WorldWideScience

Sample records for glut4 protein concentration

  1. Hexose transporter mRNAs for GLUT4, GLUT5, and GLUT12 predominate in human muscle.

    Science.gov (United States)

    Stuart, Charles A; Yin, Deling; Howell, Mary E A; Dykes, Rhesa J; Laffan, John J; Ferrando, Arny A

    2006-11-01

    In the past few years, 8 additional members of the facilitative hexose transporter family have been identified, giving a total of 14 members of the SLC2A family of membrane-bound hexose transporters. To determine which of the new hexose transporters were expressed in muscle, mRNA concentrations of 11 glucose transporters (GLUTs) were quantified and compared. RNA from muscle from 10 normal volunteers was subjected to RT-PCR. Primers were designed that amplified 78- to 241-base fragments, and cDNA standards were cloned for GLUT1, GLUT2, GLUT3, GLUT4, GLUT5, GLUT6, GLUT8, GLUT9, GLUT10, GLUT11, GLUT12, and GAPDH. Seven of these eleven hexose transporters were detectable in normal human muscle. The rank order was GLUT4, GLUT5, GLUT12, GLUT8, GLUT11, GLUT3, and GLUT1, with corresponding concentrations of 404 +/- 49, 131 +/- 14, 33 +/- 4, 5.5 +/- 0.5, 4.1 +/- 0.4, 1.2 +/- .0.1, and 0.9 +/- 0.2 copies/ng RNA (means +/- SE), respectively, for the 10 subjects. Concentrations of mRNA for GLUT4, GLUT5, and GLUT12 were much higher than those for the remainder of the GLUTs and together accounted for 98% of the total GLUT isoform mRNA. Immunoblots of muscle homogenates verified that the respective proteins for GLUT4, GLUT5, and GLUT12 were present in normal human muscle. Immunofluorescent studies demonstrated that GLUT4 and GLUT12 were predominantly expressed in type I oxidative fibers; however, GLUT5 was expressed predominantly in type II (white) fibers.

  2. Comparison of GLUT1, GLUT3, and GLUT4 mRNA and the subcellular distribution of their proteins in normal human muscle

    Science.gov (United States)

    Stuart, C. A.; Wen, G.; Gustafson, W. C.; Thompson, E. A.

    2000-01-01

    Basal, "insulin-independent" glucose uptake into skeletal muscle is provided by glucose transporters positioned at the plasma membrane. The relative amount of the three glucose transporters expressed in muscle has not been previously quantified. Using a combination of qualitative and quantitative ribonuclease protection assay (RPA) methods, we found in normal human muscle that GLUT1, GLUT3, and GLUT4 mRNA were expressed at 90 +/- 10, 46 +/- 4, and 156 +/- 12 copies/ng RNA, respectively. Muscle was fractionated by DNase digestion and differential sedimentation into membrane fractions enriched in plasma membranes (PM) or low-density microsomes (LDM). GLUT1 and GLUT4 proteins were distributed 57% to 67% in LDM, whereas GLUT3 protein was at least 88% in the PM-enriched fractions. These data suggest that basal glucose uptake into resting human muscle could be provided in part by each of these three isoforms.

  3. Muscle GLUT4 in cirrhosis

    DEFF Research Database (Denmark)

    Holland-Fischer, Peter; Andersen, Per Heden; Lund, Sten

    2007-01-01

    test and later a muscle biopsy. Levels of GLUT4 total protein and mRNA content were determined in muscle biopsies by polyclonal antibody labelling and RT-PCR, respectively. RESULTS: GLUT4 protein content in the cirrhosis group was not different from that of the controls, but at variance......: In cirrhosis GLUT4 protein content was quantitatively intact, while limiting glucose tolerance. This indicates loss of redundancy of the major glucose transport system, possibly related to the markedly decreased expression of its gene. Hyper-insulinemia may be a primary event. Our findings implicate...

  4. Role of insulin on exercise-induced GLUT-4 protein expression and glycogen supercompensation in rat skeletal muscle.

    Science.gov (United States)

    Kuo, Chia-Hua; Hwang, Hyonson; Lee, Man-Cheong; Castle, Arthur L; Ivy, John L

    2004-02-01

    The purpose of this study was to investigate the role of insulin on skeletal muscle GLUT-4 protein expression and glycogen storage after postexercise carbohydrate supplementation. Male Sprague-Dawley rats were randomly assigned to one of six treatment groups: sedentary control (Con), Con with streptozocin (Stz/C), immediately postexercise (Ex0), Ex0 with Stz (Stz/Ex0), 5-h postexercise (Ex5), and Ex5 with Stz (Stz/Ex5). Rats were exercised by swimming (2 bouts of 3 h) and carbohydrate supplemented immediately after each exercise session by glucose intubation (1 ml of a 50% wt/vol). Stz was administered 72-h before exercise, which resulted in hyperglycemia and elimination of the insulin response to the carbohydrate supplement. GLUT-4 protein of Ex0 rats was 30% above Con in fast-twitch (FT) red and 21% above Con in FT white muscle. In Ex5, GLUT-4 protein was 52% above Con in FT red and 47% above Con in FT white muscle. Muscle glycogen in FT red and white muscle was also increased above Con in Ex5 rats. Neither GLUT-4 protein nor muscle glycogen was increased above Con in Stz/Ex0 or Stz/Ex5 rats. GLUT-4 mRNA in FT red muscle of Ex0 rats was 61% above Con but only 33% above Con in Ex5 rats. GLUT-4 mRNA in FT red muscle of Stz/C and Stz/Ex0 rats was similar but significantly elevated in Ex5/Stz rats. These results suggest that insulin is essential for the increase in GLUT-4 protein expression following postexercise carbohydrate supplementation.

  5. Small G proteins in insulin action: Rab and Rho families at the crossroads of signal transduction and GLUT4 vesicle traffic.

    Science.gov (United States)

    Ishikura, S; Koshkina, A; Klip, A

    2008-01-01

    Insulin stimulates glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). GLUT4 cycles between the intracellular compartments and the plasma membrane. GLUT4 traffic-regulating insulin signals are largely within the insulin receptor-insulin receptor substrate-phosphatidylinositol 3-kinase (IR-IRS-PI3K) axis. In muscle cells, insulin signal bifurcates downstream of the PI3K into one arm leading to the activation of the Ser/Thr kinases Akt and atypical protein kinase C, and another leading to the activation of Rho family protein Rac1 leading to actin remodelling. Activated Akt inactivates AS160, a GTPase-activating protein for Rab family small G proteins. Here we review the roles of Rab and Rho proteins, particularly Rab substrates of AS160 and Rac1, in insulin-stimulated GLUT4 traffic. We discuss: (1) how distinct steps in GLUT4 traffic may be regulated by discrete Rab proteins, and (2) the importance of Rac1 activation in insulin-induced actin remodelling in muscle cells, a key element for the net gain in surface GLUT4.

  6. Abnormal subcellular distribution of GLUT4 protein in obese and insulin-treated diabetic female dogs

    Directory of Open Access Journals (Sweden)

    A.M. Vargas

    2004-07-01

    Full Text Available The GLUT4 transporter plays a key role in insulin-induced glucose uptake, which is impaired in insulin resistance. The objective of the present study was to investigate the tissue content and the subcellular distribution of GLUT4 protein in 4- to 12-year-old control, obese and insulin-treated diabetic mongrel female dogs (4 animals per group. The parametrial white adipose tissue was sampled and processed to obtain both plasma membrane and microsome subcellular fractions for GLUT4 analysis by Western blotting. There was no significant difference in glycemia and insulinemia between control and obese animals. Diabetic dogs showed hyperglycemia (369.9 ± 89.9 mg/dl. Compared to control, the plasma membrane GLUT4, reported per g tissue, was reduced by 55% (P < 0.01 in obese dogs, and increased by 30% (P < 0.05 in diabetic dogs, and the microsomal GLUT4 was increased by ~45% (P < 0.001 in both obese and diabetic animals. Considering the sum of GLUT4 measured in plasma membrane and microsome as total cellular GLUT4, percent GLUT4 present in plasma membrane was reduced by ~65% (P < 0.001 in obese compared to control and diabetic animals. Since insulin stimulates GLUT4 translocation to the plasma membrane, percent GLUT4 in plasma membrane was divided by the insulinemia at the time of tissue removal and was found to be reduced by 75% (P < 0.01 in obese compared to control dogs. We conclude that the insulin-stimulated translocation of GLUT4 to the cell surface is reduced in obese female dogs. This probably contributes to insulin resistance, which plays an important role in glucose homeostasis in dogs.

  7. Triiodothyronine Acutely Stimulates Glucose Transport into L6 Muscle Cells Without Increasing Surface GLUT4, GLUT1, or GLUT3

    Science.gov (United States)

    Teixeira, Silvania Silva; Tamrakar, Akhilesh K.; Goulart-Silva, Francemilson; Serrano-Nascimento, Caroline; Klip, Amira

    2012-01-01

    Background Thyroid hormones (THs) act genomically to stimulate glucose transport by elevating glucose transporter (Slc2a) expression and glucose utilization by cells. However, nongenomic effects of THs are now emerging. Here, we assess how triiodothyronine (T3) acutely affects glucose transport and the content of GLUT4, GLUT1, and GLUT3 at the surface of muscle cells, and possible interactions between T3 and insulin action. Methods Differentiated L6 myotubes transfected with myc-tagged Slc2a4 (L6-GLUT4myc) or Slc2a1 (L6-GLUT1myc) and wild-type L6 myotubes were studied in the following conditions: control, hypothyroid (Tx), Tx plus T3, Tx plus insulin, and Tx plus insulin and T3. Results Glucose uptake and GLUT4 content at the cell surface decreased in the Tx group relative to controls. T3 treatment for 30 minutes increased glucose transport into L6-GLUT4myc cells without altering surface GLUT4 content, which increased only thereafter. The total amount of GLUT4 protein remained unchanged among the groups studied. The surface GLUT1 content of L6-GLUT1myc cells also remained unaltered after T3 treatment; however, in these cells glucose transport was not stimulated by T3. In wild-type L6 cells, although T3 treatment increased the total amount of GLUT3, it did not change the surface GLUT3 content. Moreover, within 30 minutes, T3 stimulation of glucose uptake was additive to that of insulin in L6-GLUT4myc cells. As expected, insulin elevated surface GLUT4 content and glucose uptake. However, interestingly, surface GLUT4 content remained unchanged or even dropped with T3 plus insulin. Conclusions These data reveal that T3 rapidly increases glucose uptake in L6-GLUT4myc cells, which, at least for 30 minutes, did not depend on an increment in GLUT4 at the cell surface yet potentiates insulin action. We propose that this rapid T3 effect involves activation of GLUT4 transporters at the cell surface, but cannot discount the involvement of an unknown GLUT. PMID:22663547

  8. Impact of pre-gestational and gestational diabetes mellitus on the expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 in human term placenta.

    Science.gov (United States)

    Stanirowski, Paweł Jan; Szukiewicz, Dariusz; Pyzlak, Michał; Abdalla, Nabil; Sawicki, Włodzimierz; Cendrowski, Krzysztof

    2017-03-01

    Various studies in placental tissue suggest that diabetes mellitus alters the expression of glucose transporter (GLUT) proteins, with insulin therapy being a possible modulatory factor. The aim of the present study was quantitative evaluation of the expression of glucose transporters (GLUT-1, GLUT-4, GLUT-9) in the placenta of women in both, uncomplicated and diabetic pregnancy. Additionally, the effect of insulin therapy on the expression of selected glucose transporter isoforms was analyzed. Term placental samples were obtained from healthy control (n = 25) and diabetic pregnancies, including diet-controlled gestational diabetes mellitus (GDMG1) (n = 16), insulin-controlled gestational diabetes mellitus (GDMG2) (n = 6), and pre-gestational diabetes mellitus (PGDM) (n = 6). Computer-assisted quantitative morphometry of stained placental sections was performed to determine the expression of selected glucose transporter proteins. Morphometric analysis revealed a significant increase in the expression of GLUT-4 and GLUT-9 in insulin-dependent diabetic women (GDMG2 + PGDM) as compared to both, control and GDMG1 groups (p diabetic pregnancies. In addition, insulin therapy may increase placental expression of GLUT-4 and GLUT-9, and partially GLUT-1, in women with GDMG2/PGDM.

  9. Analysis of correlations between the placental expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 and selected maternal and fetal parameters in pregnancies complicated by diabetes mellitus.

    Science.gov (United States)

    Stanirowski, Paweł Jan; Szukiewicz, Dariusz; Pyzlak, Michał; Abdalla, Nabil; Sawicki, Włodzimierz; Cendrowski, Krzysztof

    2017-10-16

    The aim of the study was to analyze the correlations between the expression of glucose transporters GLUT-1, GLUT-4, and GLUT-9 in human term placenta and selected maternal and fetal parameters in pregnancies complicated by diabetes mellitus (DM). Placental samples were obtained from healthy control (n = 25) and diabetic pregnancies, including diet-controlled gestational diabetes mellitus (GDMG1) (n = 16), insulin-controlled gestational diabetes mellitus (GDMG2) (n = 6), and pregestational DM (PGDM) (n = 6). Computer-assisted quantitative morphometry of stained placental sections was performed to determine the expression of selected glucose transporter proteins. For the purposes of correlation analysis, the following parameters were selected: type of diabetes, gestational age, maternal prepregnancy body mass index (BMI), gestational weight gain, third trimester glycated hemoglobin concentration, placental weight, fetal birth weight (FBW) as well as ultrasonographic indicators of fetal adiposity, including subscapular (SSFM), abdominal (AFM), and midthigh (MTFM) fat mass measurements. In the PGDM group, the analysis demonstrated positive correlations between the placental expression of GLUT-1, GLUT-4, and GLUT-9 and FBW, AFM, and SSFM measurements (p diabetes and FBW were significantly associated with GLUTs expression (p < .001). In addition, maternal prepregnancy BMI significantly contributed to GLUT-1 expression (p < .001). The study results revealed that placental expression of GLUT-1, GLUT-4, and GLUT-9 may be involved in the intensification of the fetal growth in pregnancies complicated by GDM/PGDM.

  10. Regenerating human muscle fibres express GLUT3 protein

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2002-01-01

    The presence of the GLUT3 glucose transporter protein in human muscle cells is a matter of debate. The present study was designed to establish whether GLUT3 is expressed in mature human skeletal muscle fibres and, if so, whether its expression changes under different conditions, such as metabolic...... muscle fibres, nor did metabolic stress, training or de- and re-innervation induce GLUT3 expression, while a few GLUT3 expressing fibres were seen in some cases of polymyositis. In contrast, GLUT4 was expressed in all investigated muscle fibres. GLUT3 immunoreactivity was found in perineural...... and endoneural cells, indicating that GLUT3 is important for glucose transport into nerves through the perineurium. Taken together, these data suggest that GLUT3 expression is restricted to regenerating muscle fibres and nerves in adult human muscle. Although the significance of GLUT3 in adult human muscle...

  11. Glucose rapidly decreases plasma membrane GLUT4 content in rat skeletal muscle.

    Science.gov (United States)

    Marette, A; Dimitrakoudis, D; Shi, Q; Rodgers, C D; Klip, A; Vranic, M

    1999-02-01

    We have previously demonstrated that chronic hyperglycemia per se decreases GLUT4 glucose transporter expression and plasma membrane content in mildly streptozotocin- (STZ) diabetic rats (Biochem. J. 284, 341-348, 1992). In the present study, we investigated the effect of an acute rise in glycemia on muscle GLUT4 and GLUT1 protein contents in the plasma membrane, in the absence of insulin elevation. Four experimental groups of rats were analyzed in the postabsorptive state: 1. Control rats. 2. Hyperglycemic STZ-diabetic rats with moderately reduced fasting insulin levels. 3. STZ-diabetic rats made normoglycemic with phlorizin treatment. 4. Phlorizin-treated (normoglycemic) STZ-diabetic rats infused with glucose for 40 min. The uniqueness of the latter model is that glycemia can be rapidly raised without any concomitant increase in plasma insulin levels. Plasma membranes were isolated from hindlimb muscle and GLUT1 and GLUT4 proteins amounts determined by Western blot analysis. As predicted, STZ-diabetes caused a significant decrease in the abundance of GLUT4 in the isolated plasma membranes. Normalization of glycemia for 3 d with phlorizin treatment restored plasma membrane GLUT4 content in muscle of STZ-diabetic rats. A sudden rise in glycemia over a period of 40 min caused the GLUT4 levels in the plasma membrane fraction to decrease to those of nontreated STZ-diabetic rats. In contrast to the GLUT4 transporter, plasma membrane GLUT1 abundance was not changed by the acute glucose challenge. It is concluded that glucose can have regulatory effect by acutely reducing plasma membrane GLUT4 protein contents in rat skeletal muscle. We hypothesize that this glucose-induced downregulation of plasma membrane GLUT4 could represent a protective mechanism against excessive glucose uptake under hyperglycemic conditions accompanied by insulin resistance.

  12. Exercise, GLUT4, and Skeletal Muscle Glucose Uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hargreaves, Mark

    2013-01-01

    Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon...... muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions....... Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose...

  13. Expression and localization of GLUT1 and GLUT12 in prostate carcinoma.

    Science.gov (United States)

    Chandler, Jenalle D; Williams, Elizabeth D; Slavin, John L; Best, James D; Rogers, Suzanne

    2003-04-15

    Increased glucose consumption is a characteristic of malignant cells and in prostate carcinoma is associated with the proliferation of both androgen-dependent and independent cells. Transport of polar glucose across the nonpolar membrane relies on glucose transporter proteins, known as GLUTs. Increased expression of GLUT1 is a characteristic of many malignant cells. The authors characterized and cloned the cDNA for a novel glucose transporter, GLUT12, which was identified initially in malignant breast epithelial cells. To the authors' knowledge, there have been no reports on the expression of glucose transporters in the human prostate or human prostate carcinoma cells. The authors evaluated GLUT1 and GLUT12 expression in human prostate carcinoma cells. Reverse transcription-polymerase chain reaction was performed on total RNA extracted from cultured prostate carcinoma cells LNCaP, C4, C4-2, and C4-2B using primers to amplify GLUT1, GLUT12, or the housekeeping gene, 36B4. Total protein extracted from prostate carcinoma cell lines was assessed for GLUT12 protein by Western blot analysis. Cultured cell monolayers were incubated with antibodies to GLUT1 or GLUT12 and a peripheral Golgi protein, Golgi 58K, for detection by immunofluorescent confocal microscopy. Sections of benign prostatic hyperplasia and human prostate carcinoma were stained for immunohistochemical detection of GLUT1 and GLUT12. GLUT1 and GLUT12 mRNA and protein were detected in all cell lines evaluated. Immunofluorescence staining demonstrated both GLUT1 and GLUT12 on the plasma membrane and in the cytoplasm in all cultured prostate carcinoma cell lines, with GLUT1 but not GLUT12 appearing to colocalize with the Golgi. Immunohistochemical staining of benign prostatic hyperplasia indicated expression of GLUT1 but not GLUT12. Malignant tissue stained for GLUT12 but was negative for GLUT1. GLUT1 and GLUT12 are expressed in human prostate carcinoma cells. One possible rationale for the GLUT1 Golgi

  14. An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles.

    Science.gov (United States)

    Heyward, Catherine A; Pettitt, Trevor R; Leney, Sophie E; Welsh, Gavin I; Tavaré, Jeremy M; Wakelam, Michael J O

    2008-05-20

    Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion. The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.

  15. Expression, purification, and functional characterization of the insulin-responsive facilitative glucose transporter GLUT4.

    Science.gov (United States)

    Kraft, Thomas E; Hresko, Richard C; Hruz, Paul W

    2015-12-01

    The insulin-responsive facilitative glucose transporter GLUT4 is of fundamental importance for maintenance of glucose homeostasis. Despite intensive effort, the ability to express and purify sufficient quantities of structurally and functionally intact protein for biophysical analysis has previously been exceedingly difficult. We report here the development of novel methods to express, purify, and functionally reconstitute GLUT4 into detergent micelles and proteoliposomes. Rat GLUT4 containing FLAG and His tags at the amino and carboxy termini, respectively, was engineered and stably transfected into HEK-293 cells. Overexpression in suspension culture yielded over 1.5 mg of protein per liter of culture. Systematic screening of detergent solubilized GLUT4-GFP fusion protein via fluorescent-detection size exclusion chromatography identified lauryl maltose neopentyl glycol (LMNG) as highly effective for isolating monomeric GLUT4 micelles. Preservation of structural integrity and ligand binding was demonstrated via quenching of tryptophan fluorescence and competition of ATB-BMPA photolabeling by cytochalasin B. GLUT4 was reconstituted into lipid nanodiscs and proper folding was confirmed. Reconstitution of purified GLUT4 with amphipol A8-35 stabilized the transporter at elevated temperatures for extended periods of time. Functional activity of purified GLUT4 was confirmed by reconstitution of LMNG-purified GLUT4 into proteoliposomes and measurement of saturable uptake of D-glucose over L-glucose. Taken together, these data validate the development of an efficient means to generate milligram quantities of stable and functionally intact GLUT4 that is suitable for a wide array of biochemical and biophysical analyses. © 2015 The Protein Society.

  16. An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles

    Directory of Open Access Journals (Sweden)

    Welsh Gavin I

    2008-05-01

    Full Text Available Abstract Background Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. Results Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion. Conclusion The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.

  17. Anorexia and impaired glucose metabolism in mice with hypothalamic ablation of Glut4 neurons.

    Science.gov (United States)

    Ren, Hongxia; Lu, Taylor Y; McGraw, Timothy E; Accili, Domenico

    2015-02-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin-mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron-ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Insulin regulates Glut4 confinement in plasma membrane clusters in adipose cells.

    Science.gov (United States)

    Lizunov, Vladimir A; Stenkula, Karin; Troy, Aaron; Cushman, Samuel W; Zimmerberg, Joshua

    2013-01-01

    Insulin-stimulated delivery of glucose transporter-4 (GLUT4) to the plasma membrane (PM) is the hallmark of glucose metabolism. In this study we examined insulin's effects on GLUT4 organization in PM of adipose cells by direct microscopic observation of single monomers tagged with photoswitchable fluorescent protein. In the basal state, after exocytotic delivery only a fraction of GLUT4 is dispersed into the PM as monomers, while most of the GLUT4 stays at the site of fusion and forms elongated clusters (60-240 nm). GLUT4 monomers outside clusters diffuse freely and do not aggregate with other monomers. In contrast, GLUT4 molecule collision with an existing cluster can lead to immediate confinement and association with that cluster. Insulin has three effects: it shifts the fraction of dispersed GLUT4 upon delivery, it augments the dissociation of GLUT4 monomers from clusters ∼3-fold and it decreases the rate of endocytic uptake. All together these three effects of insulin shift most of the PM GLUT4 from clustered to dispersed states. GLUT4 confinement in clusters represents a novel kinetic mechanism for insulin regulation of glucose homeostasis.

  19. Insulin regulates Glut4 confinement in plasma membrane clusters in adipose cells.

    Directory of Open Access Journals (Sweden)

    Vladimir A Lizunov

    Full Text Available Insulin-stimulated delivery of glucose transporter-4 (GLUT4 to the plasma membrane (PM is the hallmark of glucose metabolism. In this study we examined insulin's effects on GLUT4 organization in PM of adipose cells by direct microscopic observation of single monomers tagged with photoswitchable fluorescent protein. In the basal state, after exocytotic delivery only a fraction of GLUT4 is dispersed into the PM as monomers, while most of the GLUT4 stays at the site of fusion and forms elongated clusters (60-240 nm. GLUT4 monomers outside clusters diffuse freely and do not aggregate with other monomers. In contrast, GLUT4 molecule collision with an existing cluster can lead to immediate confinement and association with that cluster. Insulin has three effects: it shifts the fraction of dispersed GLUT4 upon delivery, it augments the dissociation of GLUT4 monomers from clusters ∼3-fold and it decreases the rate of endocytic uptake. All together these three effects of insulin shift most of the PM GLUT4 from clustered to dispersed states. GLUT4 confinement in clusters represents a novel kinetic mechanism for insulin regulation of glucose homeostasis.

  20. The Effect of a High-Protein Diet and Exercise on Cardiac AQP7 and GLUT4 Gene Expression.

    Science.gov (United States)

    Palabiyik, Orkide; Karaca, Aziz; Taştekin, Ebru; Yamasan, Bilge Eren; Tokuç, Burcu; Sipahi, Tammam; Vardar, Selma Arzu

    2016-10-01

    High-protein (HP) diets are commonly consumed by athletes despite their potential health hazard, which is postulated to enforce a negative effect on bone and renal health. However, its effects on heart have not been known yet. Aquaporin-7 (AQP7) is an aquaglyceroporin that facilitates glycerol and water transport. Glycerol is an important cardiac energy production substrate, especially during exercise, in conjunction with fatty acids and glucose. Glucose transporter 4 (GLUT4) is an insulin-sensitive glucose transporter in heart. We aimed to investigate the effect of HPD on AQP7 and GLUT4 levels in the rat heart subjected to exercise. Male Sprague-Dawley rats were divided into control (n = 12), exercise (E) training (n = 10), HPD (n = 12), and HPD-E training (n = 9) groups. The HPD groups were fed a 45 % protein-containing diet 5 weeks. The HPD-E and E groups were performed the treadmill exercise during the 5-week study period. Real-time polymerase chain reaction and immunohistochemistry techniques were used to determine the gene expression and localization of AQP7 and GLUT4 in heart tissue. Results of relative gene expression were calculated by the 'Pfaffl' mathematical method using the REST program. Differences in AQP7 and GLUT4 gene expression were expressed as fold change compared to the control group. Heart weight/tibia ratio and ventricular wall thickness were evaluated as markers of cardiac hypertrophy. Further, serum glucose, glycerol, and insulin levels were also measured. AQP7 gene expression was found to be increased in the E (3.47-fold, p protein expression was also increased in the HPD and HPD-E groups (p protein expression was significantly increased in the E, HPD, and HPD-E groups compared to the control group (p = 0.024, p protein diet groups (C and E). Serum insulin levels were higher for HPD groups compared with the normal-protein diet groups (p < 0.001), whereas no differences were observed between the exercise and sedentary

  1. Overexpression of protein tyrosine phosphatase-alpha (PTP-alpha) but not PTP-kappa inhibits translocation of GLUT4 in rat adipose cells

    DEFF Research Database (Denmark)

    Cong, L N; Chen, H; Li, Y

    1999-01-01

    Protein tyrosine phosphatases (PTPases) are likely to play important roles in insulin action. We recently demonstrated that the nontransmembrane PTPase PTP1B can act as a negative modulator of insulin-stimulated translocation of GLUT4. We now examine the role of PTP-alpha and PTP-kappa (two...... of cell surface GLUT4 in response to insulin and a threefold decrease in insulin sensitivity when compared with control cells expressing only tagged GLUT4. Co-overexpression of PTP-alpha and PTP1B did not have additive effects, suggesting that these PTPases share common substrates. Cells overexpressing...

  2. Anti-Diabetic Activities of Jiaotaiwan in db/db Mice by Augmentation of AMPK Protein Activity and Upregulation of GLUT4 Expression

    Directory of Open Access Journals (Sweden)

    Na Hu

    2013-01-01

    Full Text Available Jiaotaiwan (JTW, which is composed of Coptis chinensis (CC and cinnamon (CIN, is one of the most well-known traditional Chinese medicines. In this study, we investigated the antidiabetic effects and mechanism of JTW in db/db mice. Results showed that JTW significantly decreased the level of fasting blood glucose and improved glucose and insulin tolerance better than CC or CIN alone. JTW also effectively protected the pancreatic islet shape, augmented the activation of AMP-activated protein kinase (AMPK in the liver, and increased the expression of glucose transporter 4 (GLUT4 protein in skeletal muscle and white fat. AMPK and GLUT4 contributed to glucose metabolism regulation and had an essential function in the development of diabetes mellitus (DM. Therefore, the mechanisms of JTW may be related to suppressing gluconeogenesis by activating AMPK in the liver and affecting glucose uptake in surrounding tissues through the upregulation of GLUT4 protein expression. These findings provided a new insight into the antidiabetic clinical applications of JTW and demonstrated the potential of JTW as a new drug candidate for DM treatment.

  3. Changes in photoperiod alter Glut4 expression in skeletal muscle of C57BL/6J mice

    International Nuclear Information System (INIS)

    Tashiro, Ayako; Shibata, Satomi; Takai, Yusuke; Uchiwa, Tatsuhiro; Furuse, Mitsuhiro; Yasuo, Shinobu

    2017-01-01

    Seasonal changes in photoperiod influence body weight and metabolism in mice. Here, we examined the effect of changes in photoperiod on the expression of glucose transporter genes in the skeletal muscle and adipose tissue of C57BL/6J mice. Glut4 expression was lower in the gastrocnemius muscle of mice exposed to a short-duration day (SD) than those to a long-duration day (LD), with accompanying changes in GLUT4 protein levels. Although Glut4 expression in the mouse soleus muscle was higher under SD than under LD, GLUT4 protein levels remained unchanged. To confirm the functional significance of photoperiod-induced changes in Glut4 expression, we checked for variations in insulin sensitivity. Blood glucose levels after insulin injection remained high under SD, suggesting that the mice exposed to SD showed lower sensitivity to insulin than those exposed to LD. We also attempted to clarify the relationship between Glut4 expression and physical activity in the mice following changes in photoperiod. Locomotor activity, as detected via infrared beam sensor, was lower under SD than under LD. However, when we facilitated voluntary activity by using running wheels, the rotation of wheels was similar for both groups of mice. Although physical activity levels were enhanced due to running wheels, Glut4 expression in the gastrocnemius muscle remained unchanged. Thus, variations in photoperiod altered Glut4 expression in the mouse skeletal muscle, with subsequent changes in GLUT4 protein levels and insulin sensitivity; these effects might be independent of physical activity. - Highlights: • Glut4 expression in the gastrocnemius muscle was lowered under short photoperiod. • Insulin sensitivity was lowered under short photoperiod. • Access to running wheels did not alter Glut4 expression in the gastrocnemius muscle. • Photoperiodic changes in Glut4 expression may be independent of physical activity.

  4. PGC-1{alpha} is required for AICAR induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Leick, Lotte; Fentz, Joachim; Biensø, Rasmus S

    2010-01-01

    We tested the hypothesis that repeated activation of AMPK induces mitochondrial and glucose membrane transporter gene/protein expression via a peroxisome proliferator activated receptor Upsilon co-activator (PGC)-1alpha dependent mechanism. Whole body PGC-1alpha knockout (KO) and littermate wild...... GLUT4, cytochrome c oxidase (COX)I and cytochrome (cyt) c protein expression ~10-40% relative to saline in white muscles of the WT mice, but not of the PGC-1alpha KO mice. In line, GLUT4 and cyt c mRNA content increased 30-60% 4h after a single AICAR injection relative to saline only in WT mice. One...... and PGC-1alpha KO mice. In conclusion, we here provide genetic evidence for a major role of PGC-1alpha in AMPK mediated regulation of mitochondrial and glucose membrane transport protein expression in skeletal muscle....

  5. Effect of vanadate on glucose transporter (GLUT4) intrinsic activity in skeletal muscle plasma membrane giant vesicles

    DEFF Research Database (Denmark)

    Kristiansen, S; Youn, J; Richter, Erik

    1996-01-01

    of vanadate (NaVO3) on glucose transporter (GLUT4) intrinsic activity (V(max) = intrinsic activity x [GLUT4 protein]) was studied in muscle plasma membrane giant vesicles. Giant vesicles (average diameter 7.6 microns) were produced by collagenase treatment of rat skeletal muscle. The vesicles were incubated......) 55% and 60%, respectively, compared with control. The plasma membrane GLUT4 protein content was not changed in response to vanadate. It is concluded that vanadate decreased glucose transport per GLUT4 (intrinsic activity). This finding suggests that regulation of glucose transport in skeletal muscle...

  6. GLUT-4 content in plasma membrane of muscle from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Lund, S; Vestergaard, H; Andersen, P H

    1993-01-01

    The abundance of GLUT-4 protein in both total crude membrane and plasma membrane fractions of vastus lateralis muscle from 13 obese non-insulin-dependent diabetes mellitus (NIDDM) patients and 14 healthy subjects were examined in the fasting state and after supraphysiological hyperinsulinemia....... In the basal state the immunoreactive mass of GLUT-4 protein both in the crude membrane preparation and in the plasma membrane fraction was similar in NIDDM patients and control subjects. Moreover, in vivo insulin exposure neither for 30 min nor for 4 h had any impact on the content of GLUT-4 protein in plasma...... membranes. With the use of the same methodology, antibody, and achieving the same degree of plasma membrane purification and recovery, we found, however, that intraperitoneal administration of insulin to 7-wk-old rats within 30 min increased the content of GLUT-4 protein more than twofold (P

  7. Glucose transporters GLUT4 and GLUT8 are upregulated after facial nerve axotomy in adult mice.

    Science.gov (United States)

    Gómez, Olga; Ballester-Lurbe, Begoña; Mesonero, José E; Terrado, José

    2011-10-01

    Peripheral nerve axotomy in adult mice elicits a complex response that includes increased glucose uptake in regenerating nerve cells. This work analyses the expression of the neuronal glucose transporters GLUT3, GLUT4 and GLUT8 in the facial nucleus of adult mice during the first days after facial nerve axotomy. Our results show that whereas GLUT3 levels do not vary, GLUT4 and GLUT8 immunoreactivity increases in the cell body of the injured motoneurons after the lesion. A sharp increase in GLUT4 immunoreactivity was detected 3 days after the nerve injury and levels remained high on Day 8, but to a lesser extent. GLUT8 also increased the levels but later than GLUT4, as they only rose on Day 8 post-lesion. These results indicate that glucose transport is activated in regenerating motoneurons and that GLUT4 plays a main role in this function. These results also suggest that metabolic defects involving impairment of glucose transporters may be principal components of the neurotoxic mechanisms leading to motoneuron death. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.

  8. Soybean and sunflower oil-induced insulin resistance correlates with impaired GLUT4 protein expression and translocation specifically in white adipose tissue.

    Science.gov (United States)

    Poletto, Ana Cláudia; Anhê, Gabriel Forato; Eichler, Paula; Takahashi, Hilton Kenji; Furuya, Daniela Tomie; Okamoto, Maristela Mitiko; Curi, Rui; Machado, Ubiratan Fabres

    2010-03-01

    Free fatty acids are known for playing a crucial role in the development of insulin resistance. High fat intake is known for impairing insulin sensitivity; however, the effect of vegetable-oil injections have never been investigated. The present study investigated the effects of daily subcutaneous injections (100 microL) of soybean (SB) and sunflower (SF) oils, during 7 days. Both treated groups developed insulin resistance as assessed by insulin tolerance test. The mechanism underlying the SB- and SF-induced insulin resistance was shown to involve GLUT4. In SB- and SF-treated animals, the GLUT4 protein expression was reduced approximately 20% and 10 min after an acute in vivo stimulus with insulin, the plasma membrane GLUT4 content was approximately 60% lower in white adipose tissue (WAT). No effects were observed in skeletal muscle. Additionally, both oil treatments increased mainly the content of palmitic acid ( approximately 150%) in WAT, which can contribute to explain the GLUT4 regulations. Altogether, the present study collects evidence that those oil treatments might generate insulin resistance by targeting GLUT4 expression and translocation specifically in WAT. These alterations are likely to be caused due to the specific local increase in saturated fatty acids that occurred as a consequence of oil daily injections. 2010 John Wiley & Sons, Ltd.

  9. Cycle Training Increased GLUT4 and Activation of mTOR in Fast Twitch Muscle Fibers

    Science.gov (United States)

    Stuart, Charles A.; Howell, Mary E.A.; Baker, Jonathan D.; Dykes, Rhesa J.; Duffourc, Michelle M.; Ramsey, Michael W.; Stone, Michael H.

    2009-01-01

    Purpose To determine if cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed six weeks of progressively increasing intensity stationary cycle cycling. Methods In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. Results GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (PGC-1α and phospho-AMPK) were unchanged, but the muscle hypertrophy pathway component, phospho-mTOR increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training, but also increased in Type I fibers (34%). Conclusion Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis. PMID:20010125

  10. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.

    Science.gov (United States)

    Sun, Linfeng; Zeng, Xin; Yan, Chuangye; Sun, Xiuyun; Gong, Xinqi; Rao, Yu; Yan, Nieng

    2012-10-18

    Glucose transporters are essential for metabolism of glucose in cells of diverse organisms from microbes to humans, exemplified by the disease-related human proteins GLUT1, 2, 3 and 4. Despite rigorous efforts, the structural information for GLUT1-4 or their homologues remains largely unknown. Here we report three related crystal structures of XylE, an Escherichia coli homologue of GLUT1-4, in complex with d-xylose, d-glucose and 6-bromo-6-deoxy-D-glucose, at resolutions of 2.8, 2.9 and 2.6 Å, respectively. The structure consists of a typical major facilitator superfamily fold of 12 transmembrane segments and a unique intracellular four-helix domain. XylE was captured in an outward-facing, partly occluded conformation. Most of the important amino acids responsible for recognition of D-xylose or d-glucose are invariant in GLUT1-4, suggesting functional and mechanistic conservations. Structure-based modelling of GLUT1-4 allows mapping and interpretation of disease-related mutations. The structural and biochemical information reported here constitutes an important framework for mechanistic understanding of glucose transporters and sugar porters in general.

  11. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation

    Science.gov (United States)

    Reno, Candace M.; Puente, Erwin C.; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J.; Routh, Vanessa H.; Kahn, Barbara B.

    2017-01-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. PMID:27797912

  12. Exploring the whereabouts of GLUT4 in skeletal muscle (review)

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Ralston, Evelyn

    2002-01-01

    related to GLUT4 storage compartments, trafficking to the surface membrane, and nature of the intracellular pools, have kept many groups busy for the past 20 years. Yet, one of the main questions in the field remains the universality of GLUT4 features. Can one extrapolate work done on fat cells to muscle......The glucose transporter GLUT4 is expressed in muscle, fat cells, brain and kidney. In contrast to other glucose transporters, GLUT4 in unstimulated cells is mostly intracellular. Stimuli such as insulin and muscle contractions then cause the translocation of GLUT4 to the cell surface. Questions...

  13. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation.

    Science.gov (United States)

    Reno, Candace M; Puente, Erwin C; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J; Routh, Vanessa H; Kahn, Barbara B; Fisher, Simon J

    2017-03-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. © 2017 by the American Diabetes Association.

  14. Estradiol-induced regulation of GLUT4 in 3T3-L1 cells: involvement of ESR1 and AKT activation.

    Science.gov (United States)

    Campello, Raquel S; Fátima, Luciana A; Barreto-Andrade, João Nilton; Lucas, Thais F; Mori, Rosana C; Porto, Catarina S; Machado, Ubiratan F

    2017-10-01

    Impaired insulin-stimulated glucose uptake involves reduced expression of the GLUT4 (solute carrier family 2 facilitated glucose transporter member 4, SLC2A4 gene). 17β-estradiol (E 2 ) modulates SLC2A4 /GLUT4 expression, but the involved mechanisms are unclear. Although E 2 exerts biological effects by binding to estrogen receptors 1/2 (ESR1/2), which are nuclear transcriptional factors; extranuclear effects have also been proposed. We hypothesize that E 2 regulates GLUT4 through an extranuclear ESR1 mechanism. Thus, we investigated the effects of E 2 upon (1) subcellular distribution of ESRs and the proto-oncogene tyrosine-protein kinases (SRC) involvement; (2) serine/threonine-protein kinase (AKT) activation; (3) Slc2a4 /GLUT4 expression and (4) GLUT4 subcellular distribution and glucose uptake in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were cultivated or not with E 2 for 24 h, and additionally treated or not with ESR1-selective agonist (PPT), ESR1-selective antagonist (MPP) or selective SRC inhibitor (PP2). Subcellular distribution of ESR1, ESR2 and GLUT4 was analyzed by immunocytochemistry; Slc2a4 mRNA and GLUT4 were quantified by qPCR and Western blotting, respectively; plasma membrane GLUT4 translocation and glucose uptake were analyzed under insulin stimulus for 20 min or not. E 2 induced (1) translocation of ESR1, but not of ESR2, from nucleus to plasma membrane and AKT phosphorylation, effects mimicked by PPT and blocked by MPP and PP2; (2) increased Slc2a4 /GLUT4 expression and (3) increased insulin-stimulated GLUT4 translocation and glucose uptake. In conclusion, E 2 treatment promoted a SRC-mediated nucleus-plasma membrane shuttle of ESR1, and increased AKT phosphorylation, Slc2a4 /GLUT4 expression and plasma membrane GLUT4 translocation; consequently, improving insulin-stimulated glucose uptake. These results unravel mechanisms through which estrogen improves insulin sensitivity. © 2017 Society for Endocrinology.

  15. Multiple signalling pathways redundantly control glucose transporter GLUT4 gene transcription in skeletal muscle

    DEFF Research Database (Denmark)

    Murgia, Marta; Elbenhardt Jensen, Thomas; Cusinato, Marzia

    2009-01-01

    on pharmacological evidence. Here, we have used a more specific genetic approach to establish the relative role of the three pathways in fast and slow muscles. Plasmids coding for protein inhibitors of CaMKII or calcineurin were co-transfected in vivo with a GLUT4 enhancer-reporter construct either in normal mice...... or in mice expressing a dominant negative AMPK mutant. GLUT4 reporter activity was not inhibited in the slow soleus muscle by blocking either CaMKII or calcineurin alone, but was inhibited by blocking both pathways. GLUT4 reporter activity was likewise unchanged in the soleus of dnAMPK mice......, but was significantly reduce by incapacitation of either CaMKII or calcineurin in these mice. On the other hand, in the fast tibialis anterior muscle, calcineurin appears to exert a prominent role in the control of GLUT4 reporter activity, independent of CaMKII and AMPK. The results point to a muscle type...

  16. The t-SNAREs syntaxin4 and SNAP23 but not v-SNARE VAMP2 are indispensable to tether GLUT4 vesicles at the plasma membrane in adipocyte

    International Nuclear Information System (INIS)

    Kawaguchi, Takayuki; Tamori, Yoshikazu; Kanda, Hajime; Yoshikawa, Mari; Tateya, Sanshiro; Nishino, Naonobu; Kasuga, Masato

    2010-01-01

    SNARE proteins (VAMP2, syntaxin4, and SNAP23) have been thought to play a key role in GLUT4 trafficking by mediating the tethering, docking and subsequent fusion of GLUT4-containing vesicles with the plasma membrane. The precise functions of these proteins have remained elusive, however. We have now shown that depletion of the vesicle SNARE (v-SNARE) VAMP2 by RNA interference in 3T3-L1 adipocytes inhibited the fusion of GLUT4 vesicles with the plasma membrane but did not affect tethering of the vesicles to the membrane. In contrast, depletion of the target SNAREs (t-SNAREs) syntaxin4 or SNAP23 resulted in impairment of GLUT4 vesicle tethering to the plasma membrane. Our results indicate that the t-SNAREs syntaxin4 and SNAP23 are indispensable for the tethering of GLUT4 vesicles to the plasma membrane, whereas the v-SNARE VAMP2 is not required for this step but is essential for the subsequent fusion event.

  17. Action of Phytochemicals on Insulin Signaling Pathways Accelerating Glucose Transporter (GLUT4 Protein Translocation

    Directory of Open Access Journals (Sweden)

    Abu Sadat Md Sayem

    2018-01-01

    Full Text Available Diabetes is associated with obesity, generally accompanied by a chronic state of oxidative stress and redox imbalances which are implicated in the progression of micro- and macro-complications like heart disease, stroke, dementia, cancer, kidney failure and blindness. All these complications rise primarily due to consistent high blood glucose levels. Insulin and glucagon help to maintain the homeostasis of glucose and lipids through signaling cascades. Pancreatic hormones stimulate translocation of the glucose transporter isoform 4 (GLUT4 from an intracellular location to the cell surface and facilitate the rapid insulin-dependent storage of glucose in muscle and fat cells. Malfunction in glucose uptake mechanisms, primarily contribute to insulin resistance in type 2 diabetes. Plant secondary metabolites, commonly known as phytochemicals, are reported to have great benefits in the management of type 2 diabetes. The role of phytochemicals and their action on insulin signaling pathways through stimulation of GLUT4 translocation is crucial to understand the pathogenesis of this disease in the management process. This review will summarize the effects of phytochemicals and their action on insulin signaling pathways accelerating GLUT4 translocation based on the current literature.

  18. The GLUT4 density in slow fibres is not increased in athletes. How does training increase the GLUT4 pool originating from slow fibres?

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Beck-Nielsen, H

    2001-01-01

    % of the fraction in the control group. Thus, GLUT4 originating from slow-twitch fibres was increased by 30% (Pincreases slow-twitch fibre GLUT4 expression by means of an elevated slow-twitch fibre mass in human skeletal muscle.......The influence of training on GLUT4 expression in slow- and fast-twitch skeletal muscle fibres was studied in male endurance-trained athletes and control subjects. The trained state was ensured by elevated maximal oxygen uptake (29%), as well as citrate synthase (60%) and 3-hydroxy......-acyl-CoA dehydrogenase (38%) activities in muscle biopsy samples of the vastus lateralis. GLUT4 densities in slow- and fast-twitch fibres were measured by the use of a newly developed, sensitive method combining immunohistochemistry with morphometry, and no effect of training was found. GLUT4 density was higher in slow...

  19. A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation

    Directory of Open Access Journals (Sweden)

    Giri Lopamudra

    2004-08-01

    Full Text Available Abstract Background The phenomenon of switch-like response to graded input signal is the theme involved in various signaling pathways in living systems. Positive feedback loops or double negative feedback loops embedded with nonlinearity exhibit these switch-like bistable responses. Such feedback regulations exist in insulin signaling pathway as well. Methods In the current manuscript, a steady state analysis of the metabolic insulin-signaling pathway is presented. The threshold concentration of insulin required for glucose transporter GLUT4 translocation was studied with variation in system parameters and component concentrations. The dose response curves of GLUT4 translocation at various concentration of insulin obtained by steady state analysis were quantified in-terms of half saturation constant. Results We show that, insulin-stimulated GLUT4 translocation can operate as a bistable switch, which ensures that GLUT4 settles between two discrete, but mutually exclusive stable steady states. The threshold concentration of insulin required for GLUT4 translocation changes with variation in system parameters and component concentrations, thus providing insights into possible pathological conditions. Conclusion A steady state analysis indicates that negative feedback regulation of phosphatase PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. The threshold concentration of insulin required for GLUT4 translocation and the corresponding bistable response at different system parameters and component concentrations was compared with reported experimental observations on specific defects in regulation of the system.

  20. Sulfonylurea therapy improves glucose disposal without changing skeletal muscle GLUT4 levels in noninsulin-dependent diabetes mellitus subjects

    DEFF Research Database (Denmark)

    Vestergaard, H; Weinreb, J E; Rosen, A S

    1995-01-01

    alteration in GLUT4 levels expressed either per microgram membrane protein or per DNA. In summary, the improvement in glycemic control and glucose disposal in NIDDM subjects receiving gliclazide therapy cannot be explained by increased expression of GLUT4 in muscle. Thus, therapeutic effects on insulin......A major pathological feature of noninsulin-dependent diabetes (NIDDM) is defective insulin-stimulated glucose transport in skeletal muscle. When NIDDM subjects are assessed as a group, GLUT4 gene expression in skeletal muscle varies widely and is not different from that in controls. Thus......, longitudinal studies are needed to assess whether changes in GLUT4 expression in muscle of NIDDM subjects could be responsible for changes in glucose disposal. The question is timely because recent studies in transgenic mice show that increasing GLUT4 expression can increase insulin-stimulated glucose uptake...

  1. Myosin IIA participates in docking of Glut4 storage vesicles with the plasma membrane in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Chung, Le Thi Kim; Hosaka, Toshio; Harada, Nagakatsu; Jambaldorj, Bayasgalan; Fukunaga, Keiko; Nishiwaki, Yuka; Teshigawara, Kiyoshi; Sakai, Tohru; Nakaya, Yutaka; Funaki, Makoto

    2010-01-01

    In adipocytes and myocytes, insulin stimulation translocates glucose transporter 4 (Glut4) storage vesicles (GSVs) from their intracellular storage sites to the plasma membrane (PM) where they dock with the PM. Then, Glut4 is inserted into the PM and initiates glucose uptake into these cells. Previous studies using chemical inhibitors demonstrated that myosin II participates in fusion of GSVs and the PM and increase in the intrinsic activity of Glut4. In this study, the effect of myosin IIA on GSV trafficking was examined by knocking down myosin IIA expression. Myosin IIA knockdown decreased both glucose uptake and exposures of myc-tagged Glut4 to the cell surface in insulin-stimulated cells, but did not affect insulin signal transduction. Interestingly, myosin IIA knockdown failed to decrease insulin-dependent trafficking of Glut4 to the PM. Moreover, in myosin IIA knockdown cells, insulin-stimulated binding of GSV SNARE protein, vesicle-associated membrane protein 2 (VAMP2) to PM SNARE protein, syntaxin 4 was inhibited. These data suggest that myosin IIA plays a role in insulin-stimulated docking of GSVs to the PM in 3T3-L1 adipocytes through SNARE complex formation.

  2. Effects of contraction on localization of GLUT4 and v-SNARE isoforms in rat skeletal muscle

    DEFF Research Database (Denmark)

    Rose, Adam John; Jeppesen, Jacob; Kiens, Bente

    2009-01-01

    In skeletal muscle, contractions increase glucose uptake due to a translocation of GLUT4 glucose transporters from intracellular storage sites to the surface membrane. Vesicle associated membrane proteins (VAMPs) are believed to play an important role in docking and fusion of the GLUT4 transporters...... at the surface membrane. However, knowledge about which VAMP isoforms in fact co-localize with GLUT4 vesicles in mature skeletal muscle and whether they translocate during muscle contractions is incomplete. The aim of the present study was to further identify VAMP isoforms which are associated with GLUT4......, there was a redistribution of VAMP2 (+240 +/- 40%), VAMP5 (+79 +/- 9%) and VAMP7 (+79 +/- 29%), but not VAMP3, to fractions enriched in heavy membranes away from low density membranes (-49 +/- 10%, -54 +/- 9%, -14 +/- 11%, respectively) in contracted versus resting muscle. In summary, VAMP2, VAMP3, VAMP5 and VAMP7 co...

  3. PKC and Rab13 mediate Ca2+ signal-regulated GLUT4 traffic.

    Science.gov (United States)

    Deng, Bangli; Zhu, Xiaocui; Zhao, Yihe; Zhang, Da; Pannu, Alisha; Chen, Liming; Niu, Wenyan

    2018-01-08

    Exercise/muscle contraction increases cell surface glucose transporter 4 (GLUT4), leading to glucose uptake to regulate blood glucose level. Elevating cytosolic Ca 2+ mediates this effect, but the detailed mechanism is not clear yet. We used calcium ionophore ionomycin to raise intracellular cytosolic Ca 2+ level to explore the underlying mechanism. We showed that in L6 myoblast muscle cells stably expressing GLUT4myc, ionomycin increased cell surface GLUT4myc levels and the phosphorylation of AS160, TBC1D1. siPKCα and siPKCθ but not siPKCδ and siPKCε inhibited the ionomycin-increased cell surface GLUT4myc level. siPKCα, siPKCθ inhibited the phosphorylation of AS160 and TBC1D1 induced by ionomycin. siPKCα and siPKCθ prevented ionomycin-inhibited endocytosis of GLUT4myc. siPKCθ, but not siPKCα inhibited ionomycin-stimulated exocytosis of GLUT4myc. siRab13 but not siRab8a, siRab10 and siRab14 inhibited the exocytosis of GLUT4myc promoted by ionomycin. In summary, ionomycin-promoted exocytosis of GLUT4 is partly reversed by siPKCθ, whereas ionomycin-inhibited endocytosis of GLUT4 requires both siPKCα and siPKCθ. PKCα and PKCθ contribute to ionomycin-induced phosphorylation of AS160 and TBC1D1. Rab13 is required for ionomycin-regulated GLUT4 exocytosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Kinetics of contraction-induced GLUT4 translocation in skeletal muscle fibers from living mice

    DEFF Research Database (Denmark)

    Lauritzen, Hans Peter M. Mortensen; Galbo, Henrik; Toyoda, Taro

    2010-01-01

    Exercise is an important strategy for the treatment of type 2 diabetes. This is due in part to an increase in glucose transport that occurs in the working skeletal muscles. Glucose transport is regulated by GLUT4 translocation in muscle, but the molecular machinery mediating this process is poorl...... understood. The purpose of this study was to 1) use a novel imaging system to elucidate the kinetics of contraction-induced GLUT4 translocation in skeletal muscle and 2) determine the function of AMP-activated protein kinase alpha2 (AMPKalpha2) in this process.......Exercise is an important strategy for the treatment of type 2 diabetes. This is due in part to an increase in glucose transport that occurs in the working skeletal muscles. Glucose transport is regulated by GLUT4 translocation in muscle, but the molecular machinery mediating this process is poorly...

  5. Kinetics of contraction-induced GLUT4 translocation in skeletal muscle fibers from living mice

    DEFF Research Database (Denmark)

    Lauritzen, Hans Peter M. Mortensen; Galbo, Henrik; Toyoda, Taro

    2010-01-01

    Exercise is an important strategy for the treatment of type 2 diabetes. This is due in part to an increase in glucose transport that occurs in the working skeletal muscles. Glucose transport is regulated by GLUT4 translocation in muscle, but the molecular machinery mediating this process is poorly...... understood. The purpose of this study was to 1) use a novel imaging system to elucidate the kinetics of contraction-induced GLUT4 translocation in skeletal muscle and 2) determine the function of AMP-activated protein kinase alpha2 (AMPKalpha2) in this process....

  6. Induction of GLUT-1 protein in adult human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Staehr, P

    2000-01-01

    Prompted by our recent observations that GLUT-1 is expressed in fetal muscles, but not in adult muscle fibers, we decided to investigate whether GLUT-1 expression could be reactivated. We studied different stimuli concerning their ability to induce GLUT-1 expression in mature human skeletal muscle...... fibers. Metabolic stress (obesity, non-insulin-dependent diabetes mellitus), contractile activity (training), and conditions of de- and reinnervation (amyotrophic lateral sclerosis) could not induce GLUT-1 expression in human muscle fibers. However, regenerating muscle fibers in polymyositis expressed...... GLUT-1. In contrast to GLUT-1, GLUT-4 was expressed in all investigated muscle fibers. Although the significance of GLUT-1 in adult human muscle fibers appears limited, GLUT-1 may be of importance for the glucose supplies in immature and regenerating muscle....

  7. Effect of curcumin Extract on Ttranslocation of Glut 4 in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    J Zavarreza

    2013-06-01

    Full Text Available Introduction: Curcumin is a major phenolic compound of Curcuma longa, which has long been used in traditional Indian medicine. Recently, curcumin has been reported to have antihyperglycemic activity in animal models. However, the molecular basis of this action has not been adequatedly described. In the present study the antihyperglycemic effect of curcumin was examined using C2C12 myoblast cells. Methods: The effects of curcumin were investigated in C2C12 myotubes by treating the cells with 40 µM of curcumin for 1.5 h. C2C12 myotubes were homogenized and the subcellular fractionation was prepared using ultracentrifugation; Then protein assay was performed using Bradford method and Glut4 determination was done using SDS-PAGE. Moreover, western immunoblotting techniques were exerted for semi-quantitative measurement. Data analysis was performed via gene tools software of Gel documentation and SPSS. An ANOVA test was used to compare three groups together. Results: Comparison of Glut4 levels in C2C12 myotubes showed that myotubes which were exposed to1.5 hours of 40 µM curcunin had higher Glut4 percentages in both cytosolic and membrane fractions and Glut4 percentages were significant with a confidence interval (CI of 95% ( P<0.05 . Conclusion: The study results showed that curcumin can strongly induce the increase of Glut4 translocation in differentiated C2C12 cells, indicating its possible regulatory role in the glucose metabolism of skeletal muscle cells

  8. (+-Rutamarin as a dual inducer of both GLUT4 translocation and expression efficiently ameliorates glucose homeostasis in insulin-resistant mice.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available Glucose transporter 4 (GLUT4 is a principal glucose transporter in response to insulin, and impaired translocation or decreased expression of GLUT4 is believed to be one of the major pathological features of type 2 diabetes mellitus (T2DM. Therefore, induction of GLUT4 translocation or/and expression is a promising strategy for anti-T2DM drug discovery. Here we report that the natural product (+-Rutamarin (Rut functions as an efficient dual inducer on both insulin-induced GLUT4 translocation and expression. Rut-treated 3T3-L1 adipocytes exhibit efficiently enhanced insulin-induced glucose uptake, while diet-induced obese (DIO mice based assays further confirm the Rut-induced improvement of glucose homeostasis and insulin sensitivity in vivo. Subsequent investigation of Rut acting targets indicates that as a specific protein tyrosine phosphatase 1B (PTP1B inhibitor Rut induces basal GLUT4 translocation to some extent and largely enhances insulin-induced GLUT4 translocation through PI3 kinase-AKT/PKB pathway, while as an agonist of retinoid X receptor α (RXRα, Rut potently increases GLUT4 expression. Furthermore, by using molecular modeling and crystallographic approaches, the possible binding modes of Rut to these two targets have been also determined at atomic levels. All our results have thus highlighted the potential of Rut as both a valuable lead compound for anti-T2DM drug discovery and a promising chemical probe for GLUT4 associated pathways exploration.

  9. Demonstration of differential quantitative requirements for NSF among multiple vesicle fusion pathways of GLUT4 using a dominant-negative ATPase-deficient NSF

    International Nuclear Information System (INIS)

    Chen Xiaoli; Matsumoto, Hideko; Hinck, Cynthia S.; Al-Hasani, Hadi; St-Denis, Jean-Francois; Whiteheart, Sidney W.; Cushman, Samuel W.

    2005-01-01

    In this study, we investigated the relative participation of N-ethylmaleimide-sensitive factor (NSF) in vivo in a complex multistep vesicle trafficking system, the translocation response of GLUT4 to insulin in rat adipose cells. Transfections of rat adipose cells demonstrate that over-expression of wild-type NSF has no effect on total, or basal and insulin-stimulated cell-surface expression of HA-tagged GLUT4. In contrast, a dominant-negative NSF (NSF-D1EQ) can be expressed at a low enough level that it has little effect on total HA-GLUT4, but does reduce both basal and insulin-stimulated cell-surface HA-GLUT4 by ∼50% without affecting the GLUT4 fold-translocation response to insulin. However, high expression levels of NSF-D1EQ decrease total HA-GLUT4. The inhibitory effect of NSF-D1EQ on cell-surface HA-GLUT4 is reversed when endocytosis is inhibited by co-expression of a dominant-negative dynamin (dynamin-K44A). Moreover, NSF-D1EQ does not affect cell-surface levels of constitutively recycling GLUT1 and TfR, suggesting a predominant effect of low-level NSF-D1EQ on the trafficking of GLUT4 from the endocytic recycling compared to the intracellular GLUT4-specific compartment. Thus, our data demonstrate that the multiple fusion steps in GLUT4 trafficking have differential quantitative requirements for NSF activity. This indicates that the rates of plasma and intracellular membrane fusion reactions vary, leading to differential needs for the turnover of the SNARE proteins

  10. Leptin Reduces the Expression and Increases the Phosphorylation of the Negative Regulators of GLUT4 Traffic TBC1D1 and TBC1D4 in Muscle of ob/ob Mice

    Science.gov (United States)

    Sáinz, Neira; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Ramírez, Beatriz; Lancha, Andoni; Burgos-Ramos, Emma; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2012-01-01

    Leptin improves insulin sensitivity in skeletal muscle. Our goal was to determine whether proteins controlling GLUT4 traffic are altered by leptin deficiency and in vivo leptin administration in skeletal muscle of wild type and ob/ob mice. Leptin-deficient ob/ob mice were divided in three groups: control, leptin-treated (1 mg/kg/d) and leptin pair-fed ob/ob mice. Microarray analysis revealed that 1,546 and 1,127 genes were regulated by leptin deficiency and leptin treatment, respectively. Among these, we identified 24 genes involved in intracellular vesicle-mediated transport in ob/ob mice. TBC1 domain family, member 1 (Tbc1d1), a negative regulator of GLUT4 translocation, was up-regulated (P = 0.001) in ob/ob mice as compared to wild types. Importantly, leptin treatment reduced the transcript levels of Tbc1d1 (P<0.001) and Tbc1d4 (P = 0.004) in the leptin-treated ob/ob as compared to pair-fed ob/ob animals. In addition, phosphorylation levels of TBC1D1 and TBC1D4 were enhanced in leptin-treated ob/ob as compared to control ob/ob (P = 0.015 and P = 0.023, respectively) and pair-fed ob/ob (P = 0.036 and P = 0.034, respectively) mice. Despite similar GLUT4 protein expression in wild type and ob/ob groups a different immunolocalization of this protein was evidenced in muscle sections. Leptin treatment increased GLUT4 immunoreactivity in gastrocnemius and extensor digitorum longus sections of leptin-treated ob/ob mice. Moreover, GLUT4 protein detected in immunoprecipitates from TBC1D4 was reduced by leptin replacement compared to control ob/ob (P = 0.013) and pair-fed ob/ob (P = 0.037) mice. Our findings suggest that leptin enhances the intracellular GLUT4 transport in skeletal muscle of ob/ob animals by reducing the expression and activity of the negative regulators of GLUT4 traffic TBC1D1 and TBC1D4. PMID:22253718

  11. Chloroquine Increases Glucose Uptake via Enhancing GLUT4 Translocation and Fusion with the Plasma Membrane in L6 Cells

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2016-05-01

    Full Text Available Background/Aims: Chloroquine can induce an increase in the cellular uptake of glucose; however, the underlying mechanism is unclear. Methods: In this study, translocation of GLUT4 and intracellular Ca2+ changes were simultaneously observed by confocal microscope in L6 cells stably over-expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM was traced using HA-GLUT4-GFP. Glucose uptake was measured using a cell-based glucose uptake assay. GLUT4 protein was detected by Western blotting and mRNA level was detected by RT-PCR. Results: We found that chloroquine induced significant increases in glucose uptake, glucose transporter GLUT4 translocation to the plasma membrane (GTPM, GLUT4 fusion with the PM, and intracellular Ca2+ in L6 muscle cells. Chloroquine-induced increases of GTPM and intracellular Ca2+ were inhibited by Gallein (Gβγ inhibitor and U73122 (PLC inhibitor. However, 2-APB (IP3R blocker only blocked the increase in intracellular Ca2+ but did not inhibit GTPM increase. These results indicate that chloroquine, via the Gβγ-PLC-IP3-IP3R pathway, induces elevation of Ca2+, and this Ca2+ increase does not play a role in chloroqui-ne-evoked GTPM increase. However, GLUT4 fusion with the PM and glucose uptake were significantly inhibited with BAPTA-AM. This suggests that Ca2+ enhances GLUT4 fusion with the PM resulting in glucose uptake increase. Conclusion: Our data indicate that chloroquine via Gβγ-PLC-IP3-IP3R induces Ca2+ elevation, which in turn promotes GLUT4 fusion with the PM. Moreover, chloroquine can enhance GLUT4 trafficking to the PM. These mechanisms eventually result in glucose uptake increase in control and insulin-resistant L6 cells. These findings suggest that chloroquine might be a potential drug for improving insulin tolerance in diabetic patients.

  12. GLUT4 in the endocrine pancreas--indicating an impact in pancreatic islet cell physiology?

    Science.gov (United States)

    Bähr, I; Bazwinsky-Wutschke, I; Wolgast, S; Hofmann, K; Streck, S; Mühlbauer, E; Wedekind, D; Peschke, E

    2012-06-01

    The glucose transporter GLUT4 is well known to facilitate the transport of blood glucose into insulin-sensitive muscle and adipose tissue. In this study, molecular, immunohistochemical, and Western blot investigations revealed evidence that GLUT4 is also located in the mouse, rat, and human endocrine pancreas. In addition, high glucose decreased and insulin elevated the GLUT4 expression in pancreatic α-cells. In contrast, high glucose increased GLUT4 expression, whereas insulin led to a reduced expression level of the glucose transporter in pancreatic β-cells. In vivo experiments showed that in pancreatic tissue of type 2 diabetic rats as well as type 2 diabetic patients, the GLUT4 expression is significantly increased compared to the nondiabetic control group. Furthermore, type 1 diabetic rats exhibited reduced GLUT4 transcript levels in pancreatic tissue, whereas insulin treatment of type 1 diabetic animals enhanced the GLUT4 expression back to control levels. These data provide evidence for the existence of GLUT4 in the endocrine pancreas and indicate a physiological relevance of this glucose transporter as well as characteristic changes in diabetic disease. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Super-resolution microscopy reveals the insulin-resistance-regulated reorganization of GLUT4 on plasma membranes.

    Science.gov (United States)

    Gao, Lan; Chen, Junling; Gao, Jing; Wang, Hongda; Xiong, Wenyong

    2017-01-15

    GLUT4 (also known as SLC2A4) is essential for glucose uptake in skeletal muscles and adipocytes, which play central roles in whole-body glucose metabolism. Here, using direct stochastic optical reconstruction microscopy (dSTORM) to investigate the characteristics of plasma-membrane-fused GLUT4 at the single-molecule level, we have demonstrated that insulin and insulin resistance regulate the spatial organization of GLUT4 in adipocytes. Stimulation with insulin shifted the balance of GLUT4 on the plasma membrane toward a more dispersed configuration. In contrast, insulin resistance induced a more clustered distribution of GLUT4 and increased the mean number of molecules per cluster. Furthermore, our data demonstrate that the F 5 QQI motif and lipid rafts mediate the maintenance of GLUT4 clusters on the plasma membrane. Mutation of F 5 QQI (F 5 QQA-GLUT4) induced a more clustered distribution of GLUT4; moreover, destruction of lipid rafts in adipocytes expressing F 5 QQA-GLUT4 dramatically decreased the percentage of large clusters and the mean number of molecules per cluster. In conclusion, our data clarify the effects of insulin stimulation or insulin resistance on GLUT4 reorganization on the plasma membrane and reveal new pathogenic mechanisms of insulin resistance. © 2017. Published by The Company of Biologists Ltd.

  14. Nuclear factor 1 regulates adipose tissue-specific expression in the mouse GLUT4 gene

    International Nuclear Information System (INIS)

    Miura, Shinji; Tsunoda, Nobuyo; Ikeda, Shinobu; Kai, Yuko; Cooke, David W.; Lane, M. Daniel; Ezaki, Osamu

    2004-01-01

    Previous studies demonstrated that an adipose tissue-specific element(s) (ASE) of the murine GLUT4 gene is located between -551 and -506 in the 5'-flanking sequence and that a high-fat responsive element(s) for down-regulation of the GLUT4 gene is located between bases -701 and -552. A binding site for nuclear factor 1 (NF1), that mediates insulin and cAMP-induced repression of GLUT4 in 3T3-L1 adipocytes is located between bases -700 and -688. To examine the role of NF1 in the regulation of GLUT4 gene expression in white adipose tissues (WAT) in vivo, we created two types of transgenic mice harboring mutated either 5' or 3' half-site of NF1-binding sites in GLUT4 minigene constructs. In both cases, the GLUT4 minigene was not expressed in WAT, while expression was maintained in brown adipose tissue, skeletal muscle, and heart. This was an unexpected finding, since a -551 GLUT4 minigene that did not have the NF1-binding site was expressed in WAT. We propose a model that explains the requirement for both the ASE and the NF1-binding site for expression of GLUT4 in WAT

  15. Anorexia and Impaired Glucose Metabolism in Mice With Hypothalamic Ablation of Glut4 Neurons

    OpenAIRE

    Ren, Hongxia; Lu, Taylor Y.; McGraw, Timothy E.; Accili, Domenico

    2014-01-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin?mediated cell ablation to selectively remove basal hypothalamic Glut4 ...

  16. Long-Term Chronic Intermittent Hypobaric Hypoxia Induces Glucose Transporter (GLUT4 Translocation Through AMP-Activated Protein Kinase (AMPK in the Soleus Muscle in Lean Rats

    Directory of Open Access Journals (Sweden)

    Patricia Siques

    2018-06-01

    Full Text Available Background: In chronic hypoxia (CH and short-term chronic intermittent hypoxia (CIH exposure, glycemia and insulin levels decrease and insulin sensitivity increases, which can be explained by changes in glucose transport at skeletal muscles involving GLUT1, GLUT4, Akt, and AMPK, as well as GLUT4 translocation to cell membranes. However, during long-term CIH, there is no information regarding whether these changes occur similarly or differently than in other types of hypoxia exposure. This study evaluated the levels of AMPK and Akt and the location of GLUT4 in the soleus muscles of lean rats exposed to long-term CIH, CH, and normoxia (NX and compared the findings.Methods: Thirty male adult rats were randomly assigned to three groups: a NX (760 Torr group (n = 10, a CIH group (2 days hypoxia/2 days NX; n = 10 and a CH group (n = 10. Rats were exposed to hypoxia for 30 days in a hypobaric chamber set at 428 Torr (4,600 m. Feeding (10 g daily and fasting times were accurately controlled. Measurements included food intake (every 4 days, weight, hematocrit, hemoglobin, glycemia, serum insulin (by ELISA, and insulin sensitivity at days 0 and 30. GLUT1, GLUT4, AMPK levels and Akt activation in rat soleus muscles were determined by western blot. GLUT4 translocation was measured with confocal microscopy at day 30.Results: (1 Weight loss and increases in hematocrit and hemoglobin were found in both hypoxic groups (p < 0.05. (2 A moderate decrease in glycemia and plasma insulin was found. (3 Insulin sensitivity was greater in the CIH group (p < 0.05. (4 There were no changes in GLUT1, GLUT4 levels or in Akt activation. (5 The level of activated AMPK was increased only in the CIH group (p < 0.05. (6 Increased GLUT4 translocation to the plasma membrane of soleus muscle cells was observed in the CIH group (p < 0.05.Conclusion: In lean rats experiencing long-term CIH, glycemia and insulin levels decrease and insulin sensitivity increases. Interestingly, there

  17. GLUT11, but not GLUT8 or GLUT12, is expressed in human skeletal muscle in a fibre type-specific pattern

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Schürmann, A

    2004-01-01

    or amyotrophic lateral sclerosis (ALS) were studied. GLUT8 and 12 immunoreactivity was below detection level in both developing and adult muscle fibres. GLUT11 immunoreactivity, however, was present in slow-twitch muscle fibres, but not in fast twitch fibres. Since, in contrast, GLUT4 was expressed in all...... exclusively in slow-twitch muscle fibres and is unaffected by physiological and pathophysiological conditions except in primary myopathy. GLUT8 and GLUT12 do not appear to be of importance in human muscle under physiological and pathophysiological conditions....... to induce GLUT8 or -12 expression. Likewise, the fibre type-dependent pattern of GLUT11 immunoreactivity was unaltered. However, some slow muscle fibres lose their GLUT11 immunoreactivity under regeneration. Our results indicate that GLUT11 immunoreactivity, in contrast to that of GLUT4, is expressed...

  18. Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle.

    Science.gov (United States)

    Xu, Peng-Tao; Song, Zhen; Zhang, Wen-Cheng; Jiao, Bo; Yu, Zhi-Bin

    2015-01-01

    Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  19. Impaired Translocation of GLUT4 Results in Insulin Resistance of Atrophic Soleus Muscle

    Directory of Open Access Journals (Sweden)

    Peng-Tao Xu

    2015-01-01

    Full Text Available Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  20. Arsenite stimulated glucose transport in 3T3-L1 adipocytes involves both Glut4 translocation and p38 MAPK activity

    NARCIS (Netherlands)

    Bazuine, Merlijn; Ouwens, D. Margriet; Gomes de Mesquita, Daan S.; Maassen, J. Antonie

    2003-01-01

    The protein-modifying agent arsenite stimulates glucose uptake in 3T3-L1 adipocytes. In the current study we have analysed the signalling pathways that contribute to this response. By subcellular fractionation we observed that arsenite, like insulin, induces translocation of the GLUT1 and GLUT4

  1. The effect of intensive insulin therapy on the insulin-regulatable glucose transporter (GLUT4) expression in skeletal muscle in type 1 diabetes

    DEFF Research Database (Denmark)

    Andersen, P H; Vestergaard, H; Lund, S

    1993-01-01

    h given to patients with Type 1 diabetes in poor metabolic control was associated with an adaptive regulation of GLUT4 mRNA and protein levels in vastus lateralis muscle. Nine Type 1 diabetic patients with a mean HbA1c of 10.3% were included in the protocol. After intensified treatment with soluble.......54). These results suggest, that in spite of evidence that high insulin levels affect GLUT4 expression in muscle, changes in serum insulin within the physiological range do not play a major role in the short-term regulation of GLUT4 expression in Type 1 diabetic patients....

  2. GLUT4 Mobilization Supports Energetic Demands of Active Synapses.

    Science.gov (United States)

    Ashrafi, Ghazaleh; Wu, Zhuhao; Farrell, Ryan J; Ryan, Timothy A

    2017-02-08

    The brain is highly sensitive to proper fuel availability as evidenced by the rapid decline in neuronal function during ischemic attacks and acute severe hypoglycemia. We previously showed that sustained presynaptic function requires activity-driven glycolysis. Here, we provide strong evidence that during action potential (AP) firing, nerve terminals rely on the glucose transporter GLUT4 as a glycolytic regulatory system to meet the activity-driven increase in energy demands. Activity at synapses triggers insertion of GLUT4 into the axonal plasma membrane driven by activation of the metabolic sensor AMP kinase. Furthermore, we show that genetic ablation of GLUT4 leads to an arrest of synaptic vesicle recycling during sustained AP firing, similar to what is observed during acute glucose deprivation. The reliance on this biochemical regulatory system for "exercising" synapses is reminiscent of that occurring in exercising muscle to sustain cellular function and identifies nerve terminals as critical sites of proper metabolic control. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. GLUT4 translocation is not impaired after acute exercise in skeletal muscle of women with obesity and polycystic ovary syndrome.

    Science.gov (United States)

    Dantas, Wagner Silva; Marcondes, José Antonio Miguel; Shinjo, Samuel Katsuyuki; Perandini, Luiz Augusto; Zambelli, Vanessa Olzon; Neves, Willian Das; Barcellos, Cristiano Roberto Grimaldi; Rocha, Michele Patrocínio; Yance, Viviane Dos Reis Vieira; Pereira, Renato Tavares Dos Santos; Murai, Igor Hisashi; Pinto, Ana Lucia De Sá; Roschel, Hamilton; Gualano, Bruno

    2015-11-01

    The aim of this study was to examine the effects of acute exercise on insulin signaling in skeletal muscle of women with polycystic ovary syndrome (PCOS) and controls (CTRL). Fifteen women with obesity and PCOS and 12 body mass index-matched CTRL participated in this study. Subjects performed a 40-min single bout of exercise. Muscle biopsies were performed before and 60 min after exercise. Selected proteins were assessed by Western blotting. CTRL, but not PCOS, showed a significant increase in PI3-k p85 and AS160 Thr 642 after a single bout of exercise (P = 0.018 and P = 0.018, respectively). Only PCOS showed an increase in Akt Thr 308 and AMPK phosphorylation after exercise (P = 0.018 and P = 0.018, respectively). Total GLUT4 expression was comparable between groups (P > 0.05). GLUT4 translocation tended to be significantly higher in both groups after exercise (PCOS: P = 0.093; CTRL: P = 0.091), with no significant difference between them (P > 0.05). A single bout of exercise elicited similar GLUT4 translocation in skeletal muscle of PCOS and CTRL, despite a slightly differential pattern of protein phosphorylation. The absence of impairment in GLUT4 translocation suggests that PCOS patients with obesity and insulin resistance may benefit from exercise training. © 2015 The Obesity Society.

  4. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    Science.gov (United States)

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  5. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle

    DEFF Research Database (Denmark)

    Chiu, Tim T; Jensen, Thomas Elbenhardt; Sylow, Lykke

    2011-01-01

    Small Rho family GTPases are important regulators of cellular traffic. Emerging evidence now implicates Rac1 and Rac-dependent actin reorganisation in insulin-induced recruitment of glucose transporter-4 (GLUT4) to the cell surface of muscle cells and mature skeletal muscle. This review summarises...... the current thinking on the regulation of Rac1 by insulin, the role of Rac-dependent cortical actin remodelling in GLUT4 traffic, and the impact of Rac1 towards insulin resistance in skeletal muscle....

  6. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle.

    Science.gov (United States)

    Castorena, Carlos M; Arias, Edward B; Sharma, Naveen; Bogan, Jonathan S; Cartee, Gregory D

    2015-02-01

    To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[(3)H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P contraction-stimulated glucose uptake. Copyright © 2015 the American Physiological Society.

  7. GLUT3 is present in Clone 9 liver cells and translocates to the plasma membrane in response to insulin.

    Science.gov (United States)

    Defries, Danielle M; Taylor, Carla G; Zahradka, Peter

    2016-08-26

    Clone 9 cells have been reported to express only the GLUT1 facilitative glucose transporter; however, previous studies have not examined Clone 9 cells for GLUT3 content. The current study sought to profile the presence of glucose transporters in Clone 9 cells, H4IIE hepatoma cells, and L6 myoblasts and myotubes. While the other cell types contained the expected complement of transporters, Clone 9 cells had GLUT3 which was previously not reported. Interestingly, both GLUT3 mRNA and protein were detected in Clone 9 cells, but only mRNA for GLUT1 was detected. Glucose transport in Clone 9 cells was insulin-sensitive in a concentration-dependent manner, concomitant with the presence of GLUT3 in the plasma membrane after insulin treatment. Although basal glucose uptake was unaffected, insulin-stimulated glucose uptake was abolished with siRNA-mediated GLUT3 knockdown. These results contradict previous reports that Clone 9 cells exclusively express GLUT1 and suggest GLUT3 is a key insulin-sensitive glucose transporter required for insulin-stimulated glucose uptake by Clone 9 cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Impaired muscle glycogen resynthesis after a marathon is not caused by decreased muscle GLUT-4 content

    DEFF Research Database (Denmark)

    Asp, S; Rohde, T; Richter, Erik

    1997-01-01

    Our purpose was to investigate whether the slow rate of muscle glycogen resynthesis after a competitive marathon is associated with a decrease in the total muscle content of the muscle glucose transporter (GLUT-4). Seven well-trained marathon runners participated in the study, and muscle biopsies...... were obtained from the lateral head of the gastrocnemius muscle before, immediately after, and 1, 2, and 7 days after the marathon, as were venous blood samples. Muscle GLUT-4 content was unaltered over the experimental period. Muscle glycogen concentration was 758 +/- 53 mmol/kg dry weight before...... the marathon and decreased to 148 +/- 39 mmol/kg dry weight immediately afterward. Despite a carbohydrate-rich diet (containing at least 7 g carbohydrate.kg body mass-1.day-1), the muscle glycogen concentration remained 30% lower than before-race values 2 days after the race, whereas it had returned to before...

  9. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation.

    Science.gov (United States)

    Klip, Amira; Sun, Yi; Chiu, Tim Ting; Foley, Kevin P

    2014-05-15

    Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner. Using the analogy of an integrated circuit to approach the intersection between signal transduction and vesicle mobilization, we identify signaling relays ("software") that engage structural/mechanical elements ("hardware") to enact the rapid mobilization and incorporation of GLUT4 into the cell surface. We emphasize how insulin signal transduction switches from tyrosine through lipid and serine phosphorylation down to activation of small G proteins of the Rab and Rho families, describe key negative regulation step of Rab GTPases through the GTPase-activating protein activity of the Akt substrate of 160 kDa (AS160), and focus on the mechanical effectors engaged by Rabs 8A and 10 (the molecular motor myosin Va), and the Rho GTPase Rac1 (actin filament branching and severing through Arp2/3 and cofilin). Finally, we illustrate how actin filaments interact with myosin 1c and α-Actinin4 to promote vesicle tethering as preamble to fusion with the membrane. Copyright © 2014 the American Physiological Society.

  10. GLUT4 trafficking in a test tube.

    Science.gov (United States)

    Ramm, Georg; James, David E

    2005-09-01

    Insulin regulates glucose transport in muscle and fat cells by stimulating the translocation of GLUT4 from intracellular vesicles to the plasma membrane. In this issue of Cell Metabolism, Holman and colleagues reconstitute this process in vitro, providing a system that promises new breakthroughs in our understanding of this important metabolic process.

  11. PI3K-GLUT4 Signal Pathway Associated with Effects of EX-B3 Electroacupuncture on Hyperglycemia and Insulin Resistance of T2DM Rats

    Directory of Open Access Journals (Sweden)

    Bing-Yan Cao

    2016-01-01

    Full Text Available Objectives. To explore electroacupuncture’s (EA’s effects on fasting blood glucose (FBG and insulin resistance of type 2 diabetic mellitus (T2DM model rats and give a possible explanation for the effects. Method. It takes high fat diet and intraperitoneal injection of streptozotocin (STZ, 30 mg/kg for model preparation. Model rats were randomly divided into T2DM Model group, EA weiwanxiashu (EX-B3 group, and sham EA group (n=12/group. EA (2 Hz continuous wave, 2 mA, 20 min/day, 6 days/week, 4 weeks was applied as intervention. FBG, area under curve (AUC of oral glucose tolerance test (OGTT, insulin resistance index (HOMA-IR, pancreatic B cell function index (HOMA-B, skeletal muscle phosphorylated phosphatidylinositol-3-kinase (PI3K, glucose transporter 4 (GLUT4, and membrane GLUT4 protein expression were measured. Results. EA weiwanxiashu (EX-B3 can greatly upregulate model rat’s significantly reduced skeletal muscle PI3K (Y607 and membrane GLUT4 protein expression (P<0.01, effectively reducing model rats’ FBG and AUC of OGTT (P<0.01. The effects are far superior to sham EA group. Conclusion. EA weiwanxiashu (EX-B3 can upregulate skeletal muscle phosphorylated PI3K protein expression, to stimulate membrane translocation of GLUT4 and thereby increase skeletal muscle glucose intake to treat T2DM.

  12. Humanin (HN and glucose transporter 8 (GLUT8 in pregnancies complicated by intrauterine growth restriction.

    Directory of Open Access Journals (Sweden)

    Carla Janzen

    Full Text Available Intrauterine growth restriction (IUGR results from a lack of nutrients transferred to the developing fetus, particularly oxygen and glucose. Increased expression of the cytoprotective mitochondrial peptide, humanin (HN, and the glucose transporter 8, GLUT8, has been reported under conditions of hypoxic stress. However, the presence and cellular localization of HN and GLUT8 in IUGR-related placental pathology remain unexplored. Thus, we undertook this study to investigate placental expression of HN and GLUT8 in IUGR-affected versus normal pregnancies.We found 1 increased HN expression in human IUGR-affected pregnancies on the maternal aspect of the placenta (extravillous trophoblastic (EVT cytoplasm compared to control (i.e. appropriate for gestational age pregnancies, and a concomitant increase in GLUT8 expression in the same compartment, 2 HN and GLUT8 showed a protein-protein interaction by co-immunoprecipitation, 3 elevated HN and GLUT8 levels in vitro under simulated hypoxia in human EVT cells, HTR8/SVneo, and 4 increased HN expression but attenuated GLUT8 expression in vitro under serum deprivation in HTR8/SVneo cells.There was elevated HN expression with cytoplasmic localization to EVTs on the maternal aspect of the human placenta affected by IUGR, also associated with increased GLUT8 expression. We found that while hypoxia increased both HN and GLUT8, serum deprivation increased HN expression alone. Also, a protein-protein interaction between HN and GLUT8 suggests that their interaction may fulfill a biologic role that requires interdependency. Future investigations delineating molecular interactions between these proteins are required to fully uncover their role in IUGR-affected pregnancies.

  13. Analysis of GLUT-1, GLUT-3, and angiogenic index in syndromic and non-syndromic keratocystic odontogenic tumors

    Directory of Open Access Journals (Sweden)

    Rafaella Bastos LEITE

    2017-04-01

    Full Text Available Abstract The aim of this study was to evaluate the immunoexpression of glucose transporters 1 (GLUT-1 and 3 (GLUT-3 in keratocystic odontogenic tumors associated with Gorlin syndrome (SKOTs and non-syndromic keratocystic odontogenic tumors (NSKOTs, and to establish correlations with the angiogenic index. Seventeen primary NSKOTs, seven recurrent NSKOTs, and 17 SKOTs were selected for the study. The percentage of immunopositive cells for GLUT-1 and GLUT-3 in the epithelial component of the tumors was assessed. The angiogenic index was determined by microvessel count. The results were analyzed statistically using the nonparametric Kruskal-Wallis test and Spearman’s correlation test. High epithelial immunoexpression of GLUT-1 was observed in most tumors (p = 0.360. There was a higher frequency of negative cases for GLUT-3 in all groups. The few GLUT-3-positive tumors exhibited low expression of this protein in epithelial cells. No significant difference in the angiogenic index was observed between groups (p = 0.778. GLUT-1 expression did not correlate significantly with the angiogenic index (p > 0.05. The results suggest that the more aggressive biological behavior of SKOTs when compared to NSKOTs may not be related to GLUT-1 or GLUT-3 expression. GLUT-1 may play an important role in glucose uptake by epithelial cells of KOTs and this process is unlikely related to the angiogenic index. GLUT-1 could be a potential target for future development of therapeutic strategies for KOTs.

  14. Adolescents with clinical type 1 diabetes display reduced red blood cell glucose transporter isoform 1 (GLUT1).

    Science.gov (United States)

    Garg, Meena; Thamotharan, Manikkavasagar; Becker, Dorothy J; Devaskar, Sherin U

    2014-11-01

    Type 1 diabetic (T1D) adolescent children on insulin therapy suffer episodes of both hyper- and hypoglycemic episodes. Glucose transporter isoform GLUT1 expressed in blood-brain barrier (BBB) and red blood cells (RBC) compensates for perturbed circulating glucose toward protecting the supply to brain and RBCs. We hypothesized that RBC-GLUT1 concentration, as a surrogate for BBB-GLUT1, is altered in T1D children. To test this hypothesis, we measured RBC-GLUT1 by enzyme-linked immunosorbent assay (ELISA) in T1D children (n = 72; mean age 15.3 ± 0.2 yr) and control children (CON; n = 11; mean age 15.6 ± 0.9 yr) after 12 h of euglycemia and during a hyperinsulinemic-hypoglycemic clamp with a nadir blood glucose of ~3.3 mmol/L for 90 min (clamp I) or ~3 mmol/L for 45 min (clamp II). Reduced baseline RBC-GLUT1 was observed in T1D (2.4 ± 0.17 ng/ng membrane protein); vs. CON (4.2 ± 0.61 ng/ng protein) (p < 0.0001). Additionally, baseline RBC-GLUT1 in T1D negatively correlated with hemoglobin A1c (HbA1c) (R = -0.23, p < 0.05) but not in CON (R = 0.06, p < 0.9). Acute decline in serum glucose to 3.3 mmol/L (90 min) or 3 mmol/L (45 min) did not change baseline RBC-GLUT1 in T1D or CON children. We conclude that reduced RBC-GLUT1 encountered in T1D, with no ability to compensate by increasing during acute hypoglycemia over the durations examined, may demonstrate a vulnerability of impaired RBC glucose transport (serving as a surrogate for BBB), especially in those with the worst control. We speculate that this may contribute to the perturbed cognition seen in T1D adolescents. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Peripheral insulin resistance in ILK-depleted mice by reduction of GLUT4 expression.

    Science.gov (United States)

    Hatem-Vaquero, Marco; Griera, Mercedes; García-Jerez, Andrea; Luengo, Alicia; Álvarez, Julia; Rubio, José A; Calleros, Laura; Rodríguez-Puyol, Diego; Rodríguez-Puyol, Manuel; De Frutos, Sergio

    2017-08-01

    The development of insulin resistance is characterized by the impairment of glucose uptake mediated by glucose transporter 4 (GLUT4). Extracellular matrix changes are induced when the metabolic dysregulation is sustained. The present work was devoted to analyze the possible link between the extracellular-to-intracellular mediator integrin-linked kinase (ILK) and the peripheral tissue modification that leads to glucose homeostasis impairment. Mice with general depletion of ILK in adulthood (cKD-ILK) maintained in a chow diet exhibited increased glycemia and insulinemia concurrently with a reduction of the expression and membrane presence of GLUT4 in the insulin-sensitive peripheral tissues compared with their wild-type littermates (WT). Tolerance tests and insulin sensitivity indexes confirmed the insulin resistance in cKD-ILK, suggesting a similar stage to prediabetes in humans. Under randomly fed conditions, no differences between cKD-ILK and WT were observed in the expression of insulin receptor (IR-B) and its substrate IRS-1 expressions. The IR-B isoform phosphorylated at tyrosines 1150/1151 was increased, but the AKT phosphorylation in serine 473 was reduced in cKD-ILK tissues. Similarly, ILK-blocked myotubes reduced their GLUT4 promoter activity and GLUT4 expression levels. On the other hand, the glucose uptake capacity in response to exogenous insulin was impaired when ILK was blocked in vivo and in vitro , although IR/IRS/AKT phosphorylation states were increased but not different between groups. We conclude that ILK depletion modifies the transcription of GLUT4, which results in reduced peripheral insulin sensitivity and glucose uptake, suggesting ILK as a molecular target and a prognostic biomarker of insulin resistance. © 2017 Society for Endocrinology.

  16. Wushenziye Formula Improves Skeletal Muscle Insulin Resistance in Type 2 Diabetes Mellitus via PTP1B-IRS1-Akt-GLUT4 Signaling Pathway.

    Science.gov (United States)

    Tian, Chunyu; Chang, Hong; La, Xiaojin; Li, Ji-An

    2017-01-01

    Background. Wushenziye formula (WSZYF) is an effective traditional Chinese medicine in the treatment of type 2 diabetes mellitus (T2DM). Aim. This study aimed to identify the effects and underlying mechanisms of WSZYF on improving skeletal muscle insulin resistance in T2DM. Methods. An animal model of T2DM was induced by Goto-Kakizaki diabetes prone rats fed with high fat and sugar for 4 weeks. Insulin resistance model was induced in skeletal muscle cell. Results. In vivo , WSZYF improved general conditions and decreased significantly fasting blood glucose, glycosylated serum protein, glycosylated hemoglobin, insulin concentration, and insulin resistance index of T2DM rats. In vitro , WSZYF enhanced glucose consumption in insulin resistance model of skeletal muscle cell. Furthermore, WSZYF affected the expressions of molecules in regulating T2DM, including increasing the expressions of p-IRS1, p-Akt, and GLUT4, reducing PTP1B expression. Conclusion . These findings displayed the potential of WSZYF as a new drug candidate in the treatment of T2DM and the antidiabetic mechanism of WSZYF is probably mediated through modulating the PTP1B-IRS1-Akt-GLUT4 signaling pathway.

  17. Wushenziye Formula Improves Skeletal Muscle Insulin Resistance in Type 2 Diabetes Mellitus via PTP1B-IRS1-Akt-GLUT4 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chunyu Tian

    2017-01-01

    Full Text Available Background. Wushenziye formula (WSZYF is an effective traditional Chinese medicine in the treatment of type 2 diabetes mellitus (T2DM. Aim. This study aimed to identify the effects and underlying mechanisms of WSZYF on improving skeletal muscle insulin resistance in T2DM. Methods. An animal model of T2DM was induced by Goto-Kakizaki diabetes prone rats fed with high fat and sugar for 4 weeks. Insulin resistance model was induced in skeletal muscle cell. Results. In vivo, WSZYF improved general conditions and decreased significantly fasting blood glucose, glycosylated serum protein, glycosylated hemoglobin, insulin concentration, and insulin resistance index of T2DM rats. In vitro, WSZYF enhanced glucose consumption in insulin resistance model of skeletal muscle cell. Furthermore, WSZYF affected the expressions of molecules in regulating T2DM, including increasing the expressions of p-IRS1, p-Akt, and GLUT4, reducing PTP1B expression. Conclusion. These findings displayed the potential of WSZYF as a new drug candidate in the treatment of T2DM and the antidiabetic mechanism of WSZYF is probably mediated through modulating the PTP1B-IRS1-Akt-GLUT4 signaling pathway.

  18. Molecular Tools for Facilitative Carbohydrate Transporters (Gluts).

    Science.gov (United States)

    Tanasova, Marina; Fedie, Joseph R

    2017-09-19

    Facilitative carbohydrate transporters-Gluts-have received wide attention over decades due to their essential role in nutrient uptake and links with various metabolic disorders, including diabetes, obesity, and cancer. Endeavors directed towards understanding the mechanisms of Glut-mediated nutrient uptake have resulted in a multidisciplinary research field spanning protein chemistry, chemical biology, organic synthesis, crystallography, and biomolecular modeling. Gluts became attractive targets for cancer research and medicinal chemistry, leading to the development of new approaches to cancer diagnostics and providing avenues for cancer-targeting therapeutics. In this review, the current state of knowledge of the molecular interactions behind Glut-mediated sugar uptake, Glut-targeting probes, therapeutics, and inhibitors are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The beneficial effects of exercise in rodents are preserved after detraining: a phenomenon unrelated to GLUT4 expression

    Directory of Open Access Journals (Sweden)

    De Angelis Kátia

    2010-10-01

    Full Text Available Abstract Background Although exercise training has well-known cardiorespiratory and metabolic benefits, low compliance with exercise training programs is a fact, and the harmful effects of physical detraining regarding these adaptations usually go unnoticed. We investigated the effects of exercise detraining on blood pressure, insulin sensitivity, and GLUT4 expression in spontaneously hypertensive rats (SHR and normotensive Wistar Kyoto rats (WKY. Methods Studied animals were randomized into sedentary, trained (treadmill running/5 days a week, 60 min/day for 10 weeks, 1 week of detraining, and 2 weeks of detraining. Blood pressure (tail-cuff system, insulin sensitivity (kITT, and GLUT4 (Western blot in heart, gastrocnemius and white fat tissue were measured. Results Exercise training reduced blood pressure (19%, improved insulin sensitivity (24%, and increased GLUT4 in the heart (+34%; gastrocnemius (+36% and fat (+22% in SHR. In WKY no change in either blood pressure or insulin sensitivity were observed, but there was an increase in GLUT4 in the heart (+25%, gastrocnemius (+45% and fat (+36% induced by training. Both periods of detraining did not induce any change in neither blood pressure nor insulin sensitivity in SHR and WKY. One-week detraining reduced GLUT4 in SHR (heart: -28%; fat: -23% and WKY (heart: -19%; fat: -22%; GLUT4 in the gastrocnemius was reduced after a 2-week detraining (SHR: -35%; WKY: -25%. There was a positive correlation between GLUT4 (gastrocnemius and the maximal velocity in the exercise test (r = 0.60, p = 0.004. Conclusions The study findings show that in detraining, despite reversion of the enhanced GLUT4 expression, cardiorespiratory and metabolic beneficial effects of exercise are preserved.

  20. GLUT4 and glycogen synthase are key players in bed rest-induced insulin resistance

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup; Jørgensen, Stine Ringholm; Kiilerich, Kristian

    2012-01-01

    To elucidate the molecular mechanisms behind physical inactivity-induced insulin resistance in skeletal muscle, 12 young, healthy male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies obtained before and after. In six of the subjects, muscle biopsies were taken from both...... than before bed rest. This bed rest-induced insulin resistance occurred together with reduced muscle GLUT4, hexokinase II, protein kinase B/Akt1, and Akt2 protein level, and a tendency for reduced 3-hydroxyacyl-CoA dehydrogenase activity. The ability of insulin to phosphorylate Akt and activate....... The present findings demonstrate that physical inactivity-induced insulin resistance in muscle is associated with lower content/activity of key proteins in glucose transport/phosphorylation and storage....

  1. Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Fulcher, F. Kent; Smith, Bethany T.; Russ, Misty; Patel, Yashomati M.

    2008-01-01

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity

  2. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    Science.gov (United States)

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  3. Expression of Akt and GLUT-4 in adipose tissue of women with gestational diabetes mellitus and pregnant women with excessive weight gain

    Directory of Open Access Journals (Sweden)

    Li WU

    2014-10-01

    Full Text Available Objective To investigate the influence of glucose transporter 4 (GLUT-4 and protein kinase B (Akt on gestational diabetes mellitus (GDM by determining their expressions in adipose tissues from women with GDM, excessive weight gain pregnant women, and normal pregnant women. Methods Adipose tissues were obtained by biopsy during cesarean section from 15 pregnant women with normal glucose tolerance while their body mass index (BMI increased in about 4kg/m2 (NGT1 group, and 15 pregnant women with normal glucose tolerance with BMI increased by 8kg/m2 (NGT2 group, and 15 cases of GDM (GDM group. Adipose tissue were divided into two sections and incubated in the culture medium with or without insulin (1×10-7 mol/L for 30 minutes. Fasting blood glucose (FBG and fasting insulin (FINS levels were determined with glucose oxidase and radioimmunoassay. Homeostatic model assessment of insulin resistance (HOMA-IR, and homeostatic model assessment of insulin secretions index (HOMA-IS were calculated from the data. Phosphorylation of Akt (P-Akt and GLUT-4 levels of cultured adipose tissue were examined by Western blotting. Results The FBG levels were similar in 3 groups. FINS, HOMA-IR and HOMA-IS were significantly different among the 3 groups (P0.05 in basal state. Compared with the basal state, however, the phosphorylation of Akt increased significantly in NGT1 group (P0.05 after insulin stimulation. The expression of GLUT-4 was significantly lower in GDM group and NGT2 group than in NGT1 group (P<0.05 in basal state. The expression of GLUT-4 increased much more in NGT1 group than in NGT2 group or GDM group (P<0.05 after insulin stimulation. Conclusion The excessive weight gain and normal glucose tolerance pregnant women almost share a similar expression with GDM women in the insulin signaling and glucose transporter proteins, Akt and GLUT-4, and their abnormal expression and function might play an important role in insulin resistance and GDM

  4. GLUT4 in cultured skeletal myotubes is segregated from the transferrin receptor and stored in vesicles associated with TGN

    DEFF Research Database (Denmark)

    Ralston, E; Ploug, Thorkil

    1996-01-01

    of the constitutive endosomal-lysosomal pathway. To address this question, we have investigated the localization of the endogenous GLUT4 in non-stimulated skeletal myotubes from the cell line C2, by immunofluorescence and immunoelectron microscopy. We have used a panel of antibodies to markers of the Golgi complex...... and in vesicles just beyond, i.e. in the structures that constitute the trans-Golgi network (TGN). In myotubes treated with brefeldin A, the immunofluorescence pattern of GLUT4 is modified, but it differs from both Golgi complex markers and TGN38. Instead, it resembles the pattern of the transferrin receptor...... to the GLUT4-containing tubulo-vesicular elements. In brefeldin A-treated cells, a network of tubules of approximately 70 nm diameter, studded with varicosities, stains for both GLUT4 and transferrin receptor, suggesting that brefeldin A has caused fusion of the transferrin receptor and GLUT4-containing...

  5. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, M; Poulsen, P; Handberg, A

    2000-01-01

    GLUT-4 expression in individual fibers of human skeletal muscles in younger and older adults was studied. Furthermore, the dependency of insulin-stimulated glucose uptake on fiber type distribution was investigated. Fiber type distribution was determined in cryosections of muscle biopsies from 8...... of slow fibers in the young (r = -0.45, P > 0.25) or in the elderly (r = 0. 11, P > 0.75) subjects. In conclusion, in human skeletal muscle, GLUT-4 expression is fiber type dependent and decreases with age, particularly in fast muscle fibers....

  6. Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K.

    Science.gov (United States)

    Kumar, Ramadhar; Balaji, S; Uma, T S; Sehgal, P K

    2009-12-10

    Momordica charantia fruit is a widely used traditional medicinal herb as, anti-diabetic, anti-HIV, anti-ulcer, anti-inflammatory, anti-leukemic, anti-microbial, and anti-tumor. The present study is undertaken to investigate the possible mode of action of fruit extracts derived from Momordica charantia (MC) and study its pharmacological effects for controlling diabetic mellitus. Effects of aqueous and chloroform extracts of Momordica charantia fruit on glucose uptake and up-regulation of glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPAR gamma) and phosphatidylinositol-3 kinase (PI3K), were investigated to show its efficacy as a hypoglycaemic agent. Dose dependent glucose uptake assay was performed on L6 myotubes using 2-deoxy-D-[1-(3)H] glucose. Up-regulatory effects of the extracts on the mRNA expression level of Glut-4, PPAR gamma and PI3K have been studied. The association of Momordica charantia with the aqueous and chloroform extracts of Momordica charantia fruit at 6 microg/ml has shown significant up-regulatory effect, respectively, by 3.6-, 2.8- and 3.8-fold on the battery of targets Glut-4, PPAR gamma and PI3K involved in glucose transport. The up-regulation of glucose uptake was comparable with insulin and rosiglitazone which was approximately 2-fold over the control. Moreover, the inhibitory effect of the cyclohexamide on Momordica charantia fruit extract mediated glucose uptake suggested the requirement of new protein synthesis for the enhanced glucose uptake. This study demonstrated the significance of Glut-4, PPAR gamma and PI3K up-regulation by Momordica charantia in augmenting the glucose uptake and homeostasis.

  7. Near-critical GLUT1 and Neurodegeneration.

    Science.gov (United States)

    Barros, L Felipe; San Martín, Alejandro; Ruminot, Ivan; Sandoval, Pamela Y; Fernández-Moncada, Ignacio; Baeza-Lehnert, Felipe; Arce-Molina, Robinson; Contreras-Baeza, Yasna; Cortés-Molina, Francisca; Galaz, Alex; Alegría, Karin

    2017-11-01

    Recent articles have drawn renewed attention to the housekeeping glucose transporter GLUT1 and its possible involvement in neurodegenerative diseases. Here we provide an updated analysis of brain glucose transport and the cellular mechanisms involved in its acute modulation during synaptic activity. We discuss how the architecture of the blood-brain barrier and the low concentration of glucose within neurons combine to make endothelial/glial GLUT1 the master controller of neuronal glucose utilization, while the regulatory role of the neuronal glucose transporter GLUT3 emerges as secondary. The near-critical condition of glucose dynamics in the brain suggests that subtle deficits in GLUT1 function or its activity-dependent control by neurons may contribute to neurodegeneration. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Sex-Specific Life Course Changes in the Neuro-Metabolic Phenotype of Glut3 Null Heterozygous Mice: Ketogenic Diet Ameliorates Electroencephalographic Seizures and Improves Sociability.

    Science.gov (United States)

    Dai, Yun; Zhao, Yuanzi; Tomi, Masatoshi; Shin, Bo-Chul; Thamotharan, Shanthie; Mazarati, Andrey; Sankar, Raman; Wang, Elizabeth A; Cepeda, Carlos; Levine, Michael S; Zhang, Jingjing; Frew, Andrew; Alger, Jeffry R; Clark, Peter M; Sondhi, Monica; Kositamongkol, Sudatip; Leibovitch, Leah; Devaskar, Sherin U

    2017-04-01

    We tested the hypothesis that exposure of glut3+/- mice to a ketogenic diet ameliorates autism-like features, which include aberrant behavior and electrographic seizures. We first investigated the life course sex-specific changes in basal plasma-cerebrospinal fluid (CSF)-brain metabolic profile, brain glucose transport/uptake, glucose and monocarboxylate transporter proteins, and adenosine triphosphate (ATP) in the presence or absence of systemic insulin administration. Glut3+/- male but not female mice (5 months of age) displayed reduced CSF glucose/lactate concentrations with no change in brain Glut1, Mct2, glucose uptake or ATP. Exogenous insulin-induced hypoglycemia increased brain glucose uptake in glut3+/- males alone. Higher plasma-CSF ketones (β-hydroxybutyrate) and lower brain Glut3 in females vs males proved protective in the former while enhancing vulnerability in the latter. As a consequence, increased synaptic proteins (neuroligin4 and SAPAP1) with spontaneous excitatory postsynaptic activity subsequently reduced hippocampal glucose content and increased brain amyloid β1-40 deposition in an age-dependent manner in glut3+/- males but not females (4 to 24 months of age). We then explored the protective effect of a ketogenic diet on ultrasonic vocalization, sociability, spatial learning and memory, and electroencephalogram seizures in male mice (7 days to 6 to 8 months of age) alone. A ketogenic diet partially restored sociability without affecting perturbed vocalization, spatial learning and memory, and reduced seizure events. We conclude that (1) sex-specific and age-dependent perturbations underlie the phenotype of glut3+/- mice, and (2) a ketogenic diet ameliorates seizures caused by increased cortical excitation and improves sociability, but fails to rescue vocalization and cognitive deficits in glut3+/- male mice. Copyright © 2017 Endocrine Society.

  9. GLUT4 expression at the plasma membrane is related to fibre volume in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Gaster, M; Vach, W; Beck-Nielsen, H

    2002-01-01

    In this study we examined the relationship between GLUT4 expression at the plasma membrane and muscle fibre size in fibre-typed human muscle fibres by immunocytochemistry and morphometry in order to gain further insight into the regulation of GLUT4 expression. At the site of the plasma membrane...

  10. Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection.

    Science.gov (United States)

    Palmer, Clovis S; Duette, Gabriel A; Wagner, Marc C E; Henstridge, Darren C; Saleh, Suah; Pereira, Candida; Zhou, Jingling; Simar, David; Lewin, Sharon R; Ostrowski, Matias; McCune, Joseph M; Crowe, Suzanne M

    2017-10-01

    High glucose transporter 1 (Glut1) surface expression is associated with increased glycolytic activity in activated CD4+ T cells. Phosphatidylinositide 3-kinases (PI3K) activation measured by p-Akt and OX40 is elevated in CD4+Glut1+ T cells from HIV+ subjects. TCR engagement of CD4+Glut1+ T cells from HIV+ subjects demonstrates hyperresponsive PI3K-mammalian target of rapamycin signaling. High basal Glut1 and OX40 on CD4+ T cells from combination antiretroviral therapy (cART)-treated HIV+ patients represent a sufficiently metabolically active state permissive for HIV infection in vitro without external stimuli. The majority of CD4+OX40+ T cells express Glut1, thus OX40 rather than Glut1 itself may facilitate HIV infection. Furthermore, infection of CD4+ T cells is limited by p110γ PI3K inhibition. Modulating glucose metabolism may limit cellular activation and prevent residual HIV replication in 'virologically suppressed' cART-treated HIV+ persons. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  11. Genistein induces estrogen-like effects in ovariectomized rats but fails to increase cardiac GLUT4 and oxidative stress.

    Science.gov (United States)

    Al-Nakkash, Layla; Markus, Brandon; Batia, Lyn; Prozialeck, Walter C; Broderick, Tom L

    2010-12-01

    This study aimed to determine whether a 2-week genistein treatment induced estrogen-like effects in ovariectomized (OVX) Sprague-Dawley rats, after 2 weeks of subcutaneous genistein injections (250 mg/kg of body weight/day). Uterine weight, uterine-to-body weight ratio, femur weight, and femur-to-body weight ratio were all significantly increased with genistein in OVX rats. Body weight was significantly decreased with genistein in OVX rats. Genistein had no effect on the weights of heart, heart-to-body ratio, and fat pad but significantly decreased heart rate and pulse pressure. Genistein had no effect on cardiac GLUT4 protein, oxidative stress, plasma glucose, nonesterified fatty acids, or low-density lipoprotein levels; however, plasma insulin levels were significantly increased. Our results show that a 2-week genistein treatment produced favorable estrogen-like effects on some physical and physiological characteristics in OVX rats. However, based on our experimental conditions, the effects of genistein were not associated with changes in cardiac GLUT4 or oxidative stress.

  12. Infection of CD4+ T lymphocytes by the human T cell leukemia virus type 1 is mediated by the glucose transporter GLUT-1: Evidence using antibodies specific to the receptor's large extracellular domain

    International Nuclear Information System (INIS)

    Jin, Qingwen; Agrawal, Lokesh; VanHorn-Ali, Zainab; Alkhatib, Ghalib

    2006-01-01

    To analyze HTLV-1 cytotropism, we developed a highly sensitive vaccinia virus-based assay measuring activation of a reporter gene upon fusion of two distinct cell populations. We used this system in a functional cDNA screening to isolate and confirm that the glucose transporter protein 1 (GLUT-1) is a receptor for HTLV-1. GLUT-1 is a ubiquitously expressed plasma membrane glycoprotein with 12 transmembrane domains and 6 extracellular loops (ECL). We demonstrate for the first time that peptide antibodies (GLUT-IgY) raised in chicken to the large extracellular loop (ECL1) detect GLUT-1 at the cell surface and inhibit envelope (Env)-mediated fusion and infection. Efficient GLUT-IgY staining was detected with peripheral blood CD4 + lymphocytes purified by positive selection. Further, GLUT-IgY caused efficient inhibition of Env-mediated fusion and infection of CD4 + T and significantly lower inhibition of CD8 + T lymphocytes. The specificity of GLUT-IgY antibodies to GLUT-1 was demonstrated by ECL1 peptide competition studies. Grafting ECL1 of GLUT-1 onto the receptor-negative GLUT-3 conferred significant receptor activity. In contrast, grafting ECL1 of GLUT-3 onto GLUT-1 resulted in a significant loss of the receptor activity. The ECL1-mediated receptor activity was efficiently blocked with four different human monoclonal antibody (HMab) to HTLV-1 Env. The ECL1-derived peptide blocked HTLV-1 Env-mediated fusion with several nonhuman mammalian cell lines. The results demonstrate the utilization of cell surface GLUT-1 in HTLV-1 infection of CD4 + T lymphocytes and implicate a critical role for the ECL1 region in viral tropism

  13. Insulin-Like Growth Factor (IGF Binding Protein-2, Independently of IGF-1, Induces GLUT-4 Translocation and Glucose Uptake in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Biruhalem Assefa

    2017-01-01

    Full Text Available Insulin-like growth factor binding protein-2 (IGFBP-2 is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKCζ/λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKCζ/λ/GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism.

  14. A potential link between insulin signaling and GLUT4 translocation: Association of Rab10-GTP with the exocyst subunit Exoc6/6b

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Hiroyuki; Peck, Grantley R. [Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 (United States); Blachon, Stephanie [Hybrigenics Services SAS, 3-5 Impasse Reille, 75014 Paris (France); Lienhard, Gustav E., E-mail: gustav.e.lienhard@dartmouth.edu [Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 (United States)

    2015-09-25

    Insulin increases glucose transport in fat and muscle cells by stimulating the exocytosis of specialized vesicles containing the glucose transporter GLUT4. This process, which is referred to as GLUT4 translocation, increases the amount of GLUT4 at the cell surface. Previous studies have provided evidence that insulin signaling increases the amount of Rab10-GTP in the GLUT4 vesicles and that GLUT4 translocation requires the exocyst, a complex that functions in the tethering of vesicles to the plasma membrane, leading to exocytosis. In the present study we show that Rab10 in its GTP form binds to Exoc6 and Exoc6b, which are the two highly homologous isotypes of an exocyst subunit, that both isotypes are found in 3T3-L1 adipocytes, and that knockdown of Exoc6, Exoc6b, or both inhibits GLUT4 translocation in 3T3-L1 adipocytes. These results suggest that the association of Rab10-GTP with Exoc6/6b is a molecular link between insulin signaling and the exocytic machinery in GLUT4 translocation. - Highlights: • Insulin stimulates the fusion of vesicles containing GLUT4 with the plasma membrane. • This requires vesicular Rab10-GTP and the exocyst plasma membrane tethering complex. • We find that Rab10-GTP associates with the Exoc6 subunit of the exocyst. • We find that knockdown of Exoc6 inhibits fusion of GLUT4 vesicles with the membrane. • The interaction of Rab10-GTP with Exoc6 potentially links signaling to exocytosis.

  15. AICAR administration affects glucose metabolism by upregulating the novel glucose transporter, GLUT8, in equine skeletal muscle.

    Science.gov (United States)

    de Laat, M A; Robinson, M A; Gruntmeir, K J; Liu, Y; Soma, L R; Lacombe, V A

    2015-09-01

    Equine metabolic syndrome is characterized by obesity and insulin resistance (IR). Currently, there is no effective pharmacological treatment for this insidious disease. Glucose uptake is mediated by a family of glucose transporters (GLUT), and is regulated by insulin-dependent and -independent pathways, including 5-AMP-activated protein kinase (AMPK). Importantly, the activation of AMPK, by 5-aminoimidazole-4-carboxamide-1-D-ribofuranoside (AICAR) stimulates glucose uptake in both healthy and diabetic humans. However, whether AICAR promotes glucose uptake in horses has not been established. It is hypothesized that AICAR administration would enhance glucose transport in equine skeletal muscle through AMPK activation. In this study, the effect of an intravenous AICAR infusion on blood glucose and insulin concentrations, as well as on GLUT expression and AMPK activation in equine skeletal muscle (quantified by Western blotting) was examined. Upon administration, plasma AICAR rapidly reached peak concentration. Treatment with AICAR resulted in a decrease (P change in lactate concentration. The ratio of phosphorylated to total AMPK was increased (P managing IR requires investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Inhibitors of GLUT/SLC2A Enhance the Action of BCNU and Temozolomide against High-Grade Gliomas

    Directory of Open Access Journals (Sweden)

    Alberto Azzalin

    2017-04-01

    Full Text Available Glucose transport across glioblastoma membranes plays a crucial role in maintaining the enhanced glycolysis typical of high-grade gliomas and glioblastoma. We tested the ability of two inhibitors of the glucose transporters GLUT/SLC2A superfamily, indinavir (IDV and ritonavir (RTV, and of one inhibitor of the Na/glucose antiporter type 2 (SGLT2/SLC5A2 superfamily, phlorizin (PHZ, in decreasing glucose consumption and cell proliferation of human and murine glioblastoma cells. We found in vitro that RTV, active on at least three different GLUT/SLC2A transporters, was more effective than IDV, a specific inhibitor of GLUT4/SLC2A4, both in decreasing glucose consumption and lactate production and in inhibiting growth of U87MG and Hu197 human glioblastoma cell lines and primary cultures of human glioblastoma. PHZ was inactive on the same cells. Similar results were obtained when cells were grown in adherence or as 3D multicellular tumor spheroids. RTV treatment but not IDV treatment induced AMP-activated protein kinase (AMPKα phosphorylation that paralleled the decrease in glycolytic activity and cell growth. IDV, but not RTV, induced an increase in GLUT1/SLC2A1 whose activity could compensate for the inhibition of GLUT4/SLC2A4 by IDV. RTV and IDV pass poorly the blood brain barrier and are unlikely to reach sufficient liquoral concentrations in vivo to inhibit glioblastoma growth as single agents. Isobologram analysis of the association of RTV or IDV and 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU or 4-methyl-5-oxo-2,3,4,6,8-pentazabicyclo[4.3.0]nona-2,7,9-triene-9-carboxamide (TMZ indicated synergy only with RTV on inhibition of glioblastoma cells. Finally, we tested in vivo the combination of RTV and BCNU on established GL261 tumors. This drug combination increased the overall survival and allowed a five-fold reduction in the dose of BCNU.

  17. Neonatal hypothyroidism affects testicular glucose homeostasis through increased oxidative stress in prepubertal mice: effects on GLUT3, GLUT8 and Cx43.

    Science.gov (United States)

    Sarkar, D; Singh, S K

    2017-07-01

    Thyroid hormones (THs) play an important role in maintaining the link between metabolism and reproduction and the altered THs status is associated with induction of oxidative stress in various organs like brain, heart, liver and testis. Further, reactive oxygen species play a pivotal role in regulation of glucose homeostasis in several organs, and glucose utilization by Leydig cells is essential for testosterone biosynthesis and thus is largely dependent on glucose transporter 8 (GLUT8). Glucose uptake by Sertoli cells is mediated through glucose transporter 3 (GLUT3) under the influence of THs to meet energy requirement of developing germ cells. THs also modulate level of gap junctional protein such as connexin 43 (Cx43), a potential regulator of cell proliferation and apoptosis in the seminiferous epithelium. Although the role of transient neonatal hypothyroidism in adult testis in terms of testosterone production is well documented, the effect of THs deficiency in early developmental period and its role in testicular glucose homeostasis and oxidative stress with reference to Cx43 in immature mice remain unknown. Therefore, the present study was conducted to evaluate the effect of neonatal hypothyroidism on testicular glucose homeostasis and oxidative stress at postnatal days (PND) 21 and 28 in relation to GLUT3, GLUT8 and Cx43. Hypothyroidism induced by 6-propyl-2-thiouracil (PTU) markedly decreased testicular glucose level with considerable reduction in expression level of GLUT3 and GLUT8. Likewise, lactate dehydrogenase (LDH) activity and intratesticular concentration of lactate were also decreased in hypothyroid mice. There was also a rise in germ cell apoptosis with increased expression of caspase-3 in PTU-treated mice. Further, neonatal hypothyroidism affected germ cell proliferation with decreased expression of proliferating cell nuclear antigen (PCNA) and Cx43. In conclusion, our results suggest that neonatal hypothyroidism alters testicular glucose

  18. Effect of Papaya Seed Extract (Carica papaya Linn. on Glucose Transporter 4 (GLUT 4 Expression of Skeletal Muscle Tissue in Diabetic Mice Induced by High Fructose Diet

    Directory of Open Access Journals (Sweden)

    Devyani Diah Wulansari

    2017-08-01

    Full Text Available Ethnobotany surveys show that papaya seeds are widely used as herbs for the management of some diseases such as abdominal discomfort, pain, malaria, diabetes, obesity, and infection. This research was conducted to analyze the effect of papaya seed extract on GLUT4 expression on skeletal muscle tissue of DM type II model induced by high fructose diet. This study used 24 animals, divided into 4 groups of negative control group, treated with papaya seed extract 100 mg / kgBB, 200 mg / kgBW and 300 mg / kgBW, was adapted for 14 days then induced by fructose solution 20% Orally with a dose of 1.86 grams / kgBB for 56 days. The treatment group was given papaya seed extract in accordance with the dose of each group for 14 days. GDP levels was measured using a spectrophotometer. Skeletal muscle tissue is used on the gastrocnemius part. GLUT4 expression was measured through a Immunoreactive Score (IRS method with immunohistochemical staining using GLUT4 polyclonal antibodies. Comparative test results showed that there were significant differences between groups (p <0.05 in final GDP variables and GLUT4 expression. Pearson correlation test results show that the value p = 0.001, meaning there is a significant relationship between GLUT4 expression with final GDP levels. The result of simple linear regression analysis showed that p = 0,000 (<0,05, meaning that dose of papaya seed extract had a significant influence on GLUT4 expression.

  19. Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK

    Science.gov (United States)

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Tharabenjasin, Phuntila; Gao, Nan

    2015-01-01

    Marked increases in fructose consumption have been tightly linked to metabolic diseases. One-third of ingested fructose is metabolized in the small intestine, but the underlying mechanisms regulating expression of fructose-metabolizing enzymes are not known. We used genetic mouse models to test the hypothesis that fructose absorption via glucose transporter protein, member 5 (GLUT5), metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein in brain 11a (Rab11a)-dependent endosomes are required for the regulation of intestinal fructolytic and gluconeogenic enzymes. Fructose feeding increased the intestinal mRNA and protein expression of these enzymes in the small intestine of adult wild-type (WT) mice compared with those gavage fed with lysine or glucose. Fructose did not increase expression of these enzymes in the GLUT5 knockout (KO) mice. Blocking intracellular fructose metabolism by KHK ablation also prevented fructose-induced upregulation. Glycolytic hexokinase I expression was similar between WT and GLUT5- or KHK-KO mice and did not vary with feeding solution. Gavage feeding with the fructose-specific metabolite glyceraldehyde did not increase enzyme expression, suggesting that signaling occurs before the hydrolysis of fructose to three-carbon compounds. Impeding GLUT5 trafficking to the apical membrane using intestinal epithelial cell-specific Rab11a-KO mice impaired fructose-induced upregulation. KHK expression was uniformly distributed along the villus but was localized mainly in the basal region of the cytosol of enterocytes. The feedforward upregulation of fructolytic and gluconeogenic enzymes specifically requires GLUT5 and KHK and may proactively enhance the intestine's ability to process anticipated increases in dietary fructose concentrations. PMID:26084694

  20. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle.

    Science.gov (United States)

    Terada, S; Yokozeki, T; Kawanaka, K; Ogawa, K; Higuchi, M; Ezaki, O; Tabata, I

    2001-06-01

    This study was performed to assess the effects of short-term, extremely high-intensity intermittent exercise training on the GLUT-4 content of rat skeletal muscle. Three- to four-week-old male Sprague-Dawley rats with an initial body weight ranging from 45 to 55 g were used for this study. These rats were randomly assigned to an 8-day period of high-intensity intermittent exercise training (HIT), relatively high-intensity intermittent prolonged exercise training (RHT), or low-intensity prolonged exercise training (LIT). Age-matched sedentary rats were used as a control. In the HIT group, the rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 2, the next 4, and the last 2 days, respectively. Between exercise bouts, a 10-s pause was allowed. RHT consisted of five 17-min swimming bouts with a 3-min rest between bouts. During the first bout, the rat swam without weight, whereas during the following four bouts, the rat was attached to a weight equivalent to 4 and 5% of its body weight for the first 5 days and the following 3 days, respectively. Rats in the LIT group swam 6 h/day for 8 days in two 3-h bouts separated by 45 min of rest. In the first experiment, the HIT, LIT, and control rats were compared. GLUT-4 content in the epitrochlearis muscle in the HIT and LIT groups after training was significantly higher than that in the control rats by 83 and 91%, respectively. Furthermore, glucose transport activity, stimulated maximally by both insulin (2 mU/ml) (HIT: 48%, LIT: 75%) and contractions (25 10-s tetani) (HIT: 55%, LIT: 69%), was higher in the training groups than in the control rats. However, no significant differences in GLUT-4 content or in maximal glucose transport activity in response to both insulin and contractions were observed between the two training groups. The second experiment demonstrated that GLUT-4 content after HIT did not differ from that after RHT (66% higher in trained rats than

  1. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease?

    DEFF Research Database (Denmark)

    Gaster, M; Staehr, P; Beck-Nielsen, H

    2001-01-01

    To gain further insight into the mechanisms underlying muscle insulin resistance, the influence of obesity and type 2 diabetes on GLUT4 immunoreactivity in slow and fast skeletal muscle fibers was studied. Through a newly developed, very sensitive method using immunohistochemistry combined...... with morphometry, GLUT4 density was found to be significantly higher in slow compared with fast fibers in biopsy specimens from lean and obese subjects. In contrast, in type 2 diabetic subjects, GLUT4 density was significantly lower in slow compared with fast fibers. GLUT4 density in slow fibers from diabetic...... was reduced to 77% in the obese subjects and to 61% in type 2 diabetic patients compared with the control subjects. We propose that a reduction in the fraction of slow-twitch fibers, combined with a reduction in GLUT4 expression in slow fibers, may reduce the insulin-sensitive GLUT4 pool in type 2 diabetes...

  2. L-Cysteine supplementation increases adiponectin synthesis and secretion, and GLUT4 and glucose utilization by upregulating disulfide bond A-like protein expression mediated by MCP-1 inhibition in 3T3-L1 adipocytes exposed to high glucose.

    Science.gov (United States)

    Achari, Arunkumar Elumalai; Jain, Sushil K

    2016-03-01

    Adiponectin is an anti-diabetic and anti-atherogenic adipokine; its plasma levels are decreased in obesity, insulin resistance, and type 2 diabetes. An adiponectin-interacting protein named disulfide bond A-like protein (DsbA-L) plays an important role in the assembly of adiponectin. This study examined the hypothesis that L-cysteine (LC) regulates glucose homeostasis through the DsbA-L upregulation and synthesis and secretion of adiponectin in diabetes. 3T3L1 adipocytes were treated with LC (250 and 500 µM, 2 h) and high glucose (HG, 25 mM, 20 h). Results showed that LC supplementation significantly (p L, adiponectin, and GLUT-4 protein expression and glucose utilization in HG-treated adipocytes. LC supplementation significantly (p L expression and adiponectin levels in 3T3-L1 cells. Treatment with LC prevented the decrease in DsbA-L, adiponectin, and GLUT-4 expression in 3T3L1 adipocyte cells exposed to MCP-1. Thus, this study demonstrates that DsbA-L and adiponectin upregulation mediates the beneficial effects of LC on glucose utilization by inhibiting MCP-1 secretion in adipocytes and provides a novel mechanism by which LC supplementation can improve insulin sensitivity in diabetes.

  3. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    contractions may induce trafficking of GLUT-4-containing vesicles via a mechanism similar to neurotransmitter release. Our results demonstrate for the first time exercise-induced translocation of GLUT-4 and VAMP-2 to the plasma membrane of human muscle and increased sarcolemmal glucose transport.......A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max...

  4. Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes.

    Science.gov (United States)

    Chaudhary, Natasha; Gonzalez, Eva; Chang, Sung-Hee; Geng, Fuqiang; Rafii, Shahin; Altorki, Nasser K; McGraw, Timothy E

    2016-12-20

    Insulin activation of phosphatidylinositol 3-kinase (PI3K) regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but not regulation of Glut4. This uncoupling of PI3K effects occurs despite E4-ORF1 activating PI3K and downstream signaling to levels achieved by insulin. Although E4-ORF1 does not fully recapitulate insulin's effects on Glut4, it enhances insulin-stimulated insertion of Glut4-containing vesicles to the plasma membrane independent of Rab10, a key regulator of Glut4 trafficking. E4-ORF1 also stimulates plasma membrane translocation of ubiquitously expressed Glut1 glucose transporter, an effect that is likely essential for E4-ORF1 to promote an anabolic metabolism in a broad range of cell types. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes

    Directory of Open Access Journals (Sweden)

    Natasha Chaudhary

    2016-12-01

    Full Text Available Insulin activation of phosphatidylinositol 3-kinase (PI3K regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but not regulation of Glut4. This uncoupling of PI3K effects occurs despite E4-ORF1 activating PI3K and downstream signaling to levels achieved by insulin. Although E4-ORF1 does not fully recapitulate insulin’s effects on Glut4, it enhances insulin-stimulated insertion of Glut4-containing vesicles to the plasma membrane independent of Rab10, a key regulator of Glut4 trafficking. E4-ORF1 also stimulates plasma membrane translocation of ubiquitously expressed Glut1 glucose transporter, an effect that is likely essential for E4-ORF1 to promote an anabolic metabolism in a broad range of cell types.

  6. Gene gun bombardment-mediated expression and translocation of EGFP-tagged GLUT4 in skeletal muscle fibres in vivo

    DEFF Research Database (Denmark)

    Lauritzen, Hans P M M; Reynet, Christine; Schjerling, Peter

    2002-01-01

    the enhanced green fluorescent protein (EGFP) labelling technique with physical transfection methods in vivo: intramuscular plasmid injection or gene gun bombardment. During optimisation experiments with plasmid coding for the EGFP reporter alone EGFP-positive muscle fibres were counted after collagenase...... treatment of in vivo transfected flexor digitorum brevis (FDB) muscles. In contrast to gene gun bombardment, intramuscular injection produced EGFP expression in only a few fibres. Regardless of the transfection technique, EGFP expression was higher in muscles from 2-week-old rats than in those from 6-week......Cellular protein trafficking has been studied to date only in vitro or with techniques that are invasive and have a low time resolution. To establish a gentle method for analysis of glucose transporter-4 (GLUT4) trafficking in vivo in fully differentiated rat skeletal muscle fibres we combined...

  7. Prenatal Exposure to Sodium Arsenite Alters Placental Glucose 1, 3, and 4 Transporters in Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Daniela Sarahí Gutiérrez-Torres

    2015-01-01

    Full Text Available Inorganic arsenic (iAs exposure induces a decrease in glucose type 4 transporter (GLUT4 expression on the adipocyte membrane, which may be related to premature births and low birth weight infants in women exposed to iAs at reproductive age. The aim of this study was to analyze the effect of sodium arsenite (NaAsO2 exposure on GLUT1, GLUT3, and GLUT4 protein expression and on placental morphology. Female Balb/c mice (n=15 were exposed to 0, 12, and 20 ppm of NaAsO2 in drinking water from 8th to 18th day of gestation. Morphological changes and GLUT1, GLUT3, and GLUT4 expression were evaluated in placentas by immunohistochemical and image analysis and correlated with iAs and arsenical species concentration, which were quantified by atomic absorption spectroscopy. NaAsO2 exposure induced a significant decrease in fetal and placental weight (P<0.01 and increases in infarctions and vascular congestion. Whereas GLUT1 expression was unchanged in placentas from exposed group, GLUT3 expression was found increased. In contrast, GLUT4 expression was significantly lower (P<0.05 in placentas from females exposed to 12 ppm. The decrease in placental GLUT4 expression might affect the provision of adequate fetal nutrition and explain the low fetal weight observed in the exposed groups.

  8. Photoactivation of GLUT4 translocation promotes glucose uptake via PI3-K/Akt2 signaling in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2014-05-01

    Full Text Available Insulin resistance is a hallmark of the metabolic syndrome and type 2 diabetes. Dysfunction of PI-3K/Akt signaling was involved in insulin resistance. Glucose transporter 4 (GLUT4 is a key factor for glucose uptake in muscle and adipose tissues, which is closely regulated by PI-3K/Akt signaling in response to insulin treatment. Low-power laser irradiation (LPLI has been shown to regulate various physiological processes and induce the synthesis or release of multiple molecules such as growth factors, which (especially red and near infrared light is mainly through the activation of mitochondrial respiratory chain and the initiation of intracellular signaling pathways. Nevertheless, it is unclear whether LPLI could promote glucose uptake through activation of PI-3K/Akt/GLUT4 signaling in 3T3L-1 adipocytes. In this study, we investigated how LPLI promoted glucose uptake through activation of PI-3K/Akt/GLUT4 signaling pathway. Here, we showed that GLUT4 was localized to the Golgi apparatus and translocated from cytoplasm to cytomembrane upon LPLI treatment in 3T3L-1 adipocytes, which enhanced glucose uptake. Moreover, we found that glucose uptake was mediated by the PI3-K/Akt2 signaling, but not Akt1 upon LPLI treatment with Akt isoforms gene silence and PI3-K/Akt inhibitors. Collectively, our results indicate that PI3-K/Akt2/GLUT4 signaling act as the key regulators for improvement of glucose uptake under LPLI treatment in 3T3L-1 adipocytes. More importantly, our findings suggest that activation of PI3-K/Akt2/GLUT4 signaling by LPLI may provide guidance in practical applications for promotion of glucose uptake in insulin-resistant adipose tissue.

  9. GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1

    International Nuclear Information System (INIS)

    Jin Qingwen; Agrawal, Lokesh; VanHorn-Ali, Zainab; Alkhatib, Ghalib

    2006-01-01

    The human glucose transporter protein 1 (GLUT-1) functions as a receptor for human T cell leukemia virus (HTLV). GLUT-1 is a twelve-transmembrane cell surface receptor with six extracellular (ECL) and seven intracellular domains. To analyze HTLV-1 cytotropism, we utilized polyclonal antibodies to a synthetic peptide corresponding to the large extracellular domain of GLUT-1. The antibodies caused significant blocking of envelope (Env)-mediated fusion and pseudotyped virus infection of HeLa cells but had no significant effect on infection of U87 cells. This differential effect correlated with the detection of high-level surface expression of GLUT-1 on HeLa cells and very weak staining of U87 cells. To investigate this in terms of viral cytotropism, we cloned GLUT-1 cDNA from U87 cells and isolated two different versions of cDNA clones: the wild-type sequence (encoding 492 residues) and a mutant cDNA with a 5-base pair deletion (GLUT-1Δ5) between nucleotides 1329 and 1333. The deletion, also detected in genomic DNA, resulted in a frame-shift and premature termination producing a truncated protein of 463 residues. Transfection of the wild-type GLUT-1 but not GLUT-1Δ5 cDNA into CHO cells resulted in efficient surface expression of the human GLUT-1. Co-expression of GLUT-1 with GLUT-1Δ5 produces a trans-inhibition by GLUT-1Δ5 of GLUT-1-mediated HTLV-1 envelope (Env)-mediated fusion. Co-immunoprecipitation experiments demonstrated physical interaction of the wild-type and mutant proteins. Northern blot and RT-PCR analyses demonstrated lower GLUT-1 RNA expression in U87 cells. We propose two mechanisms to account for the impaired cell surface expression of GLUT-1 on U87 cells: low GLUT-1 RNA expression and the formation of GLUT-1/GLUT-1Δ5 heterodimers that are retained intracellularly. Significant RNAi-mediated reduction of endogenous GLUT-1 expression impaired HTLV-1 Env-mediated fusion with HeLa cells but not with U87 cells. We propose a GLUT-1-independent mechanism

  10. Fisetin Suppresses Lipid Accumulation in Mouse Adipocytic 3T3-L1 Cells by Repressing GLUT4-Mediated Glucose Uptake through Inhibition of mTOR-C/EBPα Signaling.

    Science.gov (United States)

    Watanabe, Marina; Hisatake, Mitsuhiro; Fujimori, Ko

    2015-05-27

    3,7,3',4'-Tetrahydroxyflavone (fisetin) is a flavonoid found in vegetables and fruits having broad biological activities. Here the effects of fisetin on adipogenesis and its regulatory mechanism in mouse adipocytic 3T3-L1 cells are studied. Fisetin inhibited the accumulation of intracellular lipids and lowered the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein (C/EBP) α and fatty acid-binding protein 4 (aP2) during adipogenesis. Moreover, the mRNA levels of genes such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase involved in the fatty acid biosynthesis (lipogenesis) were reduced by the treatment with fisetin. The expression level of the glucose transporter 4 (GLUT4) gene was also decreased by fisetin, resulting in down-regulation of glucose uptake. Furthermore, fisetin inhibited the phosphorylation of the mammalian target of rapamycin (mTOR) and that of p70 ribosomal S6 kinase, a target of the mTOR complex, the inhibition of which was followed by a decreased mRNA level of the C/EBPα gene. The results obtained from a chromatin immunoprecipitation assay demonstrated that the ability of C/EBPα to bind to the GLUT4 gene promoter was reduced by the treatment with fisetin, which agreed well with those obtained when 3T3-L1 cells were allowed to differentiate into adipocytes in medium in the presence of rapamycin, an inhibitor for mTOR. These results indicate that fisetin suppressed the accumulation of intracellular lipids by inhibiting GLUT4-mediated glucose uptake through inhibition of the mTOR-C/EBPα signaling in 3T3-L1 cells.

  11. GLUT4 expression in human muscle fibres is not correlated with intracellular triglyceride (TG) content. Is TG a maker or a marker of insulin resistance?

    DEFF Research Database (Denmark)

    Gaster, M; Ottosen, P D; Vach, W

    2003-01-01

    diabetic subjects, and young lean controls. TG density was significantly higher in slow compared to fast fibres in all studied subjects (pslow twitch fibres of obese diabetic subjects compared to obese (p...We have recently reported a progressive decline in the expression of glucose transporter isoform 4 (GLUT4) from control subjects through obese non-diabetics to obese type 2 diabetic subjects, indicating that the reduced GLUT4 in slow twitch fibres could be secondary to obesity. In this study we...... densities in slow and fast fibres did not correlate with the corresponding GLUT4 density in the same fibres in our study groups (p>0.05). Plasma TG and FFA did not correlate with GLUT4 expression in slow or fast fibres (p>0.05). In conclusion, TG content was increased in diabetic slow fibres with a reduced...

  12. A Glimpse of Membrane Transport through Structures-Advances in the Structural Biology of the GLUT Glucose Transporters.

    Science.gov (United States)

    Yan, Nieng

    2017-08-18

    The cellular uptake of glucose is an essential physiological process, and movement of glucose across biological membranes requires specialized transporters. The major facilitator superfamily glucose transporters GLUTs, encoded by the SLC2A genes, have been a paradigm for functional, mechanistic, and structural understanding of solute transport in the past century. This review starts with a glimpse into the structural biology of membrane proteins and particularly membrane transport proteins, enumerating the landmark structures in the past 25years. The recent breakthrough in the structural elucidation of GLUTs is then elaborated following a brief overview of the research history of these archetypal transporters, their functional specificity, and physiological and pathophysiological significances. Structures of GLUT1, GLUT3, and GLUT5 in distinct transport and/or ligand-binding states reveal detailed mechanisms of the alternating access transport cycle and substrate recognition, and thus illuminate a path by which structure-based drug design may be applied to help discover novel therapeutics against several debilitating human diseases associated with GLUT malfunction and/or misregulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. GLUT-1 expression and response to chemoradiotherapy in rectal cancer.

    LENUS (Irish Health Repository)

    Brophy, Sarah

    2009-12-15

    Preoperative chemoradiotherapy is used in locally advanced rectal cancer to reduce local recurrence and improve operability, however a proportion of tumors do not undergo significant regression. Identification of predictive markers of response to chemoradiotherapy would improve patient selection and may allow response modification by targeting of specific pathways. The aim of this study was to determine whether expression of glucose transporter-1 (GLUT-1) and p53 in pretreatment rectal cancer biopsies was predictive of tumor response to chemoradiotherapy. Immunohistochemical staining for GLUT-1 and p53 was performed on 69 pretreatment biopsies and compared to tumor response in the resected specimen as determined by the tumor regression grade (TRG) scoring system. GLUT-1 expression was significantly associated with reduced response to chemoradiotherapy and increasing GLUT expression correlated with poorer response (p=0.02). GLUT-1 negative tumors had a 70% probability of good response (TRG3\\/4) compared to a 31% probability of good response in GLUT-1 positive tumors. GLUT-1 may be a useful predictive marker of response to chemoradiotherapy in rectal cancer.

  14. Genetic variants in promoters and coding regions of the muscle glycogen synthase and the insulin-responsive GLUT4 genes in NIDDM

    DEFF Research Database (Denmark)

    Bjørbaek, C; Echwald, Søren Morgenthaler; Hubricht, P

    1994-01-01

    To examine the hypothesis that variants in the regulatory or coding regions of the glycogen synthase (GS) and insulin-responsive glucose transporter (GLUT4) genes contribute to insulin-resistant glucose processing of muscle from non-insulin-dependent diabetes mellitus (NIDDM) patients, promoter...... volunteers. By applying inverse polymerase chain reaction and direct DNA sequencing, 532 base pairs (bp) of the GS promoter were identified and the transcriptional start site determined by primer extension. SSCP scanning of the promoter region detected five single nucleotide substitutions, positioned at 42......'-untranslated region, and the coding region of the GLUT4 gene showed four polymorphisms, all single nucleotide substitutions, positioned at -581, 1, 30, and 582. None of the three changes in the regulatory region of the gene had any major influence on expression of the GLUT4 gene in muscle. The variant at 582...

  15. Rac1 governs exercise‐stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice

    Science.gov (United States)

    Nielsen, Ida L.; Kleinert, Maximilian; Møller, Lisbeth L. V.; Ploug, Thorkil; Schjerling, Peter; Bilan, Philip J.; Klip, Amira; Jensen, Thomas E.; Richter, Erik A.

    2016-01-01

    Key point Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood.The GTPase Rac1 can be activated by muscle contraction and has been found to be necessary for insulin‐stimulated glucose uptake, although its role in exercise‐stimulated glucose uptake is unknown.We show that Rac1 regulates the translocation of the glucose transporter GLUT4 to the plasma membrane in skeletal muscle during exercise.We find that Rac1 knockout mice display significantly reduced glucose uptake in skeletal muscle during exercise. Abstract Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. Despite extensive efforts, the signalling mechanisms vital for glucose uptake during exercise are not yet fully understood, although the GTPase Rac1 is a candidate molecule. The present study investigated the role of Rac1 in muscle glucose uptake and substrate utilization during treadmill exercise in mice in vivo. Exercise‐induced uptake of radiolabelled 2‐deoxyglucose at 65% of maximum running capacity was blocked in soleus muscle and decreased by 80% and 60% in gastrocnemius and tibialis anterior muscles, respectively, in muscle‐specific inducible Rac1 knockout (mKO) mice compared to wild‐type littermates. By developing an assay to quantify endogenous GLUT4 translocation, we observed that GLUT4 content at the sarcolemma in response to exercise was reduced in Rac1 mKO muscle. Our findings implicate Rac1 as a regulatory element critical for controlling glucose uptake during exercise via regulation of GLUT4 translocation. PMID:27061726

  16. Expression of Glut-1 and Glut-3 in untreated oral squamous cell carcinoma compared with FDG accumulation in a PET study

    International Nuclear Information System (INIS)

    Tian, Mei; Endo, Keigo; Zhang, Hong; Nakasone, Yoshiki; Mogi, Kenji

    2004-01-01

    Increased expression of glucose transporter-1 (Glut-1) and glucose transporter-3 (Glut-3) has been reported in many human cancers. The mechanism of glucose entry into oral squamous cell carcinoma (OSCC) remains unclear. In this study we investigated, in untreated human OSCC, the relationship between tumour fluorine-18 fluoro-2-deoxy-d-glucose (FDG) accumulation and the expression of Glut-1 and Glut-3, as well as the association between the expression of Glut-1 and of Glut-3. All patients underwent FDG positron emission tomography (PET) pre-operatively. Standardised uptake values (SUVs) were used for evaluation of tumour FDG uptake. Final diagnoses were established by histology. Immunohistochemical staining results were evaluated according to the percentage (%) of positive area, intensity and staining score. Tumour sections were stained by immunohistochemistry for Glut-1 and Glut-3. Glut-1 immunostaining revealed that 18 (94.7%) of the 19 tumours stained positively, while Glut-3 immunostaining yielded positive findings for 16 (84.2%) tumours. Overall, a relatively low level of agreement (36.8%) in the staining score was observed between Glut-1 and Glut-3 expression. No relationship was found between the staining pattern and tumour differentiation or T grade classification in either Glut-1 or Glut-3 immunostaining. Furthermore, no relationship was found between increased FDG SUV and tumour differentiation, but the former did correlate with T grade. In conclusion, high FDG uptake values were seen in OSCC with overexpression of Glut-1 and Glut-3. However, no significant correlation was found between FDG SUV and Glut-1 or Glut-3 expression. (orig.)

  17. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake.

    Science.gov (United States)

    Isakoff, S J; Taha, C; Rose, E; Marcusohn, J; Klip, A; Skolnik, E Y

    1995-10-24

    Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.

  18. Expressions of IGF-1, ERK, GLUT4, IRS-1 in metabolic syndrome complicated with colorectal cancer and their associations with the clinical characteristics of CRC.

    Science.gov (United States)

    Hu, Jianxia; Liu, Xiaoyi; Chi, Jingwei; Che, Kui; Feng, Yan; Zhao, Shihua; Wang, Zhongchao; Wang, Yangang

    2018-01-01

    Epidemiological data have revealed that colorectal cancer (CRC) risk is increased in patients with Metabolic syndrome. To explore the expressions of IGF-1, ERK, GLUT4, IRS-1 in MS patients with CRC and their associations with the clinical characteristics of CRC. We investigated the expressions of IGF-1, ERK, GLUT4 and IRS-1 in greater omental adipose tissues of 168 MS patients with/without CRC, 85 CRC patients without MS and 98 healthy controls by RT-PCR, and analyzed the relationships between their expressions and clinical characteristics of CRC. The expression levels of IGF-1 and ERK in MS patients with/without CRC were higher while the expression levels of GLUT4 were lower compared with CRC patients without MS and healthy controls (PCRC were higher while expression levels of GLUT4 were lower compared to MS patients without CRC (PCRC, including tumor size, distant metastasis and advanced stages (III/IV) (PCRC.

  19.  The role of glucose transporter 1 (GLUT1 in the diagnosis and therapy of tumors

    Directory of Open Access Journals (Sweden)

    Paweł Jóźwiak

    2012-03-01

    Full Text Available  Malignant cells are known to enhance glucose metabolism, to increase glucose uptake and to inhibit the process of oxidative phosphorylation. Accelerated glycolysis is one of the biochemical characteristics of cancer cells that allow them to compensate the inefficient extraction of energy from glucose in order to continue their uncontrolled growth and proliferation. Upregulation of glucose transport across the plasma membrane is mediated by a family of facilitated glucose transporter proteins named GLUT. Overexpression of GLUTs, especially the hypoxia-responsive GLUT1, has been frequently observed in various human carcinomas. Many studies have reported a correlation between GLUT1 expression level and the grade of tumor aggressiveness, which suggests that GLUT1 expression may be of prognostic significance. Therefore, GLUT1 is a key rate-limiting factor in the transport and glucose metabolism in cancer cells. This paper presents the current state of knowledge on GLUT1 regulation as well as its utility in the diagnosis and therapy of cancers.

  20. Regulation of human trophoblast GLUT1 glucose transporter by insulin-like growth factor I (IGF-I.

    Directory of Open Access Journals (Sweden)

    Marc U Baumann

    Full Text Available Glucose transport to the fetus across the placenta takes place via glucose transporters in the opposing faces of the barrier layer, the microvillous and basal membranes of the syncytiotrophoblast. While basal membrane content of the GLUT1 glucose transporter appears to be the rate-limiting step in transplacental transport, the factors regulating transporter expression and activity are largely unknown. In view of the many studies showing an association between IGF-I and fetal growth, we investigated the effects of IGF-I on placental glucose transport and GLUT1 transporter expression. Treatment of BeWo choriocarcinoma cells with IGF-I increased cellular GLUT1 protein. There was increased basolateral (but not microvillous uptake of glucose and increased transepithelial transport of glucose across the BeWo monolayer. Primary syncytial cells treated with IGF-I also demonstrated an increase in GLUT1 protein. Term placental explants treated with IGF-I showed an increase in syncytial basal membrane GLUT1 but microvillous membrane GLUT1 was not affected. The placental dual perfusion model was used to assess the effects of fetally perfused IGF-I on transplacental glucose transport and syncytial GLUT1 content. In control perfusions there was a decrease in transplacental glucose transport over the course of the perfusion, whereas in tissues perfused with IGF-I through the fetal circulation there was no change. Syncytial basal membranes from IGF-I perfused tissues showed an increase in GLUT1 content. These results demonstrate that IGF-I, whether acting via microvillous or basal membrane receptors, increases the basal membrane content of GLUT1 and up-regulates basal membrane transport of glucose, leading to increased transepithelial glucose transport. These observations provide a partial explanation for the mechanism by which IGF-I controls nutrient supply in the regulation of fetal growth.

  1. Expression of GLUT1 in stratified squamous epithelia and oral carcinoma from humans and rats

    DEFF Research Database (Denmark)

    Voldstedlund, M; Dabelsteen, Erik

    1997-01-01

    mucosa from rat and man, and a human oral carcinoma by indirect immunofluorescence microscopy. The results showed that GLUT1 was expressed in the basal and parabasal layers of the different stratified squamous epithelia, with some variations between keratinized and non-keratinized subtypes. GLUT1...... was also expressed in ductal- and myoepithelial cells of minor salivary glands and perineural sheath located in the lamina propra, and furthermore in the cells of an oral carcinoma. GLUT4 was not expressed in any of the tissues examined. This distribution of GLUT1 does not fit with the idea of GLUT1......Most cells express facilitative glucose transporters. Four isoforms (GLUT1-4) transporting D-glucose across the plasma membrane show a specific tissue distribution, which is the basis for tissue-specific patterns in glucose metabolism. GLUT1 is expressed at high levels in tissue barriers...

  2. Similar [DE]XXXL[LI] motifs differentially target GLUT8 and GLUT12 in Chinese Hamster Ovary Cells

    OpenAIRE

    Flessner, Lauren B.; Moley, Kelle H.

    2008-01-01

    The transport of glucose across cell membranes is mediated by facilitative glucose transporters. The recently identified Class III glucose transporter GLUT12 is predominantly expressed in insulin-sensitive tissues such as heart, fat, and skeletal muscle. We examined the subcellular localization of GLUT12 in CHO and HEK293 cells stably expressing murine GLUT12. We have previously shown that another Class III glucose transporter, GLUT8, contains a [DE]XXXL[LI] motif that directs it to late endo...

  3. Loss of sugar detection by GLUT2 affects glucose homeostasis in mice.

    Directory of Open Access Journals (Sweden)

    Emilie Stolarczyk

    Full Text Available BACKGROUND: Mammals must sense the amount of sugar available to them and respond appropriately. For many years attention has focused on intracellular glucose sensing derived from glucose metabolism. Here, we studied the detection of extracellular glucose concentrations in vivo by invalidating the transduction pathway downstream from the transporter-detector GLUT2 and measured the physiological impact of this pathway. METHODOLOGY/PRINCIPAL FINDINGS: We produced mice that ubiquitously express the largest cytoplasmic loop of GLUT2, blocking glucose-mediated gene expression in vitro without affecting glucose metabolism. Impairment of GLUT2-mediated sugar detection transiently protected transgenic mice against starvation and streptozotocin-induced diabetes, suggesting that both low- and high-glucose concentrations were not detected. Transgenic mice favored lipid oxidation, and oral glucose was slowly cleared from blood due to low insulin production, despite massive urinary glucose excretion. Kidney adaptation was characterized by a lower rate of glucose reabsorption, whereas pancreatic adaptation was associated with a larger number of small islets. CONCLUSIONS/SIGNIFICANCE: Molecular invalidation of sugar sensing in GLUT2-loop transgenic mice changed multiple aspects of glucose homeostasis, highlighting by a top-down approach, the role of membrane glucose receptors as potential therapeutic targets.

  4. Caveolin-1 and glucose transporter 4 involved in the regulation of glucose-deprivation stress in PC12 cells.

    Science.gov (United States)

    Zhang, Qi-Qi; Huang, Liang; Han, Chao; Guan, Xin; Wang, Ya-Jun; Liu, Jing; Wan, Jing-Hua; Zou, Wei

    2015-08-25

    Recent evidence suggests that caveolin-1 (Cav-1), the major protein constituent of caveolae, plays a prominent role in neuronal nutritional availability with cellular fate regulation besides in several cellular processes such as cholesterol homeostasis, regulation of signal transduction, integrin signaling and cell growth. Here, we aimed to investigate the function of Cav-1 and glucose transporter 4 (GLUT4) upon glucose deprivation (GD) in PC12 cells. The results demonstrated firstly that both Cav-1 and GLUT4 were up-regulated by glucose withdrawal in PC12 cells by using Western blot and laser confocal technology. Also, we found that the cell death rate, mitochondrial membrane potential (MMP) and intracellular free Ca(2+) concentration ([Ca(2+)]i) were also respectively changed followed the GD stress tested by CCK8 and flow cytometry. After knocking down of Cav-1 in the cells by siRNA, the level of [Ca(2+)]i was increased, and MMP was reduced further in GD-treated PC12 cells. Knockdown of Cav-1 or methylated-β-Cyclodextrin (M-β-CD) treatment inhibited the expression of GLUT4 protein upon GD. Additionally, we found that GLUT4 could translocate from cytoplasm to cell membrane upon GD. These findings might suggest a neuroprotective role for Cav-1, through coordination of GLUT4 in GD.

  5. In vitro glucose uptake activity of Aegles marmelos and Syzygium cumini by activation of Glut-4, PI3 kinase and PPARgamma in L6 myotubes.

    Science.gov (United States)

    Anandharajan, R; Jaiganesh, S; Shankernarayanan, N P; Viswakarma, R A; Balakrishnan, A

    2006-06-01

    The purpose of the present study is to investigate the effect of methanolic extracts of Aegles marmelos and Syzygium cumini on a battery of targets glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPARgamma) and phosphatidylinositol 3' kinase (PI3 kinase) involved in glucose transport. A. marmelos and S. cumini are anti-diabetic medicinal plants being used in Indian traditional medicine. Different solvent extracts extracted sequentially were analysed for glucose uptake activity at each step and methanol extracts were found to be significantly active at 100ng/ml dose comparable with insulin and rosiglitazone. Elevation of Glut-4, PPARgamma and PI3 kinase by A. marmelos and S. cumini in association with glucose transport supported the up-regulation of glucose uptake. The inhibitory effect of cycloheximide on A. marmelos- and S. cumini-mediated glucose uptake suggested that new protein synthesis is required for the elevated glucose transport. Current observation concludes that methanolic extracts of A. marmelos and S. cumini activate glucose transport in a PI3 kinase-dependent fashion.

  6. Stereospermum tetragonam as an antidiabetic agent by activating PPARγ and GLUT4

    Directory of Open Access Journals (Sweden)

    Bino Kingsley

    2014-06-01

    Full Text Available Present study evaluates the anti-diabetic activity of S. tetragonam LC-MSMS experiments showed the presence of two novel molecules C1 and C2, which were further taken for in silico study against PPARγ. Cell culture studies with A431 cells in the presence of crude aqueous extract showed the elevated level of PPARγ and GLUT4 and also confirmed using in silico studies. Thus, the present study proves the mecode of action of S. tetragonam as an antidiabetic drug.

  7. Caffeine inhibition of GLUT1 is dependent on the activation state of the transporter.

    Science.gov (United States)

    Gunnink, Leesha K; Busscher, Brianna M; Wodarek, Jeremy A; Rosette, Kylee A; Strohbehn, Lauren E; Looyenga, Brendan D; Louters, Larry L

    2017-06-01

    Caffeine has been shown to be a robust uncompetitive inhibitor of glucose uptake in erythrocytes. It preferentially binds to the nucleotide-binding site on GLUT1 in its tetrameric form and mimics the inhibitory action of ATP. Here we demonstrate that caffeine is also a dose-dependent, uncompetitive inhibitor of 2-deoxyglucose (2DG) uptake in L929 fibroblasts. The inhibitory effect on 2DG uptake in these cells was reversible with a rapid onset and was additive to the competitive inhibitory effects of glucose itself, confirming that caffeine does not interfere with glucose binding. We also report for the first time that caffeine inhibition was additive to inhibition by curcumin, suggesting distinct binding sites for curcumin and caffeine. In contrast, caffeine inhibition was not additive to that of cytochalasin B, consistent with previous data that reported that these two inhibitors have overlapping binding sites. More importantly, we show that the magnitude of maximal caffeine inhibition in L929 cells is much lower than in erythrocytes (35% compared to 90%). Two epithelial cell lines, HCLE and HK2, have both higher concentrations of GLUT1 and increased basal 2DG uptake (3-4 fold) compared to L929 cells, and subsequently display greater maximal inhibition by caffeine (66-70%). Interestingly, activation of 2DG uptake (3-fold) in L929 cells by glucose deprivation shifted the responsiveness of these cells to caffeine inhibition (35%-70%) without a change in total GLUT1 concentration. These data indicate that the inhibition of caffeine is dependent on the activity state of GLUT1, not merely on the concentration. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4

    International Nuclear Information System (INIS)

    Rademakers, Saskia E; Lok, Jasper; Kogel, Albert J van der; Bussink, Johan; Kaanders, Johannes HAM

    2011-01-01

    The cellular response of malignant tumors to hypoxia is diverse. Several important endogenous metabolic markers are upregulated under hypoxic conditions. We examined the staining patterns and co-expression of HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4 with the exogenous hypoxic cell marker pimonidazole and the association of marker expression with clinicopathological characteristics. 20 biopsies of advanced head and neck carcinomas were immunohistochemically stained and analyzed. All patients were given the hypoxia marker pimonidazole intravenously 2 h prior to biopsy taking. The tumor area positive for each marker, the colocalization of the different markers and the distribution of the markers in relation to the blood vessels were assessed by semiautomatic quantitative analysis. MCT1 staining was present in hypoxic (pimonidazole stained) as well as non-hypoxic areas in almost equal amounts. MCT1 expression showed a significant overall correlation (r = 0.75, p < 0.001) and strong spatial relationship with CAIX. LDH-5 showed the strongest correlation with pimonidazole (r = 0.66, p = 0.002). MCT4 and GLUT-1 demonstrated a typical diffusion-limited hypoxic pattern and showed a high degree of colocalization. Both MCT4 and CAIX showed a higher expression in the primary tumor in node positive patients (p = 0.09 both). Colocalization and staining patterns of metabolic and hypoxia-related proteins provides valuable additional information over single protein analyses and can improve the understanding of their functions and environmental influences

  9. Evolutionary ancestry and novel functions of the mammalian glucose transporter (GLUT) family.

    Science.gov (United States)

    Wilson-O'Brien, Amy L; Patron, Nicola; Rogers, Suzanne

    2010-05-21

    In general, sugar porters function by proton-coupled symport or facilitative transport modes. Symporters, coupled to electrochemical energy, transport nutrients against a substrate gradient. Facilitative carriers transport sugars along a concentration gradient, thus transport is dependent upon extracellular nutrient levels. Across bacteria, fungi, unicellular non-vertebrates and plants, proton-coupled hexose symport is a crucial process supplying energy under conditions of nutrient flux. In mammals it has been assumed that evolution of whole body regulatory mechanisms would eliminate this need. To determine whether any isoforms bearing this function might be conserved in mammals, we investigated the relationship between the transporters of animals and the proton-coupled hexose symporters found in other species. We took a comparative genomic approach and have performed the first comprehensive and statistically supported phylogenetic analysis of all mammalian glucose transporter (GLUT) isoforms. Our data reveals the mammalian GLUT proteins segregate into five distinct classes. This evolutionary ancestry gives insight to structure, function and transport mechanisms within the groups. Combined with biological assays, we present novel evidence that, in response to changing nutrient availability and environmental pH, proton-coupled, active glucose symport function is maintained in mammalian cells. The analyses show the ancestry, evolutionary conservation and biological importance of the GLUT classes. These findings significantly extend our understanding of the evolution of mammalian glucose transport systems. They also reveal that mammals may have conserved an adaptive response to nutrient demand that would have important physiological implications to cell survival and growth.

  10. GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice.

    Science.gov (United States)

    Wang, Z; Gleichmann, H

    1998-01-01

    In mice, diabetes can be induced by multiple low doses of streptozotocin (MLD-STZ), i.e., 40 mg/kg body wt on each of 5 consecutive days. In this model, diabetes develops only when STZ induces both beta-cell toxicity and T-cell-dependent immune reactions. The target molecule(s) of MLD-STZ-induced beta-cell toxicity are not known, however. In this study, we report that GLUT2 is a target molecule for MLD-STZ toxicity. Ex vivo, a gradual decrement of both GLUT2 protein and mRNA expression was found in pancreatic islets isolated from MLD-STZ-treated C57BL/6 male mice, whereas mRNA expression of beta-actin, glucokinase, and proinsulin remained unaffected. Significant reduction of both GLUT2 protein and mRNA expression was first noted 1 day after the third STZ injection, clearly preceding the onset of hyperglycemia. The extent of reduction increased with the number of STZ injections administered and increased over time, after the last, i.e., fifth, STZ injection. The STZ-induced reduction of GLUT2 protein and mRNA was not due to an essential loss of beta-cells, because ex vivo, not only the total RNA yield and protein content in isolated islets, but also proinsulin mRNA expression, failed to differ significantly in the differently treated groups. Furthermore, islets isolated from MLD-STZ-treated donors responded to the nonglucose secretagogue arginine in a pattern similar to that of solvent-treated donors. Interestingly, the MLD-STZ-induced reduction of both GLUT2 protein and mRNA was prevented by preinjecting mice with 5-thio-D-glucose before each STZ injection. Apparently, GLUT2 is a crucial target molecule of MLD-STZ toxicity, and this toxicity seems to precede the immune reactions against beta-cells.

  11. Antioxidant and glucose metabolizing potential of edible insect, Brachytrupes orientalis via modulating Nrf2/AMPK/GLUT4 signaling pathway.

    Science.gov (United States)

    Dutta, Prachurjya; Dey, Tapan; Dihingia, Anjum; Manna, Prasenjit; Kalita, Jatin

    2017-11-01

    Brachytrupes orientalis (Gryllidae) is a common edible insect species eaten by the different tribes of North East India. This study investigated the potentiality of Brachytrupes orientalis extracts in different solvent hydro-alcoholic (AEBO), hexane (HEBO) and ethyl acetate (EEBO) on glucose utilization and cell viability in high glucose (HG) treated myotubes. It has been observed that AEBO supplementation significantly increased the glucose utilization against HG exposure; however, treatment HEBO and EEBO have no significant effect. AEBO also increased the intercellular glucose-6-phosphate level and the protein expression of both phospho-AMPK and GLUT4 in HG treated myotubes in a dose dependent manner. Furthermore, supplementation with AEBO decreased the intercellular ROS production, lipid peroxidation, and up-regulated the protein expression of Nrf2 and GST. Chromatography and Spectroscopic analyses of AEBO also suggest that Ursolic acid may be one of the bioactive principles with rich potassium, sodium, calcium and magnesium content. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yokokawa, Takumi [Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Sato, Koji [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Iwanaka, Nobumasa [The Graduate School of Science and Engineering, Ritsumeikan University, Shiga (Japan); Honda, Hiroki [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Higashida, Kazuhiko [Faculty of Sport Science, Waseda University, Saitama (Japan); Iemitsu, Motoyuki [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Hayashi, Tatsuya [Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Hashimoto, Takeshi, E-mail: thashimo@fc.ritsumei.ac.jp [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan)

    2015-07-17

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5′-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. - Highlights: • We assessed whether dehydroepiandrosterone (DHEA) activates AMPK and PGC-1α. • DHEA exposure increased glucose uptake in C2C12 myotubes. • The phosphorylation levels of AMPK were elevated by DHEA exposure. • DHEA induced the expression of the genes PGC-1α and GLUT4. • AMPK might mediate the anti-obesity and health-promoting effects of DHEA.

  13. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes

    International Nuclear Information System (INIS)

    Yokokawa, Takumi; Sato, Koji; Iwanaka, Nobumasa; Honda, Hiroki; Higashida, Kazuhiko; Iemitsu, Motoyuki; Hayashi, Tatsuya; Hashimoto, Takeshi

    2015-01-01

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5′-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. - Highlights: • We assessed whether dehydroepiandrosterone (DHEA) activates AMPK and PGC-1α. • DHEA exposure increased glucose uptake in C2C12 myotubes. • The phosphorylation levels of AMPK were elevated by DHEA exposure. • DHEA induced the expression of the genes PGC-1α and GLUT4. • AMPK might mediate the anti-obesity and health-promoting effects of DHEA

  14. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation.

    Science.gov (United States)

    Barrès, Romain; Grémeaux, Thierry; Gual, Philippe; Gonzalez, Teresa; Gugenheim, Jean; Tran, Albert; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2006-11-01

    APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodeling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue.

  15. A novel PTP1B inhibitor extracted from Ganoderma lucidum ameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signaling pathway.

    Science.gov (United States)

    Yang, Zhou; Wu, Fan; He, Yanming; Zhang, Qiang; Zhang, Yuan; Zhou, Guangrong; Yang, Hongjie; Zhou, Ping

    2018-01-24

    Insulin resistance caused by the overexpression of protein tyrosine phosphatase 1 B (PTP1B) as well as the dephosphorylation of its target is one of the main causes of type 2 diabetes (T2D). A newly discovered proteoglycan, Fudan-Yueyang Ganoderma lucidum (FYGL) extracted from Ganoderma lucidum, was first reported to be capable of competitively inhibiting PTP1B activity in vitro in our previous work. In the present study, we sought to reveal the mechanism of PTP1B inhibition by FYGL at the animal and cellular levels. We found that FYGL can decrease blood glucose, reduce body weight and ameliorate insulin resistance in ob/ob mice. Decrease of PTP1B expression and increase of the phosphorylation of PTP1B targets in the insulin signaling pathway of skeletal muscles were observed. In order to clearly reveal the underlying mechanism of the hypoglycemic effect caused by FYGL, we further investigated the effects of FYGL on the PTP1B-involved insulin signaling pathway in rat myoblast L6 cells. We demonstrated that FYGL had excellent cell permeability by using a confocal laser scanning microscope and a flow cytometer. We found that FYGL had a positive effect on insulin-stimulated glucose uptake by using the 2-deoxyglucose (2-DG) method. FYGL could inhibit PTP1B expression at the mRNA level, phosphorylating insulin receptor substrate-1 (IRS1), as well as activating phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt). Finally, FYGL increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and consequently up-regulated the expression of glucose transporter type 4 (GLUT4), promoting GLUT4 transportation to the plasma membrane in PTP1B-transfected L6 cells. Our study provides theoretical evidence for FYGL to be potentially used in T2D management.

  16. Nutritional status induces divergent variations of GLUT4 protein content, but not lipoprotein lipase activity, between adipose tissues and muscles in adult cattle.

    Science.gov (United States)

    Bonnet, Muriel; Faulconnier, Yannick; Hocquette, Jean-François; Bocquier, François; Leroux, Christine; Martin, Patrice; Chilliard, Yves

    2004-10-01

    Metabolic adaptations to variations in food supply are incompletely understood in ruminant animal adipose tissue (AT) and muscle. To explore this, we studied lipid metabolism and glucose transport potential in one internal and one external AT, as well as in one oxidative and one glycolytic muscle from control, 7 d underfed and 21 d refed adult cows. Refeeding increased (+79 to +307 %) the activities of enzymes involved in de novo lipogenesis (fatty acid synthase, malic enzyme, glucose-6-phosphate dehydrogenase) in perirenal and subcutaneous AT; underfeeding did not modify these variables. Underfeeding decreased the activities of lipoprotein lipase (LPL) in perirenal AT (-70 %) and cardiac muscle (-67 %), but did not modify the activities in subcutaneous AT and longissimus thoracis. Refeeding increased LPL activities in all tissues (+40 to +553 %) to levels comparable with (cardiac muscle) or greater than (AT, longissimus thoracis) those observed in control cows. Such variations in perirenal and cardiac muscle LPL activities did not result from variations in LPL mRNA levels, but suggest a post-transcriptional regulation of LPL in these nutritional conditions. Underfeeding did not modify GLUT4 contents in perirenal AT and muscles, while refeeding increased it only in perirenal AT (+250 %). Our present results contrast with previous results in rats, where LPL is regulated in opposite directions in AT and muscles, and GLUT4 is generally increased by fasting and decreased by refeeding in skeletal muscles. The present results highlight the bovine specificity of the response, which probably arises in part from peculiarities of ruminant animals for nutrient digestion and absorption.

  17. Evolutionary ancestry and novel functions of the mammalian glucose transporter (GLUT family

    Directory of Open Access Journals (Sweden)

    Patron Nicola

    2010-05-01

    Full Text Available Abstract Background In general, sugar porters function by proton-coupled symport or facilitative transport modes. Symporters, coupled to electrochemical energy, transport nutrients against a substrate gradient. Facilitative carriers transport sugars along a concentration gradient, thus transport is dependent upon extracellular nutrient levels. Across bacteria, fungi, unicellular non-vertebrates and plants, proton-coupled hexose symport is a crucial process supplying energy under conditions of nutrient flux. In mammals it has been assumed that evolution of whole body regulatory mechanisms would eliminate this need. To determine whether any isoforms bearing this function might be conserved in mammals, we investigated the relationship between the transporters of animals and the proton-coupled hexose symporters found in other species. Results We took a comparative genomic approach and have performed the first comprehensive and statistically supported phylogenetic analysis of all mammalian glucose transporter (GLUT isoforms. Our data reveals the mammalian GLUT proteins segregate into five distinct classes. This evolutionary ancestry gives insight to structure, function and transport mechanisms within the groups. Combined with biological assays, we present novel evidence that, in response to changing nutrient availability and environmental pH, proton-coupled, active glucose symport function is maintained in mammalian cells. Conclusions The analyses show the ancestry, evolutionary conservation and biological importance of the GLUT classes. These findings significantly extend our understanding of the evolution of mammalian glucose transport systems. They also reveal that mammals may have conserved an adaptive response to nutrient demand that would have important physiological implications to cell survival and growth.

  18. Metformin ameliorates diabetes but does not normalize the decreased GLUT 4 content in skeletal muscle of obese (fa/fa) Zucker rats

    DEFF Research Database (Denmark)

    Handberg, A; Kayser, L; Høyer, P E

    1993-01-01

    We studied the expression of the glucose transporter GLUT 4 in the soleus and red gastrocnemius muscles from obese, diabetic (fa/fa) Zucker rats compared to their lean littermates (Fa/-), with and without treatment with the antidiabetic drug metformin. In the untreated groups of rats, the GLUT 4...... content in a crude membrane fraction of both the soleus and the red gastrocnemius muscles were significantly lower in the obese (fa/fa) rats (3.46 +/- 0.28 vs. 6.04 +/- 0.41, p ... the same rats were confirmed by quantitative immunofluorescence microscopy, and the results were significantly correlated with the results obtained from quantitative immunoblotting (rho = 0.70, p fa/fa rats could contribute to the well-established insulin...

  19. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway.

    Science.gov (United States)

    Gandhi, Gopalsamy Rajiv; Jothi, Gnanasekaran; Antony, Poovathumkal James; Balakrishna, Kedike; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Stalin, Antony; Al-Dhabi, Naif Abdullah

    2014-12-15

    In this study, the therapeutic efficacy of gallic acid from Cyamopsis tetragonoloba (L.) Taub. (Fabaceae) beans was examined against high-fat diet fed-streptozotocin-induced experimental type 2 diabetic rats. Molecular-dockings were done to determine the putative binding modes of gallic acid into the active sites of key insulin-signaling markers. Gallic acid (20 mg/kg) given to high-fat diet fed-streptozotocin-induced rats lowered body weight gain, fasting blood glucose and plasma insulin in diabetic rats. It further restored the alterations of biochemical parameters to near normal levels in diabetic treated rats along with cytoprotective action on pancreatic β-cell. Histology of liver and adipose tissues supported the biochemical findings. Gallic acid significantly enhanced the level of peroxisome proliferator-activated receptor γ (PPARγ) expression in the adipose tissue of treated rat compared to untreated diabetic rat; it also slightly activated PPARγ expressions in the liver and skeletal muscle. Consequently, it improved insulin-dependent glucose transport in adipose tissue through translocation and activation of glucose transporter protein 4 (GLUT4) in phosphatidylinositol 3-kinase (PI3K)/phosphorylated protein kinase B (p-Akt) dependent pathway. Gallic acid docked with PPARγ; it exhibited promising interactions with the GLUT4, glucose transporter protein 1 (GLUT1), PI3K and p-Akt. These findings provided evidence to show that gallic acid could improve adipose tissue insulin sensitivity, modulate adipogenesis, increase adipose glucose uptake and protect β-cells from impairment. Hence it can be used in the management of obesity-associated type 2 diabetes mellitus. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Insulin stimulates translocation of human GLUT4 to the membrane in fat bodies of transgenic Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Georgeta Crivat

    Full Text Available The fruit fly Drosophila melanogaster is an excellent model system for studies of genes controlling development and disease. However, its applicability to physiological systems is less clear because of metabolic differences between insects and mammals. Insulin signaling has been studied in mammals because of relevance to diabetes and other diseases but there are many parallels between mammalian and insect pathways. For example, deletion of Drosophila Insulin-Like Peptides resulted in 'diabetic' flies with elevated circulating sugar levels. Whether this situation reflects failure of sugar uptake into peripheral tissues as seen in mammals is unclear and depends upon whether flies harbor the machinery to mount mammalian-like insulin-dependent sugar uptake responses. Here we asked whether Drosophila fat cells are competent to respond to insulin with mammalian-like regulated trafficking of sugar transporters. Transgenic Drosophila expressing human glucose transporter-4 (GLUT4, the sugar transporter expressed primarily in insulin-responsive tissues, were generated. After expression in fat bodies, GLUT4 intracellular trafficking and localization were monitored by confocal and total internal reflection fluorescence microscopy (TIRFM. We found that fat body cells responded to insulin with increased GLUT4 trafficking and translocation to the plasma membrane. While the amplitude of these responses was relatively weak in animals reared on a standard diet, it was greatly enhanced in animals reared on sugar-restricted diets, suggesting that flies fed standard diets are insulin resistant. Our findings demonstrate that flies are competent to mobilize translocation of sugar transporters to the cell surface in response to insulin. They suggest that Drosophila fat cells are primed for a response to insulin and that these pathways are down-regulated when animals are exposed to constant, high levels of sugar. Finally, these studies are the first to use TIRFM to

  1. Insulin Stimulates Translocation of Human GLUT4 to the Membrane in Fat Bodies of Transgenic Drosophila melanogaster

    Science.gov (United States)

    Crivat, Georgeta; Lizunov, Vladimir A.; Li, Caroline R.; Stenkula, Karin G.; Zimmerberg, Joshua; Cushman, Samuel W.; Pick, Leslie

    2013-01-01

    The fruit fly Drosophila melanogaster is an excellent model system for studies of genes controlling development and disease. However, its applicability to physiological systems is less clear because of metabolic differences between insects and mammals. Insulin signaling has been studied in mammals because of relevance to diabetes and other diseases but there are many parallels between mammalian and insect pathways. For example, deletion of Drosophila Insulin-Like Peptides resulted in ‘diabetic’ flies with elevated circulating sugar levels. Whether this situation reflects failure of sugar uptake into peripheral tissues as seen in mammals is unclear and depends upon whether flies harbor the machinery to mount mammalian-like insulin-dependent sugar uptake responses. Here we asked whether Drosophila fat cells are competent to respond to insulin with mammalian-like regulated trafficking of sugar transporters. Transgenic Drosophila expressing human glucose transporter-4 (GLUT4), the sugar transporter expressed primarily in insulin-responsive tissues, were generated. After expression in fat bodies, GLUT4 intracellular trafficking and localization were monitored by confocal and total internal reflection fluorescence microscopy (TIRFM). We found that fat body cells responded to insulin with increased GLUT4 trafficking and translocation to the plasma membrane. While the amplitude of these responses was relatively weak in animals reared on a standard diet, it was greatly enhanced in animals reared on sugar-restricted diets, suggesting that flies fed standard diets are insulin resistant. Our findings demonstrate that flies are competent to mobilize translocation of sugar transporters to the cell surface in response to insulin. They suggest that Drosophila fat cells are primed for a response to insulin and that these pathways are down-regulated when animals are exposed to constant, high levels of sugar. Finally, these studies are the first to use TIRFM to monitor insulin

  2. Refractory absence epilepsy associated with GLUT-1 deficiency syndrome.

    LENUS (Irish Health Repository)

    Byrne, Susan

    2011-05-01

    GLUT-1 deficiency syndrome (GLUT-1 DS) is a disorder of cerebral glucose transport associated with early infantile epilepsy and microcephaly. We report two boys who presented with refractory absence epilepsy associated with hypoglycorrhachia, both of whom have genetically confirmed GLUT-1 DS. We propose that these children serve to expand the phenotype of GLUT-1 DS and suggest that this condition should be considered as a cause of refractory absence seizures in childhood.

  3. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, Shigemasa, E-mail: tomioka@dent.tokushima-u.ac.jp [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Kaneko, Miyuki [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Satomura, Kazuhito [First Department of Oral and Maxillofacial Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Mikyu, Tomiko; Nakajo, Nobuyoshi [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan)

    2009-10-09

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2-{sup 3}H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 {mu}M) significantly increased V{sub max} but not K{sub m} of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.

  4. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    International Nuclear Information System (INIS)

    Tomioka, Shigemasa; Kaneko, Miyuki; Satomura, Kazuhito; Mikyu, Tomiko; Nakajo, Nobuyoshi

    2009-01-01

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2- 3 H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 μM) significantly increased V max but not K m of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.

  5. O exercício físico é capaz de melhorar expressão de AMPK e GLUT4 em músculo esquelético de ratos alcoolistas e/ou tabagistas

    OpenAIRE

    Florido Neto, Armando Ribeiro [UNESP

    2015-01-01

    Alcohol and cigarettes are the lawful psychoactive drugs more consumed in the world, usually being consumed in association. Metabolic alterations are linked to alcohol consumption and tobacco use involving impairment in the expression of proteins related to cellular metabolism. The objective of this study was to evaluate if the regular physical exercise can promote positive effects on the possible impairment related to expression of GLUT4 and AMPK in the skeletal muscle of smoker and/or alcoh...

  6. Non-invasive assessment of animal exercise stress: real-time PCR of GLUT4, COX2, SOD1 and HSP70 in avalanche military dog saliva.

    Science.gov (United States)

    Diverio, S; Guelfi, G; Barbato, O; Di Mari, W; Egidi, M G; Santoro, M M

    2015-01-01

    Exercise has been shown to increase mRNA expression of a growing number of genes. The aim of this study was to assess if mRNA expression of the metabolism- and oxidative stress-related genes GLUT4 (glucose transporter 4), COX2 (cyclooxygenase 2), SOD1 (superoxide dismutase 1) and HSP70 (heat shock protein 70) in saliva changes following acute exercise stress in dogs. For this purpose, 12 avalanche dogs of the Italian Military Force Guardia di Finanza were monitored during simulation of a search for a buried person in an artificial avalanche area. Rectal temperature (RT) and saliva samples were collected the day before the trial (T0), immediately after the descent from a helicopter at the onset of a simulated avalanche search and rescue operation (T1), after the discovery of the buried person (T2) and 2 h later (T3). Expressions of GLUT4, SOD1, COX2 and HSP70 were measured by real-time PCR. The simulated avalanche search and rescue operation was shown to exert a significant effect on RT, as well as on the expression of all metabolism- and oxidative stress-related genes investigated, which peaked at T2. The observed expression patterns indicate an acute exercise stress-induced upregulation, as confirmed by the reductions in expression at T3. Moreover, our findings indicate that saliva is useful for assessing metabolism- and oxidative stress-related genes without the need for restraint, which could affect working dog performance.

  7. Autosomal dominant transmission of GLUT1 deficiency.

    NARCIS (Netherlands)

    Klepper, J.; Willemsen, M.A.A.P.; Verrips, A.; Guertsen, E.; Herrmann, R.; Kutzick, C.; Florcken, A.; Voit, T.

    2001-01-01

    GLUT1 deficiency is caused by a defect in the facilitative glucose transporter GLUT1. Impaired glucose transport across brain tissue barriers is reflected by hypoglycorrhachia and results in an epileptic encephalopathy with developmental delay and motor disorders. Recently heterozygous mutations in

  8. De-phosphorylation of TRα-1 by p44/42 MAPK inhibition enhances T3-mediated GLUT5 gene expression in the intestinal cell line Caco-2 cells

    International Nuclear Information System (INIS)

    Mochizuki, Kazuki; Sakaguchi, Naomi; Takabe, Satsuki; Goda, Toshinao

    2007-01-01

    Thyroid hormone and p44/42 MAPK inactivation are important in intestinal differentiation. We demonstrated not only that treatment with p44/42 MAPK inhibitor U0126 in intestinal cell line Caco-2 cells reduced the phosphorylation of serine and threonine residues of TRα-1, but also that T 3 and U0126 synergistically induced GLUT5 gene expression. EMSA demonstrated that the binding activity of TRα-1-RXR heterodimer on GLUT5-TRE in nuclear proteins of Caco-2 cells was synergistically enhanced by co-incubation in vitro with T 3 and CIAP, which strongly de-phosphorylates proteins. ChIP and transfection assays revealed that co-treatment of T 3 and U0126 induces TRα-1-RXR binding to GLUT5-TRE on the human GLUT5 enhancer region, and recruitment of the transcriptional complex in cells. These results suggest that inactivation of p44/42 MAPK enhances T 3 -induced GLUT5 gene expression in Caco-2 cells through increasing TRα-1 transactivity and binding activity to the GLUT5-TRE, probably due to de-phosphorylation of TRα-1

  9. Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.

    Science.gov (United States)

    Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich

    2016-04-01

    High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone. Georg Thieme Verlag KG Stuttgart · New York.

  10. Long-term In Vitro Treatment of Human Glioblastoma Cells with Temozolomide Increases Resistance In Vivo through Up-regulation of GLUT Transporter and Aldo-Keto Reductase Enzyme AKR1C Expression

    Directory of Open Access Journals (Sweden)

    Benjamin Le Calvé

    2010-09-01

    Full Text Available Glioblastoma (GBM is the most frequent malignant glioma. Treatment of GBM patients is multimodal with maximum surgical resection, followed by concurrent radiation and chemotherapy with the alkylating drug temozolomide (TMZ. The present study aims to identify genes implicated in the acquired resistance of two human GBM cells of astrocytic origin, T98G and U373, to TMZ. Resistance to TMZ was induced by culturing these cells in vitro for months with incremental TMZ concentrations up to 1 mM. Only partial resistance to TMZ has been achieved and was demonstrated in vivo in immunocompromised mice bearing orthotopic U373 and T98G xenografts. Our data show that long-term treatment of human astroglioma cells with TMZ induces increased expression of facilitative glucose transporter/solute carrier GLUT/SLC2A family members, mainly GLUT-3, and of the AKR1C family of proteins. The latter proteins are phase 1 drug-metabolizing enzymes involved in the maintenance of steroid homeostasis, prostaglandin metabolism, and metabolic activation of polycyclic aromatic hydrocarbons. GLUT-3 has been previously suggested to exert roles in GBM neovascularization processes, and TMZ was found to exert antiangiogenic effects in experimental gliomas. AKR1C1 was previously shown to be associated with oncogenic potential, with proproliferative effects similar to AKR1C3 in the latter case. Both AKR1C1 and AKR1C2 proteins are involved in cancer pro-proliferative cell chemoresistance. Selective targeting of GLUT-3 in GBM and/or AKR1C proteins (by means of jasmonates, for example could thus delay the acquisition of resistance to TMZ of astroglioma cells in the context of prolonged treatment with this drug.

  11. Effect of physical training on glucose transporter protein and mRNA levels in rat adipocytes

    DEFF Research Database (Denmark)

    Stallknecht, B; Andersen, P H; Vinten, J

    1993-01-01

    Physical training increases insulin-stimulated glucose transport and the number of glucose transporters in adipocytes measured by cytochalasin B binding. In the present study we used immunoblotting to measure the abundance of two glucose transporters (GLUT-4, GLUT-1) in white adipocytes from....../or intrinsic activity). GLUT-1 protein and mRNA levels/adipocyte volume did not change with age or training....

  12. 糖脂平对胰岛素抵抗大鼠 GLUT4表达的影响%Impact of Tangzhiping on GUIT4 Expression in the Rats of Insulin Resistance

    Institute of Scientific and Technical Information of China (English)

    刘静; 朱智耀; 高彦彬; 赵轩; 周盛楠; 李娇阳; 仝宇; 王晓磊

    2016-01-01

    Objective To observe the impacts of tangzhiping on GLUT4 expression of epicyte of skeletal muscle in the rats of insulin resistance induced by high - lipid diet. Methods Forty - eight male SD rats,weighted from 180 to 200 g were selected and randomized into a blank group(12 rats)and a modeling group(36 rats). In the blank group,the common forage was used. In the model group,the high - lipid forage was used. After successful modeling in 8 weeks,the rats in the modeling group was subdivided randomly into a mode group,a Chinese medicine group and a western medicine group,12 rats in each one. In the Chinese medicine group,tangzhiping was used for gavage,20 g/ kg a day. In the western medicine group,rosiglitazone was used for gavage,0. 8 mg/ kg a day. The physical saline of same dose was used for gavage in the model group and the blank group. The gavage lasted for 8 weeks continuously. After the last medication,fasting was done for 12 h. The euglycemic hyperinsulinemic clamp technique was performed to evaluate the insulin sensi-tivity(M value). Enzymatic detection was used to measure the levels of TC,TG,HDL - C and LDL - C. Western Blot was used to detect GLUT4 expression of epicyte of skeletal muscle. Results Compared with the blank group,the insulin sensitivity was apparently reduced,the levels of TC,TG and LDL - C were apparently increased,HDL - C and GLUT4 expression were apparently reduced in the model group. Compared with the model group,the insulin sensitivity was increased apparently,the levels of TG and LDL - C were reduced, GLUT4 expression was increased apparently in the Chinese medicine group. The changes in TC and HDL - C were not apparent. Conclusion Tangzhiping improves the insulin sensitivity and adjusts lipid metabolic dis-turbance in the rats of insulin resistance. The effect mechanism may be related to the improvement of GLUT4 expression in epicyte of skeletal muscle and enhancement of the absorption and utility of skeletal muscular tissue to glucose

  13. Autosomal recessive inheritance of GLUT1 deficiency syndrome.

    NARCIS (Netherlands)

    Klepper, J.; Scheffer, H.; Elsaid, M.F.; Kamsteeg, E.J.; Leferink, M.; Ben-Omran, T.

    2009-01-01

    GLUT1 deficiency syndrome (GLUT1DS) is understood as a monogenetic disease caused by heterozygous SLC2A1 gene mutations with autosomaldominant and sporadic transmission. We report on a six-year-old girl from an inbred Arab family with moderate global developmental delay, epilepsy, ataxia, hypotonia,

  14. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis

    Energy Technology Data Exchange (ETDEWEB)

    Vališ, Karel, E-mail: karel.valis@biomed.cas.cz [Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague (Czech Republic); Faculty of Science, Charles University, Prague (Czech Republic); Talacko, Pavel; Grobárová, Valéria [Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague (Czech Republic); Faculty of Science, Charles University, Prague (Czech Republic); Černý, Jan [Faculty of Science, Charles University, Prague (Czech Republic); Novák, Petr, E-mail: pnovak@biomed.cas.cz [Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague (Czech Republic); Faculty of Science, Charles University, Prague (Czech Republic)

    2016-12-10

    The general mechanism underlying the tumor suppressor activity of the Hippo signaling pathway remains unclear. In this study, we explore the molecular mechanisms connecting the Hippo signaling pathway with glucose metabolism. We have found that two key regulators of glycolysis, C-MYC and GLUT1, are targets of the Hippo signaling pathway in human leukemia cells. Our results revealed that activation of MST1 by the natural compound shikonin inhibited the expression of GLUT1 and C-MYC. Furthermore, RNAi experiments confirmed the regulation of GLUT1 and C-MYC expression via the MST1-YAP1-TEAD1 axis. Surprisingly, YAP1 was found to positively regulate C-MYC mRNA levels in complex with TEAD1, while it negatively regulates C-MYC levels in cooperation with MST1. Hence, YAP1 serves as a rheostat for C-MYC, which is regulated by MST1. In addition, depletion of MST1 stimulates lactate production, whereas the specific depletion of TEAD1 has an opposite effect. The inhibition of lactate production and cellular proliferation induced by shikonin also depends on the Hippo pathway activity. Finally, a bioinformatic analysis revealed conserved TEAD-binding motifs in the C-MYC and GLUT1 promoters providing another molecular data supporting our observations. In summary, regulation of glucose metabolism could serve as a new tumor suppressor mechanism orchestrated by the Hippo signaling pathway. - Highlights: • Shikonin inhibits C-MYC and GLUT1 expression in MST1 and YAP1 dependent manner. • YAP1-TEAD1 interaction activates C-MYC and GLUT1 expression. • MST1 in cooperation with YAP1 inhibits C-MYC and GLUT1 expression. • MST1-YAP1-TEAD1 axis regulates lactate production by leukemic cells. • MST1 and YAP1 proteins block proliferation of leukemic cells.

  15. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice.

    Science.gov (United States)

    Samad, Mehdi Bin; Mohsin, Md Nurul Absar Bin; Razu, Bodiul Alam; Hossain, Mohammad Tashnim; Mahzabeen, Sinayat; Unnoor, Naziat; Muna, Ishrat Aklima; Akhter, Farjana; Kabir, Ashraf Ul; Hannan, J M A

    2017-08-09

    [6]-Gingerol, a major component of Zingiber officinale, was previously reported to ameliorate hyperglycemia in type 2 diabetic mice. Endocrine signaling is involved in insulin secretion and is perturbed in db/db Type-2 diabetic mice. [6]-Gingerol was reported to restore the disrupted endocrine signaling in rodents. In this current study on Lepr db/db diabetic mice, we investigated the involvement of endocrine pathway in the insulin secretagogue activity of [6]-Gingerol and the mechanism(s) through which [6]-Gingerol ameliorates hyperglycemia. Lepr db/db type 2 diabetic mice were orally administered a daily dose of [6]-Gingerol (200 mg/kg) for 28 days. We measured the plasma levels of different endocrine hormones in fasting and fed conditions. GLP-1 levels were modulated using pharmacological approaches, and cAMP/PKA pathway for insulin secretion was assessed by qRT-PCR and ELISA in isolated pancreatic islets. Total skeletal muscle and its membrane fractions were used to measure glycogen synthase 1 level and Glut4 expression and protein levels. 4-weeks treatment of [6]-Gingerol dramatically increased glucose-stimulated insulin secretion and improved glucose tolerance. Plasma GLP-1 was found to be significantly elevated in the treated mice. Pharmacological intervention of GLP-1 levels regulated the effect of [6]-Gingerol on insulin secretion. Mechanistically, [6]-Gingerol treatment upregulated and activated cAMP, PKA, and CREB in the pancreatic islets, which are critical components of GLP-1-mediated insulin secretion pathway. [6]-Gingerol upregulated both Rab27a GTPase and its effector protein Slp4-a expression in isolated islets, which regulates the exocytosis of insulin-containing dense-core granules. [6]-Gingerol treatment improved skeletal glycogen storage by increased glycogen synthase 1 activity. Additionally, GLUT4 transporters were highly abundant in the membrane of the skeletal myocytes, which could be explained by the increased expression of Rab8 and Rab

  16. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons.

    Science.gov (United States)

    Mounien, Lourdes; Marty, Nell; Tarussio, David; Metref, Salima; Genoux, David; Preitner, Frédéric; Foretz, Marc; Thorens, Bernard

    2010-06-01

    The physiological contribution of glucose in thermoregulation is not completely established nor whether this control may involve a regulation of the melanocortin pathway. Here, we assessed thermoregulation and leptin sensitivity of hypothalamic arcuate neurons in mice with inactivation of glucose transporter type 2 (Glut2)-dependent glucose sensing. Mice with inactivation of Glut2-dependent glucose sensors are cold intolerant and show increased susceptibility to food deprivation-induced torpor and abnormal hypothermic response to intracerebroventricular administration of 2-deoxy-d-glucose compared to control mice. This is associated with a defect in regulated expression of brown adipose tissue uncoupling protein I and iodothyronine deiodinase II and with a decreased leptin sensitivity of neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons, as observed during the unfed-to-refed transition or following i.p. leptin injection. Sites of central Glut-2 expression were identified by a genetic tagging approach and revealed that glucose-sensitive neurons were present in the lateral hypothalamus, the dorsal vagal complex, and the basal medulla but not in the arcuate nucleus. NPY and POMC neurons were, however, connected to nerve terminals from Glut2-expressing neurons. Thus, our data suggest that glucose controls thermoregulation and the leptin sensitivity of NPY and POMC neurons through activation of Glut2-dependent glucose-sensing neurons located outside of the arcuate nucleus.

  17. Adipose tissue insulin receptor and glucose transporter 4 expression, and blood glucose and insulin responses during glucose tolerance tests in transition Holstein cows with different body condition.

    Science.gov (United States)

    Jaakson, H; Karis, P; Ling, K; Ilves-Luht, A; Samarütel, J; Henno, M; Jõudu, I; Waldmann, A; Reimann, E; Pärn, P; Bruckmaier, R M; Gross, J J; Kaart, T; Kass, M; Ots, M

    2018-01-01

    Glucose uptake in tissues is mediated by insulin receptor (INSR) and glucose transporter 4 (GLUT4). The aim of this study was to examine the effect of body condition during the dry period on adipose tissue mRNA and protein expression of INSR and GLUT4, and on the dynamics of glucose and insulin following the i.v. glucose tolerance test in Holstein cows 21 d before (d -21) and after (d 21) calving. Cows were grouped as body condition score (BCS) ≤3.0 (thin, T; n = 14), BCS = 3.25 to 3.5 (optimal, O; n = 14), and BCS ≥3.75 (overconditioned, OC; n = 14). Blood was analyzed for glucose, insulin, fatty acids, and β-hydroxybutyrate concentrations. Adipose tissue was analyzed for INSR and GLUT4 mRNA and protein concentrations. During the glucose tolerance test 0.15 g/kg of body weight glucose was infused; blood was collected at -5, 5, 10, 20, 30, 40, 50, and 60 min, and analyzed for glucose and insulin. On d -21 the area under the curve (AUC) of glucose was smallest in group T (1,512 ± 33.9 mg/dL × min) and largest in group OC (1,783 ± 33.9 mg/dL × min), and different between all groups. Basal insulin on d -21 was lowest in group T (13.9 ± 2.32 µU/mL), which was different from group OC (24.9 ± 2.32 µU/mL. On d -21 the smallest AUC 5-60 of insulin in group T (5,308 ± 1,214 µU/mL × min) differed from the largest AUC in group OC (10,867 ± 1,215 µU/mL × min). Time to reach basal concentration of insulin in group OC (113 ± 14.1 min) was longer compared with group T (45 ± 14.1). The INSR mRNA abundance on d 21 was higher compared with d -21 in groups T (d -21: 3.3 ± 0.44; d 21: 5.9 ± 0.44) and O (d -21: 3.7 ± 0.45; d 21: 4.7 ± 0.45). The extent of INSR protein expression on d -21 was highest in group T (7.3 ± 0.74 ng/mL), differing from group O (4.6 ± 0.73 ng/mL), which had the lowest expression. The amount of GLUT4 protein on d -21 was lowest in group OC (1.2 ± 0.14 ng/mL), different from group O (1.8 ± 0.14 ng/mL), which had the highest amount

  18. Co-expression of CD147 and GLUT-1 indicates radiation resistance and poor prognosis in cervical squamous cell carcinoma.

    Science.gov (United States)

    Huang, Xin-Qiong; Chen, Xiang; Xie, Xiao-Xue; Zhou, Qin; Li, Kai; Li, Shan; Shen, Liang-Fang; Su, Juan

    2014-01-01

    The aim of this study was to investigate the association of CD147 and GLUT-1, which play important roles in glycolysis in response to radiotherapy and clinical outcomes in patients with locally advanced cervical squamous cell carcinoma (LACSCC). The records of 132 female patients who received primary radiation therapy to treat LACSCC at FIGO stages IB-IVA were retrospectively reviewed. Forty-seven patients with PFS (progression-free survival) of less than 36 months were regarded as radiation-resistant. Eighty-five patients with PFS longer than 36 months were regarded as radiation-sensitive. Using pretreatment paraffin-embedded tissues, we evaluated CD147 and GLUT-1 expression by immunohistochemistry. Overexpression of CD147, GLUT-1, and CD147 and GLUT-1 combined were 44.7%, 52.9% and 36.5%, respectively, in the radiation-sensitive group, and 91.5%, 89.4% and 83.0%, respectively, in the radiation-resistant group. The 5-year progress free survival (PFS) rates in the CD147-low, CD147-high, GLUT-1-low, GLUT-1-high, CD147- and/or GLUT-1-low and CD147- and GLUT-1- dual high expression groups were 66.79%, 87.10%, 52.78%, 85.82%, 55.94%, 82.90% and 50.82%, respectively. CD147 and GLUT-1 co-expression, FIGO stage and tumor diameter were independent poor prognostic factors for patients with LACSCC in multivariate Cox regression analysis. Patients with high expression of CD147 alone, GLUT-1 alone or co-expression of CD147 and GLUT-1 showed greater resistance to radiotherapy and a shorter PFS than those with low expression. In particular, co-expression of CD147 and GLUT-1 can be considered as a negative independent prognostic factor.

  19. Dietary modulation of plasma angiopoietin-like protein 4 concentrations in healthy volunteers and in patients with type 2 diabetes

    NARCIS (Netherlands)

    Jonker, Jacqueline T.; Smit, Johannes W. A.; Hammer, Sebastiaan; Snel, Marieke; van der Meer, Rutger W.; Lamb, Hildo J.; Mattijssen, Frits; Mudde, Karin; Jazet, Ingrid M.; Dekkers, Olaf M.; de Roos, Albert; Romijn, Johannes A.; Kersten, Sander; Rensen, Patrick C. N.

    2013-01-01

    Angiopoietin-like protein 4 (ANGPTL4) has been identified as an inhibitor of lipoprotein lipase. Preliminary data suggest that plasma nonesterified fatty acids (NEFAs) raise plasma ANGPTL4 concentrations in humans. The objective was to assess plasma ANGPTL4 concentrations after various nutritional

  20. Dietary modulation of plasma angiopoietin-like protein 4 concentrations in healthy volunteers and in patients with type 2 diabetes

    NARCIS (Netherlands)

    Jonker, J.T.; Smit, J.W.A.; Hammer, S.; Snel, M.; Meer, R.W. van der; Lamb, H.J.; Mattijssen, F.; Mudde, K.; Jazet, I.M.; Dekkers, O.M.; Roos, A. de; Romijn, J.A.; Kersten, S.; Rensen, P.C.

    2013-01-01

    BACKGROUND: Angiopoietin-like protein 4 (ANGPTL4) has been identified as an inhibitor of lipoprotein lipase. Preliminary data suggest that plasma nonesterified fatty acids (NEFAs) raise plasma ANGPTL4 concentrations in humans. OBJECTIVE: The objective was to assess plasma ANGPTL4 concentrations

  1. Dietary modulation of plasma angiopoietin-like protein 4 concentrations in healthy volunteers and in patients with type 2 diabetes

    NARCIS (Netherlands)

    Jonker, J.T.; Smit, J.W.A.; Hammer, S.; Snel, M.; Meer, van der R.; Lamb, H.J.; Mattijssen, F.B.J.; Mudde, C.M.; Jazet, I.M.; Dekkers, O.M.; Roos, de A.; Romijn, J.A.; Kersten, A.H.; Rensen, P.C.N.

    2013-01-01

    Background: Angiopoietin-like protein 4 (ANGPTL4) has been identified as an inhibitor of lipoprotein lipase. Preliminary data suggest that plasma nonesterified fatty acids (NEFAs) raise plasma ANGPTL4 concentrations in humans. Objective: The objective was to assess plasma ANGPTL4 concentrations

  2. Tunable GLUT-Hexose Binding and Transport via Modulation of Hexose C-3 Hydrogen-Bonding Capabilities.

    Science.gov (United States)

    Kumar Kondapi, Venkata Pavan; Soueidan, Olivier-Mohamad; Cheeseman, Christopher I; West, Frederick G

    2017-06-12

    The importance of the hydrogen bonding interactions in the GLUT-hexose binding process (GLUT=hexose transporter) has been demonstrated by studying the binding of structurally modified d-fructose analogues to GLUTs, and in one case its transport into cells. The presence of a hydrogen bond donor at the C-3 position of 2,5-anhydro-d-mannitol derivatives is essential for effective binding to GLUT5 and transport into tumor cells. Surprisingly, installation of a group that can function only as a hydrogen bond acceptor at C-3 resulted in selective recognition by GLUT1 rather than GLUT5. A fluorescently labelled analogue clearly showed GLUT-mediated transport and low efflux properties of the probe. This study reveals that a single positional modification of a 2,5-anhydro-d-mannitol derivative is sufficient to switch its binding preference from GLUT5 to GLUT1, and uncovers general scaffolds that are suitable for the potential selective delivery of molecular payloads into tumor cells via GLUT transport machinery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1.

    Directory of Open Access Journals (Sweden)

    Min-Sun Park

    Full Text Available Glucose transporters (GLUTs provide a pathway for glucose transport across membranes. Human GLUTs are implicated in devastating diseases such as heart disease, hyper- and hypo-glycemia, type 2 diabetes and cancer. The human GLUT1 has been recently crystalized in the inward-facing open conformation. However, there is no other structural information for other conformations. The X-ray structures of E. coli Xylose permease (XylE, a glucose transporter homolog, are available in multiple conformations with and without the substrates D-xylose and D-glucose. XylE has high sequence homology to human GLUT1 and key residues in the sugar-binding pocket are conserved. Here we construct a homology model for human GLUT1 based on the available XylE crystal structure in the partially occluded outward-facing conformation. A long unbiased all atom molecular dynamics simulation starting from the model can capture a new fully opened outward-facing conformation. Our investigation of molecular interactions at the interface between the transmembrane (TM domains and the intracellular helices (ICH domain in the outward- and inward-facing conformation supports that the ICH domain likely stabilizes the outward-facing conformation in GLUT1. Furthermore, inducing a conformational transition, our simulations manifest a global asymmetric rocker switch motion and detailed molecular interactions between the substrate and residues through the water-filled selective pore along a pathway from the extracellular to the intracellular side. The results presented here are consistent with previously published biochemical, mutagenesis and functional studies. Together, this study shed light on the structure and functional relationships of GLUT1 in multiple conformational states.

  4. GLUT-1 DEFICIENCY: FROM PATHOPHYSILOGY AND GENETICS TO ABROAD CLINICAL SPECTRUM

    Directory of Open Access Journals (Sweden)

    Arsov Todor

    2016-07-01

    Full Text Available The classical GLUT-1 deficiency syndrome (GLUT-1 DS, De Vivo disease was described over 2 decades ago as a metabolic encephalopathy characterized by developmental delay, secondary microcephaly paroxysmal neurological symptoms (epilepsy and movement disorders. The biochemical parameters of this disease, used in diagnosis, are low levels of glucose in the cerebrospinal fluid, normal level of glucose in the blood and consequent low ratio of cerebrospinal fluid vs. blood glucose levels (<40-45%. So far, more than 200 cases of the classical GLUT-1 DS have been described in the literature. Genetic research demonstrated that this disease is caused by mutations in SLC2A1 gene coding for GLUT-1, a transporter of glucose across the blood brain barrier. Over the last few years the clinical spectrum of GLUT-1 deficiencywas expanded to include other rare diseases such as paroxysmal exertional dyskinesia and early-onset absence epilepsy, but also some more common diseases such as idiopathic generalised epilepsy (1-2%. GLUT-1 deficiency is an important pathophysiological basis of these diseases as early diagnosis (aided by DNA mutation testing and treatment (ketogenic diet could lead to improved disease outcomes.

  5. Glucose metabolism transporters and epilepsy: only GLUT1 has an established role.

    Science.gov (United States)

    Hildebrand, Michael S; Damiano, John A; Mullen, Saul A; Bellows, Susannah T; Oliver, Karen L; Dahl, Hans-Henrik M; Scheffer, Ingrid E; Berkovic, Samuel F

    2014-02-01

    The availability of glucose, and its glycolytic product lactate, for cerebral energy metabolism is regulated by specific brain transporters. Inadequate energy delivery leads to neurologic impairment. Haploinsufficiency of the glucose transporter GLUT1 causes a characteristic early onset encephalopathy, and has recently emerged as an important cause of a variety of childhood or later-onset generalized epilepsies and paroxysmal exercise-induced dyskinesia. We explored whether mutations in the genes encoding the other major glucose (GLUT3) or lactate (MCT1/2/3/4) transporters involved in cerebral energy metabolism also cause generalized epilepsies. A cohort of 119 cases with myoclonic astatic epilepsy or early onset absence epilepsy was screened for nucleotide variants in these five candidate genes. No epilepsy-causing mutations were identified, indicating that of the major energetic fuel transporters in the brain, only GLUT1 is clearly associated with generalized epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  6. The ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) attenuates insulin resistance through suppressing GLUT-2 in rat liver.

    Science.gov (United States)

    Sharawy, Maha H; El-Awady, Mohammed S; Megahed, Nirmeen; Gameil, Nariman M

    2016-05-01

    This study investigates the effect of the ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) on insulin resistance induced by high-fructose diet (HFD) in rats. Male Sprague Dawley rats were fed 60% HFD for 12 weeks and HMB (320 mg·kg(-1)·day(-1), orally) for 4 weeks. HFD significantly increased fasting insulin, fasting glucose, glycosylated hemoglobin (HBA1C), liver glycogen content, and homeostasis model assessment of insulin resistance (HOMA-IR) index, while it decreased glucose and insulin tolerance. Furthermore, HFD significantly increased serum triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and very low density lipoprotein cholesterol (VLDL-C) levels, while it significantly decreased high density lipoprotein cholesterol (HDL-C). Moreover, HFD significantly increased mRNA expression of glucose transporter type-2 (GLUT-2), the mammalian target of rapamycin (mTOR), and sterol regulatory element-binding protein-1c (SREBP-1c) but decreased peroxisome proliferator-activated receptor-alpha (PPAR-α) in liver. Aortic relaxation to acetylcholine (ACh) was impaired and histopathology showed severe hepatic steatosis. HMB significantly increased insulin tolerance and decreased fasting insulin, HOMA-IR, HBA1C, hepatic glycogen content, serum TG, LDL-C, and VLDL-C. Additionally, HMB enhanced ACh-induced relaxation, ameliorated hepatic steatosis, and decreased mRNA expression of GLUT-2. In conclusion, HMB may attenuate insulin resistance and hepatic steatosis through inhibiting GLUT-2 in liver.

  7. Diabetes-Resistant NOR Mice Are More Severely Affected by Streptozotocin Compared to the Diabetes-Prone NOD Mice: Correlations with Liver and Kidney GLUT2 Expressions

    Directory of Open Access Journals (Sweden)

    S. Kahraman

    2015-01-01

    Full Text Available Nonobese Diabetic (NOD mice are susceptible strains for Type 1 diabetes development, and Nonobese Diabetes-Resistant (NOR mice are defined as suitable controls for NOD mice in non-MHC-related research. Diabetes is often accelerated in NOD mice via Streptozotocin (STZ. STZ is taken inside cells via GLUT2 transmembrane carrier proteins, the major glucose transporter isoforms in pancreatic beta cells, liver, kidneys, and the small intestine. We observed severe adverse effects in NOR mice treated with STZ compared to NOD mice that were made diabetic with a similar dose. We suggested that the underlying mechanism could be differential GLUT2 expressions in pancreatic beta cells, yet immunofluorescent and immunohistochemical studies revealed similar GLUT2 expression levels. We also detected GLUT2 expression profiles in NOD and NOR hepatic and renal tissues by western blot analysis and observed considerably higher GLUT2 expression levels in liver and kidney tissues of NOR mice. Although beta cell GLUT2 expression levels are frequently evaluated as a marker predicting STZ sensitivity in animal models, we report here very different diabetic responses to STZ in two different animal strains, in spite of similar initial GLUT2 expressions in beta cells. Furthermore, use of NOR mice in STZ-mediated experimental diabetes settings should be considered accordingly.

  8. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish.

    Science.gov (United States)

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.

  9. RHEOLOGY OF CHICKPEA PROTEIN CONCENTRATE DISPERSIONS

    Directory of Open Access Journals (Sweden)

    Aurelia Ionescu

    2011-12-01

    Full Text Available Chickpea proteins are used as ingredients in comminuted sausage products and many oriental textured foods. Rheological behaviour of chickpea protein concentrate was studied using a controlled stress rheometer. The protein dispersion prepared with phosphate buffer at pH 7.0 presented non-Newtonian shear thinning behaviour and rheological data well fitted to the Sisko, Carreau and Cross models. The viscoelastic properties of the chickpea protein suspensions were estimated by measuring the storage and loss moduli in oscillatory frequency conditions (0.1-10 Hz at 20°C. Moreover, thermally induced gelation of the chickpea proteins (16, 24 and 36% was studied at pH 7.0 and 4.5 in the temperature range 50 to 100oC and salt concentration ranging from 0 to 1 M. Gelling behaviour was quantified by means of dynamic rheological measurements. Gels formation was preceded by the decrease of storage modulus and loss moduli, coupled with the increase of the phase angle (delta. The beginning of thermal gelation was influenced by protein concentration, pH and salt level. In all studied cases, storage modulus increased rapidly in the temperature range 70-90°C. All rheological parameters measured at 90°C were significantly higher at pH 4.5 compared to pH 7.0.

  10. GLUT3 gene expression is critical for embryonic growth, brain development and survival.

    Science.gov (United States)

    Carayannopoulos, Mary O; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U

    2014-04-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Upregulation of Glucose Uptake and Hexokinase Activity of Primary Human CD4+ T Cells in Response to Infection with HIV-1

    Directory of Open Access Journals (Sweden)

    Maia Kavanagh Williamson

    2018-03-01

    Full Text Available Infection of primary CD4+ T cells with HIV-1 coincides with an increase in glycolysis. We investigated the expression of glucose transporters (GLUT and glycolytic enzymes in human CD4+ T cells in response to infection with HIV-1. We demonstrate the co-expression of GLUT1, GLUT3, GLUT4, and GLUT6 in human CD4+ T cells after activation, and their concerted overexpression in HIV-1 infected cells. The investigation of glycolytic enzymes demonstrated activation-dependent expression of hexokinases HK1 and HK2 in human CD4+ T cells, and a highly significant increase in cellular hexokinase enzyme activity in response to infection with HIV-1. HIV-1 infected CD4+ T cells showed a marked increase in expression of HK1, as well as the functionally related voltage-dependent anion channel (VDAC protein, but not HK2. The elevation of GLUT, HK1, and VDAC expression in HIV-1 infected cells mirrored replication kinetics and was dependent on virus replication, as evidenced by the use of reverse transcription inhibitors. Finally, we demonstrated that the upregulation of HK1 in HIV-1 infected CD4+ T cells is independent of the viral accessory proteins Vpu, Vif, Nef, and Vpr. Though these data are consistent with HIV-1 dependency on CD4+ T cell glucose metabolism, a cellular response mechanism to infection cannot be ruled out.

  12. GLUT1 deficiency syndrome into adulthood: a follow-up study

    NARCIS (Netherlands)

    Leen, W.G.; Taher, M.; Verbeek, M.M.; Kamsteeg, E.J.; Warrenburg, B.P.C. van de; Willemsen, M.A.

    2014-01-01

    GLUT1 deficiency syndrome (GLUT1DS) is a treatable neurometabolic disorder in which glucose transport into the brain is disturbed. Besides the classic phenotype of intellectual disability, epilepsy, and movement disorders, other phenotypes are increasingly recognized. These include, for example,

  13. Adenovirus Protein E4-ORF1 activation of PI3 kinase reveals differential regulation of downstream effector pathways in adipocytes

    OpenAIRE

    Chaudhary, Natasha; Gonzalez, Eva; Chang, Sung-Hee; Geng, Fuqiang; Rafii, Shahin; Altorki, Nasser K.; McGraw, Timothy E.

    2016-01-01

    Insulin activation of phosphatidylinositol 3-kinase (PI3K) regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but...

  14. Studi Distribusi Glukosa Transporter 4 pada Otot Skelet Ayam Kedu Cemani

    OpenAIRE

    Budipitojo, Teguh; -, Ariana; Pangestiningsih, Tri Wahyu; Wijayanto, Hery; Kusindarta, Dwi Liliek; Musana, Dewi Kania

    2017-01-01

    Glucose transporter (GLUT 4) is glucose transporter protein regulated by insulin, found in adipose tissue and striated muscle (skeletal and cardiac muscle). Kedu cemani chicken is one of Indonesia endemic animal, found in Kedu, Temanggung regency, Central Java. This study was required to complete microscopic documentation of  Indonesia’s native biodiversity. The objective of this study was to clarify GLUT 4 distribution in skeletal muscle fibers of kedu cemani chicken by using avidin-biotin-p...

  15. Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Taylor, Eric B.; Witczak, Carol A.

    2010-01-01

    TBC1D4 (also known as AS160) regulates GLUT4 translocation and glucose uptake in adipocytes and skeletal muscle. Its mode of action involves phosphorylation of Serine (S)/Threonine (T) residues by upstream kinases resulting in inactivation of Rab-GAP activity leading to GLUT4 mobilization...

  16. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass - Prediction of viscosity through protein-protein interaction measurements

    DEFF Research Database (Denmark)

    Neergaard, Martin S; Kalonia, Devendra S; Parshad, Henrik

    2013-01-01

    The purpose of this work was to explore the relation between protein-protein interactions (PPIs) and solution viscosity at high protein concentration using three monoclonal antibodies (mAbs), two of the IgG4 subclass and one of the IgG1 subclass. A range of methods was used to quantify the PPI...... low or high protein concentration determined using DLS. The PPI measurements were correlated with solution viscosity (measured by DLS using polystyrene nanospheres and ultrasonic shear rheology) as a function of pH (4-9) and ionic strength (10, 50 and 150mM). Our measurements showed that the highest...... solution viscosity was observed under conditions with the most negative kD, the highest apparent radius and the lowest net charge. An increase in ionic strength resulted in a change in the nature of the PPI at low pH from repulsive to attractive. In the neutral to alkaline pH region the mAbs behaved...

  17. Visfatin and retinol-binding protein 4 concentrations in lean, glucose-tolerant women with PCOS.

    Science.gov (United States)

    Yildiz, Bulent O; Bozdag, Gurkan; Otegen, Umit; Harmanci, Ayla; Boynukalin, Kubra; Vural, Zehra; Kirazli, Serafettin; Yarali, Hakan

    2010-01-01

    Since insulin resistance is accepted to be a common feature of polycystic ovary syndrome (PCOS), the exact molecular mechanism(s) involved in glucose and lipid metabolism have been under investigation in the syndrome. Recently, two novel adipokines, namely visfatin and retinol-binding protein 4 (RBP4), have been suggested to play a role in insulin resistance and diabetes. This study sought to determine whether plasma concentrations of visfatin and RBP4 are altered in PCOS by comparing a total of 27 lean, normal glucose-tolerant PCOS patients with 19 age- and body mass index-matched healthy controls. The mean plasma visfatin concentrations were higher in PCOS patients than those in healthy subjects (37.9+/-18.2 versus 19.8+/-17.5, PPCOS (r=0.52, Plean, glucose-tolerant women with PCOS have increased circulating visfatin and unaltered RBP4 concentrations compared with healthy lean women. In order to clarify overlapping effects and their potential contribution to the pathophysiology of PCOS, further studies are needed. Copyright (c) 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  18. Low birthweight is associated with specific changes in muscle insulin-signalling protein expression

    DEFF Research Database (Denmark)

    Ozanne, SE; Jensen, CB; Tingey, KJ

    2005-01-01

    muscle in a human cohort and a rat model. METHODS: We recruited 20 young men with low birthweight (mean birthweight 2702+/-202 g) and 20 age-matched control subjects (mean birthweight 3801+/-99 g). Biopsies were obtained from the vastus lateralis muscle and protein expression of selected insulin......-signalling proteins was determined. Rats used for this study were male offspring born to dams fed a standard (20%) protein diet or a low (8%) protein diet during pregnancy and lactation. Protein expression was determined in soleus muscle from adult offspring. RESULTS: Low-birthweight subjects showed reduced muscle...... expression of protein kinase C (PKC)zeta, p85alpha, p110beta and GLUT4. PKCzeta, GLUT4 and p85 were also reduced in the muscle of rats fed a low-protein diet. Other proteins studied were unchanged in low-birthweight humans and in rats fed a low-protein diet when compared with control groups. CONCLUSIONS...

  19. Effects of octacosanol extracted from rice bran on blood hormone levels and gene expressions of glucose transporter protein-4 and adenosine monophosphate protein kinase in weaning piglets

    Directory of Open Access Journals (Sweden)

    Lei Long

    2015-12-01

    Full Text Available The object of this study was to explore the regulatory mechanism of octacosanol to the body of animals and the effects of octacosanol on blood hormone levels and gene expressions of glucose transporter protein (GLUT-4 and adenosine monophosphate protein kinase (AMPK in liver and muscle tissue of weaning piglets. A total of 105 crossbred piglets ([Yorkshire × Landrace] × Duroc with an initial BW of 5.70 ± 1.41 kg (21 d of age were used in a 6-wk trial to evaluate the effects of octacosanol and tiamulin supplementation on contents of triiodothyronine (T3, thyroxine (T4, growth hormone (GH, glucagon (GU and adrenaline (AD in blood and gene expressions of GLUT-4 and AMPK in liver and muscle. Piglets were randomly distributed into 3 dietary treatments on the basis of BW and sex. Each treatment had 7 replicate pens with 5 piglets per pen. Treatments were as followed: control group, tiamulin group and octacosanol group. The results showed that compared with control group and tiamulin group, octacosanol greatly promoted the secretion of T3, GH, GU and AD (P  0.05. Results of the present study has confirmed that octacosanol affects energy metabolism of body by regulating secretion of blood hormones and related gene expression in tissue of weaning piglets, which can reduce stress response and has an impact on performance.

  20. Elucidation of the glucose transport pathway in glucose transporter 4 via steered molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Aswathy Sheena

    Full Text Available BACKGROUND: GLUT4 is a predominant insulin regulated glucose transporter expressed in major glucose disposal tissues such as adipocytes and muscles. Under the unstimulated state, GLUT4 resides within intracellular vesicles. Various stimuli such as insulin translocate this protein to the plasma membrane for glucose transport. In the absence of a crystal structure for GLUT4, very little is known about the mechanism of glucose transport by this protein. Earlier we proposed a homology model for GLUT4 and performed a conventional molecular dynamics study revealing the conformational rearrangements during glucose and ATP binding. However, this study could not explain the transport of glucose through the permeation tunnel. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the molecular mechanism of glucose transport and its energetic, a steered molecular dynamics study (SMD was used. Glucose was pulled from the extracellular end of GLUT4 to the cytoplasm along the pathway using constant velocity pulling method. We identified several key residues within the tunnel that interact directly with either the backbone ring or the hydroxyl groups of glucose. A rotation of glucose molecule was seen near the sugar binding site facilitating the sugar recognition process at the QLS binding site. CONCLUSIONS/SIGNIFICANCE: This study proposes a possible glucose transport pathway and aids the identification of several residues that make direct interactions with glucose during glucose transport. Mutational studies are required to further validate the observation made in this study.

  1. 27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation

    Science.gov (United States)

    Mateos, Laura; Maioli, Silvia; Ali, Zeina; Gulyás, Balázs; Winblad, Bengt; Savitcheva, Irina

    2017-01-01

    Hypercholesterolemia is associated with cognitively deteriorated states. Here, we show that excess 27-hydroxycholesterol (27-OH), a cholesterol metabolite passing from the circulation into the brain, reduced in vivo brain glucose uptake, GLUT4 expression, and spatial memory. Furthermore, patients exhibiting higher 27-OH levels had reduced 18F-fluorodeoxyglucose uptake. This interplay between 27-OH and glucose uptake revealed the engagement of the insulin-regulated aminopeptidase (IRAP). 27-OH increased the levels and activity of IRAP, countered the IRAP antagonist angiotensin IV (AngIV)–mediated glucose uptake, and enhanced the levels of the AngIV-degrading enzyme aminopeptidase N (AP-N). These effects were mediated by liver X receptors. Our results reveal a molecular link between cholesterol, brain glucose, and the brain renin-angiotensin system, all of which are affected in some neurodegenerative diseases. Thus, reducing 27-OH levels or inhibiting AP-N maybe a useful strategy in the prevention of the altered glucose metabolism and memory decline in these disorders. PMID:28213512

  2. GLUT1 deficiency with delayed myelination responding to ketogenic diet.

    NARCIS (Netherlands)

    Klepper, J.; Engelbrecht, V.; Scheffer, H.; Knaap, M.S. van der; Fiedler, A.

    2007-01-01

    Monitoring effects of a ketogenic diet in GLUT1 deficiency syndrome without seizures is difficult. Neuroimaging is considered uninformative. We report the case of a boy with neurodevelopmental delay, severe ataxia, an E54X-mutation in the SLC2A1 gene (previously GLUT1), and neuroimaging

  3. GLUT1 deficiency with delayed myelination responding to ketogenic diet

    NARCIS (Netherlands)

    Klepper, Jörg; Engelbrecht, Volkher; Scheffer, Hans; van der Knaap, Marjo S.; Fiedler, Andreas

    2007-01-01

    Monitoring effects of a ketogenic diet in GLUT1 deficiency syndrome without seizures is difficult. Neuroimaging is considered uninformative. We report the case of a boy with neurodevelopmental delay, severe ataxia, an E54X-mutation in the SLC2A1 gene (previously GLUT1), and neuroimaging

  4. Dehydroeburicoic Acid from Antrodia camphorata Prevents the Diabetic and Dyslipidemic State via Modulation of Glucose Transporter 4, Peroxisome Proliferator-Activated Receptor α Expression and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Yueh-Hsiung Kuo

    2016-06-01

    Full Text Available This study investigated the potential effects of dehydroeburicoic acid (TT, a triterpenoid compound from Antrodia camphorata, in vitro and examined the effects and mechanisms of TT on glucose and lipid homeostasis in high-fat-diet (HFD-fed mice. The in vitro study examined the effects of a MeOH crude extract (CruE of A. camphorata and Antcin K (AnK; the main constituent of fruiting body of this mushroom on membrane glucose transporter 4 (GLUT4 and phospho-Akt in C2C12 myoblasts cells. The in vitro study demonstrated that treatment with CruE, AnK and TT increased the membrane levels of glucose transporter 4 (GLUT4 and phospho-Akt at different concentrations. The animal experiments were performed for 12 weeks. Diabetic mice were randomly divided into six groups after 8 weeks of HFD-induction and treated with daily oral gavage doses of TT (at three dose levels, fenofibrate (Feno (at 0.25 g/kg body weight, metformin (Metf (at 0.3 g/kg body weight or vehicle for another 4 weeks while on an HFD diet. HFD-fed mice exhibited increased blood glucose levels. TT treatment dramatically lowered blood glucose levels by 34.2%~43.4%, which was comparable to the antidiabetic agent-Metf (36.5%. TT-treated mice reduced the HFD-induced hyperglycemia, hypertriglyceridemia, hyperinsulinemia, hyperleptinemia, and hypercholesterolemia. Membrane levels of GLUT4 were significantly higher in CruE-treated groups in vitro. Skeletal muscle membrane levels of GLUT4 were significantly higher in TT-treated mice. These groups of mice also displayed lower mRNA levels of glucose-6-phosphatase (G6 Pase, an inhibitor of hepatic glucose production. The combination of these agents produced a net hypoglycemic effect in TT-treated mice. TT treatment enhanced the expressions of hepatic and skeletal muscle AMP-activated protein kinase (AMPK phosphorylation in mice. TT-treated mice exhibited enhanced expression of hepatic fatty acid oxidation enzymes, including peroxisome proliferator

  5. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  6. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    International Nuclear Information System (INIS)

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.; Rodríguez-Rey, J.C.

    2014-01-01

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity

  7. Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer.

    Science.gov (United States)

    Wei, Changyong; Heitmeier, Monique; Hruz, Paul W; Shanmugam, Mala

    2018-01-01

    Glucose is metabolized through anaerobic glycolysis and aerobic oxidative phosphorylation (OXPHOS). Perturbing glucose uptake and its subsequent metabolism can alter both glycolytic and OXPHOS pathways and consequently lactate and/or oxygen consumption. Production and secretion of lactate, as a consequence of glycolysis, leads to acidification of the extracellular medium. Molecular oxygen is the final electron acceptor in the electron transport chain, facilitating oxidative phosphorylation of ADP to ATP. The alterations in extracellular acidification and/or oxygen consumption can thus be used as indirect readouts of glucose metabolism and assessing the impact of inhibiting glucose transport through specific glucose transporters (GLUTs). The Seahorse bioenergetics analyzer can measure both the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). The proposed methodology affords a robust, high-throughput method to screen for GLUT inhibition in cells engineered to express specific GLUTs, providing live cell read-outs upon GLUT inhibition.

  8. Radiopharmacological evaluation of 6-deoxy-6-[{sup 18}F]fluoro-D-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Melinda, E-mail: mwuest@ualberta.c [Department of Oncology, University of Alberta - Cross Cancer Institute, Edmonton, AB-T6G 1Z2 (Canada); Trayner, Brendan J. [Department of Physiology, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada); Grant, Tina N. [Department of Physiology, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada); Department of Chemistry, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada); Jans, Hans-Soenke; Mercer, John R.; Murray, David [Department of Oncology, University of Alberta - Cross Cancer Institute, Edmonton, AB-T6G 1Z2 (Canada); West, Frederick G. [Department of Chemistry, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada); McEwan, Alexander J.B.; Wuest, Frank [Department of Oncology, University of Alberta - Cross Cancer Institute, Edmonton, AB-T6G 1Z2 (Canada); Cheeseman, Chris I. [Department of Physiology, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada)

    2011-05-15

    Introduction: Several clinical studies have shown low or no expression of GLUT1 in breast cancer patients, which may account for the low clinical specificity and sensitivity of 2-deoxy-2-[{sup 18}F]fluoro-D-glucose ([{sup 18}F]FDG) used in positron emission tomography (PET). Therefore, it has been proposed that other tumor characteristics such as the high expression of GLUT2 and GLUT5 in many breast tumors could be used to develop alternative strategies to detect breast cancer. Here we have studied the in vitro and in vivo radiopharmacological profile of 6-deoxy-6-[{sup 18}F]fluoro-D-fructose (6-[{sup 18}F]FDF) as a potential PET radiotracer to image GLUT5 expression in breast cancers. Methods: Uptake of 6-[{sup 18}F]FDF was studied in murine EMT-6 and human MCF-7 breast cancer cells over 60 min and compared to [{sup 18}F]FDG. Biodistribution of 6-[{sup 18}F]FDF was determined in BALB/c mice. Tumor uptake was studied with dynamic small animal PET in EMT-6 tumor-bearing BALB/c mice and human xenograft MCF-7 tumor-bearing NIH-III mice in comparison to [{sup 18}F]FDG. 6-[{sup 18}F]FDF metabolism was investigated in mouse blood and urine. Results: 6-[{sup 18}F]FDF is taken up by EMT-6 and MCF-7 breast tumor cells independent of extracellular glucose levels but dependent on the extracellular concentration of fructose. After 60 min, 30{+-}4% (n=9) and 12{+-}1% (n=7) ID/mg protein 6-[{sup 18}F]FDF was found in EMT-6 and MCF-7 cells, respectively. 6-deoxy-6-fluoro-D-fructose had a 10-fold higher potency than fructose to inhibit 6-[{sup 18}F]FDF uptake into EMT-6 cells. Biodistribution in normal mice revealed radioactivity uptake in bone and brain. Radioactivity was accumulated in EMT-6 tumors reaching 3.65{+-}0.30% ID/g (n=3) at 5 min post injection and decreasing to 1.75{+-}0.03% ID/g (n=3) at 120 min post injection. Dynamic small animal PET showed significantly lower radioactivity uptake after 15 min post injection in MCF-7 tumors [standard uptake value (SUV)=0

  9. α-Mangostin Improves Glucose Uptake and Inhibits Adipocytes Differentiation in 3T3-L1 Cells via PPARγ, GLUT4, and Leptin Expressions

    Directory of Open Access Journals (Sweden)

    Muhammad Taher

    2015-01-01

    Full Text Available Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[3H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P<0.05 with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future.

  10. The effect of Glut1 and c-myc on prognosis in esophageal squamous cell carcinoma of Kazakh and Han patients.

    Science.gov (United States)

    Zhou, Ya-Xing; Zhou, Ke-Ming; Liu, Qian; Wang, Hui; Wang, Wen; Shi, Yi; Ma, Yu-Qing

    2018-04-09

    Glucose transporter type 1 (Glut1) plays a crucial role in cancer-specific metabolism. We explored the expression of Glut1 and c-myc, the relationship between them and the effect of Glut1, c-myc on prognosis in esophageal squamous cell carcinoma. Immunohistochemistry was used to examine the expression of Glut1 and c-myc. χ 2 test analyzes the relationship between c-myc, Glut1 and pathological parameters. Spearman correlation analyzes the relationship between c-myc and Glut1. Survival analysis was used to investigate the effect of Glut1 and c-myc on prognosis. Glut1 positivity was associated with tumor size (p C-myc positivity was associated with tumor location (p = 0.015), depth of invasion (p = 0.022) and lymph node metastasis (p = 0.035). There was a positive correlation between c-myc and Glut1 (r = 0.321). Patients with Glut1 c-myc co-expression had poorer prognosis. Inhibiting Glut1 c-myc co-expression may improve the prognosis of esophageal squamous cell carcinoma.

  11. Prognostic significance of glucose transporter-1 (GLUT1) gene expression in rectal cancer after preoperative chemoradiotherapy

    International Nuclear Information System (INIS)

    Saigusa, Susumu; Toiyama, Yuji; Tanaka, Koji; Okugawa, Yoshinaga; Fujikawa, Hiroyuki; Matsushita, Kohei; Uchida, Keiichi; Inoue, Yasuhiro; Kusunoki, Masato

    2012-01-01

    Most cancer cells exhibit increased glycolysis. The elevated glucose transporter 1 (GLUT1) expression has been reported to be associated with resistance to therapeutic agents and a poor prognosis. We wondered whether GLUT1 expression was associated with the clinical outcome in rectal cancer after preoperative chemoradiotherapy (CRT), and whether glycolysis inhibition could represent a novel anticancer treatment. We obtained total RNA from residual cancer cells using microdissection from a total of 52 rectal cancer specimens from patients who underwent preoperative CRT. We performed transcriptional analyzes, and studied the association of the GLUT1 gene expression levels with the clinical outcomes. In addition, we examined each proliferative response of three selected colorectal cancer cell lines to a glycolysis inhibitor, 3-bromopyruvic acid (3-BrPA), with regard to their expression of the GLUT1 gene. An elevated GLUT1 gene expression was associated with a high postoperative stage, the presence of lymph node metastasis, and distant recurrence. Moreover, elevated GLUT1 gene expression independently predicted both the recurrence-free and overall survival. In the in vitro studies, we observed that 3-BrPA significantly suppressed the proliferation of colon cancer cells with high GLUT1 gene expression, compared with those with low expression. An elevated GLUT1 expression may be a useful predictor of distant recurrence and poor prognosis in rectal cancer patients after preoperative CRT. (author)

  12. FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells.

    Directory of Open Access Journals (Sweden)

    Shun Kitaoka

    Full Text Available Caenorhabditis elegans (C. elegans is an attractive animal model for biological and biomedical research because it permits relatively easy genetic dissection of cellular pathways, including insulin/IGF-like signaling (IIS, that are conserved in mammalian cells. To explore C. elegans as a model system to study the regulation of the facilitative glucose transporter (GLUT, we have characterized the GLUT gene homologues in C. elegans: fgt-1, R09B5.11, C35A11.4, F53H8.3, F48E3.2, F13B12.2, Y61A9LA.1, K08F9.1 and Y37A1A.3. The exogenous expression of these gene products in Xenopus oocytes showed transport activity to unmetabolized glucose analogue 2-deoxy-D-glucose only in FGT-1. The FGT-1-mediated transport activity was inhibited by the specific GLUT inhibitor phloretin and exhibited a Michaelis constant (Km of 2.8 mM. Mannose, galactose, and fructose were able to inhibit FGT-1-mediated 2-deoxy-D-glucose uptake (P < 0.01, indicating that FGT-1 is also able to transport these hexose sugars. A GFP fusion protein of FGT-1 was observed only on the basolateral membrane of digestive tract epithelia in C. elegans, but not in other tissues. FGT-1::eGFP expression was observed from early embryonic stages. The knockdown or mutation of fgt-1 resulted in increased fat staining in both wild-type and daf-2 (mammalian insulin receptor homologue mutant animals. Other common phenotypes of IIS mutant animals, including dauer formation and brood size reduction, were not affected by fgt-1 knockdown in wild-type or daf-2 mutants. Our results indicated that in C. elegans, FGT-1 is mainly a mammalian GLUT2-like intestinal glucose transporter and is involved in lipid metabolism.

  13. VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans

    Directory of Open Access Journals (Sweden)

    Rita Schüler

    2018-05-01

    Full Text Available Objective: Reduction of brain glucose transporter GLUT1 results in severe neurological dysfunction. VEGF is required to restore and maintain brain glucose uptake across the blood brain barrier via GLUT1, which was shown to be acutely diminished in response to a high fat diet (HFD in mice. The genetic and HFD-related regulation and association of VEGF and GLUT1 (SLC2A1 in humans was investigated in the NUtriGenomic Analysis in Twins (NUGAT study. Methods: 92 healthy and non-obese twins were standardized to a high-carbohydrate low-fat diet for 6 weeks before switched to a 6-week HFD under isocaloric conditions. Three clinical investigation days were conducted: after 6 weeks of low-fat diet and after 1 and 6 weeks of HFD. Serum VEGF and other cytokine levels were measured using ELISA. Gene expression in subcutaneous adipose tissue was assessed by quantitative Real-Time PCR. Genotyping was performed using microarray. The Auditory Verbal Learning Task was conducted to measure cognitive performance. Results: In this human study, we showed that the environmental regulation of SLC2A1 expression and serum VEGF by HFD was inversely correlated and both factors showed strong heritability (>90%. In response to the HFD containing 45% fat, serum VEGF levels increased (P = 0.002 while SLC2A1 mRNA expression in adipose tissue decreased (P = 0.001. Higher BMI was additionally associated with lower SLC2A1 expression. AA-genotypes of the rs9472159 polymorphism, which explained ∼39% of the variation in circulating VEGF concentrations, showed significantly reduced serum VEGF levels (P = 6.4 × 10−11 but higher SLC2A1 expression (P = 0.009 in adipose tissue compared to CC/CA-genotypes after 6 weeks of HFD. Memory performance in AA-genotypes declined in response to the HFD compared to CC- and CA-genotypes. Conclusions: The results provide evidence to suggest the translatability of the dietary regulation of VEGF and GLUT1 from mouse models to humans. Our

  14. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    , but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas...... after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle...... amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation...

  15. The invisible teenager: Comic book materiality and the amateur films of Don Glut

    Directory of Open Access Journals (Sweden)

    Matt Yockey

    2014-06-01

    Full Text Available Don Glut, between the ages of 9 and 25, made 41 short amateur films inspired by horror, science fiction, and superhero movies, serials, and comic books. The tactile qualities of comic books as affect-generating objects are instrumental to how Glut confirmed his identity during a time (adolescence in which that identity is particularly unstable. Glut used the popular figure of the teen rebel and his role as a filmmaker in order to negotiate with hegemonic restrictions on his objects of affection, especially comic books.

  16. The Role of Hypoxia-Inducible Factor-1α, Glucose Transporter-1, (GLUT-1 and Carbon Anhydrase IX in Endometrial Cancer Patients

    Directory of Open Access Journals (Sweden)

    Pawel Sadlecki

    2014-01-01

    Full Text Available Hypoxia-inducible factor-1α (HIF-1α, glucose transporter-1 (GLUT-1, and carbon anhydrase IX (CAIX are important molecules that allow adaptation to hypoxic environments. The aim of our study was to investigate the correlation between HIF-1α, GLUT-1, and CAIX protein level with the clinicopathological features of endometrial cancer patients. Materials and Methods. 92 endometrial cancer patients, aged 37–84, were enrolled to our study. In all patients clinical stage, histologic grade, myometrial invasion, lymph node, and distant metastases were determined. Moreover, the survival time was assessed. Immunohistochemical analyses were performed on archive formalin fixed paraffin embedded tissue sections. Results. High significant differences (P=0.0115 were reported between HIF-1α expression and the histologic subtype of cancer. Higher HIF-1α expression was associated with the higher risk of recurrence (P=0.0434. The results of GLUT-1 and CAIX expression did not reveal any significant differences between the proteins expression in the primary tumor and the clinicopathological features. Conclusion. The important role of HIF-1α in the group of patients with the high risk of recurrence and the negative histologic subtype of the tumor suggest that the expression of this factor might be useful in the panel of accessory pathomorphological tests and could be helpful in establishing more accurate prognosis in endometrial cancer patients.

  17. GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion

    DEFF Research Database (Denmark)

    Cani, Patrice D; Holst, Jens Juul; Drucker, Daniel J

    2007-01-01

    to those described for beta-cells, brain and hepatoportal sensors. We determined the role of GLUT2, GLP-1 or GIP receptors in glucose-induced incretins secretion, in the corresponding knockout mice. GLP-1 secretion was reduced in all mutant mice, while GIP secretion did not require GLUT2. Intestinal GLP-1...... content was reduced only in GIP and GLUT2 receptors knockout mice suggesting that this impairment could contribute to the phenotype. Intestinal GIP content was similar in all mice studied. Furthermore, the impaired incretins secretion was associated with a reduced glucose-stimulated insulin secretion...

  18. An increase in immature β-cells lacking Glut2 precedes the expansion of β-cell mass in the pregnant mouse.

    Directory of Open Access Journals (Sweden)

    Christine A Beamish

    Full Text Available A compensatory increase in β-cell mass occurs during pregnancy to counter the associated insulin resistance, and a failure in adaptation is thought to contribute to gestational diabetes. Insulin-expressing but glucose-transporter-2-low (Ins+Glut2LO progenitor cells are present in mouse and human pancreas, being predominantly located in extra-islet β-cell clusters, and contribute to the regeneration of the endocrine pancreas following induced ablation. We therefore sought to investigate the contribution of Ins+Glut2LO cells to β-cell mass expansion during pregnancy. Female C57Bl/6 mice were time mated and pancreata were collected at gestational days (GD 6, 9, 12, 15, and 18, and postpartum D7 (n = 4/time-point and compared to control (non-pregnant animals. Beta cell mass, location, proliferation (Ki67+, and proportion of Ins+Glut2LO cells were measured using immunohistochemistry and bright field or confocal microscopy. Beta cell mass tripled by GD18 and β-cell proliferation peaked at GD12 in islets (≥6 β-cells and small β-cell clusters (1-5 β-cells. The proportion and fraction of Ins+Glut2LO cells undergoing proliferation increased significantly at GD9 in both islets and clusters, preceding the increase in β-cell mass and proliferation, and their proliferation within clusters persisted until GD15. The overall number of clusters increased significantly at GD9. Quantitative PCR showed a significant increase in Pdx1 presence at GD9 vs. GD18 or control pancreas, and Pdx1 was visualized by immunohistochemistry within both Ins+Glut2LO and Ins+Glut2HI cells within clusters. These results indicate that Ins+Glut2LO cells are likely to contribute to β-cell mass expansion during pregnancy.

  19. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory.

    Science.gov (United States)

    Pearson-Leary, Jiah; McNay, Ewan C

    2016-11-23

    The insulin-regulated glucose transporter-4 (GluT4) is critical for insulin- and contractile-mediated glucose uptake in skeletal muscle. GluT4 is also expressed in some hippocampal neurons, but its functional role in the brain is unclear. Several established molecular modulators of memory processing regulate hippocampal GluT4 trafficking and hippocampal memory formation is limited by both glucose metabolism and insulin signaling. Therefore, we hypothesized that hippocampal GluT4 might be involved in memory processes. Here, we show that, in male rats, hippocampal GluT4 translocates to the plasma membrane after memory training and that acute, selective intrahippocampal inhibition of GluT4-mediated glucose transport impaired memory acquisition, but not memory retrieval. Other studies have shown that prolonged systemic GluT4 blockade causes insulin resistance. Unexpectedly, we found that prolonged hippocampal blockade of glucose transport through GluT4-upregulated markers of hippocampal insulin signaling prevented task-associated depletion of hippocampal glucose and enhanced both working and short-term memory while also impairing long-term memory. These effects were accompanied by increased expression of hippocampal AMPA GluR1 subunits and the neuronal GluT3, but decreased expression of hippocampal brain-derived neurotrophic factor, consistent with impaired ability to form long-term memories. Our findings are the first to show the cognitive impact of brain GluT4 modulation. They identify GluT4 as a key regulator of hippocampal memory processing and also suggest differential regulation of GluT4 in the hippocampus from that in peripheral tissues. The role of insulin-regulated glucose transporter-4 (GluT4) in the brain is unclear. In the current study, we demonstrate that GluT4 is a critical component of hippocampal memory processes. Memory training increased hippocampal GluT4 translocation and memory acquisition was impaired by GluT4 blockade. Unexpectedly, whereas long

  20. Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4.

    Science.gov (United States)

    Pearson-Leary, J; Jahagirdar, V; Sage, J; McNay, E C

    2018-02-15

    The insulin-regulated glucose transporter, GluT4, is a key molecule in peripheral insulin signaling. Although GluT4 is abundantly expressed in neurons of specific brain regions such as the hippocampus, the functional role of neuronal GluT4 is unclear. Here, we used pharmacological inhibition of GluT4-mediated glucose uptake to determine whether GluT4 mediates insulin-mediated glucose uptake in the hippocampus. Consistent with previous reports, we found that glucose utilization increased in the dorsal hippocampus of male rats during spontaneous alternation (SA), a hippocampally-mediated spatial working memory task. We previously showed that insulin signaling within the hippocampus is required for processing this task, and that administration of exogenous insulin enhances performance. At baseline levels of hippocampal insulin, inhibition of GluT4-mediated glucose uptake did not affect SA performance. However, inhibition of an upstream regulator of GluT4, Akt, did impair SA performance. Conversely, when a memory-enhancing dose of insulin was delivered to the hippocampus prior to SA-testing, inhibition of GluT4-mediated glucose transport prevented cognitive enhancement. These data suggest that baseline hippocampal cognitive processing does not require functional hippocampal GluT4, but that cognitive enhancement by supra-baseline insulin does. Consistent with these findings, we found that in neuronal cell culture, insulin increases glucose utilization in a GluT4-dependent manner. Collectively, these data demonstrate a key role for GluT4 in transducing the procognitive effects of elevated hippocampal insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. GLUT1 deficiency syndrome as a cause of encephalopathy that includes cognitive disability, treatment-resistant infantile epilepsy and a complex movement disorder.

    Science.gov (United States)

    Graham, John M

    2012-05-01

    Glucose transporter-1 (GLUT1) deficiency syndrome is caused by heterozygous mutations in the SLC2A1 gene, resulting in impaired glucose transport into the brain. It is characterized by a low glucose concentration in the cerebrospinal fluid (hypoglycorrhachia) in the absence of hypoglycemia, in combination with low to normal lactate in the cerebrospinal fluid (CSF). It often results in treatment-resistant infantile epilepsy with progressive developmental disabilities and a complex movement disorder. Recognizing GLUT1 deficiency syndrome is important, since initiation of a ketogenic diet can reduce the frequency of seizures and the severity of the movement disorder. There can be a considerable delay in diagnosing GLUT1 deficiency syndrome, and this point is illustrated by the natural history of this disorder in a 21-year-old woman with severe, progressive neurological disabilities. Her encephalopathy consisted of treatment-resistant seizures, a complex movement disorder, progressive intellectual disability, and deceleration of her head growth after late infancy. Focused evaluation at age 21 revealed GLUT1 deficiency caused by a novel heterozygous missence mutation in exon 7 (c.938C > A; p.Ser313Try) in SLC2A1 as the cause for her disabilities. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. Deletion of GLUT1 and GLUT3 Reveals Multiple Roles for Glucose Metabolism in Platelet and Megakaryocyte Function

    Directory of Open Access Journals (Sweden)

    Trevor P. Fidler

    2017-07-01

    Full Text Available Anucleate platelets circulate in the blood to facilitate thrombosis and diverse immune functions. Platelet activation leading to clot formation correlates with increased glycogenolysis, glucose uptake, glucose oxidation, and lactic acid production. Simultaneous deletion of glucose transporter (GLUT 1 and GLUT3 (double knockout [DKO] specifically in platelets completely abolished glucose uptake. In DKO platelets, mitochondrial oxidative metabolism of non-glycolytic substrates, such as glutamate, increased. Thrombosis and platelet activation were decreased through impairment at multiple activation nodes, including Ca2+ signaling, degranulation, and integrin activation. DKO mice developed thrombocytopenia, secondary to impaired pro-platelet formation from megakaryocytes, and increased platelet clearance resulting from cytosolic calcium overload and calpain activation. Systemic treatment with oligomycin, inhibiting mitochondrial metabolism, induced rapid clearance of platelets, with circulating counts dropping to zero in DKO mice, but not wild-type mice, demonstrating an essential role for energy metabolism in platelet viability. Thus, substrate metabolism is essential for platelet production, activation, and survival.

  3. Inhibition of Glucose Transport by Tomatoside A, a Tomato Seed Steroidal Saponin, through the Suppression of GLUT2 Expression in Caco-2 Cells.

    Science.gov (United States)

    Li, Baorui; Terazono, Yusuke; Hirasaki, Naoto; Tatemichi, Yuki; Kinoshita, Emiko; Obata, Akio; Matsui, Toshiro

    2018-02-14

    We investigated whether tomatoside A (5α-furostane-3β,22,26-triol-3-[O-β-d-glucopyranosyl (1→2)-β-d-glucopyranosyl (1→4)-β-d-galactopyranoside] 26-O-β-d-glucopyranoside), a tomato seed saponin, may play a role in the regulation of intestinal glucose transport in human intestinal Caco-2 cells. Tomatoside A could not penetrate through Caco-2 cell monolayers, as observed in the transport experiments using liquid chromatography-mass spectrometry. The treatment of cells with 10 μM tomatoside A for 3 h resulted in a 46.0% reduction in glucose transport as compared to untreated cells. Western blotting analyses revealed that tomatoside A significantly (p transporter 2 (GLUT2) in Caco-2 cells, while no change in the expression of sodium-dependent glucose transporter 1 was observed. In glucose transport experiments, the reduced glucose transport by tomatoside A was ameliorated by a protein kinase C (PKC) inhibitor and a multidrug resistance-associated protein 2 (MRP2) inhibitor. The tomatoside A-induced reduction in glucose transport was restored in cells treated with apical sodium-dependent bile acid transporter (ASBT) siRNA or an ASBT antagonist. These findings demonstrated for the first time that the nontransportable tomato seed steroidal saponin, tomatoside A, suppressed GLUT2 expression via PKC signaling pathway during the ASBT-influx/MRP2-efflux process in Caco-2 cells.

  4. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet.

    Science.gov (United States)

    Cappuccio, Gerarda; Pinelli, Michele; Alagia, Marianna; Donti, Taraka; Day-Salvatore, Debra-Lynn; Veggiotti, Pierangelo; De Giorgis, Valentina; Lunghi, Simona; Vari, Maria Stella; Striano, Pasquale; Brunetti-Pierri, Nicola; Kennedy, Adam D; Elsea, Sarah H

    2017-01-01

    Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS) is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF)/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation.

  5. Altered glucose transport to utero-embryonic unit in relation to delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Arnab, Banerjee; Amitabh, Krishna

    2011-02-10

    The aim of this study was to compare the changes in concentration of glucose and glucose transporters (GLUTs) in the utero-embryonic unit, consisting of decidua, trophoblast and embryo, during delayed and non-delayed periods to understand the possible cause of delayed embryonic development in Cynopterus sphinx. The results showed a significantly decreased concentration of glucose in the utero-embryonic unit due to decline in the expression of insulin receptor (IR) and GLUT 3, 4 and 8 proteins in the utero-embryonic unit during delayed period. The in vitro study showed suppressive effect of insulin on expression of GLUTs 4 and 8 in the utero-embryonic unit and a significant positive correlation between the decreased amount of glucose consumed by the utero-embryonic unit and decreased expression of GLUTs 4 (r=0.99; psphinx. Increased supply of fatty acid to the delayed embryo may be responsible for its survival under low glucose condition but unable to promote embryonic development in C. sphinx. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Protein Markers of Neurotransmitter Synthesis and Release in Postmortem Schizophrenia Substantia Nigra.

    Science.gov (United States)

    Schoonover, Kirsten E; McCollum, Lesley A; Roberts, Rosalinda C

    2017-01-01

    The substantia nigra (SN) provides the largest dopaminergic input to the brain, projects to the striatum (the primary locus of action for antipsychotic medication), and receives GABAergic and glutamatergic inputs. This study used western blot analysis to compare protein levels of tyrosine hydroxylase (TH), glutamate decarboxylase (GAD67), and vesicular glutamate transporters (vGLUT1 and vGLUT2) in postmortem human SN in schizophrenia subjects (n=13) and matched controls (n=12). As a preliminary analysis, the schizophrenia group was subdivided by (1) treatment status: off medication (n=4) or on medication (n=9); or (2) treatment response: treatment resistant (n=5) or treatment responsive (n=4). The combined schizophrenia group had higher TH and GAD67 protein levels than controls (an increase of 69.6%, P=0.01 and 19.5%, P=0.004, respectively). When subdivided by medication status, these increases were found in the on-medication subjects (TH 88.3%, P=0.008; GAD67 40.6%, P=0.003). In contrast, unmedicated schizophrenia subjects had higher vGLUT2 levels than controls (an increase of 28.7%, P=0.041), but vGLUT2 levels were similar between medicated schizophrenia subjects and controls. Treatment-resistant subjects had significantly higher TH and GAD67 levels than controls (an increase of 121.0%, P=0.0003 and 58.7%, P=0.004, respectively). These data suggest increases in dopamine and GABA transmission in the SN in schizophrenia, with a potential relation to treatment and response.

  7. High USP6NL levels in breast cancer sustain chronic AKT phosphorylation and GLUT1 stability fueling aerobic glycolysis.

    Science.gov (United States)

    Avanzato, Daniele; Pupo, Emanuela; Ducano, Nadia; Isella, Claudio; Bertalot, Giovanni; Luise, Chiara; Pece, Salvatore; Bruna, Alejandra; Rueda, Oscar M; Caldas, Carlos; Di Fiore, Pier Paolo; Sapino, Anna; Lanzetti, Letizia

    2018-04-24

    USP6NL, also named RN-tre, is a GTPase activating protein (GAP) involved in control of endocytosis and signal transduction. Here we report that USP6NL is overexpressed in breast cancer (BC), mainly of the basal-like/integrative cluster 10 subtype. Increased USP6NL levels were accompanied by gene amplification and were associated with worse prognosis in the METABRIC dataset, retaining prognostic value in multivariable analysis. High levels of USP6NL in BC cells delayed endocytosis and degradation of the epidermal growth factor receptor (EGFR), causing chronic AKT activation. In turn, AKT stabilized the glucose transporter GLUT1 at the plasma membrane, increasing aerobic glycolysis. In agreement, elevated USP6NL sensitized BC cells to glucose deprivation, indicating that their glycolytic capacity relies on this protein. Depletion of USP6NL accelerated EGFR/AKT downregulation and GLUT1 degradation, impairing cell proliferation exclusively in BC cells that harbored increased levels of USP6NL. Overall, these findings argue that USP6NL overexpression generates a metabolic rewiring that is essential to foster the glycolytic demand of BC cells and promote their proliferation. Copyright ©2018, American Association for Cancer Research.

  8. Placental Expression of Glucose Transporter Proteins in Pregnancies Complicated by Gestational and Pregestational Diabetes Mellitus.

    Science.gov (United States)

    Stanirowski, Paweł Jan; Szukiewicz, Dariusz; Pazura-Turowska, Monika; Sawicki, Włodzimierz; Cendrowski, Krzysztof

    2018-04-01

    Gestational diabetes mellitus and pregestational diabetes mellitus constitute carbohydrate metabolism disorders, which, if not diagnosed and adequately treated, lead to serious and often life-threatening pregnancy complications. According to a recently formulated hypothesis, some diabetes-related complications, such as fetal macrosomia, may be the result of disturbances in the transplacental transport of nutrients-in particular, excessive maternal-fetal glucose transfer. Throughout pregnancy, glucose flux across the placenta is mediated by the group of facilitative glucose transporters (GLUT), the expression of which in different placental compartments is the precondition for effective glucose uptake from maternal blood and its subsequent transfer to the fetal circulation. In diabetes-complicated pregnancies, the location, expression and activity of glucose transporters are modified to an extent that results in alterations in the maternal-fetal glucose exchange, potentially leading to an excessive supply of energy substrates to the fetus. This paper reviews the literature on the expression and activity of glucose transporter proteins-GLUT-1, GLUT-3, GLUT-4, GLUT-8, GLUT-9 and GLUT-12-in the human placenta, with a special focus on diabetes-complicated pregnancy. The characteristics of transporters in conditions of maternal normoglycemia and modifications occurring in the diabetic placenta are summarized, and the factors responsible for the regulation of the expression of selected isoforms are described. Finally, the impact of alterations in the placental expression of the aforementioned members of the GLUT family on intrauterine fetal development in pregnancies complicated by diabetes mellitus is discussed. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  9. FDG uptake and glut-1 expression in primary tumors and loco-regional lymph nodes in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Lee, Won Woo; Nguyen, Xuan Canh; Chung, Jin Haeng; Park, So Yeon; Kim, Sang Eun

    2007-01-01

    FDG uptake level by primary tumors in NSCLC may affect the likelihood of malignant involvement in loco-regional lymph nodes (LNs). FDG uptake in tumors has been reported to be mediated by glucose transporter type 1 (Glut-I). Here, we investigated the correlations between primary tumors and loco-regional LNs in NSCLC regarding FDG uptake and Glut-1 expression. 126 NSCLC patients (M: F=103: 23, age=659.7y) who underwent curative resection and loco-regional LN dissection within 4 week period after FDG-PET study were enrolled. Maximum standardized uptake value (maxSUV) by PET and %Glut-1 expression by immunostaining were compared between primary tumors and FDG uptake positive loco-regional LNs. Significant correlations were found between 52 malignant LNs and 37 primary tumors in terms of maxSUV (r=0.6451, p<0.0001) and %Glut-1 expression (r=0.8341, p<0.0001). Linear regression of the relation between maxSUVs of malignant LNs (Y) and maxSUVs of primary tumors (X) yielded the expression Y = 0.5938 + 0.4808 X with an r2 value of 0.4162. On the other hand, no significant correlation was observed between 144 benign LNs and 75 primary tumors in terms of maxSUVs (r= -0.0125, p 0.8831). Moreover, %Glut-1 expressions of pathologically proven benign LNs and primary tumors were found to be correlated (r=0.3863, p=0.0004), but r2 value was low at 0.1492. High correlations were found between primary tumors and loco-regional metastatic LNs in NSCLC regarding FDG uptake and Glut-1 expression. Mediastinal LN staging of NSCLC by FDG-PET may be improved by considering the linear correlation between FDG uptakes of metastatic LNs and primary tumors

  10. GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates.

    Science.gov (United States)

    Liu, Ran; Fu, Zheng; Zhao, Meng; Gao, Xiangqian; Li, Hong; Mi, Qian; Liu, Pengxing; Yang, Jinna; Yao, Zhi; Gao, Qingzhi

    2017-06-13

    Increased glycolysis and overexpression of glucose transporters (GLUTs) are physiological characteristics of human malignancies. Based on the so-called Warburg effect, 18flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, we focus on the fluorine substituted series of glucose, mannose and galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-flouromalonato-platinum(II) complexes for a comprehensive evaluation on their selective tumor targeting. Besides highly improved water solubility, these sugar-conjugates presented improved cytotoxicity than oxaliplatin in glucose tranporters (GLUTs) overexpressing cancer cell lines and exhibited no cross-resistance to cisplatin. For the highly water soluble glucose-conjugated complex (5a), two novel in vivo assessments were conducted and the results revealed that 5a was more efficacious at a lower equitoxic dose (70% MTD) than oxaliplatin (100% MTD) in HT29 xenograft model, and it was significantly more potent than oxaliplatin in leukemia-bearing DBA/2 mice as well even at equimolar dose levels (18% vs 90% MTD). GLUT inhibitor mediated cell viability analysis, GLUT1 knockdown cell line-based cytotoxicity evaluation, and platinum accumulation study demonstrated that the cellular uptake of the sugar-conjugates was regulated by GLUT1. The higher intrinsic DNA reactivity of the sugar-conjugates was confirmed by kinetic study of platinum(II)-guanosine adduct formation. The mechanistic origin of the antitumor effect of the fluorine complexes was found to be forming the bifunctional Pt-guanine-guanine (Pt-GG) intrastrand cross-links with DNA. The results provide a rationale for Warburg effect targeted anticancer drug design.

  11. Biochemical studies on gamma irradiated male rats fed on whey protein concentrate

    International Nuclear Information System (INIS)

    Mohamed, N.E; Anwar, M.M.; El-bostany, N.A.

    2010-01-01

    This study carried out to investigate the possible role of whey protein protein concentrate in ameliorating some biochemical disorders induced in gamma irradiated male rats. Forty eight male albino rats were divided into four equal groups: Group 1 fed on normal diet during experimental period. Group 2 where the diet contain 15 % whey protein concentrate instead of soybean protein . Group 3 rats were exposed to whole body gamma radiation with single dose of 5 Gy and fed on the normal diet. Group 4 rate exposed to 5 Gy then fed on diet contain 15 % whey protein concentrate, the rats were decapitated after two and four weeks post irradiation. Exposure to whole body irradiation caused significant elevation of serum ALT, AST, glucose, urea, creatinine and total triiodothyronine with significant decrease in total protein, albumin and thyroxin. Irradiated rats fed on whey protein concentrate revealed significant improvement of some biochemical parameters. It could be conclude that whey protein concentrate may be considered as a useful protein source for reducing radiation injury via metabolic pathway.

  12. Antidiabetic and Antihyperlipidemic Effects of Clitocybe nuda on Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Mei-Hsing Chen

    2014-01-01

    Full Text Available The objective of this study was to evaluate the antihyperlipidemic and antihyperglycemic effects and mechanism of the extract of Clitocybe nuda (CNE, in high-fat- (HF- fed mice. C57BL/6J was randomly divided into two groups: the control (CON group was fed with a low-fat diet, whereas the experimental group was fed with a HF diet for 8 weeks. Then, the HF group was subdivided into five groups and was given orally CNE (including C1: 0.2, C2: 0.5, and C3: 1.0 g/kg/day extracts or rosiglitazone (Rosi or vehicle for 4 weeks. CNE effectively prevented HF-diet-induced increases in the levels of blood glucose, triglyceride, insulin (P<0.001, P<0.01, P<0.05, resp. and attenuated insulin resistance. By treatment with CNE, body weight gain, weights of white adipose tissue (WAT and hepatic triacylglycerol content were reduced; moreover, adipocytes in the visceral depots showed a reduction in size. By treatment with CNE, the protein contents of glucose transporter 4 (GLUT4 were significantly increased in C3-treated group in the skeletal muscle. Furthermore, CNE reduces the hepatic expression of glucose-6-phosphatase (G6Pase and glucose production. CNE significantly increases protein contents of phospho-AMP-activated protein kinase (AMPK in the skeletal muscle and adipose and liver tissues. Therefore, it is possible that the activation of AMPK by CNE leads to diminished gluconeogenesis in the liver and enhanced glucose uptake in skeletal muscle. It is shown that CNE exhibits hypolipidemic effect in HF-fed mice by increasing ATGL expression, which is known to help triglyceride to hydrolyze. Moreover, antidiabetic properties of CNE occurred as a result of decreased hepatic glucose production via G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic states by CNE in HF-fed mice occurred by regulation of GLUT4, G6Pase, ATGL, and AMPK phosphorylation.

  13. CD63 and GLUT-1 Overexpression Could Predict a Poor Clinical Outcome in GIST: A Study of 54 Cases with Follow-Up

    Directory of Open Access Journals (Sweden)

    Piotr Lewitowicz

    2016-01-01

    Full Text Available Background and Goals. In light of current knowledge, it seems that alternations underlying GISTs are well explained, although all that is enhanced by various aspects on a daily basis. More recently, attention has been pointed towards exosomes as important particles able to modify healthy and also diseased tissues including cancer. The goal of the present study was an analysis of CD9, CD63, and GLUT-1 as a marker of hypoxia status within 54 cases of GIST and evaluation of their predictive value. Methods. 54 cases of patients suffering from GIST were enrolled into the study, predominantly in the gastric location. All operated cases had no Imatinib and other chemotherapies up to the day of operation. Expression of targeted proteins was performed by immunohistochemistry and, after that, the results with tabulated clinical data were compared by Kaplan-Meier method and multivariate Cox proportional hazard model of statistical analysis. Results. Our results presented a marked dependence of worsening clinical outcome with high expression CD63 (p=0.008 as well as with GLUT-1 (p=0.014. We noted a strict correlation of GLUT-1 expression with CD63 expression (p=0.03, which could confirm the thesis about the contribution of exosomes in intratumoural hypoxia status. The collected material did not confirm CD9 contribution. Conclusions. As presented here, CD63 and GLUT-1 have a prognostic value in GIST cases. The results confirm the other studies in this scope and can be used in future as an additional prognostic factor.

  14. A High Fat Diet During Pregnancy and Lactation Induces Cardiac and Renal Abnormalities in GLUT4 +/- Male Mice

    Directory of Open Access Journals (Sweden)

    Michael Kruse

    2017-07-01

    Full Text Available Background/Aims: Altered nutrients during the in utero (IU and/or lactation (L period predispose offspring to cardio-renal diseases in adulthood. This study investigates the effect of a high fat diet (HFD fed to female mice during IU/L on gene expression patterns associated with heart and kidney failure and hypertension in male offspring. Methods: Female wild type (WT mice were fed either a HFD or control chow (C prior to mating with males with a genetic heterozygous deletion of GLUT4 (G4+/-, a model of peripheral insulin resistance and hypertension and throughout IU/L. After weaning male offspring were placed on a standard rodent chow until 24 weeks of age. Results: All offspring exposed to a maternal HFD showed increased heart and kidney weight and reduced cardiac insulin responsiveness. G4+/- offspring on a HFD displayed early hypertension associated with increased renal gene expression of renin and the AT1- receptors compared to G4+/- on a C diet. This group showed decreased cardiac expression of key genes involved in fatty acid oxidation compared to WT on a C diet. Conclusions: These results indicate an interaction between a HFD diet and genotype during early life development that can enhance susceptibility to cardio-renal diseases later in life.

  15. Insulin Signaling in Liver and Adipose Tissues in Periparturient Dairy Cows Supplemented with Dietary Nicotinic Acid.

    Science.gov (United States)

    Kinoshita, Asako; Kenéz, Ákos; Locher, Lena; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna

    2016-01-01

    The glucose homeostasis in dairy cattle is very well controlled, in line with the metabolic adaptation during the periparturient period. Former studies showed that nicotinic acid (NA) lowered plasma non-esterified fatty acids (NEFA) concentrations and increased insulin sensitivity in dairy cows. Thus, the purpose of this study was to investigate whether the expression of proteins involved in hepatic and adipose insulin signaling and protein expression of hepatic glucose transporter 2 (GLUT2) were affected by dietary NA and dietary concentrate intake in periparturient dairy cows. Twenty pluriparous German Holstein cows were fed with the same diet from about 21 days before the expected calving date (d-21) to calving. After calving, cows were randomly assigned in 4 groups and fed with diets different in concentrate proportion ("HC" with 60:40% or "LC" with 30:70% concentrate-to-roughage ratio) and supplemented with NA (24 g/day) (NA) or without (CON) until d21. Biopsy samples were taken from the liver, subcutaneous (SCAT) and retroperitoneal (RPAT) adipose tissues at d-21 and d21. Protein expression of insulin signaling molecules (insulin receptor (INSR), phosphatidylinositol-3-kinase (PI3K), protein kinase Cζ (PKCζ)) and hepatic GLUT2 was measured by Western Blotting. The ratio of protein expression at d21/at d-21 was calculated and statistically evaluated for the effects of time and diet. Cows in HC had significantly higher dietary energy intake than cows in LC. In RPAT a decrease in PI3K and PKCζ expression was found in all groups, irrespectively of diet. In the liver, the GLUT2 expression was significantly lower in cows in NA compared with cows in CON. In conclusion, insulin signaling might be decreased in RPAT over time without any effect of diet. NA was able to modulate hepatic GLUT2 expression, but its physiological role is unclear.

  16. Insulin Signaling in Liver and Adipose Tissues in Periparturient Dairy Cows Supplemented with Dietary Nicotinic Acid.

    Directory of Open Access Journals (Sweden)

    Asako Kinoshita

    Full Text Available The glucose homeostasis in dairy cattle is very well controlled, in line with the metabolic adaptation during the periparturient period. Former studies showed that nicotinic acid (NA lowered plasma non-esterified fatty acids (NEFA concentrations and increased insulin sensitivity in dairy cows. Thus, the purpose of this study was to investigate whether the expression of proteins involved in hepatic and adipose insulin signaling and protein expression of hepatic glucose transporter 2 (GLUT2 were affected by dietary NA and dietary concentrate intake in periparturient dairy cows. Twenty pluriparous German Holstein cows were fed with the same diet from about 21 days before the expected calving date (d-21 to calving. After calving, cows were randomly assigned in 4 groups and fed with diets different in concentrate proportion ("HC" with 60:40% or "LC" with 30:70% concentrate-to-roughage ratio and supplemented with NA (24 g/day (NA or without (CON until d21. Biopsy samples were taken from the liver, subcutaneous (SCAT and retroperitoneal (RPAT adipose tissues at d-21 and d21. Protein expression of insulin signaling molecules (insulin receptor (INSR, phosphatidylinositol-3-kinase (PI3K, protein kinase Cζ (PKCζ and hepatic GLUT2 was measured by Western Blotting. The ratio of protein expression at d21/at d-21 was calculated and statistically evaluated for the effects of time and diet. Cows in HC had significantly higher dietary energy intake than cows in LC. In RPAT a decrease in PI3K and PKCζ expression was found in all groups, irrespectively of diet. In the liver, the GLUT2 expression was significantly lower in cows in NA compared with cows in CON. In conclusion, insulin signaling might be decreased in RPAT over time without any effect of diet. NA was able to modulate hepatic GLUT2 expression, but its physiological role is unclear.

  17. Refractometric total protein concentrations in icteric serum from dogs.

    Science.gov (United States)

    Gupta, Aradhana; Stockham, Steven L

    2014-01-01

    To determine whether high serum bilirubin concentrations interfere with the measurement of serum total protein concentration by refractometry and to assess potential biases among refractometer measurements. Evaluation study. Sera from 2 healthy Greyhounds. Bilirubin was dissolved in 0.1M NaOH, and the resulting solution was mixed with sera from 2 dogs from which food had been withheld to achieve various bilirubin concentrations up to 40 mg/dL. Refractometric total protein concentrations were estimated with 3 clinical refractometers. A biochemical analyzer was used to measure biuret assay-based total protein and bilirubin concentrations with spectrophotometric assays. No interference with refractometric measurement of total protein concentrations was detected with bilirubin concentrations up to 41.5 mg/dL. Biases in refractometric total protein concentrations were detected and were related to the conversion of refractive index values to total protein concentrations. Hyperbilirubinemia did not interfere with the refractometric estimation of serum total protein concentration. The agreement among total protein concentrations estimated by 3 refractometers was dependent on the method of conversion of refractive index to total protein concentration and was independent of hyperbilirubinemia.

  18. The specific ion effect on emulsions, foam and gels of a seed protein concentrate

    International Nuclear Information System (INIS)

    Lawal, O.S.

    2008-05-01

    Protein concentrate was prepared from the seeds of jack bean (Canavalia ensiformis) and the influences of selected Hofmeister salts on some functional properties of the protein concentrate were investigated. The results indicate that kosmotropic salts (Na 2 SO 4 , NaCl, NaBr) had improved water absorption capacities over the chaotropic salts (NaI, NaClO 4 , NaSCN) and generally, the reduction in water absorption capacity followed the Hofmeister trend: Na 2 SO 4 > NaCl > NaBr > NaI > NaClO 4 > NaSCN. However, the reverse was observed for the foaming and emulsification properties. The least gelation concentration (LGC) was used as the index of gelation properties and the results showed that LGC were higher in kosmotropic salts than in chaotropic salts. Generally, increases in salt concentration reduced the water absorption capacity, the surfactant properties as well as the gelation property. The findings would provide insight into the understanding of the structure property relations of the protein concentrate. (author)

  19. Leptin modulates human Sertoli cells acetate production and glycolytic profile: a novel mechanism of obesity-induced male infertility?

    Science.gov (United States)

    Martins, Ana D; Moreira, Ana C; Sá, Rosália; Monteiro, Mariana P; Sousa, Mário; Carvalho, Rui A; Silva, Branca M; Oliveira, Pedro F; Alves, Marco G

    2015-09-01

    Human feeding behavior and lifestyle are gradually being altered, favoring the development of metabolic diseases, particularly type 2 diabetes and obesity. Leptin is produced by the adipose tissue acting as a satiety signal. Its levels have been positively correlated with fat mass and hyperleptinemia has been proposed to negatively affect male reproductive function. Nevertheless, the molecular mechanisms by which this hormone affects male fertility remain unknown. Herein, we hypothesize that leptin acts on human Sertoli cells (hSCs), the "nurse cells" of spermatogenesis, altering their metabolism. To test our hypothesis, hSCs were cultured without or with leptin (5, 25 and 50ng/mL). Leptin receptor was identified by qPCR and Western blot. Protein levels of glucose transporters (GLUT1, GLUT2 and GLUT3), phosphofructokinase, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 (MCT4) were determined by Western Blot. LDH activity was assessed and metabolite production/consumption determined by proton nuclear magnetic resonance. Oxidative damage was evaluated by assessing lipid peroxidation, protein carbonilation and nitration. Our data shows that leptin receptor is expressed in hSCs. The concentration of leptin found in lean, healthy patients, upregulated GLUT2 protein levels and concentrations of leptin found in lean and obese patients increased LDH activity. Of note, all leptin concentrations decreased hSCs acetate production illustrating a novel mechanism for this hormone action. Moreover, our data shows that leptin does not induce or protect hSCs from oxidative damage. We report that this hormone modulates the nutritional support of spermatogenesis, illustrating a novel mechanism that may be linked to obesity-induced male infertility. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Glucose transporter expression in an avian nectarivore: the ruby-throated hummingbird (Archilochus colubris.

    Directory of Open Access Journals (Sweden)

    Kenneth C Welch

    Full Text Available Glucose transporter (GLUT proteins play a key role in the transport of monosaccharides across cellular membranes, and thus, blood sugar regulation and tissue metabolism. Patterns of GLUT expression, including the insulin-responsive GLUT4, have been well characterized in mammals. However, relatively little is known about patterns of GLUT expression in birds with existing data limited to the granivorous or herbivorous chicken, duck and sparrow. The smallest avian taxa, hummingbirds, exhibit some of the highest fasted and fed blood glucose levels and display an unusual ability to switch rapidly and completely between endogenous fat and exogenous sugar to fuel energetically expensive hovering flight. Despite this, nothing is known about the GLUT transporters that enable observed rapid rates of carbohydrate flux. We examined GLUT (GLUT1, 2, 3, & 4 expression in pectoralis, leg muscle, heart, liver, kidney, intestine and brain from both zebra finches (Taeniopygia guttata and ruby-throated hummingbirds (Archilochus colubris. mRNA expression of all four transporters was probed using reverse-transcription PCR (RT-PCR. In addition, GLUT1 and 4 protein expression were assayed by western blot and immunostaining. Patterns of RNA and protein expression of GLUT1-3 in both species agree closely with published reports from other birds and mammals. As in other birds, and unlike in mammals, we did not detect GLUT4. A lack of GLUT4 correlates with hyperglycemia and an uncoupling of exercise intensity and relative oxidation of carbohydrates in hummingbirds. The function of GLUTs present in hummingbird muscle tissue (e.g. GLUT1 and 3 remain undescribed. Thus, further work is necessary to determine if high capillary density, and thus surface area across which cellular-mediated transport of sugars into active tissues (e.g. muscle occurs, rather than taxon-specific differences in GLUT density or kinetics, can account for observed rapid rates of sugar flux into these

  1. Effect of Crude Protein Levels in Concentrate and Concentrate Levels in Diet on Fermentation

    Directory of Open Access Journals (Sweden)

    Dinh Van Dung

    2014-06-01

    Full Text Available The effect of concentrate mixtures with crude protein (CP levels 10%, 13%, 16%, and 19% and diets with roughage to concentrate ratios 80:20, 60:40, 40:60, and 20:80 (w/w were determined on dry matter (DM and organic matter (OM digestibility, and fermentation metabolites using an in vitro fermentation technique. In vitro fermented attributes were measured after 4, 24, and 48 h of incubation respectively. The digestibility of DM and OM, and total volatile fatty acid (VFA increased whereas pH decreased with the increased amount of concentrate in the diet (p<0.001, however CP levels of concentrate did not have any influence on these attributes. Gas production reduced with increased CP levels, while it increased with increasing concentrate levels. Ammonia nitrogen (NH3-N concentration and microbial CP production increased significantly (p<0.05 by increasing CP levels and with increasing concentrate levels in diet as well, however, no significant difference was found between 16% and 19% CP levels. Therefore, 16% CP in concentrate and increasing proportion of concentrate up to 80% in diet all had improved digestibility of DM and organic matter, and higher microbial protein production, with improved fermentation characteristics.

  2. HIF-1α and GLUT-1 Expression in Atypical Endometrial Hyperplasia, Type I and II Endometrial Carcinoma: A Potential Role in Pathogenesis

    Science.gov (United States)

    Abdou, Asmaa Gaber; Wahed, Moshira Mohammed Abdel; Kassem, Hend Abdou

    2016-01-01

    Introduction Hypoxia-Inducible Factor 1α (HIF-1α) is one of the major adaptive responses to hypoxia, regulating the activity of glucose transporter -1 (GLUT-1), responsible for glucose uptake. Aim To evaluate the immunohistochemical expression of both HIF-1α and GLUT-1 in type I and II endometrial carcinoma and their correlation with the available clinicopathologic variables in each type. Materials and Methods A retrospective study was conducted on archival blocks diagnosed from pathology department between April 2010 and August 2014 included 9 cases of atypical hyperplasia and 67 cases of endometrial carcinoma. Evaluation of both HIF-1α and GLUT-1 expression using standard immunohistochemical techniques performed on cut sections from selected paraffin embedded blocks. Statistical Analysis Descriptive analysis of the variables and statistical significances were calculated by non-parametric chi-square test using the Statistical Package for the Social Sciences version 12.0 (SPSS). Results HIF-1α was expressed in epithelial (88.9%, 52.2%, 61.2% and 50%) and stromal (33.3%, 74.6%. 71.4% and 83.3%) components of hyperplasia, total cases of EC, type I and II EC, respectively. GLUT-1 was expressed in the epithelial component of 88.9%, 98.5%, 98% and 100% of hyperplasia, total EC cases, type I and II EC, respectively. The necrosis related pattern of epithelial HIF-1α expression was in favour of type II (p=0.018) and grade III (p=0.038). HIF-1α H-score was associated with high apoptosis in both type I and total cases of EC (p=0.04). GLUT-1 H-score was negatively correlated with apoptotic count (p=0.04) and associated with high grade (p=0.003) and advanced stage in total EC (p=0.004). GLUT-1 H-score was correlated with the pattern of HIF-1α staining in all cases of EC (p= 0.04). Conclusion The role of HIF-1α in epithelial cells may differ from that of stromal cells in EC; however they augment the expression of each other supporting the crosstalk between them. The

  3. The role of SLC2A1 mutations in myoclonic astatic epilepsy and absence epilepsy, and the estimated frequency of GLUT1 deficiency syndrome

    DEFF Research Database (Denmark)

    Larsen, Jan; Johannesen, Katrine Marie; Ek, Jakob

    2015-01-01

    The first mutations identified in SLC2A1, encoding the glucose transporter type 1 (GLUT1) protein of the blood-brain barrier, were associated with severe epileptic encephalopathy. Recently, dominant SLC2A1 mutations were found in rare autosomal dominant families with various forms of epilepsy inc...

  4. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout.

    Science.gov (United States)

    Hurba, Olha; Mancikova, Andrea; Krylov, Vladimir; Pavlikova, Marketa; Pavelka, Karel; Stibůrková, Blanka

    2014-01-01

    Using European descent Czech populations, we performed a study of SLC2A9 and SLC22A12 genes previously identified as being associated with serum uric acid concentrations and gout. This is the first study of the impact of non-synonymous allelic variants on the function of GLUT9 except for patients suffering from renal hypouricemia type 2. The cohort consisted of 250 individuals (150 controls, 54 nonspecific hyperuricemics and 46 primary gout and/or hyperuricemia subjects). We analyzed 13 exons of SLC2A9 (GLUT9 variant 1 and GLUT9 variant 2) and 10 exons of SLC22A12 by PCR amplification and sequenced directly. Allelic variants were prepared and their urate uptake and subcellular localization were studied by Xenopus oocytes expression system. The functional studies were analyzed using the non-parametric Wilcoxon and Kruskall-Wallis tests; the association study used the Fisher exact test and linear regression approach. We identified a total of 52 sequence variants (12 unpublished). Eight non-synonymous allelic variants were found only in SLC2A9: rs6820230, rs2276961, rs144196049, rs112404957, rs73225891, rs16890979, rs3733591 and rs2280205. None of these variants showed any significant difference in the expression of GLUT9 and in urate transport. In the association study, eight variants showed a possible association with hyperuricemia. However, seven of these were in introns and the one exon located variant, rs7932775, did not show a statistically significant association with serum uric acid concentration. Our results did not confirm any effect of SLC22A12 and SLC2A9 variants on serum uric acid concentration. Our complex approach using association analysis together with functional and immunohistochemical characterization of non-synonymous allelic variants did not show any influence on expression, subcellular localization and urate uptake of GLUT9.

  5. Protein-lipid interactions in concentrated infant formula

    International Nuclear Information System (INIS)

    Rowley, B.O.; Richardson, T.

    1985-01-01

    Radiolabeled milk proteins ([carbon-14] β-lactoglobulin or [carbon-14] kappa-casein) were added to raw skim milk used to prepare concentrated humanized infant formula. Ultracentrifugation of the sterilized product allowed separation of three fractions: lipids and the proteins associated with them; free casein micelles and other dense particles; and the fluid phase. Distribution of radiolabeled tracer proteins or of protein measured by chemical methods among these three phases varied significantly with differences in processing conditions (time and temperature of sterilization) or amount of certain additives (potassium hydroxide or urea). In the range of 0 to 8 meq/L of potassium hydroxide added to the formula after homogenization but before sterilization, the lipid layer content of carbon-14 from [carbon-14] kappa-casein in the sterilized product decreased by 4.7% for each 1 meq/L of added potassium hydroxide. Lipid layer content of protein decreased by 2 g/L ( of a total of 32 g/L) for each 1 meq/L potassium hydroxide

  6. Blood harmane concentrations and dietary protein consumption in essential tremor.

    Science.gov (United States)

    Louis, E D; Zheng, W; Applegate, L; Shi, L; Factor-Litvak, P

    2005-08-09

    Beta-carboline alkaloids (e.g., harmane) are highly tremorogenic chemicals. Animal protein (meat) is the major dietary source of these alkaloids. The authors previously demonstrated that blood harmane concentrations were elevated in patients with essential tremor (ET) vs controls. Whether this difference is due to greater animal protein consumption by patients or their failure to metabolize harmane is unknown. The aim of this study was to determine whether patients with ET and controls differ with regard to 1) daily animal protein consumption and 2) the correlation between animal protein consumption and blood harmane concentration. Data on current diet were collected with a semiquantitative food frequency questionnaire and daily calories and consumption of animal protein and other food types was calculated. Blood harmane concentrations were log-transformed (logHA). The mean logHA was higher in 106 patients than 161 controls (0.61 +/- 0.67 vs 0.43 +/- 0.72 g(-10)/mL, p = 0.035). Patients and controls consumed similar amounts of animal protein (50.2 +/- 19.6 vs 49.4 +/- 19.1 g/day, p = 0.74) and other food types (animal fat, carbohydrates, vegetable fat) and had similar caloric intakes. In controls, logHA was correlated with daily consumption of animal protein (r = 0.24, p = 0.003); in patients, there was no such correlation (r = -0.003, p = 0.98). The similarity between patients and controls in daily animal protein consumption and the absence of the normal correlation between daily animal protein consumption and logHA in patients suggests that another factor (e.g., a metabolic defect) may be increasing blood harmane concentration in patients.

  7. Hypouricemic Effects of Ganoderma applanatum in Hyperuricemia Mice through OAT1 and GLUT9

    Directory of Open Access Journals (Sweden)

    Tianqiao Yong

    2018-01-01

    Full Text Available Ganoderma applanatum (G. applanatum dispels wind to eliminate dampness and exhibited nephron- and liver-protective effects as noted in Chinese herbal classic literature; it might also affect hyperuricemia. Therefore, we examined the hypouricemia effects and mechanisms underlying G. applanatum on chemical-induced hyperuricemia in mice. Ethanol (GAE and water (GAW extracts were prepared by extracting G. applanatum in ethanol (GAE, followed by bathing the remains in water to yield GAW. GAE and GAW were administered orally at different doses to hyperuricemia mice, while allopurinol and benzbromarone served as positive controls. Both GAE and GAW showed remarkable hypouricemia activities, rendering a substantial decline in the SUA (serum uric acid level in hyperuricemia control (P < 0.01. Moreover, the urine uric acid (UUA levels were enhanced by GAE and GAW. In contrast to the evident renal toxicity of allopurinol, GAE and GAW did not show a distinct renal toxicity. Almost no suppressing effect was observed on the XOD activities. However, compared to the hyperuricemia control, OAT1 was elevated remarkably in mice drugged with GAE and GAW, while GLUT9 was significantly decreased. Similar to benzbromarone, GAE decreased the URAT1 protein levels significantly (P < 0.01, while GAW did not display a similar effect. GAE and GAW downregulated the level of CNT2 proteins in the gastrointestinal tract of hyperuricemia mice. Thus, G. applanatum produced outstanding hypouricemic effects, mediated by renal OAT1, GLUT9, and URAT1 and gastrointestinal CNT2 that might elevate urine uric secretions and decline in the absorption of purine in the gastrointestinal tracts. G. applanatum showed little negative influence on inner organs. By docking screening, four top-ranked compounds were identified that necessitated further investigation.Compounds: potassium oxonate, hypoxanthine, allopurinol, benzbromarone.

  8. Vivo-morpholinos induced transient knockdown of physical activity related proteins.

    Directory of Open Access Journals (Sweden)

    David P Ferguson

    Full Text Available Physical activity is associated with disease prevention and overall wellbeing. Additionally there has been evidence that physical activity level is a result of genetic influence. However, there has not been a reliable method to silence candidate genes in vivo to determine causal mechanisms of physical activity regulation. Vivo-morpholinos are a potential method to transiently silence specific genes. Thus, the aim of this study was to validate the use of Vivo-morpholinos in a mouse model for voluntary physical activity with several sub-objectives. We observed that Vivo-morpholinos achieved between 60-97% knockdown of Drd1-, Vmat2-, and Glut4-protein in skeletal muscle, the delivery moiety of Vivo-morpholinos (scramble did not influence physical activity and that a cocktail of multiple Vivo-morpholinos can be given in a single treatment to achieve protein knockdown of two different targeted proteins in skeletal muscle simultaneously. Knocking down Drd1, Vmat2, or Glut4 protein in skeletal muscle did not affect physical activity. Vivo-morpholinos injected intravenously alone did not significantly knockdown Vmat2-protein expression in the brain (p = 0.28. However, the use of a bradykinin analog to increase blood-brain-barrier permeability in conjunction with the Vivo-morpholinos significantly (p = 0.0001 decreased Vmat2-protein in the brain with a corresponding later over-expression of Vmat2 coincident with a significant (p = 0.0016 increase in physical activity. We conclude that Vivo-morpholinos can be a valuable tool in determining causal gene-phenotype relationships in whole animal models.

  9. Glucose transporter 1 and monocarboxylate transporters 1, 2, and 4 localization within the glial cells of shark blood-brain-barriers.

    Directory of Open Access Journals (Sweden)

    Carolina Balmaceda-Aguilera

    Full Text Available Although previous studies showed that glucose is used to support the metabolic activity of the cartilaginous fish brain, the distribution and expression levels of glucose transporter (GLUT isoforms remained undetermined. Optic/ultrastructural immunohistochemistry approaches were used to determine the expression of GLUT1 in the glial blood-brain barrier (gBBB. GLUT1 was observed solely in glial cells; it was primarily located in end-feet processes of the gBBB. Western blot analysis showed a protein with a molecular mass of 50 kDa, and partial sequencing confirmed GLUT1 identity. Similar approaches were used to demonstrate increased GLUT1 polarization to both apical and basolateral membranes in choroid plexus epithelial cells. To explore monocarboxylate transporter (MCT involvement in shark brain metabolism, the expression of MCTs was analyzed. MCT1, 2 and 4 were expressed in endothelial cells; however, only MCT1 and MCT4 were present in glial cells. In neurons, MCT2 was localized at the cell membrane whereas MCT1 was detected within mitochondria. Previous studies demonstrated that hypoxia modified GLUT and MCT expression in mammalian brain cells, which was mediated by the transcription factor, hypoxia inducible factor-1. Similarly, we observed that hypoxia modified MCT1 cellular distribution and MCT4 expression in shark telencephalic area and brain stem, confirming the role of these transporters in hypoxia adaptation. Finally, using three-dimensional ultrastructural microscopy, the interaction between glial end-feet and leaky blood vessels of shark brain was assessed in the present study. These data suggested that the brains of shark may take up glucose from blood using a different mechanism than that used by mammalian brains, which may induce astrocyte-neuron lactate shuttling and metabolic coupling as observed in mammalian brain. Our data suggested that the structural conditions and expression patterns of GLUT1, MCT1, MCT2 and MCT4 in shark

  10. Ketone Bodies as a Possible Adjuvant to Ketogenic Diet in PDHc Deficiency but Not in GLUT1 Deficiency.

    Science.gov (United States)

    Habarou, F; Bahi-Buisson, N; Lebigot, E; Pontoizeau, C; Abi-Warde, M T; Brassier, A; Le Quan Sang, K H; Broissand, C; Vuillaumier-Barrot, S; Roubertie, A; Boutron, A; Ottolenghi, C; de Lonlay, P

    2018-01-01

    Ketogenic diet is the first line therapy for neurological symptoms associated with pyruvate dehydrogenase deficiency (PDHD) and intractable seizures in a number of disorders, including GLUT1 deficiency syndrome (GLUT1-DS). Because high-fat diet raises serious compliance issues, we investigated if oral L,D-3-hydroxybutyrate administration could be as effective as ketogenic diet in PDHD and GLUT1-DS. We designed a partial or total progressive substitution of KD with L,D-3-hydroxybutyrate in three GLUT1-DS and two PDHD patients. In GLUT1-DS patients, we observed clinical deterioration including increased frequency of seizures and myoclonus. In parallel, ketone bodies in CSF decreased after introducing 3-hydroxybutyrate. By contrast, two patients with PDHD showed clinical improvement as dystonic crises and fatigability decreased under basal metabolic conditions. In one of the two PDHD children, 3-hydroxybutyrate has largely replaced the ketogenic diet, with the latter that is mostly resumed only during febrile illness. Positive direct effects on energy metabolism in PDHD patients were suggested by negative correlation between ketonemia and lactatemia (r 2  = 0.59). Moreover, in cultured PDHc-deficient fibroblasts, the increase of CO 2 production after 14 C-labeled 3-hydroxybutyrate supplementation was consistent with improved Krebs cycle activity. However, except in one patient, ketonemia tended to be lower with 3-hydroxybutyrate administration compared to ketogenic diet. 3-hydroxybutyrate may be an adjuvant treatment to ketogenic diet in PDHD but not in GLUT1-DS under basal metabolic conditions. Nevertheless, ketogenic diet is still necessary in PDHD patients during febrile illness.

  11. Fanconi Bickel Syndrome: Novel Mutations in GLUT 2 Gene Causing a Distinguished Form of Renal Tubular Acidosis in Two Unrelated Egyptian Families

    Directory of Open Access Journals (Sweden)

    Mohammad Al-Haggar

    2011-01-01

    Full Text Available Background. Fanconi-Bickel syndrome (FBS is an autosomal recessive disorder caused by defects in facilitative glucose transporter 2 (GLUT2 or SLC2A2 gene mapped on chromosome 3q26.1-26.3, that codes for the glucose transporter protein 2. Methods. Two unrelated Egyptian families having suspected cases of FBS were enrolled after taking a written informed consent; both had positive consanguinity, and index cases had evidences of proximal renal tubular defects with hepatomegaly; they were subjected to history taking, signs of rickets as well as anthropometric measurements. Laboratory workup included urinalysis, renal and liver function tests including fasting and postprandial blood sugar; serum calcium, phosphorus, alkaline phosphatase, sodium and potassium, lipid profile, and detailed blood gas. Imaging including bone survey and abdominal ultrasound, and liver biopsy were done to confirm diagnosis. Molecular analysis of the GLUT2 gene was done for DNA samples extracted from peripheral blood leukocyte. All coding sequences, including flanking introns in GLUT2 gene, were amplified using PCR followed by direct sequencing. Results. Two new mutations had been detected, one in each family, in exon 3 two bases (GA were deleted (c.253 254delGA and in exon 6 in the second family, G-to-C substitution at position-1 of the splicing acceptor site (c.776-1G>C or IVS5-1G>A. Conclusion. FBS is a rare disease due to mutation in GLUT2 gene; many mutations were reported, about half were novel mutations; yet none of these mutations is more frequent. A more extensive survey for the most frequent mutations among FBS has to be contemplated to allow for use of molecular screening tests like ARMS.

  12. The FDG uptake and glucose transporter(GLUT-1) expression of the mediastinal nodes in the non-small cell lung cancer

    International Nuclear Information System (INIS)

    Baik, Hee Jong; Jung, Jin Haeng

    2000-12-01

    The aim of this study was to understand the mechanism of FDG uptake in the mediastinal nodes, and improve the accuracy of mediastinal staging of non-small cell lung cancer by PET. To evaluate factors determining the FDG uptake in mediastinal nodes, FDG-PET was performed preoperatively, and mediastinal dissection with pulmonary resection was done in 20 LSCLC patients. The GLUT-1 expression was studied by immunohistochemistry of paraffin-section from the mediastinal nodes(n=50, true positive 11, true negative 23, false positive 11, false negative 5) using the antiGLUT-1 antibody. The staining intensity of tumor(grade 0-4), percentage of tumor, level of follicular hyperplasia(grade 1-4), and staining intensity of follicle was also studied. The staining intensity of true positive nodes was higher than that of false negative group(Mann-Whitney test, P=0.07) in the metastased nodes. The level of follicular hyperplasia of false positive nodes was higher than that of true negative nodes in non-metastased nodes(P=0.02). This finding indicates that FN interpretation of mediastinal nodes by FDG-PET might be associated with low uptake of FDG due to low expression of GLUT-1, and that FP might be associated with high level of follicular hyperplasia as a reactive change to inflammatory and/or immune reaction

  13. Daya Cerna Protein Pakan, Kandungan Protein Daging, dan Pertambahan Berat Badan Ayam Broiler setelah Pemberian Pakan yang Difermentasi dengan Effective Microorganisms-4 (EM-4

    Directory of Open Access Journals (Sweden)

    SUTARNO

    2006-05-01

    Full Text Available Effective Microorganisms-4 ( EM-4 is a mixture consists of photosynthetic bacteria, lactic acid bacteria (Lactobacillus sp, yeast (Saccharomyces sp, Actinomycetes and fermentation mushroom (Aspergillus sp, Penicillium sp. EM-4 able to increase digestibility capacity through the balancing of microorganism in digestive tract. The objectives of the research are to know the influence of giving various concentration of EM-4 fermented feed on feed protein digestibility, meat protein and increasing body weight of broiler chicken. Complete Random Design (RAL involving five treatments with five repetitions were used in this study. The treatments given were subsequently of: addition of 5% (PI, 10% (P2, 15% (P3 and 20% (P4 of starter solution and a control group (P0 without any addition of starter solution. The Broiler Chicken used was 25 broiler cocks produced by CP 707 of PT. Charoen Pokphand Jaya Farma. The protein content was measured by Kjedahl method. Collected data were then analyzed statistically by ANOVA and followed with DMRT test with significance level of 5%. The result of the research indicated that the treatment significantly increased the digestibility of feed protein, meat protein content and increasing of body weight of broiler chicken. The use of EM-4 at the concentration of 15% (P3 increased feed quality and feed efficiency by increasing feed protein content. Therefore, addition of EM-4 fermented feed could increase feed protein digestibility, meat protein content and increasing body weight of broiler chicken.

  14. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  15. Efeitos do ácido L-glutâmico e da vitamina K na composição bioquímica parcial de fêmures de frangos de corte Effects of dietary L-glutamic acid and K vitamin in the biochemical composition in femurs of broilers at 14 days of age

    Directory of Open Access Journals (Sweden)

    George Henrique Kling de Moraes

    2010-04-01

    Full Text Available Objetivou-se estudar os efeitos da combinação de ácido L-glutâmico (L-Glu e vitamina K na composição bioquímica de fêmures (proteínas colagenosas; não-colagenosas e totais de frangos de corte. O experimento, que teve 14 dias de duração, foi conduzido em delineamento inteiramente casualizado, em fatorial 2 × 4, com dois níveis de ácido L-glutâmico (6,25 e 12,5% combinados com quatro níveis de vitamina K (0,02; 0,2; 2,0 e 20,0 mg/kg de ração, cada combinação com quatro repetições de dez animais. Foram utilizados pintos machos, Avian Farm, de 1 dia, criados em baterias aquecidas e alimentados à vontade com dieta básica contendo L-aminoácidos essenciais, minerais e vitaminas (exceto vitamina K suplementada com ácido L-glutâmico e vitamina K. Ao término do experimento, os animais foram sacrificados por deslocamento cervical e seus fêmures removidos, medidos, desengordurados e pesados. Não foi observada interação significativa entre ácido L-glutâmico e vitamina K para os parâmetros estudados. Os teores de proteínas não-colagenosas foram maiores e o de proteínas colagenosas, menores nos fêmures dos pintos alimentados com a ração com 6,25% de ácido L-glutâmico. Os teores de proteínas totais, no entanto, não foram afetados pelos níveis de ácido L-glutâmico e de vitamina K. Os níveis de vitamina K tiveram efeito quadrático decrescente nos teores de proteínas não-colagenosas e efeito crescente na composição de proteínas colagenosas dos fêmures. A composição em proteínas colagenosas e não-colagenosas pode ser utilizada como indicador bioquímico de anormalidades de pernas causadas por baixo nível de nitrogênio não-específico.This work aimed to study the effects of L-glutamic acid (L-Glu and K vitamin on the biochemical composition (collagenous proteins, CP; non collagenous proteins, NCP; and total proteins, TP in femurs of broilers. The experiment which lasted for 14 days, was carried out in a

  16. Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury.

    Science.gov (United States)

    Gorgey, Ashraf S; Graham, Zachary A; Bauman, William A; Cardozo, Christopher; Gater, David R

    2017-07-01

    Longitudinal design. The study determined the effects of two forms of exercise training on the abundance of two proteins, (glucose transporter-4 [GLUT-4], adenosine monophosphate kinase [AMPK]) involved in glucose utilization and the transcriptional coactivator that regulates the genes involved in energy metabolism and mitochondrial biogenesis (peroxisome proliferator-activated receptor (PPAR) coactivator 1 alpha [PGC-1α]), in muscles in men with chronic motor-complete spinal cord injury (SCI). Clinical trial at a Medical Center. Nine men with chronic motor-complete SCI participated in functional electrical stimulation lower extremity cycling (FES-LEC; n = 4) or arm cycling ergometer (arm-cycling ergometer [ACE]; n = 5) 5 days/week for 16 weeks. Whole body composition was measured by dual energy X-ray absorptiometry. An intravenous glucose tolerance test was performed to measure glucose effectiveness (Sg) and insulin sensitivity (Si). Muscle biopsies of the right vastus lateralis (VL) and triceps muscles were collected one week prior to and post the exercise training intervention. Neither training intervention altered body composition or carbohydrate metabolism. GLUT-4 increased by 3.8 fold in the VL after FES training and increased 0.6 fold in the triceps after ACE training. PGC-1α increased by 2.3 fold in the VL after FES training and 3.8 fold in the triceps after ACE training. AMPK increased by 3.4 fold in the VL after FES training and in the triceps after ACE training. FES-LEC and ACE training were associated with greater protein expressions in the trained muscles by effectively influencing the abundance of GLUT-4, AMPK and PGC-1α. Thus, FES-LEC training of paralyzed muscle can modulate protein expression similar to that of trained and innervated muscle.

  17. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout.

    Directory of Open Access Journals (Sweden)

    Olha Hurba

    Full Text Available OBJECTIVE: Using European descent Czech populations, we performed a study of SLC2A9 and SLC22A12 genes previously identified as being associated with serum uric acid concentrations and gout. This is the first study of the impact of non-synonymous allelic variants on the function of GLUT9 except for patients suffering from renal hypouricemia type 2. METHODS: The cohort consisted of 250 individuals (150 controls, 54 nonspecific hyperuricemics and 46 primary gout and/or hyperuricemia subjects. We analyzed 13 exons of SLC2A9 (GLUT9 variant 1 and GLUT9 variant 2 and 10 exons of SLC22A12 by PCR amplification and sequenced directly. Allelic variants were prepared and their urate uptake and subcellular localization were studied by Xenopus oocytes expression system. The functional studies were analyzed using the non-parametric Wilcoxon and Kruskall-Wallis tests; the association study used the Fisher exact test and linear regression approach. RESULTS: We identified a total of 52 sequence variants (12 unpublished. Eight non-synonymous allelic variants were found only in SLC2A9: rs6820230, rs2276961, rs144196049, rs112404957, rs73225891, rs16890979, rs3733591 and rs2280205. None of these variants showed any significant difference in the expression of GLUT9 and in urate transport. In the association study, eight variants showed a possible association with hyperuricemia. However, seven of these were in introns and the one exon located variant, rs7932775, did not show a statistically significant association with serum uric acid concentration. CONCLUSION: Our results did not confirm any effect of SLC22A12 and SLC2A9 variants on serum uric acid concentration. Our complex approach using association analysis together with functional and immunohistochemical characterization of non-synonymous allelic variants did not show any influence on expression, subcellular localization and urate uptake of GLUT9.

  18. XbaI GLUT1 Gene Polymorphism and the Risk of Type 2 Diabetes with Nephropathy

    Directory of Open Access Journals (Sweden)

    Ioannis Stefanidis

    2009-01-01

    Full Text Available Altered expression of the facilitated glucose transporter GLUT1 affects pathways implicated in the pathogenesis of diabetic nephropathy. There is indication that variation of GLUT1 gene (SLC2A1 contributes to development of microangiopathy in diabetes mellitus type 2 (DM patients. A genetic association study involving Caucasians was carried out to investigate the role of XbαI polymorphism in the GLUT1 gene in diabetic nephropathy (DN. Study population (n = 240 consisted of 148 unrelated patients with DM (92 cases with diabetic nephropathy (DN, and of 92 matched healthy control subjects. Diabetic nephropathy was defined as persistent albuminuria (> 300 mg/24 h and/or renal failure, in the absence of non-diabetes induced renal disease. The analysis showed that the risk of developing DM and DN in XbaI(− carriers, when healthy individuals were considered as controls, was two-fold: odds ratio (OR 2.08 [95% confidence interval (1.14–3.79]. However, there was no evidence of association between XbaI(− and DN when patients with DM and without DN were considered as controls: OR = 1.12 (0.55–2.26. Thus, the GLUT1 XbaI(− allele is associated with DM, and possibly with a more severe form of the disease that can lead to development of DN.

  19. Determination of possible effects of mineral concentration on protein synthesis by rumen microbes in vitro

    International Nuclear Information System (INIS)

    Nikolic, J.A.; Jovanovic, M.; Andric, R.

    1976-01-01

    The aim of the present investigation was to determine the effect of different concentrations of sulphide, magnesium and zinc on protein synthesis by rumen micro-organisms in vitro. Rumen content was taken from a young bull fed a diet based on maize and dried sugar beet pulp (2/1) supplemented with urea. The rate of incorporation of 35 S from Na 2 35 SO 4 in relation to the mean specific radioactivity of the sulphide pool was used to estimate the overall rate of microbial protein synthesis. It was found that the rate of protein synthesis and the net rate of utilization of ammonia-N were not affected by differences in mean sulphide concentration from 3.6-8.0 mg/litre. The rate of reduction of sulphate appeared not to be affected by the addition of sodium sulphide to the medium. The rate and efficiency of protein synthesis by rumen micro-organisms were not significantly affected by increasing the concentration of total magnesium from 8.4-15.3 mg/100 ml. The values for soluble magnesium varied widely (1.2-7.8 mg/100 ml), and appeared to be partly dependent on the pH of the medium. Zinc concentrations varying from 5.2-12.4 mg/litre did not influence the overall rate of protein synthesis, although the efficiency tended to be higher when the concentration of zinc was greater. Concentrations of soluble zinc were low (0.3-1.15 mg/litre), and not influenced by changes in the concentration of total zinc. It was concluded that increasing the concentrations of the examined elements above the basic values did not lead consistently to an improved production of microbial protein but, on the other hand, had no obvious detrimental effect on microbial metabolic activity within the limits studied. (author)

  20. Attenuation of insulin resistance in rats by agmatine: role of SREBP-1c, mTOR and GLUT-2.

    Science.gov (United States)

    Sharawy, Maha H; El-Awady, Mohammed S; Megahed, Nirmeen; Gameil, Nariman M

    2016-01-01

    Insulin resistance is a serious health condition worldwide; however, its exact mechanisms are still unclear. This study investigates agmatine (AGM; an endogenous metabolite of L-arginine) effects on insulin resistance induced by high fructose diet (HFD) in rats and the possible involved mechanisms. Sprague Dawley rats were fed 60% HFD for 12 weeks, and AGM (10 mg/kg/day, orally) was given from week 9 to 12. AGM significantly reduced HFD-induced elevation in fasting insulin level, homeostasis model assessment of insulin resistance (HOMA-IR) index and liver glycogen content from 3.44-, 3.62- and 2.07- to 2.59-, 2.78- and 1.3-fold, respectively, compared to the control group, while it increased HFD-induced reduction in glucose tolerance. Additionally, AGM significantly decreased HFD-induced elevation in serum triglycerides, low density lipoprotein cholesterol and very low density lipoprotein cholesterol levels from 3.18-, 2.97- and 4.75- to 1.25-, 1.25- and 1.07-fold, respectively, compared to control group. Conversely, AGM had no significant effect on HFD-induced changes in fasting glucose, glycosylated hemoglobin, insulin tolerance and high density lipoprotein cholesterol. Furthermore, AGM significantly reduced HFD-induced elevation in mRNA expression of glucose transporter type-2 (GLUT-2), mammalian target of rapamycin (mTOR) and sterol regulatory element-binding protein-1c (SREBP-1c) without affecting that of peroxisome proliferator-activated receptor-alpha (PPAR-α) in the liver. Additionally, AGM enhanced ACh-induced aortic relaxation and attenuated liver steatosis induced by HFD. In conclusion, AGM may have a therapeutic potential in insulin resistance through suppressing SREBP-1c, mTOR and GLUT-2 in liver.

  1. The effect of dietary protein on reproduction in the mare. VI. Serum progestagen concentrations during pregnancy

    Directory of Open Access Journals (Sweden)

    F.E. Van Niekerk

    1998-07-01

    Full Text Available Sixty-four Thoroughbred and Anglo-Arab mares aged 6-12 years were used, of which 40 were non-lactating and 24 lactating. Foals from these 24 mares were weaned at the age of 6 months. Non-lactating and lactating mares were divided into 4 dietary groups each. The total daily protein intake and the protein quality (essential amino-acid content differed in the 4 groups of non-lactating and 4 groups of lactating mares. The mares were covered and the effect of the quantity and quality of dietary protein on serum progestagen concentrations during pregnancy was studied. A sharp decline in serum progestagen concentrations was recorded in all dietary groups from Days 18 to 40 of pregnancy, with some individual mares reaching values of less than 4 ng/mℓ. Serum progestagen concentrations recorded in some of the non-lactating mares on the low-quality protein diet increased to higher values (p<0.05 than those of mares in the other 3 dietary groups at 35-140 days of pregnancy. A similar trend was observed for the lactating mares on a low-quality protein diet at 30-84 days of pregnancy. No such trends were observed in any of the other dietary groups. High-quality protein supplementation increased serum progestagen concentrations during the 1st 30 days of pregnancy. Lactation depressed serum progestagen concentrations until after the foals were weaned.

  2. Septin 7 reduces nonmuscle myosin IIA activity in the SNAP23 complex and hinders GLUT4 storage vesicle docking and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wasik, Anita A.; Dumont, Vincent [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland); Tienari, Jukka [Department of Pathology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, 05850 Hyvinkää (Finland); Nyman, Tuula A. [Institute of Biotechnology, University of Helsinki, 00014 Helsinki (Finland); Fogarty, Christopher L.; Forsblom, Carol; Lehto, Markku [Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki (Finland); Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 000290 Helsinki (Finland); Diabetes& Obesity Research Program, Research Program´s Unit, 00014 University of Helsinki (Finland); Lehtonen, Eero [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland); Laboratory Animal Centre, University of Helsinki, 00014 Helsinki (Finland); Groop, Per-Henrik [Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki (Finland); Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 000290 Helsinki (Finland); Diabetes& Obesity Research Program, Research Program´s Unit, 00014 University of Helsinki (Finland); Baker IDI Heart & Diabetes Institute, 3004 Melbourne (Australia); Lehtonen, Sanna, E-mail: sanna.h.lehtonen@helsinki.fi [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland)

    2017-01-15

    Glomerular epithelial cells, podocytes, are insulin responsive and can develop insulin resistance. Here, we demonstrate that the small GTPase septin 7 forms a complex with nonmuscle myosin heavy chain IIA (NMHC-IIA; encoded by MYH9), a component of the nonmuscle myosin IIA (NM-IIA) hexameric complex. We observed that knockdown of NMHC-IIA decreases insulin-stimulated glucose uptake into podocytes. Both septin 7 and NM-IIA associate with SNAP23, a SNARE protein involved in GLUT4 storage vesicle (GSV) docking and fusion with the plasma membrane. We observed that insulin decreases the level of septin 7 and increases the activity of NM-IIA in the SNAP23 complex, as visualized by increased phosphorylation of myosin regulatory light chain. Also knockdown of septin 7 increases the activity of NM-IIA in the complex. The activity of NM-IIA is increased in diabetic rat glomeruli and cultured human podocytes exposed to macroalbuminuric sera from patients with type 1 diabetes. Collectively, the data suggest that the activity of NM-IIA in the SNAP23 complex plays a key role in insulin-stimulated glucose uptake into podocytes. Furthermore, we observed that septin 7 reduces the activity of NM-IIA in the SNAP23 complex and thereby hinders GSV docking and fusion with the plasma membrane. - Highlights: • Septin 7, nonmuscle myosin heavy chain IIA (NMHC-IIA) and SNAP23 form a complex. • Knockdown of septin 7 increases NM-IIA activity in the SNAP23 complex. • Insulin decreases septin 7 level and increases NM-IIA activity in the SNAP23 complex. • Septin 7 hinders GSV docking/fusion by reducing NM-IIA activity in the SNAP23 complex.

  3. Septin 7 reduces nonmuscle myosin IIA activity in the SNAP23 complex and hinders GLUT4 storage vesicle docking and fusion

    International Nuclear Information System (INIS)

    Wasik, Anita A.; Dumont, Vincent; Tienari, Jukka; Nyman, Tuula A.; Fogarty, Christopher L.; Forsblom, Carol; Lehto, Markku; Lehtonen, Eero; Groop, Per-Henrik; Lehtonen, Sanna

    2017-01-01

    Glomerular epithelial cells, podocytes, are insulin responsive and can develop insulin resistance. Here, we demonstrate that the small GTPase septin 7 forms a complex with nonmuscle myosin heavy chain IIA (NMHC-IIA; encoded by MYH9), a component of the nonmuscle myosin IIA (NM-IIA) hexameric complex. We observed that knockdown of NMHC-IIA decreases insulin-stimulated glucose uptake into podocytes. Both septin 7 and NM-IIA associate with SNAP23, a SNARE protein involved in GLUT4 storage vesicle (GSV) docking and fusion with the plasma membrane. We observed that insulin decreases the level of septin 7 and increases the activity of NM-IIA in the SNAP23 complex, as visualized by increased phosphorylation of myosin regulatory light chain. Also knockdown of septin 7 increases the activity of NM-IIA in the complex. The activity of NM-IIA is increased in diabetic rat glomeruli and cultured human podocytes exposed to macroalbuminuric sera from patients with type 1 diabetes. Collectively, the data suggest that the activity of NM-IIA in the SNAP23 complex plays a key role in insulin-stimulated glucose uptake into podocytes. Furthermore, we observed that septin 7 reduces the activity of NM-IIA in the SNAP23 complex and thereby hinders GSV docking and fusion with the plasma membrane. - Highlights: • Septin 7, nonmuscle myosin heavy chain IIA (NMHC-IIA) and SNAP23 form a complex. • Knockdown of septin 7 increases NM-IIA activity in the SNAP23 complex. • Insulin decreases septin 7 level and increases NM-IIA activity in the SNAP23 complex. • Septin 7 hinders GSV docking/fusion by reducing NM-IIA activity in the SNAP23 complex.

  4. Effect of ceramic membrane channel diameter on limiting retentate protein concentration during skim milk microfiltration.

    Science.gov (United States)

    Adams, Michael C; Barbano, David M

    2016-01-01

    Our objective was to determine the effect of retentate flow channel diameter (4 or 6mm) of nongraded permeability 100-nm pore size ceramic membranes operated in nonuniform transmembrane pressure mode on the limiting retentate protein concentration (LRPC) while microfiltering (MF) skim milk at a temperature of 50°C, a flux of 55 kg · m(-2) · h(-1), and an average cross-flow velocity of 7 m · s(-1). At the above conditions, the retentate true protein concentration was incrementally increased from 7 to 11.5%. When temperature, flux, and average cross-flow velocity were controlled, ceramic membrane retentate flow channel diameter did not affect the LRPC. This indicates that LRPC is not a function of the Reynolds number. Computational fluid dynamics data, which indicated that both membranes had similar radial velocity profiles within their retentate flow channels, supported this finding. Membranes with 6-mm flow channels can be operated at a lower pressure decrease from membrane inlet to membrane outlet (ΔP) or at a higher cross-flow velocity, depending on which is controlled, than membranes with 4-mm flow channels. This implies that 6-mm membranes could achieve a higher LRPC than 4-mm membranes at the same ΔP due to an increase in cross-flow velocity. In theory, the higher LRPC of the 6-mm membranes could facilitate 95% serum protein removal in 2 MF stages with diafiltration between stages if no serum protein were rejected by the membrane. At the same flux, retentate protein concentration, and average cross-flow velocity, 4-mm membranes require 21% more energy to remove a given amount of permeate than 6-mm membranes, despite the lower surface area of the 6-mm membranes. Equations to predict skim milk MF retentate viscosity as a function of protein concentration and temperature are provided. Retentate viscosity, retentate recirculation pump frequency required to maintain a given cross-flow velocity at a given retentate viscosity, and retentate protein

  5. Association of a common nonsynonymous variant in GLUT9 with serum uric acid levels in old order amish.

    Science.gov (United States)

    McArdle, Patrick F; Parsa, Afshin; Chang, Yen-Pei C; Weir, Matthew R; O'Connell, Jeffery R; Mitchell, Braxton D; Shuldiner, Alan R

    2008-09-01

    Uric acid is the primary end product of purine metabolism. Increased serum uric acid levels have been associated with gouty arthritis as well as with a variety of cardiovascular-related phenotypes. This study was undertaken to investigate associations between uric acid levels and single-nucleotide polymorphisms (SNPs). A 500,000-SNP genome-wide association study of serum uric acid levels was performed in a cohort of Old Order Amish from Lancaster County, Pennsylvania. The scan confirmed a previously identified region on chromosome 4 to be strongly associated with uric acid levels (P = 4.2 x 10(-11) for rs10489070). Followup genotyping revealed that a nonsynonymous coding SNP (Val253Ile; rs16890979) in GLUT9 was most strongly associated with uric acid levels, with each copy of the minor allele associated with a decrease of 0.47 mg/dl in the uric acid level (95% confidence interval 0.31-0.63 [P = 1.43 x 10(-11)]). The effect of this variant tended to be stronger in women than in men (P = 0.16 for sex-genotype interaction). The genotype effect was not modified by the inclusion of several cardiovascular risk factors, suggesting that GLUT9 is directly related to uric acid homeostasis. The SNP identified in the genome-wide scan in the Amish population (rs10489070) was also significantly associated with gout in the Framingham Heart Study (P = 0.004). Our findings indicate that GLUT9, which is expressed in the kidney, may be a novel regulator of uric acid elimination and that a common nonsynonymous variant in this gene contributes to abnormalities in uric acid homeostasis and gout.

  6. Chronic intermittent hypoxia from pedo-stage decreases glucose transporter 4 expression in adipose tissue and causes insulin resistance.

    Science.gov (United States)

    Chen, Lin; Cao, Zhao-long; Han, Fang; Gao, Zhan-cheng; He, Quan-ying

    2010-02-20

    The persistence of sleep disordered breathing (SDB) symptoms after tonsil and/or adenoid (T&A) surgery are common in children with obstructive sleep apnea (OSA). We tested the hypothesis that disturbances of glucose transporters (GLUTs) in intraabdominal adipose tissue caused by chronic intermittent hypoxia (CIH) from the pedo-period could facilitate the appearance of periphery insulin resistance in Sprague-Dawley (SD) rats. We tested the hypothesis that the changes of GLUTs in adipose tissue may be one of the reasons for persistent SDB among clinical OSA children after T&A surgery. Thirty 21-day-old SD rats were randomly divided into a CIH group, a chronic continuous hypoxia (CCH) group, and a normal oxygen group (control group) and exposed for 40 days. The changes of weight, fasting blood glucose and fasting blood insulin levels were measured. Hyperinsulinemic-euglycemic clamp techniques were used to measure insulin resistance in each animal. Real-time quantitative PCR and Western blotting were used to measure GLUT mRNA and proteins in intraabdominal adipose tissue. Additional intraabdomial white adipose tissue (WAT) was also processed into paraffin sections and directly observed for GLUTs1-4 expression. When compared with control group, CIH increased blood fasting insulin levels, (245.07 +/- 53.89) pg/ml vs. (168.63 +/- 38.70) pg/ml, P = 0.038, and decreased the mean glucose infusion rate (GIR), (7.25 +/- 1.29) mg x kg(-1) x min(-1) vs. (13.34 +/- 1.54) mg x kg(-1) x min(-1), P < 0.001. GLUT-4 mRNA and protein expression was significantly reduced after CIH compared with CCH or normal oxygen rats, 0.002 +/- 0.002 vs. 0.039 +/- 0.009, P < 0.001; 0.642 +/- 0.073 vs. 1.000 +/- 0.103, P = 0.035. CIH in young rats could induce insulin resistance via adverse effects on glycometabolism. These findings emphasize the importance of early detection and treatment of insulin insensitivity in obese childhood OSA.

  7. Causes, Effects and Possible Solution of Seasonal Egg Gluts: A ...

    African Journals Online (AJOL)

    A study was conducted to assess small holder poultry farmers' perspectives on the causes, effects and solution to the cyclical egg glut in Ejigbo, Nigeria using questionnaire for data collection and descriptive data analysis. Farmers interviewed agreed that government policies have a registered effect on drop of egg sales ...

  8. Paracetamol (acetaminophen) protein adduct concentrations during therapeutic dosing.

    Science.gov (United States)

    Heard, Kennon; Green, Jody L; Anderson, Victoria; Bucher-Bartelson, Becki; Dart, Richard C

    2016-03-01

    Paracetamol protein adducts (PPA) are a biomarker of paracetamol exposure. PPA are quantified as paracetamol-cysteine (APAP-CYS), and concentrations above 1.1 μmol l(-1) have been suggested as a marker of paracetamol-induced hepatotoxicity. However, there is little information on the range of concentrations observed during prolonged therapeutic dosing. The aim of the present study was to describe the concentration of PPA in the serum of subjects taking therapeutic doses of paracetamol for at least 16 days. Preplanned secondary aim of a prospective randomized controlled (placebo vs. 4g day(-1) paracetamol) trial. We measured subjects' serum PPA concentrations every 3 days for a minimum of 16 days. We also measured concentrations on study days 1-3 and 16-25 in subsets of patients. PPA were quantified as APAP-CYS after gel filtration and protein digestion using liquid chromatography/mass spectrometry. Ninety per cent of subjects had detectable PPA after five doses. Median APAP-CYS concentrations in paracetamol-treated subjects increased to a plateau of 0.1 μmol l(-1) on day 7, where they remained. The highest concentration measured was 1.1 μmol l(-1) and two subjects never had detectable PPA levels. PPA were detected in the serum of 78% of subjects 9 days after their final dose. PPA are detectable in the vast majority of subjects taking therapeutic doses of paracetamol. While most have concentrations well below the threshold associated with hepatotoxicity, concentrations may approach 1.1 μmol l(-1) in rare cases. Adducts are detectable after a few doses and can persist for over a week after dosing is stopped. © 2015 The British Pharmacological Society.

  9. Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK−/− and GLUT5−/− mice

    Science.gov (United States)

    Patel, Chirag; Sugimoto, Keiichiro; Douard, Veronique; Shah, Ami; Inui, Hiroshi; Yamanouchi, Toshikazu

    2015-01-01

    Elevated blood fructose concentrations constitute the basis for organ dysfunction in fructose-induced metabolic syndrome. We hypothesized that diet-induced changes in blood fructose concentrations are regulated by ketohexokinase (KHK) and the fructose transporter GLUT5. Portal and systemic fructose concentrations determined by HPLC in wild-type mice fed for 7 days 0% free fructose were fructose levels, however, increased markedly in those fed isocaloric 20% fructose, causing significant hyperglycemia. Deletion of KHK prevented fructose-induced hyperglycemia, but caused dramatic hyperfructosemia (>1 mM) with reversed portal to systemic gradients. Systemic fructose in wild-type and KHK−/− mice changed by 0.34 and 1.8 mM, respectively, for every millimolar increase in portal fructose concentration. Systemic glucose varied strongly with systemic, but not portal, fructose levels in wild-type, and was independent of systemic and portal fructose in KHK−/−, mice. With ad libitum feeding for 12 wk, fructose-induced hyperglycemia in wild-type, but not hyperfructosemia in KHK−/− mice, increased HbA1c concentrations. Increasing dietary fructose to 40% intensified the hyperfructosemia of KHK−/− and the fructose-induced hyperglycemia of wild-type mice. Fructose perfusion or feeding in rats also caused duration- and dose-dependent hyperfructosemia and hyperglycemia. Significant levels of blood fructose are maintained independent of dietary fructose, KHK, and GLUT5, probably by endogenous synthesis of fructose. KHK prevents hyperfructosemia and fructose-induced hyperglycemia that would markedly increase HbA1c levels. These findings explain the hyperfructosemia of human hereditary fructosuria as well as the hyperglycemia of fructose-induced metabolic syndrome. PMID:26316589

  10. Automatically Identifying Fusion Events between GLUT4 Storage Vesicles and the Plasma Membrane in TIRF Microscopy Image Sequences

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2015-01-01

    Full Text Available Quantitative analysis of the dynamic behavior about membrane-bound secretory vesicles has proven to be important in biological research. This paper proposes a novel approach to automatically identify the elusive fusion events between VAMP2-pHluorin labeled GLUT4 storage vesicles (GSVs and the plasma membrane. The differentiation is implemented to detect the initiation of fusion events by modified forward subtraction of consecutive frames in the TIRFM image sequence. Spatially connected pixels in difference images brighter than a specified adaptive threshold are grouped into a distinct fusion spot. The vesicles are located at the intensity-weighted centroid of their fusion spots. To reveal the true in vivo nature of a fusion event, 2D Gaussian fitting for the fusion spot is used to derive the intensity-weighted centroid and the spot size during the fusion process. The fusion event and its termination can be determined according to the change of spot size. The method is evaluated on real experiment data with ground truth annotated by expert cell biologists. The evaluation results show that it can achieve relatively high accuracy comparing favorably to the manual analysis, yet at a small fraction of time.

  11. Regulation of glucose transporter protein-1 and vascular endothelial growth factor by hypoxia inducible factor 1α under hypoxic conditions in Hep-2 human cells.

    Science.gov (United States)

    Xu, Ou; Li, Xiaoming; Qu, Yongtao; Liu, Shuang; An, Jie; Wang, Maoxin; Sun, Qingjia; Zhang, Wen; Lu, Xiuying; Pi, Lihong; Zhang, Min; Shen, Yupeng

    2012-12-01

    The present study evaluated the regulation of glucose transporter protein-1 (Glut-1) and vascular endothelial growth factor (VEGF) by hypoxia inducible factor 1α (HIF-1α) under hypoxic conditions in Hep-2 human cells to explore the feasibility of these three genes as tumor markers. Hep-2 cells were cultured under hypoxic and normoxic conditions for 6, 12, 24, 36 and 48 h. The proliferation of Hep-2 cells was evaluated using an MTT assay. The protein and mRNA expression levels of HIF-1α, Glut-1 and VEGF were detected using the S-P immunocytochemical method, western blotting and reverse transcription polymerase chain reaction (RT-PCR). The results revealed that the expression levels of HIF-1α, Glut-1 and VEGF protein in Hep-2 cells were significantly elevated under hypoxic conditions compared with those under normoxic conditions over 36 h. Under hypoxic conditions, mRNA levels of HIF-1α were stable, while mRNA levels of Glut-1 and VEGF changed over time. In conclusion, Glut-1 and VEGF were upregulated by HIF-1α under hypoxic conditions in a time-dependent manner in Hep-2 cells and their co-expression serves as a tumor marker.

  12. Preservation of grass juice and wet leaf protein concentrate for animal feeds

    Directory of Open Access Journals (Sweden)

    Matti Näsi

    1983-09-01

    Full Text Available Formic acid, mixtures of acids (AIV 1, AIV 2 and formalin-acid mixtures (Viher solution, Viher acid were tested as preservatives of juice and wet leaf protein concentrate (LPC obtained from grass, clover and pea. The main criteria used in judging the success of preservation were changes in the protein fraction, fermentation of sugars, and losses of dry matter and true protein during storage. Fermentation of sugars and moulding could be inhibited in plant juices by adding 0.5 % v/w preservative, but proteolysis continued and true protein was degraded in unheated juices. Ensiling losses of pea juice were considerable, 4.0-15.6 % of DM, in all treatments. For wet leaf protein concentrate precipitated by steaming (85°C, good preservation could be obtained with the additives used in silage making applied at a level of 1 % v/w. In these treatments protein breakdown was minimal, because heating eliminated proteolytic enzymes and partly sterilized the LPC product.

  13. Effect of protein binding on unbound atazanavir and darunavir cerebrospinal fluid concentrations.

    Science.gov (United States)

    Delille, Cecile A; Pruett, Sarah T; Marconi, Vincent C; Lennox, Jeffrey L; Armstrong, Wendy S; Arrendale, Richard F; Sheth, Anandi N; Easley, Kirk A; Acosta, Edward P; Vunnava, Aswani; Ofotokun, Ighovwerha

    2014-09-01

    HIV-1 protease inhibitors (PIs) exhibit different protein binding affinities and achieve variable plasma and tissue concentrations. Degree of plasma protein binding may impact central nervous system penetration. This cross-sectional study assessed cerebrospinal fluid (CSF) unbound PI concentrations, HIV-1 RNA, and neopterin levels in subjects receiving either ritonavir-boosted darunavir (DRV), 95% plasma protein bound, or atazanavir (ATV), 86% bound. Unbound PI trough concentrations were measured using rapid equilibrium dialysis and liquid chromatography/tandem mass spectrometry. Plasma and CSF HIV-1 RNA and neopterin were measured by Ampliprep/COBAS® Taqman® 2.0 assay (Roche) and enzyme-linked immunosorbent assay (ALPCO), respectively. CSF/plasma unbound drug concentration ratio was higher for ATV, 0.09 [95% confidence interval (CI) 0.06-0.12] than DRV, 0.04 (95%CI 0.03-0.06). Unbound CSF concentrations were lower than protein adjusted wild-type inhibitory concentration-50 (IC50 ) in all ATV and 1 DRV-treated subjects (P < 0.001). CSF HIV-1 RNA was detected in 2/15 ATV and 4/15 DRV subjects (P = 0.65). CSF neopterin levels were low and similar between arms. ATV relative to DRV had higher CSF/plasma unbound drug ratio. Low CSF HIV-1 RNA and neopterin suggest that both regimens resulted in CSF virologic suppression and controlled inflammation. © 2014, The American College of Clinical Pharmacology.

  14. Effect of Limited Hydrolysis on Traditional Soy Protein Concentrate

    Directory of Open Access Journals (Sweden)

    Mirjana B. Pesic

    2006-09-01

    Full Text Available The influence of limited proteolysis of soy protein concentrate on proteinextractability, the composition of the extractable proteins, their emulsifying properties andsome nutritional properties were investigated. Traditional concentrate (alcohol leachedconcentrate was hydrolyzed using trypsin and pepsin as hydrolytic agents. Significantdifferences in extractable protein composition between traditional concentrate and theirhydrolysates were observed by polyacrylamide gel electrophoresis (PAGE and by SDSPAGE.All hydrolysates showed better extractability than the original protein concentrate,whereas significantly better emulsifying properties were noticed at modified concentratesobtained by trypsin induced hydrolysis. These improved properties are the result of twosimultaneous processes, dissociation and degradation of insoluble alcohol-induced proteinaggregates. Enzyme induced hydrolysis had no influence on trypsin-inibitor activity, andsignificantly reduced phytic acid content.

  15. Prion protein modulates glucose homeostasis by altering intracellular iron.

    Science.gov (United States)

    Ashok, Ajay; Singh, Neena

    2018-04-26

    The prion protein (PrP C ), a mainly neuronal protein, is known to modulate glucose homeostasis in mouse models. We explored the underlying mechanism in mouse models and the human pancreatic β-cell line 1.1B4. We report expression of PrP C on mouse pancreatic β-cells, where it promoted uptake of iron through divalent-metal-transporters. Accordingly, pancreatic iron stores in PrP knockout mice (PrP -/- ) were significantly lower than wild type (PrP +/+ ) controls. Silencing of PrP C in 1.1B4 cells resulted in significant depletion of intracellular (IC) iron, and remarkably, upregulation of glucose transporter GLUT2 and insulin. Iron overloading, on the other hand, resulted in downregulation of GLUT2 and insulin in a PrP C -dependent manner. Similar observations were noted in the brain, liver, and neuroretina of iron overloaded PrP +/+ but not PrP -/- mice, indicating PrP C -mediated modulation of insulin and glucose homeostasis through iron. Peripheral challenge with glucose and insulin revealed blunting of the response in iron-overloaded PrP +/+ relative to PrP -/- mice, suggesting that PrP C -mediated modulation of IC iron influences both secretion and sensitivity of peripheral organs to insulin. These observations have implications for Alzheimer's disease and diabetic retinopathy, known complications of type-2-diabetes associated with brain and ocular iron-dyshomeostasis.

  16. Association of single nucleotide polymorphisms in the gene encoding GLUT1 and diabetic nephropathy in Brazilian patients with type 1 diabetes mellitus.

    Science.gov (United States)

    Marques, T; Patente, T A; Monteiro, M B; Cavaleiro, A M; Queiroz, M S; Nery, M; de Azevedo, M J; Canani, L H; Parisi, M C; Moura-Neto, A; Passarelli, M; Giannella-Neto, D; Machado, U F; Corrêa-Giannella, M L

    2015-04-15

    Mesangial cells subject to high extracellular glucose concentrations, as occur in hyperglycaemic states, are unable to down regulate glucose influx, resulting in intracellular activation of deleterious biochemical pathways. A high expression of GLUT1 participates in the development of diabetic glomerulopathy. Variants in the gene encoding GLUT1 (SLC2A1) have been associated to this diabetic complication. The aim of this study was to test whether polymorphisms in SLC2A1 confer susceptibility to diabetic nephropathy (DN) in Brazilian type 1 diabetes patients. Four polymorphisms (rs3820589, rs1385129, rs841847 and rs841848) were genotyped in a Brazilian cohort comprised of 452 patients. A prospective analysis was performed in 155 patients. Mean duration of follow-up was 5.6 ± 2.4 years and the incidence of renal events was 18.0%. The rs3820589 presented an inverse association with the prevalence of incipient DN (OR: 0.36, 95% CI: 0.16 - 0.80, p=0.01) and with progression to renal events (HR: 0.20; 95% CI: 0.03 - 0.70; p=0.009). AGGT and AGAC haplotypes were associated with the prevalence of incipient DN and the AGAC haplotype was also associated with the prevalence of established/advanced DN. In conclusion, rs3820589 in the SLC2A1 gene modulates the risk to DN in Brazilian patients with inadequate type 1 diabetes control. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis

    International Nuclear Information System (INIS)

    Martins, Sandra Fernandes; Amorim, Ricardo; Viana-Pereira, Marta; Pinheiro, Céline; Costa, Ricardo Filipe Alves; Silva, Patrícia; Couto, Carla; Alves, Sara; Fernandes, Sara; Vilaça, Sónia; Falcão, Joaquim; Marques, Herlander; Pardal, Fernando; Rodrigues, Mesquita; Preto, Ana; Reis, Rui Manuel; Longatto-Filho, Adhemar; Baltazar, Fátima

    2016-01-01

    Colorectal cancer (CRC) is one of the most common malignancies and a leading cause of cancer death worldwide. Most cancer cells display high rates of glycolysis with production of lactic acid, which is then exported to the microenvironment by monocarboxylate transporters (MCTs). The main aim of this study was to evaluate the significance of MCT expression in a comprehensive series of primary CRC cases, lymph node and hepatic metastasis. Expressions of MCT1, MCT4, CD147 and GLUT1 were studied in human samples of CRC, lymph node and hepatic metastasis, by immunohistochemistry. All proteins were overexpressed in primary CRC, lymph node and hepatic metastasis, when compared with non-neoplastic tissue, with exception of MCT1 in lymph node and hepatic metastasis. MCT1 and MCT4 expressions were associated with CD147 and GLUT1 in primary CRC. These markers were associated with clinical pathological features, reflecting the putative role of these metabolism-related proteins in the CRC setting. These findings provide additional evidence for the pivotal role of MCTs in CRC maintenance and progression, and support the use of MCTs as biomarkers and potential therapeutic targets in primary and metastatic CRC

  18. 21 CFR 172.385 - Whole fish protein concentrate.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION Special Dietary and Nutritional Additives § 172.385 Whole fish protein concentrate. The food additive whole fish protein concentrate may be safely used as a food supplement in accordance with the... fish that are used in other forms for human food. (b) The additive consists essentially of a dried fish...

  19. The ontogeny of insulin signaling in the preterm baboon model.

    Science.gov (United States)

    Blanco, Cynthia L; Liang, Hanyu; Joya-Galeana, Joaquin; DeFronzo, Ralph A; McCurnin, Donald; Musi, Nicolas

    2010-05-01

    Hyperglycemia, a prevalent condition in premature infants, is thought to be a consequence of incomplete suppression of endogenous glucose production and reduced insulin-stimulated glucose disposal in peripheral tissues. However, the molecular basis for these conditions remains unclear. To test the hypothesis that the insulin transduction pathway is underdeveloped with prematurity, fetal baboons were delivered, anesthetized, and euthanized at 125 d gestational age (GA), 140 d GA, or near term at 175 d GA. Vastus lateralis muscle and liver tissues were obtained, and protein content of insulin signaling molecules [insulin receptor (IR)-beta, IR substate-1, p85 subunit of phosphatidylinositol 3-kinase, Akt, and AS160] and glucose transporters (GLUT)-1 and GLUT4 was measured by Western blotting. Muscle from 125 d GA baboons had markedly reduced GLUT1 protein content (16% of 140 d GA and 9% of 175 d GA fetuses). GLUT4 and AS160 also were severely reduced in 125 d GA fetal muscle (43% of 175 d GA and 35% of 175 d GA, respectively). In contrast, the protein content of IR-beta, IR substate-1, and Akt was elevated by 1.7-, 5.2-, and 1.9-fold, respectively, in muscle from 125 d GA baboons when compared with 175 d GA fetuses. No differences were found in the content of insulin signaling proteins in liver. In conclusion, significant gestational differences exist in the protein content of several insulin signaling proteins in the muscle of fetal baboons. Reduced muscle content of key glucose transport-regulating proteins (GLUT1, GLUT4, AS160) could play a role in the pathogenesis of neonatal hyperglycemia and reduced insulin-stimulated glucose disposal.

  20. Production of protein concentrate and isolate from cashew ...

    African Journals Online (AJOL)

    The protein isolates were obtained by an alkaline extraction-isoelectric precipitation method, which involved aqueous alkaline extraction of the proteins at low temperature, and isoelectric precipitation of the protein fractions; the protein concentrates were obtained using an alkaline extraction-methanol precipitation method, ...

  1. Immunohistological expression of HIF-1α, GLUT-1, Bcl-2 and Ki-67 in consecutive biopsies during chemoradiotherapy in patients with rectal cancer

    DEFF Research Database (Denmark)

    Havelund, Birgitte Mayland; Sørensen, Flemming Brandt; Pløen, John

    2013-01-01

    receiving preoperative CRT (>50.4 Gy and Uracil/Tegafur). Immunohistological expressions of HIF-1α, GLUT-1, Bcl-2 and Ki-67 were investigated in biopsies taken before treatment, after 2, 4 and 6 weeks of CRT and in specimens from the operation. Decreasing expressions of HIF-1α, Bcl-2 and Ki-67 were observed...

  2. Glucose transport in brain - effect of inflammation.

    Science.gov (United States)

    Jurcovicova, J

    2014-01-01

    Glucose is transported across the cell membrane by specific saturable transport system, which includes two types of glucose transporters: 1) sodium dependent glucose transporters (SGLTs) which transport glucose against its concentration gradient and 2) sodium independent glucose transporters (GLUTs), which transport glucose by facilitative diffusion in its concentration gradient. In the brain, both types of transporters are present with different function, affinity, capacity, and tissue distribution. GLUT1 occurs in brain in two isoforms. The more glycosylated GLUT1 is produced in brain microvasculature and ensures glucose transport across the blood brain barrier (BBB). The less glycosylated form is localized in astrocytic end-feet and cell bodies and is not present in axons, neuronal synapses or microglia. Glucose transported to astrocytes by GLUT1 is metabolized to lactate serving to neurons as energy source. Proinflammatory cytokine interleukin (IL)-1β upregulates GLUT1 in endothelial cells and astrocytes, whereas it induces neuronal death in neuronal cell culture. GLUT2 is present in hypothalamic neurons and serves as a glucose sensor in regulation of food intake. In neurons of the hippocampus, GLUT2 is supposed to regulate synaptic activity and neurotransmitter release. GLUT3 is the most abundant glucose transporter in the brain having five times higher transport capacity than GLUT1. It is present in neuropil, mostly in axons and dendrites. Its density and distribution correlate well with the local cerebral glucose demands. GLUT5 is predominantly fructose transporter. In brain, GLUT5 is the only hexose transporter in microglia, whose regulation is not yet clear. It is not present in neurons. GLUT4 and GLUT8 are insulin-regulated glucose transporters in neuronal cell bodies in the cortex and cerebellum, but mainly in the hippocampus and amygdala, where they maintain hippocampus-dependent cognitive functions. Insulin translocates GLUT4 from cytosol to plasma

  3. CHEMICAL COMPOSITION AND FUNCTIONAL PROPERTIES OF RICE PROTEIN CONCENTRATES

    Directory of Open Access Journals (Sweden)

    V. V. Kolpakova

    2015-01-01

    Full Text Available Traditionally rice and products of its processing are used to cook porridge, pilaf, lettuce, confectionery, fish, dairy and meat products. At the same time new ways of its processing with releasing of protein products for more effective using, including the use of a glutenfree diet, are developing. The task of this study was a comparative research of nutrition and biological value and functional properties of protein and protein-calcium concentrates produced from rice flour milled from white and brown rice. The traditional and special methods were used. Concentrates were isolated with enzyme preparations of xylanase and amylolytic activity with the next dissolution of protein in diluted hydrochloric acid. Concentrates differed in the content of mineral substances (calcium, zinc, iron and other elements, amino acids and functional properties. The values of the functional properties and indicators of the nutritional value of concentrates from white rice show the advisability of their using in food products, including gluten-free products prepared on the basis of the emulsion and foam systems, and concentrates from brown rice in food products prepared on the basis of using of the emulsion systems. Protein concentrates of brown rice have a low foaming capacity and there is no foam stability at all.

  4. Gene Expression of Glucose Transporter 1 (GLUT1), Hexokinase 1 and Hexokinase 2 in Gastroenteropancreatic Neuroendocrine Tumors

    DEFF Research Database (Denmark)

    Binderup, Tina; Knigge, Ulrich; Federspiel, Birgitte Hartnack

    2013-01-01

    -associated genes and to compare this with FDG-PET imaging as well as with the cellular proliferation index in two cancer entities with different malignant potential. Using real-time PCR, gene expression of GLUT1, HK1 and HK2 were studied in 34 neuroendocrine tumors (NETs) in comparison with 14 colorectal...... adenocarcinomas (CRAs). The Ki67 proliferation index and, when available, FDG-PET imaging was compared with gene expression. Overexpression of GLUT1 gene expression was less frequent in NETs (38%) compared to CRAs (86%), P = 0.004. HK1 was overexpressed in 41% and 71% of NETs and CRAs, respectively (P = 0.......111) and HK2 was overexpressed in 50% and 64% of NETs and CRAs, respectively (P = 0.53). There was a significant correlation between the Ki67 proliferation index and GLUT1 gene expression for the NETs (R = 0.34, P = 0.047), but no correlation with the hexokinases. FDG-PET identified foci in significantly...

  5. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation

    DEFF Research Database (Denmark)

    Barres, Romain; Grémeaux, Thierry; Gual, Philippe

    2006-01-01

    a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma m...

  6. Chemical composition of protein concentrate prepared from Yellowfin tuna Thunnus albacares roe by cook-dried process

    Directory of Open Access Journals (Sweden)

    Hyun Ji Lee

    2016-05-01

    Full Text Available Abstract Roe is the term used to describe fish eggs (oocytes gathered in skeins and is one of the most valuable food products from fishery sources. Thus, means of processing are required to convert the underutilized yellowfin tuna roes (YTR into more marketable and acceptable forms as protein concentrate. Roe protein concentrates (RPCs were prepared by cooking condition (boil-dried concentrate, BDC and steam-dried concentrate, SDC, respectively and un-cooking condition (freeze-dried concentrate, FDC from yellowfin tuna roe. The yield of RPCs was in the range from 22.2 to 25.3 g/100 g of roe. RPCs contained protein (72.3–77.3 %, moisture (4.3–5.6 %, lipid (10.6–11.3 % and ash (4.3–5.7 % as the major constituents. The prominent amino acids of RPCs were aspartic acid, 8.7–9.2, glutamic acid, 13.1–13.2, and leucine, 8.5–8.6 g/100 g of protein. Major differences were not observed in each of the amino acid. K, S, Na, and P as minerals were the major elements in RPCs. No difference noted in sodium dodecyl sulfate polyacrylamide gel electrophoresis protein band (15–100 K possibly representing partial hydrolysis of myosin. Therefore, RPCs from YTR could be use potential protein ingredient for human food and animal feeds.

  7. The effects of dietary energy and protein concentrations on ostrich ...

    African Journals Online (AJOL)

    The effects were investigated of energy and protein concentrations (with associated amino acid concentrations) in ostrich diets on leather quality of the skins of 50 ostriches. Energy concentrations were 9.0, 10.5 and 12.0 MJ ME/kg diet and protein concentrations were 130, 150 and 170 g/kg diet. The physical leather ...

  8. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  9. An Model to Probe the Regulation of Adipocyte Differentiation under Hyperglycemia

    Directory of Open Access Journals (Sweden)

    Kusampudi Shilpa

    2013-06-01

    Full Text Available BackgroundThe aim of this study was an in vitro investigation of the effect of high glucose concentration on adipogenesis, as prolonged hyperglycemia alters adipocyte differentiation.Methods3T3-L1 preadipocytes differentiated in the presence of varying concentrations of glucose (25, 45, 65, 85, and 105 mM were assessed for adipogenesis using AdipoRed (Lonza assay. Cell viability and proliferation were measured using MTT reduction and [3H] thymidine incorporation assay. The extent of glucose uptake and glycogen synthesis were measured using radiolabelled 2-deoxy-D-[1-3H] glucose and [14C]-UDP-glucose. The gene level expression was evaluated using reverse transcription-polymerase chain reaction and protein expression was studied using Western blot analysis.ResultsGlucose at 105 mM concentration was observed to inhibit adipogenesis through inhibition of CCAAT-enhancer-binding proteins, sterol regulatory element-binding protein, peroxisome proliferator-activated receptor and adiponectin. High concentration of glucose induced stress by increasing levels of toll-like receptor 4, nuclear factor κB and tumor necrosis factor α thereby generating activated preadipocytes. These cells entered the state of hyperplasia through inhibition of p27 and proliferation was found to increase through activation of protein kinase B via phosphoinositide 3 kinase dependent pathway. This condition inhibited insulin signaling through decrease in insulin receptor β. Although the glucose transporter 4 (GLUT4 protein remained unaltered with the glycogen synthesis inhibited, the cells were found to exhibit an increase in glucose uptake via GLUT1.ConclusionAdipogenesis in the presence of 105 mM glucose leads to an uncontrolled proliferation of activated preadipocytes providing an insight towards understanding obesity.

  10. Glucose Transporters in Diabetic Kidney Disease-Friends or Foes?

    Science.gov (United States)

    Wasik, Anita A; Lehtonen, Sanna

    2018-01-01

    Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a common cause of end-stage renal disease worldwide. DKD manifests as an increased urinary protein excretion (albuminuria). Multiple studies have shown that insulin resistance correlates with the development of albuminuria in non-diabetic and diabetic patients. There is also accumulating evidence that glomerular epithelial cells or podocytes are insulin sensitive and that insulin signaling in podocytes is essential for maintaining normal kidney function. At the cellular level, the mechanisms leading to the development of insulin resistance include mutations in the insulin receptor gene, impairments in the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, or perturbations in the trafficking of glucose transporters (GLUTs), which mediate the uptake of glucose into cells. Podocytes express several GLUTs, including GLUT1, GLUT2, GLUT3, GLUT4, and GLUT8. Of these, the most studied ones are GLUT1 and GLUT4, both shown to be insulin responsive in podocytes. In the basal state, GLUT4 is preferentially located in perinuclear and cytosolic vesicular structures and to a lesser extent at the plasma membrane. After insulin stimulation, GLUT4 is sorted into GLUT4-containing vesicles (GCVs) that translocate to the plasma membrane. GCV trafficking consists of several steps, including approaching of the GCVs to the plasma membrane, tethering, and docking, after which the lipid bilayers of the GCVs and the plasma membrane fuse, delivering GLUT4 to the cell surface for glucose uptake into the cell. Studies have revealed novel molecular regulators of the GLUT trafficking in podocytes and unraveled unexpected roles for GLUT1 and GLUT4 in the development of DKD, summarized in this review. These findings pave the way for better understanding of the mechanistic pathways associated with the development and progression of DKD and aid in the development of new treatments for this devastating disease.

  11. Adjustments of muscle capillarity but not mitochondrial protein with skiing in the elderly

    DEFF Research Database (Denmark)

    van Ginkel, S; Amami, M; Dela, F

    2015-01-01

    Downhill skiing in the elderly increases maximal oxygen uptake (VO2max) and carbohydrate handling, and produces muscle hypertrophy. We hypothesized that adjustments of the cellular components of aerobic glucose combustion in knee extensor muscle, and cardiovascular adjustments, would increase...... lateralis muscle were analyzed for capillary density and expression of respiratory chain markers (NDUFA9, SDHA, UQCRC1, ATP5A1) and the glucose transporter GLUT4. Statistical significance was assessed with a repeated analysis of variance and Fisher's post-hoc test at a P value of 5%. VO2max increased...... selectively with ski training (+7 ± 2%). Capillary density (+11 ± 5%) and capillary-to-fiber ratio (12 ± 5%), but not the concentration of metabolic proteins, in vastus lateralis were increased after skiing. Cardiovascular parameters did not change. Fold changes in VO2max and capillary-to-fiber ratio were...

  12. Crescimento de mudas de orégano submetidas a doses e frequências de aplicação de Ácido L-glutâmico em sistema orgânico

    Directory of Open Access Journals (Sweden)

    M.B. Bettoni

    2014-03-01

    Full Text Available O presente trabalho teve por objetivo identificar o efeito de diferentes doses e frequências de aplicação do biofertilizante aminoácido Ácido L-glutâmico em mudas de orégano produzidas em sistema orgânico, quantificando seu crescimento. Os tratamentos compostos por 2 doses (0,4 e 0,8 mL L-1 de Ácido L-glutâmico a 30%, e testemunha com água, foram aplicados via foliar em intervalos regulares de 7 e 14 dias, por 28 dias (fatorial 3 x 2, com 4 e 2 aplicações, respectivamente, em delineamento inteiramente casualizado com 4 repetições. Aos 62 dias após a semeadura foi realizada a coleta de 8 plantas centrais por repetição para avaliação de características biométricas da parte aérea e das raízes. O experimento demonstrou que o biofertilizante aminoácido ácido L-glutâmico influenciou as características avaliadas. A dose de 0,8 mL L-1, aplicada com intervalo de 14 dias, promoveu maior crescimento das mudas de orégano.

  13. Effect of initial protein concentration and pH on in vitro gastric digestion of heated whey proteins.

    Science.gov (United States)

    Zhang, Sha; Vardhanabhuti, Bongkosh

    2014-02-15

    The in vitro digestion of heated whey protein aggregates having different structure and physicochemical properties was evaluated under simulated gastric conditions. Aggregates were formed by heating whey protein isolates (WPI) at 3-9% w/w initial protein concentration and pH 3.0-7.0. Results showed that high protein concentration led to formation of larger WPI aggregates with fewer remaining monomers. Aggregates formed at high protein concentrations showed slower degradation rate compared to those formed at low protein concentration. The effect of initial protein concentration on peptide release pattern was not apparent. Heating pH was a significant factor affecting digestion pattern. At pH above the isoelectric point, the majority of the proteins involved in the aggregation, and aggregates formed at pH 6.0 were more susceptible to pepsin digestion than at pH 7.0. At acidic conditions, only small amount of proteins was involved in the aggregation and heated aggregates were easily digested by pepsin, while the remaining unaggregated proteins were very resistant to gastric digestion. The potential physiological implication of these results on satiety was discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Pea protein concentrate as a substitute for fish meal protein in sea bass diet

    Directory of Open Access Journals (Sweden)

    E. Badini

    2010-01-01

    Full Text Available Pea seeds, even if lower in protein than oilseed meals, have been shown to successfully replace moderate amounts of fish meal protein in diets for carnivorous fish species (Kaushik et al., 1993, Gouveia and Davies, 2000. A further processing of such pulses provides concentrated protein products which look very promising as fish meal substitutes in aquafeeds (Thiessen et al., 2003. The aim of the present study was to evaluate nutrient digestibility, growth response, nutrient and energy retention efficiencies and whole body composition of sea bass (Dicentrarchus labrax, L. fed complete diets in which a pea protein concentrate (PPC was used to replace graded levels of fish meal protein.

  15. Hypertension-Related Gene Polymorphisms of G-Protein-Coupled Receptor Kinase 4 Are Associated with NT-proBNP Concentration in Normotensive Healthy Adults

    Directory of Open Access Journals (Sweden)

    Junichi Yatabe

    2012-01-01

    Full Text Available G protein-coupled receptor kinase 4 (GRK4 with activating polymorphisms desensitize the natriuric renal tubular D1 dopamine receptor, and these GRK4 polymorphisms are strongly associated with salt sensitivity and hypertension. Meanwhile, N-terminal pro-B-type natriuretic peptide (NT-proBNP may be useful in detecting slight volume expansion. However, relations between hypertension-related gene polymorphisms including GRK4 and cardiovascular indices such as NT-proBNP are not clear, especially in healthy subjects. Therefore, various hypertension-related polymorphisms and cardiovascular indices were analyzed in 97 normotensive, healthy Japanese adults. NT-proBNP levels were significantly higher in subjects with two or more GRK4 polymorphic alleles. Other hypertension-related gene polymorphisms, such as those of renin-angiotensin-aldosterone system genes, did not correlate with NT-proBNP. There was no significant association between any of the hypertension-related gene polymorphisms and central systolic blood pressure, cardioankle vascular index, augmentation index, plasma aldosterone concentration, or an oxidative stress marker, urinary 8-OHdG. Normotensive individuals with GRK4 polymorphisms show increased serum NT-proBNP concentration and may be at a greater risk of developing hypertension and cardiovascular disease.

  16. Raapzaadeiwitconcentraat en erwteneiwitconcentraat in biologisch biggenvoer = Canola protein concentrate and pea protein concentratrate in diets for organically housed piglets

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Binnendijk, G.P.; Diepen, van J.T.M.

    2011-01-01

    At the Experimental Farm Raalte it was investigated whether canola protein concentrate and pea protein concentrate are suitable protein-rich feedstuffs for organically housed piglets. It is concluded that both protein concentrates are suitable protein-rich feedstuffs for piglets. Feed intake and

  17. Genetic analysis of the GLUT10 glucose transporter (SLC2A10 polymorphisms in Caucasian American type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Mychaleckyj Josyf C

    2005-12-01

    Full Text Available Abstract Background GLUT10 (gene symbol SLC2A10 is a facilitative glucose transporter within the type 2 diabetes (T2DM-linked region on chromosome 20q12-13.1. Therefore, we evaluated GLUT10 as a positional candidate gene for T2DM in Caucasian Americans. Methods Twenty SNPs including 4 coding, 10 intronic and 6 5' and 3' to the coding sequence were genotyped across a 100 kb region containing the SLC2A10 gene in DNAs from 300 T2DM cases and 310 controls using the Sequenom MassArray Genotyping System. Allelic association was evaluated, and linkage disequilibrium (LD and haplotype structure of SLC2A10 were also determined to assess whether any specific haplotypes were associated with T2DM. Results Of these variants, fifteen had heterozygosities greater than 0.80 and were analyzed further for association with T2DM. No evidence of significant association was observed for any variant with T2DM (all P ≥ 0.05, including Ala206Thr (rs2235491 which was previously reported to be associated with fasting insulin. Linkage disequilibrium analysis suggests that the SLC2A10 gene is contained in a single haplotype block of 14 kb. Haplotype association analysis with T2DM did not reveal any significant differences between haplotype frequencies in T2DM cases and controls. Conclusion From our findings, we can conclude that sequence variants in or near GLUT10 are unlikely to contribute significantly to T2DM in Caucasian Americans.

  18. Study of the proteins in the defatted flour and protein concentrate of baru nuts (Dipteryx alata Vog

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Avellaneda Guimarães

    2012-09-01

    Full Text Available Baru (Dipteryx alata Vog. is an abundant legume in the Brazilian Savanna. Its nuts can be exploited sustainably using its protein and lipid fractions. This study aimed to analyze the proteins of the nuts present in the defatted flour and protein concentrate in terms of their functional properties, the profile of their fractions, and the in vitro digestibility. The flour was defatted with hexane and extracted at the pH of higher protein solubility to obtain the protein concentrate. The electrophoretic profile of the protein fractions was evaluated in SDS-PAGE gel. The functional properties of the proteins indicate the possibility of their use in various foods, like soybeans providing water absorption capacity, oil absorption capacity, emulsifying properties, and foamability. Globulins, followed by the albumins, are the major fractions of the flour and protein concentrate, respectively. Digestibility was greater for the concentrate than for the defatted flour.

  19. Dipalmitoleoylphosphoethanolamine as a PP2A enhancer obstructs insulin signaling by promoting Ser/Thr dephosphorylation of Akt.

    Science.gov (United States)

    Tsuchiya, Ayako; Kanno, Takeshi; Nishizaki, Tomoyuki

    2014-01-01

    The phospholipid phosphatidylethanolamine is implicated in the regulation of a variety of cellular processes. The present study investigated the effect of phosphatidylethanolamines such as 1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE), 1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine (DLPE), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dipalmitoleoyl-sn-glycero-3-phosphoethanolamine (DPPE) on protein phosphatases, Akt1/2 activity, GLUT4 mobilizations, and glucose uptake into cells. Activity of protein phosphatase 2A (PP2A) was assayed under the cell-free conditions, and Western blotting, intracellular GLUT4 trafficking, and glucose uptake into cells were monitored using differentiated 3T3-L1-GLUT4myc adipocytes. Of the investigated phosphatidylethanolamines, DLPE and DPPE significantly enhanced PP2A activity. DPPE inhibited insulin-induced phosphorylation of Akt1/2 at Thr308/309 and Ser473/474 in differentiated 3T3-L1-GLUT4myc adipocytes. DPPE also inhibited insulin-stimulated GLUT4 translocation to the cell surface and reduced insulin-stimulated glucose uptake into adipocytes. The results of the present study indicate that the PP2A enhancer DPPE obstructs insulin signaling by promoting serine/threonine dephosphorylation of Akt1/2, resulting in the suppression of GLUT4 translocation to the cell surface and glucose uptake into adipocytes. © 2014 S. Karger AG, Basel.

  20. Dipalmitoleoylphosphoethanolamine as a PP2A Enhancer Obstructs Insulin Signaling by Promoting Ser/Thr Dephosphorylation of Akt

    Directory of Open Access Journals (Sweden)

    Ayako Tsuchiya

    2014-08-01

    Full Text Available Background/Aims: The phospholipid phosphatidylethanolamine is implicated in the regulation of a variety of cellular processes. The present study investigated the effect of phosphatidylethanolamines such as 1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE, 1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine (DLPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE, and 1,2-dipalmitoleoyl-sn-glycero-3-phosphoethanolamine (DPPE on protein phosphatases, Akt1/2 activity, GLUT4 mobilizations, and glucose uptake into cells. Methods: Activity of protein phosphatase 2A (PP2A was assayed under the cell-free conditions, and Western blotting, intracellular GLUT4 trafficking, and glucose uptake into cells were monitored using differentiated 3T3-L1-GLUT4myc adipocytes. Results: Of the investigated phosphatidylethanolamines, DLPE and DPPE significantly enhanced PP2A activity. DPPE inhibited insulin-induced phosphorylation of Akt1/2 at Thr308/309 and Ser473/474 in differentiated 3T3-L1-GLUT4myc adipocytes. DPPE also inhibited insulin-stimulated GLUT4 translocation to the cell surface and reduced insulin-stimulated glucose uptake into adipocytes. Conclusion: The results of the present study indicate that the PP2A enhancer DPPE obstructs insulin signaling by promoting serine/threonine dephosphorylation of Akt1/2, resulting in the suppression of GLUT4 translocation to the cell surface and glucose uptake into adipocytes.

  1. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    International Nuclear Information System (INIS)

    Ploug, T.; Stallknecht, B.M.; Pedersen, O.; Kahn, B.B.; Ohkuwa, T.; Vinten, J.; Galbo, H.

    1990-01-01

    The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters

  2. Daily intake and serum concentration of menaquinone-4 (MK-4) in haemodialysis patients with chronic kidney disease.

    Science.gov (United States)

    Wyskida, Katarzyna; Żak-Gołąb, Agnieszka; Łabuzek, Krzysztof; Suchy, Dariusz; Ficek, Rafał; Pośpiech, Kornel; Olszanecka-Glinianowicz, Magdalena; Okopień, Bogusław; Więcek, Andrzej; Chudek, Jerzy

    2015-12-01

    Decreased concentration of menaquinone-4 (MK-4) seems to be an important risk factor of vascular calcification in haemodialysis (HD) patients. Optimal dietary intake, as well as serum MK-4 reference range, in HD has not been determined, yet. The aim of the present study was to assess daily vitamin K1 and MK-4 intakes and their relation to serum MK-4 concentration in HD patients. Daily vitamin K1 and MK-4, micro- and macronutrients and energy intakes were assessed using 3-day food diary completed by patients and serum MK-4 concentration was measured by HPLC [limit of quantification (LOQ): 0.055 ng/mL] in 85 HD patients (51 males) and 22 apparently healthy subjects. Daily MK-4 intake was significantly lower (by 29%) among HD, while K1 consumption was similar in both groups. Daily MK-4 intake was associated with fat and protein consumption in HD (r=0.43, pintakes were weaker in HD (r=0.38 and r=0.30 respectively) than in the control group (r=0.47 and r=0.45, respectively). In multiple regression analysis the variability of serum MK-4 concentrations in HD patients was explained by its daily intake. Decreased serum MK-4 concentration in HD patients is caused by lower dietary MK-4 intake, mainly due to diminished meat consumption, and in addition, probably reduced K1 conversion. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Effects of high-protein diet containing isolated whey protein in rats submitted to resistance training of aquatic jumps.

    Science.gov (United States)

    Avila, Eudes Thiago Pereira; da Rosa Lima, Thiago; Tibana, Ramires Alsamir; de Almeida, Paula Caroline; Fraga, Géssica Alves; de Souza Sena, Mariana; Corona, Luiz Felipe Petusk; Navalta, James Wilfred; Rezaei, Sajjad; Ghayomzadeh, Morteza; Damazo, Amílcar Sabino; Prestes, Jonato; Voltarelli, Fabrício Azevedo

    2018-02-13

    Isolated whey protein (IWP) can decrease body fat compared with other protein sources. The present study verified the effects of high protein diet (HD) containing IWP on several parameters of rats subjected to resistance training (RT). Thirty-two male Wistar rats (60 days of age) were separated into four groups (n = 8/group): sedentary normoproteic (IWP 14%; SN); sedentary hyperproteic (IWP 35%; SH); trained normoproteic (IWP 14%; TN), and trained hyperproteic (WPI 35%; TH). Relative tissue/organ weight (g): perirenal and retroperitoneal adipose tissues were lower in SH and TH compared with SN (no difference to TN); omental and subcutaneous adipose tissues were higher in SN compared with SH. Epididymal adipose tissue was higher in SN compared with other groups. Heart weight was higher in TH compared with TN and SN, but not SH; kidney and liver higher in TH and SH compared with SN and TN; gastrocnemius lower in SN compared with other groups; soleus higher in SH in relation to other groups. The triglycerides levels (mg/dL) was reduced in the TH groups compared with SH, TN, and SN. There were no changes both in the concentrations of adiponectin and leptin and in the protein expression of GLUT-4 and p70 s6k . HD containing WPI improved body composition, increased the weight of the heart, kidneys, liver and gastrocnemius and soleus muscles; however, this diet maintained the normal histomorphology of muscle and liver and, when associated with RT, reduced the serum levels of triglycerides. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Optimization of the protein concentration process from residual peanut oil-cake

    Directory of Open Access Journals (Sweden)

    Gayol, M. F.

    2013-12-01

    Full Text Available The objective of this study was to find the best process conditions for preparing protein concentrate from residual peanut oil-cake (POC. The study was carried out on POC from industrial peanut oil extraction. Different protein extraction and precipitation conditions were used: water/ flour ratio (10:1, 20:1 and 30:1, pH (8, 9 and 10, NaCl concentration (0 and 0.5 M, extraction time (30, 60 and 120 min, temperature (25, 40 and 60 °C, extraction stages (1, 2 and 3, and precipitation pH (4, 4.5 and 5. The extraction and precipitation conditions which showed the highest protein yield were 10:1 water/flour ratio, extraction at pH 9, no NaCl, 2 extraction stages of 30 min at 40 °C and precipitation at pH 4.5. Under these conditions, the peanut protein concentrate (PC contained 86.22% protein, while the initial POC had 38.04% . POC is an alternative source of protein that can be used for human consumption or animal nutrition. Therefore, it adds value to an industry residue.El objetivo de este trabajo fue encontrar las mejores condiciones para obtener un concentrado de proteínas a partir de la torta residual de maní (POC. El estudio se llevó a cabo en POC provenientes de la extracción industrial de aceite de maní. Se utilizaron distintas condiciones para la extracción y precipitación de proteínas: relación agua / harina (10:1, 20:1 y 30:1, pH de extracción (8, 9 y 10, concentración de NaCl (0 y 0,5 M, tiempo de extracción (30, 60 y 120 min, temperatura (25, 40 y 60 °C, número de etapas de extracción (1, 2 y 3, y el pH de precipitación (4, 4,5 y 5. Las condiciones de extracción y de precipitación que mostraron mayor rendimiento de proteína fueron: relación de 10:1 en agua / harina, pH de extracción de 9, en ausencia de NaCl, 2 etapas de extracción de 30 min cada una a 40 °C y el pH de precipitación de 4,5. En estas condiciones, el concentrado de proteína de maní (PC fue de 86,22%, mientras que el porcentaje de proteínas de

  5. Pretreatment HIF-1α and GLUT-1 expressions do not correlate with outcome after preoperative chemoradiotherapy in rectal cancer

    DEFF Research Database (Denmark)

    Havelund, Birgitte Mayland; Sørensen, Flemming Brandt; Lindebjerg, Jan

    2011-01-01

    The aim of the present study was to investigate hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) expressions as predictors of response and survival after chemoradiotherapy in pretreatment biopsy specimens from patients with rectal cancer.......The aim of the present study was to investigate hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) expressions as predictors of response and survival after chemoradiotherapy in pretreatment biopsy specimens from patients with rectal cancer....

  6. Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression

    DEFF Research Database (Denmark)

    Bunprajun, Tipwadee; Henriksen, Tora Ida; Scheele, Camilla

    2013-01-01

    , and significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact...

  7. Delineation of concentration ranges and longitudinal changes of human plasma protein variants.

    Directory of Open Access Journals (Sweden)

    Olgica Trenchevska

    Full Text Available Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes.

  8. Nutritional and functional properties of whey proteins concentrate and isolate

    Directory of Open Access Journals (Sweden)

    Zoran Herceg

    2006-12-01

    Full Text Available Whey protein fractions represent 18 - 20 % of total milk nitrogen content. Nutritional value in addition to diverse physico - chemical and functional properties make whey proteins highly suitable for application in foodstuffs. In the most cases, whey proteins are used because of their functional properties. Whey proteins possess favourable functional characteristics such as gelling, water binding, emulsification and foaming ability. Due to application of new process techniques (membrane fractionation techniques, it is possible to produce various whey - protein based products. The most important products based on the whey proteins are whey protein concentrates (WPC and whey protein isolates (WPI. The aim of this paper was to give comprehensive review of nutritional and functional properties of the most common used whey proteins (whey protein concentrate - WPC and whey protein isolate - WPI in the food industry.

  9. The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Stöckli, Jacqueline; Meoli, Christopher C; Hoffman, Nolan J

    2015-01-01

    Insulin and exercise stimulate glucose uptake into skeletal muscle via different pathways. Both stimuli converge on the translocation of the glucose transporter GLUT4 from intracellular vesicles to the cell surface. Two Rab guanosine triphosphatases-activating proteins (GAPs) have been implicated...... weight, insulin action, and exercise. TBC1D1(-/-) mice showed normal glucose and insulin tolerance, with no difference in body weight compared with wild-type littermates. GLUT4 protein levels were reduced by ∼40% in white TBC1D1(-/-) muscle, and TBC1D1(-/-) mice showed impaired exercise endurance...... together with impaired exercise-mediated 2-deoxyglucose uptake into white but not red muscles. These findings indicate that the RabGAP TBC1D1 plays a key role in regulating GLUT4 protein levels and in exercise-mediated glucose uptake in nonoxidative muscle fibers....

  10. Barrier, mechanical and optical properties of whey protein concentrate films

    Directory of Open Access Journals (Sweden)

    Viviane Machado Azevedo

    2014-08-01

    Full Text Available Whey is recognized as a valuable source of high quality protein and, when processed as protein concentrate, may be used in the production of biodegradable films. The objective of the study was to develop films of whey protein concentrate 80% (WPC at concentrations of 6, 8, 10 and 12% and evaluate the influence of this factor in the barrier, mechanical and optical properties of the films. Treatments showed moisture content with a mean value of 22.10% ± 0.76and high solubility values between 56.67 to 62.42%. Thus, there is little or no influence of varying the concentration of WPC in these properties and high hydrophilicity of the films. With increasing concentration of WPC, increases the water vapor permeability of the films (7.42 x 10-13 to 3.49 x 10-12 g.m-1.s-1.Pa-1. The treatment at the concentration of 6% of WPC showed a higher modulus of elasticity (287.90 ± 41.79 MPa. Thegreater rigidity in films with higher concentrations is possibly due to the greater number of bonds between molecules of the polymeric matrix. The films have the same puncture resistance. The increased concentration of WPC promotes resistance to the action of a localized force. In general, films of whey protein concentrate in the tested concentrations exhibited slightly yellowish color and transparency, and can be used in food packaging that requiring intermediate permeability to water vapor, to keep moisture and texture desired.

  11. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  12. Effect of chronic hypoglycaemia on glucose concentration and glycogen content in rat brain: a localized 13C NMR study

    OpenAIRE

    Lei, Hongxia; Gruetter, Rolf

    2006-01-01

    While chronic hypoglycaemia has been reported to increase unidirectional glucose transport across the blood-brain barrier (BBB) and to increase GLUT1 expression at the endothelium, the effect on steady-state brain d-glucose and brain glycogen content is currently unknown. Brain glucose and glycogen concentrations were directly measured in vivo using localized 13C magnetic resonance spectroscopy (MRS) following 12-14 days of hypoglycaemia. Brain glucose content was significantly increased by 4...

  13. Age-dependent changes in the total protein concentrations in the ...

    African Journals Online (AJOL)

    related changes in total protein concentrations in ten regions of the pig brain and hypophyses from birth to 36 months of age. Age-related changes in protein concentrations in all the brain regions except the pons and cerebral cortex were not ...

  14. Inactive Doses and Protein Concentration of Gamma Irradiated Yersinia Enterocolitica

    International Nuclear Information System (INIS)

    Irawan Sugoro; Sandra Hermanto

    2009-01-01

    Yersinia enterocolitica is one of bacteria which cause coliform mastitis in dairy cows. The bacteria could be inactivated by gamma irradiation as inactivated vaccine candidate. The experiment has been conducted to determine the inactive doses and the protein concentration of Yersinia enterocolitica Y3 which has been irradiated by gamma rays. The cells cultures were irradiated by gamma rays with doses of 0, 100, 200, 400, 600, 800, 1.000 and 1.500 Gy (doses rate was 1089,59 Gy/hours). The inactive dose was determined by the drop test method and the protein concentration of cells were determined by Lowry method. The results showed that the inactive doses occurred on 800 – 1500 Gy. The different irradiation doses of cell cultures showed the effect of gamma irradiation on the protein concentration that was random and has a significant effect on the protein concentration. (author)

  15. Protein Concentrate Production from Thin Stillage.

    Science.gov (United States)

    Ratanapariyanuch, Kornsulee; Shim, Youn Young; Emami, Shahram; Reaney, Martin J T

    2016-12-21

    Two-stage fermentation (TSF) of saccharified wheat with a consortium of endemic lactobacilli produced CO 2 and induced colloid separation of fermented solution to produce a protein concentrate (PC). Protein-rich slurry (50%, db) was obtained by decanting solution or skimming floating material during or after TSF. Washing and drying processes were explored to improve protein content, extend storage life of slurry, and yield converted stillage for compound recovery. Centrifuging and washing slurry afforded a PC and clarified solution. PC protein content increased to 60% (w/w, db). The PC was dried in a spray dryer or drum dryer or tray dryer. Dried PC water activity ranged 0.23-0.30. The dried PC lysine content was low, but lysine availability (95%) was excellent. Liquid from TSF and washing was readily microfiltered. Mass recovery of protein, glycerol, 1,3-propanediol, lactic acid, acetic acid, and glycerylphosphorylcholine from combined TSF, washing, and filtration were 66, 76, 72, 77, 74, and 84%, respectively.

  16. Total protein and cholesterol concentrations in brain regions of male ...

    African Journals Online (AJOL)

    The results showed similarities (P>0.05) between the treatments in total protein concentrations in the cerebral cortex, medulla, hypothalamus, amygdala, mesencephalon and hippocampus. Total protein concentrations however differed significantly between diets (P<0.05) in the cerebellum and pons varoli with the lowest ...

  17. Quantification of protein concentration using UV absorbance and Coomassie dyes.

    Science.gov (United States)

    Noble, James E

    2014-01-01

    The measurement of a solubilized protein concentration in solution is an important assay in biochemistry research and development labs for applications ranging from enzymatic studies to providing data for biopharmaceutical lot release. Spectrophotometric protein quantification assays are methods that use UV and visible spectroscopy to rapidly determine the concentration of protein, relative to a standard, or using an assigned extinction coefficient. Where multiple samples need measurement, and/or the sample volume and concentration is limited, preparations of the Coomassie dye commonly known as the Bradford assay can be used. © 2014 Elsevier Inc. All rights reserved.

  18. Total protein concentration and diagnostic test results for gray wolf (Canis lupus) serum using Nobuto filter paper strips

    Science.gov (United States)

    Jara, Rocio F.; Sepúlveda, Carolina; Ip, Hon S.; Samuel, Michael D.

    2015-01-01

    Nobuto filter paper strips are widely used for storing blood-serum samples, but the recovery of proteins from these strips following rehydration is unknown. Poor recovery of proteins could reduce the concentration of antibodies and antigens and reduce the sensitivity of diagnostic assays. We compared the protein concentration, and its association with test sensitivity, of eluted Nobuto strip samples with paired sera. We collected and froze serum from five gray wolves (Canis lupus) for 8 mo. When thawed, we used a spectrophotometer (absorbance 280 nm) to determine the serum protein concentration for paired sera and Nobuto eluates for each animal in 2-fold serial dilutions. Total protein concentration was similar for both sample storage methods (Nobuto eluates and control sera), except for the undiluted samples in which Nobuto eluates had higher total protein concentrations. Both sample storage methods appear to produce similar results using the SNAP® 4Dx® Test to detect antibodies against pathogens causing Lyme disease, anaplasmosis, and ehrlichiosis as well as antigen for canine heartworm disease.

  19. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition.

    Science.gov (United States)

    Noello, C; Carvalho, A G S; Silva, V M; Hubinger, M D

    2016-11-01

    Chia seed oil has a high content of α-linolenic acid (60%) and linoleic acid (20%). Use of this oil in different products is limited due to its liquid state, and the presence of insaturation is a trigger for oxidation. In this context, to facilitate the incorporation of chia oil in food products and increase its protection against oxidation, the aim of this work was to produce chia oil microparticles by spray drying using emulsions stabilized by whey protein concentrate (ζ-potential +13.4 at pH3.8) and pectin (ζ-potential -40.4 at pH3.8) through the electrostatic layer-by-layer deposition technique and emulsions prepared with only whey protein concentrate. Emulsions stabilized by whey protein concentrate and stabilized by whey protein concentrate-pectin were prepared using maltodextrin (10 DE) and modified starch (Hi-Cap® 100). They were characterized in relation to stability, droplet size, ζ-Potential and optical microscopy. The microparticles were characterized in relation to moisture content, water activity, particle size, microstructure and oxidative stability by the Rancimat method. Emulsions stabilized by whey protein concentrate-pectin with added maltodextrin 10 DE and emulsions stabilized by whey protein concentrate with added modified starch (Hi-Cap® 100) were stable after 24h. Emulsions stabilized by whey protein concentrate and by whey protein concentrate-pectin showed droplets with mean diameter ranging from 0.80 to 1.31μm, respectively and ζ-potential varying from -6.9 to -27.43mV, respectively. After spray drying, the microparticles showed an mean diameter ranging from 7.00 to 9.00μm. All samples presented high encapsulation efficiency values, above 99%. Microparticles produced with modified starch showed a smoother spherical surface than particles with maltodextrin 10 DE, which presented a wrinkled surface. All microparticles exhibited higher oxidative stability than chia oil in pure form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Qingwen Jin

    Full Text Available Insertion of T4 lysozyme (T4L into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed.We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects.Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1 infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5.Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  1. ITIH4 (inter-alpha-trypsin inhibitor heavy chain 4) is a new acute-phase protein isolated from cattle during experimental infection

    DEFF Research Database (Denmark)

    Pineiro, M.; Andres, M.; Iturralde, M.

    2004-01-01

    We have isolated from calf serum a protein with an apparent M, of 120,000. The protein was detected by using antibodies against major acute-phase protein in pigs with acute inflammation. The amino acid sequence of an internal fragment revealed that this protein is the bovine counterpart of ITIH4......, and Peptostreptococcus indolicus to induce an acute-phase reaction. All animals developed moderate to severe clinical mastitis and exhibited remarkable increases in ITIH4 concentration in serum (from 3 to 12 times the initial values, peaking at 48 to 72 h after infection) that correlated with the severity of the disease....... Animals with experimental infections with bovine respiratory syncytial virus (BRSV) also showed increases in ITIH4 concentration (from two- to fivefold), which peaked at around 7 to 8 days after inoculation. Generally, no response was seen after a second infection of the same animals with the virus...

  2. Calorie Restricted High Protein Diets Downregulate Lipogenesis and Lower Intrahepatic Triglyceride Concentrations in Male Rats

    Directory of Open Access Journals (Sweden)

    Lee M. Margolis

    2016-09-01

    Full Text Available The purpose of this investigation was to assess the influence of calorie restriction (CR alone, higher-protein/lower-carbohydrate intake alone, and combined CR higher-protein/lower-carbohydrate intake on glucose homeostasis, hepatic de novo lipogenesis (DNL, and intrahepatic triglycerides. Twelve-week old male Sprague Dawley rats consumed ad libitum (AL or CR (40% restriction, adequate (10%, or high (32% protein (PRO milk-based diets for 16 weeks. Metabolic profiles were assessed in serum, and intrahepatic triglyceride concentrations and molecular markers of de novo lipogenesis were determined in liver. Independent of calorie intake, 32% PRO tended to result in lower homeostatic model assessment of insulin resistance (HOMA-IR values compared to 10% PRO, while insulin and homeostatic model assessment of β-cell function (HOMA-β values were lower in CR than AL, regardless of protein intake. Intrahepatic triglyceride concentrations were 27.4 ± 4.5 and 11.7 ± 4.5 µmol·g−1 lower (p < 0.05 in CR and 32% PRO compared to AL and 10% PRO, respectively. Gene expression of fatty acid synthase (FASN, stearoyl-CoA destaurase-1 (SCD1 and pyruvate dehydrogenase kinase, isozyme 4 (PDK4 were 45% ± 1%, 23% ± 1%, and 57% ± 1% lower (p < 0.05, respectively, in CR than AL, regardless of protein intake. Total protein of FASN and SCD were 50% ± 1% and 26% ± 1% lower (p < 0.05 in 32% PRO compared to 10% PRO, independent of calorie intake. Results from this investigation provide evidence that the metabolic health benefits associated with CR—specifically reduction in intrahepatic triglyceride content—may be enhanced by consuming a higher-protein/lower-carbohydrate diet.

  3. Use of refractometry for determination of psittacine plasma protein concentration.

    Science.gov (United States)

    Cray, Carolyn; Rodriguez, Marilyn; Arheart, Kristopher L

    2008-12-01

    Previous studies have demonstrated both poor and good correlation of total protein concentrations in various avian species using refractometry and biuret methodologies. The purpose of the current study was to compare these 2 techniques of total protein determination using plasma samples from several psittacine species and to determine the effect of cholesterol and other solutes on refractometry results. Total protein concentration in heparinized plasma samples without visible lipemia was analyzed by refractometry and an automated biuret method on a dry reagent analyzer (Ortho 250). Cholesterol, glucose, and uric acid concentrations were measured using the same analyzer. Results were compared using Deming regression analysis, Bland-Altman bias plots, and Spearman's rank correlation. Correlation coefficients (r) for total protein results by refractometry and biuret methods were 0.49 in African grey parrots (n=28), 0.77 in Amazon parrots (20), 0.57 in cockatiels (20), 0.73 in cockatoos (36), 0.86 in conures (20), and 0.93 in macaws (38) (Prefractometry in Amazon parrots, conures, and macaws (n=25 each, PRefractometry can be used to accurately measure total protein concentration in nonlipemic plasma samples from some psittacine species. Method and species-specific reference intervals should be used in the interpretation of total protein values.

  4. Continuous protein concentration via free-flow moving reaction boundary electrophoresis.

    Science.gov (United States)

    Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi

    2017-07-28

    In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nutritive evaluation of Telfairia occidentalis leaf protein concentrate ...

    African Journals Online (AJOL)

    Leaf meal (LM), leaf proteins concentrate (LPC) and LPC residues from Telfairia occidentalis were produced, chemically characterized and the protein quality of the LPC evaluated using rats. Five infant weaning foods were formulated using varying combinations of T. occidentalis LPC and soybean meal. These foods were ...

  6. Milk protein concentration, estimated breeding value for fertility, and reproductive performance in lactating dairy cows.

    Science.gov (United States)

    Morton, John M; Auldist, Martin J; Douglas, Meaghan L; Macmillan, Keith L

    2017-07-01

    Milk protein concentration in dairy cows has been positively associated with a range of measures of reproductive performance, and genetic factors affecting both milk protein concentration and reproductive performance may contribute to the observed phenotypic associations. It was of interest to assess whether these beneficial phenotypic associations are accounted for or interact with the effects of estimated breeding values for fertility. The effects of a multitrait estimated breeding value for fertility [the Australian breeding value for daughter fertility (ABV fertility)] on reproductive performance were also of interest. Interactions of milk protein concentration and ABV fertility with the interval from calving date to the start of the herd's seasonally concentrated breeding period were also assessed. A retrospective single cohort study was conducted using data collected from 74 Australian seasonally and split calving dairy herds. Associations between milk protein concentration, ABV fertility, and reproductive performance in Holstein cows were assessed using random effects logistic regression. Between 52,438 and 61,939 lactations were used for analyses of 4 reproductive performance measures. Milk protein concentration was strongly and positively associated with reproductive performance in dairy cows, and this effect was not accounted for by the effects of ABV fertility. Increases in ABV fertility had important additional beneficial effects on the probability of pregnancy by wk 6 and 21 of the herd's breeding period. For cows calved before the start of the breeding period, the effects of increases in both milk protein concentration and ABV fertility were beneficial regardless of their interval from calving to the start of the breeding period. These findings demonstrate the potential for increasing reproductive performance through identifying the causes of the association between milk protein concentration and reproductive performance and then devising management

  7. Zinc(II) and the single-stranded DNA binding protein of bacteriophage T4

    International Nuclear Information System (INIS)

    Gauss, P.; Krassa, K.B.; McPheeters, D.S.; Nelson, M.A.; Gold, L.

    1987-01-01

    The DNA binding domain of the gene 32 protein of the bacteriophage T4 contains a single zinc-finger sequence. The gene 32 protein is an extensively studied member of a class of proteins that bind relatively nonspecifically to single-stranded DNA. The authors have sequenced and characterized mutations in gene 32 whose defective proteins are activated by increasing the Zn(II) concentration in the growth medium. The results identify a role for the gene 32 protein in activation of T4 late transcription. Several eukaryotic proteins with zinc fingers participate in activation of transcription, and the gene 32 protein of T4 should provide a simple, well-characterized system in which genetics can be utilized to study the role of a zinc finger in nucleic acid binding and gene expression

  8. The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk.

    Science.gov (United States)

    Svanborg, Sigrid; Johansen, Anne-Grethe; Abrahamsen, Roger K; Skeie, Siv B

    2015-09-01

    The demand for whey protein is increasing in the food industry. Traditionally, whey protein concentrates (WPC) and isolates are produced from cheese whey. At present, microfiltration (MF) enables the utilization of whey from skim milk (SM) through milk protein fractionation. This study demonstrates that buttermilk (BM) can be a potential source for the production of a WPC with a comparable composition and functional properties to a WPC obtained by MF of SM. Through the production of WPC powder and a casein- and phospholipid (PL)-rich fraction by the MF of BM, sweet BM may be used in a more optimal and economical way. Sweet cream BM from industrial churning was skimmed before MF with 0.2-µm ceramic membranes at 55 to 58°C. The fractionations of BM and SM were performed under the same conditions using the same process, and the whey protein fractions from BM and SM were concentrated by ultrafiltration and diafiltration. The ultrafiltration and diafiltration was performed at 50°C using pasteurized tap water and a membrane with a 20-kDa cut-off to retain as little lactose as possible in the final WPC powders. The ultrafiltrates were subsequently spray dried, and their functional properties and chemical compositions were compared. The amounts of whey protein and PL in the WPC powder from BM (BMWPC) were comparable to the amounts found in the WPC from SM (SMWPC); however, the composition of the PL classes differed. The BMWPC contained less total protein, casein, and lactose compared with SMWPC, as well as higher contents of fat and citric acid. No difference in protein solubility was observed at pH values of 4.6 and 7.0, and the overrun was the same for BMWPC and SMWPC; however, the BMWPC made less stable foam than SMWPC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Dihydrotestosterone deteriorates cardiac insulin signaling and glucose transport in the rat model of polycystic ovary syndrome.

    Science.gov (United States)

    Tepavčević, Snežana; Vojnović Milutinović, Danijela; Macut, Djuro; Žakula, Zorica; Nikolić, Marina; Božić-Antić, Ivana; Romić, Snježana; Bjekić-Macut, Jelica; Matić, Gordana; Korićanac, Goran

    2014-05-01

    It is supposed that women with polycystic ovary syndrome (PCOS) are prone to develop cardiovascular disease as a consequence of multiple risk factors that are mostly related to the state of insulin resistance and consequent hyperinsulinemia. In the present study, we evaluated insulin signaling and glucose transporters (GLUT) in cardiac cells of dihydrotestosterone (DHT) treated female rats as an animal model of PCOS. Expression of proteins involved in cardiac insulin signaling pathways and glucose transporters, as well as their phosphorylation or intracellular localization were studied by Western blot analysis in DHT-treated and control rats. Treatment with DHT resulted in increased body mass, absolute mass of the heart, elevated plasma insulin concentration, dyslipidemia and insulin resistance. At the molecular level, DHT treatment did not change protein expression of cardiac insulin receptor and insulin receptor substrate 1, while phosphorylation of the substrate at serine 307 was increased. Unexpectedly, although expression of downstream Akt kinase and its phosphorylation at threonine 308 were not altered, phosphorylation of Akt at serine 473 was increased in the heart of DHT-treated rats. In contrast, expression and phosphorylation of extracellular signal regulated kinases 1/2 were decreased. Plasma membrane contents of GLUT1 and GLUT4 were decreased, as well as the expression of GLUT4 in cardiac cells at the end of androgen treatment. The obtained results provide evidence for alterations in expression and especially in functional characteristics of insulin signaling molecules and glucose transporters in the heart of DHT-treated rats with PCOS, indicating impaired cardiac insulin action. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Associations Between PET Textural Features and GLUT1 Expression, and the Prognostic Significance of Textural Features in Lung Adenocarcinoma.

    Science.gov (United States)

    Koh, Young Wha; Park, Seong Yong; Hyun, Seung Hyup; Lee, Su Jin

    2018-02-01

    We evaluated the association between positron emission tomography (PET) textural features and glucose transporter 1 (GLUT1) expression level and further investigated the prognostic significance of textural features in lung adenocarcinoma. We evaluated 105 adenocarcinoma patients. We extracted texture-based PET parameters of primary tumors. Conventional PET parameters were also measured. The relationships between PET parameters and GLUT1 expression levels were evaluated. The association between PET parameters and overall survival (OS) was assessed using Cox's proportional hazard regression models. In terms of PET textural features, tumors expressing high levels of GLUT1 exhibited significantly lower coarseness, contrast, complexity, and strength, but significantly higher busyness. On univariate analysis, the metabolic tumor volume, total lesion glycolysis, contrast, busyness, complexity, and strength were significant predictors of OS. Multivariate analysis showed that lower complexity (HR=2.017, 95%CI=1.032-3.942, p=0.040) was independently associated with poorer survival. PET textural features may aid risk stratification in lung adenocarcinoma patients. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. The Global Saving Glut in the light of demographic developments : a numerical simulation of the developments in China and the US

    OpenAIRE

    Pettersen, Malin Karlberg; Håland, Marianne

    2016-01-01

    The objective of this thesis is to predict how demographic developments will affect the Global Saving Glut. The thesis examines how the changes in the age structure in China and the US are affecting their respective aggregate savings rates. Ben Bernanke was the first economist to mention the term Global Saving Glut, which describes an economy where desired saving exceeds desired investment. He states that the increase in the global supply of savings was one of the main reasons ...

  12. Effects of carprofen and meloxicam on C-reactive protein, ceruloplasmin, and fibrinogen concentrations in dogs undergoing ovariohysterectomy.

    Science.gov (United States)

    Kum, Cavit; Voyvoda, Huseyin; Sekkin, Selim; Karademir, Umit; Tarimcilar, Tugrul

    2013-10-01

    To evaluate the effects of perioperative oral administration of carprofen and meloxicam on concentrations of 3 acute-phase proteins in dogs undergoing elective ovariohysterectomy (OVH). 18 healthy adult anestrous female dogs undergoing elective OVH. Dogs were allocated to 3 groups (6 dogs/group). A placebo treatment, carprofen (2.0 mg/kg), or meloxicam (0.2 mg/kg) was orally administered to the dogs of the respective groups. The initial doses were administered 30 minutes before premedication prior to OVH; additional doses were administered once daily for 4 days after surgery. Blood samples were collected 45 minutes before premedication and 4, 8, 12, 24, 36, 48, 72, 96, and 120 hours after the end of OVH; samples were used for measurement of total WBC and neutrophil counts and concentrations of C-reactive protein (CRP), ceruloplasmin, and fibrinogen. Values did not differ significantly among groups for WBC and neutrophil counts, serum concentrations of CRP and ceruloplasmin, and plasma concentrations of fibrinogen. Concentrations of all inflammatory markers, except serum ceruloplasmin, increased significantly following OVH, but in a similar manner for each group. No significant changes were detected in serum ceruloplasmin concentrations over time. Perioperative administration of both carprofen and meloxicam did not significantly affect the concentrations of CRP, ceruloplasmin, and fibrinogen in dogs undergoing OVH. Thus, use of carprofen or meloxicam should not affect clinical interpretation of results for these 3 acute-phase proteins.

  13. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily.

    Directory of Open Access Journals (Sweden)

    Aleksander F Sikorski

    2007-01-01

    Full Text Available The review is focused on the domain structure and function of protein 4.1, one of the proteins belonging to the membrane skeleton. The protein 4.1 of the red blood cells (4.1R is a multifunctional protein that localizes to the membrane skeleton and stabilizes erythrocyte shape and membrane mechanical properties, such as deformability and stability, via lateral interactions with spectrin, actin, glycophorin C and protein p55. Protein 4.1 binding is modulated through the action of kinases and/or calmodulin-Ca2+. Non-erythroid cells express the 4.1R homologues: 4.1G (general type, 4.1B (brain type, and 4.1N (neuron type, and the whole group belongs to the protein 4.1 superfamily, which is characterized by the presence of a highly conserved FERM domain at the N-terminus of the molecule. Proteins 4.1R, 4.1G, 4.1N and 4.1B are encoded by different genes. Most of the 4.1 superfamily proteins also contain an actin-binding domain. To date, more than 40 members have been identified. They can be divided into five groups: protein 4.1 molecules, ERM proteins, talin-related molecules, protein tyrosine phosphatase (PTPH proteins and NBL4 proteins. We have focused our attention on the main, well known representatives of 4.1 superfamily and tried to choose the proteins which are close to 4.1R or which have distinct functions. 4.1 family proteins are not just linkers between the plasma membrane and membrane skeleton; they also play an important role in various processes. Some, such as focal adhesion kinase (FAK, non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells, play the role in cell adhesion. The other members control or take part in tumor suppression, regulation of cell cycle progression, inhibition of cell proliferation, downstream signaling of the glutamate receptors, and establishment of cell polarity; some are also involved in cell proliferation, cell motility, and/or cell-to-cell communication.

  14. Chemical Utilization of Albizia lebbeck Leaves for Developing Protein Concentrates as a Dietary Supplement.

    Science.gov (United States)

    Khan, Lutful Haque; Varshney, V K

    2017-08-17

    In search of nonconventional sources of protein to combat widespread malnutrition, the possibility of developing a protein concentrate as an alternative dietary supplement from abundantly available yet poorly valorized leaves of Albizia lebbeck (siris) was examined. A process for recovery of leaf protein concentrate (LPC) from these leaves was optimized and applied for isolation of LPCs from lower, middle, and upper canopies of the tree. The optimized conditions (leaves to water 1:9, coagulation at pH 4.0 using 1 N citric acid at 90°C for 11 minutes) afforded LPCs containing protein 37.15%, 37.57%, and 37.76% in 5.99%, 5.97%, and 6.07% yield, respectively. The proximate nutritional composition, pigments, minerals, in vitro digestibility, and antinutritional factors of these LPCs were determined. Analysis of variance of these data revealed no significant difference with respect to canopy. Use of Albizia lebbeck leaves for development of LPC as a food/feed supplement was revealed.

  15. Radionuclides and selected trace elements in marine protein concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, T M; Jokela, T A; Eagle, R J

    1971-12-01

    The concentrations of various trace elements and radionuclides have been measured in marine protein concentrates prepared from surface feeding fishes. As with concentrates prepared from benthic fishes, the /sup 210/Pb-/sup 210/Po pair are the most significant radionuclides present. Concentrations of stable Pb, Co and Ag in certain concentrates are sufficiently high to contribute substantially to estimated current intakes of these elements.

  16. Optimization of expression JTAT protein with emphasis on transformation efficiency and IPTG concentration

    Directory of Open Access Journals (Sweden)

    Endang Tri Margawati

    2017-12-01

    Full Text Available One of small accessory genes between pol and env is tat gene encoding TAT protein. This research was aimed to optimize the expression of Jembrana TAT (JTAT protein with preparing Escherichia coli (E. coli in advance using adopted methods of M1 (MgCl2 + CaCl2 and M2 (CaCl2 + Glycerol. The best transformation efficiency resulting from a better transformation method was used to subsequent expression of JTAT protein. A synthetic tat gene encoding protein JTAT was previously cloned into pBT-hisC. Concentration of 200; 400; 600 µM IPTG was induced to a small volume culture (200 ml; OD600 = 4, incubated for 3 h. Pellets were harvested by centrifugation (4000 rpm; 4 °C; 15 min. Buffer B (10 mM Immidazole was added into pellets, lysed by freeze-thaw followed by sonication. Supernatant was collected by centrifugation (10,000 rpm; 4 °C; 20 min and purified using Ni-NTA Agarose resin, released by elution buffer (E containing 400 mM Immidazole to collect purified protein twice (E1, E2. The protein was characterized by SDS-PAGE and Western Blot (WB, quantified (at λ595 nm with BSA standard method in prior. The result showed that transformation efficiency was better in M2 (2.53 × 106 than M1 (3.10 × 105. The JTAT protein was expressed at a right size of 11.8 kDa. Concentration of 200 µM IPTG produced a significantly better protein yield (1.500 ± 0.089 mg/ml; P < 0.05 than 600 µM IPTG (0.896 ± 0.052 mg/ml and not different to 400 µM IPTG (1.298 ± 0.080 mg/ml. This research indicated that transformation efficiency needs to be taken account in prior of optimization of the protein expression.

  17. CONCENTRATION AND RECOVERY OF PROTEIN FROM TUNA COOKING JUICE BY FORWARD OSMOSIS

    Directory of Open Access Journals (Sweden)

    KHONGNAKORN W.

    2016-07-01

    Full Text Available Tuna cooking processing plants generate large amount of cooking juice containing a significant content of protein. Recovery and concentrating process of this valuable compound together with a low energy consumption process are of interest regarding full utilization concept and green process approach. Forward osmosis (FO was employed in this work to recover and concentrate tuna cooking juice. FO process could increase the protein concentration up to 9% with an average permeate flux of 2.54 L/m2h. The permeate flux however tended to decrease as protein concentration increased due to the impact of osmotic pressure of the feed and fouling on the membrane surface. Since tuna cooking juice consists of protein and minerals, membrane analyses indicated that fouling was more severe compared to the fouling caused by standard bovine serum albumin pure protein. However, the presence of minerals rendered it a quicker and lower energy process by comparison. These results indicated that FO is a promising technique in the recovery and concentration of tuna cooking juice protein.

  18. Genetic and nongenetic determinants of skeletal muscle glucose transporter 4 messenger ribonucleic acid levels and insulin action in twins

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Poulsen, Pernille; Ling, Charlotte

    2006-01-01

    -stimulated expressions of GLUT4 were independently and significantly related to whole-body in vivo insulin action, nonoxidative glucose metabolism, and glucose oxidation. CONCLUSION: We show that skeletal muscle GLUT4 gene expression in twins is significantly and independently related to glucose metabolism...

  19. The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein

    Directory of Open Access Journals (Sweden)

    Coetzer Theresa L

    2006-11-01

    Full Text Available Abstract Background Erythrocyte invasion by Plasmodium falciparum parasites represents a key mechanism during malaria pathogenesis. Erythrocyte binding antigen-181 (EBA-181 is an important invasion protein, which mediates a unique host cell entry pathway. A novel interaction between EBA-181 and human erythrocyte membrane protein 4.1 (4.1R was recently demonstrated using phage display technology. In the current study, recombinant proteins were utilized to define and characterize the precise molecular interaction between the two proteins. Methods 4.1R structural domains (30, 16, 10 and 22 kDa domain and the 4.1R binding region in EBA-181 were synthesized in specific Escherichia coli strains as recombinant proteins and purified using magnetic bead technology. Recombinant proteins were subsequently used in blot-overlay and histidine pull-down assays to determine the binding domain in 4.1R. Results Blot overlay and histidine pull-down experiments revealed specific interaction between the 10 kDa domain of 4.1R and EBA-181. Binding was concentration dependent as well as saturable and was abolished by heat denaturation of 4.1R. Conclusion The interaction of EBA-181 with the highly conserved 10 kDa domain of 4.1R provides new insight into the molecular mechanisms utilized by P. falciparum during erythrocyte entry. The results highlight the potential multifunctional role of malaria invasion proteins, which may contribute to the success of the pathogenic stage of the parasite's life cycle.

  20. Fermentation of solutions of glucose-protein concentrate in a cascade-multi-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Denshchikov, M T; Shashilova, V P

    1964-01-01

    Glucose-protein concentrate is a material obtained by the hydrolysis of corn, containing glucose 75 to 80, maltose, isomaltose, and other non-fermentable sugars 1.5 to 2, H/sub 2/O 15 to 17, mineral matter 1.9 to 1%, and N-containing materials 3.2 to 3.4 g/kg. In earlier fermentation trails with this material, after addition of H/sub 2/O, only 10 to 12% ethanol concentrations were obtained. With period addition of citric acid and replacement of the yeast at regular intervals, using a cascade-multitray unit, 12 to 13% concentrations of ethanol were obtained.

  1. Influence of energy concentration and source on the utilization of feed protein and NPN in lambs. 3. Allantoin excretion and microbial protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, M; Geissler, C; Bassuny, S M; Borowiec, F; Hoffmann, M

    1989-06-01

    In an N balance experiment with male crossbreeding lambs at an age of 3-4 months four different rations were given differing in energy concentration (high > 700 EFU/sub cattle//kg DM and low < 650 EFU/sub cattle//kg DM) and in the energy source (sugar, starch or crude fibre) with crude protein intake being almost equal. The rations contained 2% urea. Microbial protein synthesis in the rumen was assessed according to Roth and Kichgessner (1978) (1), Rys et al. (1975) (2) and Bickel-Baumann and Landis (1986) (3) on the basis of allantoin excretion in urine. The highest ruminal protein synthesis quotas were 868-921 mg protein N per kg LW/sup 0.75/ in (2). In (3) 723-766 mg protein N/kg LW /sup 0.75/ were synthesized. From the /sup 15/N labelling of the supplemented urea and the excreted allantoin it could be calculated that 26-40% of the microbial protein resulted from the urea-N of the ration. Despite a high crude protein content of the ration of between 16 and 17% in the DM and a relation of NPN: pure protein of 0.95 the utilization of the NPN in the ration was relatively high but slightly lower than the utilization of pure protein. The variants with higher energy concentration showed as a tendency higher allantoin excretion in spite of slightly lower dry matter intake and a slightly higher NPN utilization than the variants with lower energy concentration. (author).

  2. Prolactin suppresses malonyl-CoA concentration in human adipose tissue

    DEFF Research Database (Denmark)

    Nilsson, L. A.; Roepstorff, Carsten; Kiens, Bente

    2009-01-01

    Prolactin is best known for its involvement in lactation, where it regulates mechanisms that supply nutrients for milk production. In individuals with pathological hyperprolactinemia, glucose and fat homeostasis have been reported to be negatively influenced. It is not previously known, however......, whether prolactin regulates lipogenesis in human adipose tissue. The aim of this study was to investigate the effect of prolactin on lipogenesis in human adipose tissue in vitro. Prolactin decreased the concentration of malonyl-CoA, the product of the first committed step in lipogenesis, to 77......+/-6% compared to control 100+/-5% (p=0.022) in cultured human adipose tissue. In addition, prolactin was found to decrease glucose transporter 4 ( GLUT4) mRNA expression, which may cause decreased glucose uptake. In conclusion, we propose that prolactin decreases lipogenesis in human adipose tissue...

  3. Konsentrasi Protein Total, Albumin, dan Globulin Anak Kambing Peranakan Etawah Setelah Pemberian Berbagai Sediaan Kolostrum* (TOTAL PROTEIN, ALBUMIN, AND GLOBULIN CONCENTRATIONS ON ETTAWAH CROSSBREED NEONATES FOLLOWING THE ADMINISTRATION OF VARIOUS FORM O

    Directory of Open Access Journals (Sweden)

    Anita Esfandiari

    2014-10-01

    Full Text Available This experiment was conducted to study the profile of total protein, albumin, and globulin concentrationson Ettawah crossbreed neonates after consuming various colostrums. Twenty four healthy neonatal kidswere used in this study. The neonates were divided into four groups. Each group received fresh maternal(goat colostrum, frozen-thawed bovine colostrum, bovine spray dried colostrum, and bovine powdercommercial colostrum, respectively. Colostrums were given at 10% of body weight directly after birth andfollowed by the same amount every 12 hours, for three days. The blood was taken from jugular vein at 0, 12,24, 48, 72, and 168 hours after birth to determine total protein, albumin, and globulin concentrations.Results of this study indicated that the serum total protein and globulin concentration increased andreached the peak at 24 hours after birth. Compared to the concentration at birth, the increase of totalprotein concentration were 62.77%, 59.26%, 48.05%, and 66.67% in fresh maternal (goat, frozen-thawedbovine, bovine spray dried, and commercial bovine colostrum, respectively. Serum globulin concentrationincreased 4.9, 4.4, 4.8, and 14.6 times in fresh matermnal goat, frozen-thawed bovine, spray dried, andcommercial bovine colostrums respectively, compared to the concentration at birth. In conclusion, theconsumption of various colostrums i.e. fresh maternal goat colostrums, bovine colostrums (frozen-thawed,spray dried and commercial colostrums would increase the concentration of blood total protein and globulin,which both reached the highest concentration at 24 h after birth.

  4. Protein and starch concentrates of air-classified field pea and zero-tannin faba bean for weaned pigs.

    Science.gov (United States)

    Gunawardena, C K; Zijlstra, R T; Goonewardene, L A; Beltranena, E

    2010-08-01

    Air-classified pulse (non-oilseed legume) protein and starch may replace specialty protein and starch feedstuffs in diets for weaned pigs. In Exp. 1, three specialty protein sources (5% soy protein concentrate, 5% corn gluten meal, and 5% menhaden meal in the control diet) were replaced with 16% zero-tannin hulled or dehulled faba bean, or 17.5% field pea protein concentrate. In total, 192 group-housed pigs (2 gilts and 2 barrows per pen; BW = 7.5 +/- 1.4 kg) were fed wheat-based diets (3.60 Mcal/kg of DE and 3.3 g of standardized ileal digestible Lys/Mcal DE) over 28 d for 12 pen observations per each of 4 diets. Overall, protein source did not affect ADFI, ADG, or G:F. Apparent total tract digestibility (ATTD) of DM, GE, and P was greater (P bean and field pea protein concentrate diets than the diet with 3 specialty protein sources. In Exp. 2, faba bean and field pea starch concentrates were compared with corn, wheat, tapioca, and potato starch as dietary energy sources. In total, 36 individually housed barrows (BW = 8.0 +/- 1.5 kg) were fed 1 of 6 diets for 15 d. Feces and urine were collected from d 8 to 14, and jugular blood was sampled after overnight fast and refeeding on d 15. Starch source did not affect N retention as a percentage of N intake. For d 0 to 14, ADFI of pigs fed field pea starch was greater (P bean starch. Pigs fed tapioca, field pea, wheat, or corn starch grew faster (P bean or potato starch. For d 0 to 14, pigs fed corn or wheat starch had a 0.1 greater (P bean, field pea, or potato starch. The ATTD of DM, GE, CP, and starch and the DE value of potato starch were much less (P bean, wheat, and potato starch, respectively. However, postprandial plasma insulin tended to be 844 and 577 pmol/L greater (P bean and corn starch, respectively, than for pigs fed potato starch. The high insulin response of pigs fed faba starch could not be explained. In conclusion, air-classified pulse protein concentrates can replace specialty protein feedstuffs in

  5. Increased Concentrations of Insulin-Like Growth Factor Binding Protein (IGFBP-2, IGFBP-3, and IGFBP-4 Are Associated With Fetal Mortality in Pregnant Cows

    Directory of Open Access Journals (Sweden)

    Kirsten Mense

    2018-06-01

    Full Text Available Insulin-like growth factors (IGFs play a critical role in fetal growth, and components of the IGF system have been associated with fetal growth restriction in women. In human pregnancy, the proteolytic cleavage of insulin-like growth factor binding proteins (IGFBPs, particularly IGFBP-4, releases free IGF for respective action at the tissue level. The aim of the present study was to determine IGFBP-2, IGFBP-3, and IGFBP-4 concentrations by Western ligand blotting during pregnancy until day 100 in cows and to compare these concentrations with those of non-pregnant cows and cows undergoing embryonic/fetal mortality. Therefore, two study trials (I and II and an in vitro study were conducted. In study I, 43 cows were not pregnant, 34 cows were pregnant, and 4 cows were undergoing fm. In study II, 500 cows were examined, and 7 cases of pregnancy loss between days 24–27 and 34–37 after artificial insemination (AI, late embryonic mortality; em and 8 cases of pregnancy loss between days 34–37 and 54–57 after AI (late embryonic mortality and early fetal mortality; em/fm were defined from the analyses of 30 pregnant and 20 non-pregnant cows randomly selected for insulin-like growth factor 1 and IGFBP analyses. In vitro serum from pregnant (n = 3 and non-pregnant (n = 3 cows spiked after incubation with recombinant human (rh IGFBP-4 for 24 h, and IGFBP-4 levels were analyzed before and after incubation to detect proteolytic degradation. The IGFBP-2, -3, and -4 concentrations did not decline during early pregnancy in cows, while IGFBP-4 concentrations were comparable between pregnant and non-pregnant cows, irrespective of low proteolytic activity, which was also demonstrated in cows. Interestingly, cows with em or fm showed distinct IGFBP patterns. The IGFBP-2 and -3 concentrations were higher (P < 0.05 in cows with fm compared to pregnant. The IGFBP-4 levels were significantly higher in cows developing fm. Thus, distinct differences

  6. Effect of whey protein concentrate on texture of fat-free desserts: sensory and instrumental measurements

    Directory of Open Access Journals (Sweden)

    Márcia Cristina Teixeira Ribeiro Vidigal

    2012-06-01

    Full Text Available It is important to understand how changes in the product formulation can modify its characteristics. Thus, the objective of this study was to investigate the effect of whey protein concentrate (WPC on the texture of fat-free dairy desserts. The correlation between instrumental and sensory measurements was also investigated. Four formulations were prepared with different WPC concentrations (0, 1.5, 3.0, and 4.5 wt. (% and were evaluated using the texture profile analysis (TPA and rheology. Thickness was evaluated by nine trained panelists. Formulations containing WPC showed higher firmness, elasticity, chewiness, and gumminess and clearly differed from the control as indicated by principal component analysis (PCA. Flow behavior was characterized as time-dependent and pseudoplastic. Formulation with 4.5% WPC at 10 °C showed the highest thixotropic behavior. Experimental data were fitted to Herschel-Bulkley model. The addition of WPC contributed to the texture of the fat-free dairy dessert. The yield stress, apparent viscosity, and perceived thickness in the dairy desserts increased with WPC concentration. The presence of WPC promotes the formation of a stronger gel structure as a result of protein-protein interactions. The correlation between instrumental parameters and thickness provided practical results for food industries.

  7. GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates

    OpenAIRE

    Liu, Ran; Fu, Zheng; Zhao, Meng; Gao, Xiangqian; Li, Hong; Mi, Qian; Liu, Pengxing; Yang, Jinna; Yao, Zhi; Gao, Qingzhi

    2017-01-01

    Increased glycolysis and overexpression of glucose transporters (GLUTs) are physiological characteristics of human malignancies. Based on the so-called Warburg effect, 18flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, we focus on the fluorine substituted series of glu...

  8. A dual small-molecule rheostat for precise control of protein concentration in Mammalian cells.

    Science.gov (United States)

    Lin, Yu Hsuan; Pratt, Matthew R

    2014-04-14

    One of the most successful strategies for controlling protein concentrations in living cells relies on protein destabilization domains (DD). Under normal conditions, a DD will be rapidly degraded by the proteasome. However, the same DD can be stabilized or "shielded" in a stoichiometric complex with a small molecule, enabling dose-dependent control of its concentration. This process has been exploited by several labs to post-translationally control the expression levels of proteins in vitro as well as in vivo, although the previous technologies resulted in permanent fusion of the protein of interest to the DD, which can affect biological activity and complicate results. We previously reported a complementary strategy, termed traceless shielding (TShld), in which the protein of interest is released in its native form. Here, we describe an optimized protein concentration control system, TTShld, which retains the traceless features of TShld but utilizes two tiers of small molecule control to set protein concentrations in living cells. These experiments provide the first protein concentration control system that results in both a wide range of protein concentrations and proteins free from engineered fusion constructs. The TTShld system has a greatly improved dynamic range compared to our previously reported system, and the traceless feature is attractive for elucidation of the consequences of protein concentration in cell biology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Protein brownian rotation at the glass transition temperature of a freeze-concentrated buffer probed by superparamagnetic nanoparticles.

    Science.gov (United States)

    Eloi, J-C; Okuda, M; Jones, S E Ward; Schwarzacher, W

    2013-06-18

    For applications from food science to the freeze-thawing of proteins it is important to understand the often complex freezing behavior of solutions of biomolecules. Here we use a magnetic method to monitor the Brownian rotation of a quasi-spherical cage-shaped protein, apoferritin, approaching the glass transition Tg in a freeze-concentrated buffer (Tris-HCl). The protein incorporates a synthetic magnetic nanoparticle (Co-doped Fe3O4 (magnetite)). We use the magnetic signal from the nanoparticles to monitor the protein orientation. As T decreases toward Tg of the buffer solution the protein's rotational relaxation time increases exponentially, taking values in the range from a few seconds up to thousands of seconds, i.e., orders of magnitude greater than usually accessed, e.g., by NMR. The longest relaxation times measured correspond to estimated viscosities >2 MPa s. As well as being a means to study low-temperature, high-viscosity environments, our method provides evidence that, for the cooling protocol used, the following applies: 1), the concentration of the freeze-concentrated buffer at Tg is independent of its initial concentration; 2), little protein adsorption takes place at the interface between ice and buffer; and 3), the protein is free to rotate even at temperatures as low as 207 K. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Whey protein concentration by ultrafiltration and study of functional properties

    Directory of Open Access Journals (Sweden)

    Sidiane Iltchenco

    2018-06-01

    Full Text Available ABSTRACT: This paper aim to evaluate the ultrafiltration (UF process for constituents recovery from whey. Sequences of factorial designs were performed by varying temperature (5 to 40°C and pressure (1 to 3 bar, to maximize the proteins concentration using membrane of 100kDa in dead end system. Based on the best result new experiments were performed with membrane of 50kDa and 10kDa. With the membrane of 50 the protein retention was about 3 times higher than the membrane of 100kDa. The concentrated obtained by UF membrane of 10kDa, 10°C and 2 bar in laboratory scale showed a mean protein retention of 80 %, greater protein solubility, emulsion stability and the identification of β-lactoglobulins (18.3 kDa and α-lactalbumin fractions (14.2kDa. Therefore, the use of membrane of 100 and 50kDa are became a industrially recommendable alternatives to concentration of whey proteins, and/or as a previous step to the fractionation of whey constituents using membrane ≤10kDa, aiming at future applications in different areas (food, pharmaceutical, chemical, etc..

  11. Concentration of serum thyroid hormone binding proteins after 131I treatment of hyperthyroidism

    International Nuclear Information System (INIS)

    Harrop, J.S.; Hopton, M.R.; Lazarus, J.H.

    1981-01-01

    Serum concentrations of the thyroid hormone binding proteins, thyroxine binding globulin, prealbumin, and albumin were determined in 30 thyrotoxic patients before and after 131 I treatment. Each patient was placed into one of three groups according to response to treatment. The serum concentration of all three proteins rose significantly in 10 patients who became euthyroid, and a greater increase was seen in 10 patients who developed hypothyroidism. There was no significant change in thyroid hormone binding protein concentrations in 10 subjects who remained hyperthyroid. Changes in the concentration of thyroid hormone binding proteins should be borne in mind when total thyroid hormone concentrations are used to monitor the progress of patients receiving treatment for hyperthyroidism. (author)

  12. An Improved Method of Predicting Extinction Coefficients for the Determination of Protein Concentration.

    Science.gov (United States)

    Hilario, Eric C; Stern, Alan; Wang, Charlie H; Vargas, Yenny W; Morgan, Charles J; Swartz, Trevor E; Patapoff, Thomas W

    2017-01-01

    Concentration determination is an important method of protein characterization required in the development of protein therapeutics. There are many known methods for determining the concentration of a protein solution, but the easiest to implement in a manufacturing setting is absorption spectroscopy in the ultraviolet region. For typical proteins composed of the standard amino acids, absorption at wavelengths near 280 nm is due to the three amino acid chromophores tryptophan, tyrosine, and phenylalanine in addition to a contribution from disulfide bonds. According to the Beer-Lambert law, absorbance is proportional to concentration and path length, with the proportionality constant being the extinction coefficient. Typically the extinction coefficient of proteins is experimentally determined by measuring a solution absorbance then experimentally determining the concentration, a measurement with some inherent variability depending on the method used. In this study, extinction coefficients were calculated based on the measured absorbance of model compounds of the four amino acid chromophores. These calculated values for an unfolded protein were then compared with an experimental concentration determination based on enzymatic digestion of proteins. The experimentally determined extinction coefficient for the native proteins was consistently found to be 1.05 times the calculated value for the unfolded proteins for a wide range of proteins with good accuracy and precision under well-controlled experimental conditions. The value of 1.05 times the calculated value was termed the predicted extinction coefficient. Statistical analysis shows that the differences between predicted and experimentally determined coefficients are scattered randomly, indicating no systematic bias between the values among the proteins measured. The predicted extinction coefficient was found to be accurate and not subject to the inherent variability of experimental methods. We propose the use of a

  13. (−-Epicatechin-3-O-β-d-allopyranoside from Davallia formosana, Prevents Diabetes and Hyperlipidemia by Regulation of Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Chun-Ching Shih

    2015-10-01

    Full Text Available The purpose of this experiment was to determine the antidiabetic and lipid-lowering effects of (−-epicatechin-3-O-β-d-allopyranoside (BB from the roots and stems of Davallia formosana in mice. Animal treatment was induced by high-fat diet (HFD or low-fat diet (control diet, CD. After eight weeks of HFD or CD exposure, the HFD mice were treating with BB or rosiglitazone (Rosi or fenofibrate (Feno or water through gavage for another four weeks. However, at 12 weeks, the HFD-fed group had enhanced blood levels of glucose, triglyceride (TG, and insulin. BB treatment significantly decreased blood glucose, TG, and insulin levels. Moreover, visceral fat weights were enhanced in HFD-fed mice, accompanied by increased blood leptin concentrations and decreased adiponectin levels, which were reversed by treatment with BB. Muscular membrane protein levels of glucose transporter 4 (GLUT4 were reduced in HFD-fed mice and significantly enhanced upon administration of BB, Rosi, and Feno. Moreover, BB treatment markedly increased hepatic and skeletal muscular expression levels of phosphorylation of AMP-activated (adenosine monophosphate protein kinase (phospho-AMPK. BB also decreased hepatic mRNA levels of phosphenolpyruvate carboxykinase (PEPCK, which are associated with a decrease in hepatic glucose production. BB-exerted hypotriglyceridemic activity may be partly associated with increased mRNA levels of peroxisome proliferator activated receptor α (PPARα, and with reduced hepatic glycerol-3-phosphate acyltransferase (GPAT mRNA levels in the liver, which decreased triacylglycerol synthesis. Nevertheless, we demonstrated BB was a useful approach for the management of type 2 diabetes and dyslipidemia in this animal model.

  14. Behavior of whey protein concentrates under extreme storage conditions

    Science.gov (United States)

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  15. Eicosapentaenoic acid-enriched phosphatidylcholine isolated from Cucumaria frondosa exhibits anti-hyperglycemic effects via activating phosphoinositide 3-kinase/protein kinase B signal pathway.

    Science.gov (United States)

    Hu, Shiwei; Xu, Leilei; Shi, Di; Wang, Jingfeng; Wang, Yuming; Lou, Qiaoming; Xue, Changhu

    2014-04-01

    Eicosapentaenoic acid-enriched phosphatidylcholine was isolated from the sea cucumber Cucumaria frondosa (Cucumaria-PC) and its effects on streptozotocin (STZ)-induced hyperglycemic rats were investigated. Male Sprague-Dawley rats were randomly divided into normal control, model control (STZ), low- and high-dose Cucumaria-PC groups (STZ + Cucumaria-PC at 25 and 75 mg/Kg·b·wt, intragastrically, respectively). Blood glucose, insulin, glycogen in liver and gastrocnemius were determined over 60 days. Insulin signaling in the rats' gastrocnemius was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. The results showed that Cucumaria-PC significantly decreased blood glucose level, increased insulin secretion and glycogen synthesis in diabetic rats. RT-PCR analysis revealed that Cucumaria-PC significantly promoted the expressions of glycometabolism-related genes of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phosphoinositide 3-kinase (PI3K), protein kinase B (PKB), and glucose transporter 4 (GLUT4) in gastrocnemius. Western blotting assay demonstrated that Cucumaria-PC remarkably enhanced the proteins abundance of IR-β, PI3K, PKB, GLUT4, as well as phosphorylation of Tyr-IR-β, p85-PI3K, Ser473-PKB (P insulin. Nutritional supplementation with Cucumaria-PC, if validated for human studies, may offer an adjunctive therapy for diabetes mellitus. Copyright © 2013 The Society for Biotechnology, Japan. All rights reserved.

  16. Protein concentrate production from the biomass contaminated with radionuclides

    International Nuclear Information System (INIS)

    Nizhko, V.F.; Shinkarenko, M.P.; Polozhaj, V.V.; Krivchik, O.V.

    1992-01-01

    Coefficients of radionuclides accumulation are determined for traditional and rare forage crops grown on contaminated soils. It is shown that with low concentration of radionuclides in soil minimal level of contamination were found in the biomass of lupine (Lupinus luteus L.) and sainfoin (Onobrychis hybridus L.). Relatively high levels of contamination were found in comfrey (Symphytum asperum Lepech.) and bistort (Polygonum divaricatum L.). Comparatively low accumulation coefficients in case of higher density of soil contamination were observed for white and yellow sweetclovers (Melilotus albus Medik. and M. officinalis (L.) Desr.), while higher values of coefficients were found for bird's-foot trefoil (Lotus corniculatus L.), white clover (Trifolium repens L.) and alsike clover (t. hybridum L.). Biomass of white sweet-clover and alsike clover has been processed to produce leaf protein concentrate. It is shown that with biomass contamination of 1 kBq/kg and above conventional technology based on thermal precipitation of the protein does not provide production of pure product. More purified protein concentrates are obtained after two-stage processing of the biomass

  17. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  18. Replacing soybean meal with gelatin extracted from cow skin and corn protein concentrate as a protein source in broiler diets.

    Science.gov (United States)

    Khalaji, S; Manafi, M; Olfati, Z; Hedyati, M; Latifi, M; Veysi, A

    2016-02-01

    Two experiments were conducted to investigate the effects of replacing soybean meal with gelatin extracted from cow skin and corn protein concentrate as a protein source in broiler diets. Experiments were carried out as a completely randomized design where each experiment involved 4 treatments of 6 replicates and 10 chicks in each pen. Soybean meal proteins in a corn-soy control diet were replaced with 15, 30, and 45% of cow skin gelatin (CSG) or corn protein concentrate (CPC), respectively, in experiments 1 and 2. BW and cumulative feed intake were measured at 7, 21, and 42 d of age. Blood characteristics, relative organs weight and length, ileal digesta viscosity, ileal morphology, and cecal coliform and Salmonella population were measured at 42 d of age. Apparent total tract digestibility of protein was determined during 35 to 42 d of age. Replacement of soybean meal with CSG severely inhibited BW gain, decreased feed intake, and increased FCR in broilers during the experimental period (P ≤ 0.01). The inclusion of CPC reduced BW and increased FCR significantly (P ≤ 0.05) at 21 and 42 d of age without any consequence in feed intake. Protein digestibility was reduced and ileal digesta viscosity was increased linearly by increasing the amount of CSG and CPC in the control diet (P ≤ 0.01). Replacement of soybean meal with CSG and CPC did not significantly alter blood cell profile and plasma phosphorus, creatinine, blood urea nitrogen, Aspartate transaminase, and HDL and LDL cholesterol concentration. The inclusion of CSG linearly (P ≤ 0.05) increased plasma uric acid concentration and alkaline phosphatase activity. Triglyceride and cholesterol levels were decreased significantly (P ≤ 0.05) when the amount of CSG replacement was 15%. The results of this experiment showed that using CSG and CPC negatively affects broiler performance and therefore is not a suitable alternative to soybean meal in commercial diets. © 2015 Poultry Science Association Inc.

  19. Negative Effects of High Glucose Exposure in Human Gonadotropin-Releasing Hormone Neurons

    Directory of Open Access Journals (Sweden)

    Annamaria Morelli

    2013-01-01

    Full Text Available Metabolic disorders are often associated with male hypogonadotropic hypogonadism, suggesting that hypothalamic defects involving GnRH neurons may impair the reproductive function. Among metabolic factors hyperglycemia has been implicated in the control of the reproductive axis at central level, both in humans and in animal models. To date, little is known about the direct effects of pathological high glucose concentrations on human GnRH neurons. In this study, we investigated the high glucose effects in the human GnRH-secreting FNC-B4 cells. Gene expression profiling by qRT-PCR, confirmed that FNC-B4 cells express GnRH and several genes relevant for GnRH neuron function (KISS1R, KISS1, sex steroid and leptin receptors, FGFR1, neuropilin 2, and semaphorins, along with glucose transporters (GLUT1, GLUT3, and GLUT4. High glucose exposure (22 mM; 40 mM significantly reduced gene and protein expression of GnRH, KISS1R, KISS1, and leptin receptor, as compared to normal glucose (5 mM. Consistent with previous studies, leptin treatment significantly induced GnRH mRNA expression at 5 mM glucose, but not in the presence of high glucose concentrations. In conclusion, our findings demonstrate a deleterious direct contribution of high glucose on human GnRH neurons, thus providing new insights into pathogenic mechanisms linking metabolic disorders to reproductive dysfunctions.

  20. APC/C-mediated degradation of dsRNA-binding protein 4 (DRB4 involved in RNA silencing.

    Directory of Open Access Journals (Sweden)

    Katia Marrocco

    Full Text Available Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome is a master ubiquitin protein ligase (E3 that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized.In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA. This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2 of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed.Our work identified a first plant substrate of the APC/C, which is not a regulator of the cell cycle. Though we cannot exclude that APC/C-dependent degradation of DRB4 has some regulatory roles under specific growth conditions, our work rather points to a housekeeping function of APC/C in maintaining precise cellular-protein concentrations and homeostasis of DRB4.

  1. Evidence for brain glucose dysregulation in Alzheimer's disease.

    Science.gov (United States)

    An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav

    2018-03-01

    It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.

  2. 4-Hydroxyhexenal- and 4-Hydroxynonenal-Modified Proteins in Pterygia

    Directory of Open Access Journals (Sweden)

    Ichiya Sano

    2013-01-01

    Full Text Available Oxidative stress has been suspected of contributing to the pathogenesis of pterygia. We evaluated the immunohistochemical localization of the markers of oxidative stress, that is, the proteins modified by 4-hydroxyhexenal (4-HHE and 4-hydroxynonenal (4-HNE, which are reactive aldehydes derived from nonenzymatic oxidation of n-3 and n-6 polyunsaturated fatty acids, respectively. In the pterygial head, labeling of 4-HHE- and 4-HNE-modified proteins was prominent in the nuclei and cytosol of the epithelium. In the pterygial body, strong labeling was observed in the nuclei and cytosol of the epithelium and proliferating subepithelial connective tissue. In normal conjunctival specimens, only trace immunoreactivity of both proteins was observed in the epithelial and stromal layers. Exposures of ultraviolet (330 nm, 48.32 ± 0.55 J/cm2 or blue light (400 nm, 293.0 ± 2.0 J/cm2 to rat eyes enhanced labeling of 4-HHE- and 4-HNE-modified proteins in the nuclei of conjunctival epithelium. Protein modifications by biologically active aldehydes are a molecular event involved in the development of pterygia.

  3. The Serum Concentrations of Chemokine CXCL12 and Its Specific Receptor CXCR4 in Patients with Esophageal Cancer

    Directory of Open Access Journals (Sweden)

    Marta Łukaszewicz-Zając

    2016-01-01

    Full Text Available Objectives. Recent investigations have suggested that upregulated levels of inflammatory biomarkers, such as chemokines, may be associated with development of many malignancies, including esophageal cancer (EC. Based on our knowledge, this study is the first to assess the serum concentration of chemokine CXCL12 and its specific receptor CXCR4 in the diagnosis of EC patients. Material and Methods. The present study included 79 subjects: 49 patients with EC and 30 healthy volunteers. The serum concentrations of CXCL12 and CXCR4 and classical tumor markers such as carcinoembryonal antigen (CEA and squamous cell cancer antigen (SCC-Ag were measured using immunoenzyme assays, while C-reactive protein (CRP levels were assessed by immunoturbidimetric method. Moreover, diagnostic criteria of all proteins tested and the survival of EC patients were assessed. Results. The serum concentrations of CXCL12 were significantly higher, while those of its receptor CXCR4 were significantly lower in EC patients compared to healthy controls. The diagnostic sensitivity, negative predictive value, and accuracy of CXCR4 were the highest among all analyzed proteins and increased for combined analysis with classical tumor markers and CRP levels. Conclusion. Our findings suggest that serum CXCR4 may improve the diagnosis of EC patients, especially in combination with classical tumor markers.

  4. Increased Milk Protein Concentration in a Rehydration Drink Enhances Fluid Retention Caused by Water Reabsorption in Rats.

    Science.gov (United States)

    Ito, Kentaro; Saito, Yuri; Ashida, Kinya; Yamaji, Taketo; Itoh, Hiroyuki; Oda, Munehiro

    2015-01-01

    A fluid-retention effect is required for beverages that are designed to prevent dehydration. That is, fluid absorbed from the intestines should not be excreted quickly; long-term retention is desirable. Here, we focused on the effect of milk protein on fluid retention, and propose a new effective oral rehydration method that can be used daily for preventing dehydration. We first evaluated the effects of different concentrations of milk protein on fluid retention by measuring the urinary volumes of rats fed fluid containing milk protein at concentrations of 1, 5, and 10%. We next compared the fluid-retention effect of milk protein-enriched drink (MPD) with those of distilled water (DW) and a sports drink (SD) by the same method. Third, to investigate the mechanism of fluid retention, we measured plasma insulin changes in rats after ingesting these three drinks. We found that the addition of milk protein at 5 or 10% reduced urinary volume in a dose-dependent manner. Ingestion of the MPD containing 4.6% milk protein resulted in lower urinary volumes than DW and SD. MPD also showed a higher water reabsorption rate in the kidneys and higher concentrations of plasma insulin than DW and SD. These results suggest that increasing milk protein concentration in a beverage enhances fluid retention, which may allow the possibility to develop rehydration beverages that are more effective than SDs. In addition, insulin-modifying renal water reabsorption may contribute to the fluid-retention effect of MPD.

  5. DC biased low-frequency insulating constriction dielectrophoresis for protein biomolecules concentration.

    Science.gov (United States)

    Zhang, Peng; Liu, Yuxin

    2017-09-01

    Sample enrichment or molecules concentration is considered an essential step in sample processing of miniaturized devices aimed at biosensing and bioanalysis. Among all the means involved to achieve this aim, dielectrophoresis (DEP) is increasingly employed in molecules manipulation and concentration because it is non-destructive and high efficiency. This paper presents a methodology to achieve protein concentration utilizing the combination effects of electrokinetics and low frequency insulating dielectrophoresis (iDEP) generated within a microfluidic device, in which a submicron constricted channel was fabricated using DNA molecular combing and replica molding. This fabrication technique avoids using e-beam lithography or other complicated nanochannel fabrication methods, and provides an easy and low cost approach with the flexibility of controlling channel dimensions to create highly constricted channels embedded in a microfluidic device. With theoretical analysis and experiments, we demonstrated that fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) protein molecules can be significantly concentrated to form an arc-shaped band near the constricted channel under the effects of a negative dielectrophoretic force and DC electrokinetic forces within a short period of time. It was also observed that the amplitudes of the applied DC and AC electric fields, the AC frequencies as well as the suspending medium conductivities had strong effects on the concentration responses of the FITC-BSA molecules, including the concentrated area and position, intensities of the focused molecules, and concentration speed. Our method provides a simple and flexible approach for quickly concentrating protein molecules by controlling the applied electric field parameters. The iDEP device reported in this paper can be used as a stand-alone sensor or worked as a pre-concentration module integrated with biosensors for protein biomarker detection. Furthermore, low

  6. Wheat germ cell-free expression: Two detergents with a low critical micelle concentration allow for production of soluble HCV membrane proteins.

    Science.gov (United States)

    Fogeron, Marie-Laure; Badillo, Aurélie; Jirasko, Vlastimil; Gouttenoire, Jérôme; Paul, David; Lancien, Loick; Moradpour, Darius; Bartenschlager, Ralf; Meier, Beat H; Penin, François; Böckmann, Anja

    2015-01-01

    Membrane proteins are notoriously difficult to express in a soluble form. Here, we use wheat germ cell-free expression in the presence of various detergents to produce the non-structural membrane proteins 2, 4B and 5A of the hepatitis C virus (HCV). We show that lauryl maltose neopentyl glycol (MNG-3) and dodecyl octaethylene glycol ether (C12E8) detergents can yield essentially soluble membrane proteins at detergent concentrations that do not inhibit the cell-free reaction. This finding can be explained by the low critical micelle concentration (CMC) of these detergents, which keeps the monomer concentrations low while at the same time providing the necessary excess of detergent concentration above CMC required for full target protein solubilization. We estimate that a tenfold excess of detergent micelles with respect to the protein concentration is sufficient for solubilization, a number that we propose as a guideline for detergent screening assays. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Gene Expression of Glucose Transporter 1 (GLUT1, Hexokinase 1 and Hexokinase 2 in Gastroenteropancreatic Neuroendocrine Tumors: Correlation with F-18-fluorodeoxyglucose Positron Emission Tomography and Cellular Proliferation

    Directory of Open Access Journals (Sweden)

    Andreas Kjaer

    2013-10-01

    Full Text Available Neoplastic tissue exhibits high glucose utilization and over-expression of glucose transporters (GLUTs and hexokinases (HKs, which can be imaged by 18F-Fluorodeoxyglucose-positron emission tomography (FDG-PET. The aim of the present study was to investigate the expression of glycolysis-associated genes and to compare this with FDG-PET imaging as well as with the cellular proliferation index in two cancer entities with different malignant potential. Using real-time PCR, gene expression of GLUT1, HK1 and HK2 were studied in 34 neuroendocrine tumors (NETs in comparison with 14 colorectal adenocarcinomas (CRAs. The Ki67 proliferation index and, when available, FDG-PET imaging was compared with gene expression. Overexpression of GLUT1 gene expression was less frequent in NETs (38% compared to CRAs (86%, P = 0.004. HK1 was overexpressed in 41% and 71% of NETs and CRAs, respectively (P = 0.111 and HK2 was overexpressed in 50% and 64% of NETs and CRAs, respectively (P = 0.53. There was a significant correlation between the Ki67 proliferation index and GLUT1 gene expression for the NETs (R = 0.34, P = 0.047, but no correlation with the hexokinases. FDG-PET identified foci in significantly fewer NETs (36% than CRAs (86%, (P = 0.04. The gene expression results, with less frequent GLUT1 and HK1 upregulation in NETs, confirmed the lower metabolic activity of NETs compared to the more aggressive CRAs. In accordance with this, fewer NETs were FDG-PET positive compared to CRA tumors and FDG uptake correlated with GLUT1 gene expression.

  8. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    Science.gov (United States)

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  9. Effects of plant proteins on postprandial, free plasma amino acid concentrations in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Larsen, Bodil Katrine; Dalsgaard, Anne Johanne Tang; Pedersen, Per Bovbjerg

    2012-01-01

    proteins from wheat, peas, field beans, sunflower and soybean. Blood samples were obtained from the caudal vein of 7 fish in each dietary treatment group prior to feeding, as well as: 2, 4, 6, 8, 12, 24, 48 and 72 h after feeding (sampling 7 new fish at each time point), and plasma amino acid......Postprandial patterns in plasma free amino acid concentrations were investigated in juvenile rainbow trout (Oncorhynchus mykiss) fed either a fish meal based diet (FM) or a diet (VEG) where 59% of fish meal protein (corresponding to 46% of total dietary protein) was replaced by a matrix of plant...... the two dietary treatment groups correlated largely with the amino acid content of the two diets except for methionine, lysine and arginine, where the differences were more extreme than what would be expected from differences in dietary concentrations. The apparent protein digestibility coefficient...

  10. Adiposity associated changes in serum glucose and adiponectin levels modulate ovarian steroidogenesis during delayed embryonic development in the fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Anuradha; Krishna, Amitabh

    2018-06-01

    The aim of the present study was to evaluate the mechanism by which embryonic development in Cynopterus sphinx is impaired during the period of increased accumulation of white adipose tissue during winter scarcity of food. The change in the mass of white adipose tissue during adipogenesis showed significant positive correlation with the circulating glucose level. But increase in circulating glucose level during the adipogenesis showed negative correlation with circulating progesterone and adiponectin levels. The in vivo study showed increased glucose uptake by the adipose tissue during adipogenesis due to increased expression of insulin receptor (IR) and glucose transporter (GLUT) 4 proteins. This study showed decline in the adiponectin level during fat accumulation. In the in vitro study, ovary treated with high doses of glucose showed impaired progesterone synthesis. This is due to decreased glucose uptake mediated decrease in the expression of luteinizing hormone-receptor, steroidogenic acute regulatory protein, IR, GLUT4 and AdipoR1 proteins. But the ovary treated with adiponectin either alone or with higher concentration of glucose showed improvement in progesterone synthesis due to increased expression of IR, GLUT4 and AdipoR1 mediated increased glucose uptake. In conclusion, increased circulating glucose level prior to winter dormancy preferably transported to white adipose tissue for fat accumulation diverting glucose away from the ovary. Consequently the decreased availability of adiponectin and glucose to the ovary and utero-embryonic unit may be responsible for impaired progesterone synthesis and delayed embryonic development. The delayed embryonic development in Cynopterus sphinx may have evolved, in part, as a mechanism to prevent pregnancy loss during the period of decreased energy availability. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Gluts and battles: Canadian pipeline growth fear coming to U.S. markets

    International Nuclear Information System (INIS)

    Jaremko, G.

    1997-01-01

    Industry peers in the U.S.A. sounded a warning to Canadian natural gas exporters and pipeline owners about an approaching 'capacity glut' if they stay on their current aggressive expansion course. Just one of the current crop of export pipeline projects would be enough to bring on a 'displacement scenario' where delivery capacity overtakes demand and pits Canadian and American suppliers against one another for markets. These warnings were contained in a recent report by the Interstate Natural Gas Association of America. According to this report, today's pipeline projects lineup faces the American industry with the possibility of confronting a 70 per cent jump in Canadian exports to 4.9 trillion cubic feet per year by 2005, equal to 175 per cent of anticipated growth in demand. The report stresses the importance of responsible expansion of capacity based on realistic rise in demand estimates. The ball is in the industry's court to regulate itself since regulators no longer try to manage supply and demand

  12. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects.

    Science.gov (United States)

    Norton, Luke; Shannon, Christopher E; Fourcaudot, Marcel; Hu, Cheng; Wang, Niansong; Ren, Wei; Song, Jun; Abdul-Ghani, Muhammad; DeFronzo, Ralph A; Ren, Jimmy; Jia, Weiping

    2017-09-01

    The sodium-glucose co-transporters (SGLTs) are responsible for the tubular reabsorption of filtered glucose from the kidney into the bloodstream. The inhibition of SGLT2-mediated glucose reabsorption is a novel and highly effective strategy to alleviate hyperglycaemia in patients with type 2 diabetes mellitus (T2DM). However, the effectiveness of SGLT2 inhibitor therapy is diminished due, in part, to a compensatory increase in the maximum reabsorptive capacity (Tm) for glucose in patients with T2DM. We hypothesized that this increase in Tm could be explained by an increase in the tubular expression of SGLT and glucose transporters (GLUT) in these patients. To examine this, we obtained human kidney biopsy specimens from patients with or without T2DM and examined the mRNA expression of SGLTs and GLUTs. The expression of SGLT1 is markedly increased in the kidney of patients with T2DM, and SGLT1 mRNA is highly and significantly correlated with fasting and postprandial plasma glucose and HbA1c. In contrast, our data demonstrate that the levels of SGLT2 and GLUT2 mRNA are downregulated in diabetic patients, but not to a statistically significant level. These important findings are clinically significant and may have implications for the treatment of T2DM using strategies that target SGLT transporters in the kidney. © 2017 John Wiley & Sons Ltd.

  13. Molecular Effects of Concentrated Solutes on Protein Hydration, Dynamics, and Electrostatics.

    Science.gov (United States)

    Abriata, Luciano A; Spiga, Enrico; Peraro, Matteo Dal

    2016-08-23

    Most studies of protein structure and function are performed in dilute conditions, but proteins typically experience high solute concentrations in their physiological scenarios and biotechnological applications. High solute concentrations have well-known effects on coarse protein traits like stability, diffusion, and shape, but likely also perturb other traits through finer effects pertinent at the residue and atomic levels. Here, NMR and molecular dynamics investigations on ubiquitin disclose variable interactions with concentrated solutes that lead to localized perturbations of the protein's surface, hydration, electrostatics, and dynamics, all dependent on solute size and chemical properties. Most strikingly, small polar uncharged molecules are sticky on the protein surface, whereas charged small molecules are not, but the latter still perturb the internal protein electrostatics as they diffuse nearby. Meanwhile, interactions with macromolecular crowders are favored mainly through hydrophobic, but not through polar, surface patches. All the tested small solutes strongly slow down water exchange at the protein surface, whereas macromolecular crowders do not exert such strong perturbation. Finally, molecular dynamics simulations predict that unspecific interactions slow down microsecond- to millisecond-timescale protein dynamics despite having only mild effects on pico- to nanosecond fluctuations as corroborated by NMR. We discuss our results in the light of recent advances in understanding proteins inside living cells, focusing on the physical chemistry of quinary structure and cellular organization, and we reinforce the idea that proteins should be studied in native-like media to achieve a faithful description of their function. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. The Endocannabinoid System Affects Myocardial Glucose Metabolism in the DOCA-Salt Model of Hypertension

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2018-03-01

    Full Text Available Background/Aims: Recent interest in the use of cannabinoids as therapeutic agents has revealed the involvement of the endogenous cannabinoid system (ECS in the regulation of the cardiovascular system in hypertension. Abnormalities in glucose metabolism and insulin action are commonly detected in hypertensive animals. Thus, potential antihypertensive drugs should be investigated with respect to modulation of glucose homeostasis. Therefore, the aim of the present study was to evaluate the effects of the ECS activation after chronic fatty acid amide hydrolase inhibitor (URB597 administration on plasma glucose and insulin concentrations as well as parameters of myocardial glucose metabolism in the deoxycorticosterone acetate (DOCA-salt hypertensive rats, an animal model of secondary hypertension. Methods: Hypertension was induced by DOCA (25mg/kg injections and addition of 1% NaCl in the drinking water for six weeks. Chronic activation of the ECS was performed by URB597 (1mg/kg injections for two weeks. We examined fasting plasma levels of insulin (ELISA, glucose and intramyocardial glycogen (colorimetric method. Expressions of glucose transporters (GLUT1, 4 and selected proteins engaged in GLUT translocation as well as glucose metabolism were determined using Western blotting. Results: Hypertension induced hypoinsulinemia with concomitant lack of significant changes in glycemia, reduced intramyocardial glycogen content and increased pyruvate dehydrogenase (PDH expression in the cardiac muscle. Importantly, chronic URB597 administration in the hypertensive rats increased insulin concentration, elevated plasmalemmal GLUT1 and GLUT4 expression and concomitantly improved myocardial glycogen storage. Conclusion: Chronic administration of fatty acid amide hydrolase (FAAH inhibitor has potential protective properties on myocardial glucose metabolism in hypertension.

  15. Concentration-Induced Association in a Protein System Caused by a Highly Directional Patch Attraction.

    Science.gov (United States)

    Li, Weimin; Persson, Björn A; Lund, Mikael; Bergenholtz, Johan; Zackrisson Oskolkova, Malin

    2016-09-01

    Self-association of the protein lactoferrin is studied in solution using small-angle X-ray scattering techniques. Effective static structure factors have been shown to exhibit either a monotonic or a nonmonotonic dependence on protein concentration in the small wavevector limit, depending on salt concentration. The behavior correlates with a nonmonotonic dependence of the second virial coefficient on salt concentration, such that a maximum appears in the structure factor at a low protein concentration when the second virial coefficient is negative and close to a minimum. The results are interpreted in terms of an integral equation theory with explicit dimers, formulated by Wertheim, which provides a consistent framework able to explain the behavior in terms of a monomer-dimer equilibrium that appears because of a highly directional patch attraction. Short attraction ranges preclude trimer formation, which explains why the protein system behaves as if it were subject to a concentration-dependent isotropic protein-protein attraction. Superimposing an isotropic interaction, comprising screened Coulomb repulsion and van der Waals attraction, on the patch attraction allows for a semiquantitative modeling of the complete transition pathway from monomers in the dilute limit to monomer-dimer systems at somewhat higher protein concentrations.

  16. The Monocarboxylate Transporter Inhibitor α-Cyano-4-Hydroxycinnamic Acid Disrupts Rat Lung Branching

    Directory of Open Access Journals (Sweden)

    Sara Granja

    2013-12-01

    Full Text Available Background/Aims: The human embryo develops in a hypoxic environment. In this way, cells have to rely on the glycolytic pathway for energy supply, leading to an intracellular accumulation of monocarboxylates such as lactate and pyruvate. These acids have an important role in cell metabolism and their rapid transport across the plasma membrane is crucial for the maintenance of intracellular pH homeostasis. This transport is mediated by a family of transporters, designated by monocarboxylate transporters (MCTs, namely isoforms 1 and 4. MCT1/4 expression is regulated by the ancillary protein CD147.The general aim of this study was to characterize the expression pattern of MCT1/4, CD147 and the glucose transporter GLUT1 during human fetal lung development and elucidate the role of MCTs in lung development. Methods: The expression pattern of MCT1/4 and GLUT1 was characterized by immunohistochemistry and fetal lung viability and branching were evaluated by exposing rat fetal lung explants to CHC, an inhibitor of MCT activity. Results: Our findings show that all the biomarkers are differently expressed during fetal lung development and that CHC appears to have an inhibitory effect on lung branching and viability, in a dose dependent way. Conclusion: We provide evidence for the role of MCTs in embryo lung development, however to prove the dependence of MCT activity further studies are waranted.

  17. Metabolisable protein supply to lactating dairy cows increased with increasing dry matter concentration in grass-clover silage

    DEFF Research Database (Denmark)

    Johansen, Marianne; Hellwing, Anne Louise Frydendahl; Lund, Peter

    2017-01-01

    The aim of this experiment was to study the effect of increased dry matter (DM) concentration in grass-clover silage, obtained by extending the pre-wilting period before ensiling, on the amount of metabolisable protein (MP) supplied to lactating dairy cows. Spring growth and first regrowth of grass...... and faeces, respectively, were collected over 94 h to cover the diurnal variation, pooled, and subsequently analysed. Rumen fluid was collected in same sampling procedure. To estimate the duodenal flow of microbial protein, microbes were isolated from the rumen and analysed for amino acids (AA) and purines...... flow of AA. The higher duodenal flow of AA derived from a lower rumen degradation of feed protein and a tendency towards a higher microbial synthesis in the rumen. Fibre digestibility and CH4 production were not affected by silage DM concentration. In conclusion, MP concentration in grass-clover silage...

  18. The effect of dietary protein on reproduction in the mare. II. Growth of foals, body mass of mares and serum protein concentration of mares during the anovulatory, transitional and pregnant periods

    Directory of Open Access Journals (Sweden)

    F.E. Van Niekerk

    1997-07-01

    Full Text Available The effect of 4 different diets, in terms of protein quantity and quality, on total serum protein (TSP, albumin and globulin was investigated. Non-pregnant mares that were not lactating (n = 36, pregnant mares that had foaled (n = 24 and their foals (n = 24 were used in this study. Daily total protein intake had no effect on blood protein concentrations in the mares. Total protein intake and quality (available essential amino-acids did affect the body mass of mares during lactation. When mares were fed the minimum recommended (National Research Council 1989 total daily protein, foal mass decreased by approximately 25 % at weaning compared to the foals whose dams were on a higher level of protein intake. The TSP concentrations of foals at birth were on average 10 g/ℓ lower than those of the mares. Albumin concentrations of foals during the first 60 days of life were on average 2-3 g/ℓ lower than those of the mares. Globulin concentrations of foals were approximately 5 g/ℓ lower than those of mares at weaning.

  19. Diagnostic Accuracy of Urine Protein/Creatinine Ratio Is Influenced by Urine Concentration

    Science.gov (United States)

    Yang, Chih-Yu; Chen, Fu-An; Chen, Chun-Fan; Liu, Wen-Sheng; Shih, Chia-Jen; Ou, Shuo-Ming; Yang, Wu-Chang; Lin, Chih-Ching; Yang, An-Hang

    2015-01-01

    Background The usage of urine protein/creatinine ratio to estimate daily urine protein excretion is prevalent, but relatively little attention has been paid to the influence of urine concentration and its impact on test accuracy. We took advantage of 24-hour urine collection to examine both urine protein/creatinine ratio (UPCR) and daily urine protein excretion, with the latter as the reference standard. Specific gravity from a concomitant urinalysis of the same urine sample was used to indicate the urine concentration. Methods During 2010 to 2014, there were 540 adequately collected 24h urine samples with protein concentration, creatinine concentration, total volume, and a concomitant urinalysis of the same sample. Variables associated with an accurate UPCR estimation were determined by multivariate linear regression analysis. Receiver operating characteristic (ROC) curves were generated to determine the discriminant cut-off values of urine creatinine concentration for predicting an accurate UPCR estimation in either dilute or concentrated urine samples. Results Our findings indicated that for dilute urine, as indicated by a low urine specific gravity, UPCR is more likely to overestimate the actual daily urine protein excretion. On the contrary, UPCR of concentrated urine is more likely to result in an underestimation. By ROC curve analysis, the best cut-off value of urine creatinine concentration for predicting overestimation by UPCR of dilute urine (specific gravity ≦ 1.005) was ≦ 38.8 mg/dL, whereas the best cut-off values of urine creatinine for predicting underestimation by UPCR of thick urine were ≧ 63.6 mg/dL (specific gravity ≧ 1.015), ≧ 62.1 mg/dL (specific gravity ≧ 1.020), ≧ 61.5 mg/dL (specific gravity ≧ 1.025), respectively. We also compared distribution patterns of urine creatinine concentration of 24h urine cohort with a concurrent spot urine cohort and found that the underestimation might be more profound in single voided samples

  20. Diagnostic Accuracy of Urine Protein/Creatinine Ratio Is Influenced by Urine Concentration.

    Science.gov (United States)

    Yang, Chih-Yu; Chen, Fu-An; Chen, Chun-Fan; Liu, Wen-Sheng; Shih, Chia-Jen; Ou, Shuo-Ming; Yang, Wu-Chang; Lin, Chih-Ching; Yang, An-Hang

    2015-01-01

    The usage of urine protein/creatinine ratio to estimate daily urine protein excretion is prevalent, but relatively little attention has been paid to the influence of urine concentration and its impact on test accuracy. We took advantage of 24-hour urine collection to examine both urine protein/creatinine ratio (UPCR) and daily urine protein excretion, with the latter as the reference standard. Specific gravity from a concomitant urinalysis of the same urine sample was used to indicate the urine concentration. During 2010 to 2014, there were 540 adequately collected 24h urine samples with protein concentration, creatinine concentration, total volume, and a concomitant urinalysis of the same sample. Variables associated with an accurate UPCR estimation were determined by multivariate linear regression analysis. Receiver operating characteristic (ROC) curves were generated to determine the discriminant cut-off values of urine creatinine concentration for predicting an accurate UPCR estimation in either dilute or concentrated urine samples. Our findings indicated that for dilute urine, as indicated by a low urine specific gravity, UPCR is more likely to overestimate the actual daily urine protein excretion. On the contrary, UPCR of concentrated urine is more likely to result in an underestimation. By ROC curve analysis, the best cut-off value of urine creatinine concentration for predicting overestimation by UPCR of dilute urine (specific gravity ≦ 1.005) was ≦ 38.8 mg/dL, whereas the best cut-off values of urine creatinine for predicting underestimation by UPCR of thick urine were ≧ 63.6 mg/dL (specific gravity ≧ 1.015), ≧ 62.1 mg/dL (specific gravity ≧ 1.020), ≧ 61.5 mg/dL (specific gravity ≧ 1.025), respectively. We also compared distribution patterns of urine creatinine concentration of 24h urine cohort with a concurrent spot urine cohort and found that the underestimation might be more profound in single voided samples. The UPCR in samples with low

  1. Influence of energy concentration and source on the utilization of feed protein and NPN in lambs. 3

    International Nuclear Information System (INIS)

    Ulbrich, M.; Geissler, C.; Bassuny, S.M.; Borowiec, F.; Hoffmann, M.

    1989-01-01

    In an N balance experiment with male crossbreeding lambs at an age of 3-4 months four different rations were given differing in energy concentration (high > 700 EFU cattle /kg DM and low cattle /kg DM) and in the energy source (sugar, starch or crude fibre) with crude protein intake being almost equal. The rations contained 2% urea. Microbial protein synthesis in the rumen was assessed according to Roth and Kichgessner (1978) (1), Rys et al. (1975) (2) and Bickel-Baumann and Landis (1986) (3) on the basis of allantoin excretion in urine. The highest ruminal protein synthesis quotas were 868-921 mg protein N per kg LW 0.75 in (2). In (3) 723-766 mg protein N/kg LW 0.75 were synthesized. From the 15 N labelling of the supplemented urea and the excreted allantoin it could be calculated that 26-40% of the microbial protein resulted from the urea-N of the ration. Despite a high crude protein content of the ration of between 16 and 17% in the DM and a relation of NPN: pure protein of 0.95 the utilization of the NPN in the ration was relatively high but slightly lower than the utilization of pure protein. The variants with higher energy concentration showed as a tendency higher allantoin excretion in spite of slightly lower dry matter intake and a slightly higher NPN utilization than the variants with lower energy concentration. (author)

  2. d-Fructose Modification Enhanced Internalization of Mixed Micelles in Breast Cancer Cells via GLUT5 Transporters.

    Science.gov (United States)

    Zhou, Xu; Qin, Xianyan; Gong, Tao; Zhang, Zhi-Rong; Fu, Yao

    2017-07-01

    d-Fructose modified poly(ε-caprolactone)-polyethylene glycol (PCL-PEG-Fru) diblock amphiphile is synthesized via Cu(I)-catalyzed click chemistry, which self-assembles with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) into PCL-PEG-Fru/TPGS mixed micelles (PPF MM). It has been proven that glucose transporter (GLUT)5 is overexpressed in MCF-7 cells other than L929 cells. In this study, PPF MM exhibit a significantly higher uptake efficiency than fructose-free PCL-PEG-N 3 /TPGS mixed micelles in both 2D MCF-7 cells and 3D tumor spheroids. Also, the presence of free d-fructose competitively inhibits the internalization of PPF MM in MCF-7 cells other than L929 cells. PPF MM show selective tumor accumulation in MCF-7 breast tumor bearing mice xenografts. Taken together, PPF MM represent a promising nanoscale carrier system to achieve GLUT5-mediated cell specific delivery in cancer therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Decreased serum glucose and glycosylated hemoglobin levels in patients with Chuvash polycythemia: a role for HIF in glucose metabolism

    Science.gov (United States)

    McClain, Donald A.; Abuelgasim, Khadega A.; Nouraie, Mehdi; Salomon-Andonie, Juan; Niu, Xiaomei; Miasnikova, Galina; Polyakova, Lydia A.; Sergueeva, Adelina; Okhotin, Daniel J.; Cherqaoui, Rabia; Okhotin, David; Cox, James E.; Swierczek, Sabina; Song, Jihyun; Simon, M.Celeste; Huang, Jingyu; Simcox, Judith A.; Yoon, Donghoon; Prchal, Josef T.; Gordeuk, Victor R.

    2012-01-01

    In Chuvash polycythemia, a homozygous 598C>T mutation in the von Hippel-Lindau gene (VHL) leads to an R200W substitution in VHL protein, impaired degradation of α-subunits of hypoxia inducible factor (HIF)-1 and HIF-2, and augmented hypoxic responses during normoxia. Chronic hypoxia of high altitude is associated with decreased serum glucose and insulin concentrations. Other investigators reported that HIF-1 promotes cellular glucose uptake by increased expression of GLUT1 and increased glycolysis by increased expression of enzymes such as PDK. On the other hand, inactivation of Vhl in murine liver leads to hypoglycemia associated with a HIF-2-related decrease in the expression of the gluconeogenic enzymes genes Pepck, G6pc, and Glut2. We therefore hypothesized that glucose concentrations are decreased in individuals with Chuvash polycythemia. We found that 88 Chuvash VHLR200W homozygotes had lower random glucose and glycosylated hemoglobin A1c levels than 52 Chuvash subjects with wildtype VHL alleles. Serum metabolomics revealed higher glycerol and citrate levels in the VHLR200W homozygotes. We expanded these observations in VHLR200W homozygote mice and found that they had lower fasting glucose values and lower glucose excursions than wild-type control mice but no change in fasting insulin concentrations. Hepatic expression of Glut2 and G6pc but not Pdk2 was decreased and skeletal muscle expression of Glut1, Pdk1 and Pdk4 was increased. These results suggest that both decreased hepatic gluconeogenesis and increased skeletal uptake and glycolysis contribute to the decreased glucose concentrations. Further study is needed to determine whether pharmacologically manipulating HIF expression might be beneficial for treatment of diabetic patients. PMID:23015148

  4. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression

    International Nuclear Information System (INIS)

    Kim, Hyo-Sup; Noh, Jung-Hyun; Hong, Seung-Hyun; Hwang, You-Cheol; Yang, Tae-Young; Lee, Myung-Shik; Kim, Kwang-Won; Lee, Moon-Kyu

    2008-01-01

    Peroxisome proliferator-activated receptor (PPAR)-γ is a member of the nuclear receptor superfamily, and its ligands, the thiazolidinediones, might directly stimulate insulin release and insulin synthesis in pancreatic β-cells. In the present study, we examined the effects of rosiglitazone (RGZ) on insulin release and synthesis in pancreatic β-cell (INS-1). Insulin release and synthesis were stimulated by treatment with RGZ for 24 h. RGZ upregulated the expressions of GLUT-2 and glucokinase (GCK). Moreover, it was found that RGZ increased the expression of BETA2/NeuroD gene which could regulate insulin gene expression. These results suggest that RGZ could stimulate the release and synthesis of insulin through the upregulation of GLUT-2, GCK, and BETA2/NeuroD gene expression

  5. Ground level environmental protein concentrations in various ecuadorian environments: potential uses of aerosolized protein for ecological research

    Science.gov (United States)

    Staton, Sarah J.R.; Woodward, Andrea; Castillo, Josemar A.; Swing, Kelly; Hayes, Mark A.

    2014-01-01

    Large quantities of free protein in the environment and other bioaerosols are ubiquitous throughout terrestrial ground level environments and may be integrative indicators of ecosystem status. Samples of ground level bioaerosols were collected from various ecosystems throughout Ecuador, including pristine humid tropical forest (pristine), highly altered secondary humid tropical forest (highly altered), secondary transitional very humid forest (regrowth transitional), and suburban dry montane deforested (suburban deforested). The results explored the sensitivity of localized aerosol protein concentrations to spatial and temporal variations within ecosystems, and their value for assessing environmental change. Ecosystem specific variations in environmental protein concentrations were observed: pristine 0.32 ± 0.09 μg/m3, highly altered 0.07 ± 0.05 μg/m3, regrowth transitional 0.17 ± 0.06 μg/m3, and suburban deforested 0.09 ± 0.04 μg/m3. Additionally, comparisons of intra-environmental differences in seasonal/daily weather (dry season 0.08 ± 0.03 μg/m3 and wet season 0.10 ± 0.04 μg/m3), environmental fragmentation (buffered 0.19 ± 0.06 μg/m3 and edge 0.15 ± 0.06 μg/m3), and sampling height (ground level 0.32 ± 0.09 μg/m3 and 10 m 0.24 ± 0.04 μg/m3) demonstrated the sensitivity of protein concentrations to environmental conditions. Local protein concentrations in altered environments correlated well with satellite-based spectral indices describing vegetation productivity: normalized difference vegetation index (NDVI) (r2 = 0.801), net primary production (NPP) (r2 = 0.827), leaf area index (LAI) (r2 = 0.410). Moreover, protein concentrations distinguished the pristine site, which was not differentiated in spectral indices, potentially due to spectral saturation typical of highly vegetated environments. Bioaerosol concentrations represent an inexpensive method to increase understanding of environmental changes, especially in densely vegetated

  6. The elution of certain protein affinity tags with millimolar concentrations of diclofenac.

    Science.gov (United States)

    Baliova, Martina; Juhasova, Anna; Jursky, Frantisek

    2015-12-01

    Diclofenac (2-[(2, 6-dichlorophenyl)amino] benzeneacetic acid) is a sparingly soluble, nonsteroidal anti-inflammatory drug therapeutically acting at low micromolar concentrations. In pH range from 8 to 11, its aqueous solubility can be increased up to 200 times by the presence of counter ions such as sodium. Our protein interaction studies revealed that a millimolar concentration of sodium diclofenac is able to elute glutathione S-transferase (GST), cellulose binding protein (CBD), and maltose binding protein (MBP) but not histidine-tagged or PDZ-tagged proteins from their affinity resins. The elution efficiency of diclofenac is comparable with the eluting agents normally used at similar concentrations. Native gel electrophoresis of sodium diclofenac-treated proteins showed that the interaction is non-covalent and non-denaturing. These results suggest that sodium diclofenac, in addition to its pharmaceutical applications, can also be exploited as a lead for the development of new proteomics reagents. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Eugenosedin-A improves glucose metabolism and inhibits MAPKs expression in streptozotocin/nicotinamide-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Kuo-Ping Shen

    2018-03-01

    Full Text Available This study examined the effects of eugenosedin-A (Eu-A in a streptozotocin (STZ/nicotinamide-induced rat model of type II diabetes mellitus (T2DM. Six-week-old Sprague–Dawley rats were randomly divided into three groups: (1 RD group, normal rats fed a regular diet (RD, (2 DM group, T2DM rats fed a high-fat diet, and (3 Eu-A group, T2DM rats fed a high fat diet plus oral Eu-A (5 mg/kg/day. After 30 days, the DM group had higher body weight, higher blood glucose and lower insulin levels than the RD group. The DM group also had increased protein expression of glycogen synthase kinase (GSK in liver and skeletal muscle and decreased protein expression of insulin receptor (IR, insulin receptor substrate-1 (IRS-1, IRS-2, AMP-activated protein kinase (AMPK, glucose transporter-4 (GLUT-4, glucokinase (GCK, and peroxisome proliferator-activated receptor γ (PPAR-γ. STZ/nicotinamide-induced T2DM increased the expression of mitogen-activated protein kinases (MAPKs: p38, ERK, JNK and inflammatory p65 protein. In the Eu-A treated T2DM rats, however, blood glucose was attenuated and the insulin concentration stimulated. Changes in IR, IRS-1 and IRS-2 proteins as well as AMPK, GLUT-4, GCK, GSK, PPAR-γ, MAPKs, and inflammatory p65 proteins were ameliorated. These results suggested that Eu-A alleviates STZ/nicotinamide-induced hyperglycemia by improving insulin levels and glucose metabolism, and inhibiting the MAPKs- and p65-mediated inflammatory pathway.

  8. Enhanced Temperature During Grain Filling Reduces Protein Concentration of Durum Wheat

    Directory of Open Access Journals (Sweden)

    Franco Miglietta

    2011-02-01

    Full Text Available Durum wheat is cultivated over more than 13 millions of hectares (ha world wide and Italy is the main European producer with 3.5 millions tons per year. The protein concentration of durum wheat is very important, it ensures high nutritional value and is highly appreciated by the pasta production industries. The protein concentration of wheat is determined during the grain filling period when carbon and nitrogen compounds are translocated into the grains. Air temperature affects translocation rates and contributes to final protein concentration of wheat grains. Two common commercial varieties of durum and bread wheat were exposed from anthesis to harvest, to a source of infrared radiation in the field. This allowed to investigate the relative effect of temperature on translocation of carbon and nitrogen compound during grain filling. The heat treatment imposed affected marginally dry mass accumulation of the grains in bread wheat and didn’t affect dry mass in durum wheat. Grain protein was affected by heat treatment in durum but not in bread wheat. Carbon accumulation rate was higher for durum than for bread wheat. The protein concentration was greater in durum than in bread wheat and we can assume that the absolute nitrogen accumulation rates were higher for the former species. Such difference may be either caused by a faster nitrogen uptake rate and translocation or a more efficient relocation of nitrogen accumulated in reserve organs.

  9. Increase in local protein concentration by field-inversion gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Paulus Aran

    2007-09-01

    Full Text Available Abstract Background Proteins that migrate through cross-linked polyacrylamide gels (PAGs under the influence of a constant electric field experience negative factors, such as diffusion and non-specific trapping in the gel matrix. These negative factors reduce protein concentrations within a defined gel volume with increasing migration distance and, therefore, decrease protein separation efficiency. Enhancement of protein separation efficiency was investigated by implementing pulsed field-inversion gel electrophoresis (FIGE. Results Separation of model protein species and large protein complexes was compared between FIGE and constant field electrophoresis (CFE in different percentages of PAGs. Band intensities of proteins in FIGE with appropriate ratios of forward and backward pulse times were superior to CFE despite longer running times. These results revealed an increase in band intensity per defined gel volume. A biphasic protein relative mobility shift was observed in percentages of PAGs up to 14%. However, the effect of FIGE on protein separation was stochastic at higher PAG percentage. Rat liver lysates subjected to FIGE in the second-dimension separation of two-dimensional polyarcylamide gel electrophoresis (2D PAGE showed a 20% increase in the number of discernible spots compared with CFE. Nine common spots from both FIGE and CFE were selected for peptide sequencing by mass spectrometry (MS, which revealed higher final ion scores of all nine protein spots from FIGE. Native protein complexes ranging from 800 kDa to larger than 2000 kDa became apparent using FIGE compared with CFE. Conclusion The present investigation suggests that FIGE under appropriate conditions improves protein separation efficiency during PAGE as a result of increased local protein concentration. FIGE can be implemented with minimal additional instrumentation in any laboratory setting. Despite the tradeoff of longer running times, FIGE can be a powerful protein

  10. Increase in local protein concentration by field-inversion gel electrophoresis.

    Science.gov (United States)

    Tsai, Henghang; Low, Teck Yew; Freeby, Steve; Paulus, Aran; Ramnarayanan, Kalpana; Cheng, Chung-Pui Paul; Leung, Hon-Chiu Eastwood

    2007-09-26

    Proteins that migrate through cross-linked polyacrylamide gels (PAGs) under the influence of a constant electric field experience negative factors, such as diffusion and non-specific trapping in the gel matrix. These negative factors reduce protein concentrations within a defined gel volume with increasing migration distance and, therefore, decrease protein separation efficiency. Enhancement of protein separation efficiency was investigated by implementing pulsed field-inversion gel electrophoresis (FIGE). Separation of model protein species and large protein complexes was compared between FIGE and constant field electrophoresis (CFE) in different percentages of PAGs. Band intensities of proteins in FIGE with appropriate ratios of forward and backward pulse times were superior to CFE despite longer running times. These results revealed an increase in band intensity per defined gel volume. A biphasic protein relative mobility shift was observed in percentages of PAGs up to 14%. However, the effect of FIGE on protein separation was stochastic at higher PAG percentage. Rat liver lysates subjected to FIGE in the second-dimension separation of two-dimensional polyarcylamide gel electrophoresis (2D PAGE) showed a 20% increase in the number of discernible spots compared with CFE. Nine common spots from both FIGE and CFE were selected for peptide sequencing by mass spectrometry (MS), which revealed higher final ion scores of all nine protein spots from FIGE. Native protein complexes ranging from 800 kDa to larger than 2000 kDa became apparent using FIGE compared with CFE. The present investigation suggests that FIGE under appropriate conditions improves protein separation efficiency during PAGE as a result of increased local protein concentration. FIGE can be implemented with minimal additional instrumentation in any laboratory setting. Despite the tradeoff of longer running times, FIGE can be a powerful protein separation tool.

  11. Evaluation of energy status of dairy cows using milk fat, protein and urea concentrations

    Directory of Open Access Journals (Sweden)

    Kirovski Danijela

    2011-11-01

    Full Text Available Energy status of dairy cows may be estimated using results for concentrations of fat, protein and urea (MUN in milk samples obtained from bulk tank or individual cows. Using individual cow milk samples is recommended on dairy farms in our geografical region due to the unhomogenity of cows in the herds in respect to their genetic potential for milk production. Depression of milk fat occurs as a consequence of heat stress, underfeeding of peripartal cows, overfeeding concentrate with reduced ration fiber levels or overfeeding with dietary fat. High milk fat content is usually combined with severe negative energy balance. Nutrition and feeding practices have great impact on milk protein level. A deficiency of crude protein in the ration may depress protein in milk. Feeding excessive dietary protein does not significantly increase milk protein. MUN analyses point out potential problems in feeding program on dairy farm. High MUN values may reflect excessive dietary crude protein and/or low rumen degradable non fiber carbohydrates intake. Also, MUN levels is impacted by heat stress since its value is increased during the summer season. Low MUNs indicate a possible dietary protein deficiency. Additionally, low MUNs concentration may indicate excess in dietary nonstructural carbohydrates. On the bases on the interrelationships between protein and urea concentrations, as well as protein and fat concentrations in individual milk sample, estimation of energy balance of dairy cows may be done more accurately.

  12. Role of the water extract from Coccinia indica stem on the stimulation of glucose transport in L8 myotubes

    Directory of Open Access Journals (Sweden)

    Chaweewan Jansakul

    2006-11-01

    Full Text Available Hypoglycemic effect of Coccinia indica used for treatment of diabetes in traditional remedies has known to relate with increased transport of glucose into peripheral tissues. However, the cellular mechanisms for this effect remain unclear. This present study reports that the water extract (WE of C. indica stem exhibited a dose-dependent induction of 2-deoxyglucose (2-DG uptake in rat L8 myotubes. Maximal uptake was observed with approximately 3-fold increase in 2-DG transport in 16 h treatment compared with the control. Effect of WE was stronger than that of 1 mM metformin. The effects of insulin and WE were additive. WE-induced glucose uptake was significantly inhibited by cycloheximide and partially reversed by SB203580. GLUT1 protein was markedly increased in response to WE. Conversely, WE had no effect on GLUT4 protein level. Redistribution of GLUT4 to the plasma membrane was demonstrated. Triterpenoids and carbohydrates were detected in WE. In conclusion, new GLUT1 protein synthesis is necessary for WEstimulated glucose transport while p38-MAPK-dependent activation of transporter intrinsic activity partly contributes to WE action. These results may explain and support the use of C. indica for the prevention and treatment of diabetes.

  13. Turkish Tombul hazelnut (Corylus avellana L.) protein concentrates: functional and rheological properties.

    Science.gov (United States)

    Tatar, F; Tunç, M T; Kahyaoglu, T

    2015-02-01

    Turkish Tombul hazelnut consumed as natural or processed forms were evaluated to obtain protein concentrate. Defatted hazelnut flour protein (DHFP) and defatted hazelnut cake protein (DHCP) were produced from defatted hazelnut flour (DHF) and defatted hazelnut cake (DHC), respectively. The functional properties (protein solubility, emulsifying properties, foaming capacity, and colour), and dynamic rheological characteristics of protein concentrates were measured. The protein contents of samples varied in the range of 35-48 % (w/w, db) and 91-92 % (w/w, db) for DHF/DHC and DHFP/DHCP samples, respectively. The significant difference for water/fat absorption capacity, emulsion stability between DHF and DHC were determined. On the other hand, the solubility and emulsion activity of DHF and DHC were not significantly different (p > 0.05). Emulsion stability of DHFP (%46) was higher than that of DHCP (%35) but other functional properties were found similar. According to these results, the DHCP could be used as DHFP in food product formulations. The DHFP and DHCP samples showed different apparent viscosity at the same temperature and concentration, the elastic modulus (G' value) of DHPC was also found higher than that of DHFP samples.

  14. Serum acute phase protein concentrations in female dogs with mammary tumors.

    Science.gov (United States)

    Tecles, Fernando; Caldín, Marco; Zanella, Anna; Membiela, Francisco; Tvarijonaviciute, Asta; Subiela, Silvia Martínez; Cerón, José Joaquín

    2009-03-01

    Acute phase proteins (APPs) are proteins whose concentrations in serum change after any inflammatory stimulus or tissue damage. The aim of the current study was to evaluate 3 positive APPs (C-reactive protein, serum amyloid A, and haptoglobin) and 1 negative APP (albumin) in female dogs with mammary neoplasia. Acute phase proteins were studied in 70 female dogs aged 8-12 years in the following groups: healthy (n = 10); mammary tumors in stages I (n = 19), II (n = 5), III (n = 6), IV (n = 5), and V (n = 7); and with mammary neoplasia plus a concomitant disease (n = 18). In animals with mammary neoplasia, significant increases of positive APPs were only detected in those that had metastasis or a neoplasm with a diameter greater than 5 cm and ulceration. Dogs with mammary neoplasia and a concomitant disease also had high C-reactive protein concentrations. Albumin concentration was decreased in animals with metastasis and with a concomitant disease. The results of the present study indicate that the acute phase response could be stimulated in female dogs with mammary gland tumors because of different factors, such as metastasis, large size of the primary mass, and ulceration or secondary inflammation of the neoplasm.

  15. Microfibrillar-associated protein 4

    DEFF Research Database (Denmark)

    Johansson, Sofie Lock; Roberts, Nassim Bazeghi; Schlosser, Anders

    2014-01-01

    BACKGROUND: Microfibrillar-associated protein 4 (MFAP4) is a matricellular glycoprotein that co-localises with elastic fibres and is highly expressed in the lungs. The aim of this study was to test the hypothesis that plasma MFAP4 (pMFAP4) reflects clinical outcomes in chronic obstructive pulmonary...

  16. Determination of serum free thyroxine concentration (FT4) by means of fT4-fraction and total thyroxine concentration

    International Nuclear Information System (INIS)

    Passath, A.; Leb, G.

    1985-01-01

    A new equilibrium assay for the determination of serum free thyroxine was evaluated in 514 patients. The assay comprises a two-vial-procedure to measure total thyroxine and free thyroxine fraction by use of monoclonal antibodies. Free thyroxine concentrations are calculated from fT 4 -fraction and total thyroxine concentration readings. In euthyroidism the average free thyroxine fraction (%fT 4 ) was 0.011%, in hyperthyroidism this fraction was elevated, in hypothyroidism it was below normal. In patients with TBG anomalies, TBG values were inversely correlated with fT 4 fraction readings. The 'euthyroid reference range' of FT 4 (SPAC ET) was between 0.70 to 1.78ng/dl. This euthyroid range of FT 4 was determined from TT 4 concentrations measured by T 4 -RIA (SPAC T 4 MONO) which were 30% above TT 4 values measured by conventional T 4 -RIA (SPAC T 4 POLY; polyclonal antibodies). However, a different euthyroid range of FT 4 between 0.55 to 1.30 ng/dl was observed as well as by other investigators when conventional T 4 -RIA measurements were used for calculation of FT 4 values. Our results indicate that calculated FT 4 concentration values are highly dependent on the methods used for determination of total thyroxine concentrations. Precision and reproducability of this two vial equilibrium assay did not meet the requirements mandatory for the application as a clinical routine diagnostic procedure, and its general use for this purpose can as yet not be recommended. (Author)

  17. Amino Acid Composition of an Organic Brown Rice Protein Concentrate and Isolate Compared to Soy and Whey Concentrates and Isolates.

    Science.gov (United States)

    Kalman, Douglas S

    2014-06-30

    A protein concentrate (Oryzatein-80™) and a protein isolate (Oryzatein-90™) from organic whole-grain brown rice were analyzed for their amino acid composition. Two samples from different batches of Oryzatein-90™ and one sample of Oryzatein-80™ were provided by Axiom Foods (Los Angeles, CA, USA). Preparation and analysis was carried out by Covance Laboratories (Madison, WI, USA). After hydrolysis in 6-N hydrochloric acid for 24 h at approximately 110 °C and further chemical stabilization, samples were analyzed by HPLC after pre-injection derivitization. Total amino acid content of both the isolate and the concentrate was approximately 78% by weight with 36% essential amino acids and 18% branched-chain amino acids. These results are similar to the profiles of raw and cooked brown rice except in the case of glutamic acid which was 3% lower in the isolate and concentrate. The amino acid content and profile of the Oryzatein-90™ isolate was similar to published values for soy protein isolate but the total, essential, and branched-chain amino acid content of whey protein isolate was 20%, 39% and 33% greater, respectively, than that of Oryzatein-90™. These results provide a valuable addition to the nutrient database of protein isolates and concentrates from cereal grains.

  18. Stromal Expression of Hypoxia Regulated Proteins Is an Adverse Prognostic Factor in Colorectal Carcinomas

    Directory of Open Access Journals (Sweden)

    Arjen H. G. Cleven

    2007-01-01

    Full Text Available Background: Hypoxia modifies the phenotype of tumors in a way that promotes tumor aggressiveness and resistance towards chemotherapy and radiotherapy. However, the expression and influence of hypoxia-regulated proteins on tumor biology are not well characterized in colorectal tumors. We studied the role of protein expression of hypoxia-inducible factor (HIF-1α, HIF-2α, carbonic anhydrase 9 (CA9 and glucose transporter 1 (GLUT1 in patients with colorectal adenocarcinomas. Methods: Expression of HIF-1α, HIF-2α, CA9 and GLUT1 was quantified by immunohistochemistry in 133 colorectal adenocarcinomas. The expression of hypoxia markers was correlated with clinicopathological variables and overall patient survival. Results: Expression of these hypoxia markers was detected in the epithelial compartment of the tumor cells as well as in tumor-associated stromal cells. Although tumor cells frequently showed expression of one or more of the investigated hypoxia markers, no correlation among these markers or with clinical response was found. However, within the tumor stroma, positive correlations between the hypoxia markers HIF-2α, CA9 and GLUT1 were observed. Furthermore expression of HIF-2α and CA9 in tumor-associated stroma were both associated with a significantly reduced overall survival. In the Cox proportional hazard model, stromal HIF-2α expression was an independent prognostic factor for survival. Conclusion: These observations show, that expression of hypoxia regulated proteins in tumor-associated stromal cells, as opposed to their expression in epithelial tumor cells, is associated with poor outcome in colorectal cancer. This study suggests that tumor hypoxia may influence tumor-associated stromal cells in a way that ultimately contributes to patient prognosis.

  19. Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate.

    Science.gov (United States)

    Ye, Aiqian

    2008-10-15

    The interfacial composition and the stability of oil-in-water emulsion droplets (30% soya oil, pH 7.0) made with mixtures of sodium caseinate and whey protein concentrate (WPC) (1:1 by protein weight) at various total protein concentrations were examined. The average volume-surface diameter (d32) and the total surface protein concentration of emulsion droplets were similar to those of emulsions made with both sodium caseinate alone and WPC alone. Whey proteins were adsorbed in preference to caseins at low protein concentrations (caseins were adsorbed in preference to whey proteins at high protein concentrations. The creaming stability of the emulsions decreased markedly as the total protein concentration of the system was increased above 2% (sodium caseinate >1%). This was attributed to depletion flocculation caused by the sodium caseinate in these emulsions. Whey proteins did not retard this instability in the emulsions made with mixtures of sodium caseinate and WPC. Copyright © 2008 Elsevier Ltd. All rights reserved.

  20. Effect of in vivo injection of cholera and pertussis toxin on glucose transport in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Han, X; Petersen, L N

    1997-01-01

    Cholera toxin (CTX) and pertussis toxin (PTX) were examined for their ability to inhibit glucose transport in perfused skeletal muscle. Twenty-five hours after an intravenous injection of CTX, basal transport was decreased approximately 30%, and insulin- and contraction-stimulated transport...... in GLUT-1 protein content was found. In contrast, GLUT-4 mRNA was unchanged, but transcripts for GLUT-1 were increased > or = 150% in all three muscles from CTX-treated rats. The findings suggest that CTX via increased cAMP impairs basal as well as insulin- and contraction-stimulated muscle glucose...

  1. Influence of different levels of concentrate and ruminally undegraded protein on digestive variables in beef heifers.

    Science.gov (United States)

    Pina, D S; Valadares Filho, S C; Tedeschi, L O; Barbosa, A M; Valadares, R F D

    2009-03-01

    This experiment evaluated the effect of 2 levels of diet concentrate (20 and 40% of DM) and 2 levels of ruminally undegraded protein (RUP: 25 and 40% of CP) on nutrient intake, total and partial apparent nutrient digestibility, microbial protein synthesis, and ruminal and physiological variables. Eight Nellore heifers (233 +/- 14 kg of BW) fitted with ruminal, abomasal, and ileal cannulas were used. The animals were held in individual sheltered pens of approximately 15 m(2) and fed twice daily at 0800 and 1600 h for ad libitum intake. Heifers were allocated in two 4 x 4 Latin square designs, containing 8 heifers, 4 experimental periods, and 4 treatments in a 2 x 2 factorial arrangement. All statistical analyses were performed using PROC MIXED of SAS. Titanium dioxide (TiO(2)) and chromic oxide (Cr(2)O(3)) were used to estimate digesta fluxes and fecal excretion. Purine derivative (PD) excretion and abomasal purine bases were used to estimate the microbial N (MN) synthesis. No significant interaction (P > 0.10) between dietary levels of RUP and concentrate was observed. There was no effect of treatment (P = 0.24) on DMI. Both markers led to the same estimates of fecal, abomasal, and ileal DM fluxes, and digestibilities of DM and individual nutrients. Ruminal pH was affected by sampling time (P RUP, whereas a quadratic effect (P RUP. The higher level of dietary concentrate led to greater MN yield regardless of the level of RUP. The MN yield and the efficiency of microbial yield estimated from urinary PD excretion produced greater (P RUP and concentrate were observed for ruminal and digestive parameters. Neither RUP nor concentrate level affected DMI. Titanium dioxide showed to be similar to Cr(2)O(3) as an external marker to measure digestibility and nutrient fluxes in cattle.

  2. Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates.

    Science.gov (United States)

    Cadesky, Lee; Walkling-Ribeiro, Markus; Kriner, Kyle T; Karwe, Mukund V; Moraru, Carmen I

    2017-09-01

    Reconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses. The experimental data clearly indicate pressure-induced changes of casein micelles, as well as denaturation of serum proteins. Calcium-binding α S1 - and α S2 -casein levels increased in the soluble phase after all pressure treatments. Pressurization up to 350 MPa also increased levels of soluble calcium and phosphorus, in all samples and concentrations, whereas treatment at 450 MPa reduced the levels of soluble Ca and P. Experimental data suggest dissociation of calcium phosphate and subsequent casein micelle destabilization as a result of pressure treatment. Treatment of 10% micellar casein concentrate and 10% milk protein concentrate samples at 450 MPa resulted in weak, physical gels, which featured aggregates of uniformly distributed, casein substructures of 15 to 20 nm in diameter. Serum proteins were significantly denatured by pressures above 250 MPa. These results provide information on pressure-induced changes in high-concentration protein systems, and may inform the development on new milk protein-based foods with novel textures and potentially high nutritional quality, of particular interest being the soft gel structures formed at high pressure levels. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  3. AMP-activated protein kinase-mediated glucose transport as a novel target of tributyltin in human embryonic carcinoma cells.

    Science.gov (United States)

    Yamada, Shigeru; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2013-05-01

    Organotin compounds such as tributyltin (TBT) are known to cause various forms of cytotoxicity, including developmental toxicity and neurotoxicity. However, the molecular target of the toxicity induced by nanomolar levels of TBT has not been identified. In the present study, we found that exposure to 100 nM TBT induced growth arrest in human pluripotent embryonic carcinoma cell line NT2/D1. Since glucose provides metabolic energy, we focused on the glycolytic system. We found that exposure to TBT reduced the levels of both glucose-6-phosphate and fructose-6-phosphate. To investigate the effect of TBT exposure on glycolysis, we examined glucose transporter (GLUT) activity. TBT exposure inhibited glucose uptake via a decrease in the level of cell surface-bound GLUT1. Furthermore, we examined the effect of AMP-activated protein kinase (AMPK), which is known to regulate glucose transport by facilitating GLUT translocation. Treatment with the potent AMPK activator, AICAR, restored the TBT-induced reduction in cell surface-bound GLUT1 and glucose uptake. In conclusion, these results suggest that exposure to nanomolar levels of TBT causes growth arrest by targeting glycolytic systems in human embryonic carcinoma cells. Thus, understanding the energy metabolism may provide new insights into the mechanisms of metal-induced cytotoxicity.

  4. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation.

    Science.gov (United States)

    Hou, Furong; Ding, Wenhui; Qu, Wenjuan; Oladejo, Ayobami Olayemi; Xiong, Feng; Zhang, Weiwei; He, Ronghai; Ma, Haile

    2017-03-01

    This study evaluated the nutrient property and safety of the rice residue protein isolates (RRPI) product (extracted by different alkali concentrations) by exploring the protein functional, structural properties and lysinoalanine (LAL) formation. The results showed that with the rising of alkali concentration from 0.03M to 0.15M, the solubility, emulsifying and foaming properties of RRPI increased at first and then descended. When the alkali concentration was greater than 0.03M, the RRPI surface hydrophobicity decreased and the content of thiol and disulfide bond, Lys and Cys significantly reduced. By the analysis of HPLC, the content of LAL rose up from 276.08 to 15,198.07mg/kg and decreased to 1340.98mg/kg crude protein when the alkali concentration increased from 0.03 to 0.09M and until to 0.15M. These results indicated that RRPI alkaline extraction concentration above 0.03M may cause severe nutrient or safety problems of protein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Antenatal corticosteroids alter insulin signaling pathways in fetal baboon skeletal muscle.

    Science.gov (United States)

    Blanco, Cynthia L; Moreira, Alvaro G; McGill-Vargas, Lisa L; Anzueto, Diana G; Nathanielsz, Peter; Musi, Nicolas

    2014-05-01

    We hypothesize that prenatal exposure to glucocorticoids (GCs) negatively alters the insulin signal transduction pathway and has differing effects on the fetus according to gestational age (GA) at exposure. Twenty-three fetal baboons were delivered from 23 healthy, nondiabetic mothers. Twelve preterm (0.67 GA) and 11 near-term (0.95 GA) baboons were killed immediately after delivery. Half of the pregnant baboons at each gestation received two doses of i.m. betamethasone 24 h apart (170 μg/kg) before delivery, while the other half received no intervention. Vastus lateralis muscle was obtained from postnatal animals to measure the protein content and gene expression of insulin receptor β (IRβ; INSR), IRβ Tyr 1361 phosphorylation (pIRβ), IR substrate 1 (IRS1), IRS1 tyrosine phosphorylation (pIRS1), p85 subunit of PI3-kinase, AKT (protein kinase B), phospho-AKT Ser473 (pAKT), AKT1, AKT2, and glucose transporters (GLUT1 and GLUT4). Skeletal muscle from preterm baboons exposed to GCs had markedly reduced protein content of AKT and AKT1 (respectively, 73 and 72% from 0.67 GA control, P<0.001); IRβ and pIRβ were also decreased (respectively, 94 and 85%, P<0.01) in the muscle of premature GC-exposed fetuses but not in term fetuses. GLUT1 and GLUT4 tended to increase with GC exposure in preterm animals (P=0.09), while GLUT4 increased sixfold in term animals after exposure to GC (P<0.05). In conclusion, exposure to a single course of antenatal GCs during fetal life alters the insulin signaling pathway in fetal muscle in a manner dependent on the stage of gestation.

  6. Parathyroid hormone related protein concentration in human serum and CSF correlates with age.

    Science.gov (United States)

    Kushnir, Mark M; Peterson, Lisa K; Strathmann, Frederick G

    2018-02-01

    Parathyroid Hormone-Related Protein (PTHrP) is involved in intracellular calcium (Ca) regulation, and has been demonstrated to participate in regulation of Ca in brain cells, activation of neurons, and modulation of pain. However, there are conflicting reports regarding the presence of PTHrP in CSF. PTHrP and Ca were quantified in paired CSF and serum samples using mass spectrometry-based methods. Associations between PTHrP and Ca concentrations with age, sex and concentrations of nine CSF diagnostic markers in a set of 140 paired serum and CSF patient samples were evaluated. The observed median PTHrP concentration in CSF was 51 times higher than in serum; the median concentration of Ca in CSF was 1.8 times lower than in serum. We observed positive correlation between concentrations of PTHrP in CSF and serum (p=0.013). Distribution of PTHrP concentrations in serum was associated with age (p=0.0068) and the concentrations were higher in women. In samples with serum calcium concentrations within the reference intervals (n=118), central 95% distribution of concentrations for Ca-CSF, PTHrP-serum and PTHrP-CSF were 5.4 (4.5-6.1) mg/dL, 1.2 (0.5-2.5) pmol/L, 62 (22-125) pmol/L, respectively. Our data demonstrate that PTHrP is a normal constituent of human CSF with median concentrations 51 fold higher than in serum. Elevated serum PTHrP concentrations were positively correlated with age and significantly higher in women. Our data suggest that CSF could be a significant source of circulating PTHrP. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. Composition, structure and functional properties of protein concentrates and isolates produced from walnut (Juglans regia L.).

    Science.gov (United States)

    Mao, Xiaoying; Hua, Yufei

    2012-01-01

    In this study, composition, structure and the functional properties of protein concentrate (WPC) and protein isolate (WPI) produced from defatted walnut flour (DFWF) were investigated. The results showed that the composition and structure of walnut protein concentrate (WPC) and walnut protein isolate (WPI) were significantly different. The molecular weight distribution of WPI was uniform and the protein composition of DFWF and WPC was complex with the protein aggregation. H(0) of WPC was significantly higher (p structure of WPI was similar to WPC. WPI showed big flaky plate like structures; whereas WPC appeared as a small flaky and more compact structure. The most functional properties of WPI were better than WPC. In comparing most functional properties of WPI and WPC with soybean protein concentrate and isolate, WPI and WPC showed higher fat absorption capacity (FAC). Emulsifying properties and foam properties of WPC and WPI in alkaline pH were comparable with that of soybean protein concentrate and isolate. Walnut protein concentrates and isolates can be considered as potential functional food ingredients.

  8. Functional properties and sensory testing of whey protein concentrate sweetened with rebaudioside A

    Directory of Open Access Journals (Sweden)

    Paula Gimenez MILANI

    2016-02-01

    Full Text Available ABSTRACT Objective: To develop a natural dietary product with functional benefits for diabetic patients. Whey protein concentrate was obtained through the separation membrane processes and sweetened with rebaudioside A. This product was submitted to sensory testing in humans and used to evaluate possible functional properties in male Wistar rats models with diabetesMellitus induced by streptozotocin. Methods: Two concentrates were produced. Only the second showed protein content of 74.3 and 17.3% of lactose was used as supplementation in induced diabetic rats. This concentrate was obtained from the concentration by reverse osmosis system (180 k Daltons, followed by nanofiltration in a 500 k Daltons membrane and spray drying at 5.0% solution of the first concentrate developed. The concentrate was sweetened with rebaudioside A (rebaudioside A 26 mg/100 g concentrate. All procedures were performed at the Center for Studies in Natural Products, at the Universidade Estadual de Maringá. Three experimental groups were established (n=6: two groups of diabetic animals, one control group and one supplemented group; and a control group of normal mice (non-diabetic. The supplemented group received concentrates sweetened with rebaudioside A in a dose of 100 mg/kg bw/day by an esophageal tube for 35 days. Fasting, the fed state and body weight were assessed weekly for all groups. At the end of the supplementation period, the following were analyzed: plasma parameters of glucose, total cholesterol, triglycerides and fructosamine; the serum levels of aspartate aminotransferase and alanine aminotransferase, water and food intake. Organs and tissues were removed and weighed to assess mass and anatomical changes. Results: The product presented 74% of proteins and 17% of lactose and showed satisfactory sensory testing by the addition of 26 mg of rebaudioside A/100 g concentrate. Supplementation of the product reduced hyperglycemia, plasma fructosamine levels

  9. The effects of altitude training on the AMPK-related glucose transport pathway in the red skeletal muscle of both lean and obese Zucker rats.

    Science.gov (United States)

    Chen, Yu-Ching; Lee, Shin-Da; Kuo, Cha-Hua; Ho, Low-Tone

    2011-01-01

    The skeletal muscle AMP-activated protein kinase (AMPK)-related glucose transport pathway is involved in glucose homeostasis. In this study, we examined whether obese control Zucker rats had abnormal expression of proteins in the LKB1-AMPK-AS160-GLUT4 pathway in red gastrocnemius muscle compared to that in lean (normal) control Zucker rats. We also compared the chronic training effects of exercise, hypoxia, and altitude training on this pathway in lean and obese rats. At sea level, lean and obese rats were divided into 4 groups for 6 weeks training as follows: 1) control; 2) exercise (progressive daily swimming-exercise training with comparable exercise signals between the two groups); 3) hypoxia (8 hours of daily 14% O2 exposure); and 4) exercise plus hypoxia (also called altitude training). Seven animals were used for each group. The obese rats in the control group had higher body weights, elevated fasting insulin and glucose levels, and higher baseline levels of muscle AMPK and AS160 phosphorylation compared with those of lean control rats. For obese Zucker rats in the exercise or hypoxia groups, the muscle AMPK phosphorylation level was significantly decreased compared with that of the control group. For obese Zucker rats in the altitude training group, the levels of AMPK, AS160 phosphorylation, fasting insulin, and fasting glucose were decreased concomitant with an approximate 50% increase in the muscle GLUT4 protein level compared with those of the control group. In lean rats, the altitude training efficiently lowered fasting glucose and insulin levels and increased muscle AMPK and AS160 phosphorylation as well as GLUT4 protein levels. Our results provide evidence that long-term altitude training may be a potentially effective nonpharmacological strategy for treating and preventing insulin resistance based on its effects on the skeletal muscle AMPK-AS160-GLUT4 pathway.

  10. Amino Acid Composition of an Organic Brown Rice Protein Concentrate and Isolate Compared to Soy and Whey Concentrates and Isolates

    Directory of Open Access Journals (Sweden)

    Douglas S. Kalman

    2014-06-01

    Full Text Available A protein concentrate (Oryzatein-80™ and a protein isolate (Oryzatein-90™ from organic whole-grain brown rice were analyzed for their amino acid composition. Two samples from different batches of Oryzatein-90™ and one sample of Oryzatein-80™ were provided by Axiom Foods (Los Angeles, CA, USA. Preparation and analysis was carried out by Covance Laboratories (Madison, WI, USA. After hydrolysis in 6-N hydrochloric acid for 24 h at approximately 110 °C and further chemical stabilization, samples were analyzed by HPLC after pre-injection derivitization. Total amino acid content of both the isolate and the concentrate was approximately 78% by weight with 36% essential amino acids and 18% branched-chain amino acids. These results are similar to the profiles of raw and cooked brown rice except in the case of glutamic acid which was 3% lower in the isolate and concentrate. The amino acid content and profile of the Oryzatein-90™ isolate was similar to published values for soy protein isolate but the total, essential, and branched-chain amino acid content of whey protein isolate was 20%, 39% and 33% greater, respectively, than that of Oryzatein-90™. These results provide a valuable addition to the nutrient database of protein isolates and concentrates from cereal grains.

  11. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    Science.gov (United States)

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  12. Resting serum concentration of high-sensitivity C-reactive protein ...

    African Journals Online (AJOL)

    Resting serum concentration of high-sensitivity C-reactive protein (hs-CRP) in sportsmen and untrained male adults. F.A. Niyi-Odumosu, O. A. Bello, S.A. Biliaminu, B.V. Owoyele, T.O. Abu, O.L. Dominic ...

  13. [Thyroid proteins in endemic goitre and their relationship to the intrathyroidal thyroid hormone concentration].

    Science.gov (United States)

    Platzer, S; Groebner, P; Hausen, A; Obendorf, L; Riccabona, G

    1980-02-01

    According to several reports we suspected that the pathogenesis of endemic goitre cannot be explained by iodine deficiency only, but that other--partially endogenous--goitrogenic factors must be present. We therefore studied 16 cases of "euthyroid" endemic goitre from the endemic goitre area of the province of Bolzano in Italy. After fractionation of tissue homogenates, T 4 and T 3 were measured by RIA and the I concentration was also termined. Thyroglobulin and its fractions were measured by ultracentrifuge procedures after assessment of the total protein concentration. Evaluation of the present results suggests that an insufficient synthesis of thyroglobulin in the examined goitres induces an inadequate adaptation of the organism to iodine deficiency, which, in turn, decreases the thyroid hormone concentration in thyroid tissue and enhances goitrogenesis. Considering the normal iodine content of the examined tissues, there obviously seems to be two intrathyroidal iodine pools, one of which supplies the body with thyroid hormones under pituitary stimulation even though its thyroglobulin pool is reduced, while a significant amount of the thyroidal iodine pool is bound in metabolically inert protein molecules and therefore increases the goitrogenic effect of iodine deficiency.

  14. [Examination of acute phase proteins concentrations in children with allergic rhinitis].

    Science.gov (United States)

    Steiner, Iwona; Sobieska, Magdalena; Pucher, Beata; Grzegorowski, Michał; Samborski, Włodzimierz

    2006-01-01

    Allergic rhinitis is an inflammatory disorder of upper respiratory tract (about 15 per cent of the population in industrialized countries suffer from this condition), characterized by frequent sneezing and a runny or stuffy nose sometimes accompanied by watery eyes. As the most common allergic condition, allergic rhinitis affects people of all ages. Boys are twice as likely to get allergic rhinitis than girls. The median age of onset of the condition is 10 years old, meaning that equal numbers of children develop the condition before and after age 10. Symptoms usually appear in childhood first and then lessen by the age of 30 or 40. Seasonal allergic rhinitis usually results from tree, grass or weed pollen. With this type of rhinitis, symptoms will decrease with the arrival of cold weather. Perennial allergic rhinitis can cause year-round symptoms. This allergic reaction is the result of indoor irritants such as feathers, mold spores, animal dander (hair and skin shed by pets) or dust mites. It is often aggravated by a food allergy, the most common being an allergy to milk. Acute phase proteins (APP) belong to the most ancient part of the unspecific immunity and contribute markedly to the keeping of homeostasis. As much as 30 various proteins are for the moment regarded as APP. Being multifunctional regulators and effectors APP stay in multiple relations to practically all types of cells and molecules. Among APP following functional groups may be described: transport proteins (transferrin, ceruloplasmin and haptoglobin), clotting factors (fibrinogen), antiproteases (alpha1-antitrypsin, alpha1-antichymotrypsin, alpha2-macroglobulin), complement components (C3, C4) and several proteins of hardly known function, like C-reactive protein (CRP), serum amyloid A, acid alpha1-glycoprotein (AGP) and others. From a group of 32 children, aged from 5 to 14 years, with symptoms of seasonal allergic rhinitis, and from a control group of 10 healthy children sex and age matched

  15. [Activity of alpha-amylase and concentration of protein in saliva of pregnant women].

    Science.gov (United States)

    Ciejak, Magdalena; Olszewska, Maria; Jakubowska, Katarzyna; Zebiełowicz, Dariusz; Safranow, Krzysztof; Chlubek, Dariusz

    2007-01-01

    One of the hypothetical reasons of the increased incidence of caries in women during the pregnancy may be the increased activity of alpha-amylase, which can be found in their saliva. The enzyme takes part in the process of decomposition of simple sugars, which make basic substrate for caries-causing bacteria. The aim of the paper was the evaluation of the influence of pregnancy and gestational age on the activity of alpha-amylase and the concentration of protein in women's saliva. The examined group consisted of 64 pregnant women at age 17-39, between 21st and 40th week of pregnancy. The control group consisted of 44 healthy women at age 20-35, who were not pregnant. In saliva, which was taken before morning meal, without stimulation, protein concentration was determined by Bradford method and the activity of amylase was determined by kinetic method. The activity of amylase correlated strongly and positively with protein concentration in saliva of both the pregnant (RS = +0.65; p women. There were no significant differences between examined parameters in the examined and the control group. It has been observed in the examined group, that there is the significant negative correlation between protein concentration in saliva and the week of pregnancy (RS = -0.35; p increased caries incidence of pregnant women. However, the observed changes of total protein concentration in saliva during pregnancy, suggest that the exact cognition of proteins in pregnant women's saliva may reveal new mechanisms, which lead to an increase of caries risk.

  16. Preparation and physicochemical properties of protein concentrate and isolate produced from Acacia tortilis (Forssk.) Hayne ssp. raddiana.

    Science.gov (United States)

    Embaby, Hassan E; Swailam, Hesham M; Rayan, Ahmed M

    2018-02-01

    The composition and physicochemical properties of defatted acacia flour (DFAF), acacia protein concentrate (APC) and acacia protein isolate (API) were evaluated. The results indicated that API had lower, ash and fat content, than DFAF and APC. Also, significant difference in protein content was noticed among DFAF, APC and API (37.5, 63.7 and 91.8%, respectively). Acacia protein concentrate and isolates were good sources of essential amino acids except cystine and methionine. The physicochemical and functional properties of acacia protein improved with the processing of acacia into protein concentrate and protein isolate. The results of scanning electron micrographs showed that DFAF had a compact structure; protein concentrate were, flaky, and porous type, and protein isolate had intact flakes morphology.

  17. Serum protein concentrations from clinically healthy horses determined by agarose gel electrophoresis.

    Science.gov (United States)

    Riond, Barbara; Wenger-Riggenbach, Bettina; Hofmann-Lehmann, Regina; Lutz, Hans

    2009-03-01

    Serum protein electrophoresis is a useful screening test in equine laboratory medicine. The method can provide valuable information about changes in the concentrations of albumin and alpha-, beta-, and gamma-globulins and thereby help characterize dysproteinemias in equine patients. Reference values for horses using agarose gel as a support medium have not been reported. The purpose of this study was to establish reference intervals for serum protein concentrations in adult horses using agarose gel electrophoresis and to assess differences between warm-blooded and heavy draught horses. In addition, the precision of electrophoresis for determining fraction percentages and the detection limit were determined. Blood samples were obtained from 126 clinically healthy horses, including 105 Thoroughbreds and 21 heavy draught horses of both sexes and ranging from 2 to 20 years of age. The total protein concentration was determined by an automated biuret method. Serum protein electrophoresis was performed using a semi-automated agarose gel electrophoresis system. Coefficients of variation (CVs) were calculated for within-run and within-assay precision. Data from warm-blooded and draught horses were compared using the Mann-Whitney U test. Within-run and within-assay CVs were draught horses and so combined reference intervals (2.5-97.5%) were calculated for total protein (51.0-72.0 g/L), albumin (29.6-38.5 g/L), alpha(1)-globulin (1.9-3.1 g/L), alpha(2)-globulin (5.3-8.7 g/L), beta(1)-globulin (2.8-7.3g/L), beta(2)-globulin (2.2-6.0 g/L), and gamma-globulin (5.8-12.7 g/L) concentrations, and albumin/globulin ratio (0.93-1.65). Using agarose gel as the supporting matrix for serum protein electrophoresis in horses resulted in excellent resolution and accurate results that facilitated standardization into 6 protein fractions.

  18. Metabolic and behavioral effects of ractopamine at continuous low levels in rats under stress

    Directory of Open Access Journals (Sweden)

    Edna Lopes

    2015-06-01

    Full Text Available This study aimed at evaluating the effect of ractopamine (RAC on metabolism, zootechnical performance, body composition, and behavior in Wistar rats submitted to acute and chronic restrain stress. The oral dose of 5 mg/kg of RAC was administered in periods of 0, 7, 14, 21, and 28 days. The elevated plus-maze test (EPMT was used for behavioral assessment. Blood, carcass and viscera characteristics were evaluated. Insulin-dependent glucose transporters (GLUT-4 were semi-quantified by Western Blot in epididymal adipocytes. RAC periods associated with chronic stress increased the GLUT-4 protein expression in adipose tissue in a time-dependent manner (P=0.01, i.e., the longer the RAC addition period, the higher the GLUT-4 concentration in chronically stressed animals (0=1.42; 7=1.19; 14=2.03; 21=1.59; 28=2.35. The stress periods combined with RAC increased the time spent in the opened arms of the maze (Chronic stress: 0=10.6; 7=8.7; 14=5.9; 21=12.3; 28=4.0; Acute stress 0=3.1; 7= 4.7; 14=7.5; 21=0.0; 28=2.8 (P=0.04. Chronic (entries on the closed arms [ECA]=3.60 and acute (ECA=3.80 stress reduced locomotive activity in the maze (P=0.03. The results suggested that stress could negatively affect the possible benefits offered by the RAC, mainly impairing the adipose tissue metabolism and behavior in the animals.

  19. 12038_2016_9616_Supplementary 1..4

    Indian Academy of Sciences (India)

    homeostasis, autoimmunity, responses to infection, cancers and inflammation. ... CD40+CD4+T cells involved in type-I diabetes through binding of Gal-9 with CD40. ... ForssmanGlycosphingolipid; FOXP3: Forkhead Box P3; GLUT 2: Glucose.

  20. In vivo inhibition of tumor progression by 5 hydroxy-1,4-naphthoquinone (juglone) and 2-(4-hydroxyanilino)-1,4-naphthoquinone (Q7) in combination with ascorbate

    Energy Technology Data Exchange (ETDEWEB)

    Ourique, Fabiana [Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC (Brazil); Kviecinski, Maicon R. [Postgraduate Programe of Health Science, Universidade do Sul de Santa Catarina (UNISUL), Palhoça, SC (Brazil); Zirbel, Guilherme; Castro, Luiza S.E.P.W.; Gomes Castro, Allisson Jhonatan; Mena Barreto Silva, Fátima Regina [Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC (Brazil); Valderrama, Jaime A.; Rios, David; Benites, Julio [Department of Chemical and Pharmaceutical Sciences, Universidad Arturo Prat, Iquique (Chile); Calderon, Pedro Buc [Toxicology and Cancer Biology Research Group (GTOX), Louvain Drug Research Institute, Université Catholique de Louvain, Brussels (Belgium); Pedrosa, Rozangela Curi, E-mail: rozangelapedrosa@gmail.com [Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC (Brazil)

    2016-09-02

    The purpose of the study was to obtain further in vivo data of antitumor effects and mechanisms triggered by juglone and Q7 in combination with ascorbate. The study was done using Ehrlich ascites tumor-bearing mice. Treatments were intraperitoneal every 24 h for 9 days. Control group was treated with excipient. Previous tests selected the doses of juglone and Q7 plus ascorbate (1 and 100 mg/kg, respectively). Samples of ascitic fluid were collected to evaluate carbonyl proteins, GSH and activity of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Hypoxia inducible factor HIF-1α, GLUT1, proteins driving cell cycle (p53, p16 and cyclin A) and apoptosis (poly-ADP-polymerase PARP, Bax and Bcl-xL) were assessed by western blot. Tumor cells were categorized by the phase of cell cycle using flow cytometry and type of cell death using acridine orange/ethidium bromide. A glucose uptake assessment was performed by liquid scintillation using Ehrlich tumor cells cultured with {sup 14}C-deoxyglucose. Treatments caused increased protein carbonylation and activity of antioxidant enzymes and decreased levels of GSH, HIF-1α, GLUT1 and glucose uptake in tumor cells. They also caused increased number of tumor cells in G1, p53 and p16 activation and decreased cyclin A, but only when combined with ascorbate. Apoptosis was induced mostly when treatments were done with ascorbate, causing PARP and Bax cleavage, and increased Bax/Bcl-xL ratio. Juglone and Q7 in combination with ascorbate caused inhibition of tumor progress in vivo by triggering apoptosis and cell cycle arrest associated with oxidative stress, suppression of HIF-1 and uncoupling of glycolytic metabolism. - Highlights: • Ascorbate potentiates the inhibition caused by juglone and Q7on tumor progress in vivo. • Juglone and Q7 with ascorbate caused widespread oxidative stress in tumor tissue. • Treatments inhibited HIF-1 and GLUT1 expression causing

  1. Effects of dietary starch and protein levels on milk production and composition of dairy cows fed high concentrate diet

    Directory of Open Access Journals (Sweden)

    Mustafa Güçlü Sucak

    2017-07-01

    Full Text Available Abstract Twenty eight Holstein cows (averaged 41±31.5 and 82±24 days in milk, and 30.4±3.49 and 29.0±2.22 kg/d milk yield were fed a high concentrate diet (70:30 concentrate to forage to examine effects on milk production and composition. The cows were randomly assigned to receive four dietary treatments according to a 2 x 2 factorial arrangement. Factors were starch (14% and 22% and protein (15% and 18%. Wheat straw was used as forage source. The study lasted 6 weeks. Dry matter intake was not affected (P> 0.05 by the dietary treatments in the study. Milk yield increased with increased dietary protein level (P< 0.01. Milk urea nitrogen concentrations were affected by dietary protein and starch levels, but there was no interaction effect. Nitrogen efficiency (Milk N/N intake was decreased by increasing in dietary protein level (P< 0.01. In conclusion, the cows fed total mixed ration (TMR containing low level of wheat straw responded better when dietary protein increased. But, efficiency of N use and N excretion to the environment were worsened. Key words: Dairy cattle, milk composition, protein, starch, wheat straw

  2. The effect of dietary protein on reproduction in the mare. IV. Serum progestagen, FSH, LH and melatonin concentrations during the anovulatory, transitional and ovulatory periods in the non-pregnant mare

    Directory of Open Access Journals (Sweden)

    F.E. Van Niekerk

    1997-07-01

    Full Text Available The effect of total protein intake and protein quality on the serum concentrations of certain reproductive hormones during the anovulatory, transitional and ovulatory periods were studied in 36 Anglo-Arab mares. High-quality protein stimulated FSH and LH production during the late transitional period. Serum progestagen and melatonin concentrations were unaffected by the quality of protein nutrition during the anovulatory period. Mares receiving high-quality protein exhibited a 10-14-day cyclical pattern of FSH release approximately 4-6 weeks earlier than the mares fed the lower-quality protein diet, and also ovulated 3-4 weeks earlier than the mares on the lower-quality protein diet. Progesterone concentrations during the 1st oestrous cycle after the anovulatory period were unaffected by protein quality in the diet.

  3. On the quantitative Amido Black B staining of protein spots in agar gel at low local protein concentrations

    NARCIS (Netherlands)

    Jansen, M.T.

    1962-01-01

    Protein spots in agar gel of identical protein content but different in surface area are found to bind different amounts of dye upon staining with Amido Black B. The lower the protein concentration within the agar gel, the more the Amido Black B content of the spot falls short of the value expected

  4. Dysregulation of autism-associated synaptic proteins by psychoactive pharmaceuticals at environmental concentrations.

    Science.gov (United States)

    Kaushik, Gaurav; Xia, Yu; Pfau, Jean C; Thomas, Michael A

    2017-11-20

    Autism Spectrum Disorders (ASD) are complex neurological disorders for which the prevalence in the U.S. is currently estimated to be 1 in 50 children. A majority of cases of idiopathic autism in children likely result from unknown environmental triggers in genetically susceptible individuals. These triggers may include maternal exposure of a developing embryo to environmentally relevant minute concentrations of psychoactive pharmaceuticals through ineffectively purified drinking water. Previous studies in our lab examined the extent to which gene sets associated with neuronal development were up- and down-regulated (enriched) in the brains of fathead minnows treated with psychoactive pharmaceuticals at environmental concentrations. The aim of this study was to determine whether similar treatments would alter in vitro expression of ASD-associated synaptic proteins on differentiated human neuronal cells. Human SK-N-SH neuroblastoma cells were differentiated for two weeks with 10μM retinoic acid (RA) and treated with environmentally relevant concentrations of fluoxetine, carbamazepine or venlafaxine, and flow cytometry technique was used to analyze expression of ASD-associated synaptic proteins. Data showed that carbamazepine individually, venlafaxine individually and mixture treatment at environmental concentrations significantly altered the expression of key synaptic proteins (NMDAR1, PSD95, SV2A, HTR1B, HTR2C and OXTR). Data indicated that psychoactive pharmaceuticals at extremely low concentrations altered the in vitro expression of key synaptic proteins that may potentially contribute to neurological disorders like ASD by disrupting neuronal development. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Romanian plant produces protein concentrate from paraffin-nourished yeasts

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    One of the world's few factories in which proteins are produced by continuous biotechnology is located in Romania. Here, at the bioproteins plant, microorganisms are converted into a flour which contains a protein concentrate that is so essential to the fattening of swine, cattle, sheep, fowl, and fish. These microorganisms are Candida type yeasts. The culture medium in which they are grown contains sulfates and phosphates. Paraffin, a petroleum product, supplies the carbon that is essential to the microorganisms viability.

  6. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Science.gov (United States)

    Unzueta, Ugutz; Céspedes, María Virtudes; Ferrer-Miralles, Neus; Casanova, Isolda; Cedano, Juan; Corchero, José Luis; Domingo-Espín, Joan; Villaverde, Antonio; Mangues, Ramón; Vázquez, Esther

    2012-01-01

    Background Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. Results Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. Conclusion Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents. PMID:22923991

  7. Microvolume protein concentration determination using the NanoDrop 2000c spectrophotometer.

    Science.gov (United States)

    Desjardins, Philippe; Hansen, Joel B; Allen, Michael

    2009-11-04

    Traditional spectrophotometry requires placing samples into cuvettes or capillaries. This is often impractical due to the limited sample volumes often used for protein analysis. The Thermo Scientific NanoDrop 2000c Spectrophotometer solves this issue with an innovative sample retention system that holds microvolume samples between two measurement surfaces using the surface tension properties of liquids, enabling the quantification of samples in volumes as low as 0.5-2 microL. The elimination of cuvettes or capillaries allows real time changes in path length, which reduces the measurement time while greatly increasing the dynamic range of protein concentrations that can be measured. The need for dilutions is also eliminated, and preparations for sample quantification are relatively easy as the measurement surfaces can be simply wiped with laboratory wipe. This video article presents modifications to traditional protein concentration determination methods for quantification of microvolume amounts of protein using A280 absorbance readings or the BCA colorimetric assay.

  8. Agarose gel electrophoresis of cerebrospinal fluid proteins of dogs after sample concentration using a membrane microconcentrator technique.

    Science.gov (United States)

    Gama, Fernanda Gomes Velasque; Santana, Aureo Evangelista; Filho, Eugênio de Campos; Nogueira, Cláudia Aparecida da Silva

    2007-03-01

    Cerebrospinal fluid (CSF) is produced in the cerebral ventricles through ultrafiltration of plasma and active transport mechanisms. Evaluation of proteins in CSF may provide important information about the production of immunoglobulins within the central nervous system as well as possible disturbances in the blood-brain barrier. The objective of this study was to measure the concentration and fractions of protein in CSF samples using a membrane microconcentrator technique followed by electrophoresis, and to compare the protein fractions obtained with those in serum. CSF samples from 3 healthy dogs and 3 dogs with canine distemper virus infection were concentrated using a membrane microconcentrator having a 0.5 to 30,000 d nominal molecular weight limit (Ultrafree, Millipore, Billerica, MA, USA). Protein concentration was determined before and after concentration. Agarose gel electrophoresis was done on concentrated CSF samples, serum, and serial dilutions of one of the CSF samples. Electrophoretic bands were clearly identified in densitometer tracings in CSF samples with protein concentrations as low as 1.3 g/dL. The higher CSF protein concentration in dogs with distemper was mainly the result of increased albumin concentration. The microconcentrating method used in this study enables characterization of the main protein fractions in CSF by routine electrophoresis and may be useful for interpreting the underlying cause of changes in CSF protein concentrations.

  9. The Concentrations of Rumen Fluid Volatile Fatty Acids and Ammonia, and Rumen Microbial Protein Production in Sheep Given Feed During the Day and Night Time

    Science.gov (United States)

    Gumilar, D. A. K. W.; Rianto, E.; Arifin, M.

    2018-02-01

    An experimental study was carried out to investigate the concentrations of volatile (VFA), ammonia and microbial protein production of rumen fluid in sheep given fedd during the day and at night. This study used 12 fat-tailed rams aged 12-18 months and weighed 24,12 ± 25 kg (CV = 10,51%). The rams were fed a complete feed containing 16.64% protein and 68,33% total digestible nutrients (TDN). The rams were allocated into a completely randomised design with 3 treatments and 4 replications. The treatments applied were: T1: day time feeding (6.00 hrs - 18.00 hrs); T2: night time feeding (18.00 hrs - 6.00 hrs); and T3: day and night time feedings (6.00 hrs - 6.00 hrs). The parameters observed were dry matter intake (DMI), rumen VFA concentration, rumen ammonia concentration, rumen rmicrobial protein production and the efficiency of rumen microbial protein production. The results showed that feeding time did not significantly affect (P>0.05) all the parameters observed. Dry matter intake, VFA concentration, ammonia concentration, the microbial protein production of rumen fluid and the efficiency of microbial protein production were 1,073g/d, 49.69 mmol; 4.77 mg N/100 ml, 12,111 g/d and 19.96 g per kg digestible organic matter intake (DOMI), respectively. It is concluded that feeding time did not affect DMI, condition of rumen fluid and rumen microbial protein production in sheep.

  10. Effect of membrane protein concentration on binding of 3H-imipramine in human platelets

    International Nuclear Information System (INIS)

    Barkai, A.I.; Kowalik, S.; Baron, M.

    1985-01-01

    Binding of 3 H-imipramine to platelet membranes has been implicated as a marker for depression. Comparing 3 H-IMI binding between depressed patients and normal subjects we observed an increase in the dissociation constant Kd with increasing membrane protein. This phenomenon was studied more rigorously in five normal subjects. Platelet membranes were prepared and adjusted to four concentrations of protein ranging from 100 to 800 micrograms/ml. The 3 H-IMI binding parameters of maximum binding sites number (Bmax) and Kd were obtained by Scatchard analysis at each membrane concentration. A positive linear relationship was found between K/sub d/ values and the concentration of membrane protein in the assay, but no change was observed in Bmax. The variability in Kd values reported in the literature may be accounted for in part by the different concentrations of membrane protein used in various studies

  11. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    Science.gov (United States)

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  12. Amino acid fortified diets for weanling pigs replacing fish meal and whey protein concentrate: Effects on growth, immune status, and gut health.

    Science.gov (United States)

    Zhao, Yan; Weaver, Alexandra C; Fellner, Vivek; Payne, Robert L; Kim, Sung Woo

    2014-01-01

    Limited availability of fish meal and whey protein concentrate increases overall feed costs. Availability of increased number of supplemental amino acids including Lys, Met, Thr, Trp, Val, and Ile allows replacing expensive protein supplements to reduce feed costs. This study was to evaluate the effect of replacing fish meal and/or whey protein concentrate in nursery diets with 6 supplemental amino acids on growth performance and gut health of post-weaning pigs. Treatments were 1) FM-WPC: diet with fish meal (FM) and whey protein concentrate (WPC); 2) FM-AA: diet with FM and crystalline amino acids (L-Lys, L-Thr, L-Trp, DL-Met, L-Val, and L-Ile); 3) WPC-AA: diet with WPC and crystalline amino acid; and 4) AA: diet with crystalline amino acid. Pigs in FM-AA, WPC-AA, and AA had greater (P replace fish meal and/or whey protein concentrate without adverse effects on growth performance, immune status, and gut health of pigs at d 21 to 49 of age. Positive response with the use of 6 supplemental amino acids in growth during the first week of post-weaning may due to increased plasma insulin potentially improving uptake of nutrients for protein synthesis and energy utilization. The replacement of fish meal and/or whey protein concentrate with 6 supplemental amino acids could decrease the crude protein level in nursery diets, and potentially lead to substantial cost savings in expensive nursery diets.

  13. The Effect of 4 Weeks of Flaxseed Extract Supplementation on Serum Concentration of Brain-Derived Neurotrophic Factor and C-Reactive Protein

    Directory of Open Access Journals (Sweden)

    Hosein Nazari

    2017-02-01

    Full Text Available Background and Objective: Omega-3 Supplementation has different effects on the body. Terefore, this study was carried out with the aim of investigating the effect of 4 weeks of flaxseed extract supplementation on serum concentrations of Brain-derived neurotrophic factor (BDNF and C-reactive protein (CRP. Methods: In this double-blind study, 24 male students (mean age, 23.21±1.98 were randomly divided into two groups, including flaxseed extract (n=12 and placebo (n=12. After 4 weeks of supplementation with flaxseed extract, serum levels of BDNF and CRP was measured in fasting state. BDNF level was measured using an enzyme-linked immunosorbent assay (ELISA kit, and CRP level was measured using an immunoturbidimetric assay kit. Data were analyzed using t-test. The level of significance was set at p<0.05. Results: After four weeks of supplementation with flaxseed extract the mean serum level of BDNF significantly increased (p<0.001, but no significant change was observed in the serum level of CRP (p<0.591. Conclusion: It seems that supplementation with flaxseed extract through increasing BDNF level is useful for the improvement of cognitive and functional benefits of the brain.

  14. Serum C-reactive protein concentrations in healthy Miniature Schnauzer dogs.

    Science.gov (United States)

    Wong, Valerie M; Kidney, Beverly A; Snead, Elisabeth C R; Myers, Sherry L; Jackson, Marion L

    2011-09-01

    C-reactive protein (CRP) is a sensitive marker for inflammation in people and dogs. In people, an association between CRP concentration and atherosclerosis has been reported. Atherosclerosis is rare in dogs, but the Miniature Schnauzer breed may be at increased risk for developing this vascular disease. It is not known if CRP concentrations in Miniature Schnauzer dogs differ from those in other dog breeds. Our objectives were to validate an automated human CRP assay for measuring CRP in dogs and compare CRP concentrations in healthy Miniature Schnauzer dogs with those in non-Miniature Schnauzer breeds. Sera from 37 non-Miniature Schnauzer dogs with inflammatory disease were pooled and used to validate a human CRP immunoturbidimetric assay for measuring canine CRP. Blood was collected from 20 healthy Miniature Schnauzer dogs and 41 healthy dogs of other breeds. Median serum CRP concentration of healthy Miniature Schnauzer dogs was compared with that of healthy non-Miniature Schnauzer dogs. The human CRP assay measured CRP reliably with linearity between 0 and 20 mg/L. CRP concentration for healthy Miniature Schnauzer dogs (median 4.0 mg/L, minimum-maximum 0-18.2 mg/L) was significantly higher than for the healthy non-Miniature Schnauzer dogs (median 0.1 mg/L, minimum-maximum 0-10.7 mg/L); 17 of the 20 Miniature Schnauzer dogs had values that overlapped with those of the non-Miniature Schnauzer dogs. Median CRP concentration of Miniature Schnauzer dogs was slightly higher than that of other breeds of dogs. A relationship between higher CRP concentration in Miniature Schnauzer dogs and idiopathic hyperlipidemia, pancreatitis, and possible increased risk for atherosclerosis remains to be determined. ©2011 American Society for Veterinary Clinical Pathology.

  15. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2 leading to cell depolarization and calcium influx

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Bechmann, Louise Ellegaard; Hartmann, Bolette

    2015-01-01

    of secretion. Luminal glucose (20% wt/vol) stimulated secretion but vascular glucose (5, 10, or 15 mmol/l) was without effect. The underlying mechanisms depend on membrane depolarization and calcium influx, since the voltage-gated calcium channel inhibitor nifedipine and the KATP channel opener diazoxide......, suggesting that glucose stimulates secretion by initial uptake by this transporter. However, secretion was also sensitive to GLUT2 inhibition (by phloretin) and blockage of oxidative phosphorylation (2-4-dinitrophenol). Direct KATP channel closure by sulfonylureas stimulated secretion. Therefore, glucose...

  16. What is Driving Global Imbalances? The Global Savings Glut Hypothesis Reexamined

    Directory of Open Access Journals (Sweden)

    Jai-Won Ryou

    2009-12-01

    Full Text Available In the middle of the global financial crisis, global imbalances seem to have been resolved to some extent, but it remains to be seen whether these imbalances will emerge again along with economic recovery. In order to cope with this global issue, we need to clarify what caused global imbalances in the first place. This paper aims to evaluate the relative importance of the "global savings glut" to the U.S. external imbalances. Drawing on the portfolio balance model, we analyze how the process of interaction between the U.S. current account deficit, capital inflows, and the U.S. dollar exchange rate is linked to domestic and external factors. Our empirical analysis shows that the U.S. current account deficit maintained since the early 1990s is mainly driven by the domestic factors, such as a decrease in the U.S. national savings and an increase in money supply growth. The size of the negative effect of a "global savings glut" measured by an increase in the East Asian countries' national savings (i.e. China, Japan and Korea on the U.S. current account seems to be exaggerated. Meanwhile, current account does not appear to be sensitive to changes in the exchange rate. This finding implies that the rectification of global imbalances is hardly possible to achieve by means of depreciating the U.S. dollar alone while leaving the structural factors unchanged. In order to achieve global rebalancing, the U.S. should increase its savings rate, reduce fiscal deficit, and tighten its money supply. While an increase in the domestic demand in the surplus countries such as China and Japan may be helpful in rectifying global imbalances, it appears to be insufficient per se.

  17. Effect of Addition of Concentrated Proteins and Seminal Plasma Low Molecular Weight Proteins in Freezing and Thawing of Equine Semen

    Directory of Open Access Journals (Sweden)

    Fagundes, B.

    2011-07-01

    Full Text Available Difficulties in obtaining equine frozen semen with potential fertility are recognized. This study was designed to investigate the effect of seminal plasma on frozen/thawing of eight stallion semen from different breed using the following treatments: Seminal plasma with ten-fold concentrated proteins with molecular weight above 10 kDa on frozen extender; Part of seminal plasma with proteins under 10 kDa on frozen extender; Conventional freezing, using whole seminal plasma on frozen extender. Using the parameter of 30% of seminal motility post-thawing as index of good freezability, it was verified an increased percentage of stallions that presented good freezability when semen was frozen with seminal plasma containing ten-fold concentrated proteins with molecular weight above 10 kDa on frozen extender. These results, suggested the use of seminal plasma concentrated proteins from own stallion to freezing/thawing semen.

  18. Association of cancer metabolism-related proteins with oral carcinogenesis – indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma?

    Science.gov (United States)

    2014-01-01

    Background Tumor metabolism is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC). Methods Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, PFK-1, LDHA, TKTL1), mitochondrial enzymes (SDHA, SDHB, ATP synthase) were analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry and real-time polymerase chain reaction (qPCR) analysis in OSCC cell lines. Metabolism-related proteins were correlated with proliferation activity (Ki-67) and apoptotic properties (TUNEL assay) in OSCC. Specificity of antibodies was confirmed by western blotting in cancer cell lines. Results Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, LDHA, TKTL1), and mitochondrial enzymes (SDHA, SDHB, ATP synthase) were significantly increased in the carcinogenesis of OSCC. Metabolic active regions of OSCC were strongly correlated with proliferating cancer (Ki-67+) cells without detection of apoptosis (TUNEL assay). Conclusions This study provides the first evidence of the expression of IGF-R1, glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA, and TKTL1, as well as mitochondrial enzymes SDHA, SDHB, and ATP synthase in the multi-step carcinogenesis of OSCC. Both, hypoxia-related glucose metabolism and mitochondrial oxidative phosphorylation characteristics are associated with the carcinogenesis of OSCC. Acidosis and OXPHOS may drive a metabolic shift towards the pentose phosphate pathway (PPP). Therefore, inhibition of the PPP, glycolysis, and targeted anti-mitochondrial therapies (ROS generation) by natural compounds or synthetic vitamin derivatives may act as sensitizer for apoptosis in cancer cells mediated by adjuvant therapies in OSCC. PMID:25048361

  19. Influence of watermelon seed protein concentrates on dough handling, textural and sensory properties of cookies.

    Science.gov (United States)

    Wani, Ali Abas; Sogi, D S; Singh, Preeti; Khatkar, B S

    2015-04-01

    Fruit processing wastes contain numerous by products of potential use in food & allied industry. Watermelon seeds represent a major by-product of the processing waste and contain high amount of nutritional proteins. Protein rich cereal based products are in demand due to their health promoting benefits. With this aim, wheat flour was fortified with watermelon seed protein concentrates (2.5 %, 5 %, 7.5 % and 10 % levels) to prepare cookies with desirable physical, nutritional, and textural and sensory properties. Substitution levels of 5 % and 10 % significantly (p ≤ 0.05) increased the dough stability and mixing tolerance index, however pasting properties and dough extensibility decreased considerably above 5 % substitution levels. Cookie fracture force (kg) increased significantly (p ≤ 0.05) above 5 % fortification levels. Cookie spread factor (W/T) increased from 2.5 % to 7.5 % fortification levels, further increase showed negative impact. Sensory scores of the cookies showed that protein concentrate may be added up to 7.5 % fortification levels. This study revealed that watermelon protein concentrates can be fortified with protein concentrates upto 5-7.5 % levels in cookies to improve their protein quality.

  20. Whey protein concentrate storage at elevated temperature and humidity

    Science.gov (United States)

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  1. Replacement of dietary soy- with air classified faba bean protein concentrate alters the hepatic transcriptome in Atlantic salmon (Salmo salar) parr.

    Science.gov (United States)

    De Santis, Christian; Crampton, Viv O; Bicskei, Beatrix; Tocher, Douglas R

    2015-12-01

    The production of carnivorous fish such as Atlantic salmon (Salmo salar) is dependent on the availability of high quality proteins for feed formulations. For a number of nutritional, strategic and economic reasons, the use of plant proteins has steadily increased over the years, however a major limitation is associated with the presence of anti-nutritional factors and the nutritional profile of the protein concentrate. Investigating novel raw materials involves understanding the physiological consequences associated with the dietary inclusion of protein concentrates. The primary aim of the present study was to assess the metabolic response of salmon to increasing inclusion of air-classified faba bean protein concentrate (BPC) in feeds as a replacement for soy protein concentrate (SPC). Specifically, we tested treatments with identical contents of fishmeal (222.4gkg(-1)) and progressively higher inclusion of BPC (0gkg(-1), 111.8gkg(-1), 223.6gkg(-1), 335.4gkg(-1), 447.2gkg(-1)) substituting SPC. This study demonstrated a dose-dependent metabolic response to a plant ingredient and was the first to compare the nutrigenomic transcriptional responses after substitution of terrestrial feed ingredients such as BPC and SPC without withdrawal of marine ingredients. It was found that after eight weeks a major physiological response in liver was only evident above 335.4gkg(-1) BPC and included decreased expression of metabolic pathways, and increased expression of genes regulating transcription and translation processes and the innate immune response. Furthermore, we showed that the nutritional stress caused by BPC resembled, at least at hepatic transcriptional level, that caused by soybean meal (included as a positive control in our experimental design). The outcomes of the present study suggested that Atlantic salmon parr might efficiently utilize moderate substitution of dietary SPC with BPC, with the optimum inclusion level being around 120gkg(-1)in the type of feeds

  2. Preparation of factor VII concentrate using CNBr-activated Sepharose 4B immunoaffinity chromatography.

    Science.gov (United States)

    Mousavi Hosseini, Kamran; Nasiri, Saleh

    2015-01-01

    Factor VII concentrates are used in patients with congenital or acquired factor VII deficiency or treatment of hemophilia patients with inhibitors. In this research, immunoaffinity chromatography was used to purify factor VII from prothrombin complex (Prothrombin- Proconvertin-Stuart Factor-Antihemophilic Factor B or PPSB) which contains coagulation factors II, VII, IX and X. The aim of this study was to improve purity, safety and tolerability as a highly purified factor VII concentrate. PPSB was prepared using DEAE-Sephadex and was used as the starting material for purification of coagulation factor VII. Prothrombin complex was treated by solvent/detergent at 24°C for 6 h with constant stirring. The mixture of PPSB in the PBS buffer was filtered and then chromatographed using CNBr-activated Sepharose 4B coupled with specific antibody. Factors II, IX, VII, X and VIIa were assayed on the fractions. Fractions of 48-50 were pooled and lyophilized as a factor VII concentrate. Agarose gel electrophoresis was performed and Tween 80 was measured in the factor VII concentrate. Specific activity of factor VII concentrate increased from 0.16 to 55.6 with a purificationfold of 347.5 and the amount of activated factor VII (FVIIa) was found higher than PPSB (4.4-fold). RESULTS of electrophoresis on agarose gel indicated higher purity of Factor VII compared to PPSB; these finding revealed that factor VII migrated as alpha-2 proteins. In order to improve viral safety, solvent-detergent treatment was applied prior to further purification and nearly complete elimination of tween 80 (2 μg/ml). It was concluded that immuonoaffinity chromatography using CNBr-activated Sepharose 4B can be a suitable choice for large-scale production of factor VII concentrate with higher purity, safety and activated factor VII.

  3. Fuzzy Clustering-Based Modeling of Surface Interactions and Emulsions of Selected Whey Protein Concentrate Combined to i-Carrageenan and Gum Arabic Solutions

    Science.gov (United States)

    Gums and proteins are valuable ingredients with a wide spectrum of applications. Surface properties (surface tension, interfacial tension, emulsion activity index “EAI” and emulsion stability index “ESI”) of 4% whey protein concentrate (WPC) in a combination with '- carrageenan (0.05%, 0.1%, and 0.5...

  4. Interspecies In Vitro Evaluation of Stereoselective Protein Binding for 3,4-Methylenedioxymethamphetamine

    Directory of Open Access Journals (Sweden)

    Wan Raihana Wan Aasim

    2017-01-01

    Full Text Available Abuse of 3,4-methylenedioxymethamphetamine (MDMA is becoming more common worldwide. To date, there is no information available on stereoselectivity of MDMA protein binding in humans, rats, and mice. Since stereoselectivity plays an important role in MDMA’s pharmacokinetics and pharmacodynamics, in this study we investigated its stereoselectivity in protein binding. The stereoselective protein binding of rac-MDMA was investigated using two different concentrations (20 and 200 ng/mL in human plasma and mouse and rat sera using an ultrafiltration technique. No significant stereoselectivity in protein binding was observed in both human plasma and rat serum; however, a significant stereoselective binding (p<0.05 was observed in mouse serum. Since the protein binding of MDMA in mouse serum is considerably lower than in humans and rats, caution should be exercised when using mice for in vitro studies involving MDMA.

  5. Notch controls the survival of memory CD4+ T cells by regulating glucose uptake.

    Science.gov (United States)

    Maekawa, Yoichi; Ishifune, Chieko; Tsukumo, Shin-ichi; Hozumi, Katsuto; Yagita, Hideo; Yasutomo, Koji

    2015-01-01

    CD4+ T cells differentiate into memory T cells that protect the host from subsequent infection. In contrast, autoreactive memory CD4+ T cells harm the body by persisting in the tissues. The underlying pathways controlling the maintenance of memory CD4+ T cells remain undefined. We show here that memory CD4+ T cell survival is impaired in the absence of the Notch signaling protein known as recombination signal binding protein for immunoglobulin κ J region (Rbpj). Treatment of mice with a Notch inhibitor reduced memory CD4+ T cell numbers and prevented the recurrent induction of experimental autoimmune encephalomyelitis. Rbpj-deficient CD4+ memory T cells exhibit reduced glucose uptake due to impaired AKT phosphorylation, resulting in low Glut1 expression. Treating mice with pyruvic acid, which bypasses glucose uptake and supplies the metabolite downstream of glucose uptake, inhibited the decrease of autoimmune memory CD4+ T cells in the absence of Notch signaling, suggesting memory CD4+ T cell survival relies on glucose metabolism. Together, these data define a central role for Notch signaling in maintaining memory CD4+ T cells through the regulation of glucose uptake.

  6. Influence of whey protein concentrate addition on textural properties of corn flour extrudates

    Directory of Open Access Journals (Sweden)

    Mladen Brnčić

    2008-05-01

    Full Text Available Texture is an important propertiy of extruded snack products, and depended on extrusion process conditions, raw material properties and various ingredients properties as well. The main purpose of this research was, using twin-screw extrusion, to manufacture a direct expanded extrudate based on mixtures of corn flour and whey protein concentrate with acceptable textural properties. Mixtures were made of corn flour and three different concentrations of whey protein concentrate (7,5 %, 15 %, 22,5 %. Materials were processed in co-rotating twin-screw extruder APV Baker, MPF 50.15 under input conditions: water intake was 10,08 L/h, 12,18 L/h, 14,28 L/h, screw speed was 300 rpm; expansion temperature was 130 °C; feed rate was 70 kg/h. Textural properties: breaking strength index and expansion ratio were determined. Breaking strength index had largest value for the sample with 22,5 % of whey protein concentrate and water intake of 14,28 L/h. Sample with 7,5 % of whey protein concentrate and 10,08 L/h had largest expansion ratio. Calculated textural properties confirmed validity of samples. This results suggest that enrichment of extrudates with wpc addition up to 22,5 % to improve their nutritional value as well as their textural characteristics can be accomplished. Validation of direct expanded extrudates in dependence of its textural properties have shown validity and justification of this research.

  7. Effect of chronic intermittent hypoxia on glycometabolism in rat’ liver and the mechanism thereof

    Directory of Open Access Journals (Sweden)

    Wei YU

    2018-03-01

    Full Text Available Objective To investigate the effects of chronic intermittent hypoxia on the adipose factor and the expressions of insulin receptor substrate 2 (IRS-2, glucose transporter 2 (GLUT-2 and leptin in rat liver. Methods Twenty-four mature SD rats were randomly divided into 3 groups: control group (UC, chronic intermittent hypoxia group (CIH and reoxygenation group (RH. The arterial blood gas analysis was performed after the establishment of rat model. The serum fasting blood glucose (FBG and fasting insulin (FINS in each group were detected by peroxidase method; the concentrations of free fatty acids (FFA and leptin were detected by ELISA. The expressions of mRNA and protein of GLUT-2, IRS-2 and leptin were detected by qRT-PCR and Western blotting. Results The serous concentrations of FBG, FINS, FFA and leptin were significantly higher in CIH group than in UC group (P<0.05, and were dramatically higher in RH group than in both CIH group (P=0.003 and UC group (P=0.000. Western blotting and qRT-PCR detection showed that the protein and mRNA expressions of GLUT-2 and IRS-2 were significantly lower in CIH group than in RH group of rat liver (P<0.05, while were markedly lower in RH group than in UC group (P<0.05; the expressions of leptin protein and mRNA were significantly higher in CIH group than in RH group (P<0.05, while were obviously higher in RH group than in UC group of rat liver (P<0.05. Conclusion Insulin resistance induced by chronic intermittent hypoxia may be associated with the elevation of serum FFA and leptin, and be related to the decreased expression of GLUT-2 and IRS-2 and increased expression of leptin in liver. DOI: 10.11855/j.issn.0577-7402.2018.03.05

  8. Protein 4.1 and its interaction with other cytoskeletal proteins in Xenopus laevis oogenesis.

    Science.gov (United States)

    Carotenuto, Rosa; Petrucci, Tamara C; Correas, Isabel; Vaccaro, Maria C; De Marco, Nadia; Dale, Brian; Wilding, Martin

    2009-06-01

    In human red blood cells, protein 4.1 (4.1R) is an 80-kDa polypeptide that stabilizes the spectrin-actin network and anchors it to the plasma membrane. In non-erythroid cells there is a great variety of 4.1R isoforms, mainly generated by alternative pre-mRNA splicing, which localize at various intracellular sites, including the nucleus. We studied protein 4.1R distribution in relation to beta-spectrin, actin and cytokeratin during Xenopus oogenesis. Immunoprecipitation experiments indicate that at least two isoforms of protein 4.1R are present in Xenopus laevis oocytes: a 56-kDa form in the cytoplasm and a 37-kDa form in the germinal vesicle (GV). Antibodies to beta-spectrin reveal two bands of 239 and 100 kDa in the cytoplasm. Coimmunoprecipitation experiments indicate that both the 37- and 56-kDa isoforms of protein 4.1R associate with the 100-kDa isoform of beta-spectrin. Moreover, the 56-kDa form coimmunoprecipitates with a cytokeratin of the same molecular weight. Confocal immunolocalization shows that protein 4.1R distribution is in the peripheral cytoplasm, in the mitochondrial cloud (MC) and in the GV of previtellogenic oocytes. In the cytoplasm of vitellogenic oocytes, a loose network of fibers stained by the anti-protein 4.1R antibody spreads across the cytoplasm. beta-Spectrin has a similar distribution. Protein 4.1R was found to colocalize with actin in the cortex of oocytes in the form of fluorescent dots. Double immunolocalization of protein 4.1R and cytokeratin depicts two separate networks that overlap throughout the whole cytoplasm. Protein 4.1R filaments partially colocalize with cytokeratin in both the animal and vegetal hemispheres. We hypothesize that protein 4.1R could function as a linker protein between cytokeratin and the actin-based cytoskeleton.

  9. Localization of Microfibrillar-Associated Protein 4 (MFAP4) in Human Tissues

    DEFF Research Database (Denmark)

    Wulf-Johansson, Helle; Lock Johansson, Sofie; Schlosser, Anders

    2013-01-01

    Microfibrillar-associated protein 4 (MFAP4) is located in the extracellular matrix (ECM). We sought to identify tissues with high levels of MFAP4 mRNA and MFAP4 protein expression. Moreover, we aimed to evaluate the significance of MFAP4 as a marker of cardiovascular disease (CVD) and to correlate...... of MFAP4 protein mainly at sites rich in elastic fibers and within blood vessels in all tissues investigated. The AlphaLISA technique was used to determine serum MFAP4 levels in a clinical cohort of 172 patients consisting of 5 matched groups with varying degrees of CVD: 1: patients with ST elevation...... MFAP4 with other known ECM markers, such as fibulin-1, osteoprotegerin (OPG), and osteopontin (OPN). Quantitative real-time PCR demonstrated that MFAP4 mRNA was more highly expressed in the heart, lung, and intestine than in other elastic tissues. Immunohistochemical studies demonstrated high levels...

  10. Mediation of Endogenous β-Endorphin by Tetrandrine to Lower Plasma Glucose in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jen-Hao Hsu

    2004-01-01

    Full Text Available The role of β-endorphin in the plasma glucose-lowering action of tetrandrine in streptozotocin-induced diabetic rats (STZ-diabetic rats was investigated. The plasma glucose concentration was assessed by the glucose oxidase method. The enzyme-linked immunosorbent assay was used to determine the plasma level of β-endorphin-like immunoreactivity (BER. The mRNA levels of glucose transporter subtype 4 (GLUT4 in soleus muscle and phosphoenolpyruvate carboxykinase (PEPCK in the liver of STZ-diabetic rats were detected by Northern blotting analysis. The expressed protein of GLUT4 or PEPCK was characterized by Western blotting analysis. Tetrandrine dose-dependently increased plasma BER in a manner parallel to the decrease of plasma glucose in STZ-diabetic rats. Moreover, the plasma glucose-lowering effect of tetrandrine was inhibited by naloxone and naloxonazine at doses sufficient to block opioid μ-receptors. Further, tetrandrine failed to produce plasma glucose-lowering action in opioid μ-receptor knockout diabetic mice. Bilateral adrenalectomy eliminated the plasma glucose-lowering effect and plasma BER-elevating effect of tetrandrine in STZ-diabetic rats. Both effects were abolished by treatment with hexamethonium or pentolinium at doses sufficient to block nicotinic receptors. Tetrandrine enhanced BER release directly from the isolated adrenal medulla of STZ-diabetic rats and this action was abolished by the blockade of nicotinic receptors. Repeated intravenous administration of tetrandrine (1.0 mg/kg to STZ-diabetic rats for 3 days resulted in an increase in the mRNA and protein levels of the GLUT4 in soleus muscle, in addition to the lowering of plasma glucose. Similar treatment with tetrandrine reversed the elevated mRNA and protein levels of PEPCK in the liver of STZ-diabetic rats. The obtained results suggest that tetrandrine may induce the activation of nicotinic receptors in adrenal medulla to enhance the secretion of

  11. Effects of rhizoma polygonati on the expression of glucose transporter-4 gene in type 2 diabetes mellitus rats with insulin resistance%黄精对2型糖尿病胰岛素抵抗大鼠葡萄糖转运蛋白-4基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    董琦; 董凯; 张春军

    2012-01-01

    Objective To observe the effects of rhizoma polygonati( RP) on the expression of glucose transporter-4 (GLUT-4) gene in muscular tissue in type 2 diabetes mellitus(T2DM) rats with insulin resistance(IR). Methods The model of T2DM rats with insulin resistance was established by giving high fat, high caloric diet and injection of small dose of strep-tozotocin(STZ). The model rats were divided into model control group, high, middle and low doses RP groups( inlragastric administration 10.0,5.0,2.5 g o kg-1 o d-1 RP). Other 10 rats were selected as normal control group. After intragastric administration for eight weeks,then the GLUT-4 mRNA in muscular tissue was determined by reverse transcription-polymerase chain reaction(RT-PCR). Results Compared with normal control group,the expressions of GLUT-4 mRNA were lower(P <0.01), but the levels of fasting plasma glucose(FPG) were higher(P <0. 01) in model control group,low,middle and high doses RP groups. Compared with model control group,the levels of FPG were lower in low,middle and high doses RP groups,and the decreasing level in middle and high doses RP groups was obviously( P < 0.01 ) ; the expressions of GLUT-4 mRNA were higher in low,middle and high doses RP groups,and the increasing level in middle and high doses RP groups was obviously(P<0.01 ). Conclusion RP can reduce blood glucose by increasing expression of GLUT-4 mRNA in T2DM rats with IR.%目的 观察黄精水提液对2型糖尿病(T2DM)胰岛素抵抗大鼠肌肉组织葡萄糖转运蛋白-4(GLUT-4)基因表达的影响.方法 采用小剂量链脲佐菌素加高脂高热量饲料喂养方法建立2型糖尿病胰岛素抵抗模型,将造模大鼠随机分为模型对照组和黄精高、中、低剂量治疗组(分别灌胃10.0、5.0、2.5g·kg-1·d-1),另选10只为正常对照组.灌胃8周后,空腹取材,反转录-聚合酶链反应法检测肌肉组织GLUT-4基因mRNA水平.结果 与正常对照组相比,模型对照组及黄精高、中、低剂量治疗组大鼠GLUT

  12. Aptamer-Conjugated Calcium Phosphate Nanoparticles for Reducing Diabetes Risk via Retinol Binding Protein 4 Inhibition.

    Science.gov (United States)

    Torabi, Raheleh; Ghourchian, Hedayatollah; Amanlou, Massoud; Pasalar, Parvin

    2017-06-01

    Inhibition of the binding of retinol to its carrier, retinol binding protein 4, is a new strategy for treating type 2 diabetes; for this purpose, we have provided an aptamer-functionalized multishell calcium phosphate nanoparticle. First, calcium phosphate nanoparticles were synthesized and conjugated to the aptamer. The cytotoxicity of nanoparticles releases the process of aptamer from nanoparticles and their inhibition function of binding retinol to retinol binding protein 4. After synthesizing and characterizing the multishell calcium phosphate nanoparticles and observing the noncytotoxicity of conjugate, the optimum time (48 hours) and the pH (7.4) for releasing the aptamer from the nanoparticles was determined. The half-maximum inhibitory concentration (IC 50 ) value for inhibition of retinol binding to retinol binding protein 4 was 210 femtomolar (fmol). The results revealed that the aptamer could prevent connection between retinol and retinol binding protein 4 at a very low IC 50 value (210 fmol) compared to other reported inhibitors. It seems that this aptamer could be used as an efficient candidate not only for decreasing the insulin resistance in type 2 diabetes, but also for inhibiting the other retinol binding protein 4-related diseases. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  13. Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Essam Hebishy

    2017-02-01

    Full Text Available In this study, the effect of ultra-high-pressure homogenization (UHPH: 100 or 200 MPa at 25 °C, in comparison to colloid mill (CM: 5000 rpm at 20 °C and conventional homogenization (CH: 15 MPa at 60 °C, on the stability of oil-in-water emulsions with different oil concentrations (10, 30 or 50 g/100 g emulsified by whey protein isolate (4 g/100 g was investigated. Emulsions were characterized for their microstructure, rheological properties, surface protein concentration (SPC, stability to creaming and oxidative stability under light (2000 lux/m2. UHPH produced emulsions containing lipid droplets in the sub-micron range (100–200 nm and with low protein concentrations on droplet surfaces. Droplet size (d3.2, µm was increased in CH and UHPH emulsions by increasing the oil concentration. CM emulsions exhibited Newtonian flow behaviour at all oil concentrations studied; however, the rheological behaviour of CH and UHPH emulsions varied from Newtonian flow (n ≈ 1 to shear-thinning (n ˂ 1 and thixotropic behaviour in emulsions containing 50% oil. This was confirmed by the non-significant differences in the d4.3 (µm value between the top and bottom of emulsions in tubes left at room temperature for nine days and also by a low migration velocity measured with a Turbiscan LAB instrument. UHPH emulsions showed significantly lower oxidation rates during 10 days storage in comparison to CM and CH emulsions as confirmed by hydroperoxides and thiobarbituric acid-reactive substances (TBARS. UHPH emulsions treated at 100 MPa were less oxidized than those treated at 200 MPa. The results from this study suggest that UHPH treatment generates emulsions that have a higher stability to creaming and lipid oxidation compared to colloid mill and conventional treatments.

  14. Comparison of total protein concentration in skeletal muscle as measured by the Bradford and Lowry assays.

    Science.gov (United States)

    Seevaratnam, Rajini; Patel, Barkha P; Hamadeh, Mazen J

    2009-06-01

    The Lowry and Bradford assays are the most commonly used methods of total protein quantification, yet vary in several aspects. To date, no comparisons have been made in skeletal muscle. We compared total protein concentrations of mouse red and white gastrocnemius, reagent stability, protein stability and range of linearity using both assays. The Lowry averaged protein concentrations 15% higher than the Bradford with a moderate correlation (r = 0.36, P = 0.01). However, Bland-Altman analysis revealed considerable bias (15.8 +/- 29.7%). Both Lowry reagents and its protein-reagent interactions were less stable over time than the Bradford. The linear range of concentration was smaller for the Lowry (0.05-0.50 mg/ml) than the Bradford (0-2.0 mg/ml). We conclude that the Bradford and Lowry measures of total protein concentration in skeletal muscle are not interchangeable. The Bradford and Lowry assays have various strengths and weaknesses in terms of substance interference and protein size. However, the Bradford provides greater reagent stability, protein-reagent stability and range of linearity, and requires less time to analyse compared to the Lowry assay.

  15. Protein: MPB4 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB4 Sema3A signaling molecules DPYSL2 CRMP2, ULIP2 DPYSL2 Dihydropyrimidinase-related pr...otein 2 Collapsin response mediator protein 2, N2A3, Unc-33-like phosphoprotein 2 9606 Homo sapiens Q16555 1808 2VM8, 2GSE 1808 Q16555 ...

  16. Protein denaturation and functional properties of Lenient Steam Injection heat treated whey protein concentrate

    DEFF Research Database (Denmark)

    Dickow, Jonatan Ahrens; Kaufmann, Niels; Wiking, Lars

    2012-01-01

    Whey protein concentrate (WPC) was heat treated by use of the novel heat treatment method of Lenient Steam Injection (LSI) to elucidate new functional properties in relation to heat-induced gelation of heat treated WPC. Denaturation was measured by both DSC and FPLC, and the results of the two...... methods were highly correlated. Temperatures of up to 90 °C were applicable using LSI, whereas only 68 °C could be reached by plate heat exchange before coagulation/fouling. Denaturation of whey proteins increased with increasing heat treatment temperature up to a degree of 30–35% denaturation at 90 °C...

  17. Assessment of nutritional quality of water hyacinth leaf protein concentrate

    Directory of Open Access Journals (Sweden)

    Oyeyemi Adeyemi

    2016-09-01

    Full Text Available This study was embarked upon to convert water hyacinth, an environmental nuisance, to a natural resource for economic development. Water hyacinth leaf protein concentrate (WHLPC was extracted in edible form and determination of its physicochemical characteristics, total alkaloids and phenolic compounds was done. Analysis of proximate composition and amino acid profile of the WHLPC was also done. The level of heavy metals (mg/kg in WHLPC was found to be Cd (0.02 ± 0.001, Cr (0.13 ± 0.001, Pd (0.003 ± 0.001 and Hg (0.02 ± 0.001 while concentrations of Pb, Pt, Sn, Fe, Cu, Zn, Ni and Co were found to be 0.001 ± 0.00. Level of all heavy metals was found to be within safe limit. Proximate analysis revealed that protein in WHLPC accounted for 50% of its nutrients, carbohydrate accounted for 33% of its nutrients while fat, ash and fibre made up the remaining nutrients. Amino acid analysis showed that WHLPC contained 17 out of 20 common amino acids, particularly, Phe (3.67%, Leu (5.01%. Level of total alkaloids and phenolic compounds was 16.6 mg/kg and 6.0 mg/kg respectively. Evidence from this study suggests that WHLPC is a good source of leaf protein concentrate (LPC; it is nutritious and acutely non toxic.

  18. Synthesis of milligram quantities of proteins using a reconstituted in vitro protein synthesis system.

    Science.gov (United States)

    Kazuta, Yasuaki; Matsuura, Tomoaki; Ichihashi, Norikazu; Yomo, Tetsuya

    2014-11-01

    In this study, the amount of protein synthesized using an in vitro protein synthesis system composed of only highly purified components (the PURE system) was optimized. By varying the concentrations of each system component, we determined the component concentrations that result in the synthesis of 0.38 mg/mL green fluorescent protein (GFP) in batch mode and 3.8 mg/mL GFP in dialysis mode. In dialysis mode, protein concentrations of 4.3 and 4.4 mg/mL were synthesized for dihydrofolate reductase and β-galactosidase, respectively. Using the optimized system, the synthesized protein represented 30% (w/w) of the total protein, which is comparable to the level of overexpressed protein in Escherichia coli cells. This optimized reconstituted in vitro protein synthesis system may potentially be useful for various applications, including in vitro directed evolution of proteins, artificial cell assembly, and protein structural studies. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Technology development of protein rich concentrates for nutrition in extreme conditions using soybean and meat by-products.

    Science.gov (United States)

    Kalenik, Tatiana K; Costa, Rui; Motkina, Elena V; Kosenko, Tamara A; Skripko, Olga V; Kadnikova, Irina A

    2017-01-01

    There is a need to develop new foods for participants of expeditions in extreme conditions, which must be self-sufficient. These foods should be light to carry, with a long shelf life, tasty and with  high nutrient density. Currently, protein sources are limited mainly to dried and canned meat. In this work, a protein-rich dried concentrate suitable for extreme expeditions was developed using soya, tomato, milk whey and meat by-products. Protein concentrates were developed using minced beef liver and heart, dehydrated and mixed with a soya protein-lycopene coagulate (SPLC) obtained from a solution prepared with germi- nated soybeans and mixed with tomato paste in milk whey, and finally dried. The technological parameters of pressing SPLC and of drying the protein concentrate were optimized using response surface methodology. The optimized technological parameters to prepare the protein concentrates were obtained, with 70:30 being the ideal ratio of minced meat to SPLC. The developed protein concentrates are characterized by a high calorific value of 376 kcal/100 g of dry product, with a water content of 98 g·kg-1, and 641-644 g·kg-1 of proteins. The essential amino acid indices are 100, with minimum essential amino acid content constitut- ing 100-128% of the FAO standard, depending on the raw meat used. These concentrates are also rich in micronutrients such as β-carotene and vitamin C. Analysis of the nutrient content showed that these non-perishable concentrates present a high nutritional value and complement other widely available vegetable concentrates to prepare a two-course meal. The soups and porridges prepared with these concentrates can be classified as functional foods, and comply with army requirements applicable to food products for extreme conditions.

  20. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu; Brittin,Sachi; Mohandas, Narla; Lecomte, Marie-Christine; Gascard, Philippe

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1 proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.

  1. Diversity in the glucose transporter-4 gene (SLC2A4 in humans reflects the action of natural selection along the old-world primates evolution.

    Directory of Open Access Journals (Sweden)

    Eduardo Tarazona-Santos

    Full Text Available BACKGROUND: Glucose is an important source of energy for living organisms. In vertebrates it is ingested with the diet and transported into the cells by conserved mechanisms and molecules, such as the trans-membrane Glucose Transporters (GLUTs. Members of this family have tissue specific expression, biochemical properties and physiologic functions that together regulate glucose levels and distribution. GLUT4 -coded by SLC2A4 (17p13 is an insulin-sensitive transporter with a critical role in glucose homeostasis and diabetes pathogenesis, preferentially expressed in the adipose tissue, heart muscle and skeletal muscle. We tested the hypothesis that natural selection acted on SLC2A4. METHODOLOGY/PRINCIPAL FINDINGS: We re-sequenced SLC2A4 and genotyped 104 SNPs along a approximately 1 Mb region flanking this gene in 102 ethnically diverse individuals. Across the studied populations (African, European, Asian and Latin-American, all the eight common SNPs are concentrated in the N-terminal region upstream of exon 7 ( approximately 3700 bp, while the C-terminal region downstream of intron 6 ( approximately 2600 bp harbors only 6 singletons, a pattern that is not compatible with neutrality for this part of the gene. Tests of neutrality based on comparative genomics suggest that: (1 episodes of natural selection (likely a selective sweep predating the coalescent of human lineages, within the last 25 million years, account for the observed reduced diversity downstream of intron 6 and, (2 the target of natural selection may not be in the SLC2A4 coding sequence. CONCLUSIONS: We propose that the contrast in the pattern of genetic variation between the N-terminal and C-terminal regions are signatures of the action of natural selection and thus follow-up studies should investigate the functional importance of different regions of the SLC2A4 gene.

  2. Concentration of Proteins and Protein Fractions in Blood Plasma of Chickens Hatched from Eggs Irradiated with Low Level Gamma Rays

    International Nuclear Information System (INIS)

    Kraljevic, P.; Vilic, M.; Simpraga, M.; Matisic, D.; Miljanic, S.

    2011-01-01

    In literature there are many results which have shown that low dose radiation can stimulate many physiological processes of living organism. In our earlier paper it was shown that low dose of gamma radiation has a stimulative effect upon metabolic process in chickens hatched from eggs irradiated before incubation. This was proved by increase of body weight gain and body weight, as well as by increase of two enzymes activities in blood plasma (aspartate aminotransferase and alanine aminotransferase) which play an important role in protein metabolism. Therefore, an attempt was made to determine the effect of eggs irradiation by low dose gamma rays upon concentration of total proteins and protein fractions in the blood plasma of chickens hatched from irradiated eggs. The eggs of heavy breed chickens were irradiated with a dose of 0.15 Gy gamma radiation (60Co) before incubation. Along with the chickens which were hatched from irradiated eggs, there was a control group of chickens hatched from nonirradiated eggs. All other conditions were the same for both groups of chickens. Blood samples were taken from the right jugular vein on the 1 s t and 3 r d day, or from the wing vein on days 5 and 7 after hatching. The total proteins concentration in the blood plasma was determined by the biuret method using Boehringer Mannheim GmbH optimized kits. The protein fractions (albumin, α 1 -globulin, α 2 -globulin, β- and γ-globulins) were estimated electrophoretically on Cellogel strips. The total proteins concentration was significantly decreased in blood plasma of chickens hatched from irradiated eggs on days 3 (P t h day (P 2 -globulin was decreased on days 1 (P t h day of life. Obtained results indicate that low dose of gamma radiation has mostly inhibitory effect upon concentration of total proteins and protein fractions in the blood plasma of chickens hatched from irradiated eggs before incubation. (author)

  3. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism

    DEFF Research Database (Denmark)

    Szekeres, Ferenc; Chadt, Alexandra; Tom, Robby Z

    2012-01-01

    The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL...... be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice......)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose...

  4. Effects of glucose on lactose synthesis in mammary epithelial cells from dairy cow.

    Science.gov (United States)

    Lin, Ye; Sun, Xiaoxu; Hou, Xiaoming; Qu, Bo; Gao, Xuejun; Li, Qingzhang

    2016-05-26

    Lactose, as the primary osmotic component in milk, is the major determinant of milk volume. Glucose is the primary precursor of lactose. However, the effect of glucose on lactose synthesis in dairy cow mammary glands and the mechanism governing this process are poorly understood. Here we showed that glucose has the ability to induce lactose synthesis in dairy cow mammary epithelial cells, as well as increase cell viability and proliferation. A concentration of 12 mM glucose was the optimum concentration to induce cell growth and lactose synthesis in cultured dairy cow mammary epithelial cells. In vitro, 12 mM glucose enhanced lactose content, along with the expression of genes involved in glucose transportation and the lactose biosynthesis pathway, including GLUT1, SLC35A2, SLC35B1, HK2, β4GalT-I, and AKT1. In addition, we found that AKT1 knockdown inhibited cell growth and lactose synthesis as well as expression of GLUT1, SLC35A2, SLC35B1, HK2, and β4GalT-I. Glucose induces cell growth and lactose synthesis in dairy cow mammary epithelial cells. Protein kinase B alpha acts as a regulator of metabolism in dairy cow mammary gland to mediate the effects of glucose on lactose synthesis.

  5. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    Science.gov (United States)

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra

    Science.gov (United States)

    Goun, Alexei; Bondar, Denys I.; Er, Ali O.; Quine, Zachary; Rabitz, Herschel A.

    2016-05-01

    By exploiting photonic reagents (i.e., coherent control by shaped laser pulses), we employ Optimal Dynamic Discrimination (ODD) as a novel means for quantitatively characterizing mixtures of fluorescent proteins with a large spectral overlap. To illustrate ODD, we simultaneously measured concentrations of in vitro mixtures of Enhanced Blue Fluorescent Protein (EBFP) and Enhanced Cyan Fluorescent Protein (ECFP). Building on this foundational study, the ultimate goal is to exploit the capabilities of ODD for parallel monitoring of genetic and protein circuits by suppressing the spectral cross-talk among multiple fluorescent reporters.

  7. A Rapid Method for Determining the Concentration of Recombinant Protein Secreted from Pichia pastoris

    International Nuclear Information System (INIS)

    Sun, L W; Zhao, Y; Jiang, R; Song, Y; Feng, H; Feng, K; Niu, L P; Qi, C

    2011-01-01

    Pichia secretive expression system is one of powerful eukaryotic expression systems in genetic engineering, which is especially suitable for industrial utilization. Because of the low concentration of the target protein in initial experiment, the methods and conditions for expression of the target protein should be optimized according to the protein yield repetitively. It is necessary to set up a rapid, simple and convenient analysis method for protein expression levels instead of the generally used method such as ultrafiltration, purification, dialysis, lyophilization and so on. In this paper, acetone precipitation method was chosen to concentrate the recombinant protein firstly after comparing with four different protein precipitation methods systematically, and then the protein was analyzed by SDS-Polyacrylamide Gel Electrophoresis. The recombinant protein was determined with the feature of protein band by the Automated Image Capture and 1-D Analysis Software directly. With this method, the optimized expression conditions of basic fibroblast growth factor secreted from pichia were obtained, which is as the same as using traditional methods. Hence, a convenient tool to determine the optimized conditions for the expression of recombinant proteins in Pichia was established.

  8. Replacement of fish meal by protein soybean concentrate in practical diets for Pacific white shrimp

    Directory of Open Access Journals (Sweden)

    Mariana Soares

    2015-10-01

    Full Text Available ABSTRACTThe objective of this work was to evaluate the performance of Litopenaeus vannameifed different levels (0, 25, 50, 75, and 100% of soybean protein concentrate (63.07% crude protein, CP to replace fish meal-by product (61.24% CP. The study was conducted in clear water in fifteen 800 L tanks equipped with aeration systems, constant heating (29 ºC, and daily water exchange (30%. Each tank was stocked with 37.5 shrimp/m3 (3.03±0.14 g. Feed was supplied four times a day, at 6% of the initial biomass, adjusted daily. After 42 days, the weight gain of shrimp fed diets with 0 and 25% protein replacement was higher than that observed in shrimp fed 100% replacement, and there were no differences among those fed the other diets. Feed efficiency and survival did not differ among shrimp fed different protein replacements. There was a negative linear trend for growth parameters and feed intake as protein replacement with soybean protein concentrate increased. Fish meal by-product can be replaced by up to 75% of soybean protein concentrate, with no harm to the growth of Pacific white shrimp.

  9. Reducing crude protein and rumen degradable protein with a constant concentration of rumen undegradable protein in the diet of dairy cows: Production performance, nutrient digestibility, nitrogen efficiency, and blood metabolites.

    Science.gov (United States)

    Bahrami-Yekdangi, M; Ghorbani, G R; Khorvash, M; Khan, M A; Ghaffari, M H

    2016-02-01

    The goals of ruminant protein nutrition are to provide adequate amounts of RDP for optimal ruminal efficiency and to obtain the desired animal productivity with a minimum amount of dietary CP. The aim of the present study was to examine effects of decreasing dietary protein by decreasing RDP with the optimum concentration of RUP on production performance, nutrient digestibility, N retention, rumen fermentation parameters, and blood metabolites in high-producing Holstein cows in early lactation. Nine multiparous lactating cows (second parities, averaging 50 ± 12 d in milk and milk yield of 48 ± 5 kg/d) were used in a triplicate 3 × 3 Latin square design with 3 rations: 1) a total mixed ration (TMR) containing 16.4% CP (10.9% RDP based on DM), 2) a TMR containing 15.6% CP (10% RDP), and 3) a TMR containing 14.8% CP (9.3% RDP). The level of RUP was constant at 5.5% DM across the treatments. All diets were calculated to supply a postruminal lysine to methionine ratio of about 3:1. Dry matter intake, milk yield and composition, 4% fat-corrected milk, and energy-corrected milk were not significantly affected by decreasing dietary CP and RDP levels. Cows fed 16.4% CP diets had greater ( RUP and fecal N excretion (g/d) did not change. Apparent digestibility of nutrients, ruminal pH, and NH-N concentration were not affected with decreasing dietary CP and RDP levels. Apparent N efficiency increased, and RDP N intake and predicted urine N output decreased with decreased concentration of dietary CP and RDP in the diets ( RUP.

  10. Semen quality and concentration of soluble proteins in the seminal plasma of Alpine bucks Semen quality and concentration of soluble proteins in the seminal plasma of Alpine bucks

    Directory of Open Access Journals (Sweden)

    Simone Eliza Facione Guimarães

    2010-06-01

    Full Text Available It was aimed to study the in vitro seminal quality analyzed by complementary tests and to compare them with physical, morphological and biochemical aspects of male goat semen of the Alpine breed. This experiment took place at the Federal University of Viçosa, situated at 20º45’ S latitude and 42º51’ W longitude, Southwest of Brazil. It was done during the summer months of January and February, and three adult male goats of the Alpine breed were used in intensive conditions. The semen was collected by artificial vagina method. In all semen samples (45 ejaculates, after the physical and morphological analysis, the hiposmotic test was done. In 24 ejaculates, it were done thermo-resistance test, and in 21 ejaculates it were determined the concentration of total soluble proteins in seminal plasma. The male goats presented difference in the semen physical and morphological aspects, in the hiposmotic test and thermo-resistance test, but they did not presented difference in total soluble proteins concentration in seminal plasma. Results of the slow thermo-resistance test and hiposmotic test were positively correlated (r = 0.60. It was concluded, according to our results, that the concentration of total soluble proteins in seminal plasma can not be used as a parameter to predict the seminal quality of Alpine bucks.It was aimed to study the in vitro seminal quality analyzed by complementary tests and to compare them with physical, morphological and biochemical aspects of male goat semen of the Alpine breed. This experiment took place at the Federal University of Viçosa, situated at 20º45’ S latitude and 42º51’ W longitude, Southwest of Brazil. It was done during the summer months of January and February, and three adult male goats of the Alpine breed were used in intensive conditions. The semen was collected by artificial vagina method. In all semen samples (45 ejaculates, after the physical and morphological analysis, the hiposmotic test

  11. Biomolecular Characterization of Putative Antidiabetic Herbal Extracts

    Science.gov (United States)

    Stadlbauer, Verena; Haselgrübler, Renate; Lanzerstorfer, Peter; Plochberger, Birgit; Borgmann, Daniela; Jacak, Jaroslaw; Winkler, Stephan M.; Schröder, Klaus; Höglinger, Otmar; Weghuber, Julian

    2016-01-01

    Induction of GLUT4 translocation in the absence of insulin is considered a key concept to decrease elevated blood glucose levels in diabetics. Due to the lack of pharmaceuticals that specifically increase the uptake of glucose from the blood circuit, application of natural compounds might be an alternative strategy. However, the effects and mechanisms of action remain unknown for many of those substances. For this study we investigated extracts prepared from seven different plants, which have been reported to exhibit anti-diabetic effects, for their GLUT4 translocation inducing properties. Quantitation of GLUT4 translocation was determined by total internal reflection fluorescence (TIRF) microscopy in insulin sensitive CHO-K1 cells and adipocytes. Two extracts prepared from purslane (Portulaca oleracea) and tindora (Coccinia grandis) were found to induce GLUT4 translocation, accompanied by an increase of intracellular glucose concentrations. Our results indicate that the PI3K pathway is mainly responsible for the respective translocation process. Atomic force microscopy was used to prove complete plasma membrane insertion. Furthermore, this approach suggested a compound mediated distribution of GLUT4 molecules in the plasma membrane similar to insulin stimulated conditions. Utilizing a fluorescent actin marker, TIRF measurements indicated an impact of purslane and tindora on actin remodeling as observed in insulin treated cells. Finally, in-ovo experiments suggested a significant reduction of blood glucose levels under tindora and purslane treated conditions in a living organism. In conclusion, this study confirms the anti-diabetic properties of tindora and purslane, which stimulate GLUT4 translocation in an insulin-like manner. PMID:26820984

  12. Nuclear delivery of recombinant OCT4 by chitosan nanoparticles for transgene-free generation of protein-induced pluripotent stem cells.

    Science.gov (United States)

    Tammam, Salma; Malak, Peter; Correa, Daphne; Rothfuss, Oliver; Azzazy, Hassan M E; Lamprecht, Alf; Schulze-Osthoff, Klaus

    2016-06-21

    Protein-based reprogramming of somatic cells is a non-genetic approach for the generation of induced pluripotent stem cells (iPSCs), whereby reprogramming factors, such as OCT4, SOX2, KLF4 and c-MYC, are delivered as functional proteins. The technique is considered safer than transgenic methods, but, unfortunately, most protein-based protocols provide very low reprogramming efficiencies. In this study, we developed exemplarily a nanoparticle (NP)-based delivery system for the reprogramming factor OCT4. To this end, we expressed human OCT4 in Sf9 insect cells using a baculoviral expression system. Recombinant OCT4 showed nuclear localization in Sf9 cells indicating proper protein folding. In comparison to soluble OCT4 protein, encapsulation of OCT4 in nuclear-targeted chitosan NPs strongly stabilized its DNA-binding activity even under cell culture conditions. OCT4-loaded NPs enabled cell treatment with high micromolar concentrations of OCT4 and successfully delivered active OCT4 into human fibroblasts. Chitosan NPs therefore provide a promising tool for the generation of transgene-free iPSCs.

  13. Absolute quantitative autoradiography of low concentrations of [125I]-labeled proteins in arterial tissue

    International Nuclear Information System (INIS)

    Schnitzer, J.J.; Morrel, E.M.; Colton, C.K.; Smith, K.A.; Stemerman, M.B.

    1987-01-01

    We developed a method for absolute quantitative autoradiographic measurement of very low concentrations of [ 125 I]-labeled proteins in arterial tissue using Kodak NTB-2 nuclear emulsion. A precise linear relationship between measured silver grain density and isotope concentration was obtained with uniformly labeled standard sources composed of epoxy-embedded gelatin containing glutaraldehyde-fixed [ 125 I]-albumin. For up to 308-day exposures of 1 micron-thick tissue sections, background grain densities ranged from about two to eight grains/1000 micron 2, and the technique was sensitive to as little as about one grain/1000 micron 2 above background, which correspond to a radioactivity concentration of about 2 x 10(4) cpm/ml. A detailed statistical analysis of variability was performed and the sum of all sources of variation quantified. The half distance for spatial resolution was 1.7 micron. Both visual and automated techniques were employed for quantitative grain density analysis. The method was illustrated by measurement of in vivo transmural [ 125 I]-low-density lipoprotein [( 125 I]-LDL) concentration profiles in de-endothelialized rabbit thoracic aortic wall

  14. High Concentrations of Angiopoietin-Like Protein 4 Detected in Serum from Patients with Rheumatoid Arthritis Can Be Explained by Non-Specific Antibody Reactivity

    OpenAIRE

    Makoveichuk, Elena; Ruge, Toralph; Nilsson, Solveig; S?dergren, Anna; Olivecrona, Gunilla

    2017-01-01

    Angiopoietin-like protein 4 (ANGPTL4) is suggested to be a master regulator of plasma triglyceride metabolism. Our aim was to study whether the previously reported high levels of ANGPTL4 detected in serum from patients with rheumatoid arthritis (RA) by ELISA was due to any specific molecular form of this protein (oligomers, monomers or fragments). ANGPTL4 levels were first determined in serum from 68 RA patients and 43 age and sex matched control subjects and the mean values differed by a fac...

  15. EFFECTS OF PROTEIN-XANTHOPHYLL (PX CONCENTRATE OF ALFALFA ADDITIVE TO CRUDE PROTEIN-REDUCED DIETS ON NITROGEN EXCRETION, GROWTH PERFORMANCE AND MEAT QUALITY OF PIGS

    Directory of Open Access Journals (Sweden)

    Eugeniusz GRELA

    2009-06-01

    Full Text Available The infl uence of protein-xanthophyll (PX concentrate of alfalfa supplement to crude protein-reduced diets was examined in relation to nitrogen excretion, performance parameters and pig meat quality. The investigations included 60 growers (PL x PLW x Duroc crossbreeds assigned to 3 groups. The conclusion is that there is a large potential to decrease nitrogen emission to the environment by 10% lowering of dietary crude protein intake along with reduced animal growth rate and elevated mixture utilization. Inclusion of a protein-xanthophyll concentrate (PX of alfalfa to the diet is likely to diminish disadvantageous productive parameters arising from limiting of total crude protein level in relation to the requirements of pigs feeding norms [1993]. At the same time, it improves feed nitrogen utilization and reduces noxious odour emissions from a piggery. The components of a protein-xanthophyll concentrate (PX contribute to increased liver and kidney weight.

  16. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular

  17. Glucose transporters are expressed in taste receptor cells.

    Science.gov (United States)

    Merigo, Flavia; Benati, Donatella; Cristofoletti, Mirko; Osculati, Francesco; Sbarbati, Andrea

    2011-08-01

    In the intestine, changes of sugar concentration generated in the lumen during digestion induce adaptive responses of glucose transporters in the epithelium. A close matching between the intestinal expression of glucose transporters and the composition and amount of the diet has been provided by several experiments. Functional evidence has demonstrated that the regulation of glucose transporters into enterocytes is induced by the sensing of sugar of the enteroendocrine cells through activation of sweet taste receptors (T1R2 and T1R3) and their associated elements of G-protein-linked signaling pathways (e.g. α-gustducin, phospholipase C β type 2 and transient receptor potential channel M5), which are signaling molecules also involved in the perception of sweet substances in the taste receptor cells (TRCs) of the tongue. Considering this phenotypical similarity between the intestinal cells and TRCs, we evaluated whether the TRCs themselves possess proteins of the glucose transport mechanism. Therefore, we investigated the expression of the typical intestinal glucose transporters (i.e. GLUT2, GLUT5 and SGLT1) in rat circumvallate papillae, using immunohistochemistry, double-labeling immunofluorescence, immunoelectron microscopy and reverse transcriptase-polymerase chain reaction analysis. The results showed that GLUT2, GLUT5 and SGLT1 are expressed in TRCs; their immunoreactivity was also observed in cells that displayed staining for α-gustducin and T1R3 receptor. The immunoelectron microscopic results confirmed that GLUT2, GLUT5 and SGLT1 were predominantly expressed in cells with ultrastructural characteristics of chemoreceptor cells. The presence of glucose transporters in TRCs adds a further link between chemosensory information and cellular responses to sweet stimuli that may have important roles in glucose homeostasis, contributing to a better understanding of the pathways implicated in glucose metabolism. © 2011 The Authors. Journal of Anatomy © 2011

  18. Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport

    Directory of Open Access Journals (Sweden)

    Archana Vijayakumar

    2017-10-01

    Full Text Available Lower adipose-ChREBP and de novo lipogenesis (DNL are associated with insulin resistance in humans. Here, we generated adipose-specific ChREBP knockout (AdChREBP KO mice with negligible sucrose-induced DNL in adipose tissue (AT. Chow-fed AdChREBP KO mice are insulin resistant with impaired insulin action in the liver, muscle, and AT and increased AT inflammation. HFD-fed AdChREBP KO mice are also more insulin resistant than controls. Surprisingly, adipocytes lacking ChREBP display a cell-autonomous reduction in insulin-stimulated glucose transport that is mediated by impaired Glut4 translocation and exocytosis, not lower Glut4 levels. AdChREBP KO mice have lower levels of palmitic acid esters of hydroxy stearic acids (PAHSAs in serum, and AT. 9-PAHSA supplementation completely rescues their insulin resistance and AT inflammation. 9-PAHSA also normalizes impaired glucose transport and Glut4 exocytosis in ChREBP KO adipocytes. Thus, loss of adipose-ChREBP is sufficient to cause insulin resistance, potentially by regulating AT glucose transport and flux through specific lipogenic pathways.

  19. Effect of mobile phone use on salivary concentrations of protein, amylase, lipase, immunoglobulin A, lysozyme, lactoferrin, peroxidase and C-reactive protein of the parotid gland.

    Science.gov (United States)

    Hashemipour, M S; Yarbakht, M; Gholamhosseinian, A; Famori, H

    2014-05-01

    The possibility of side effects associated with the electromagnetic waves emitted from mobile phones is a controversial issue. The present study aimed to evaluate the effect of mobile phone use on parotid gland salivary concentrations of protein, amylase, lipase, immunoglobulin A, lysozyme, lactoferrin, peroxidase and C-reactive protein. Stimulated salivary samples were collected simultaneously from both parotid glands of 86 healthy volunteers. Salivary flow rate and salivary concentrations of proteins, amylase, lipase, lysozyme, lactoferrin, peroxidase, C-reactive protein and immunoglobulin A, were measured. Data were analysed using t-tests and one-way analyses of variance. Salivary flow rate and parotid gland salivary concentrations of protein were significantly higher on the right side compared to the left in those that predominantly held mobile phones on the right side. In addition, there was a decrease in concentrations of amylase, lipase, lysozyme, lactoferrin and peroxidase. The side of dominant mobile phone use was associated with differences in salivary flow rate and parotid gland salivary concentrations, in right-dominant users. Although mobile phone use influenced salivary composition, the relationship was not significant.

  20. Optimization of mold wheat bread fortified with soy flour, pea flour and whey protein concentrate.

    Science.gov (United States)

    Erben, Melina; Osella, Carlos A

    2017-07-01

    The objective of this work was to study the effect of replacing a selected wheat flour for defatted soy flour, pea flour and whey protein concentrate on both dough rheological characteristics and the performance and nutritional quality of bread. A mixture design was used to analyze the combination of the ingredients. The optimization process suggested that a mixture containing 88.8% of wheat flour, 8.2% of defatted soy flour, 0.0% of pea flour and 3.0% of whey protein concentrate could be a good combination to achieve the best fortified-bread nutritional quality. The fortified bread resulted in high protein concentration, with an increase in dietary fiber content and higher calcium levels compared with those of control (wheat flour 100%). Regarding protein quality, available lysine content was significantly higher, thus contributing with the essential amino acid requirement.

  1. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer; RMN de proteines (4Fe-4S): proprietes structurales et transfert electronique intramoleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J G

    1996-10-17

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an {alpha} helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S{sub {gamma}}-C{sub {beta}}-H{sub {beta}})Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven

  2. Scoparia dulcis (SDF7) endowed with glucose uptake properties on L6 myotubes compared insulin.

    Science.gov (United States)

    Beh, Joo Ee; Latip, Jalifah; Abdullah, Mohd Puad; Ismail, Amin; Hamid, Muhajir

    2010-05-04

    Insulin stimulates glucose uptake and promotes the translocation of glucose transporter 4 (Glut 4) to the plasma membrane on L6 myotubes. The aim of this study is to investigate affect of Scoparia dulcis Linn water extracts on glucose uptake activity and the Glut 4 translocation components (i.e., IRS-1, PI 3-kinase, PKB/Akt2, PKC and TC 10) in L6 myotubes compared to insulin. Extract from TLC fraction-7 (SDF7) was used in this study. The L6 myotubes were treated by various concentrations of SDF7 (1 to 50 microg/ml) and insulin (1 to 100 nM). The glucose uptake activities of L6 myotubes were evaluated using 2-Deoxy-D-glucose uptake assay in with or without fatty acid-induced medium. The Glut 4 translocation components in SDF7-treated L6 myotubes were detected using immunoblotting and quantified by densitometry compared to insulin. Plasma membrane lawn assay and glycogen colorimetry assay were carried out in SDF7- and insulin-treated L6 myotubes in this study. Here, our data clearly shows that SDF7 possesses glucose uptake properties on L6 myotubes that are dose-dependent, time-dependent and plasma membrane Glut 4 expression-dependent. SDF7 successfully stimulates glucose uptake activity as potent as insulin at a maximum concentration of 50 microg/ml at 480 min on L6 myotubes. Furthermore, SDF7 stimulates increased Glut 4 expression and translocation to plasma membranes at equivalent times. Even in the insulin resistance stage (free fatty acids-induced), SDF7-treated L6 myotubes were found to be more capable at glucose transport than insulin treatment. Thus, we suggested that Scoparia dulcis has the potential to be categorized as a hypoglycemic medicinal plant based on its good glucose transport properties. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-05-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts () bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  4. Determination of protein concentration in raw milk by mid-infrared fourier transform infrared/attenuated total reflectance spectroscopy.

    Science.gov (United States)

    Etzion, Y; Linker, R; Cogan, U; Shmulevich, I

    2004-09-01

    This study investigates the potential use of attenuated total reflectance spectroscopy in the mid-infrared range for determining protein concentration in raw cow milk. The determination of protein concentration is based on the characteristic absorbance of milk proteins, which includes 2 absorbance bands in the 1500 to 1700 cm(-1) range, known as the amide I and amide II bands, and absorbance in the 1060 to 1100 cm(-1) range, which is associated with phosphate groups covalently bound to casein proteins. To minimize the influence of the strong water band (centered around 1640 cm(-1)) that overlaps with the amide I and amide II bands, an optimized automatic procedure for accurate water subtraction was applied. Following water subtraction, the spectra were analyzed by 3 methods, namely simple band integration, partial least squares (PLS) and neural networks. For the neural network models, the spectra were first decomposed by principal component analysis (PCA), and the neural network inputs were the spectra principal components scores. In addition, the concentrations of 2 constituents expected to interact with the protein (i.e., fat and lactose) were also used as inputs. These approaches were tested with 235 spectra of standardized raw milk samples, corresponding to 26 protein concentrations in the 2.47 to 3.90% (weight per volume) range. The simple integration method led to very poor results, whereas PLS resulted in prediction errors of about 0.22% protein. The neural network approach led to prediction errors of 0.20% protein when based on PCA scores only, and 0.08% protein when lactose and fat concentrations were also included in the model. These results indicate the potential usefulness of Fourier transform infrared/attenuated total reflectance spectroscopy for rapid, possibly online, determination of protein concentration in raw milk.

  5. Glucose availability controls adipogenesis in mouse 3T3-L1 adipocytes via up-regulation of nicotinamide metabolism.

    Science.gov (United States)

    Jackson, Robert M; Griesel, Beth A; Gurley, Jami M; Szweda, Luke I; Olson, Ann Louise

    2017-11-10

    Expansion of adipose tissue in response to a positive energy balance underlies obesity and occurs through both hypertrophy of existing cells and increased differentiation of adipocyte precursors (hyperplasia). To better understand the nutrient signals that promote adipocyte differentiation, we investigated the role of glucose availability in regulating adipocyte differentiation and maturation. 3T3-L1 preadipocytes were grown and differentiated in medium containing a standard differentiation hormone mixture and either 4 or 25 mm glucose. Adipocyte maturation at day 9 post-differentiation was determined by key adipocyte markers, including glucose transporter 4 (GLUT4) and adiponectin expression and Oil Red O staining of neutral lipids. We found that adipocyte differentiation and maturation required a pulse of 25 mm glucose only during the first 3 days of differentiation. Importantly, fatty acids were unable to substitute for the 25 mm glucose pulse during this period. The 25 mm glucose pulse increased adiponectin and GLUT4 expression and accumulation of neutral lipids via distinct mechanisms. Adiponectin expression and other early markers of differentiation required an increase in the intracellular pool of total NAD/P. In contrast, GLUT4 protein expression was only partially restored by increased NAD/P levels. Furthermore, GLUT4 mRNA expression was mediated by glucose-dependent activation of GLUT4 gene transcription through the cis-acting GLUT4-liver X receptor element (LXRE) promoter element. In summary, this study supports the conclusion that high glucose promotes adipocyte differentiation via distinct metabolic pathways and independently of fatty acids. This may partly explain the mechanism underlying adipocyte hyperplasia that occurs much later than adipocyte hypertrophy in the development of obesity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Type 2 diabetes mellitus is associated with differential effects on plasma cholesteryl ester transfer protein and phospholipid transfer protein activities and concentrations

    NARCIS (Netherlands)

    Dullaart, RPF; De Vries, R; Scheek, L; Borggreve, SE; Van Gent, T; Dallinga-Thie, GM; Ito, M; Nagano, M; Sluiter, WJ; Hattori, H; Van Tol, A

    Background: Human plasma contains two lipid transfer proteins, cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP), which are crucial in reverse cholesterol transport. Methods: Plasma CETP and PLTP activity levels and concentrations in 16 type 2 diabetic patients and

  7. Determination of adsorbed protein concentration in aluminum hydroxide suspensions by near-infrared transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Jacobsen, Susanne

    2008-01-01

    , using the partial least square regression (PLSR) method to construct a calibration model. The linear concentration range of adsorbed BSA is from 0 to 1.75 mg/mL by using 10 mm path length cuvettes. The influence of the sedimentation in suspension, different buffers, and different aluminum hydroxide......Analysis of aluminum hydroxide based vaccines is difficult after antigen adsorption. Adsorbed protein is often assessed by measuring residual unadsorbed protein for quality control. A new method for the direct determination of adsorbed protein concentration in suspension using near-infrared (NIR......) transmittance spectroscopy is proposed here. A simple adsorption system using albumin from bovine serum (BSA) and aluminum hydroxide as a model system is employed. The results show that the NIR absorbance at 700-1300 nm is correlated to the adsorbed BSA concentration, measured by the ultraviolet (UV) method...

  8. Cloning Expeditions: Risky but Rewarding

    Science.gov (United States)

    2013-01-01

    In the 1980s, a good part of my laboratory was using the then-new recombinant DNA techniques to clone and characterize many important cell surface membrane proteins: GLUT1 (the red cell glucose transporter) and then GLUT2 and GLUT4, the red cell anion exchange protein (Band 3), asialoglycoprotein receptor subunits, sucrase-isomaltase, the erythropoietin receptor, and two of the subunits of the transforming growth factor β (TGF-β) receptor. These cloned genes opened many new fields of basic research, including membrane insertion and trafficking of transmembrane proteins, signal transduction by many members of the cytokine and TGF-β families of receptors, and the cellular physiology of glucose and anion transport. They also led to many insights into the molecular biology of several cancers, hematopoietic disorders, and diabetes. This work was done by an exceptional group of postdocs and students who took exceptionally large risks in developing and using novel cloning technologies. Unsurprisingly, all have gone on to become leaders in the fields of molecular cell biology and molecular medicine. PMID:24061478

  9. Embryonic protein undernutrition by albumen removal programs the hepatic amino acid and glucose metabolism during the perinatal period in an avian model.

    Directory of Open Access Journals (Sweden)

    Els Willems

    Full Text Available Different animal models have been used to study the effects of prenatal protein undernutrition and the mechanisms by which these occur. In mammals, the maternal diet is manipulated, exerting both direct nutritional and indirect hormonal effects. Chicken embryos develop independent from the hen in the egg. Therefore, in the chicken, the direct effects of protein deficiency by albumen removal early during incubation can be examined. Prenatal protein undernutrition was established in layer-type eggs by the partial replacement of albumen by saline at embryonic day 1 (albumen-deprived group, compared to a mock-treated sham and a non-treated control group. At hatch, survival of the albumen-deprived group was lower compared to the control and sham group due to increased early mortality by the manipulation. No treatment differences in yolk-free body weight or yolk weight could be detected. The water content of the yolk was reduced, whereas the water content of the carcass was increased in the albumen-deprived group, compared to the control group, indicating less uptake of nutrients from the yolk. At embryonic day 16, 20 and at hatch, plasma triiodothyronine (T3, corticosterone, lactate or glucose concentrations and hepatic glycogen content were not affected by treatment. At embryonic day 20, the plasma thyroxine (T4 concentrations of the albumen-deprived embryos was reduced compared to the control group, indicating a decreased metabolic rate. Screening for differential protein expression in the liver at hatch using two-dimensional difference gel electrophoresis revealed not only changed abundance of proteins important for amino acid metabolism, but also of enzymes related to energy and glucose metabolism. Interestingly, GLUT1, a glucose transporter, and PCK2 and FBP1, two out of three regulatory enzymes of the gluconeogenesis were dysregulated. No parallel differences in gene expressions causing the differences in protein abundance could be detected

  10. [A case of IgA2-lambda type M-protein that IgA concentration differs from the values of M-protein by serum protein electrophoresis].

    Science.gov (United States)

    Fukushima, M; Sugano, M; Ichikawa, T; Honda, T; Totsuka, M; Katsuyama, T; Fujita, K

    2001-07-01

    We report an IgA-lambda type M-protein in which the IgA concentration differed from the values of M-protein by serum protein electrophoresis found in a 53-year-old man with multiple myeloma. The M-protein value as determined by serum protein electrophoresis was 6,170 mg/dl. However, the serum IgA concentration was 3,052 mg/dl by turbidimetric immunoassay. Immuno-fixation electrophoresis using IgA subclass antisera revealed that this M-protein was the IgA2-lambda type. Western blotting analysis showed that the IgA2 molecules were composed of two approximately 68 kDa alpha 2 chains and two 28 kDa lambda chains. In addition the free lambda chain band was detected at the position of 28 kDa without 2-mercaptoethanol(2-ME) even though the patient IgA was purified. Since it is known that IgA2m(1) allotype easily release light chains from the IgA molecules in SDS-PAGE without 2-ME, we speculated that in this patient the IgA was the IgA2m(1) allotype. After peripheral blood stem cell transplantation(PBSCT), immunofixation electrophoresis of the patient serum revealed not only the bands of IgA2-lambda type M-protein, but also three bands of IgG1-kappa type M-protein in the gamma region.

  11. Concentration of rat brown adipose tissue uncoupling protein may not be correlated with 3H-GDP binding

    International Nuclear Information System (INIS)

    Henningfield, M.F.; Swick, A.G.; Swick, R.W.

    1986-01-01

    Rats fed diets low in protein or exposed to cold show an increase in brown adipose tissue (BAT) mitochondrial 3 H-GDP binding. To investigate this phenomenon further, the uncoupling protein associated with BAT function was measured immunochemically on nitrocellulose blots. Quantitation of uncoupling protein was achieved by densitometer scanning with a BioRad densitometer. Peaks were integrated with Chromatochart software and an Apple IIe computer. A standard curve of purified uncoupling protein (50 to 500 ng) was used to calculate uncoupling protein concentration. There is a 1.5-fold increase in uncoupling protein per mg of protein in BAT mitochondria from rats exposed to cold for 15 days. There was no decrease in uncoupling protein from rats exposed to the cold followed by 24 h at 27 0 C although 3 H-GDP binding had decreased by half. Rats fed diets containing either 5 or 15% lactalbumin for 3 weeks did not show differences in uncoupling protein concentration although 3 H-GDP binding was 1.5-fold greater in BAT mitochondria from the low protein group. These results indicate that GDP binding does not necessarily reflect the concentration of uncoupling protein in BAT mitochondria

  12. Characteristics of [18F] fluorodeoxyglucose uptake in human colon cancer cells

    International Nuclear Information System (INIS)

    Kim, Chae Kyun; Chung, June Key; Jeong, Jae Min; Lee, Myung Chul; Koh, Chang Soon

    1997-01-01

    Cancer tissues are characterized by increased glucose uptake. 18 F-fluorodeoxyglucose(FDG), a glucose analogue is used for the diagnosis of cancer in PET studies. This study was aimed to compare the glucose uptake and glucose transporter 1(GLUT1) expression in various human colon cancer cells. We measured FDG uptake by cell retention study and expression of GLUT1 using Western blotting. Human colon cancer cells, SNU-C2A, SNU-C4 and SNU-C5, were used. The cells were incubated with 1μ Ci/ml of FDG in HEPES- buffered saline for one hour. The FDG uptake of SNU-C2A, SNU-C4 and SNU-C5 were 16.8±1.36, 12.3±5.55 and 61.0±2.17 cpm/μg of protein, respectively. Dose-response and time-course studies represent that FDG uptake of cancer cells were dose dependent and time dependent. The rate of FDG uptake of SNU-C2A, SNU-C4 and SNU-C5 were 0.29±0.03, 0.21±0.09 and 1.07±0.07 cpm/min/μg of protein, respectively. Western blot analysis showed that the GLUT1 expression of SNU-C5 was significantly higher than those of SNU-C2A and SNU-C4. These results represent that FDG uptake into human colon cancer cells are different from each other. In addition, FDG uptake and expression of GLUT1 are closely related in human colon cancer cells

  13. Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs

    OpenAIRE

    Rong, Liwei; Livingstone, Mark; Sukarieh, Rami; Petroulakis, Emmanuel; Gingras, Anne-Claude; Crosby, Katherine; Smith, Bradley; Polakiewicz, Roberto D.; Pelletier, Jerry; Ferraiuolo, Maria A.; Sonenberg, Nahum

    2008-01-01

    Eukaryotic initiation factor (eIF) 4E, the mRNA 5′-cap-binding protein, mediates the association of eIF4F with the mRNA 5′-cap structure to stimulate cap-dependent translation initiation in the cytoplasm. The assembly of eIF4E into the eIF4F complex is negatively regulated through a family of repressor proteins, called the eIF4E-binding proteins (4E-BPs). eIF4E is also present in the nucleus, where it is thought to stimulate nuclear-cytoplasmic transport of certain mRNAs. eIF4E is transported...

  14. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity

    Science.gov (United States)

    The chemistry of whey protein concentrate (WPC) under adverse storage conditions was monitored to provide information on shelf life in hot, humid areas. WPC34 (34.9 g protein/100 g) and WPC80 (76.8 g protein/100 g) were stored for up to 18 mo under ambient conditions and at elevated temperature and...

  15. TRPM4 protein expression in prostate cancer

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Soldini, Davide; Jung, Maria

    2016-01-01

    BACKGROUND: Transient receptor potential cation channel, subfamily M, member 4 (TRPM4) messenger RNA (mRNA) has been shown to be upregulated in prostate cancer (PCa) and might be a new promising tissue biomarker. We evaluated TRPM4 protein expression and correlated the expression level.......79-2.62; p = 0.01-0.03 for the two observers) when compared to patients with a lower staining intensity. CONCLUSIONS: TRPM4 protein expression is widely expressed in benign and cancerous prostate tissue, with highest staining intensities found in PCa. Overexpression of TRPM4 in PCa (combination of high...

  16. Influence of energy concentration and source on the utilization of feed protein and NPN in lambs. 2

    International Nuclear Information System (INIS)

    Ulbrich, M.; Bassuny, S.M.; Geissler, C.; Hoffmann, M.

    1989-01-01

    In an experiment 12 lambs of the species merino meet sheep were divided into 4 groups. The variants HE received 740 or 718 EFU cattle /kg DM and the variants NE 689 or 671 EFU cattle /kg DM. The different energy concentrations resulted from differentiated quotas of dried sugar beet chips and wheat starch supplements. Within the variants, sub-variants with (HESZ, NESZ) or without (HES, NES) sugar supplement were formed. Due to varied DM intake, the average energy intake in all groups was 42 EFU cattle /kg LW 0.75 . N balance experiments using 15 N-labelled urea were carried out, and 15 N accumulation of N excretion was projected to a steady state. The partial utilization of pure protein and NPN in the ration was ascertained with the help of a 3-pool compartment model of N utilization in ruminants. In the non-amino acid N pool HE utilized 84% of NPN and NE 77% for the synthesis of amino and nucleic acids. The efficiency of protein synthesis in the amino acid N-pool were in HESZ 64%, HES 70%, NESZ 70% and NES 73% resp. The total utilization of NPN is the sum of the partial utilization in the two pools, whereas the total utilization of pure protein is calculated from the true digestibility and the efficiency of the utilization in the AA-N pool. The total utilization of NPN for the synthesis of protein for the protein pool amounted to 40/35/41/33% and that of pure protein to 54/51/49/50%. Energy intake being identical, energy concentration did not have an influence on the utilization of pure protein and NPN, whereas NPN utilization was better in rations containing sugar. The pure protein in the ration was by 19 - 52% better utilized than NPN. (author)

  17. Optimization of elution salt concentration in stepwise elution of protein chromatography using linear gradient elution data. Reducing residual protein A by cation-exchange chromatography in monoclonal antibody purification.

    Science.gov (United States)

    Ishihara, Takashi; Kadoya, Toshihiko; Endo, Naomi; Yamamoto, Shuichi

    2006-05-05

    Our simple method for optimization of the elution salt concentration in stepwise elution was applied to the actual protein separation system, which involves several difficulties such as detection of the target. As a model separation system, reducing residual protein A by cation-exchange chromatography in human monoclonal antibody (hMab) purification was chosen. We carried out linear gradient elution experiments and obtained the data for the peak salt concentration of hMab and residual protein A, respectively. An enzyme-linked immunosorbent assay was applied to the measurement of the residual protein A. From these data, we calculated the distribution coefficient of the hMab and the residual protein A as a function of salt concentration. The optimal salt concentration of stepwise elution to reduce the residual protein A from the hMab was determined based on the relationship between the distribution coefficient and the salt concentration. Using the optimized condition, we successfully performed the separation, resulting in high recovery of hMab and the elimination of residual protein A.

  18. Experimental study of the molecular mechanisms of myocardial ischemic memory with 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Xie Boqia; Yang Minfu; Ye Jue; Yang Zihe; Dou Kefei; Tian Yi; Han Chunlei

    2012-01-01

    This study was aimed to explore whether the changes of mRNA and the existence and duration of ischemic 18 F-FDG uptake correlate with the extent of myocardial ischemia in ischemia-reperfusion canine model. The 20-minute (n= 4) and 40-minute (n=4) coronary artery occlusion followed by 24 h of open-artery reperfusion in canine model were per- formed. All dogs underwent fasting (>12 h) dynamic 18 F-FDG PET/CT and 99 Tc m -MIBI SPECT imaging at baseline, 1 h and 24 h after reperfusion. When all imaging were completed, myocardial samples from the ischemic and nonischemic region were obtained, and the mRNA expression of glucose transporter-l (GLUT-1), glucose transporter-4 (GLUT-4), and heart-fatty acid binding protein (H-FABP) were estimated by Real Time PCR. There was no difference in the ratio of hypoperfused region/nomoperfused region of 18 F-FDG up- take between the 20-minute group and 40-minute group at baseline. When examined at 1 h, increased 18 F-FDG uptake was observed in the 40-minute group. When estimated at 24 h, only the 40-minute group showed slightly higher 18 F-FDG uptake than baseline, whereas no such difference was demonstrated in the 20-minute group. Similar mRNA expression of GLUT-1, GLUT-4 and H-FABP were demonstrated in the nonischemic regions between the 2 groups, whereas increased expressions of GLUT-1 and GLUT-4, and decreased H-FABP mRNA were demonstrated in the ischemic regions. The changes of mRNA expression were more obvious in the 40 minute group than in the 20-minute group. The results showed that the existence and persistent period of ischemic 18 F-FDG uptake (ischemic memory) was correlated with the extent of myocardial ischemia. (authors)

  19. Equine Chorionic Gonadotropin Modulates the Expression of Genes Related to the Structure and Function of the Bovine Corpus Luteum.

    Science.gov (United States)

    Sousa, Liza Margareth Medeiros de Carvalho; Mendes, Gabriela Pacheco; Campos, Danila Barreiro; Baruselli, Pietro Sampaio; Papa, Paula de Carvalho

    2016-01-01

    We hypothesized that stimulatory and superovulatory treatments, using equine chorionic gonadotropin (eCG), modulate the expression of genes related to insulin, cellular modelling and angiogenesis signaling pathways in the bovine corpus luteum (CL). Therefore, we investigated: 1-the effect of these treatments on circulating insulin and somatomedin C concentrations and on gene and protein expression of INSR, IGF1 and IGFR1, as well as other insulin signaling molecules; 2-the effects of eCG on gene and protein expression of INSR, IGF1, GLUT4 and NFKB1A in bovine luteal cells; and 3-the effect of stimulatory and superovulatory treatments on gene and protein expression of ANG, ANGPT1, NOS2, ADM, PRSS2, MMP9 and PLAU. Serum insulin did not differ among groups (P = 0.96). However, serum somatomedin C levels were higher in both stimulated and superovulated groups compared to the control (P = 0.01). In stimulated cows, lower expression of INSR mRNA and higher expression of NFKB1A mRNA and IGF1 protein were observed. In superovulated cows, lower INSR mRNA expression, but higher INSR protein expression and higher IGF1, IGFR1 and NFKB1A gene and protein expression were observed. Expression of angiogenesis and cellular modelling pathway-related factors were as follows: ANGPT1 and PLAU protein expression were higher and MMP9 gene and protein expression were lower in stimulated animals. In superovulated cows, ANGPT1 mRNA expression was higher and ANG mRNA expression was lower. PRSS2 gene and protein expression were lower in both stimulated and superovulated animals related to the control. In vitro, eCG stimulated luteal cells P4 production as well as INSR and GLUT4 protein expression. In summary, our results suggest that superovulatory treatment induced ovarian proliferative changes accompanied by increased expression of genes providing the CL more energy substrate, whereas stimulatory treatment increased lipogenic activity, angiogenesis and plasticity of the extracellular matrix

  20. Equine Chorionic Gonadotropin Modulates the Expression of Genes Related to the Structure and Function of the Bovine Corpus Luteum.

    Directory of Open Access Journals (Sweden)

    Liza Margareth Medeiros de Carvalho Sousa

    Full Text Available We hypothesized that stimulatory and superovulatory treatments, using equine chorionic gonadotropin (eCG, modulate the expression of genes related to insulin, cellular modelling and angiogenesis signaling pathways in the bovine corpus luteum (CL. Therefore, we investigated: 1-the effect of these treatments on circulating insulin and somatomedin C concentrations and on gene and protein expression of INSR, IGF1 and IGFR1, as well as other insulin signaling molecules; 2-the effects of eCG on gene and protein expression of INSR, IGF1, GLUT4 and NFKB1A in bovine luteal cells; and 3-the effect of stimulatory and superovulatory treatments on gene and protein expression of ANG, ANGPT1, NOS2, ADM, PRSS2, MMP9 and PLAU. Serum insulin did not differ among groups (P = 0.96. However, serum somatomedin C levels were higher in both stimulated and superovulated groups compared to the control (P = 0.01. In stimulated cows, lower expression of INSR mRNA and higher expression of NFKB1A mRNA and IGF1 protein were observed. In superovulated cows, lower INSR mRNA expression, but higher INSR protein expression and higher IGF1, IGFR1 and NFKB1A gene and protein expression were observed. Expression of angiogenesis and cellular modelling pathway-related factors were as follows: ANGPT1 and PLAU protein expression were higher and MMP9 gene and protein expression were lower in stimulated animals. In superovulated cows, ANGPT1 mRNA expression was higher and ANG mRNA expression was lower. PRSS2 gene and protein expression were lower in both stimulated and superovulated animals related to the control. In vitro, eCG stimulated luteal cells P4 production as well as INSR and GLUT4 protein expression. In summary, our results suggest that superovulatory treatment induced ovarian proliferative changes accompanied by increased expression of genes providing the CL more energy substrate, whereas stimulatory treatment increased lipogenic activity, angiogenesis and plasticity of the

  1. Divergent immunological responses following glutaraldehyde exposure

    International Nuclear Information System (INIS)

    Azadi, Shahla; Klink, Kimberly J.; Meade, B. Jean

    2004-01-01

    Although Glutaraldehyde (Glut) has been demonstrated to be a moderate contact sensitizer, numerous cases of occupational asthma related to Glut exposure have been reported. The purpose of these studies was to examine the dose-response relationship between Glut exposure and the development of T cell-mediated vs. IgE- mediated responses. Initial evaluation of the sensitization potential was conducted using the local lymph node assay (LLNA) at concentrations ranging from 0.75% to 2.5%. A concentration-dependent increase in lymphocyte proliferation was observed with EC3 values of 0.072% and 0.089% in CBA and BALB/c mice, respectively. The mouse ear swelling test (MEST) was used to evaluate the potential for Glut to elicit IgE (1/2 h post challenge) and contact hypersensitivity (24 and 48 h post challenge) responses. An immediate response was observed in animals induced and challenged with 2.5% Glut, whereas animals induced with 0.1% or 0.75% and challenged with 2.5% exhibited a delayed response 48 h post challenge. IgE-inducing potential was evaluated by phenotypic analysis of draining lymph node cells and measurement of total serum IgE levels. Only the 2.5% exposed group demonstrated a significant increase (P + B220 + cells and serum IgE. Following 3 days of dermal exposure, a significant increase in IL-4 mRNA in the draining lymph nodes was observed only in the 2.5% exposed group. These results indicate that the development of an immediate vs. a delayed hypersensitivity response following dermal exposure to Glut is at least in part mediated by the exposure concentration

  2. Thermal properties of silica-filled high density polyethylene composites compatibilized with glut palmitate

    Science.gov (United States)

    Samsudin, Dalina; Ismail, Hanafi; Othman, Nadras; Hamid, Zuratul Ain Abdul

    2017-07-01

    A study of thermal properties resulting from the utilization of Glut Palmitate (GP) on the silica filled high density polyethylene (HDPE) composites was carried out. The composites with the incorporation of GP at 0.5, 1.0, 2.0 and 3.0 phr were prepared by using an internal mixer at the temperature 180 °C and the rotor speed of 50 rpm. The thermal behaviours of the composites were then investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was found that the crystallinity and the thermal stability of the composites increased with the incorporation of GP. The highest crystallinity contents and decomposition temperatures were observed at the 1 phr GP loading.

  3. Microfibrillar-Associated Protein 4

    DEFF Research Database (Denmark)

    Sækmose, Susanne Gjørup; Mössner, Belinda; Christensen, Peer Brehm

    2015-01-01

    associations between plasma MFAP4 (pMFAP4) and transient elastography or chronic hepatitis C virus infection in drug users and in a mixed patient cohort with increased risk of liver disease. Moreover, the study aimed to identify comorbidities that significantly influence pMFAP4. METHODS: pMFAP4 was measured......BACKGROUND AND AIMS: A method for assessment of liver fibrosis and cirrhosis without the need for a liver biopsy is desirable. Microfibrillar-associated protein 4 (MFAP4) is a suggested biomarker for identification of high-risk patients with severe fibrosis stages. This study aimed to examine...... patient cohort, pMFAP4 was significantly increased among patients with a previous diagnosis of liver disease or congestive heart failure compared to patients with other diagnoses. CONCLUSIONS: pMFAP4 has the potential to be used as an outreach-screening tool for liver fibrosis in drug users and in mixed...

  4. [Establishment and identification of mouse lymphoma cell line EL4 expressing red fluorescent protein].

    Science.gov (United States)

    Li, Yan-Jie; Cao, Jiang; Chen, Chong; Wang, Dong-Yang; Zeng, Ling-Yu; Pan, Xiu-Ying; Xu, Kai-Lin

    2010-02-01

    This study was purposed to construct a lentiviral vector encoding red fluorescent protein (DsRed) and transfect DsRed into EL4 cells for establishing mouse leukemia/lymphoma model expressing DsRed. The bicistronic SIN lentiviral transfer plasmid containing the genes encoding neo and internal ribosomal entry site-red fluorescent protein (IRES-DsRed) was constructed. Human embryonic kidney 293FT cells were co-transfected with the three plasmids by liposome method. The viral particles were collected and used to transfect EL4 cells, then the cells were selected by G418. The results showed that the plasmid pXZ208-neo-IRES-DsRed was constructed successfully, and the viral titer reached to 10(6) U/ml. EL4 cells were transfected by the viral solution efficiently. The transfected EL4 cells expressing DsRed survived in the final concentration 600 microg/ml of G418. The expression of DsRed in the transfected EL4 cells was demonstrated by fluorescence microscopy and flow cytometry. In conclusion, the EL4/DsRed cell line was established successfully.

  5. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein.

    OpenAIRE

    Iliopoulos, O; Levy, A P; Jiang, C; Kaelin, W G; Goldberg, M A

    1996-01-01

    Inactivation of the von Hippel-Lindau protein (pVHL) has been implicated in the pathogenesis of renal carcinomas and central nervous system hemangioblastomas. These are highly vascular tumors which overproduce angiogenic peptides such as vascular endothelial growth factor/vascular permeability factor (VEGF/VPF). Renal carcinoma cells lacking wild-type pVHL were found to produce mRNAs encoding VEGF/VPF, the glucose transporter GLUT1, and the platelet-derived growth factor B chain under both no...

  6. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4).

    Science.gov (United States)

    Cheung, Leanna; Flemming, Claudia L; Watt, Fujiko; Masada, Nanako; Yu, Denise M T; Huynh, Tony; Conseil, Gwenaëlle; Tivnan, Amanda; Polinsky, Alexander; Gudkov, Andrei V; Munoz, Marcia A; Vishvanath, Anasuya; Cooper, Dermot M F; Henderson, Michelle J; Cole, Susan P C; Fletcher, Jamie I; Haber, Michelle; Norris, Murray D

    2014-09-01

    Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Straightforward hit identification approach in fragment-based discovery of bromodomain-containing protein 4 (BRD4) inhibitors.

    Science.gov (United States)

    Borysko, Petro; Moroz, Yurii S; Vasylchenko, Oleksandr V; Hurmach, Vasyl V; Starodubtseva, Anastasia; Stefanishena, Natalia; Nesteruk, Kateryna; Zozulya, Sergey; Kondratov, Ivan S; Grygorenko, Oleksandr O

    2018-05-09

    A combination approach of a fragment screening and "SAR by catalog" was used for the discovery of bromodomain-containing protein 4 (BRD4) inhibitors. Initial screening of 3695-fragment library against bromodomain 1 of BRD4 using thermal shift assay (TSA), followed by initial hit validation, resulted in 73 fragment hits, which were used to construct a follow-up library selected from available screening collection. Additionally, analogs of inactive fragments, as well as a set of randomly selected compounds were also prepared (3 × 3200 compounds in total). Screening of the resulting sets using TSA, followed by re-testing at several concentrations, counter-screen, and TR-FRET assay resulted in 18 confirmed hits. Compounds derived from the initial fragment set showed better hit rate as compared to the other two sets. Finally, building dose-response curves revealed three compounds with IC 50  = 1.9-7.4 μM. For these compounds, binding sites and conformations in the BRD4 (4UYD) have been determined by docking. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Recombinant HT{sub m4} gene, protein and assays

    Science.gov (United States)

    Lim, B.; Adra, C.N.; Lelias, J.M.

    1996-09-03

    The invention relates to a recombinant DNA molecule which encodes a HT{sub m4} protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT{sub m4} protein and a recombinant HT{sub m4} protein. The invention also relates to a method for detecting the presence of a hereditary atopy. 2 figs.

  9. Diabetic microvascular complications are not associated with two polymorphisms in the GLUT-1 and PC-1 genes regulating glucose metabolism in Caucasian type 1 diabetic patients

    DEFF Research Database (Denmark)

    Tarnow, L; Grarup, N; Hansen, T

    2001-01-01

    BACKGROUND: An XbaI polymorphism in the gene encoding the glucose transporter, GLUT-1, is associated with development of diabetic nephropathy in Chinese type 2 diabetic patients. In addition, an amino acid variant (K121Q) in the gene encoding the glycoprotein plasma cell differentiating antigen (PC...... men/77 women, age 40.9+/-9.6 years, diabetes duration 27+/-8 years) and type 1 diabetic patients with persistent normoalbuminuria (118 men/74 women, age 42.7+/-10.2 years, diabetes duration 26+/-9 years). Proliferative retinopathy was present in 156 patients (40%), while 67 patients (17%) had....... CONCLUSIONS: Neither the PC-1 K121Q nor the GLUT-1 XbaI polymorphism contribute to the genetic susceptibility of diabetic microvascular complications in Danish type 1 diabetic patients....

  10. Brain Transport Profiles of Ginsenoside Rb1 by Glucose Transporter 1: In Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Yu-Zhu Wang

    2018-04-01

    Full Text Available Ginsenoside Rb1 (Rb1 has been demonstrated its protection for central nervous system and is apparently highly distributed to the brain. The objective of this study was to characterize Rb1 transport at the blood–brain barrier (BBB using primary cultured rat brain microvascular endothelial cells (rBMEC, an in vitro BBB model. The initial uptake velocity of Rb1 in rBMEC was temperature- and concentration-dependent, and was significantly reduced by phloretin, an inhibitor of GLUT1 transporter, but was independent of metabolic inhibitor. Furthermore, the transport of Rb1 into rBMEC was significantly diminished in the presence of natural substrate α-D-glucose, suggesting a facilitated transport of Rb1 via GLUT1 transporter. The impact of GLUT1 on the distribution of Rb1 between brain and plasma was studied experimentally in rats. Administration of phloretin (5 mg/kg, i.v. to normal rats for consecutive 1 week before Rb1 (10 mg/kg, i.v. at 0.5, 2, and 6 h did not alter Rb1 concentrations in plasma, but resulted in significant decreased brain concentrations of Rb1 compared to in the phloretin-untreated normal rats (489.6 ± 58.3 versus 105.1 ± 15.1 ng/g, 193.8 ± 11.1 versus 84.8 ± 4.1 ng/g, and 114.2 ± 24.0 versus 39.9 ± 4.9 ng/g, respectively. The expression of GLUT1 in the phloretin-treated group by western blotting analysis in vitro and in vivo experiments was significantly decreased, indicating that the decreased transport of Rb1 in brain was well related to the down-regulated function and level of GLUT1. Therefore, our in vitro and in vivo results indicate that the transport of Rb1 at the BBB is at least partly mediated by GLUT1 transporter.

  11. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.

    Science.gov (United States)

    Dennis, Michael D; Jefferson, Leonard S; Kimball, Scot R

    2012-12-14

    Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.

  12. Protein Concentration in Milk Formula, Growth, and Later Risk of Obesity: A Systematic Review

    NARCIS (Netherlands)

    Patro-Gołąb, Bernadeta; Zalewski, Bartłomiej M.; Kouwenhoven, Stefanie M. P.; Karaś, Jacek; Koletzko, Berthold; van Goudoever, Johannes Bernard; Szajewska, Hania

    2016-01-01

    Background: Protein intake may influence important health outcomes in later life. Objective: The objective of this study was to investigate current evidence on the effects of infant formulas and follow-on formulas with different protein concentrations on infants' and children's growth, body

  13. Aggregation in concentrated protein solutions: Insights from rheology, neutron scattering and molecular simulations

    Science.gov (United States)

    Castellanos, Maria Monica

    Aggregation of therapeutic proteins is currently one of the major challenges in the bio-pharmaceutical industry, because aggregates could induce immunogenic responses and compromise the quality of the product. Current scientific efforts, both in industry and academia, are focused on developing rational approaches to screen different drug candidates and predict their stability under different conditions. Moreover, aggregation is promoted in highly concentrated protein solutions, which are typically required for subcutaneous injection. In order to gain further understanding about the mechanisms that lead to aggregation, an approach that combined rheology, neutron scattering, and molecular simulations was undertaken. Two model systems were studied in this work: Bovine Serum Albumin in surfactant-free Phosphate Buffered Saline at pH = 7.4 at concentrations from 11 mg/mL up to ˜519 mg/mL, and a monoclonal antibody in 20 mM Histidine/Histidine Hydrochloride at pH = 6.0 with 60 mg/mL trehalose and 0.2 mg/mL polysorbate-80 at concentrations from 53 mg/mL up to ˜220 mg/mL. The antibody used here has three mutations in the CH2 domain, which result in lower stability upon incubation at 40 °C with respect to the wild-type protein, based on size-exclusion chromatography assays. This temperature is below 49 °C, where unfolding of the least stable, CH2 domain occurs, according to differential scanning calorimetry. This dissertation focuses on identifying the role of aggregation on the viscosity of protein solutions. The protein solutions of this work show an increase in the low shear viscosity in the absence of surfactants, because proteins adsorb at the air/water interface forming a viscoelastic film that affects the measured rheology. Stable surfactant-laden protein solutions behave as simple Newtonian fluids. However, the surfactant-laden antibody solution also shows an increase in the low shear viscosity from bulk aggregation, after prolonged incubation at 40 °C. Small

  14. Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia

    Directory of Open Access Journals (Sweden)

    Dae Young Yoo

    2016-01-01

    Full Text Available Recent evidence exists that glucose transporter 3 (GLUT3 plays an important role in the energy metabolism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein (GFAP, we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion. In a double immunofluorescence study using GLUT3 and doublecortin (DCX, we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.

  15. Volumetric interpretation of protein adsorption: interfacial packing of protein adsorbed to hydrophobic surfaces from surface-saturating solution concentrations.

    Science.gov (United States)

    Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L; Vogler, Erwin A

    2011-02-01

    The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square or hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square or hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. Copyright © 2010

  16. Distribution of radionuclides in leaf-stem biomass of lupine and clover under production of protein concentrates

    International Nuclear Information System (INIS)

    Novikov, Yu.F.; Lobach, G.A.; Buzenko, T.A.; Zaretskaya, T.P.

    1993-01-01

    The basic regularities of radionuclide distribution between the obtained products have been studied using the fractionation of lupine and clover phytomass as an example. The content of radionuclides in protein concentrates has been shown to be strongly related to the crop species. A scheme and a regime of the fractionation of leaf-stem lupine biomass contaminated with cesium radioisotopes and strontium-90 which ensured the minimizing of their residual content in protein-vitaminic and protein concentrates have been selected with due accout of experimental data

  17. Evaluation of serum biochemical marker concentrations and survival time in dogs with protein-losing enteropathy.

    Science.gov (United States)

    Equilino, Mirjam; Théodoloz, Vincent; Gorgas, Daniela; Doherr, Marcus G; Heilmann, Romy M; Suchodolski, Jan S; Steiner, Jörg M; Burgener Dvm, Iwan A

    2015-01-01

    To evaluate serum concentrations of biochemical markers and survival time in dogs with protein-losing enteropathy (PLE). Prospective study. 29 dogs with PLE and 18 dogs with food-responsive diarrhea (FRD). Data regarding serum concentrations of various biochemical markers at the initial evaluation were available for 18 of the 29 dogs with PLE and compared with findings for dogs with FRD. Correlations between biochemical marker concentrations and survival time (interval between time of initial evaluation and death or euthanasia) for dogs with PLE were evaluated. Serum C-reactive protein concentration was high in 13 of 18 dogs with PLE and in 2 of 18 dogs with FRD. Serum concentration of canine pancreatic lipase immunoreactivity was high in 3 dogs with PLE but within the reference interval in all dogs with FRD. Serum α1-proteinase inhibitor concentration was less than the lower reference limit in 9 dogs with PLE and 1 dog with FRD. Compared with findings in dogs with FRD, values of those 3 variables in dogs with PLE were significantly different. Serum calprotectin (measured by radioimmunoassay and ELISA) and S100A12 concentrations were high but did not differ significantly between groups. Seventeen of the 29 dogs with PLE were euthanized owing to this disease; median survival time was 67 days (range, 2 to 2,551 days). Serum C-reactive protein, canine pancreatic lipase immunoreactivity, and α1-proteinase inhibitor concentrations differed significantly between dogs with PLE and FRD. Most initial biomarker concentrations were not predictive of survival time in dogs with PLE.

  18. Verification of the harmonization of human epididymis protein 4 assays.

    Science.gov (United States)

    Ferraro, Simona; Borille, Simona; Carnevale, Assunta; Frusciante, Erika; Bassani, Niccolò; Panteghini, Mauro

    2016-10-01

    Serum human epididymis protein 4 (HE4) has gained relevance as an ovarian cancer (OC) biomarker and new automated methods have replaced the first released manual EIA by tracing results to it. We verified agreement and bias of automated methods vs. EIA as well as possible effects on patients' management. One hundred and fifteen serum samples were measured by Abbott Architect i2000, Fujirebio Lumipulse G1200, Roche Modular E170, and Fujirebio EIA. Passing-Bablok regression was used to compare automated assays to EIA and agreement between methods was estimated by Lin's concordance correlation coefficient (CCC). The bias vs. EIA was estimated and compared to specifications derived from HE4 biological variation. Median (25th-75th percentiles) HE4 concentrations (pmol/L) were 84.5 (60.1-148.8) for EIA, 82.7 (50.3-153.9) for Abbott, 89.1 (55.2-154.9) for Roche, and 112.2 (67.8-194.2) for Fujirebio. Estimated regressions and agreements (95% confidence interval) were: Abbott=1.01(0.98-1.03) EIA-4.8(-7.5/-2.6), CCC=0.99(0.99-1.00); Roche=0.91(0.89-0.93) EIA+5.7(4.2/8.0), CCC=0.98(0.98-0.99); Fujirebio=1.20(1.17-1.24) EIA+ 2.4(-0.6/4.9), CCC=0.97(0.96-0.98). The average bias vs. EIA resulted within the desirable goal for Abbott [-3.3% (-6.1/-0.5)] and Roche [-0.2% (-3.0/2.5)]. However, while for Abbott the bias was constant and acceptable along the measurement concentration range, Roche bias increased up to -28% for HE4 values >250 pmol/L. Lumipulse showed a markedly positive bias [25.3% (21.8/28.8)]. Abbott and Roche assays exhibited a good comparability in the range of HE4 values around the previously recommended 140 pmol/L cut-off. For patient monitoring, however, the assay used for determining serial HE4 must not be changed as results from different systems in lower and higher concentration ranges can markedly differ.

  19. (19)F-heptuloses as tools for the non-invasive imaging of GLUT2-expressing cells

    DEFF Research Database (Denmark)

    Malaisse, Willy J; Zhang, Ying; Louchami, Karim

    2012-01-01

    Suitable analogs of d-mannoheptulose are currently considered as possible tools for the non-invasive imaging of pancreatic islet insulin-producing cells. Here, we examined whether (19)F-heptuloses could be used for non-invasive imaging of GLUT2-expressing cells. After 20 min incubation, the uptake......-mannoheptulose in inhibiting insulin release. The 1-deoxy-1-fluoro-d-mannoheptulose and 3-deoxy-3-fluoro-d-mannoheptulose only marginally affected INS-1 cell viability. These findings are compatible with the view that selected (19)F-heptuloses may represent suitable tools for the non-invasive imaging of hepatocytes...

  20. INTERACTION OF NIZKOMETILIROVANNYJ PECTINS WITH A CONCENTRATE OF PROTEINS OF WHEY

    Directory of Open Access Journals (Sweden)

    H. I. Teshaev

    2012-01-01

    Full Text Available Potentiometric titration method was used to study quality complex formation between low methylated pectin and proteins concentrated from whey. It’s shown that at рН>IEP of the lactoglobulin the interaction occurs between negatively charged chains of LM-pectin and positively charged patches of polypeptide chains. The biopolymers ratio had no significant effect on the initial pH of soluble complex formation (pHc; addition of sodium chloride decreased pHc and pK0 of complexes, which linked to electrostatic nature of complex formation between LM-pectin and whey proteins.