaccharides, allowing for the long-term observation and characterization of glycans in primary neurons in vitro. Polysialic acids in neurons are selectively imaged, via the metabolic labeling of sialoglycans with peracetylated N-azidoacetyl-d-mannosamine (Ac 4 ManNAz), for up to 21 DIV. Two-color labeling shows that neuronal activities, such as neurite outgrowth and recycling of membrane components, are highly dynamic and change over time during development. In addition, the insertion sites of membrane components are suggested to not be random, but be predominantly localized in developing neurites. This work provides a new research platform and also suggests advanced 3D systems for metabolic-labeling studies of glycans in primary neurons.

  16. Chip-based CE for rapid separation of 8-aminopyrene-1,3,6-trisulfonic acid (APTS) derivatized glycans

    Czech Academy of Sciences Publication Activity Database

    Smejkal, Petr; Szekrényes, A.; Ryvolová, M.; Foret, František; Guttman, A.; Bek, F.; Macka, M.

    2010-01-01

    Roč. 22, č. 31 (2010), s. 3783-3786 ISSN 0173-0835 R&D Projects: GA MŠk MEB060821 Institutional research plan: CEZ:AV0Z40310501 Keywords : bioanalyzer * chip-based analysis * glycans Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.569, year: 2010

  17. Fucoidans — sulfated polysaccharides of brown algae

    Science.gov (United States)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  18. Rat pro-opiomelanocortin contains sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Hoshina, H.; Hortin, G.; Boime, I.

    1982-07-02

    Intermediate lobes isolated from rat pituitary glands incorporated (/sup 35/S)sulfate into pro-opiomelanocortin and other adrenocorticotropic hormone-containing peptides. Incubation of intermediate lobes in medium containing the arginine analog canavanine inhibited the cleavage of pro-opiomelanocortin into smaller products. Pro-opiomelanocortin that accumulated in the presence of canavanine was also sulfated.

  19. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.

    1995-01-01


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  20. Tegument Glycoproteins and Cathepsins of Newly Excysted Juvenile Fasciola hepatica Carry Mannosidic and Paucimannosidic N-glycans.

    Science.gov (United States)

    Garcia-Campos, Andres; Ravidà, Alessandra; Nguyen, D Linh; Cwiklinski, Krystyna; Dalton, John P; Hokke, Cornelis H; O'Neill, Sandra; Mulcahy, Grace

    2016-05-01

    Recently, the prevalence of Fasciola hepatica in some areas has increased considerably and the availability of a vaccine to protect livestock from infection would represent a major advance in tools available for controlling this disease. To date, most vaccine-target discovery research on this parasite has concentrated on proteomic and transcriptomic approaches whereas little work has been carried out on glycosylation. As the F. hepatica tegument (Teg) may contain glycans potentially relevant to vaccine development and the Newly Excysted Juvenile (NEJ) is the first lifecycle stage in contact with the definitive host, our work has focused on assessing the glycosylation of the NEJTeg and identifying the NEJTeg glycoprotein repertoire. After in vitro excystation, NEJ were fixed and NEJTeg was extracted. Matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of released N-glycans revealed that oligomannose and core-fucosylated truncated N-glycans were the most dominant glycan types. By lectin binding studies these glycans were identified mainly on the NEJ surface, together with the oral and ventral suckers. NEJTeg glycoproteins were affinity purified after targeted biotinylation of the glycans and identified using liquid chromatography and tandem mass spectrometry (LC-MS/MS). From the total set of proteins previously identified in NEJTeg, eighteen were also detected in the glycosylated fraction, including the F. hepatica Cathepsin B3 (FhCB3) and two of the Cathepsin L3 (FhCL3) proteins, among others. To confirm glycosylation of cathepsins, analysis at the glycopeptide level by LC-ESI-ion-trap-MS/MS with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) was carried out. We established that cathepsin B1 (FhCB1) on position N80, and FhCL3 (BN1106_s10139B000014, scaffold10139) on position N153, carry unusual paucimannosidic Man2GlcNAc2 glycans. To our knowledge, this is the first description of F

  1. The ammonium sulfate inhibition of human angiogenin.

    Science.gov (United States)

    Chatzileontiadou, Demetra S M; Tsirkone, Vicky G; Dossi, Kyriaki; Kassouni, Aikaterini G; Liggri, Panagiota G V; Kantsadi, Anastassia L; Stravodimos, George A; Balatsos, Nikolaos A A; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2016-09-01

    In this study, we investigate the inhibition of human angiogenin by ammonium sulfate. The inhibitory potency of ammonium sulfate for human angiogenin (IC50 = 123.5 ± 14.9 mm) is comparable to that previously reported for RNase A (119.0 ± 6.5 mm) and RNase 2 (95.7 ± 9.3 mm). However, analysis of two X-ray crystal structures of human angiogenin in complex with sulfate anions (in acidic and basic pH environments, respectively) indicates an entirely distinct mechanism of inhibition. While ammonium sulfate inhibits the ribonucleolytic activity of RNase A and RNase 2 by binding to the active site of these enzymes, sulfate anions bind only to peripheral substrate anion-binding subsites of human angiogenin, and not to the active site. © 2016 Federation of European Biochemical Societies.

  2. 1H and 13C NMR assignments for the glycans in glycoproteins by using 2H/13C-labeled glucose as a metabolic precursor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Yoshiki; Takizawa, Takeshi; Kato, Koichi [University of Tokyo, Hongo, Bunkyo-ku, Graduate School of Pharmaceutical Sciences (Japan); Arata, Yoji [Institute of Physical and Chemical Research (RIKEN), Genomic Sciences Center (Japan); Shimada, Ichio [University of Tokyo, Hongo, Bunkyo-ku, Graduate School of Pharmaceutical Sciences (Japan)

    2000-12-15

    In order to understand the role of the glycans in glycoproteins in solution, structural information obtained by NMR spectroscopy is obviously required. However, the assignment of the NMR signals from the glycans in larger glycoproteins is still difficult, mainly due to the lack of appropriate methods for the assignment of the resonances originating from the glycans. By using [U-{sup 13}C{sub 6},{sup 2}H{sub 7}]glucose as a metabolic precursor, we have successfully prepared a glycoprotein whose glycan is uniformly labeled with {sup 13}C and partially with D at the sugar residues. The D to H exchange ratios at the C1-C6 positions of the sugar residues have been proven to provide useful information for the spectral assignments of the glycan in the glycoprotein. This is the first report on the residue-specific assignment of the anomeric resonances originating from a glycan attached to a glycoprotein by using the metabolic incorporation of hydrogen from the medium into a glycan labeled with [U-{sup 13}C{sub 6},{sup 2}H{sub 7}]glucose.

  3. Microsecond Dynamics and Network Analysis of the HIV-1 SOSIP Env Trimer Reveal Collective Behavior and Conserved Microdomains of the Glycan Shield.

    Science.gov (United States)

    Lemmin, Thomas; Soto, Cinque; Stuckey, Jonathan; Kwong, Peter D

    2017-10-03

    The trimeric HIV-1-envelope (Env) spike is one of the most glycosylated protein complexes known, with roughly half its mass comprising host-derived N-linked glycan. Here we use molecular dynamics to provide insight into its structural dynamics and into how both protomer and glycan movements coordinate to shield the Env protein surface. A 2-μs molecular dynamics simulation of a fully glycosylated atomistic model of the HIV-1 SOSIP Env trimer revealed a spectrum of protomer-scissoring and trimer-opening movements. Network analysis showed that highly conserved glycans combined with protomer scissoring to restrict access to the binding site of the CD4 receptor. The network property of betweenness centrality appeared to identify whether glycans spread to restrict access or cluster to maintain the high-mannose character of the shield. We also observed stable microdomains comprising patches of glycan, with neutralizing antibodies generally binding at the interface between glycan microdomains. Overall, our results provide a microsecond-based understanding of the Env glycan shield. Published by Elsevier Ltd.

  4. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  5. LC-MS/MS analysis of permethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples.

    Science.gov (United States)

    Dong, Xue; Zhou, Shiyue; Mechref, Yehia

    2016-06-01

    Oligosaccharides in milk not only provide nutrition to the infants but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat, and human milks using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat, and human milk samples (without isomeric consideration) were 11, 8, and 11, respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat, and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by porous graphitic carbon LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using porous graphitic carbon column. Permethylation of the glycan structures facilitated the interpretation of MS/MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The fine specificity of mannose-binding and galactose-binding lectins revealed using outlier motif analysis of glycan array data.

    Science.gov (United States)

    Maupin, Kevin A; Liden, Daniel; Haab, Brian B

    2012-01-01

    Glycan-binding proteins are commonly used as analytical reagents to detect the levels of specific glycan structures in biological samples. A detailed knowledge of the specificities of glycan-binding proteins is required for properly interpreting their binding data. A powerful technology for characterizing glycan-binding specificity is the glycan array. However, the interpretation of glycan-array data can be difficult due to the complex fine specificities of certain glycan-binding proteins. We developed a systematic approach, called outlier-motif analysis, for extracting fine-specificity information from glycan-array data, and we applied the method to the study of four commonly used lectins: two mannose binders (concanavalin A and Lens culinaris) and two galactose binders (Bauhinia purpurea and peanut agglutinin). The study confirmed the known, primary specificity of each lectin and also revealed new insights into their binding preferences. Lens culinaris's main specificity may be non-terminal, α-linked mannose with a single linkage at its 2' carbon, which is more restricted than previous definitions. We found broader specificity for bauhinea purpurea (BPL) than previously reported, showing that BPL can bind terminal N-acetylgalactosamine (GalNAc) and penultimate β-linked galactose under certain limitations. Peanut agglutinin may bind terminal Galβ1,3Gal, a glycolipid motif, in addition to terminal Galβ1,3GalNAc, a common O-linked glycoprotein motif. These results could be used to more accurately interpret data obtained using these well-studied lectins. Furthermore, this study demonstrates a systematic and general approach for extracting fine-specificity information from glycan-array data.

  7. Glycan diversity in the vomeronasal organ of the Korean roe deer, Capreolus pygargus: A lectin histochemical study.

    Science.gov (United States)

    Shin, Taekyun; Kim, Jeongtae; Choi, Yuna; Ahn, Meejung

    2017-10-01

    Glycans in the epithelium play an important role in cell-to-cell communication and adhesion. No detailed evaluation of glycoconjugates in the vomeronasal organs (VNO) of the roe deer has been published previously. The aim of this study was to characterize glycan epitopes in the vomeronasal sensory epithelium (VSE) and non-sensory epithelium (VNSE) using lectin histochemistry. Glycan epitopes identified by lectin histochemistry were grouped as follows: N-acetylglucosamine (s-WGA, WGA, BSL-II, DSL, LEL, STL), mannose (Con A, LCA, PSA), galactose (RCA 120 , BSL-I, Jacalin, PNA, ECL), N-acetylgalactosamine (VVA, DBA, SBA, and SJA), fucose (UEA-I) and complex type N-glycan (PHA-E and PHA-L) groups. The free border of the VSE was positive for all 21 lectins, and 18 of the lectins (excluding DBA, SJA, and PHA-L) showed weak and/or moderate staining in the receptor cells. The supporting cells were weakly positive for 19 lectins (excluding PNA and SJA). Moreover, 17 lectins (excluding BSL-II, Jacalin, PNA, and SJA) were expressed in the basal cells. In the VNSE of roe deer, the free border showed staining for all 21 lectins examined. The ciliated cells were positive for 16 lectins (excluding BSL-II, DSL, PNA, VVA, and SJA). Furthermore, 15 lectins (excluding DSL, LEL, ECL, UEA-I, PHA-E, and PHA-L) were expressed in goblet cells. Twenty lectins (excluding SJA) were expressed in the acini of the vomeronasal glands. Collectively, both VSE and VNSE were rich in N-acetylglucosamine, mannose, galactose, N-acetylgalactosamine, fucose, and complex-type N-glycans, although the different cell types of the VSE and VNSE expressed different glycoconjugates of varying intensities, suggesting that these carbohydrate residues may be involved in odor perception as well as cell-to-cell communication in the VNO. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Comparative glycan profiling of Ceratopteris richardii 'C-Fern' gametophytes and sporophytes links cell-wall composition to functional specialization.

    Science.gov (United States)

    Eeckhout, Sharon; Leroux, Olivier; Willats, William G T; Popper, Zoë A; Viane, Ronald L L

    2014-10-01

    Innovations in vegetative and reproductive characters were key factors in the evolutionary history of land plants and most of these transformations, including dramatic changes in life cycle structure and strategy, necessarily involved cell-wall modifications. To provide more insight into the role of cell walls in effecting changes in plant structure and function, and in particular their role in the generation of vascularization, an antibody-based approach was implemented to compare the presence and distribution of cell-wall glycan epitopes between (free-living) gametophytes and sporophytes of Ceratopteris richardii 'C-Fern', a widely used model system for ferns. Microarrays of sequential diamino-cyclohexane-tetraacetic acid (CDTA) and NaOH extractions of gametophytes, spores and different organs of 'C-Fern' sporophytes were probed with glycan-directed monoclonal antibodies. The same probes were employed to investigate the tissue- and cell-specific distribution of glycan epitopes. While monoclonal antibodies against pectic homogalacturonan, mannan and xyloglucan widely labelled gametophytic and sporophytic tissues, xylans were only detected in secondary cell walls of the sporophyte. The LM5 pectic galactan epitope was restricted to sporophytic phloem tissue. Rhizoids and root hairs showed similarities in arabinogalactan protein (AGP) and xyloglucan epitope distribution patterns. The differences and similarities in glycan cell-wall composition between 'C-Fern' gametophytes and sporophytes indicate that the molecular design of cell walls reflects functional specialization rather than genetic origin. Glycan epitopes that were not detected in gametophytes were associated with cell walls of specialized tissues in the sporophyte. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. CSF N-glycan profile reveals sialylation deficiency in a patient with GM2 gangliosidosis presenting as childhood disintegrative disorder.

    Science.gov (United States)

    Barone, Rita; Sturiale, Luisella; Fiumara, Agata; Palmigiano, Angelo; Bua, Rosaria O; Rizzo, Renata; Zappia, Mario; Garozzo, Domenico

    2016-04-01

    Protein N-glycosylation consists in the synthesis and processing of the oligosaccharide moiety (N-glycan) linked to a protein and it serves several functions for the proper central nervous system (CNS) development and function. Previous experimental and clinical studies have shown the importance of proper glycoprotein sialylation for the synaptic function and the occurrence of autism spectrum disorders (ASD) in the presence of sialylation deficiency in the CNS. Late-onset Tay Sachs disease (LOTSD) is a lysosomal disorder caused by mutations in the HEXA gene resulting in GM2-ganglioside storage in the CNS. It is characterized by progressive neurological impairment and high co-occurrence of psychiatric disturbances. We studied the N-glycome profile of the cerebrospinal fluid (CSF) in a 14 year-old patient with GM2-gangliosidosis (LOTSD). At the age of 4, the patient presented regressive autism fulfilling criteria for childhood disintegrative disorder (CDD). A CSF sample was obtained in the course of diagnostic work-up for the suspicion of an underlying neurodegenerative disorder. We found definite changes of CSF N-glycans due to a dramatic decrease of sialylated biantennary and triantennary structures and an increase of asialo-core fucosylated bisected N-glycans. No changes of total plasma N-glycans were found. Herein findings highlight possible relationships between the early onset psychiatric disturbance featuring CDD in the patient and defective protein sialylation in the CNS. In conclusion, the study first shows aberrant N-glycan structures of CSF proteins in LOTSD; unveils possible pathomechanisms of GM2-gangliosidosis; supports existing relationships between neuropsychiatric disorders and unproper protein glycosylation in the CNS. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  10. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation

    DEFF Research Database (Denmark)

    Yin, Bojiao; Gao, Yuan; Chung, Cheng-yu

    2015-01-01

    -glycosylation of recombinant erythropoietin (rEPO), a human α2,6-sialyltransferase (ST6Gal1) was expressed in Chinese hamster ovary (CHO-K1) cells. Sialylation increased on both EPO and CHO cellular proteins as observed by SNA lectin analysis, and HPLC profiling revealed that the sialic acid content of total glycans on EPO......EPO from these engineered cells was increased ∼45% higher with tetra-sialylation accounting for ∼10% of total sugar chains compared to ∼3% for the wild-type parental CHO-K1. In this way, coordinated overexpression of these three glycosyltransferases for the first time in model CHO-K1 cell lines provides...

  11. Rational Design of a New Trypanosoma rangeli Trans-Sialidase for Efficient Sialylation of Glycans

    DEFF Research Database (Denmark)

    Jers, Carsten; Michalak, Malwina; Larsen, Dorte Møller

    2014-01-01

    sialidase, and we hypothesised that this motif is important for trans-sialidase activity. The 197–203 motif is strongly positively charged with a marked change in hydrogen bond donor capacity as compared to the sialidase. To investigate the role of this motif, we expressed and characterised a T. rangeli...... is important in association with human milk oligosaccharides, and Tr13 was shown to sialylate a number of established and potential prebiotics. Initial evaluation of prebiotic potential using pure cultures demonstrated, albeit not selectively, growth of Bifidobacteria. Since the 197–203 motif stands out......This paper reports rational engineering of Trypanosoma rangeli sialidase to develop an effective enzyme for a potentially important type of reactivity: production of sialylated prebiotic glycans. The Trypanosoma cruzi trans-sialidase and the homologous T. rangeli sialidase has previously been used...

  12. ABO Blood Group as a Model for Platelet Glycan Modification in Arterial Thrombosis.

    Science.gov (United States)

    Zhong, Ming; Zhang, Hanrui; Reilly, John P; Chrisitie, Jason D; Ishihara, Mayumi; Kumagai, Tadahiro; Azadi, Parastoo; Reilly, Muredach P

    2015-07-01

    ABO blood groups have long been associated with cardiovascular disease, thrombosis, and acute coronary syndromes. Many studies over the years have shown type O blood group to be associated with lower risk of cardiovascular disease than non-type O blood groups. However, the mechanisms underlying this association remain unclear. Although ABO blood group is associated with variations in concentrations of circulating von Willebrand Factor and other endothelial cell adhesion molecules, ABO antigens are also present on several platelet surface glycoproteins and glycosphingolipids. As we highlight in this platelet-centric review, these glycomic modifications may affect platelet function in arterial thrombosis. More broadly, improving our understanding of the role of platelet glycan modifications in acute coronary syndromes may inform future diagnostics and therapeutics for cardiovascular diseases. © 2015 American Heart Association, Inc.

  13. Further insight into the roles of the glycans attached to human blood protein C inhibitor

    DEFF Research Database (Denmark)

    Sun, Wei; Parry, Simon; Ubhayasekera, Wimal

    2010-01-01

    Protein C inhibitor (PCI) is a 57-kDa glycoprotein that exists in many tissues and secretions in human. As a member of the serpin superfamily of proteins it displays unusually broad protease specificity. PCI is implicated in the regulation of a wide range of processes, including blood coagulation......, fertilization, prevention of tumors and pathogen defence. It has been reported that PCI isolated from human blood plasma is highly heterogeneous, and that this heterogeneity is caused by differences in N-glycan structures, N-glycosylation occupancy, and the presence of two forms that differ by the presence...... or absence of 6 amino acids at the amino-terminus. In this study we have verified that such heterogeneity exists in PCI purified from single individuals, and that individuals of two different ethnicities possess a similar PCI pattern, verifying that the micro-heterogeneity is conserved among humans...

  14. The role of sialyl glycan recognition in host tissue tropism of the avian parasite Eimeria tenella.

    Directory of Open Access Journals (Sweden)

    Livia Lai

    2011-10-01

    Full Text Available Eimeria spp. are a highly successful group of intracellular protozoan parasites that develop within intestinal epithelial cells of poultry, causing coccidiosis. As a result of resistance against anticoccidial drugs and the expense of manufacturing live vaccines, it is necessary to understand the relationship between Eimeria and its host more deeply, with a view to developing recombinant vaccines. Eimeria possesses a family of microneme lectins (MICs that contain microneme adhesive repeat regions (MARR. We show that the major MARR protein from Eimeria tenella, EtMIC3, is deployed at the parasite-host interface during the early stages of invasion. EtMIC3 consists of seven tandem MAR1-type domains, which possess a high specificity for sialylated glycans as shown by cell-based assays and carbohydrate microarray analyses. The restricted tissue staining pattern observed for EtMIC3 in the chicken caecal epithelium indicates that EtMIC3 contributes to guiding the parasite to the site of invasion in the chicken gut. The microarray analyses also reveal a lack of recognition of glycan sequences terminating in the N-glycolyl form of sialic acid by EtMIC3. Thus the parasite is well adapted to the avian host which lacks N-glycolyl neuraminic acid. We provide new structural insight into the MAR1 family of domains and reveal the atomic resolution basis for the sialic acid-based carbohydrate recognition. Finally, a preliminary chicken immunization trial provides evidence that recombinant EtMIC3 protein and EtMIC3 DNA are effective vaccine candidates.

  15. Embryos generated from oocytes lacking complex N- and O-glycans have compromised development and implantation

    Science.gov (United States)

    Grasa, Patricia; Kaune, Heidy; Williams, Suzannah A

    2012-01-01

    Female mice generating oocytes lacking complex N- and O-glycans (double mutants (DM)) produce only one small litter before undergoing premature ovarian failure (POF) by 3 months. Here we investigate the basis of the small litter by evaluating ovulation rate and embryo development in DM (Mgat1F/FC1galt1F/F:ZP3Cre) and Control (Mgat1F/FC1galt1F/F) females. Surprisingly, DM ovulation rate was normal at 6 weeks, but declined dramatically by 9 weeks. In vitro development of zygotes to blastocysts was equivalent to Controls although all embryos from DM females lacked a normal zona pellucida (ZP) and ∼30% lacked a ZP entirely. In contrast, in vivo preimplantation development resulted in less embryos recovered from DM females compared with Controls at 3.5 days post coitum (dpc) (3.2±1.3 vs 7.0±0.6). Furthermore, only 45% of mated DM females contained embryos at 3.5 dpc. Of the preimplantation embryos collected from DM females, approximately half were morulae unlike Controls where the majority were blastocysts, indicating delayed embryo development in DM females. Post-implantation development in DM females was analysed to determine whether delayed preimplantation development affected subsequent development. In DM females at 5.5 dpc, only ∼40% of embryos found at 3.5 dpc had implanted. However, at 6.5 dpc, implantation sites in DM females corresponded to embryo numbers at 3.5 dpc indicating delayed implantation. At 9.5 dpc, the number of decidua corresponded to embryo numbers 6 days earlier indicating that all implanted embryos progress to midgestation. Therefore, a lack of complex N- and O-glycans in oocytes during development impairs early embryo development and viability in vivo leading to delayed implantation and a small litter. PMID:22919046

  16. Structural basis of glycan specificity of P[19] VP8*: Implications for rotavirus zoonosis and evolution.

    Science.gov (United States)

    Liu, Yang; Xu, Shenyuan; Woodruff, Andrew L; Xia, Ming; Tan, Ming; Kennedy, Michael A; Jiang, Xi

    2017-11-01

    Recognition of specific cell surface glycans, mediated by the VP8* domain of the spike protein VP4, is the essential first step in rotavirus (RV) infection. Due to lack of direct structural information of virus-ligand interactions, the molecular basis of ligand-controlled host ranges of the major human RVs (P[8] and P[4]) in P[II] genogroup remains unknown. Here, through characterization of a minor P[II] RV (P[19]) that can infect both animals (pigs) and humans, we made an important advance to fill this knowledge gap by solving the crystal structures of the P[19] VP8* in complex with its ligands. Our data showed that P[19] RVs use a novel binding site that differs from the known ones of other genotypes/genogroups. This binding site is capable of interacting with two types of glycans, the mucin core and type 1 histo-blood group antigens (HBGAs) with a common GlcNAc as the central binding saccharide. The binding site is apparently shared by other P[II] RVs and possibly two genotypes (P[10] and P[12]) in P[I] as shown by their highly conserved GlcNAc-interacting residues. These data provide strong evidence of evolutionary connections among these human and animal RVs, pointing to a common ancestor in P[I] with a possible animal host origin. While the binding properties to GlcNAc-containing saccharides are maintained, changes in binding to additional residues, such as those in the polymorphic type 1 HBGAs may occur in the course of RV evolution, explaining the complex P[II] genogroup that mainly causes diseases in humans but also in some animals.

  17. [Aluminum forms in acid sulfate soils].

    Science.gov (United States)

    Wang, J; Luo, S; Feng, Y

    2000-10-01

    With the method of sequential extraction, the extractable noncrystalline aluminum in Acid Sulfate Soils was fractionized into exchangeable Al (ExAl), absorbed inorganic hydroxy-Al(HyAl), organic complexed Al(OrAl), Fe oxide bound Al (DCBAl), interlayered Al(InAl) and noncrystalline aluminosilicate(NcAl) with average of 1.79, 2.51, 4.17, 4.14, 4.31 and 8.66 g Al2O3.kg-1, respectively. In actual Acid Sulfate Soils, the amount of different forms Al followed the order of NcAl > OrAl > InAl > DCBAl > ExAl > HyAl, but in potential acid sulfate soils, NcAl > InAl > DCBAl > HyAl > OrAl > ExAl. The average of the total extractable noncrystalline Al was 35.57 g Al2O3.kg-1, which covered 25.04% of the total amount of Al in Acid Sulfate Soils. The characteristic of extractable noncrystalline Al in Acid Sulfate Soils was the high proportion of active aluminum, such as ExAl, HyAl and OrAl. All forms of Al were closely related to the corresponding properties and ecological characteristics of Acid Sulfate Soils. The strong acid environment of actual Acid Sulfate Soils induced over-released Al, which transformed to active Al and resulted in Al toxicity.

  18. Benzene oxidation coupled to sulfate reduction

    Science.gov (United States)

    Lovley, D.R.; Coates, J.D.; Woodward, J.C.; Phillips, E.J.P.

    1995-01-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to I ??M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [14C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as 14CO2. Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of 14CO2 from [14C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [14C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O2, with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.

  19. Heparan sulfate in skeletal muscle development

    International Nuclear Information System (INIS)

    Noonan, D.M.

    1985-01-01

    In this study, chick breast skeletal muscle cells developing in vitro from myoblasts to myotubes were found to synthesize heparan sulfate (HS), chrondroitin-6-sulfate, chrondroitin-4-sulfate, dermatan sulfate, unsulfated chrondroitin and hyaluronic acid in both the substratum attached material (SAM) and the cellular fraction. SAM was found to contain predominantly chrondroitin-6-sulfate and relatively little HS whereas the cellular fraction contained relatively higher levels of HS and lower levels of chrondroitin-6-sulfate. Hyaluronic acid was also a major component in both fractions with the other glycosaminoglycan isomers present as minor components. Muscle derived fibroblast cultures had higher levels of dermatan sulfate in the cell layer and higher levels of HS in the SAM fraction than did muscle cultures. The structure of the proteoglycans were partially characterized in 35 SO 4 2- radio-labeled cultures which indicated an apparent increase in the hydrodynamic size of the cell fraction heparan sulfate proteoglycan (HS PG). Myotubes incorporated 35 SO 4 2- into HS PG at a rate 3 times higher than myoblasts. The turnover rate of HS in the cellular fraction was the same for myoblasts and myotubes, with a t/sub 1/2/ of approximately 5 hours. Fibroblasts in culture synthesized the smallest HS PG, and incorporated 35 SO 4 2- into HS PG at a rate lower than that of myotubes. Studies in which fusion was reversibly inhibited with decreased medium [Ca ++ ] closely linked the increased synthesis of cell fraction, but not SAM fraction, HS with myotube formation. However, decreasing medium calcium appeared to cause significant alterations in the metabolism of inorganic sulfate

  20. Ammonium sulfate preparation from phosphogypsum waste

    OpenAIRE

    Kandil, Abdel-Hakim T.; Cheira, Mohamed F.; Gado, Hady S.; Soliman, Madiha H.; Akl, Hesham M.

    2017-01-01

    The Egyptian phosphogypsum waste is treated using sulfuric acid prior the ammonium sulfate production. The relevant factors that would affect the removal efficiencies of some impurities are studied. The optimum conditions of the treatment are 8 M sulfuric acid solution and 1/4 solid/liquid ratio for 30 min contact time at 80 °C. Moreover, the optimum conditions of the ammonium sulfate preparation are 10 g of the suspended impure or purified phosphogypsum in 40 ml of 3% ammonium sulfate soluti...

  1. Role of cellular heparan sulfate proteoglycans in infection of human adenovirus serotype 3 and 35.

    Directory of Open Access Journals (Sweden)

    Sebastian Tuve

    2008-10-01

    Full Text Available Species B human adenoviruses (Ads are increasingly associated with outbreaks of acute respiratory disease in U.S. military personnel and civil population. The initial interaction of Ads with cellular attachment receptors on host cells is via Ad fiber knob protein. Our previous studies showed that one species B Ad receptor is the complement receptor CD46 that is used by serotypes 11, 16, 21, 35, and 50 but not by serotypes 3, 7, and 14. In this study, we attempted to identify yet-unknown species B cellular receptors. For this purpose we used recombinant Ad3 and Ad35 fiber knobs in high-throughput receptor screening methods including mass spectrometry analysis and glycan arrays. Surprisingly, we found that the main interacting surface molecules of Ad3 fiber knob are cellular heparan sulfate proteoglycans (HSPGs. We subsequently found that HSPGs acted as low-affinity co-receptors for Ad3 but did not represent the main receptor of this serotype. Our study also revealed a new CD46-independent infection pathway of Ad35. This Ad35 infection mechanism is mediated by cellular HSPGs. The interaction of Ad35 with HSPGs is not via fiber knob, whereas Ad3 interacts with HSPGs via fiber knob. Both Ad3 and Ad35 interacted specifically with the sulfated regions within HSPGs that have also been implicated in binding physiologic ligands. In conclusion, our findings show that Ad3 and Ad35 directly utilize HSPGs as co-receptors for infection. Our data suggest that adenoviruses evolved to simulate the presence of physiologic HSPG ligands in order to increase infection.

  2. N-glycan signatures identified in tumor interstitial fluid and serum of breast cancer patients - association with tumor biology and clinical outcome.

    Science.gov (United States)

    Terkelsen, Thilde; Haakensen, Vilde D; Saldova, Radka; Gromov, Pavel; Hansen, Merete Kjaer; Stöckmann, Henning; Lingjaerde, Ole Christian; Børresen-Dale, Anne-Lise; Papaleo, Elena; Helland, Åslaug; Rudd, Pauline M; Gromova, Irina

    2018-04-26

    Particular N-glycan structures are known to be associated with breast malignancies by coordinating various regulatory events within the tumor and corresponding microenvironment, thus implying that N-glycan patterns may be used for cancer stratification and as predictive or prognostic biomarkers. However, the association between N-glycans secreted by breast tumor and corresponding clinical relevance remain to be elucidated. We profiled N-glycans by HILIC UPLC across a discovery dataset composed of tumor interstitial fluids (TIF, n=85), paired normal interstitial fluids (NIF, n=54) and serum samples (n=28) followed by independent evaluation, with the ultimate goal of identifying tumor-related N-glycan patterns in blood of breast cancer patients. The segregation of N-linked oligosaccharides revealed 33 compositions, which exhibited differential abundances between TIF and NIF. TIFs were depleted of bisecting N-glycans, which are known to play essential roles in tumor suppression. An increased level of simple high mannose N-glycans in TIF strongly correlated with the presence of tumor infiltrating lymphocytes within tumor. At the same time, a low level of highly complex N-glycans in TIF inversely correlated with the presence of infiltrating lymphocytes within tumor. Survival analysis showed that patients exhibiting increased TIF abundance of GP24 had better outcomes, whereas low levels of GP10, GP23, GP38, and coreF were associated with poor prognosis. Levels of GP1, GP8, GP9, GP14, GP23, GP28, GP37, GP38, and coreF were significantly correlated between TIF and paired serum samples. Cross-validation analysis using an independent serum dataset supported the observed correlation between TIF and serum, for five out of nine N-glycan groups: GP8, GP9, GP14, GP23, and coreF. Collectively, our results imply that profiling of N-glycans from proximal breast tumor fluids is a promising strategy for determining tumor-derived glyco-signature(s) in the blood. N-glycans structures

  3. Sulfated chitin and chitosan as novel biomaterials.

    Science.gov (United States)

    Jayakumar, R; Nwe, N; Tokura, S; Tamura, H

    2007-02-20

    Chitin and chitosan are known to be natural polymers and they are non-toxic, biodegradable and biocompatible. Chemical modification of chitin and chitosan with sulfate to generate new bifunctional materials is of interest because the modification would not change the fundamental skeleton of chitin and chitosan, would keep the original physicochemical and biochemical properties and finally would bring new or improved properties. The sulfated chitin and chitosan have a variety of applications, such as, adsorbing metal ions, drug delivery systems, blood compatibility, and antibacterial field. The purpose of this review is to take a closer look about the different synthetic methods and potential applications of sulfated chitin and chitosan. Based on current research and existing products, some new and futuristic approaches in this context area are discussed in detail. From the studies reviewed, we concluded that sulfated chitin and chitosan are promising materials for biomedical applications.

  4. ROE Wet Sulfate Deposition 2009-2011

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2009 to 2011. Summary data in this indicator were provided by EPA’s...

  5. Sulfate reduction and methanogenesis at a freshwater

    DEFF Research Database (Denmark)

    Iversen, Vibeke Margrethe Nyvang; Andersen, Martin Søgaard; Jakobsen, Rasmus

    The freshwater-seawater interface was studied in a ~9-m thick anaerobic aquifer located in marine sand and gravel with thin peat lenses. Very limited amounts of iron-oxides are present. Consequently, the dominating redox processes are sulfate reduction and methanogenesis, and the groundwater...... is enriched in dissolved sulfide, methane and bicarbonate. Under normal conditions the seawater-freshwater interface is found at a depth of 4 m at the coastline and reaches the bottom of the aquifer 40 m inland. However, occasional flooding of the area occurs, introducing sulfate to the aquifer. Groundwater...... chemistry was studied in a 120 m transect perpendicular to the coast. Cores were taken for radiotracer rate measurements of sulfate reduction and methanogenesis. In the saline part of the aquifer 35 m inland, sulfate reduction was the dominant process with rates of 0.1-10 mM/year. In the freshwater part 100...

  6. Can magnesium sulfate therapy impact lactogenesis?

    Science.gov (United States)

    Haldeman, W

    1993-12-01

    This case report describes a patient who ingested magnesium sulfate (MgSO4) for approximately four days as a treatment for pregnancy-induced hypertension. Stage II lactogenesis was delayed until the tenth postpartum day at which point the patient's breasts became fully engorged. No explanation for this delay was found, other than the possibility that magnesium sulfate treatment impeded lactogenesis. Implications for professionals who care for lactating women are discussed.

  7. Magnesium sulfate therapy in preeclampsia and eclampsia.

    Science.gov (United States)

    Witlin, A G; Sibai, B M

    1998-11-01

    To review the available evidence regarding efficacy, benefits, and risks of magnesium sulfate seizure prophylaxis in women with preeclampsia or eclampsia. The English-language literature in MEDLINE was searched from 1966 through February 1998 using the terms "magnesium sulfate," "seizure," "preeclampsia," "eclampsia," and "hypertension in pregnancy." Reviews of bibliographies of retrieved articles and consultation with experts in the field provided additional references. All relevant English-language clinical research articles retrieved were reviewed. Randomized controlled trials, retrospective reviews, and observational studies specifically addressing efficacy, benefits, or side effects of magnesium sulfate therapy in preeclampsia or eclampsia were chosen. Nineteen randomized controlled trials, five retrospective studies, and eight observational reports were reviewed. The criteria used for inclusion were as follows: randomized controlled trials evaluating use of magnesium sulfate in eclampsia, preeclampsia, and hypertensive disorders of pregnancy; nonrandomized studies of historical interest; "classic" observational studies; and recent retrospective studies evaluating efficacy of magnesium sulfate therapy, using relative risk and 95% confidence intervals where applicable. Magnesium sulfate therapy has been associated with increased length of labor, increased cesarean delivery rate, increased postpartum bleeding, increased respiratory depression, decreased neuromuscular transmission, and maternal death from overdose. A summary of randomized, controlled trials in women with eclampsia reveals recurrent seizures in 216 (23.1%) of 935 women treated with phenytoin or diazepam, compared with recurrent seizures in only 88 (9.4%) of 932 magnesium-treated women. Randomized controlled trials in women with severe preeclampsia collectively revealed seizures in 22 (2.8%) of 793 women treated with antihypertensive agents, compared with seizures in only seven of 815 (0

  8. Toxicity of copper sulfate and zinc sulfate to Macrobrachium lamarrel (H. Miline Edwards) (Decapoda, Palaemonidae)

    Energy Technology Data Exchange (ETDEWEB)

    Murti, R.; Shukla, G.S.

    1984-09-01

    Macrobrachium lamarrei were exposed to six different concentrations of copper sulfate and zinc sulfate solutions. The specimens showed increased activity immediately after their transfer to the test solutions. They subside their activity very soon in copper sulfate, whereas in zinc sulfate they remain active for about 2 hr frequently coming to the surface of the toxic solution. In both cases, profuse secretion of mucus has been noted on the whole body surface, but most pronounced in the gill region. The 96 h LC/sub 50/ values of copper sulfate (0.247 mg/l) and zinc sulfate (3.188 mg/l) show that copper is thirteen times more toxic to this species than zinc. The minimum concentration of zinc sulfate to initiate slight mortality was 1 mg/l while for copper the corresponding value was as low as 0.01 mg/l. The first mortality in copper sulfate solution of 0.5 mg/l was noted after 4 hr exposure in contrast to zinc sulfate where it required 6 hr in 15 mg/l solutions. 27 references, 2 tables.

  9. Effect of metakaolin on external sulfate attack

    Energy Technology Data Exchange (ETDEWEB)

    Ramlochan, T.; Thomas, M. [Toronto Univ., Dept. of Civil Engineering, ON (Canada)

    2000-07-01

    The effect of high reactivity metakaolin (HRM) on the sulfate resistance of mortars was studied. Mortar bars with three cements of varying C{sub 3}A content were used for the experiment. After a six month exposure to a 5 per cent solution of sodium sulfate, mortar bars incorporating any level of HRM as a partial replacement for a high-C{sub 3}A was considered 'moderately sulfate resistant'; mortar bars with HRM and a moderate or low C{sub 3}A content as 'high sulfate resistant'. It was also determined that for long term sulfate resistance 15 per cent HRM or more may be required, depending on the C{sub 3}A content. The performance of HRM was found to be significantly influenced by the water-cementitious material ratio, and in turn, by permeability, suggesting that HRM might increase sulfate resistance more by lowering the permeability of the concrete than by any chemical action. 7 refs., 4 tabs., 7 figs.

  10. Ammonium sulfate preparation from phosphogypsum waste

    Directory of Open Access Journals (Sweden)

    Abdel-Hakim T. Kandil

    2017-01-01

    Full Text Available The Egyptian phosphogypsum waste is treated using sulfuric acid prior the ammonium sulfate production. The relevant factors that would affect the removal efficiencies of some impurities are studied. The optimum conditions of the treatment are 8 M sulfuric acid solution and 1/4 solid/liquid ratio for 30 min contact time at 80 °C. Moreover, the optimum conditions of the ammonium sulfate preparation are 10 g of the suspended impure or purified phosphogypsum in 40 ml of 3% ammonium sulfate solution (as initiator, 1/4 solid/liquid ratio at pH7 at an addition of an excess ammonium carbonate, and 150 rpm stirring speed for 4.0 h contact time at 55 °C as well as the 5 mg of barium chloride is added to remove the radium in the ammonium sulfate product. Finally, the ammonium sulfate is crystallized and the chemical analysis of the product shows 20% nitrogen and 23.6% sulfur. Therefore, the purity of the obtained ammonium sulfate is 95% from the purified phosphogypsum.

  11. A Prominent Site of Antibody Vulnerability on HIV Envelope Incorporates a Motif Associated with CCR5 Binding and Its Camouflaging Glycans.

    Science.gov (United States)

    Sok, Devin; Pauthner, Matthias; Briney, Bryan; Lee, Jeong Hyun; Saye-Francisco, Karen L; Hsueh, Jessica; Ramos, Alejandra; Le, Khoa M; Jones, Meaghan; Jardine, Joseph G; Bastidas, Raiza; Sarkar, Anita; Liang, Chi-Hui; Shivatare, Sachin S; Wu, Chung-Yi; Schief, William R; Wong, Chi-Huey; Wilson, Ian A; Ward, Andrew B; Zhu, Jiang; Poignard, Pascal; Burton, Dennis R

    2016-07-19

    The dense patch of high-mannose-type glycans surrounding the N332 glycan on the HIV envelope glycoprotein (Env) is targeted by multiple broadly neutralizing antibodies (bnAbs). This region is relatively conserved, implying functional importance, the origins of which are not well understood. Here we describe the isolation of new bnAbs targeting this region. Examination of these and previously described antibodies to Env revealed that four different bnAb families targeted the (324)GDIR(327) peptide stretch at the base of the gp120 V3 loop and its nearby glycans. We found that this peptide stretch constitutes part of the CCR5 co-receptor binding site, with the high-mannose patch glycans serving to camouflage it from most antibodies. GDIR-glycan bnAbs, in contrast, bound both (324)GDIR(327) peptide residues and high-mannose patch glycans, which enabled broad reactivity against diverse HIV isolates. Thus, as for the CD4 binding site, bnAb effectiveness relies on circumventing the defenses of a critical functional region on Env. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Glycomic analysis of gastric carcinoma cells discloses glycans as modulators of RON receptor tyrosine kinase activation in cancer

    DEFF Research Database (Denmark)

    Mereiter, Stefan; Magalhães, Ana; Adamczyk, Barbara

    2016-01-01

    BACKGROUND: Terminal α2-3 and α2-6 sialylation of glycans precludes further chain elongation, leading to the biosynthesis of cancer relevant epitopes such as sialyl-Lewis X (SLe(X)). SLe(X) overexpression is associated with tumor aggressive phenotype and patients' poor prognosis. METHODS: MKN45...... gastric carcinoma cells transfected with the sialyltransferase ST3GAL4 were established as a model overexpressing sialylated terminal glycans. We have evaluated at the structural level the glycome and the sialoproteome of this gastric cancer cell line applying liquid chromatography and mass spectrometry...... known to be key players in malignancy. Further analysis of RON confirmed its modification with SLe(X) and the concomitant activation. SLe(X) and RON co-expression was validated in gastric tumors. CONCLUSION: The overexpression of ST3GAL4 interferes with the overall glycophenotype of cancer cells...

  13. Designed synthesis of MOF-derived magnetic nanoporous carbon materials for selective enrichment of glycans for glycomics analysis.

    Science.gov (United States)

    Sun, Nianrong; Zhang, Xiangmin; Deng, Chunhui

    2015-04-21

    In this work, magnetic nanoporous carbon (NPC) materials were synthesized by choosing a MOF as a sacrificial template and a carbon precursor. The obtained Co-ZIF-67 materials showed strong magnetic response, high surface area, a uniform size of mesopores and high carbon content. The Co-ZIF-67 materials were successfully applied to glycomics analysis by enriching N-linked glycans in bio-samples with high selectivity and efficiency.

  14. Pancreatic α-Amylase Controls Glucose Assimilation by Duodenal Retrieval through N-Glycan-specific Binding, Endocytosis, and Degradation*

    Science.gov (United States)

    Date, Kimie; Satoh, Ayano; Iida, Kaoruko; Ogawa, Haruko

    2015-01-01

    α-Amylase, a major pancreatic protein and starch hydrolase, is essential for energy acquisition. Mammalian pancreatic α-amylase binds specifically to glycoprotein N-glycans in the brush-border membrane to activate starch digestion, whereas it significantly inhibits glucose uptake by Na+/glucose cotransporter 1 (SGLT1) at high concentrations (Asanuma-Date, K., Hirano, Y., Le, N., Sano, K., Kawasaki, N., Hashii, N., Hiruta, Y., Nakayama, K., Umemura, M., Ishikawa, K., Sakagami, H., and Ogawa, H. (2012) Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 287, 23104–23118). However, how the inhibition is stopped was unknown. Here, we show a new mechanism for the regulation of intestinal glucose absorption. Immunohistochemistry revealed that α-amylase in the duodena of non-fasted, but not fasted, pigs was internalized from the pancreatic fluid and immunostained. We demonstrated that after N-glycan binding, pancreatic α-amylase underwent internalization into lysosomes in a process that was inhibited by α-mannoside. The internalized α-amylase was degraded, showing low enzymatic activity and molecular weight at the basolateral membrane. In a human intestinal Caco-2 cell line, Alexa Fluor 488-labeled pancreatic α-amylase bound to the cytomembrane was transported to lysosomes through the endocytic pathway and then disappeared, suggesting degradation. Our findings indicate that N-glycan recognition by α-amylase protects enterocytes against a sudden increase in glucose concentration and restores glucose uptake by gradual internalization, which homeostatically controls the postprandial blood glucose level. The internalization of α-amylase may also enhance the supply of amino acids required for the high turnover of small intestine epithelial cells. This study provides novel and significant insights into the control of blood sugar during the absorption

  15. Development of a data independent acquisition mass spectrometry workflow to enable glycopeptide analysis without predefined glycan compositional knowledge.

    Science.gov (United States)

    Lin, Chi-Hung; Krisp, Christoph; Packer, Nicolle H; Molloy, Mark P

    2018-02-10

    Glycoproteomics investigates glycan moieties in a site specific manner to reveal the functional roles of protein glycosylation. Identification of glycopeptides from data-dependent acquisition (DDA) relies on high quality MS/MS spectra of glycopeptide precursors and often requires manual validation to ensure confident assignments. In this study, we investigated pseudo-MRM (MRM-HR) and data-independent acquisition (DIA) as alternative acquisition strategies for glycopeptide analysis. These approaches allow data acquisition over the full MS/MS scan range allowing data re-analysis post-acquisition, without data re-acquisition. The advantage of MRM-HR over DDA for N-glycopeptide detection was demonstrated from targeted analysis of bovine fetuin where all three N-glycosylation sites were detected, which was not the case with DDA. To overcome the duty cycle limitation of MRM-HR acquisition needed for analysis of complex samples such as plasma we trialed DIA. This allowed development of a targeted DIA method to identify N-glycopeptides without pre-defined knowledge of the glycan composition, thus providing the potential to identify N-glycopeptides with unexpected structures. This workflow was demonstrated by detection of 59 N-glycosylation sites from 41 glycoproteins from a HILIC enriched human plasma tryptic digest. 21 glycoforms of IgG1 glycopeptides were identified including two truncated structures that are rarely reported. We developed a data-independent mass spectrometry workflow to identify specific glycopeptides from complex biological mixtures. The novelty is that this approach does not require glycan composition to be pre-defined, thereby allowing glycopeptides carrying unexpected glycans to be identified. This is demonstrated through the analysis of immunoglobulins in human plasma where we detected two IgG1 glycoforms that are rarely observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Correlative Fluorescence and Scanning Electron Microscopy of Labelled Core Fucosylated Glycans Using Cryosections Mounted on Carbon-Patterned Glass Slides

    Czech Academy of Sciences Publication Activity Database

    Vancová, Marie; Nebesářová, Jana

    2015-01-01

    Roč. 10, č. 12 (2015), č. článku e0145034. E-ISSN 1932-6203 R&D Projects: GA TA ČR(CZ) TE01020118 EU Projects: European Commission(XE) 278976 - ANTIGONE Institutional support: RVO:60077344 Keywords : salivary gland * n-glycans * tick * glycosylation * fucose * sheep Subject RIV: EA - Cell Biology Impact factor: 3.057, year: 2015

  17. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity.

    Science.gov (United States)

    Shewell, Lucy K; Harvey, Richard M; Higgins, Melanie A; Day, Christopher J; Hartley-Tassell, Lauren E; Chen, Austen Y; Gillen, Christine M; James, David B A; Alonzo, Francis; Torres, Victor J; Walker, Mark J; Paton, Adrienne W; Paton, James C; Jennings, Michael P

    2014-12-09

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a K(d) of 1.88 × 10(-5) M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism.

  18. DoGlycans-Tools for Preparing Carbohydrate Structures for Atomistic Simulations of Glycoproteins, Glycolipids, and Carbohydrate Polymers for GROMACS

    DEFF Research Database (Denmark)

    Danne, Reinis; Poojari, Chetan; Martinez-Seara, Hector

    2017-01-01

    Carbohydrates constitute a structurally and functionally diverse group of biological molecules and macromolecules. In cells they are involved in, e.g., energy storage, signaling, and cell-cell recognition. All of these phenomena take place in atomistic scales, thus atomistic simulation would be t...... discussed in this paper are particularly useful include, among others, the preparation of structures for glycolipids, nanocellulose, and glycans linked to glycoproteins. The molecular structures and simulation files generated by the tools are compatible with GROMACS....

  19. Neutrophil mobilization by surface-glycan altered Th17-skewing bacteria mitigates periodontal pathogen persistence and associated alveolar bone loss.

    Directory of Open Access Journals (Sweden)

    Rajendra P Settem

    Full Text Available Alveolar bone (tooth-supporting bone erosion is a hallmark of periodontitis, an inflammatory disease that often leads to tooth loss. Periodontitis is caused by a select group of pathogens that form biofilms in subgingival crevices between the gums and teeth. It is well-recognized that the periodontal pathogen Porphyromonas gingivalis in these biofilms is responsible for modeling a microbial dysbiotic state, which then initiates an inflammatory response destructive to the periodontal tissues and bone. Eradication of this pathogen is thus critical for the treatment of periodontitis. Previous studies have shown that oral inoculation in mice with an attenuated strain of the periodontal pathogen Tannerella forsythia altered in O-glycan surface composition induces a Th17-linked mobilization of neutrophils to the gingival tissues. In this study, we sought to determine if immune priming with such a Th17-biasing strain would elicit a productive neutrophil response against P. gingivalis. Our data show that inoculation with a Th17-biasing T. forsythia strain is effective in blocking P. gingivalis-persistence and associated alveolar bone loss in mice. This work demonstrates the potential of O-glycan modified Tannerella strains or their O-glycan components for harnessing Th17-mediated immunity against periodontal and other mucosal pathogens.

  20. Glycan recognition at the interface of the intestinal immune system: target for immune modulation via dietary components.

    Science.gov (United States)

    de Kivit, Sander; Kraneveld, Aletta D; Garssen, Johan; Willemsen, Linette E M

    2011-09-01

    The intestinal mucosa is constantly exposed to the luminal content, which includes micro-organisms and dietary components. Prebiotic non-digestible oligosaccharides may be supplemented to the diet to exert modulation of immune responses in the intestine. Short chain galacto- and long chain fructo-oligosaccharides (scGOS/lcFOS), functionally mimicking oligosaccharides present in human milk, have been reported to reduce the development of allergy through modulation of the intestinal microbiota and immune system. Nonetheless, the underlying working mechanisms of scGOS/lcFOS are unclear. Intestinal epithelial cells lining the mucosa are known to express carbohydrate (glycan)-binding receptors that may be involved in modulation of the mucosal immune response. This review aims to provide an overview of glycan-binding receptors, in particular galectins, which are expressed by intestinal epithelial cells and immune cells. In addition, their involvement in health and disease will be addressed, especially in food allergy and inflammatory bowel disease, diseases originating from the gastro-intestinal tract. Insight in the recognition of glycans in the intestinal tract may open new avenues for the treatment of intestinal inflammatory diseases by either nutritional concepts or pharmacological intervention. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Scavenger Receptor C-Type Lectin Binds to the Leukocyte Cell Surface Glycan Lewis By a Novel Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, H.; Taylor, M.E.; Weis, W.I.; /Stanford U., Med. School /Imperial Coll., London

    2007-07-10

    The scavenger receptor C-type lectin (SRCL) is unique in the family of class A scavenger receptors, because in addition to binding sites for oxidized lipoproteins it also contains a C-type carbohydrate-recognition domain (CRD) that interacts with specific glycans. Both human and mouse SRCL are highly specific for the Lewis(x) trisaccharide, which is commonly found on the surfaces of leukocytes and some tumor cells. Structural analysis of the CRD of mouse SRCL in complex with Lewis(x) and mutagenesis show the basis for this specificity. The interaction between mouse SRCL and Lewis(x) is analogous to the way that selectins and DC-SIGN bind to related fucosylated glycans, but the mechanism of the interaction is novel, because it is based on a primary galactose-binding site similar to the binding site in the asialoglycoprotein receptor. Crystals of the human receptor lacking bound calcium ions reveal an alternative conformation in which a glycan ligand would be released during receptor-mediated endocytosis.

  2. Chitin-Like Molecules Associate with Cryptococcus neoformans Glucuronoxylomannan To Form a Glycan Complex with Previously Unknown Properties

    Science.gov (United States)

    Ramos, Caroline L.; Fonseca, Fernanda L.; Rodrigues, Jessica; Guimarães, Allan J.; Cinelli, Leonardo P.; Miranda, Kildare; Nimrichter, Leonardo; Casadevall, Arturo; Travassos, Luiz R.

    2012-01-01

    In prior studies, we demonstrated that glucuronoxylomannan (GXM), the major capsular polysaccharide of the fungal pathogen Cryptococcus neoformans, interacts with chitin oligomers at the cell wall-capsule interface. The structural determinants regulating these carbohydrate-carbohydrate interactions, as well as the functions of these structures, have remained unknown. In this study, we demonstrate that glycan complexes composed of chitooligomers and GXM are formed during fungal growth and macrophage infection by C. neoformans. To investigate the required determinants for the assembly of chitin-GXM complexes, we developed a quantitative scanning electron microscopy-based method using different polysaccharide samples as inhibitors of the interaction of chitin with GXM. This assay revealed that chitin-GXM association involves noncovalent bonds and large GXM fibers and depends on the N-acetyl amino group of chitin. Carboxyl and O-acetyl groups of GXM are not required for polysaccharide-polysaccharide interactions. Glycan complex structures composed of cryptococcal GXM and chitin-derived oligomers were tested for their ability to induce pulmonary cytokines in mice. They were significantly more efficient than either GXM or chitin oligomers alone in inducing the production of lung interleukin 10 (IL-10), IL-17, and tumor necrosis factor alpha (TNF-α). These results indicate that association of chitin-derived structures with GXM through their N-acetyl amino groups generates glycan complexes with previously unknown properties. PMID:22562469

  3. Investigations of the toxic effects of glycans-based silver nanoparticles on different types of human cells

    Science.gov (United States)

    Panzarini, E.; Mariano, S.; Dini, L.

    2017-08-01

    The effects of glycans-capped AgNPs (30±5 nm average diameter, spherical shape) on biocompatibility and uptake was studied in relation to the glycan capping (glucose AgNPs-G, glucose/sucrose AgNPs-GS, glucose/fructose AgNPs-GF), and to the cell types (HeLa cells, lymphocytes, and HepG2 cells). Glycan capping and type of cells drive morphological changes, viability loss and type and extent of cell death induction; in addition cells response is largely influenced by the AgNPs amount. The MTT photometric method to determine cell metabolism and the analysis of the membrane integrity by Annexin V-Propidium Iodide labelling were used to quantify cell viability and cell death with different concentrations of NPs. It turns out that i) AgNPs-GF are the most toxic, whereas ii) AgNPs-GS are the less toxic NPs, probably due to the stability of glucose/sucrose capping up to 5 days in culture medium; iii) HepG2 cells are the most sensitive to the presence of NPs. A deeper investigation is necessary to explain the interesting PBLs proliferation increase observed in the presence of AgNPs-GS.

  4. Glycans expressed on Trichinella spiralis excretory-secretory antigens are important for anti-inflamatory immune response polarization.

    Science.gov (United States)

    Cvetkovic, Jelena; Ilic, Natasa; Sofronic-Milosavljevic, Ljiljana; Gruden-Movsesijan, Alisa

    2014-12-01

    Trichinella spiralis muscle larvae excretory-secretory antigens (ES L1) are most likely responsible for the induction of immune response during infection by this parasitic. The antigens bear carbohydrate structures that may contribute to immune system activation resulting in a Th2/anti-inflammatory immune response. We show that T. spiralis glycans affect the expression and the production of IL-4 and IL-10 in vivo. Alteration of carbohydrate structures on ES L1 altered dendritic cell (DC) maturation. Periodate treatment of ES L1 led to the reduction in both ERK and p38 phosphorylation which may be the cause of reduced IL-10 and IL-12p70 production. In vitro priming of naïve T cells with DCs stimulated with native and periodate-treated ES L1 emphasized the importance of intact glycans for IL-10 production. We conclude that T. spiralis glycans affect the anti-inflammatory environment and can interfere with the development of inflammatory diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives

    Science.gov (United States)

    Barras, Alexandre; Martin, Fernando Ariel; Bande, Omprakash; Baumann, Jean-Sébastien; Ghigo, Jean-Marc; Boukherroub, Rabah; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine

    2013-02-01

    Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a ``click'' chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections.Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with

  6. Coordination of Heparan Sulfate Proteoglycans with Wnt Signaling To Control Cellular Migrations and Positioning in Caenorhabditis elegans.

    Science.gov (United States)

    Saied-Santiago, Kristian; Townley, Robert A; Attonito, John D; da Cunha, Dayse S; Díaz-Balzac, Carlos A; Tecle, Eillen; Bülow, Hannes E

    2017-08-01

    Heparan sulfates (HS) are linear polysaccharides with complex modification patterns, which are covalently bound via conserved attachment sites to core proteins to form heparan sulfate proteoglycans (HSPGs). HSPGs regulate many aspects of the development and function of the nervous system, including cell migration, morphology, and network connectivity. HSPGs function as cofactors for multiple signaling pathways, including the Wnt-signaling molecules and their Frizzled receptors. To investigate the functional interactions among the HSPG and Wnt networks, we conducted genetic analyses of each, and also between these networks using five cellular migrations in the nematode Caenorhabditis elegans We find that HSPG core proteins act genetically in a combinatorial fashion dependent on the cellular contexts. Double mutant analyses reveal distinct redundancies among HSPGs for different migration events, and different cellular migrations require distinct heparan sulfate modification patterns. Our studies reveal that the transmembrane HSPG SDN-1/Syndecan functions within the migrating cell to promote cellular migrations, while the GPI-linked LON-2/Glypican functions cell nonautonomously to establish the final cellular position. Genetic analyses with the Wnt-signaling system show that (1) a given HSPG can act with different Wnts and Frizzled receptors, and that (2) a given Wnt/Frizzled pair acts with different HSPGs in a context-dependent manner. Lastly, we find that distinct HSPG and Wnt/Frizzled combinations serve separate functions to promote cellular migration and establish position of specific neurons. Our studies suggest that HSPGs use structurally diverse glycans in coordination with Wnt-signaling pathways to control multiple cellular behaviors, including cellular and axonal migrations and, cellular positioning. Copyright © 2017 by the Genetics Society of America.

  7. Oxygen isotopic fractionation during bacterial sulfate reduction

    Science.gov (United States)

    Balci, N.; Turchyn, A. V.; Lyons, T.; Bruchert, V.; Schrag, D. P.; Wall, J.

    2006-12-01

    Sulfur isotope fractionation during bacterial sulfate reduction (BSR) is understood to depend on a variety of environmental parameters, such as sulfate concentration, temperature, cell specific sulfate reduction rates, and the carbon substrate. What controls oxygen isotope fractionation during BSR is less well understood. Some studies have suggested that carbon substrate is important, whereas others concluded that there is a stoichiometric relationship between the fractionations of sulfur and oxygen during BSR. Studies of oxygen fractionation are complicated by isotopic equilibration between sulfur intermediates, particularly sulfite, and water. This process can modify the isotopic composition of the extracellular sulfate pool (δ18OSO4 ). Given this, the challenge is to distinguish between this isotopic equilibration and fractionations linked to the kinetic effects of the intercellular enzymes and the incorporation of sulfate into the bacterial cell. The δ18OSO4 , in concert with the sulfur isotope composition of sulfate (δ34SSO4), could be a powerful tool for understanding the pathways and environmental controls of BSR in natural systems. We will present δ18OSO4 data measured from batch culture growth of 14 different species of sulfate reducing bacteria for which sulfur isotope data were previously published. A general observation is that δ18OSO4 shows little isotopic change (kinetic effect during BSR and/or equilibration between sulfur intermediates and the isotopically light water (~-5‰) of the growth medium. Our present batch culture data do not allow us to convincingly isolate the magnitude and the controlling parameters of the kinetic isotope effect for oxygen. However, ongoing growth of mutant bacteria missing enzymes critical in the different steps of BSR may assist in this mission.

  8. A potential role for chondroitin sulfate/dermatan sulfate in arm regeneration in Amphiura filiformis

    NARCIS (Netherlands)

    Ramachandra, R.; Namburi, R.B.; Dupont, S.T.; Ortega-Martinez, O.; Kuppevelt, T.H. van; Lindahl, U.; Spillmann, D.

    2017-01-01

    Glycosaminoglycans (GAGs), such as chondroitin sulfate (CS) and dermatan sulfate (DS) from various vertebrate and invertebrate sources are known to be involved in diverse cellular mechanisms during repair and regenerative processes. Recently, we have identified CS/DS as the major GAG in the

  9. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

    DEFF Research Database (Denmark)

    Holmborn, Katarina; Habicher, Judith; Kasza, Zsolt

    2012-01-01

    The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation...

  10. Changes in Structure and Antigenicity of HIV-1 Env Trimers Resulting from Removal of a Conserved CD4 Binding Site-Proximal Glycan

    Science.gov (United States)

    Liang, Yu; Guttman, Miklos; Williams, James A.; Verkerke, Hans; Alvarado, Daniel

    2016-01-01

    ABSTRACT The envelope glycoprotein (Env) is the major target for HIV-1 broadly neutralizing antibodies (bNAbs). One of the mechanisms that HIV has evolved to escape the host's immune response is to mask conserved epitopes on Env with dense glycosylation. Previous studies have shown that the removal of a particular conserved glycan at N197 increases the neutralization sensitivity of the virus to antibodies targeting the CD4 binding site (CD4bs), making it a site of significant interest from the perspective of vaccine design. At present, the structural consequences that result from the removal of the N197 glycan have not been characterized. Using native-like SOSIP trimers, we examine the effects on antigenicity and local structural dynamics resulting from the removal of this glycan. A large increase in the binding of CD4bs and V3-targeting antibodies is observed for the N197Q mutant in trimeric Env, while no changes are observed with monomeric gp120. While the overall structure and thermostability are not altered, a subtle increase in the flexibility of the variable loops at the trimeric interface of adjacent protomers is evident in the N197Q mutant by hydrogen-deuterium exchange mass spectrometry. Structural modeling of the glycan chains suggests that the spatial occupancy of the N197 glycan leads to steric clashes with CD4bs antibodies in the Env trimer but not monomeric gp120. Our results indicate that the removal of the N197 glycan enhances the exposure of relevant bNAb epitopes on Env with a minimal impact on the overall trimeric structure. These findings present a simple modification for enhancing trimeric Env immunogens in vaccines. IMPORTANCE The HIV-1 Env glycoprotein presents a dense patchwork of host cell-derived N-linked glycans. This so-called glycan shield is considered to be a major protective mechanism against immune recognition. While the positions of many N-linked glycans are isolate specific, some are highly conserved and are believed to play key

  11. Changes in Structure and Antigenicity of HIV-1 Env Trimers Resulting from Removal of a Conserved CD4 Binding Site-Proximal Glycan.

    Science.gov (United States)

    Liang, Yu; Guttman, Miklos; Williams, James A; Verkerke, Hans; Alvarado, Daniel; Hu, Shiu-Lok; Lee, Kelly K

    2016-10-15

    The envelope glycoprotein (Env) is the major target for HIV-1 broadly neutralizing antibodies (bNAbs). One of the mechanisms that HIV has evolved to escape the host's immune response is to mask conserved epitopes on Env with dense glycosylation. Previous studies have shown that the removal of a particular conserved glycan at N197 increases the neutralization sensitivity of the virus to antibodies targeting the CD4 binding site (CD4bs), making it a site of significant interest from the perspective of vaccine design. At present, the structural consequences that result from the removal of the N197 glycan have not been characterized. Using native-like SOSIP trimers, we examine the effects on antigenicity and local structural dynamics resulting from the removal of this glycan. A large increase in the binding of CD4bs and V3-targeting antibodies is observed for the N197Q mutant in trimeric Env, while no changes are observed with monomeric gp120. While the overall structure and thermostability are not altered, a subtle increase in the flexibility of the variable loops at the trimeric interface of adjacent protomers is evident in the N197Q mutant by hydrogen-deuterium exchange mass spectrometry. Structural modeling of the glycan chains suggests that the spatial occupancy of the N197 glycan leads to steric clashes with CD4bs antibodies in the Env trimer but not monomeric gp120. Our results indicate that the removal of the N197 glycan enhances the exposure of relevant bNAb epitopes on Env with a minimal impact on the overall trimeric structure. These findings present a simple modification for enhancing trimeric Env immunogens in vaccines. The HIV-1 Env glycoprotein presents a dense patchwork of host cell-derived N-linked glycans. This so-called glycan shield is considered to be a major protective mechanism against immune recognition. While the positions of many N-linked glycans are isolate specific, some are highly conserved and are believed to play key functional roles. In

  12. Targeted N-glycan deletion at the receptor-binding site retains HIV Env NFL trimer integrity and accelerates the elicited antibody response.

    Science.gov (United States)

    Dubrovskaya, Viktoriya; Guenaga, Javier; de Val, Natalia; Wilson, Richard; Feng, Yu; Movsesyan, Arlette; Karlsson Hedestam, Gunilla B; Ward, Andrew B; Wyatt, Richard T

    2017-09-01

    Extensive shielding by N-glycans on the surface of the HIV envelope glycoproteins (Env) restricts B cell recognition of conserved neutralizing determinants. Elicitation of broadly neutralizing antibodies (bNAbs) in selected HIV-infected individuals reveals that Abs capable of penetrating the glycan shield can be generated by the B cell repertoire. Accordingly, we sought to determine if targeted N-glycan deletion might alter antibody responses to Env. We focused on the conserved CD4 binding site (CD4bs) since this is a known neutralizing determinant that is devoid of glycosylation to allow CD4 receptor engagement, but is ringed by surrounding N-glycans. We selectively deleted potential N-glycan sites (PNGS) proximal to the CD4bs on well-ordered clade C 16055 native flexibly linked (NFL) trimers to potentially increase recognition by naïve B cells in vivo. We generated glycan-deleted trimer variants that maintained native-like conformation and stability. Using a panel of CD4bs-directed bNAbs, we demonstrated improved accessibility of the CD4bs on the N-glycan-deleted trimer variants. We showed that pseudoviruses lacking these Env PNGSs were more sensitive to neutralization by CD4bs-specific bNAbs but remained resistant to non-neutralizing mAbs. We performed rabbit immunogenicity experiments using two approaches comparing glycan-deleted to fully glycosylated NFL trimers. The first was to delete 4 PNGS sites and then boost with fully glycosylated Env; the second was to delete 4 sites and gradually re-introduce these N-glycans in subsequent boosts. We demonstrated that the 16055 PNGS-deleted trimers more rapidly elicited serum antibodies that more potently neutralized the CD4bs-proximal-PNGS-deleted viruses in a statistically significant manner and strongly trended towards increased neutralization of fully glycosylated autologous virus. This approach elicited serum IgG capable of cross-neutralizing selected tier 2 viruses lacking N-glycans at residue N276 (natural or

  13. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti

    2013-01-01

    Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory......-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...

  14. Distribution of Glycan Motifs at the Surface of Midgut Cells in the Cotton Leafworm (Spodoptera littoralis Demonstrated by Lectin Binding

    Directory of Open Access Journals (Sweden)

    Tomasz Walski

    2017-12-01

    Full Text Available Glycans are involved in many biological phenomena, including signal transduction, cell adhesion, immune response or differentiation. Although a few papers have reported on the role of glycans in the development and proper functioning of the insect midgut, no data are available regarding the localization of the glycan structures on the surface of the cells in the gut of insects. In this paper, we analyzed the spatial distribution of glycans present on the surface of the midgut cells in larvae of the cotton leafworm Spodoptera littoralis, an important agricultural pest insect worldwide. For this purpose, we established primary midgut cell cultures, probed these individual cells that are freely suspended in liquid medium with a selection of seven fluorescently labeled lectins covering a range of different carbohydrate binding specificities [mannose oligomers (GNA and HHA, GalNAc/Gal (RSA and SSA, GlcNAc (WGA and Nictaba and Neu5Ac(α-2,6Gal/GalNAc (SNA-I], and visualized the interaction of these lectins with the different zones of the midgut cells using confocal microscopy. Our analysis focused on the typical differentiated columnar cells with a microvillar brush border at their apical side, which are dominantly present in the Lepidopteran midgut and function in food digestion and absorption, and as well as on the undifferentiated stem cells that are important for midgut development and repair. Confocal microscopy analyses showed that the GalNAc/Gal-binding lectins SSA and RSA and the terminal GlcNAc-recognizing WGA bound preferentially to the apical microvillar zone of the differentiated columnar cells as compared to the basolateral pole. The reverse result was observed for the mannose-binding lectins GNA and HHA, as well as Nictaba that binds preferentially to GlcNAc oligomers. Furthermore, differences in lectin binding to the basal and lateral zones of the cell membranes of the columnar cells were apparent. In the midgut stem cells, GNA and

  15. N-Glycan Branching Affects the Subcellular Distribution of and Inhibition of Matriptase by HAI-2/Placental Bikunin.

    Directory of Open Access Journals (Sweden)

    Ying-Jung J Lai

    Full Text Available The gene product of SPINT 2, that encodes a transmembrane, Kunitz-type serine protease inhibitor independently designated as HAI-2 or placenta bikunin (PB, is involved in regulation of sodium absorption in human gastrointestinal track. Here, we show that SPINT 2 is expressed as two species of different size (30-40- versus 25-kDa due to different N-glycans on Asn-57. The N-glycan on 25-kDa HAI-2 appears to be of the oligomannose type and that on 30-40-kDa HAI-2 to be of complex type with extensive terminal N-acetylglucosamine branching. The two different types of N-glycan differentially mask two epitopes on HAI-2 polypeptide, recognized by two different HAI-2 mAbs. The 30-40-kDa form may be mature HAI-2, and is primarily localized in vesicles/granules. The 25-kDa form is likely immature HAI-2, that remains in the endoplasmic reticulum (ER in the perinuclear regions of mammary epithelial cells. The two different N-glycans could, therefore, represent different maturation stages of N-glycosylation with the 25-kDa likely a precursor of the 30-40-kDa HAI-2, with the ratio of their levels roughly similar among a variety of cells. In breast cancer cells, a significant amount of the 30-40-kDa HAI-2 can translocate to and inhibit matriptase on the cell surface, followed by shedding of the matriptase-HAI-2 complex. The 25-kDa HAI-2 appears to have also exited the ER/Golgi, being localized at the cytoplasmic face of the plasma membrane of breast cancer cells. While the 25-kDa HAI-2 was also detected at the extracellular face of plasma membrane at very low levels it appears to have no role in matriptase inhibition probably due to its paucity on the cell surface. Our study reveals that N-glycan branching regulates HAI-2 through different subcellular distribution and subsequently access to different target proteases.

  16. Hygroscopic properties of aminium sulfate aerosols

    Science.gov (United States)

    Rovelli, Grazia; Miles, Rachael E. H.; Reid, Jonathan P.; Clegg, Simon L.

    2017-03-01

    Alkylaminium sulfates originate from the neutralisation reaction between short-chained amines and sulfuric acid and have been detected in atmospheric aerosol particles. Their physicochemical behaviour is less well characterised than their inorganic equivalent, ammonium sulfate, even though they play a role in atmospheric processes such as the nucleation and growth of new particles and cloud droplet formation. In this work, a comparative evaporation kinetics experimental technique using a cylindrical electrodynamic balance is applied to determine the hygroscopic properties of six short-chained alkylaminium sulfates, specifically mono-, di-, and tri-methylaminium sulfate and mono-, di-, and tri-ethyl aminium sulfate. This approach allows for the retrieval of a water-activity-dependent growth curve in less than 10 s, avoiding the uncertainties that can arise from the volatilisation of semi-volatile components. Measurements are made on particles > 5 µm in radius, avoiding the need to correct equilibrium measurements for droplet-surface curvature with assumed values of the droplet-surface tension. Variations in equilibrium solution droplet composition with varying water activity are reported over the range 0.5 to > 0.98, along with accurate parameterisations of solution density and refractive index. The uncertainties in water activities associated with the hygroscopicity measurements are typically 0.9 and ˜ ±1 % below 0.9, with maximum uncertainties in diameter growth factors of ±0.7 %. Comparison with previously reported measurements show deviation across the entire water activity range.

  17. LpMab-19 Recognizes Sialylated O-Glycan on Thr76 of Human Podoplanin.

    Science.gov (United States)

    Ogasawara, Satoshi; Kaneko, Mika K; Kato, Yukinari

    2016-08-26

    Human podoplanin (hPDPN) is expressed in lymphatic vessels, pulmonary type-I alveolar cells, and renal glomerulus. The hPDPN/C-type lectin-like receptor-2 (CLEC-2) interaction is involved in platelet aggregation and cancer metastasis. High expression of hPDPN in cancer cells or cancer-associated fibroblasts (CAFs) leads to a poor prognosis for cancer patients. In our previous research, we reported on several anti-hPDPN monoclonal antibodies (mAbs), including LpMab-2, LpMab-3, LpMab-7, LpMab-9, LpMab-12, LpMab-13, and LpMab-17 of mouse IgG 1 subclass, which were produced using CasMab technology. Here we produced a novel anti-hPDPN mAb LpMab-19 of mouse IgG 2b subclass. Flow cytometry revealed that the epitope of LpMab-19 includes O-glycan, which is attached to Thr76 of hPDPN. We further identified the minimum epitope of LpMab-19 as Thr76-Arg79 of hPDPN. Immunohistochemistry revealed that LpMab-19 is useful for detecting not only normal cells, including lymphatic vessels, but also glioblastoma and oral squamous cell carcinoma cells. LpMab-19 could be useful for investigating the physiological function of O-glycosylated hPDPN.

  18. Some non-cellulosic B-D-glycans from plant sources

    International Nuclear Information System (INIS)

    Mabusela, W.T.

    1987-07-01

    The structures of some non-cellulosic β-D-Glycans from three plant sources have been investigated and each was found to be characterised by a main chain consisting of β-(1→4)- linked D-pyranosyl sugars. The polysaccharides were isolated and purified using standard fractionation methods including chromatographic techniques and selective precipitation methods. Structural information was obtained by employing techniques such as methylation analysis, optical rotation measurements, mass spectrometry, 13 C n.m.r. and 1 H n.m.r. spectroscopy on the original polysaccharides and on degraded products obtained by methods such as acid- or enzyme-catalysed hydrolysis and Smith degradation. The hemicellulosic components from Agave sisalana leaves have been shown to be xylan and xyloglucan. Finally, the major polysaccharide component from the tubers of Satyrium corrifolium was characterised as a glucommanoglycan consisting of D-mannopyranosyl and D-glucopyranosyl residues in a linear chain of β-(1→4)- linkages. Electron microscopy and x-ray diffraction methods were used in this characterization

  19. The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response

    Directory of Open Access Journals (Sweden)

    Jean Dubuisson

    2011-10-01

    Full Text Available Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review.

  20. Automated glycan assembly of a S. pneumoniae serotype 3 CPS antigen

    Directory of Open Access Journals (Sweden)

    Markus W. Weishaupt

    2016-07-01

    Full Text Available Vaccines against S. pneumoniae, one of the most prevalent bacterial infections causing severe disease, rely on isolated capsular polysaccharide (CPS that are conjugated to proteins. Such isolates contain a heterogeneous oligosaccharide mixture of different chain lengths and frame shifts. Access to defined synthetic S. pneumoniae CPS structures is desirable. Known syntheses of S. pneumoniae serotype 3 CPS rely on a time-consuming and low-yielding late-stage oxidation step, or use disaccharide building blocks which limits variability. Herein, we report the first iterative automated glycan assembly (AGA of a conjugation-ready S. pneumoniae serotype 3 CPS trisaccharide. This oligosaccharide was assembled using a novel glucuronic acid building block to circumvent the need for a late-stage oxidation. The introduction of a washing step with the activator prior to each glycosylation cycle greatly increased the yields by neutralizing any residual base from deprotection steps in the synthetic cycle. This process improvement is applicable to AGA of many other oligosaccharides.

  1. The glycan-dependent ERAD machinery degrades topologically diverse misfolded proteins.

    Science.gov (United States)

    Shin, Yun-Ji; Vavra, Ulrike; Veit, Christiane; Strasser, Richard

    2018-04-01

    Many soluble and integral membrane proteins fold in the endoplasmic reticulum (ER) with the help of chaperones and folding factors. Despite these efforts, protein folding is intrinsically error prone and amino acid changes, alterations in post-translational modifications or cellular stress can cause protein misfolding. Folding-defective non-native proteins are cleared from the ER and typically undergo ER-associated degradation (ERAD). Here, we investigated whether different misfolded glycoproteins require the same set of ERAD factors and are directed to HRD1 complex-mediated degradation in plants. We generated a series of glycoprotein ERAD substrates harboring a misfolded domain from Arabidopsis STRUBBELIG or the BRASSINOSTEROID INSENSITVE 1 receptor fused to different membrane anchoring regions. We show that single pass and multispanning ERAD substrates are subjected to glycan-dependent degradation by the HRD1 complex. However, the presence of a powerful ER exit signal in the multispanning ERAD substrates causes competition with ER quality control and targeting of misfolded glycoproteins to the vacuole. Our results demonstrate that the same machinery is used for degradation of topologically different misfolded glycoproteins in the ER of plants. © 2018 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  2. IgG glycan hydrolysis by EndoS inhibits experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Benkhoucha Mahdia

    2012-09-01

    Full Text Available Abstract Studies in experimental autoimmune encephalomyelitis (EAE, a mouse model of multiple sclerosis, have shown that B cells markedly influence the course of the disease, although whether their effects are protective or pathological is a matter of debate. EndoS hydrolysis of the IgG glycan has profound effects on IgG effector functions, such as complement activation and Fc receptor binding, suggesting that the enzyme could be used as an immunomodulatory therapeutic agent against IgG-mediated diseases. We demonstrate here that EndoS has a protective effect in myelin oligodendrocyte glycoprotein peptide amino acid 35–55 (MOG35-55-induced EAE, a chronic neuroinflammatory demyelinating disorder of the central nervous system (CNS in which humoral immune responses are thought to play only a minor role. EndoS treatment in chronic MOG35-55-EAE did not impair encephalitogenic T cell priming and recruitment into the CNS of mice, consistent with a primary role of EndoS in controlling IgG effector functions. In contrast, reduced EAE severity coincided with poor serum complement activation and deposition within the spinal cord, suggesting that EndoS treatment impairs B cell effector function. These results identify EndoS as a potential therapeutic agent against antibody-mediated CNS autoimmune disorders.

  3. Regulation of Sperm Function by Oviduct Fluid and the Epithelium: Insight into the Role of Glycans.

    Science.gov (United States)

    Miller, D J

    2015-07-01

    In many vertebrates, females store sperm received at mating in specialized reservoirs until fertilization. In some species, sperm are routinely stored for up to a decade. But the structures used to store sperm vary considerably across taxa, suggesting the underlying mechanisms might be equally variable. In mammals, after mating, sperm pass through the utero-tubal junction and bind to epithelial cells of the oviduct isthmus to form a reservoir. This reservoir regulates sperm function, including viability and capacitation, ultimately affecting sperm lifespan. In addition, sperm binding to oviduct cells influences oviduct cell gene transcription and translation, perhaps to aid sperm storage and fertility. The sperm reservoir allows successful reproduction in species in which semen deposition and ovulation are not always synchronized. The focus of this review is on recent studies of the functions of oviduct fluid and of the adhesion molecules that allow sperm to adhere to the oviduct epithelium. The important of glycans on the oviduct epithelium is highlighted. © 2015 Blackwell Verlag GmbH.

  4. Bacterial Surface Glycans: Microarray and QCM Strategies for Glycophenotyping and Exploration of Recognition by Host Receptors.

    Science.gov (United States)

    Kalograiaki, Ioanna; Campanero-Rhodes, María A; Proverbio, Davide; Euba, Begoña; Garmendia, Junkal; Aastrup, Teodor; Solís, Dolores

    2018-01-01

    Bacterial surfaces are decorated with a diversity of carbohydrate structures that play important roles in the bacteria-host relationships. They may offer protection against host defense mechanisms, elicit strong antigenic responses, or serve as ligands for host receptors, including lectins of the innate immune system. Binding by these lectins may trigger defense responses or, alternatively, promote attachment, thereby enhancing infection. The outcome will depend on the particular bacterial surface landscape, which may substantially differ among species and strains. In this chapter, we describe two novel methods for exploring interactions directly on the bacterial surface, based on the generation of bacterial microarrays and quartz crystal microbalance (QCM) sensor chips. Bacterial microarrays enable profiling of accessible carbohydrate structures and screening of their recognition by host receptors, also providing information on binding avidity, while the QCM approach allows determination of binding affinity and kinetics. In both cases, the chief element is the use of entire bacterial cells, so that recognition of the bacterial glycan epitopes is explored in their natural environment. © 2018 Elsevier Inc. All rights reserved.

  5. The hepatitis C virus glycan shield and evasion of the humoral immune response.

    Science.gov (United States)

    Helle, François; Duverlie, Gilles; Dubuisson, Jean

    2011-10-01

    Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV)-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review.

  6. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entacti...

  7. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms

    DEFF Research Database (Denmark)

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community...

  8. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments

    DEFF Research Database (Denmark)

    Jørgensen, BB; Weber, A.; Zopfi, J.

    2001-01-01

    Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea sediments from the surface down to the sulfate-methane transition at 2-4 m depth. Sulfate reduction rates were measured experimentally with (SO42-)-S-35...... the process was very sluggish with turnover times of methane within the sulfate-methane transition zone of 20 yr or more. (C) 2001 Elsevier Science Ltd. All rights reserved.Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea...... oxidation accounted for 7-11% of the total sulfate reduction in slope and deep-sea sediments. Although this methane-driven sulfate reduction shaped the entire sulfate gradient, it was only equivalent to the sulfate reduction in the uppermost 1.5 cm of surface sediment. Methane oxidation was complete, yet...

  9. Mutations in Four Glycosyl Hydrolases Reveal a Highly Coordinated Pathway for Rhodopsin Biosynthesis and N-Glycan Trimming in Drosophila melanogaster

    Science.gov (United States)

    Rosenbaum, Erica E.; Vasiljevic, Eva; Brehm, Kimberley S.; Colley, Nansi Jo

    2014-01-01

    As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a β-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the

  10. Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Erica E Rosenbaum

    2014-05-01

    Full Text Available As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II, α-mannosidase-IIb (α-Man-IIb, a β-N-acetylglucosaminidase called fused lobes (Fdl, and hexosaminidase 1 (Hexo1. We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights

  11. p-Cresyl sulfate and indoxyl sulfate in pediatric patients on chronic dialysis

    Directory of Open Access Journals (Sweden)

    Hye Sun Hyun

    2013-04-01

    Full Text Available &lt;b&gt;Purpose:&lt;/b&gt; Indoxyl sulfate and p- cresyl sulfate are important protein-bound uremic retention solutes whose levels can be partially reduced by renal replacement therapy. These solutes originate from intestinal bacterial protein fermentation and are associated with cardiovascular outcomes and chronic kidney disease progression. The aims of this study were to investigate the levels of indoxyl sulfate and p- cresyl sulfate as well as the effect of probiotics on reducing the levels of uremic toxins in pediatric patients on dialysis. &lt;b&gt;Methods:&lt;/b&gt; We enrolled 20 pediatric patients undergoing chronic dialysis; 16 patients completed the study. The patients underwent a 12-week regimen of VSL#3, a high-concentration probiotic preparation, and the serum levels of indoxyl sulfate and p- cresyl sulfate were measured before treatment and at 4, 8, and 12 weeks after the regimen by using fluorescence liquid chromatography. To assess the normal range of indoxyl sulfate and p- cresyl sulfate we enrolled the 16 children with normal glomerular filtration rate who had visited an outpatient clinic for asymptomatic microscopic hematuria that had been detected by a school screening in August 2011. &lt;b&gt;Results:&lt;/b&gt; The baseline serum levels of indoxyl sulfate and p- cresyl sulfate in the patients on chronic dialysis were significantly higher than those in the children with microscopic hematuria. The baseline serum levels of p- cresyl sulfate in the peritoneal dialysis group were significantly higher than those in the hemodialysis group. There were no significant changes in the levels of these uremic solutes after 12-week VSL#3 treatment in the patients on chronic dialysis. &lt;b&gt;Conclusion:&lt;/b&gt; The levels of the uremic toxins p- cresyl sulfate and indoxyl sulfate are highly elevated in pediatric patients on dialysis, but there was no significant effect by

  12. Sulfated glycopeptide nanostructures for multipotent protein activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S.; Weiner, Joseph A.; Cook, Ralph W.; Freshman, Ryan D.; Schallmo, Michael S.; Katchko, Karina M.; Schneider, Andrew D.; Smith, Justin T.; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z.; McClendon, Mark T.; Yu, Zhilin; Stock, Stuart R.; Hsu, Wellington K.; Hsu, Erin L.; Stupp , Samuel I. (NWU)

    2017-06-19

    Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.

  13. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  14. On the evaporation of ammonium sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  15. On the evaporation of ammonium sulfate solution

    International Nuclear Information System (INIS)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-01-01

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 ± 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  16. Measurement of chemical leaching potential of sulfate from landfill disposed sulfate containing wastes.

    Science.gov (United States)

    Sun, Wenjie; Barlaz, Morton A

    2015-02-01

    A number of sulfate-containing wastes are disposed in municipal solid wastes (MSW) landfills including residues from coal, wood, and MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, the sulfate can be reduced to hydrogen sulfide which is problematic for several reasons including its low odor threshold, toxicity, and corrosive nature. The overall objective of this study was to evaluate existing protocols for the quantification of total leachable sulfate from solid samples and to compare their effectiveness and efficiency with a new protocol described in this study. Methods compared include two existing acid extraction protocols commonly used in the U.S., a pH neutral protocol that requires multiple changes of the leaching solution, and a new acid extraction method. The new acid extraction method was shown to be simple and effective to measure the leaching potential of sulfate from a range of landfill disposed sulfate-containing wastes. However, the acid extraction methods do not distinguish between sulfate and other forms of sulfur and are thus most useful when sulfate is the only form of sulfur present. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Restricted processing of CD16a/Fc γ receptor IIIa N-glycans from primary human NK cells impacts structure and function.

    Science.gov (United States)

    Patel, Kashyap R; Roberts, Jacob T; Subedi, Ganesh P; Barb, Adam W

    2018-03-09

    CD16a/Fc γ receptor IIIa is the most abundant antibody Fc receptor expressed on human natural killer (NK) cells and activates a protective cytotoxic response following engagement with antibody clustered on the surface of a pathogen or diseased tissue. Therapeutic monoclonal antibodies (mAbs) with greater Fc-mediated affinity for CD16a show superior therapeutic outcome; however, one significant factor that promotes antibody-CD16a interactions, the asparagine-linked carbohydrates ( N -glycans), remains undefined. Here, we purified CD16a from the primary NK cells of three donors and identified a large proportion of hybrid (22%) and oligomannose N -glycans (23%). These proportions indicated restricted N -glycan processing and were unlike those of the recombinant CD16a forms, which have predominantly complex-type N -glycans (82%). Tethering recombinant CD16a to the membrane by including the transmembrane and intracellular domains and via coexpression with the Fc ϵ receptor γ-chain in HEK293F cells was expected to produce N -glycoforms similar to NK cell-derived CD16a but yielded N -glycoforms different from NK cell-derived CD16a and recombinant soluble CD16a. Of note, these differences in CD16a N -glycan composition affected antibody binding: CD16a with oligomannose N -glycans bound IgG1 Fc with 12-fold greater affinity than did CD16a having primarily complex-type and highly branched N -glycans. The changes in binding activity mirrored changes in NMR spectra of the two CD16a glycoforms, indicating that CD16a glycan composition also affects the glycoprotein's structure. These results indicated that CD16a from primary human NK cells is compositionally, and likely also functionally, distinct from commonly used recombinant forms. Furthermore, our study provides critical evidence that cell lineage determines CD16a N -glycan composition and antibody-binding affinity. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Assessing the Heterogeneity of the Fc-Glycan of a Therapeutic Antibody Using an engineered FcγReceptor IIIa-Immobilized Column.

    Science.gov (United States)

    Kiyoshi, Masato; Caaveiro, Jose M M; Tada, Minoru; Tamura, Hiroko; Tanaka, Toru; Terao, Yosuke; Morante, Koldo; Harazono, Akira; Hashii, Noritaka; Shibata, Hiroko; Kuroda, Daisuke; Nagatoishi, Satoru; Oe, Seigo; Ide, Teruhiko; Tsumoto, Kouhei; Ishii-Watabe, Akiko

    2018-03-02

    The N-glycan moiety of IgG-Fc has a significant impact on multifaceted properties of antibodies such as in their effector function, structure, and stability. Numerous studies have been devoted to understanding its biological effect since the exact composition of the Fc N-glycan modulates the magnitude of effector functions such as the antibody-dependent cell mediated cytotoxicity (ADCC), and the complement-dependent cytotoxicity (CDC). To date, systematic analyses of the properties and influence of glycan variants have been of great interest. Understanding the principles on how N-glycosylation modulates those properties is important for the molecular design, manufacturing, process optimization, and quality control of therapeutic antibodies. In this study, we have separated a model therapeutic antibody into three fractions according to the composition of the N-glycan by using a novel FcγRIIIa chromatography column. Notably, Fc galactosylation was a major factor influencing the affinity of IgG-Fc to the FcγRIIIa immobilized on the column. Each antibody fraction was employed for structural, biological, and physicochemical analysis, illustrating the mechanism by which galactose modulates the affinity to FcγRIIIa. In addition, we discuss the benefits of the FcγRIIIa chromatography column to assess the heterogeneity of the N-glycan.

  19. MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays.

    Directory of Open Access Journals (Sweden)

    Thomas W Powers

    Full Text Available A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.

  20. Quantitative twoplex glycan analysis using12C6and13C6stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry.

    Science.gov (United States)

    Váradi, Csaba; Mittermayr, Stefan; Millán-Martín, Silvia; Bones, Jonathan

    2016-12-01

    Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available 12/13 C 6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for 12 C 6 'light' and 13 C 6 'heavy' 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.

  1. Determination of N-glycans by high performance liquid chromatography using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as the glycosylamine labeling reagent.

    Science.gov (United States)

    Wu, Yike; Sha, Qiuyue; Du, Juan; Wang, Chang; Zhang, Liang; Liu, Bi-Feng; Lin, Yawei; Liu, Xin

    2018-02-02

    Robust, efficient identification and accurate quantification of N-glycans are of great significance in N-glycomics analysis. Here, a simple and rapid derivatization method, based on the combination of microwave-assisted deglycosylation and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) labeling, was developed for the analysis of N-glycan by high performance liquid chromatography with fluorescence detection (HPLC-FLD). After optimizing various parameters affecting deglycosylation and derivatization by RNase B, the time for N-glycan labeling was shortened to 50 min with ∼10-fold enhancement in detection sensitivity comparing to conventional 2-aminobenzoic acid (2-AA) labeling method. Additionally, the method showed good linearity (correlation coefficients > 0.991) and reproducibility (RSD N-glycome for preliminary diagnosis of human lung cancer was conducted, where significant changes of several N-glycans corresponding to core-fucosylated, mono- and disialylated glycans have been evidenced by a series of statistical analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays.

    Science.gov (United States)

    Powers, Thomas W; Neely, Benjamin A; Shao, Yuan; Tang, Huiyuan; Troyer, Dean A; Mehta, Anand S; Haab, Brian B; Drake, Richard R

    2014-01-01

    A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.

  3. Synthesis and Characterization of Nanostructured Sulfated Zirconias

    Czech Academy of Sciences Publication Activity Database

    Lutecki, M.; Šolcová, Olga; Werner, S.; Breitkopf, C.

    2010-01-01

    Roč. 53, č. 1 (2010), s. 13-20 ISSN 0928-0707 Grant - others:DFG(DE) BR2068/2-1; DFG(DE) BR2068/2-2 Institutional research plan: CEZ:AV0Z40720504 Keywords : sulfated zirconia * template assisted synthesis * porous materials Subject RIV: CA - Inorganic Chemistry Impact factor: 1.525, year: 2010

  4. 21 CFR 558.364 - Neomycin sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... days. Amount consumed will vary depending on animal's consumption and weight. If symptoms persist after...

  5. Mechanisms and Effectivity of Sulfate Reducing Bioreactors ...

    Science.gov (United States)

    Mining-influenced water (MIW) is the main environmental challenges associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of which is the substrate composition. Chitinous materials have demonstrated high metal removal rates, particularly for the two recalcitrant MIW contaminants Zn and Mn, but their removal mechanisms need further study. We studied Cd, Fe, Zn, and Mn removal in bioactive and abiotic SRBRs to elucidate the metal removal mechanisms and the differences in metal and sulfate removal rates using a chitinous material as substrate. We found that sulfate-reducing bacteria are effective in increasing metal and sulfate removal rates and duration of operation in SRBRs, and that the main mechanism involved was metal precipitation as sulfides. The solid residues provided evidence of the presence of sulfides in the bioactive column, more specifically ZnS, according to XPS analysis. The feasibility of passive treatments with a chitinous substrate could be an important option for MIW remediation. Mining influenced water (MIW) remediation is still one of the top priorities for the agency because it addresses the most important environmental problem associated with the mining industry and that affects thousands of communities in the U.S. and worldwide. In this paper, the MIW bioremediation mechanisms are studied

  6. Determination of boron spectrophotometry in thorium sulfate

    International Nuclear Information System (INIS)

    Federgrun, L.; Abrao, A.

    1976-01-01

    A procedure for the determination of microquantities of boron in nuclear grade thorium sulfate is described. The method is based on the extraction of BF - 4 ion associated to monomethylthionine (MMT) in 1,2 - dichloroethane. The extraction of the colored BF - 4 -MMT complex does not allow the presence of sulfuric and phosphoric acids; other anions interfere seriously. This fact makes the dissolution of the thorium sulfate impracticable, since it is insoluble in both acids. On the other hand, the quantitative separation of thorium is mandatory, to avoid the precipitation of ThF 4 . To overcome this difficulty, the thorium sulfate is dissolved using a strong cationic ion exchanger, Th 4+ being totally retained into the resin. Boron is then analysed in the effluent. The procedure allows the determination of 0.2 to 10.0 microgramas of B, with a maximum error of 10%. Thorium sulfate samples with contents of 0.2 to 2.0μg B/gTh have being analysed [pt

  7. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  8. Treating poultry litter with aluminum sulfate (alum)

    Science.gov (United States)

    This is a USDA/ARS factsheet on how to treat poultry litter with aluminum sulfate (alum) to reduce ammonia emissions. Over half of the nitrogen excreted from chickens is lost to the atmosphere as ammonia before the manure is removed from the poultry houses. Research has shown that additions of alu...

  9. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS ...

    African Journals Online (AJOL)

    Four strains of eri, Samia cynthia ricini Lepidoptera: Saturniidae that can be identified morphologically and maintained at North East Institute of Science and Technology, Jorhat were characterized based on their protein profile by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and DNA by random ...

  10. METABOLISM OF SULFATE-REDUCING PROKARYOTES

    NARCIS (Netherlands)

    HANSEN, TA

    1994-01-01

    Dissimilatory sulfate reduction is carried out by a heterogeneous group of bacteria and archaea that occur in environments with temperatures up to 105 degrees C. As a group together they have the capacity to metabolize a wide variety of compounds ranging from hydrogen via typical organic

  11. Carbohydrate/glycan-binding specificity of legume lectins in respect to their proposed biological functions

    Directory of Open Access Journals (Sweden)

    Márcio Viana Ramos

    2000-01-01

    Full Text Available The lectins, proteins which specifically recognize carbohydrate moieties, have been extensively studied in many biochemical and structural aspects in order to establish the molecular basis of this non-catalytic event. On the other hand, their clinical and agricultural potentials have been growing fast. Although lectins, mainly those from legume plants, had been investigated for biological properties, studies about the physiological functions of lectins are scarce in literature. Therefore, despite the accumulated data on lectins (as proteins, the role played by these signalizing molecules is poorly discussed. In the light of our accumulated results on legume lectins, specially those obtained from plants belonging to the Diocleinae sub-tribe and available data in literature, we discuss here the main hypothesis of their functions according to their carbohydrate/glycan-binding specificity.As lectinas, proteinas que especificamente reconhecem estruturas que contém carboidratos, têm sido extensivamente estudadas em muitos aspectos bioquímicos e estruturais, objetivando estabelecer as bases moleculares deste evento não-catalítico. Por outro lado, os potenciais clínicos e agriculturais destas proteínas têm crescido rapidamente. Embora as lectinas, principalmente aquelas de legumes tenham sido bastante investigadas em suas propriedades biológicas, estudos sobre as funcões fisiológicas de lectinas são escassos na literatura. Além disto, a despeito da quantidade de dados acumulados sobre lectinas (como proteínas, o papel desempenhado por estas moléculas de sinalização é pobremente discutido. Valendo-se de nossos estudos sobre lectinas de leguminosas, principalmente da sub-tribo Diocleinae, e outros dados presentes na literatura, discutimos aqui, as principais hipóteses de suas funções com base na especificidade por carboidratos e glicanos complexos.

  12. Multivalent benzoboroxole functionalized polymers as gp120 glycan targeted microbicide entry inhibitors.

    Science.gov (United States)

    Jay, Julie I; Lai, Bonnie E; Myszka, David G; Mahalingam, Alamelu; Langheinrich, Kris; Katz, David F; Kiser, Patrick F

    2010-02-01

    Microbicides are women-controlled prophylactics for sexually transmitted infections. The most important class of microbicides target HIV-1 and contain antiviral agents formulated for topical vaginal delivery. Identification of new viral entry inhibitors that target the HIV-1 envelope is important because they can inactivate HIV-1 in the vaginal lumen before virions can come in contact with CD4+ cells in the vaginal mucosa. Carbohydrate binding agents (CBAs) demonstrate the ability to act as entry inhibitors due to their ability to bind to glycans and prevent gp120 binding to CD4+ cells. However, as proteins they present significant challenges in regard to economical production and formulation for resource-poor environments. We have synthesized water-soluble polymer CBAs that contain multiple benzoboroxole moieties. A benzoboroxole-functionalized monomer was synthesized and incorporated into linear oligomers with 2-hydroxypropylmethacrylamide (HPMAm) at different feed ratios using free radical polymerization. The benzoboroxole small molecule analogue demonstrated weak affinity for HIV-1BaL gp120 by SPR; however, the 25 mol % functionalized benzoboroxole oligomer demonstrated a 10-fold decrease in the K(D) for gp120, suggesting an increased avidity for the multivalent polymer construct. High molecular weight polymers functionalized with 25, 50, and 75 mol % benzoboroxole were synthesized and tested for their ability to neutralize HIV-1 entry for two HIV-1 clades and both R5 and X4 coreceptor tropism. All three polymers demonstrated activity against all viral strains tested with EC(50)s that decrease from 15000 nM (1500 microg mL(-1)) for the 25 mol % functionalized polymers to 11 nM (1 microg mL(-1)) for the 75 mol % benzoboroxole-functionalized polymers. These polymers exhibited minimal cytotoxicity after 24 h exposure to a human vaginal cell line.

  13. Synthetic immunostimulatory glycans interference with host cell apoptosis upon of Toxoplasma gondii infection, in vitro

    Directory of Open Access Journals (Sweden)

    S.H. Eassa

    2017-06-01

    Full Text Available Toxoplasmosis is a protozoan infection of humans and animals caused by Toxoplasma gondii, and it’s continuous public health and food safety issue. The tachyzoites (Tg of T. gondii are the most important stage, as they come in direct contact with immune cells such as a macrophage. Tg can modulate and prevent apoptosis of immune cells while promoting survival of the pathogen. Infections caused by Tg can be eradicated if immune cells could stimulate apoptosis and kill pathogens upon exposure. Apoptosis is characterized by the release of mediators, namely Caspases (Cas. New means are required for inducing apoptosis and enhance immunity in the infected host cell to control toxoplasmosis. The present study investigated whether Synthetic Immuno-stimulatory Glycans (SIGs influence Cas and Nitric oxide (NO release and led to Tg damage. Galβ1-3Gal-PAA-fluor (SIG1, Fucα1-4GlcNAcβ-PAA-fluor (SIG2 and GlcNAcβ1-3GalNAcα-PAA-fluor (SIG3 constituted samples studied principally. Murine macrophage had been exposed to the Tg then the SIGs effects on Cas and NO production were determined after 20 hours of pathogen phagocytosis. Here we report that the SIGs had potent in vitro activity against T. gondii; SIG2 was more effective than SIG1 and SIG3, representative by SIG2 treated infected macrophages can induced infected macrophages to release Cas1, 3, and 9. Maximum production of NO by infected macrophages was noticed following the expoxure to all SIGs. Therefore the present study provided the method for the selection of SIGs ligands bearing immunostimulatory factor and apoptotic stimuli properties.

  14. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production and characte...

  15. 21 CFR 172.270 - Sulfated butyl oleate.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.270 Sulfated butyl oleate. Sulfate butyl oleate may be safely...

  16. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    International Nuclear Information System (INIS)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    1989-01-01

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with [35S] sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I

  17. Transient glyco-engineering to produce recombinant IgA1 with defined N- and O-glycans in plants

    Directory of Open Access Journals (Sweden)

    Martina eDicker

    2016-01-01

    Full Text Available The production of therapeutic antibodies to combat pathogens and treat diseases such as cancer is of great interest for the biotechnology industry. The recent development of plant-based expression systems has demonstrated that plants are well-suited for the production of recombinant monoclonal antibodies with defined glycosylation. Compared to immunoglobulin G (IgG, less effort has been undertaken to express immunoglobulin A (IgA, which is the most prevalent antibody class at mucosal sites and a promising candidate for novel recombinant biopharmaceuticals with enhanced anti-tumour activity. Here, we transiently expressed recombinant human IgA1 against the VP8* rotavirus antigen in glyco-engineered deltaXT/FT Nicotiana benthamiana plants. Mass spectrometric analysis of IgA1 glycopeptides revealed the presence of complex biantennary N-glycans with terminal N-acetylglucosamine present on the N-glycosylation site of the CH2 domain in the IgA1 alpha chain. Analysis of the peptide carrying nine potential O-glycosylation sites in the IgA1 alpha chain hinge region showed the presence of plant-specific modifications including hydroxyproline formation and the attachment of pentoses. By co-expression of enzymes required for initiation and elongation of human O-glycosylation it was possible to generate disialylated mucin-type core 1 O-glycans on plant-produced IgA1. Our data demonstrate that deltaXT/FT Nicotiana benthamiana plants can be engineered towards the production of recombinant IgA1 with defined human-type N- and O-linked glycans.

  18. Glycans from Fasciola hepatica Modulate the Host Immune Response and TLR-Induced Maturation of Dendritic Cells

    Science.gov (United States)

    Rodríguez, Ernesto; Noya, Verónica; Cervi, Laura; Chiribao, María Laura; Brossard, Natalie; Chiale, Carolina; Carmona, Carlos; Giacomini, Cecilia; Freire, Teresa

    2015-01-01

    Helminths express various carbohydrate-containing glycoconjugates on their surface, and they release glycan-rich excretion/secretion products that can be very important in their life cycles, infection and pathology. Recent evidence suggests that parasite glycoconjugates could play a role in the evasion of the immune response, leading to a modified Th2-polarized immune response that favors parasite survival in the host. Nevertheless, there is limited information about the nature or function of glycans produced by the trematode Fasciola hepatica, the causative agent of fasciolosis. In this paper, we investigate whether glycosylated molecules from F. hepatica participate in the modulation of host immunity. We also focus on dendritic cells, since they are an important target of immune-modulation by helminths, affecting their activity or function. Our results indicate that glycans from F. hepatica promote the production of IL-4 and IL-10, suppressing IFNγ production. During infection, this parasite is able to induce a semi-mature phenotype of DCs expressing low levels of MHCII and secrete IL-10. Furthermore, we show that parasite glycoconjugates mediate the modulation of LPS-induced maturation of DCs since their oxidation restores the capacity of LPS-treated DCs to secrete high levels of the pro-inflammatory cytokines IL-6 and IL-12/23p40 and low levels of the anti-inflammatory cytokine IL-10. Inhibition assays using carbohydrates suggest that the immune-modulation is mediated, at least in part, by the recognition of a mannose specific-CLR that signals by recruiting the phosphatase Php2. The results presented here contribute to the understanding of the role of parasite glycosylated molecules in the modulation of the host immunity and might be useful in the design of vaccines against fasciolosis. PMID:26720149

  19. Isolation of a sulfate reducing bacterium and its application in sulfate ...

    African Journals Online (AJOL)

    The results show that the effect of C. freundii in removing sulfate was best when the temperature was 32°C, pH was 7.0, COD/SO42- was 5.0 and the initial SO42- concentration was 1500 mg/L. Also, the SRB was inoculated onto an up-flow anaerobic sludge bed (UASB) to remove sulfate in actual tannery wastewater.

  20. Aberrant expression of mucin core proteins and o-linked glycans associated with progression of pancreatic cancer

    DEFF Research Database (Denmark)

    Remmers, Neeley; Anderson, Judy M; Linde, Erin M

    2013-01-01

    Mucin expression is a common feature of most adenocarcinomas and features prominently in current attempts to improve diagnosis and therapy for pancreatic cancer and other adenocarcinomas. We investigated the expression of a number of mucin core proteins and associated O-linked glycans expressed i...... in pancreatic adenocarcinoma-sialyl Tn (STn), Tn, T antigen, sialyl Lewis A (CA19-9), sialyl Lewis C (SLeC), Lewis X (LeX), and sialyl LeX (SLeX)-during the progression of pancreatic cancer from early stages to metastatic disease....

  1. Substrate recognition and catalysis by GH47 α-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Yong; Karaveg, Khanita; Moremen, Kelley W.

    2016-11-17

    Asn-linked glycosylation of newly synthesized polypeptides occurs in the endoplasmic reticulum of eukaryotic cells. Glycan structures are trimmed and remodeled as they transit the secretory pathway, and processing intermediates play various roles as ligands for folding chaperones and signals for quality control and intracellular transport. Key steps for the generation of these trimmed intermediates are catalyzed by glycoside hydrolase family 47 (GH47) α-mannosidases that selectively cleave α1,2-linked mannose residues. Despite the sequence and structural similarities among the GH47 enzymes, the molecular basis for residue-specific cleavage remains obscure. The present studies reveal enzyme–substrate complex structures for two related GH47 α-mannosidases and provide insights into how these enzymes recognize the same substrates differently and catalyze the complementary glycan trimming reactions necessary for glycan maturation.

  2. A glycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2G12, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120

    DEFF Research Database (Denmark)

    Astronomo, Rena D; Lee, Hing-Ken; Scanlan, Christopher N

    2008-01-01

    The glycan shield of human immunodeficiency virus type 1 (HIV-1) gp120 contributes to viral evasion from humoral immune responses. However, the shield is recognized by the HIV-1 broadly neutralizing antibody (Ab), 2G12, at a relatively conserved cluster of oligomannose glycans. The discovery of 2...

  3. 21 CFR 529.1044b - Gentamicin sulfate solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentamicin sulfate solution. 529.1044b Section 529... Gentamicin sulfate solution. (a) Specifications. Each milliliter of solution contains gentamicin sulfate... solution with a gentamicin concentration of 250 to 1,000 parts per million. A concentration of 500 parts...

  4. 21 CFR 522.1484 - Neomycin sulfate sterile solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate sterile solution. 522.1484... § 522.1484 Neomycin sulfate sterile solution. (a) Specifications. Each milliliter of sterile aqueous solution contains 50 milligrams of neomycin sulfate (equivalent to 35 milligrams of neomycin base).1 1...

  5. 21 CFR 520.2158a - Streptomycin sulfate oral solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Streptomycin sulfate oral solution. 520.2158a... Streptomycin sulfate oral solution. (a) Specifications. Solution containing 25 percent streptomycin sulfate. (b... administer for more than 4 days. Prepare fresh solution daily. Calves: Withdraw 2 days before slaughter. As...

  6. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use...

  7. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use...

  8. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b...

  9. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of...

  10. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  11. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  12. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  13. Targeting N-glycan cryptic sugar moieties for broad-spectrum virus neutralization: progress in identifying conserved molecular targets in viruses of distinct phylogenetic origins.

    Science.gov (United States)

    Wang, Denong; Tang, Jin; Tang, Jiulai; Wang, Lai-Xi

    2015-03-12

    Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA), for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV), and human cytomegalovirus (HCMV). In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9)-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn). These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.

  14. The glycomic effect of N-acetylglucosaminyltransferase III overexpression in metastatic melanoma cells. GnT-III modifies highly branched N-glycans.

    Science.gov (United States)

    Link-Lenczowski, Paweł; Bubka, Monika; Balog, Crina I A; Koeleman, Carolien A M; Butters, Terry D; Wuhrer, Manfred; Lityńska, Anna

    2018-04-01

    N-acetylglucosaminyltransferase III (GnT-III) is known to catalyze N-glycan "bisection" and thereby modulate the formation of highly branched complex structures within the Golgi apparatus. While active, it inhibits the action of other GlcNAc transferases such as GnT-IV and GnT-V. Moreover, GnT-III is considered as an inhibitor of the metastatic potential of cancer cells both in vitro and in vivo. However, the effects of GnT-III may be more diverse and depend on the cellular context. We describe the detailed glycomic analysis of the effect of GnT-III overexpression in WM266-4-GnT-III metastatic melanoma cells. We used MALDI-TOF and ESI-ion-trap-MS/MS together with HILIC-HPLC of 2-AA labeled N-glycans to study the N-glycome of membrane-attached and secreted proteins. We found that the overexpression of GnT-III in melanoma leads to the modification of a broad range of N-glycan types by the introduction of the "bisecting" GlcNAc residue with highly branched complex structures among them. The presence of these unusual complex N-glycans resulted in stronger interactions of cellular glycoproteins with the PHA-L. Based on the data presented here we conclude that elevated activity of GnT-III in cancer cells does not necessarily lead to a total abrogation of the formation of highly branched glycans. In addition, the modification of pre-existing N-glycans by the introduction of "bisecting" GlcNAc can modulate their capacity to interact with carbohydrate-binding proteins such as plant lectins. Our results suggest further studies on the biological function of "bisected" oligosaccharides in cancer cell biology and their interactions with carbohydrate-binding proteins.

  15. Targeting N-Glycan Cryptic Sugar Moieties for Broad-Spectrum Virus Neutralization: Progress in Identifying Conserved Molecular Targets in Viruses of Distinct Phylogenetic Origins

    Directory of Open Access Journals (Sweden)

    Denong Wang

    2015-03-01

    Full Text Available Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA, for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV, and human cytomegalovirus (HCMV. In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn. These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.

  16. Evidence that maturation of the N-linked glycans of the respiratory syncytial virus (RSV) glycoproteins is required for virus-mediated cell fusion: The effect of α-mannosidase inhibitors on RSV infectivity

    International Nuclear Information System (INIS)

    McDonald, Terence P.; Jeffree, Chris E.; Li, Ping; Rixon, Helen W. McL.; Brown, Gaie; Aitken, James D.; MacLellan, Kirsty; Sugrue, Richard J.

    2006-01-01

    Glycan heterogeneity of the respiratory syncytial virus (RSV) fusion (F) protein was demonstrated by proteomics. The effect of maturation of the virus glycoproteins-associated glycans on virus infectivity was therefore examined using the α-mannosidase inhibitors deoxymannojirimycin (DMJ) and swainsonine (SW). In the presence of SW the N-linked glycans on the F protein appeared in a partially mature form, whereas in the presence of DMJ no maturation of the glycans was observed. Neither inhibitor had a significant effect on G protein processing or on the formation of progeny virus. Although the level of infectious virus and syncytia formation was not significantly affected by SW-treatment, DMJ-treatment correlated with a one hundred-fold reduction in virus infectivity. Our data suggest that glycan maturation of the RSV glycoproteins, in particular those on the F protein, is an important step in virus maturation and is required for virus infectivity

  17. Quantitative O-glycomics based on improvement of the one-pot method for nonreductive O-glycan release and simultaneous stable isotope labeling with 1-(d0/d5)phenyl-3-methyl-5-pyrazolone followed by mass spectrometric analysis.

    Science.gov (United States)

    Wang, Chengjian; Zhang, Ping; Jin, Wanjun; Li, Lingmei; Qiang, Shan; Zhang, Ying; Huang, Linjuan; Wang, Zhongfu

    2017-01-06

    Rapid, simple and versatile methods for quantitative analysis of glycoprotein O-glycans are urgently required for current studies on protein O-glycosylation patterns and the search for disease O-glycan biomarkers. Relative quantitation of O-glycans using stable isotope labeling followed by mass spectrometric analysis represents an ideal and promising technique. However, it is hindered by the shortage of reliable nonreductive O-glycan release methods as well as the too large or too small inconstant mass difference between the light and heavy isotope form derivatives of O-glycans, which results in difficulties during the recognition and quantitative analysis of O-glycans by mass spectrometry. Herein we report a facile and versatile O-glycan relative quantification strategy, based on an improved one-pot method that can quantitatively achieve nonreductive release and in situ chromophoric labeling of intact mucin-type O-glycans in one step. In this study, the one-pot method is optimized and applied for quantitative O-glycan release and tagging with either non-deuterated (d 0 -) or deuterated (d 5 -) 1-phenyl-3-methyl-5-pyrazolone (PMP). The obtained O-glycan derivatives feature a permanent 10-Da mass difference between the d 0 - and d 5 -PMP forms, allowing complete discrimination and comparative quantification of these isotopically labeled O-glycans by mass spectrometric techniques. Moreover, the d 0 - and d 5 -PMP derivatives of O-glycans also have a relatively high hydrophobicity as well as a strong UV adsorption, especially suitable for high-resolution separation and high-sensitivity detection by RP-HPLC-UV. We have refined the conditions for the one-pot reaction as well as the corresponding sample purification approach. The good quantitation feasibility, reliability and linearity of this strategy have been verified using bovine fetuin and porcine stomach mucin as model O-glycoproteins. Additionally, we have also successfully applied this method to the quantitative

  18. Constraining Δ33S signatures of Archean seawater sulfate with carbonate-associated sulfate

    Science.gov (United States)

    Peng, Y.; Bao, H.; Bekker, A.; Hofmann, A.

    2017-12-01

    Non-mass dependent sulfur isotope deviation of S-bearing phases in Archean sedimentary strata, and expressed as Δ33S, has a consistent pattern, i.e., sulfide (pyrite) predominantly bear positive Δ33S values, while Paleoarchean sulfate (barite) has negative Δ33S values. This pattern was later corroborated by observations of negative Δ33S values in Archean volcanogenic massive sulfide deposits and negative Δ33S values in early diagenetic nodular pyrite with a wide range of δ34S values, which is thought to be due to microbial sulfate reduction. These signatures have provided a set of initial conditions for a mechanistic interpretation at physical chemistry level. Unlike the younger geological times when large bodies of seawater evaporite deposits are common, to expand seawater sulfate records, carbonate-associated sulfate (CAS) was utilized as a proxy for ancient seawater sulfate. CAS extracted from the Archean carbonates carries positive Δ33S values. However, CAS could be derived from pyrite oxidation following exposure to modern oxidizing conditions and/or during laboratory extraction procedures. It is, therefore, important for us understanding context of the overall early earth atmospheric condition to empirically confirm whether Archean seawater sulfate was generally characterized by negative Δ33S signatures. Combined δ18O, Δ17O, δ34S, and Δ33S analyses of sequentially extracted water-leachable sulfate (WLS) and acid-leachable sulfate (ALS = CAS) and δ34S and Δ33S analyses of pyrite can help to identify the source of extracted sulfate. We studied drill-core samples of Archean carbonates from the 2.55 Ga Malmani and Campell Rand supgroups, South Africa. Our preliminary results show that 1) neither WLS nor ALS were extracted from samples with extremely low pyrite contents (less than 0.05 wt.%); 2) extractable WLS and ALS is present in samples with relatively high pyrite contents (more than 1 wt.%), and that δ34S and Δ33S values of WLS, ALS, and

  19. Structural Variation of Chondroitin Sulfate Chains Contributes to the Molecular Heterogeneity of Perineuronal Nets

    Directory of Open Access Journals (Sweden)

    Shinji Miyata

    2018-02-01

    Full Text Available Aggrecan, a chondroitin sulfate (CS proteoglycan, forms lattice-like extracellular matrix structures called perineuronal nets (PNNs. Neocortical PNNs primarily ensheath parvalbumin-expressing inhibitory neurons (parvalbumin, PV cells late in brain development. Emerging evidence indicates that PNNs promote the maturation of PV cells by enhancing the incorporation of homeobox protein Otx2 and regulating experience-dependent neural plasticity. Wisteria floribunda agglutinin (WFA, an N-acetylgalactosamine-specific plant lectin, binds to the CS chains of aggrecan and has been widely used to visualize PNNs. Although PNNs show substantial molecular heterogeneity, the importance of this heterogeneity in neural plasticity remains unknown. Here, in addition to WFA lectin, we used the two monoclonal antibodies Cat315 and Cat316, both of which recognize the glycan structures of aggrecan, to investigate the molecular heterogeneity of PNNs. WFA detected the highest number of PNNs in all cortical layers, whereas Cat315 and Cat316 labeled only a subset of PNNs. WFA+, Cat315+, and Cat316+ PNNs showed different laminar distributions in the adult visual cortex. WFA, Cat315 and Cat316 detected distinct, but partially overlapping, populations of PNNs. Based on the reactivities of these probes, we categorized PNNs into four groups. We found that two subpopulation of PNNs, one with higher and one with lower WFA-staining are differentially labeled by Cat316 and Cat315, respectively. CS chains recognized by Cat316 were diminished in mice deficient in an enzyme involved in the initiation of CS-biosynthesis. Furthermore, WFA+ and Cat316+ aggrecan were spatially segregated and formed microdomains in a single PNN. Otx2 co-localized with Cat316+ but not with WFA+ aggrecan in PNNs. Our results suggest that the heterogeneity of PNNs around PV cells may affect the functional maturation of these cells.

  20. Introduction of sulfate groups on poly(ethylene) surfaces by argon plasma immobilization of sodium alkyl sulfates

    NARCIS (Netherlands)

    Lens, J.P.; Lens, J.P.; Terlingen, J.G.A.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, Jan

    1998-01-01

    Sulfate groups were introduced at the surface of poly(ethylene) (PE) samples. This was accomplished by immobilizing a precoated layer of either sodium 10-undecene sulfate (S11(:)) or sodium dodecane sulfate (SDS) on the polymeric surface by means of an argon plasma treatment. For this purpose,

  1. Sulfate was a trace constituent of Archean seawater

    DEFF Research Database (Denmark)

    Crowe, Sean Andrew; Paris, Guillaume; Katsev, Sergei

    2014-01-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column...... Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans....

  2. Isolation and characterization of a unique sulfated ganglioside, sulfated GM1a, from rat kidney.

    Science.gov (United States)

    Tadano-Aritomi, K; Kubo, H; Ireland, P; Hikita, T; Ishizuka, I

    1998-04-01

    A novel class of sulfoglycosphingolipid, a sulfate analog of ganglioside, was isolated from mammals for the first time. This sulfated ganglioside was purified from rat kidney by column chromatographies on anion exchangers and silica beads. One-dimensional 1H NMR, compositional and permethylation analyses showed that this glycolipid has a Gg4Cer core with 1 mol each of sulfate ester and N- glycolylneuraminic acid (NeuGc) at C-3 of galactose. The major ceramide consisted of nonhydroxy fatty acids (24:0 and 22:0) and 4-hydroxysphinganine (t18:0), deduced from the compositional analysis and negative liquid secondary ion mass spectrometry (LSIMS). Mild acid hydrolysis and solvolysis produced compounds which correspond to Gg4Cer IV3-sulfate (SM1b) and II3NeuGcalpha-Gg4Cer (GM1a (NeuGc)), respectively. The abundant ions characteristic for sulfated mono- and disaccharides in high-energy collision-induced dissociation (CID) spectra were consistent with the structure at the non-reducing terminus, HSO3 -O- Hex -O- HexNAc- rather than the alternative structure, NeuGc -O- Hex -O- HexNAc-. The two-dimensional 1H NMR further evidenced the presence of a 3 -O- sulfated galactose in the molecule. From these results the complete structure was proposed to be HSO3-3Galbeta-3GalNAcbeta-4(NeuGcalpha-3)Galb eta-4Glcbeta-1Cer (II3NeuGcalpha-Gg4Cer IV3-sulfate).

  3. Sodium sulfate crystallisation monitoring using IR thermography

    Science.gov (United States)

    Vazquez, P.; Thomachot-Schneider, C.; Mouhoubi, K.; Bodnar, J.-L.; Avdelidis, N. P.; Charles, D.; Benavente, D.

    2018-03-01

    In this work, the evaporation of sodium sulfate droplets with different concentrations and at different temperatures were studied using infrared thermography (IRT). IRT allows to detect the evaporation evolution, the crystal growth and for the first time, to observe in vivo the heat release related to sodium sulfate crystallisation. A detailed study revealed that dendritic Thenardite III crystals appeared at the edge of all the crystallised droplets, though they showed a fast increase of temperature related to crystallisation only when a hydrated phase crystallised also from the droplet. The observation of the heat of crystallisation is thus directly related to the supersaturation of the droplet and consequently to temperature. In addition, IRT detection is circumscribed by the location of crystallisation. The heat can be observed and measured only when the crystallisation occurs in the interface solution - air.

  4. Aluminophosphate glasses with high sulfate content

    International Nuclear Information System (INIS)

    Stefanovsky, S.V.; Ivanov, I.A.; Gulin, A.N.

    1995-01-01

    To immobilize a high sulfate radioactive wastes a system Na 2 O-Al 2 O 3 -P 2 O 5 -SO 3 has been chosen as one where glasses have a relatively low melting points and good chemical durability. Glasses within partial system 44 Na 2 O, 20 Al 2 O 3 , (36-x)P 2 O 5 , x SO 3 have been prepared at 1,000 C. A possibility of assimilation up to 12 mole % of SO 3 has been established. The basic properties of sulfate-containing glasses as density, microhardness, thermal expansion coefficient, transformation and deformation temperatures, viscosity, electric resistivity, leach rate of ions and diffusion coefficients of 22 Na, 35 S, 90 Sr and 137 Cs have been measured. Glass structure by infrared and EPR spectroscopies has been investigated

  5. Glycan Specificity of P[19] Rotavirus and Comparison with Those of Related P Genotypes.

    Science.gov (United States)

    Liu, Yang; Ramelot, Theresa A; Huang, Pengwei; Liu, Yan; Li, Zhen; Feizi, Ten; Zhong, Weiming; Wu, Fang-Tzy; Tan, Ming; Kennedy, Michael A; Jiang, Xi

    2016-11-01

    The P[19] genotype belongs to the P[II] genogroup of group A rotaviruses (RVs). However, unlike the other P[II] RVs, which mainly infect humans, P[19] RVs commonly infect animals (pigs), making P[19] unique for the study of RV diversity and host ranges. Through in vitro binding assays and saturation transfer difference (STD) nuclear magnetic resonance (NMR), we found that P[19] could bind mucin cores 2, 4, and 6, as well as type 1 histo-blood group antigens (HBGAs). The common sequences of these glycans serve as minimal binding units, while additional residues, such as the A, B, H, and Lewis epitopes of the type 1 HBGAs, can further define the binding outcomes and therefore likely the host ranges for P[19] RVs. This complex binding property of P[19] is shared with the other three P[II] RVs (P[4], P[6], and P[8]) in that all of them recognized the type 1 HBGA precursor, although P[4] and P[8], but not P[6], also bind to mucin cores. Moreover, while essential for P[4] and P[8] binding, the addition of the Lewis epitope blocked P[6] and P[19] binding to type 1 HBGAs. Chemical-shift NMR of P[19] VP8* identified a ligand binding interface that has shifted away from the known RV P-genotype binding sites but is conserved among all P[II] RVs and two P[I] RVs (P[10] and P[12]), suggesting an evolutionary connection among these human and animal RVs. Taken together, these data are important for hypotheses on potential mechanisms for RV diversity, host ranges, and cross-species transmission. In this study, we found that our P[19] strain and other P[II] RVs recognize mucin cores and the type 1 HBGA precursors as the minimal functional units and that additional saccharides adjacent to these units can alter binding outcomes and thereby possibly host ranges. These data may help to explain why some P[II] RVs, such as P[6] and P[19], commonly infect animals but rarely humans, while others, such as the P[4] and P[8] RVs, mainly infect humans and are predominant over other P genotypes

  6. Controlled positioning of analytes and cells on a plasmonic platform for glycan sensing using surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Tabatabaei, Mohammadali; Wallace, Gregory Q; Caetano, Fabiana A; Gillies, Elizabeth R; Ferguson, Stephen S G; Lagugné-Labarthet, François

    2016-01-01

    The rise of molecular plasmonics and its application to ultrasensitive spectroscopic measurements has been enabled by the rational design and fabrication of a variety of metallic nanostructures. Advanced nano and microfabrication methods are key to the development of such structures, allowing one to tailor optical fields at the sub-wavelength scale, thereby optimizing excitation conditions for ultrasensitive detection. In this work, the control of both analyte and cell positioning on a plasmonic platform is enabled using nanofabrication methods involving patterning of fluorocarbon (FC) polymer (C 4 F 8 ) thin films on a plasmonic platform fabricated by nanosphere lithography (NSL). This provides the possibility to probe biomolecules of interest in the vicinity of cells using plasmon-mediated surface enhanced spectroscopies. In this context, we demonstrate the surface enhanced biosensing of glycan expression in different cell lines by surface enhanced Raman spectroscopy (SERS) on these plasmonic platforms functionalized with 4-mercaptophenylboronic acid (4-MPBA) as the Raman reporter. These cell lines include human embryonic kidney (HEK 293), C2C12 mouse myoblasts, and HeLa (Henrietta Lacks) cervical cancer cells. A distinct glycan expression is observed for cancer cells compared to other cell lines by confocal SERS mapping. This suggests the potential application of these versatile SERS platforms for differentiating cancerous from non-cancerous cells.

  7. Cytoplasmic peptide:N-glycanase cleaves N-glycans on a carboxypeptidase Y mutant during ERAD in Saccharomyces cerevisiae.

    Science.gov (United States)

    Hosomi, Akira; Suzuki, Tadashi

    2015-04-01

    Endoplasmic reticulum (ER)-associated degradation (ERAD) is a pathway by which misfolded or improperly assembled proteins in the ER are directed to degradation. The cytoplasmic peptide:N-glycanase (PNGase) is a deglycosylating enzyme that cleaves N-glycans from misfolded glycoproteins during the ERAD process. The mutant form of yeast carboxypeptidase Y (CPY*) is an ERAD model substrate that has been extensively studied in yeast. While a delay in the degradation of CPY* in yeast cells lacking the cytoplasmic PNGase (Png1 in yeast) was evident, the in vivo action of PNGase on CPY* has not been detected. We constructed new ERAD substrates derived from CPY*, bearing epitope tags at both N- and C-termini and examined the degradation intermediates observed in yeast cells with compromised proteasome activity. The occurrence of the PNGase-mediated deglycosylation of intact CPY* and its degradation intermediates was evident. A major endoproteolytic reaction on CPY* appears to occur between amino acid 400 and 404. The findings reported herein clearly indicate that PNGase indeed releases N-glycans from CPY* during the ERAD process in vivo. This report implies that the PNGase-mediated deglycosylation during the ERAD process may occur more abundantly than currently envisaged. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The N-glycans of yellow jacket venom hyaluronidases and the protein sequence of its major isoform in Vespula vulgaris.

    Science.gov (United States)

    Kolarich, Daniel; Léonard, Renaud; Hemmer, Wolfgang; Altmann, Friedrich

    2005-10-01

    Hyaluronidase (E.C. 3.2.1.35), one of the three major allergens of yellow jacket venom, is a glycoprotein of 45 kDa that is largely responsible for the cross-reactivity of wasp and bee venoms with sera of allergic patients. The asparagine-linked carbohydrate often appears to constitute the common IgE-binding determinant. Using a combination of MALDI MS and HPLC of 2-aminopyridine-labelled glycans, we found core-difucosylated paucimannosidic glycans to be the major species in the 43-45 kDa band of Vespula vulgaris and also in the corresponding bands of venoms from five other wasp species (V. germanica, V. maculifrons, V. pensylvanica, V. flavopilosa and V. squamosa). Concomitant peptide mapping of the V. vulgaris 43 kDa band identified the known hyaluronidase, Ves v 2 (SwissProt P49370), but only as a minor component. De novo sequencing by tandem MS revealed the predominating peptides to resemble a different, yet homologous, sequence. cDNA cloning retrieved a sequence with 58 and 59% homology to the previously known isoform and to the Dolichovespula maculata and Polistes annularis hyaluronidases. Close homologues of this new, putative hyaluronidase b (Ves v 2b) were also the major isoform in the other wasp venoms.

  9. Delineation of disease phenotypes associated with esophageal adenocarcinoma by MALDI-IMS-MS analysis of serum N-linked glycans.

    Science.gov (United States)

    Gaye, M M; Ding, T; Shion, H; Hussein, A; Hu, Y; Zhou, S; Hammoud, Z T; Lavine, B K; Mechref, Y; Gebler, J C; Clemmer, D E

    2017-05-02

    N-Linked glycans, extracted from patient sera and healthy control individuals, are analyzed by Matrix-assisted laser desorption ionization (MALDI) in combination with ion mobility spectrometry (IMS), mass spectrometry (MS) and pattern recognition methods. MALDI-IMS-MS data were collected in duplicate for 58 serum samples obtained from individuals diagnosed with Barrett's esophagus (BE, 14 patients), high-grade dysplasia (HGD, 7 patients), esophageal adenocarcinoma (EAC, 20 patients) and disease-free control (NC, 17 individuals). A combined mobility distribution of 9 N-linked glycans is established for 90 MALDI-IMS-MS spectra (training set) and analyzed using a genetic algorithm for feature selection and classification. Two models for phenotype delineation are subsequently developed and as a result, the four phenotypes (BE, HGD, EAC and NC) are unequivocally differentiated. Next, the two models are tested against 26 blind measurements. Interestingly, these models allowed for the correct phenotype prediction of as many as 20 blinds. Although applied to a limited number of blind samples, this methodology appears promising as a means of discovering molecules from serum that may have capabilities as markers of disease.

  10. Arabidopsis thaliana FLA4 functions as a glycan-stabilized soluble factor via its carboxy-proximal Fasciclin 1 domain.

    Science.gov (United States)

    Xue, Hui; Veit, Christiane; Abas, Lindy; Tryfona, Theodora; Maresch, Daniel; Ricardi, Martiniano M; Estevez, José Manuel; Strasser, Richard; Seifert, Georg J

    2017-08-01

    Fasciclin-like arabinogalactan proteins (FLAs) are involved in numerous important functions in plants but the relevance of their complex structure to physiological function and cellular fate is unresolved. Using a fully functional fluorescent version of Arabidopsis thaliana FLA4 we show that this protein is localized at the plasma membrane as well as in endosomes and soluble in the apoplast. FLA4 is likely to be GPI-anchored, is highly N-glycosylated and carries two O-glycan epitopes previously associated with arabinogalactan proteins. The activity of FLA4 was resistant against deletion of the amino-proximal fasciclin 1 domain and was unaffected by removal of the GPI-modification signal, a highly conserved N-glycan or the deletion of predicted O-glycosylation sites. Nonetheless these structural changes dramatically decreased endoplasmic reticulum (ER)-exit and plasma membrane localization of FLA4, with N-glycosylation acting at the level of ER-exit and O-glycosylation influencing post-secretory fate. We show that FLA4 acts predominantly by molecular interactions involving its carboxy-proximal fasciclin 1 domain and that its amino-proximal fasciclin 1 domain is required for stabilization of plasma membrane localization. FLA4 functions as a soluble glycoprotein via its carboxy-proximal Fas1 domain and its normal cellular trafficking depends on N- and O-glycosylation. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  11. The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition

    Science.gov (United States)

    Praissman, Jeremy L; Willer, Tobias; Sheikh, M Osman; Toi, Ants; Chitayat, David; Lin, Yung-Yao; Lee, Hane; Stalnaker, Stephanie H; Wang, Shuo; Prabhakar, Pradeep Kumar; Nelson, Stanley F; Stemple, Derek L; Moore, Steven A; Moremen, Kelley W; Campbell, Kevin P; Wells, Lance

    2016-01-01

    Multiple glycosyltransferases are essential for the proper modification of alpha-dystroglycan, as mutations in the encoding genes cause congenital/limb-girdle muscular dystrophies. Here we elucidate further the structure of an O-mannose-initiated glycan on alpha-dystroglycan that is required to generate its extracellular matrix-binding polysaccharide. This functional glycan contains a novel ribitol structure that links a phosphotrisaccharide to xylose. ISPD is a CDP-ribitol (ribose) pyrophosphorylase that generates the reduced sugar nucleotide for the insertion of ribitol in a phosphodiester linkage to the glycoprotein. TMEM5 is a UDP-xylosyl transferase that elaborates the structure. We demonstrate in a zebrafish model as well as in a human patient that defects in TMEM5 result in muscular dystrophy in combination with abnormal brain development. Thus, we propose a novel structure—a ribitol in a phosphodiester linkage—for the moiety on which TMEM5, B4GAT1, and LARGE act to generate the functional receptor for ECM proteins having LG domains. DOI: http://dx.doi.org/10.7554/eLife.14473.001 PMID:27130732

  12. Characterization of gene-activated human acid-beta-glucosidase: crystal structure, glycan composition, and internalization into macrophages.

    Science.gov (United States)

    Brumshtein, Boris; Salinas, Paul; Peterson, Brian; Chan, Victor; Silman, Israel; Sussman, Joel L; Savickas, Philip J; Robinson, Gregory S; Futerman, Anthony H

    2010-01-01

    Gaucher disease, the most common lysosomal storage disease, can be treated with enzyme replacement therapy (ERT), in which defective acid-beta-glucosidase (GlcCerase) is supplemented by a recombinant, active enzyme. The X-ray structures of recombinant GlcCerase produced in Chinese hamster ovary cells (imiglucerase, Cerezyme) and in transgenic carrot cells (prGCD) have been previously solved. We now describe the structure and characteristics of a novel form of GlcCerase under investigation for the treatment of Gaucher disease, Gene-Activated human GlcCerase (velaglucerase alfa). In contrast to imiglucerase and prGCD, velaglucerase alfa contains the native human enzyme sequence. All three GlcCerases consist of three domains, with the active site located in domain III. The distances between the carboxylic oxygens of the catalytic residues, E340 and E235, are consistent with distances proposed for acid-base hydrolysis. Kinetic parameters (K(m) and V(max)) of velaglucerase alfa and imiglucerase, as well as their specific activities, are similar. However, analysis of glycosylation patterns shows that velaglucerase alfa displays distinctly different structures from imiglucerase and prGCD. The predominant glycan on velaglucerase alfa is a high-mannose type, with nine mannose units, while imiglucerase contains a chitobiose tri-mannosyl core glycan with fucosylation. These differences in glycosylation affect cellular internalization; the rate of velaglucerase alfa internalization into human macrophages is at least 2-fold greater than that of imiglucerase.

  13. Mining High-Complexity Motifs in Glycans: A New Language To Uncover the Fine Specificities of Lectins and Glycosidases.

    Science.gov (United States)

    Klamer, Zachary; Staal, Ben; Prudden, Anthony R; Liu, Lin; Smith, David F; Boons, Geert-Jan; Haab, Brian

    2017-11-21

    Knowledge of lectin and glycosidase specificities is fundamental to the study of glycobiology. The primary specificities of such molecules can be uncovered using well-established tools, but the complex details of their specificities are difficult to determine and describe. Here we present a language and algorithm for the analysis and description of glycan motifs with high complexity. The language uses human-readable notation and wildcards, modifiers, and logical operators to define motifs of nearly any complexity. By applying the syntax to the analysis of glycan-array data, we found that the lectin AAL had higher binding where fucose groups are displayed on separate branches. The lectin SNA showed gradations in binding based on the length of the extension displaying sialic acid and on characteristics of the opposing branches. A new algorithm to evaluate changes in lectin binding upon treatment with exoglycosidases identified the primary specificities and potential fine specificities of an α1-2-fucosidase and an α2-3,6,8-neuraminidase. The fucosidase had significantly lower action where sialic acid neighbors the fucose, and the neuraminidase showed statistically lower action where α1-2 fucose neighbors the sialic acid or is on the opposing branch. The complex features identified here would have been inaccessible to analysis using previous methods. The new language and algorithms promise to facilitate the precise determination and description of lectin and glycosidase specificities.

  14. Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma

    Science.gov (United States)

    Croci, Diego O.; Salatino, Mariana; Rubinstein, Natalia; Cerliani, Juan P.; Cavallin, Lucas E.; Leung, Howard J.; Ouyang, Jing; Ilarregui, Juan M.; Toscano, Marta A.; Domaica, Carolina I.; Croci, María C.; Shipp, Margaret A.; Mesri, Enrique A.; Albini, Adriana

    2012-01-01

    Kaposi’s sarcoma (KS), a multifocal vascular neoplasm linked to human herpesvirus-8 (HHV-8/KS-associated herpesvirus [KSHV]) infection, is the most common AIDS-associated malignancy. Clinical management of KS has proven to be challenging because of its prevalence in immunosuppressed patients and its unique vascular and inflammatory nature that is sustained by viral and host-derived paracrine-acting factors primarily released under hypoxic conditions. We show that interactions between the regulatory lectin galectin-1 (Gal-1) and specific target N-glycans link tumor hypoxia to neovascularization as part of the pathogenesis of KS. Expression of Gal-1 is found to be a hallmark of human KS but not other vascular pathologies and is directly induced by both KSHV and hypoxia. Interestingly, hypoxia induced Gal-1 through mechanisms that are independent of hypoxia-inducible factor (HIF) 1α and HIF-2α but involved reactive oxygen species–dependent activation of the transcription factor nuclear factor κB. Targeted disruption of Gal-1–N-glycan interactions eliminated hypoxia-driven angiogenesis and suppressed tumorigenesis in vivo. Therapeutic administration of a Gal-1–specific neutralizing mAb attenuated abnormal angiogenesis and promoted tumor regression in mice bearing established KS tumors. Given the active search for HIF-independent mechanisms that serve to couple tumor hypoxia to pathological angiogenesis, our findings provide novel opportunities not only for treating KS patients but also for understanding and managing a variety of solid tumors. PMID:23027923

  15. Glycan specificity of the Vibrio vulnificus hemolysin lectin outlines evolutionary history of membrane targeting by a toxin family.

    Science.gov (United States)

    Kaus, Katherine; Lary, Jeffrey W; Cole, James L; Olson, Rich

    2014-07-29

    Pore-forming toxins (PFTs) are a class of pathogen-secreted molecules that oligomerize to form transmembrane channels in cellular membranes. Determining the mechanism for how PFTs bind membranes is important in understanding their role in disease and for developing possible ways to block their action. Vibrio vulnificus, an aquatic pathogen responsible for severe food poisoning and septicemia in humans, secretes a PFT called V. vulnificus hemolysin (VVH), which contains a single C-terminal targeting domain predicted to resemble a β-trefoil lectin fold. In order to understand the selectivity of the lectin for glycan motifs, we expressed the isolated VVH β-trefoil domain and used glycan-chip screening to identify that VVH displays a preference for terminal galactosyl groups including N-acetyl-d-galactosamine and N-acetyl-d-lactosamine. The X-ray crystal structure of the VVH lectin domain solved to 2.0Å resolution reveals a heptameric ring arrangement similar to the oligomeric form of the related, but inactive, lectin from Vibrio cholerae cytolysin. Structures bound to glycerol, N-acetyl-d-galactosamine, and N-acetyl-d-lactosamine outline a common and versatile mode of recognition allowing VVH to target a wide variety of cell-surface ligands. Sequence analysis in light of our structural and functional data suggests that VVH may represent an earlier step in the evolution of Vibrio PFTs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Protein O-Mannosylation in the Murine Brain: Occurrence of Mono-O-Mannosyl Glycans and Identification of New Substrates.

    Directory of Open Access Journals (Sweden)

    Markus F Bartels

    Full Text Available Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-ManAV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins.

  17. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    Science.gov (United States)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  18. Anthropogenic Sulfate, Clouds, and Climate Forcing

    Science.gov (United States)

    Ghan, Steven J.

    1997-01-01

    This research work is a joint effort between research groups at the Battelle Pacific Northwest Laboratory, Virginia Tech University, Georgia Institute of Technology, Brookhaven National Laboratory, and Texas A&M University. It has been jointly sponsored by the National Aeronautics and Space Administration, the U.S. Department of Energy, and the U.S. Environmental Protection Agency. In this research, a detailed tropospheric aerosol-chemistry model that predicts oxidant concentrations as well as concentrations of sulfur dioxide and sulfate aerosols has been coupled to a general circulation model that distinguishes between cloud water mass and cloud droplet number. The coupled model system has been first validated and then used to estimate the radiative impact of anthropogenic sulfur emissions. Both the direct radiative impact of the aerosols and their indirect impact through their influence on cloud droplet number are represented by distinguishing between sulfuric acid vapor and fresh and aged sulfate aerosols, and by parameterizing cloud droplet nucleation in terms of vertical velocity and the number concentration of aged sulfur aerosols. Natural sulfate aerosols, dust, and carbonaceous and nitrate aerosols and their influence on the radiative impact of anthropogenic sulfate aerosols, through competition as cloud condensation nuclei, will also be simulated. Parallel simulations with and without anthropogenic sulfur emissions are performed for a global domain. The objectives of the research are: To couple a state-of-the-art tropospheric aerosol-chemistry model with a global climate model. To use field and satellite measurements to evaluate the treatment of tropospheric chemistry and aerosol physics in the coupled model. To use the coupled model to simulate the radiative (and ultimately climatic) impacts of anthropogenic sulfur emissions.

  19. Optical constants of concentrated aqueous ammonium sulfate.

    Science.gov (United States)

    Remsberg, E. E.

    1973-01-01

    Using experimental data obtained from applying spectroscopy to a 39-wt-% aqueous ammonium sulfate solution, it is shown that, even though specific aerosol optical constants appear quite accurate, spectral variations may exist as functions of material composition or concentration or both. Prudent users of optical constant data must then include liberal data error estimates when performing calculations or in interpreting spectroscopic surveys of collected aerosol material.

  20. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  1. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Karim, Salim S. Abdool; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.; Kwong, Peter D.; Morris, Lynn (NHLS-South Africa); (NIH); (Witwatersrand); (KwaZulu-Natal)

    2016-08-31

    ABSTRACT

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage.

    IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of

  2. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site.

    Science.gov (United States)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S; Mkhize, Nonhlanhla N; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D; Labuschagne, Phillip; Louder, Mark K; Bailer, Robert T; Abdool Karim, Salim S; Mascola, John R; Williamson, Carolyn; Moore, Penny L; Kwong, Peter D; Morris, Lynn

    2016-11-15

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive

  3. [Reptile brain cerebrosides and cerebroside sulfates].

    Science.gov (United States)

    Levitina, M V

    1979-01-01

    Studies have been made on the content of cerebrosides and cerebroside sulfates, as well as on their fatty acid composition in the brain of reptiles, subclass Anapsida (tortoises Emys orbicularis and Testudo horsfieldi) and subclass Lepidosauria (lizards Agama caucasica, A. sanguinolenta, Phrynocephalus mystaceus and snake Natrix tesselata). Total content of cerebrosides and cerebroside sulfates is higher in the brain of Lepidosaurians than in that of Anapsids. In the brain of tortoises, the content of cerebroside fraction with hydroxy fatty acids is significantly higher than of the fraction with normal fatty acids, which is also typical of the brain of homoiothermic mammals and birds. In the brain of Lepidosaurians, concentration of hydroxycerebrosides is considerably lower than of cerebrosides with normal fatty acids, which is similar to lower vertebrates -- amphibians and fishes. Low content of hydroxycerebrosides was found in all the Lepidosaurians investigated, irrespectively of their ecological conditions, being therefore dependent on their phylogenetic position. The composition of fatty acids, both normal and hydroxyderivates, as well as that of glycolipids from the brain of Anapsids and Lepidosaurians is essentially similar. However, some interspecific differences were noted in the pattern of fatty acids of cerebrosides and cerebroside sulfates of the brain, which concern the content of saturated and long chain fatty acids.

  4. Regional transport model of atmospheric sulfates

    International Nuclear Information System (INIS)

    Rao, K.S.; Thomson, I.; Egan, B.A.

    1977-01-01

    As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO 2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO 2 and SO 4 /sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO 2 and SO 4 /sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO 2 and SO 4 /sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants

  5. Influence of the host (Cho) and of the cultivation strategy on glycan structures and molecular properties of human thyrotrophin

    International Nuclear Information System (INIS)

    Oliveira, Joao Ezequiel de

    2007-01-01

    A novel, fast and practical two-step purification strategy, consisting of a classical ion exchange and a reversed-phase high performance liquid chromatography (RP-HPLC), for rapidly obtaining CHO-derived hTSH, was set up providing r-hTSH with 70% yield and > 99% purity. A consistent increase of ∼ 60% in the secretion yields of r-hTSH-IPEN was observed by changing cell culture CO 2 conditions from 5% CO 2 to air environment (0.03% CO 2 ). The overall quality of the products obtained under both conditions was evaluated for what concerns N-glycan structure, charge isomers and biological activity in comparison with a well known recombinant biopharmaceutical (Thyrogen R ) and with a pituitary reference preparation (p-hTSH) from National Hormone and Pituitary Program (NIDDK, USA). The N-glycans identified in the recombinant preparations were of the complex type, presenting bi-, tri- and tetra-antennary structures, sometimes fucosylated, 86-88% of the identified structures being sialylated at variable levels. The three most abundant structures were monosialylated glycans, representing ∼ 69% of all identified forms in the three preparations. The main difference was found in terms of antennarity, with 8-10% more bi-antennary structures obtained in the absence of CO 2 and 7-9% more tri-antennary structures in its presence. In the case of p-hTSH, complex, high-mannose and hybrid N-glycan structures were identified, most of them containing sialic acid and/or sulphate terminal residues. The two most abundant structures were shown to contain one or two sulphate residues, one of which unexpectedly bound to galactose. The sialic acid-galactose linkage was also determined, having found that 68 3 ± 10% was in the α 2,6 and 32 ± 10% in the α2,3 conformation. No remarkable difference in charge isomers was observed between the three recombinant preparations, the isoelectric focusing profiles showing six distinct bands in the 5.39 - 7.35 pl range. A considerably different

  6. Glycomic Approach for Potential Biomarkers on Prostate Cancer: Profiling of N-Linked Glycans in Human Sera and pRNS Cell Lines

    Directory of Open Access Journals (Sweden)

    Maria Lorna A. de Leoz

    2008-01-01

    Full Text Available Prostate cancer is a leading cause of cancer death among men. Currently available screening test measures prostate-specific antigen (PSA to detect prostate cancer. However, this test produces false positive values that often lead to negative biopsies. Therefore, a more reliable diagnostic tool is needed. Glycans in serum are of particular interest as around half of all proteins are glycosylated. In this study, N-linked glycans were enzymatically released by PNGase F from prostate epithelial cell lines (pRNS expressing wild type or mutant androgen receptors and a small set of human serum samples. Released glycans were purified and partitioned into neutral and acidic components by solid phase extraction (SPE using graphitized carbon cartridges. The SPE fractions were analyzed by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI FT-ICR MS. Significant changes in some high-mannose and fucosylated biantennary complex N-linked glycans were observed in the serum of prostate cancer patients.

  7. Deglucosylation of N-linked glycans is an important step in the dissociation of calreticulin–class I–TAP complexes

    OpenAIRE

    Van Leeuwen, Jeroen E. M.; Kearse, Kelly P.

    1996-01-01

    Recent evidence indicates that newly synthesized major histocompatibility complex (MHC) class I proteins interact with calnexin, a transmembrane endoplasmic reticulum protein specific for certain glycoproteins bearing monoglucosylated glycans. Here, we studied the association of newly synthesized class I proteins with calreticulin, a soluble calnexin-related ER protein, in murine T cells. We found that, unlike calnexin–class I interactions, calreticulin assembly wi...

  8. Fucosylated glycans in the periventricular structures and the cerebrospinal fluid of the fetal rat forebrain. An autoradiographic and lectin binding histiotopic study

    Czech Academy of Sciences Publication Activity Database

    Mareš, Vladislav; Brückner, G.

    2001-01-01

    Roč. 19, č. 3 (2001), s. 297-303 ISSN 0736-5748 Institutional research plan: CEZ:AV0Z5011922 Keywords : fetal rat brain * fucosylated glycans * cerebrospinal fluid Subject RIV: FH - Neurology Impact factor: 2.156, year: 2001

  9. Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea.

    Science.gov (United States)

    Chaban, Bonnie; Voisin, Sebastien; Kelly, John; Logan, Susan M; Jarrell, Ken F

    2006-07-01

    N-linked glycosylation is recognized as an important post-translational modification across all three domains of life. However, the understanding of the genetic pathways for the assembly and attachment of N-linked glycans in eukaryotic and bacterial systems far outweighs the knowledge of comparable processes in Archaea. The recent characterization of a novel trisaccharide [beta-ManpNAcA6Thr-(1-4)-beta-GlcpNAc3NAcA-(1-3)-beta-GlcpNAc]N-linked to asparagine residues in Methanococcus voltae flagellin and S-layer proteins affords new opportunities to investigate N-linked glycosylation pathways in Archaea. In this contribution, the insertional inactivation of several candidate genes within the M. voltae genome and their resulting effects on flagellin and S-layer glycosylation are reported. Two of the candidate genes were shown to have effects on flagellin and S-layer protein molecular mass and N-linked glycan structure. Further examination revealed inactivation of either of these two genes also had effects on flagella assembly. These genes, designated agl (archaeal glycosylation) genes, include a glycosyl transferase (aglA) involved in the attachment of the terminal sugar to the glycan and an STT3 oligosaccharyl transferase homologue (aglB) involved in the transfer of the complete glycan to the flagellin and S-layer proteins. These findings document the first experimental evidence for genes involved in any glycosylation process within the domain Archaea.

  10. Migration of Fasciola hepatica newly excysted juveniles is inhibited by high-mannose and oligomannose-type N-glycan-binding lectins.

    Science.gov (United States)

    Garcia-Campos, Andres; Baird, Alan W; Mulcahy, Grace

    2017-11-01

    Fasciola hepatica has both zoonotic importance and high economic impact in livestock worldwide. After ingestion by the definitive host, the Newly Excysted Juveniles (NEJ) penetrate the intestine before reaching the peritoneal cavity. The role of some NEJ-derived proteins in invasion has been documented, but the role of NEJ glycans or lectin-binding receptors during initial infection in the gut is still unknown. To address these questions, the migration of NEJ through rat intestine was recorded at 30 min intervals up to 150 min by two ex vivo methods. Firstly, jejunal sheets were challenged with NEJ incubated with biotinylated lectins. Secondly, untreated NEJ were incubated with distal jejunum pre-treated with lectins. Both Concanavalin A (ConA) and Galanthus nivalis (GNL), which recognize mannose-type N-glycans, significantly inhibited NEJ migration across the jejunum. Most of the lectins bound to the tegument and oral sucker of the NEJ, but only ConA and GNL maintained this interaction over 150 min. None of the lectins examined significantly reduced NEJ migration when pre-incubated with jejunal sheets, suggesting that host glycans might not be essential for initial binding/recognition of the gut by NEJ. Agents capable of blocking mannose-type N-glycans on the NEJ tegument may have potential for disrupting infection.

  11. Glycomic Analysis of Life Stages of the Human Parasite Schistosoma mansoni Reveals Developmental Expression Profiles of Functional and Antigenic Glycan Motifs

    NARCIS (Netherlands)

    Smit, C.H.; van Diepen, A.; Nguyen, D.L.; Wuhrer, M.; Hoffmann, K.F.; Deelder, A.M.; Hokke, C.H.

    2015-01-01

    Glycans present on glycoproteins and glycolipids of the major human parasite Schistosoma mansoni induce innate as well as adaptive immune responses in the host. To be able to study the molecular characteristics of schistosome infections it is therefore required to determine the expression profiles

  12. A potential role for chondroitin sulfate/dermatan sulfate in arm regeneration in Amphiura filiformis.

    Science.gov (United States)

    Ramachandra, Rashmi; Namburi, Ramesh B; Dupont, Sam T; Ortega-Martinez, Olga; van Kuppevelt, Toin H; Lindahl, Ulf; Spillmann, Dorothe

    2017-05-01

    Glycosaminoglycans (GAGs), such as chondroitin sulfate (CS) and dermatan sulfate (DS) from various vertebrate and invertebrate sources are known to be involved in diverse cellular mechanisms during repair and regenerative processes. Recently, we have identified CS/DS as the major GAG in the brittlestar Amphiura filiformis, with high proportions of di- and tri-O-sulfated disaccharide units. As this echinoderm is known for its exceptional regeneration capacity, we aimed to explore the role of these GAG chains during A. filiformis arm regeneration. Analysis of CS/DS chains during the regeneration process revealed an increase in the proportion of the tri-O-sulfated disaccharides. Conversely, treatment of A. filiformis with sodium chlorate, a potent inhibitor of sulfation reactions in GAG biosynthesis, resulted in a significant reduction in arm growth rates with total inhibition at concentrations higher than 5 mM. Differentiation was less impacted by sodium chlorate exposure or even slightly increased at 1-2 mM. Based on the structural changes observed during arm regeneration we identified chondroitin synthase, chondroitin-4-O-sulfotransferase 2 and dermatan-4-O-sulfotransferase as candidate genes and sought to correlate their expression with the expression of the A. filiformis orthologue of bone morphogenetic factors, AfBMP2/4. Quantitative amplification by real-time PCR indicated increased expression of chondroitin synthase and chondroitin-4-O-sulfotransferase 2, with a corresponding increase in AfBMP2/4 during regeneration relative to nonregenerating controls. Our findings suggest that proper sulfation of GAGs is important for A. filiformis arm regeneration and that these molecules may participate in mechanisms controlling cell proliferation. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Crystallization of Chicken Egg White Lysozyme from Sulfate Salts

    Science.gov (United States)

    Forsythe, Elizabeth; Pusey, Marc

    1998-01-01

    It has been "known" that chicken egg white lysozyme does not crystallize from sulfate, particularly ammonium sulfate, salts, but instead gives amorphous precipitates. This has been the basis of several studies using lysozyme comparing macromolecule crystal nucleation and amorphous precipitation. Recently Ries-Kautt et al (Acta Cryst D50, (1994) 366) have shown that purified isoionic CEWL could be crystallized from low concentrations of sulfate at basic pH, and we subsequently showed that in fact CEWL could be purified in both the tetragonal and orthorhombic forms using ammonium sulfate over the pH range 4.0 to 7.8 (Acta Cryst D53, (1997) 795). We have now extended these observations to include a range of common sulfate salts, specifically sodium, potassium, rubidium, magnesium, and manganese sulfates. In all cases but the manganese sulfates both the familiar tetragonal and orthorhombic forms were obtained, with unit cell dimensions close to those known for the "classic" sodium chloride crystallized forms. Manganese sulfate has only yielded orthorhombic crystals to date. All crystallizations were carried out using low (typically less than or equal to 6 M) salt and high (greater than approximately 90 mg/ml) protein concentrations. As with ammonium sulfate, the tetragonal - orthorhombic phase shift appears to be a function of both the temperature and the protein concentration, with higher temperatures and concentrations favoring the orthorhombic and lower the tetragonal form. The phase change range is somewhat reduced for the sulfate salts, depending upon conditions being typically between approximately 15 - 20 C. Both the magnesium and manganese sulfates gave crystals at salt concentrations over 0.6 M as well, with magnesium sulfate giving a very slowly nucleating and growing hexagonal form. A triclinic crystal form, characterized by aggressively small crystals (typically 0.1 mm in size) has been occasionally obtained from ammonium sulfate. Finally, preliminary spot

  14. Sensitive analyses of neutral N-glycans using anion-doped liquid matrix G3CA by negative-ion matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Nishikaze, Takashi; Fukuyama, Yuko; Kawabata, Shin-ichirou; Tanaka, Koichi

    2012-07-17

    Negative-ion fragmentation of N-glycans has been proven to be more informative than that of positive-ion. In particular, it defines structural features such as the specific composition of the two antennae and the location of fucose. However, negative-ion formation of neutral N-glycans by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) remains a challenging task, and the detection limit of N-glycans in negative-ion mode is merely at the subpicomole level. Thus, practical applications are limited. In this study, combinations of five liquid matrices and nine anions were used to ionize N-glycans as anionic adducts, and their performances for sensitive analyses were evaluated. The best results were obtained with anion-doped liquid matrix G(3)CA, which consists of p-coumaric acid and 1,1,3,3-tetramethylguanidine; the detection limits of anion adducted N-glycans were 1 fmol/well for NO(3)(-), and 100 amol/well for BF(4)(-). Negative-ion MS(2) spectra of 1 fmol N-glycans were successfully acquired with a sufficient signal-to-noise ratio and were quite useful for MS-based structural determination. The anion-doped G(3)CA matrix opens the way for sensitive and rapid analysis of neutral N-glycans in negative-ion MALDI at a low femtomole level.

  15. Pichia pastoris-produced mucin-type fusion proteins with multivalent O-glycan substitution as targeting molecules for mannose-specific receptors of the immune system.

    Science.gov (United States)

    Gustafsson, Anki; Sjöblom, Magnus; Strindelius, Lena; Johansson, Tomas; Fleckenstein, Tilly; Chatzissavidou, Nathalie; Lindberg, Linda; Angström, Jonas; Rova, Ulrika; Holgersson, Jan

    2011-08-01

    Mannose-binding proteins like the macrophage mannose receptor (MR), the dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) and mannose-binding lectin (MBL) play crucial roles in both innate and adaptive immune responses. Immunoglobulin fusion proteins of the P-selectin glycoprotein ligand-1 (PSGL-1/mIgG(2b)) carrying mostly O-glycans and, as a control, the α1-acid glycoprotein (AGP/mIgG(2b)) carrying mainly N-linked glycans were stably expressed in the yeast Pichia pastoris. Pichia pastoris-produced PSGL-1/mIgG(2b) was shown to carry O-glycans that mediated strong binding to mannose-specific lectins in a lectin array and were susceptible to cleavage by α-mannosidases including an α1,2- but not an α1,6-mannosidase. Electrospray ionization ion-trap mass spectrometry confirmed the presence of O-glycans containing up to nine hexoses with the penta- and hexasaccharides being the predominant ones. α1,2- and α1,3-linked, but not α1,6-linked, mannose residues were detected by (1)H-nuclear magnetic resonance spectroscopy confirming the results of the mannosidase cleavage. The apparent equilibrium dissociation constants for binding of PNGase F-treated mannosylated PSGL-1/mIgG(2b) to MR, DC-SIGN and MBL were shown by surface plasmon resonance to be 126, 56 and 16 nM, respectively. In conclusion, PSGL-1/mIgG(2b) expressed in P. pastoris carried O-glycans mainly comprised of α-linked mannoses and with up to nine residues. It bound mannose-specific receptors with high apparent affinity and may become a potent targeting molecule for these receptors in vivo.

  16. Conditioned Medium from Malignant Breast Cancer Cells Induces an EMT-Like Phenotype and an Altered N-Glycan Profile in Normal Epithelial MCF10A Cells.

    Science.gov (United States)

    Guo, Jia; Liu, Changmei; Zhou, Xiaoman; Xu, Xiaoqiang; Deng, Linhong; Li, Xiang; Guan, Feng

    2017-08-01

    Epithelial-mesenchymal transition (EMT) is a key process in cancer development and progression. Communication (crosstalk) between cancer cells and normal (nonmalignant) cells may facilitate cancer progression. Conditioned medium (CM) obtained from cultured cancer cells contains secreted factors capable of affecting phenotypes and the behaviors of normal cells. In this study, a culture of normal breast epithelial MCF10A cells with CM from malignant breast cancer cells (termed 231-CM and 453-CM) resulted in an alteration of morphology. CM-treated MCF10A, in comparison with control cells, showed a reduced expression of the epithelial marker E-cadherin, increased expression of the mesenchymal markers fibronectin, vimentin, N -cadherin, and TWIST1, meanwhile cell proliferation and migration were enhanced while cell apoptosis was decreased. N -glycan profiles of 231-CM-treated and control MCF10A cells were compared by MALDI-TOF/TOF-MS (Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry) and a lectin microarray analysis. The treated cells showed lower levels of high-mannose-type N -glycan structures, and higher levels of complex-type and hybrid-type structures. Altered N -glycan profiles were also detected in 453-CM-treated and non-treated MCF10A cells by MALDI-TOF/TOF-MS, and we found that the expression of five fucosylated N -glycan structures ( m / z 1406.663, 1590.471, 1668.782, 2421.141, and 2988.342) and one high-mannose structure m / z 1743.722 have the same pattern as 231-CM-treated MCF10A cells. Our findings, taken together, show that CM derived from breast cancer cells induced an EMT-like process in normal epithelial cells and altered their N -glycan profile.

  17. Usefulness of monoclonal antibody HIK1083 specific for gastric O-glycan in differentiating cutaneous metastasis of gastric cancer from primary sweat gland carcinoma.

    Science.gov (United States)

    Iijima, Miwako; Nakayama, Jun; Nishizawa, Tomoko; Ishida, Akiko; Ishii, Keiko; Ota, Hiroyoshi; Katsuyama, Tsutomu; Saida, Toshiaki

    2007-10-01

    Distinguishing cutaneous metastasis of gastric cancer from primary sweat gland carcinoma can be problematic in some cases, especially with a single lesion. Previously we showed that a monoclonal antibody HIK1083 directed to alpha1,4-GlcNAc-capped O-glycans expressed in gastric gland mucin reacts to gastric cancer cells. By contrast, it was reported that immunohistochemistry for cytokeratin 20 (CK20) may be helpful in the differential diagnosis between cutaneous metastasis of gastric cancer and primary sweat gland carcinoma. Here, we immunohistochemically examined the expression of alpha1,4-GlcNAc-capped O-glycans and CK20 in 7 primary sweat gland carcinomas, 7 cutaneous metastases of gastric cancer, and 21 cutaneous metastases of other origin including breast, lung, colorectum, prostate, thyroid and pancreas using HIK1083 and CK20-specific Ks 20.8 antibodies and then assessed the usefulness of these antibodies in distinguishing cutaneous metastases of gastric cancer from primary sweat gland carcinoma and other cutaneous metastatic tumors. Both alpha1,4-GlcNAc-capped O-glycans and CK20 were positive in 5 of 7 cases of cutaneous metastases of gastric cancer, while neither alpha1,4-GlcNAc-capped O-glycans nor CK20 were detected in any of the primary sweat gland carcinomas. By contrast, alpha1,4-GlcNAc-capped O-glycans was not detected in any of the cutaneous metastases other than that of gastric cancer, whereas CK20 was detected in cutaneous metastases of colorectal cancer (2/2), breast cancer (2/13), and lung adenocarcinoma (1/3). These findings indicate that immunohistochemistry using HIK1083 antibody is superior to immunohistochemistry for CK20 in distinguishing cutaneous metastasis of gastric cancer from primary sweat gland carcinomas and other cutaneous metastases.

  18. Evaluation of ion mobility for the separation of glycoconjugate isomers due to different types of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan level.

    Science.gov (United States)

    Barroso, Albert; Giménez, Estela; Konijnenberg, Albert; Sancho, Jaime; Sanz-Nebot, Victoria; Sobott, Frank

    2018-02-20

    The study of protein glycosylation can be regarded as an intricate but very important task, making glycomics one of the most challenging and interesting, albeit under-researched, type of "omics" science. Complexity escalates remarkably when considering that carbohydrates can form severely branched structures with many different constituents, which often leads to the formation of multiple isomers. In this regard, ion mobility (IM) spectrometry has recently demonstrated its power for the separation of isomeric compounds. In the present work, the potential of traveling wave IM (TWIMS) for the separation of isomeric glycoconjugates was evaluated, using mouse transferrin (mTf) as model glycoprotein. Particularly, we aim to assess the performance of this platform for the separation of isomeric glycoconjugates due to the type of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan level. Straightforward separation of isomers was achieved with the analysis of released glycans, as opposed to the glycopeptides which showed a more complex pattern. Finally, the developed methodology was applied to serum samples of mice, to investigate its robustness when analyzing real complex samples. Ion mobility mass spectrometry is a promising analytical technique for the separation of glycoconjugate isomers due to type of sialic acid linkage. The impact of such a small modification in the glycan structure is more evident in smaller analytes, reason why the analysis of free glycans was easier compared to the intact protein or the glycopeptides. The established methodology could be regarded as starting point in the separation of highly decorated glycoconjugates. This is an important topic nowadays, as differences in the abundance of some glycan isomers could be the key for the early diagnosis, control or differentiation of certain diseases, such as inflammation or cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Global source attribution of sulfate aerosol and its radiative forcing

    Science.gov (United States)

    Yang, Y.; Wang, H.; Smith, S.; Easter, R. C.; Ma, P. L.; Qian, Y.; Li, C.; Yu, H.; Rasch, P. J.

    2017-12-01

    Sulfate is an important aerosol that poses health risks and influences climate. Due to long-range atmospheric transport, local sulfate pollution could result from intercontinental influences, making domestic efforts of improving air quality inefficient. Accurate understanding of source attribution of sulfate and its radiative forcing is important for both regional air quality improvement and global climate mitigation. In this study, for the first time, a sulfur source-tagging capability is implemented in the Community Atmosphere Model (CAM5) to quantify the global source-receptor relationships of sulfate and its direct and indirect radiative forcing (DRF and IRF). Near-surface sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate is primarily attributed to non-local sources from long-range transport. The export of SO2 and sulfate from Europe contributes 20% of sulfate concentrations over North Africa, Russia and Central Asia. Sources from the Middle East account for 20% of sulfate over North Africa, Southern Africa and Central Asia in winter and autumn, and 20% over South Asia in spring. East Asia accounts for about 50% of sulfate over Southeast Asia in winter and autumn, 15% over Russia in summer, and 10% over North America in spring. South Asia contributes to 25% of sulfate over Southeast Asia in spring. Lifetime of aerosols, together with regional export, is found to determine regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with 75% contributed by anthropogenic sulfate and 25% contributed by natural sulfate. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes the most to the total DRF. East Asia has the largest contribution of 20-30% over the Northern Hemisphere mid- and high-latitudes. A 20% perturbation of sulfate and its precursor emissions gives a sulfate IRF of -0.44 W m-2. DMS has the

  20. Sulfated fucan as support for antibiotic immobilization

    Directory of Open Access Journals (Sweden)

    P.M. Araújo

    2004-03-01

    Full Text Available Xylofucoglucuronan from Spatoglossum schröederi algae was tested as a support for antibiotic immobilization. The polysaccharide (20 mg in 6 ml was first activated using carbodiimide, 1-ethyl-3-(3-dimethylamino-propylcarbodiimide methiodide (20 mg in 2 ml, under stirring for 1 h at 25ºC and pH from 4.5 to 5.0. After adjusting the pH to 8.0, either gentamicin or amikacin (62.5 mg in 1.25 ml was then immobilized on this chemically modified polysaccharide with shaking for 24 h in a cold room. Infrared spectra of the activated carbodiimide xylofucoglucuronan showed two bands to carbonyl (C = O at 1647.9 and 1700.7 cm-1 and to amide (CÝ-NH2 groups (1662.8 and 1714.0 cm-1. Microbial characterization of the derivatives was carried out by the disk diffusion method using Staphylococcus aureus or Klebsiella pneumoniae incorporated in Müller Hinton medium. Inhibition halos of bacterial growth were observed for the antibiotics immobilized on this sulfated heteropolysaccharide before and after dialysis. However, the halos resulting from the samples after dialysis were much smaller, suggesting that dialysis removed either non-covalently bound antibiotic or other small molecules. In contrast, bacterial growth was not inhibited by either xylofucoglucuronan or its activated form or by gentamicin or amikacin after dialysis. An additional experiment was carried out which demonstrated that the sulfated heteropolysaccharide was hydrolyzed by the microorganism. Therefore, the antibiotic immobilized on xylofucoglucuronan can be proposed as a controlled drug delivery system. Furthermore, this sulfated heteropolysaccharide can be extracted easily from sea algae Spatoglossum schröederi.

  1. On effect of medium composition on strontium sulfate solubility

    International Nuclear Information System (INIS)

    Likhachev, D.S.; Keskinov, V.A.; Karmanova, E.G.; Pyartman, A.K.

    1987-01-01

    Solubility of strontium sulfate at 25 deg C in aqueous solutions of ammonium sulfate, as well as in solutions of the mixture of lanthanum nitrate and ammonium sulfate, at different acidities of the medium is determined. It is established that an increase in the medium acidity and addition of lanthanum nitrate at the constant total concentration of sulfate-ions in solution results in the increase of SrSO 4 solubility due to the binding of sulfate-ions into forms HSO 4 - and LaSO 4 + . The values of solubility product of SrSO 4 in solutions of the mixture of ammonium sulfate, strontium nitrate and lanthanum nitrate at different temperatures are determined

  2. A new calcium sulfate hemi-hydrate.

    Science.gov (United States)

    Christensen, Axel Nørlund; Jensen, Torben R; Nonat, André

    2010-02-28

    Calcium sulfate hydrates receive significant attention due to numerous large scale industrial applications. There has been a long debate on the possible existence of two gypsum hemi-hydrate polymorphs, denoted alpha- and beta-CaSO(4).0.5H(2)O. In this work, a new crystal structure of calcium sulfate hemi-hydrates is presented, denoted beta-CaSO(4).0.5H(2)O. The structure was solved using powder neutron diffraction data, the space group is P3(1) and the unit cell in a hexagonal setting a = 6.9268(1), c = 12.7565(3) A. The structure has two calcium-oxygen coordination polyhedra: Ca1 is eight coordinated and has Ca-O bond lengths in the range 2.31(3) to 2.89(2) A and Ca2 is nine coordinated and has one Ca-O(water) bond length of 2.43(3) A, and eight Ca-O bonds in the range 2.30(4) to 2.86(4) A. Two sulfate ions have S-O bonds in the range 1.47(3) to 1.49(4) A, and 1.47(3) to 1.50(3) A, respectively. The water molecule forms a hydrogen bond of 2.55(4) A to an oxygen atom in one of the sulfate ions. The structure of the hemi-hydrate beta-CaSO(4).0.5H(2)O has one-dimensional channels running parallel to the c-axis where the water molecules are located. This relates the structures of alpha- and beta-CaSO(4).0.5H(2)O and soluble anhydrite AIII-CaSO(4), which all have similar channel structures. The water molecules in the structure of beta-CaSO(4).0.5H(2)O are packed in the channels with a three fold (3(1)) symmetry in a different way as compared to the pseudo hexagonal found in the structure of alpha-CaSO(4).0.5H(2)O.

  3. Pregnenolone sulfate activates NMDA receptor channels

    Czech Academy of Sciences Publication Activity Database

    Adamusová, Eva; Cais, Ondřej; Vyklický, Vojtěch; Kudová, Eva; Chodounská, Hana; Horák, Martin; Vyklický ml., Ladislav

    2013-01-01

    Roč. 62, č. 6 (2013), s. 731-736 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP303/12/1464; GA ČR(CZ) GAP303/11/0075; GA TA ČR(CZ) TE01020028; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 ; RVO:61388963 Keywords : neurosteroids * pregnenolone sulfate * calcium imaging Subject RIV: ED - Physiology; CC - Organic Chemistry (UOCHB-X) Impact factor: 1.487, year: 2013

  4. New Bioactive Alkyl Sulfates from Mediterranean Tunicates

    Directory of Open Access Journals (Sweden)

    Marialuisa Menna

    2012-10-01

    Full Text Available Chemical investigation of two species of marine ascidians, Aplidium elegans and Ciona edwardsii, collected in Mediterranean area, led to isolation of a series of alkyl sulfates (compounds 1–5 including three new molecules 1–3. Structures of the new metabolites have been elucidated by spectroscopic analysis. Based on previously reported cytotoxic activity of these type of molecules, compounds 1–3 have been tested for their effects on the growth of two cell lines, J774A.1 (BALB/c murine macrophages and C6 (rat glioma in vitro. Compounds 1 and 2 induced selective concentration-dependent mortality on J774A.1 cells.

  5. Benzene Oxidation Coupled to Sulfate Reduction

    OpenAIRE

    Lovley, D. R.; Coates, J. D.; Woodward, J. C.; Phillips, E.

    1995-01-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to 1 (mu)M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [(sup14)C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as (sup14)CO(inf2). Molybdate, an inhibitor of sulfate r...

  6. Identification of an N-linked glycan in the V1-loop of HIV-1 gp120 influencing neutralization by anti-V3 antibodies and soluble CD4

    DEFF Research Database (Denmark)

    Gram, G J; Hemming, A; Bolmstedt, A

    1994-01-01

    Glycosylation is necessary for HIV-1 gp120 to attain a functional conformation, and individual N-linked glycans of gp120 are important, but not essential, for replication of HIV-1 in cell culture. We have constructed a mutant HIV-1 infectious clone lacking a signal for N-linked glycosylation...... in the V1-loop of HIV-1 gp120. Lack of an N-linked glycan was verified by a mobility enhancement of mutant gp120 in SDS-gel electrophoresis. The mutated virus showed no differences in either gp120 content per infectious unit or infectivity, indicating that the N-linked glycan was neither essential nor...

  7. Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites

    Directory of Open Access Journals (Sweden)

    Kateřina Valentová

    2017-10-01

    Full Text Available Sulfated quercetin derivatives are important authentic standards for metabolic studies. Quercetin-3′-O-sulfate, quercetin-4′-O-sulfate, and quercetin-3-O-sulfate as well as quercetin-di-O-sulfate mixture (quercetin-7,3′-di-O-sulfate, quercetin-7,4′-di-O-sulfate, and quercetin-3′,4′-di-O-sulfate were synthetized by arylsulfotransferase from Desulfitobacterium hafniense. Purified monosulfates and disulfates were fully characterized using MS and NMR and tested for their 1,1-diphenyl-2-picrylhydrazyl (DPPH, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+ and N,N-dimethyl-p-phenylenediamine (DMPD radical scavenging, Folin-Ciocalteau reduction (FCR, ferric reducing antioxidant power (FRAP, and anti-lipoperoxidant activities in rat liver microsomes damaged by tert-butylhydroperoxide. Although, as expected, the sulfated metabolites were usually less active than quercetin, they remained still effective antiradical and reducing agents. Quercetin-3′-O-sulfate was more efficient than quercetin-4′-O-sulfate in DPPH and FCR assays. In contrast, quercetin-4′-O-sulfate was the best ferric reductant and lipoperoxidation inhibitor. The capacity to scavenge ABTS+• and DMPD was comparable for all substances, except for disulfates, which were the most efficient. Quantum calculations and molecular dynamics simulations on membrane models supported rationalization of free radical scavenging and lipid peroxidation inhibition. These results clearly showed that individual metabolites of food bioactives can markedly differ in their biological activity. Therefore, a systematic and thorough investigation of all bioavailable metabolites with respect to native compounds is needed when evaluating food health benefits.

  8. Sulfation of ractopamine and salbutamol by the human cytosolic sulfotransferases

    OpenAIRE

    Ko, KyoungA; Kurogi, Katsuhisa; Davidson, Garrett; Liu, Ming-Yih; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2012-01-01

    Feed additives such as ractopamine and salbutamol are pharmacologically active compounds, acting primarily as β-adrenergic agonists. This study was designed to investigate whether the sulfation of ractopamine and salbutamol may occur under the metabolic conditions and to identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating two major feed additive compounds, ractopamine and salbutamol. A metabolic labelling study showed the generation and release of [35S]sulfate...

  9. Sulfated oligosaccharide structures, as determined by NMR techniques

    International Nuclear Information System (INIS)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J.; Cerezo, A.S.

    1997-01-01

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a λ-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author)

  10. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    Science.gov (United States)

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  11. Glycan Stimulation Enables Purification of Prostate Cancer Circulating Tumor Cells on PEDOT NanoVelcro Chips for RNA Biomarker Detection.

    Science.gov (United States)

    Shen, Mo-Yuan; Chen, Jie-Fu; Luo, Chun-Hao; Lee, Sangjun; Li, Cheng-Hsuan; Yang, Yung-Ling; Tsai, Yu-Han; Ho, Bo-Cheng; Bao, Li-Rong; Lee, Tien-Jung; Jan, Yu Jen; Zhu, Ya-Zhen; Cheng, Shirley; Feng, Felix Y; Chen, Peilin; Hou, Shuang; Agopian, Vatche; Hsiao, Yu-Sheng; Tseng, Hsian-Rong; Posadas, Edwin M; Yu, Hsiao-Hua

    2018-02-01

    A glycan-stimulated and poly(3,4-ethylene-dioxythiophene)s (PEDOT)-based nanomaterial platform is fabricated to purify circulating tumor cells (CTCs) from blood samples of prostate cancer (PCa) patients. This new platform, phenylboronic acid (PBA)-grafted PEDOT NanoVelcro, combines the 3D PEDOT nanosubstrate, which greatly enhances CTC capturing efficiency, with a poly(EDOT-PBA-co-EDOT-EG3) interfacial layer, which not only provides high specificity for CTC capture upon antibody conjugation but also enables competitive binding of sorbitol to gently release the captured cells. CTCs purified by this PEDOT NanoVelcro chip provide well-preserved RNA transcripts for the analysis of the expression level of several PCa-specific RNA biomarkers, which may provide clinical insights into the disease. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Toxocara canis glycans influence antigen recognition by mouse IgG1 and IgM antibodies.

    Science.gov (United States)

    Długosz, Ewa; Wiśniewski, Marcin

    2016-01-01

    The impact of sugar moieties of Toxocara canis glycoprotein antigens on their recognition by infected mouse antibodies was investigated in this study. Native TES and recombinant Toxocara mucins generated in Pichia pastoris yeast as well as their deglycosylated forms were used in ELISA. TES and recombinant mucins were equally recognized by T. canis infected mouse IgG1 antibodies. IgM immunoglobulins predominantly recognized TES antigens. Among mucins recognition of Tc-MUC-4 was the most significant. Deglycosylation of antigens resulted in significant loss of IgM and IgG1 reactivity to TES, mucins, Tc-MUC-3 and Tc-MUC-4. The presence of sugar moieties had no influence on IgE binding to native or recombinant T. canis antigens. Our results suggest that glycans are involved in epitope formation what should be taken into consideration in production of recombinant helminth antigens for diagnostic purposes.

  13. An efficient synthesis of linear β-(1→6)-galactan oligosaccharides related to plant cell wall glycans

    DEFF Research Database (Denmark)

    Andersen, Mathias Christian Franch; Arentoft, Camilla Anna Søholt; Boos, Irene

    2017-01-01

    Galactans are linear structures mainly found in arabinogalactan glycans and RG-I side chains. As a follow-up to our work on both β-(1→3)-linked and β-(1→4)-linked galactans, we herein report a convergent synthesis of β-(1→6)-galactan using our previously synthesized 4,6-benzylidene protected...... disaccharide as a key building block. However, the regioselective reductive opening of the 4,6-benzylidene protected disaccharide turned out to become more challenging as the length of the oligosaccharide increased and a second differential protected disaccharide building block carrying a chloroacetyl group...... on the 6-position was used to elongate the chain in a more efficient way....

  14. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Meier, P.J.; Valantinas, J.; Hugentobler, G.; Rahm, I. (University Hospital, Zurich (Switzerland))

    1987-10-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient but not pH or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium (overshoot). Initial rates of this bicarbonate gradient-driven ({sup 35}S)-sulfate uptake were saturable with increasing concentrations of sulfate and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide, 4-acetamideo-4{prime}-isothiocyanostilbene-2,2{prime}-disulfonic acid, and 4,4{prime}-diisothiocyanostilbene-2,2{prime}-disulfonic acid (IC{sub 50}, {approximately}40 {mu}M). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. These findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation.

  15. Biodegradability and biodegradation pathways of endosulfan and endosulfan sulfate.

    Science.gov (United States)

    Kataoka, Ryota; Takagi, Kazuhiro

    2013-04-01

    Endosulfan and endosulfan sulfate are persistent organic pollutants that cause serious environmental problems. Although these compounds are already prohibited in many countries, residues can be detected in soils with a history of endosulfan application. Endosulfan is transformed in the environment into endosulfan sulfate, which is a toxic and persistent metabolite. However, some microorganisms can degrade endosulfan without producing endosulfan sulfate, and some can degrade endosulfan sulfate. Therefore, biodegradation has the potential to clean up soil contaminated with endosulfan. In this review, we provide an overview of aerobic endosulfan degradation by bacteria and fungi, and a summary of recent advances and prospects in this research field.

  16. Synthesis and anticoagulant activity of the quaternary ammonium chitosan sulfates.

    Science.gov (United States)

    Fan, Lihong; Wu, Penghui; Zhang, Jinrong; Gao, Song; Wang, Libo; Li, Mingjia; Sha, Mingming; Xie, Weiguo; Nie, Min

    2012-01-01

    Quaternary ammonium chitosan sulfates with diverse degrees of substitution (DS) ascribed to sulfate groups between 0.52 and 1.55 were synthesized by reacting quaternary ammonium chitosan with an uncommon sulfating agent (N(SO(3)Na)(3)) that was prepared from sodium bisulfite (NaHSO(3)) through reaction with sodium nitrite (NaNO(2)) in the aqueous system homogeneous. The structures of the derivatives were characterized by FTIR, (1)H NMR and (13)C NMR. The factors affecting DS of quaternary ammonium chitosan sulfates which included the molar ratio of NaNO(2) to quaternary ammonium chitosan, sulfated temperature, sulfated time and pH of sulfated reaction solution were investigated in detail. Its anticoagulation activity in vitro was determined by an activated partial thromboplastin time (APTT) assay, a thrombin time (TT) assay and a prothrombin time (PT) assay. Results of anticoagulation assays showed quaternary ammonium chitosan sulfates significantly prolonged APTT and TT, but not PT, and demonstrated that the introduction of sulfate groups into the quaternary ammonium chitosan structure improved its anticoagulant activity obviously. The study showed its anticoagulant properties strongly depended on its DS, concentration and molecular weight. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  17. An Instrument to Measure Aircraft Sulfate Particle Emissions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodyne is developing a sulfate detection instrument, based on the Tunable Infrared Laser Differential Absorption Spectrophotometer (TILDAS) technology and...

  18. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles

    International Nuclear Information System (INIS)

    Meier, P.J.; Valantinas, J.; Hugentobler, G.; Rahm, I.

    1987-01-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient but not pH or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium (overshoot). Initial rates of this bicarbonate gradient-driven [ 35 S]-sulfate uptake were saturable with increasing concentrations of sulfate and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide, 4-acetamideo-4'-isothiocyanostilbene-2,2'-disulfonic acid, and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (IC 50 , ∼40 μM). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. These findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation

  19. Insulin-mimicking bioactivities of acylated inositol glycans in several mouse models of diabetes with or without obesity.

    Directory of Open Access Journals (Sweden)

    Susumu Suzuki

    Full Text Available Insulin-mimetic species of low molecular weight are speculated to mediate some intracellular insulin actions. These inositol glycans, which are generated upon insulin stimulation from glycosylphosphatidylinositols, might control the activity of a multitude of insulin effector enzymes. Acylated inositol glycans (AIGs are generated by cleavage of protein-free GPI precursors through the action of GPI-specific phospholipase C (GPI-PLC and D (GPI-PLD. We synthesized AIGs (IG-1, IG-2, IG-13, IG-14, and IG-15 and then evaluated their insulin-mimicking bioactivities. IG-1 significantly stimulated glycogen synthesis and lipogenesis in 3T3-L1 adipocytes and rat isolated adipocytes dose-dependently. IG-2 significantly stimulated lipogenesis in rat isolated adipocytes dose-dependently. IG-15 also enhanced glycogen synthesis and lipogenesis in 3T3-L1 adipocytes. The administration of IG-1 decreased plasma glucose, increased glycogen content in liver and skeletal muscles and improved glucose tolerance in C57B6N mice with normal diets. The administration of IG-1 decreased plasma glucose in STZ-diabetic C57B6N mice. The treatment of IG-1 decreased plasma glucose, increased glycogen content in liver and skeletal muscles and improved glucose tolerance in C57B6N mice with high fat-diets and db/db mice. The long-term treatment of IG-1 decreased plasma glucose and reduced food intake and body weight in C57B6N mice with high fat-diets and ob/ob mice. Thus, IG-1 has insulin-mimicking bioactivities and improves glucose tolerance in mice models of diabetes with or without obesity.

  20. Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis

    KAUST Repository

    Merzaban, Jasmeen S.

    2015-09-13

    Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs ("GPS-NSCs") with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule ("NCAM-E"). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement.

  1. Semisynthetic prion protein (PrP) variants carrying glycan mimics at position 181 and 197 do not form fibrils.

    Science.gov (United States)

    Araman, Can; Thompson, Robert E; Wang, Siyao; Hackl, Stefanie; Payne, Richard J; Becker, Christian F W

    2017-09-01

    The prion protein (PrP) is an N -glycosylated protein attached to the outer leaflet of eukaryotic cell membranes via a glycosylphosphatidylinositol (GPI) anchor. Different prion strains have distinct glycosylation patterns and the extent of glycosylation of potentially pathogenic misfolded prion protein (PrP Sc ) has a major impact on several prion-related diseases (transmissible spongiform encephalopathies, TSEs). Based on these findings it is hypothesized that posttranslational modifications (PTMs) of PrP influence conversion of cellular prion protein (PrP C ) into PrP Sc and, as such, modified PrP variants are critical tools needed to investigate the impact of PTMs on the pathogenesis of TSEs. Here we report a semisynthetic approach to generate PrP variants modified with monodisperse polyethyleneglycol (PEG) units as mimics of N-glycans. Incorporating PEG at glycosylation sites 181 and 197 in PrP induced only small changes to the secondary structure when compared to unmodified, wildtype PrP. More importantly, in vitro aggregation was abrogated for all PEGylated PrP variants under conditions at which wildtype PrP aggregated. Furthermore, the addition of PEGylated PrP as low as 10 mol% to wildtype PrP completely blocked aggregation. A similar effect was observed for synthetic PEGylated PrP segments comprising amino acids 179-231 alone if these were added to wildtype PrP in aggregation assays. This behavior raises the question if large N-glycans interfere with aggregation in vivo and if PEGylated PrP peptides could serve as potential therapeutics.

  2. Specific inhibition of FGF-2 signaling with 2-O-sulfated octasaccharides of heparan sulfate.

    Science.gov (United States)

    Ashikari-Hada, Satoko; Habuchi, Hiroko; Sugaya, Noriko; Kobayashi, Takashi; Kimata, Koji

    2009-06-01

    In fibroblast growth factor (FGF)-2 signaling, the formation of a ternary complex of FGF-2, tyrosine-kinase fibroblast growth factor receptor (FGFR)-1, and cell surface heparan sulfate (HS) proteoglycan is known to be critical for the activation of FGFR-1 and downstream signal transduction. Exogenous heparin polymer and some octasaccharides inhibited FGF-2-induced phosphorylation both of FGFR-1 and of extracellular signal-regulated kinase (ERK1/2) in Chinese hamster ovary (CHO)-K1 cells transfected with FGFR-1, which present HS on their cell surface. The inhibitory effect of octasaccharide was dependent on the number of 2-O-sulfate groups within a molecule but independent of the number of 6-O-sulfate groups. Sulfation at the 2-O-position was a prerequisite not only for the binding of HS to FGF-2 but also for regulation of FGF-2 signaling and competitive inhibition with endogenous HS. Interestingly, FGF-4-induced phosphorylation was impeded only by specific octasaccharides containing both 2-O- and 6-O-sulfated groups, which were necessary for binding FGF-4. In CHO-677 cells deficient in HS biosynthesis, heparin enhanced FGF-2-induced phosphorylation of ERK1/2. On the other hand, an FGF-2-binding octasaccharide inhibited the phosphorylation. Our data suggest that the activity of particular heparin-binding factors can be inhibited by distinctive oligosaccharides that can bind the factors but cannot form functional signaling complexes irrespective of whether cells have a normal complement of HS or lack HS.

  3. Aluminophosphate glasses with high sulfate content

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, S.V. [State Corp. Radon, Moscow (Russian Federation); Ivanov, I.A.; Gulin, A.N. [Inst. of Tech., St. Petersburg (Russian Federation)

    1995-12-31

    To immobilize a high sulfate radioactive wastes a system Na{sub 2}O-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-SO{sub 3} has been chosen as one where glasses have a relatively low melting points and good chemical durability. Glasses within partial system 44 Na{sub 2}O, 20 Al{sub 2}O{sub 3}, (36-x)P{sub 2}O{sub 5}, x SO{sub 3} have been prepared at 1,000 C. A possibility of assimilation up to 12 mole % of SO{sub 3} has been established. The basic properties of sulfate-containing glasses as density, microhardness, thermal expansion coefficient, transformation and deformation temperatures, viscosity, electric resistivity, leach rate of ions and diffusion coefficients of {sup 22}Na, {sup 35}S, {sup 90}Sr and {sup 137}Cs have been measured. Glass structure by infrared and EPR spectroscopies has been investigated.

  4. SDF-1α in Glycan Nanoparticles Exhibits Full Activity and Reduces Pulmonary Hypertension in Rats

    Science.gov (United States)

    Yin, Tao; Bader, Andrew R.; Hou, Tim K.; Maron, Bradley A.; Kao, Derrick D.; Qian, Ray; Kohane, Daniel S.; Handy, Diane E.; Loscalzo, Joseph; Zhang, Ying-Yi

    2013-01-01

    In order to establish a homing signal in the lung to recruit circulating stem cells for tissue repair, we formulated a nanoparticle, SDF-1α NP, by complexing SDF-1α with dextran sulfate and chitosan. The data show that SDF-1α was barely released from the nanoparticles over an extended period of time in vitro (3% in 7 days at 37°C); however, incorporated SDF-1α exhibited full chemotactic activity and receptor activation compared to its free form. The nanoparticles were not endocytosed after incubation with Jurkat cells. When aerosolized into the lungs of rats, SDF-1α NP displayed a greater retention time compared to free SDF-1α (64% vs. 2% remaining at 16 hr). In a rat model of monocrotaline-induced lung injury, SDF-1α NP, but not free form SDF-1α, was found to reduce pulmonary hypertension. These data suggest that the nanoparticle formulation protected SDF-1α from rapid clearance in the lung and sustained its biological function in vivo. PMID:24059347

  5. The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences

    Science.gov (United States)

    Chou, I-Ming; Seal, Robert R.; Wang, Alian

    2013-01-01

    Sulfate and hydrated sulfate minerals are abundant and ubiquitous on the surface of the Earth and also on other planets and their satellites. The humidity-buffer technique has been applied to study the stability of some of these minerals at 0.1MPa in terms of temperature-relative humidity space on the basis of hydration-dehydration reversal experiments. Updated phase relations in the binary system MgSO"4-H"2O are presented, as an example, to show how reliable thermodynamic data for these minerals could be obtained based on these experimental results and thermodynamic principles. This approach has been applied to sulfate and hydrated sulfate minerals of other metals, including Fe (both ferrous and ferric), Zn, Ni, Co, Cd, and Cu. Metal-sulfate salts play important roles in the cycling of metals and sulfate in terrestrial systems, and the number of phases extends well beyond the simple sulfate salts that have thus far been investigated experimentally. The oxidation of sulfide minerals, particularly pyrite, is a common process that initiates the formation of efflorescent metal-sulfate minerals. Also, the overall abundance of iron-bearing sulfate salts in nature reflects the fact that the weathering of pyrite or pyrrhotite is the ultimate source for many of these phases. Many aspects of their environmental significance are reviewed, particularly in acute effects to aquatic ecosystems related to the dissolution of sulfate salts during rain storms or snow-melt events. Hydrous Mg, Ca, and Fe sulfates were identified on Mars, with wide distribution and very large quantities at many locations, on the basis of spectroscopic observations from orbital remote sensing and surface explorations by rovers. However, many of these findings do not reveal the detailed information on the degree of hydration that is essential for rigorous interpretation of the hydrologic history of Mars. Laboratory experiments on stability fields, reactions pathways, and reaction rates of hydrous

  6. Role of Site-Specific N-Glycans Expressed on GluA2 in the Regulation of Cell Surface Expression of AMPA-Type Glutamate Receptors.

    Directory of Open Access Journals (Sweden)

    Yusuke Takeuchi

    Full Text Available The AMPA-type glutamate receptor (AMPAR, which is a tetrameric complex composed of four subunits (GluA1-4 with several combinations, mediates the majority of rapid excitatory synaptic transmissions in the nervous system. Cell surface expression levels of AMPAR modulate synaptic plasticity, which is considered one of the molecular bases for learning and memory formation. To date, a unique trisaccharide (HSO3-3GlcAβ1-3Galβ1-4GlcNAc, human natural killer-1 (HNK-1 carbohydrate, was found expressed specifically on N-linked glycans of GluA2 and regulated the cell surface expression of AMPAR and the spine maturation process. However, evidence that the HNK-1 epitope on N-glycans of GluA2 directly affects these phenomena is lacking. Moreover, it is thought that other N-glycans on GluA2 also have potential roles in the regulation of AMPAR functions. In the present study, using a series of mutants lacking potential N-glycosylation sites (N256, N370, N406, and N413 within GluA2, we demonstrated that the mutant lacking the N-glycan at N370 strongly suppressed the intracellular trafficking of GluA2 from the endoplasmic reticulum (ER in HEK293 cells. Cell surface expression of GluA1, which is a major subunit of AMPAR in neurons, was also suppressed by co-expression of the GluA2 N370S mutant. The N370S mutant and wild-type GluA2 were co-immunoprecipitated with GluA1, suggesting that N370S was properly associated with GluA1. Moreover, we found that N413 was the main potential site of the HNK-1 epitope that promoted the interaction of GluA2 with N-cadherin, resulting in enhanced cell surface expression of GluA2. The HNK-1 epitope on N-glycan at the N413 of GluA2 was also involved in the cell surface expression of GluA1. Thus, our data suggested that site-specific N-glycans on GluA2 regulate the intracellular trafficking and cell surface expression of AMPAR.

  7. Upper tropospheric ice sensitivity to sulfate geoengineering

    Science.gov (United States)

    Visioni, Daniele; Pitari, Giovanni; Mancini, Eva

    2017-04-01

    In light of the Paris Agreement which aims to keep global warming under 2 °C in the next century and considering the emission scenarios produced by the IPCC for the same time span, it is likely that to remain below that threshold some kind of geoengineering technique will have to be deployed. Amongst the different methods, the injection of sulfur into the stratosphere has received much attention considering its effectiveness and affordability. Aside from the rather well established surface cooling sulfate geoengineering (SG) would produce, the investigation on possible side-effects of this method is still ongoing. For instance, some recent studies have investigated the effect SG would have on upper tropospheric cirrus clouds, expecially on the homogenous freezing mechanisms that produces the ice particles (Kuebbeler et al., 2012). The goal of the present study is to better understand the effect of thermal and dynamical anomalies caused by SG on the formation of ice crystals via homogeneous freezing by comparing a complete SG simulation with a RCP4.5 reference case and with a number of sensitivity studies where atmospheric temperature changes in the upper tropospheric region are specified in a schematic way as a function of the aerosol driven stratospheric warming and mid-lower tropospheric cooling. These changes in the temperature profile tend to increase atmospheric stabilization, thus decreasing updraft and with it the amount of water vapor available for homogeneous freezing in the upper troposphere. However, what still needs to be assessed is the interaction between this dynamical effect and the thermal effects of tropospheric cooling (which would increase ice nucleation rates) and stratospheric warming (which would probably extend to the uppermost troposphere via SG aerosol gravitational settling, thus reducing ice nucleation rates), in order to understand how they combine together. Changes in ice clouds coverage could be important for SG, because cirrus ice

  8. Highly specific purification of N-glycans using phosphate-based derivatization as an affinity tag in combination with Ti{sup 4+}-SPE enrichment for mass spectrometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Key Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai 200032 (China); Peng, Ye; Bin, Zhichao [Department of Chemistry, Fudan University, Shanghai 200032 (China); Wang, Huijie [Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Lu, Haojie, E-mail: luhaojie@fudan.edu.cn [Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Department of Chemistry, Fudan University, Shanghai 200032 (China); Key Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai 200032 (China)

    2016-08-31

    N-linked protein glycosylation is involved in regulation of a wide variety of cellular processes and associated with numerous diseases. Highly specific identification of N-glycome remains a challenge while its biological significance is acknowledged. The relatively low abundance of glycan in complex biological mixtures, lack of basic sites for protonation, and suppression by other highly abundant proteins/peptides lead to the particularly poor detection sensitivity of N-glycans in the MS analysis. Therefore, the highly specific purification procedure becomes a crucial step prior to MS analysis of the N-glycome. Herein, a novel N-glycans enrichment approach based on phosphate derivatization combined with Ti{sup 4+}-SPE (solid phase extraction) was developed. Briefly, in this strategy, N-glycans were chemically labeled with a phospho-group at their reducing ends, such that the Ti{sup 4+}-SPE microspheres were able to capture the phospho-containing glycans. The enrichment method was developed and optimized using model oligosaccharides (maltoheptaose DP7 and sialylated glycan A1) and also glycans from a standard glycoprotein (asialofetuin, ASF). This method experimentally showed high derivatization efficiency (almost 100%), excellent selectivity (analyzing DP7 in the digests of bovine serum albumin at a mass ratio of 1:100), high enriching recovery (90%), good reproducibility (CV<15%) as well as high sensitivity (LOD at fmol level). At last, the proposed method was successfully applied in the profiling of N-glycome in human serum, in which a total of 31 N-glycan masses were identified. - Graphical abstract: A selective enrichment method for the N-glycome is reported. N-glycans were chemically labeled with a phosphate derivatization reagent (AMS), then the phospho-containing glycans were enriched using Ti{sup 4+}-microspheres. - Highlights: • A highly specific N-glycans purification method based on phosphate derivatization combined with Ti{sup 4+}-SPE was developed

  9. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2 Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.

    Directory of Open Access Journals (Sweden)

    Masaki Kurogochi

    Full Text Available Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain, and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC and complement dependent cytotoxicity (CDC. To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases, one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2, high-mannose type (Man4-9GlcNAc2, and complex type (Man3GlcNAc3-4 N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL, the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1 were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q, and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2 was performed using SKBR-3 and BT-474 as target

  10. Sulfation of ractopamine and salbutamol by the human cytosolic sulfotransferases.

    Science.gov (United States)

    Ko, Kyounga; Kurogi, Katsuhisa; Davidson, Garrett; Liu, Ming-Yih; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2012-09-01

    Feed additives such as ractopamine and salbutamol are pharmacologically active compounds, acting primarily as β-adrenergic agonists. This study was designed to investigate whether the sulfation of ractopamine and salbutamol may occur under the metabolic conditions and to identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating two major feed additive compounds, ractopamine and salbutamol. A metabolic labelling study showed the generation and release of [(35)S]sulfated ractopamine and salbutamol by HepG2 human hepatoma cells labelled with [(35)S]sulfate in the presence of these two compounds. A systematic analysis using 11 purified human SULTs revealed SULT1A3 as the major SULT responsible for the sulfation of ractopamine and salbutamol. The pH dependence and kinetic parameters were analyzed. Moreover, the inhibitory effects of ractopamine and salbutamol on SULT1A3-mediated dopamine sulfation were investigated. Cytosol or S9 fractions of human lung, liver, kidney and small intestine were examined to verify the presence of ractopamine-/salbutamol-sulfating activity in vivo. Of the four human organs, the small intestine displayed the highest activity towards both compounds. Collectively, these results imply that the sulfation mediated by SULT1A3 may play an important role in the metabolism and detoxification of ractopamine and salbutamol.

  11. 21 CFR 520.1044a - Gentamicin sulfate oral solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentamicin sulfate oral solution. 520.1044a Section 520.1044a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Gentamicin sulfate oral solution. (a) Specifications. Each milliliter of aqueous solution contains gentamicin...

  12. 21 CFR 529.1044a - Gentamicin sulfate intrauterine solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentamicin sulfate intrauterine solution. 529.1044a Section 529.1044a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... § 529.1044a Gentamicin sulfate intrauterine solution. (a) Specifications. Each milliliter of solution...

  13. 21 CFR 529.50 - Amikacin sulfate intrauterine solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Amikacin sulfate intrauterine solution. 529.50 Section 529.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Amikacin sulfate intrauterine solution. (a) Specifications. Each milliliter of sterile aqueous solution...

  14. Stable isotope ratio measurements in atmospheric sulfate studies

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, P.T.; Holt, B.D.

    1976-01-01

    The isotopic composition of atmospheric sulfate has been determined by a number of workers and the results interpreted in terms of contributing sources and mechanisms of origin. A correlation between the /sup 18/O enrichment of atmospheric water and airborne particulate sulfate has been observed. Laboratory preparations of sulfate made from sulfur dioxide by two sets of sequential reactions, hydrolysis followed by oxidation and oxidation followed by hydrolysis, yielded products of distinguishable oxygen-isotope composition. Oxygen isotopic analysis of simultaneously collected field samples of ambient sulfate, sulfur dioxide, and water vapor indicated seasonal trends for all of the major constituents of atmospheric sulfation processes. Some isotopic data were also obtained on precipitation and precipitation sulfates. Field results suggest that ambient sulfates collected in the area of Argonne correpond more closely in oxygen isotope composition to a sulfate molecule containing two oxygens originating from sulfur dioxide, one oxygen from air and one oxygen from condensed-phased atmospheric water, SO/sub s/O/sub s/O/sub cw/O/sup 2 -//sub a/, than to the molecule SO/sub s/O/sub s/O/sub wv/O/sup 2//sub a/ in which one oxygen originates from vapor-phase atmospheric water.

  15. Characterization of Sulfate Groups and Assessment of Anti ...

    African Journals Online (AJOL)

    pyridine, DCC, salt and potential degradation products. Four sulfated KOGMS batches. (KOGMS-1 to KOGMS-4) with different DS were collected after lyophilizing. Purification of KOGMS. The crude polysaccharide sulfate was dissolved in distilled water (50 mg/mL) and applied to a. DEAE-Sepharose Fast Flow column [11].

  16. Role of Magnesium Sulfate in Prolonging the Analgesic Effect of ...

    African Journals Online (AJOL)

    Magnesium sulfate being an N‑methyl‑d‑aspartate receptor antagonist has both analgesic and sedative properties and has been extensively used in anesthesia in the recent past.[1‑4] Role of magnesium sulfate as prophylaxis in severe preeclampsia is well‑established.[1‑4] Intravenous (i.v) loading dose followed.

  17. Effects of magnesium sulfate on the acquisition and reinstatement of ...

    African Journals Online (AJOL)

    In the current study, the effects of magnesium sulfate on the acquisition and reinstatement of morphine-induced conditioned place preference (CPP) in an animal model were investigated. The acquisition and extinction and reinstatement phases induced using morphine 40 and 10mg/kg. Magnesium sulfate 300 and 600 ...

  18. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate

    National Research Council Canada - National Science Library

    Institute of Medicine (U.S.). Panel on Dietary Reference Intakes for Electrolytes and Water

    2005-01-01

    ... intake to the risk of high blood pressure and hypertension as well as other diseases and the amounts of water from beverages and foods needed to maintain hydration. In addition, since requirements for sulfur can be met by inorganic sulfate in the diets of animals, a review of the role in inorganic sulfur in the form of sulfate is included. The gro...

  19. Transmission spectra study of sulfate substituted potassium dihydrogen phosphate

    KAUST Repository

    LI, LIANG

    2013-04-18

    Potassium dihydrogen phosphate (KDP) crystals with different amounts of sulfate concentration were grown and the transmittance spectrum was studied. A crystal with high sulfate replacement density exhibits heavy absorption property in the ultraviolet region which confirms and agrees well with former results. © 2013 Astro Ltd.

  20. Genesis and solution chemistry of acid sulfate soils in Thailand

    NARCIS (Netherlands)

    Breemen, van N.

    1976-01-01

    To study short-term and long-term chemical processes in periodically flooded acid sulfate soils in the Bangkok Plain and in various smaller coastal plains along the Gulf of Thailand, 16 acid sulfate soils and one non-acid marine soil were examined for distribution of iron-sulfur compounds, elemental

  1. Stable isotope ratio measurements in atmospheric sulfate studies

    International Nuclear Information System (INIS)

    Cunningham, P.T.; Holt, B.D.

    1976-01-01

    The isotopic composition of atmospheric sulfate has been determined by a number of workers and the results interpreted in terms of contributing sources and mechanisms of origin. A correlation between the 18 O enrichment of atmospheric water and airborne particulate sulfate has been observed. Laboratory preparations of sulfate made from sulfur dioxide by two sets of sequential reactions, hydrolysis followed by oxidation and oxidation followed by hydrolysis, yielded products of distinguishable oxygen-isotope composition. Oxygen isotopic analysis of simultaneously collected field samples of ambient sulfate, sulfur dioxide, and water vapor indicated seasonal trends for all of the major constituents of atmospheric sulfation processes. Some isotopic data were also obtained on precipitation and precipitation sulfates. Field results suggest that ambient sulfates collected in the area of Argonne correpond more closely in oxygen isotope composition to a sulfate molecule containing two oxygens originating from sulfur dioxide, one oxygen from air and one oxygen from condensed-phased atmospheric water, SO/sub s/O/sub s/O/sub cw/O 2- /sub a/, than to the molecule SO/sub s/O/sub s/O/sub wv/O 2 /sub a/ in which one oxygen originates from vapor-phase atmospheric water

  2. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  3. The safety of copper sulfate to channel catfish eggs

    Science.gov (United States)

    Copper sulfate (CuSO4) is an economical treatment to control fungus (Saprolegnia spp.) on channel catfish eggs and is widely used by the industry. The purpose of this study was to determine the safety of copper sulfate to channel catfish eggs when treated at the therapeutic rate (10 mg/L), and also...

  4. Sulfate reduction at low pH in organic wastewaters

    NARCIS (Netherlands)

    Lopes, S.I.C.

    2007-01-01

    The objective of the research described in this thesis was to investigate the operational window of dissimilatory sulfate reduction at low pH (6, 5 and 4) during the acidification of organic wastewaters. High sulfate reduction efficiencies at low pH are desirable for a more sustainable operation of

  5. Reductive and sorptive properties of sulfate green rust (GRSO4)

    DEFF Research Database (Denmark)

    Nedel, Sorin

    The Fe(II), Fe(III) hydroxide containing sulfate in its structure, called sulfate green rust (GRSO4), can effectively reduce and convert contaminants to less mobile and less toxic forms. However, the ability of GRSO4 to remove positively charged species from solution, via sorption, is very limited...

  6. Ammonium sulfate obtainment and labelling with S-35

    International Nuclear Information System (INIS)

    Castro, M.; Diaz, A.

    1987-01-01

    A simple technique to measure sulfur-35, using a light absorption method for sulfates as well as liquid scintillation to obtain the specific activity of the sample, is presented. The technique is based on the isotopic exchange of the sulfate ion from H 2 SO 4 S-35. The salt produced is identified by X-ray diffraction

  7. Annual sulfate budgets for Dutch lowland peat polders

    NARCIS (Netherlands)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; Geest, van der Harm G.; Klein, de Jeroen J.M.; Kosten, Sarian; Smolders, Alfons J.P.; Verhoeven, Jos T.A.; Mes, Ron G.; Ouboter, Maarten

    2016-01-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species.

  8. Sulfation by human lung fibroblasts: SO4(2-) and sulfur-containing amino acids as sources for macromolecular sulfation.

    Science.gov (United States)

    Elgavish, A; Meezan, E

    1991-06-01

    Studies were carried out in human lung fibroblasts (IMR-90) to investigate 1) the relative contribution of two extracellular pools, inorganic sulfate and sulfur-containing amino acids, to the intracellular fraction precipitable by trichloroacetic acid and 2) the possibility that the transport of these sulfur-containing substrates at the plasma membrane may be a limiting step for macromolecular sulfation. Our studies indicate that the ability to use SO4(2-) released by intracellular catabolism of the sulfur-containing amino acid L-cysteine differs from one cell system to another. In contrast to smooth muscle cells, in the human lung fibroblast, L-cysteine contributes significantly to the intercellular pool of SO4(2-) used for sulfation at extracellular [SO4(2-)] less than 100 microM. However, under physiological conditions with respect to SO4(2-) ([SO4(2-)]0 = 300 microM), L-cysteine does not contribute greater than 30% of the sulfate incorporated into the cellular fraction. Taurine (2-aminoethanesulfonic acid) inhibits SO4(2-) incorporation into the cell-associated macromolecular fraction. However, results suggest that the effect is not due to either SO4(2-) released by its catabolism or to an effect on SO4(2-) transport into the cell. The fact that the transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid inhibits sulfate incorporation indicates that carrier-mediated sulfate transport at the cellular plasma membrane may be a limiting step for sulfate incorporation. In conclusion, under physiological conditions with respect to SO4(2-), inorganic sulfate is a major source of sulfate for sulfation in human lung fibroblasts and macromolecular sulfation may be limited by its transport into the cells.

  9. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, HCD and ETD-MS applied to the N-linked glycoproteome of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Scott, Nichollas E; Parker, Benjamin L; Connolly, Angela M

    2011-01-01

    Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif, D/E-X-N-X-S/T. Strategies for a comprehensive analysis of the targets of glycosylation are, however, hampered...... to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous elucidation of glycan structures and peptide sequence....

  10. Pressure effect on dissimilatory sulfate reduction

    Science.gov (United States)

    Williamson, A. J.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Biosouring is the production of H2S by sulfate reducing microorganisms (SRM) in-situ or in the produced fluids of oil reservoirs. Sulfide is explosive, toxic and corrosive which can trigger equipment and transportation failure, leading to environmental catastrophe. As oil exploration and reservoir development continue, subsequent enhanced recovery is occurring in progressively deeper formations and typical oil reservoir pressures range from 10-50 MPa. Therefore, an understanding of souring control effects will require an accurate understanding of the influence of pressure on SRM metabolism and the efficacy of souring control treatments at high pressure. Considerable work to date has focussed on souring control at ambient pressure; however, the influence of pressure on biogeochemical processes and souring treatments in oil reservoirs is poorly understood. To explore the impact of pressure on SRM, wild type Desulfovibrio alaskensis G20 (isolated from a producing oil well in Ventura County, California) was grown under a range of pressures (0.1-14 MPa) at 30 °C. Complete sulfate reduction occurred in all pressures tested within 3 days, but microbial growth was inhibited with increasing pressure. Bar-seq identified several genes associated with flagella biosynthesis (including FlhB) and assembly as important for survival at elevated pressure and fitness was confirmed using individual transposon mutants. Flagellar genes have previously been implicated with biofilm formation and confocal microscopy on glass slides incubated with wild type D. alaskensis G20 showed more biomass associated with surfaces under pressure, highlighting the link between pressure, flagellar and biofilm formation. To determine the effect of pressure on the efficacy of SRM inhibitors, IC50 experiments were conducted and D. alaskensis G20 showed a greater resistance to nitrate and the antibiotic chloramphenicol, but a lower resistance to perchlorate. These results will be discussed in the context of

  11. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S

    2001-01-01

    .0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation...... sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2....... Sulfate reducers that oxidized the carbon source completely to CO2 showed greater fractionations than sulfate reducers that released acetate as the final product of carbon oxidation. Different metabolic pathways and variable regulation of sulfate transport across the cell membrane all potentially affect...

  12. Preparation and characterization of a chemically sulfated cashew gum polysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Moura Neto, Erico de; Maciel, Jeanny da S.; Cunha, Pablyana L. R.; Paula, Regina Celia M. de; Feitosa, Judith P.A., E-mail: judith@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, Fortaleza (Brazil)

    2011-09-15

    Cashew gum (CG) was sulfated in pyridine:formamide using chlorosulfonic acid as the reagent. Confirmation of sulfation was obtained by Fourier transform infrared (FTIR) spectroscopy through the presence of an asymmetrical S=O stretching vibration at 1259 cm{sup -1}. The degrees of substitution were 0.02, 0.24 and 0.88 determined from the sulfur percentage. 1D and 2D nuclear magnetic resonance (NMR) data showed that the sulfation occurred at primary carbons. An increase of at least 4% of the solution viscosity was observed due to sulfation. The thermal gravimetric curves (TGA) indicate that the derivatives are stable up to ca. 200 deg C. The sulfated CG is compared to carboxymethylated CG in order to verify the possibility of the use of the former in the preparation of polyelectrolyte complexes; the latter is already being used for this application. (author)

  13. Extraction of uranyl sulfate with tri-n-laurylamine

    International Nuclear Information System (INIS)

    Satrova, J.; Mrnka, M.; Kyrsova, V.

    1976-01-01

    Chemical analyses of the organic phase showed that uranyl sulfate was only extracted by TLA sulfate, forming the complex (TLAH) 4 UO 2 (SO 4 ) 3 .4H 2 O. A decrease in uranyl sulfate extraction occurs at higher concentrations of sulfuric acid in the aqueous phase. This decrease corresponds to the conversion of the normal amine sulfate to hydrosulfate, hence the equilibrium of the reaction 4(R 3 NH.HSO 4 )sub(org.)+(UO 2 SO 4 )sub(aq) reversible [(R 3 NH) 4 UO 2 (SO 4 ) 3 ]sub(org)+2(H 2 SO 4 )sub(aq) is highly shifted to the left side. The presence of octanol in the organic phase does not affect the mechanism of extraction of uranyl sulfate, as evidenced by the IR spectra. (author)

  14. Extraction of beryllium sulfate by a long chain amine

    International Nuclear Information System (INIS)

    Etaix, E.S.

    1968-01-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [fr

  15. Role of protein sulfation in vasodilation induced by minoxidil sulfate, a K+ channel opener

    Energy Technology Data Exchange (ETDEWEB)

    Meisheri, K.D.; Oleynek, J.J.; Puddington, L. (Cardiovascular Diseases Research, Upjohn Laboratories, Upjohn Company, Kalamazoo, MI (United States))

    1991-09-01

    Evidence from contractile, radioisotope ion flux and electrophysiological studies suggest that minoxidil sulfate (MNXS) acts as a K+ channel opener in vascular smooth muscle. This study was designed to examine possible biochemical mechanisms by which MNXS exerts such an effect. Experiments performed in the isolated rabbit mesenteric artery (RMA) showed that MNXS, 5 microM, but not the parent compound minoxidil, was a potent vasodilator. Whereas the relaxant effects of an another K+ channel opener vasodilator, BRL-34915 (cromakalim), were removed by washing with physiological saline solution, the effects of MNXS persisted after repeated washout attempts. Furthermore, after an initial exposure of segments of intact RMA to (35S) MNXS, greater than 30% of the radiolabel was retained 2 hr after removal of the drug. In contrast, retention of radiolabel was not detected with either (3H)MNXS (label on the piperidine ring of MNXS) or (3H)minoxidil (each less than 3% after a 2-hr washout). These data suggested that the sulfate moiety from MNXS was closely associated with the vascular tissue. To determine if proteins were the acceptors of sulfate from MNXS, intact RMAs were incubated with (35S)MNXS, and then 35S-labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by fluorography. Preferential labeling of a 116 kD protein was detected by 2 and 5 min of treatment. A 43 kD protein (resembling actin) also showed significant labeling. A similar profile of 35S-labeled proteins was observed in (35S) MNXS-treated A7r5 rat aortic smooth muscle cells, suggesting that the majority of proteins labeled by (35S)MNXS in intact RMA were components of smooth muscle cells.

  16. Utilization of sulfate additives in biomass combustion: fundamental and modeling aspects

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Grell, Morten Nedergaard

    2013-01-01

    Sulfates, such as ammonium sulfate, aluminum sulfate and ferric sulfate, are effective additives for converting the alkali chlorides released from biomass combustion to the less harmful alkali sulfates. Optimization of the use of these additives requires knowledge on their decomposition rate...... was combined with a detailed gas-phase kinetic model of KCl sulfation and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results showed good agreements with the experiments conducted in a biomass grate-firing combustor, where ferric sulfate...... and elemental sulfur were used as additives. The results indicated that the SO3 released from ferric sulfate decomposition was the main contributor to KCl sulfation and that the effectiveness of ferric sulfate addition was sensitive to the applied temperature conditions. Comparison of the effectiveness...

  17. Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities

    NARCIS (Netherlands)

    Bowles, M.W.; Mogollón, J.M.|info:eu-repo/dai/nl/304823783; Kasten, S.; Zabel, M.; Hinrichs, K.U.

    2014-01-01

    Sulfate reduction is a globally important yet poorly quantified redox process in marine sediments. We developed an artificial neural network trained with 199 sulfate profiles, constrained with geomorphological and geochemical maps to estimate global sulfate reduction rate distributions. Globally,

  18. Biological sulfate removal from gypsum contaminated construction and demolition debris.

    Science.gov (United States)

    Kijjanapanich, Pimluck; Annachhatre, Ajit P; Esposito, Giovanni; van Hullebusch, Eric D; Lens, Piet N L

    2013-12-15

    Construction and demolition debris (CDD) contains high levels of sulfate that can cause detrimental environmental impacts when disposed without adequate treatment. In landfills, sulfate can be converted to hydrogen sulfide under anaerobic conditions. CDD can thus cause health impacts or odor problems to landfill employees and surrounding residents. Reduction of the sulfate content of CDD is an option to overcome these problems. This study aimed at developing a biological sulfate removal system to reduce the sulfate content of gypsum contaminated CDD in order to decrease the amount of solid waste, to improve the quality of CDD waste for recycling purposes and to recover sulfur from CDD. The treatment leached out the gypsum contained in CDD by water in a leaching column. The sulfate loaded leachate was then treated in a biological sulfate reducing Upflow Anaerobic Sludge Blanket (UASB) reactor to convert the sulfate to sulfide. The UASB reactor was operated at 23 ± 3 °C with a hydraulic retention time and upflow velocity of 15.5 h and 0.1 m h(-1), respectively while ethanol was added as electron donor at a final organic loading rate of 3.46 g COD L(-1) reactor d(-1). The CDD leachate had a pH of 8-9 and sulfate dissolution rates of 526.4 and 609.8 mg L(-1) d(-1) were achieved in CDD gypsum and CDD sand, respectively. Besides, it was observed that the gypsum dissolution was the rate limiting step for the biological treatment of CDD. The sulfate removal efficiency of the system stabilized at around 85%, enabling the reuse of the UASB effluent for the leaching step, proving the versatility of the bioreactor for practical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  20. Low levels of H2S may replace sulfate as sulfur source in sulfate-deprived onion

    NARCIS (Netherlands)

    Durenkamp, Mark; De Kok, LJ

    2005-01-01

    Onion (Allium cepa L.) was exposed to low levels of H2S in order to investigate to what extent H2S could be used as a sulfur source for growth under sulfate-deprived conditions. Sulfate deprivation for a two-week period resulted in a decreased biomass production of the shoot, a subsequently