WorldWideScience

Sample records for glucosidase

  1. Trichoderma .beta.-glucosidase

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-01-03

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  2. Beta-glucosidase variants and polynucleotides encoding same

    Science.gov (United States)

    Wogulis, Mark; Harris, Paul; Osborn, David

    2017-06-27

    The present invention relates to beta-glucosidase variants, e.g. beta-glucosidase variants of a parent Family GH3A beta-glucosidase from Aspergillus fumigatus. The present invention also relates to polynucleotides encoding the beta-glucosidase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the beta-glucosidase variants.

  3. Enzyme assay, cloning and sequencing of novel β-glucosidase ...

    African Journals Online (AJOL)

    Bioinformatics studies also suggested that the cloned β-glucosidases share some characteristics with their bacterial counterparts. The findings in this study highlight the increasing need for more information on β-glucosidase structure and function. Keywords: Aspergillus niger, β-glucosidase, cellulase, PCR, sequencing, ...

  4. Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, D

    1977-01-01

    The enzymic conversion of cellulose is catalyzed by a multiple enzyme system. The Trichoderma enzyme system has insufficient ..beta..-glucosidase (EC 3.2.1.21) activity for the practical saccharification of cellulose. Aspergillus niger and A. phoenicis were superior producers of ..beta.. glucosidase and a method for production of this enzyme in liquid culture is presented. When Trichoderma cellulase preparations are supplemented with ..beta.. glucosidase from Aspergullus during practical saccharifications glucose is the predominant product and the rate of saccharification is significantly increased. The stimulatory effect of ..beta.. glucosidase appears to be due to the removal of inhibitory levels of cellobiose.

  5. [The isolation and characterization of beta-glucosidase gene and beta-glucosidase of Trichoderma viride]: Progress report

    International Nuclear Information System (INIS)

    Stafford, D.W.

    1983-01-01

    Our project was to isolate and characterize the enzyme β-glucosidase and to clone and characterize the β-glucosidase gene; our goal is to clone and characterize each of the cellulase genes from Trichoderma. The induction of the Trichoderma reesei cellulase complex by cellulose and by the soluble inducer, sophorose, has been demonstrated. Although the induction of the cellulase complex has previously been well documented, the induction of β-glucosidase had been questioned. 49 refs., 6 figs., 2 tabs

  6. Production and characterization of β-glucosidase from Gongronella ...

    African Journals Online (AJOL)

    Among the enzymes of the cellulolytic complex, β-glucosidases are noteworthy due to the possibility of their application in different industrial processes, such as production of biofuels, winemaking, and development of functional foods. This study aimed to evaluate the production and characterization of β-glucosidase from ...

  7. Characteristics of β-glucosidase production by Paecilomyces variotii ...

    African Journals Online (AJOL)

    This study reports the potential application of Paecilomyces variotii immobilized in calcium alginate beads as a sensing element in the analysis of boric acid. In the presence of boric acid, β-glucosidase production of P. variotii was inhibited and the changes of β-glucosidase concentration were correlated to the ...

  8. Association of. beta. -glucosidase with intact cells of thermoactinomyces

    Energy Technology Data Exchange (ETDEWEB)

    Haegerdal, B; Harris, H; Pye, E K

    1979-03-01

    The location of the ..beta..-glucosidase activity in a whole culture broth of the thermophilic organism Thermoactinomyces has been studied. Little ..beta..-glucosidase activity was found in the culture filtrate, while the culture solids contained the major part of the activity of the whole culture broth. The activity does not appear to be adsorbed to the culture solids; rather there is evidence that it is an intracellular soluble enzyme(s). The pH and temperature optima for a crude ..beta..-glucosidase preparation were determined to be pH 6.5 and 50 to 55/sup 0/C. Enzyme activity studies indicate that the same enzyme(s) accounts for the ..beta..-glucosidase and the cellobiase activities. The validity of using the filter paper activity of culture filtrates from Thermoactinomyces to predict the total saccharification of cellulosic materials to glucose is discussed.

  9. Biosynthesis of beta-glucosidase by Aspergillus niger a-5

    Energy Technology Data Exchange (ETDEWEB)

    Atev, A.; Panayotov, C.; Bubareva, L.; Benadova, R.; Kolev, E.

    1984-01-01

    Aspergillus niger A-5 produced beta-glucosidase, exocellobihydrolase (C1 enzyme) and endo-1, 4-beta-glucanase (Cx enzyme) in a culture medium containing farm residues of plant origin: wheat straw, ground maize stalks, wheat bran, and micricell as substrates. Maize stalk and wheat bran were the best inducers of the cellulase complex. Intensive aeration stimulated growth and enzyme synthesis. The highest beta-glucosidase activity (54 units/mL) was observed after 96 h of cultivation.

  10. Oxindole based oxadiazole hybrid analogs: Novel α-glucosidase inhibitors.

    Science.gov (United States)

    Taha, Muhammad; Imran, Syahrul; Rahim, Fazal; Wadood, Abdul; Khan, Khalid Mohammed

    2018-02-01

    Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. Beside these α-glucosidase inhibitors has been also used as anti-obesity and anti-viral drugs. Keeping in view the greater importance of α-glucosidase inhibitors here in this study we are presenting oxindole based oxadiazoles hybrid analogs (1-20) synthesis, characterized by different spectroscopic techniques including 1 H NMR and EI-MS and their α-glucosidase inhibitory activity. All compounds were found potent inhibitors for the enzyme with IC 50 values ranging between 1.25 ± 0.05 and 268.36 ± 4.22 µM when compared with the standard drug acarbose having IC 50 value 895.09 ± 2.04 µM. Our study identifies novel series of potent α-glucosidase inhibitors and further investigation on this may led to the lead compounds. A structure activity relationship has been established for all compounds. The interactions of the active compounds and enzyme active site were established with the help of molecular docking studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Diversification and specialization of β-glucosidases in the catabolism of hydroxynitrile glucosides in Lotus japonicus

    DEFF Research Database (Denmark)

    Lai, Daniela

    that involves specific β-glucosidases. If plant tissue is disrupted, cyanogenic glucosides come into contact with these β-glucosidases and are hydrolyzed, which results in the release of hydrogen cyanide gas. The work reported in this thesis is focused on the β-glucosidases that activated hydroxynitrile...... glucosides in the model plant Lotus japonicus. The work highlights how closely related β-glucosidases have evolved distinct substrate specificities and differential expression patterns to serve distinct physiological and ecological roles....

  12. α-Glucosidase inhibitory effect of resveratrol and piceatannol.

    Science.gov (United States)

    Zhang, Albert J; Rimando, Agnes M; Mizuno, Cassia S; Mathews, Suresh T

    2017-09-01

    Dietary polyphenols have been shown to inhibit α-glucosidase, an enzyme target of some antidiabetic drugs. Resveratrol, a polyphenol found in grapes and wine, has been reported to inhibit the activity of yeast α-glucosidase. This triggered our interest to synthesize analogs and determine their effect on mammalian α-glucosidase activity. Using either sucrose or maltose as substrate resveratrol, piceatannol and 3'-hydroxypterostilbene showed strong inhibition of mammalian α-glucosidase activity; pinostilbene, cis-desoxyrhapontigenin and trans-desoxyrhapontigenin had moderate inhibition. Compared to acarbose (IC 50 3-13 μg/ml), piceatannol and resveratrol inhibited mammalian α-glucosidase to a lesser extent (IC 50 14-84 and 111-120 μg/ml, respectively). 3'-Hydroxypterostilbene (IC 50 105-302 μg/ml) was 23-35-fold less potent than acarbose. We investigated the effect of piceatannol and resveratrol on postprandial blood glucose response in high-fat-fed C57Bl/6 mice. Animals administered resveratrol (30 mg/kg body weight [BW]) or piceatannol (14 mg/kg BW) 60 min prior to sucrose or starch loading had a delayed absorption of carbohydrates, resulting in significant lowering of postprandial blood glucose concentrations, similar to the antidiabetic drug acarbose, while no significant effect was observed with the glucose-loaded animals. Our studies demonstrate that the dietary polyphenols resveratrol and piceatannol lower postprandial hyperglycemia and indicate that inhibition of intestinal α-glucosidase activity may be a potential mechanism contributing to their antidiabetic property. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. In vivo assay to identify bacteria with β-glucosidase activity

    Directory of Open Access Journals (Sweden)

    Erwin Strahsburger

    2017-11-01

    Conclusion: This in vivo β-glucosidase assay can be used as an enzymatic test on living cells without cell disruption. The method is simple, quantitative, and recommended, especially in studies screening for bacteria not only with β-glucosidase activity but also with high β-glucosidase activity.

  14. Isolation and characterization of β-glucosidase producing bacteria ...

    African Journals Online (AJOL)

    glucosidase activity. This activity was tested by growth in medium supplemented with esculin and ferric ammonium citrate. The esculin positive strains from both the sources were characterized biochemically and checked for their ability to transform ginsenoside Rb1. The growth medium and the pH for maximum growth were ...

  15. New α-Glucosidase inhibitors from Croton bonplandianum Croton ...

    African Journals Online (AJOL)

    26.7 μg/mL, relative to that of the positive control, acarbose (IC50, 38.2 µg/mL). Conclusion: The ... Chemicals, reagents and instrumentation α-Glucosidase ... measurements performed on the MAT 312 mass ... the extraction process, 20.2 g of.

  16. α-Glucosidase inhibitory hydrolyzable tannins from Eugenia jambolana seeds.

    Science.gov (United States)

    Omar, Raed; Li, Liya; Yuan, Tao; Seeram, Navindra P

    2012-08-24

    Three new hydrolyzable tannins including two gallotannins, jamutannins A (1) and B (2), and an ellagitannin, iso-oenothein C (3), along with eight known phenolic compounds were isolated from the seeds of Eugenia jambolana fruit. The structures were elucidated on the basis of spectroscopic data analysis. All compounds isolated were evaluated for α-glucosidase inhibitory effects compared to the clinical drug acarbose.

  17. The Role of alpha-Glucosidase in Germinating Barley Grains

    DEFF Research Database (Denmark)

    Stanley, Duncan; Rejzek, Martin; Næsted, Henrik

    2011-01-01

    The importance of alpha-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementa...

  18. Pycnalin, a new α-glucosidase inhibitor from Acer pycnanthum.

    Science.gov (United States)

    Ogawa, Ai; Miyamae, Yusaku; Honma, Atsushi; Koyama, Tomoyuki; Yazawa, Kazunaga; Shigemori, Hideyuki

    2011-01-01

    A new compound, pycnalin (1), together with four known compounds, ginnalins A (2), B (3), C (4), and 3,6-di-O-galloyl-1,5-anhydro-D-glucitol (3,6-di-GAG) (5), were isolated from Acer pycnanthum. The structure of 1 was determined on the basis of 2D-NMR spectral data and synthesis of 1. Pycnalin (1) is the first 1,5-anhydro-D-mannitol linked to a gallic acid, while compounds 2-5 were 1,5-anhydro-D-glucitol linked to gallic acids. All compounds were tested in vitro for α-glucosidase inhibitory and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities. Pycnalin (1) exhibited moderate α-glucosidase inhibitory activity as well as free radical scavenging activity. Ginnalin A (2) and 3,6-di-GAG (5), which have two galloyl groups, exhibited potent α-glucosidase inhibition, compared to those of other compounds 1, 3, and 4 containing a galloyl group. These results suggest that α-glucosidase inhibition is influenced by the number of galloyl groups.

  19. Structural basis for cyclophellitol inhibition of a β-glucosidase

    DEFF Research Database (Denmark)

    Gloster, Tracey M.; Madsen, Robert; Davies, Gideon J.

    2007-01-01

    The structural basis for b-glucosidase inhibition by cyclophellitol is demonstrated using X-ray crystallography, enzyme kinetics and mass spectrometry. The natural product was shown to bind by a covalent bond in the active site of the enzyme. This bond is formed by ring-opening of the epoxide...

  20. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    Science.gov (United States)

    Harris, Paul; Golightly, Elizabeth

    2012-11-27

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  1. Polynucleotides encoding polypeptides having beta-glucosidase activity

    Science.gov (United States)

    Harris, Paul; Golightly, Elizabeth

    2010-03-02

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  2. Beta-glucosidases and nucleic acids encoding same

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to the identification of a novel and improved beta-glucosidase producing strain of the fungus Aspergillus, namely Aspergillus saccharolyticus, which is efficient in the degradation of lignocellulosic biomasses into glucose for production of biofuels, biochemicals and...

  3. Production and characterization of β-glucosidase from Gongronella ...

    African Journals Online (AJOL)

    sunny t

    2016-04-20

    Apr 20, 2016 ... Among the enzymes of the cellulolytic complex, β-glucosidases are noteworthy due to the possibility of their application in different industrial processes, such as production of biofuels, winemaking, and development of functional foods. This study aimed to evaluate the production and characterization of β-.

  4. In-silico analysis of Aspergillus niger beta-glucosidases

    Science.gov (United States)

    Yeo S., L.; Shazilah, K.; Suhaila, S.; Abu Bakar F., D.; Murad A. M., A.

    2014-09-01

    Genomic data mining was carried out and revealed a total of seventeen β-glucosidases in filamentous fungi Aspergillus niger. Two of them belonged to glycoside hydrolase family 1 (GH1) while the rest belonged to genes in family 3 (GH3). These proteins were then named according to the nomenclature as proposed by the International Union of Biochemistry (IUB), starting from the lowest pI and glycoside hydrolase family. Their properties were predicted using various bionformatic tools showing the presence of domains for signal peptide and active sites. Interestingly, one particular domain, PA14 (protective antigen) was present in four of the enzymes, predicted to be involved in carbohydrate binding. A phylogenetic tree grouped the two glycoside hydrolase families with GH1 and GH3 related organisms. This study showed that the various domains present in these β-glucosidases are postulated to be crucial for the survival of this fungus, as supported by other analysis.

  5. QSAR Studies on Andrographolide Derivatives as α-Glucosidase Inhibitors

    Directory of Open Access Journals (Sweden)

    Shaohui Cai

    2010-03-01

    Full Text Available Andrographolide derivatives were shown to inhibit α-glucosidase. To investigate the relationship between activities and structures of andrographolide derivatives, a training set was chosen from 25 andrographolide derivatives by the principal component analysis (PCA method, and a quantitative structure-activity relationship (QSAR was established by 2D and 3D QSAR methods. The cross-validation r2 (0.731 and standard error (0.225 illustrated that the 2D-QSAR model was able to identify the important molecular fragments and the cross-validation r2 (0.794 and standard error (0.127 demonstrated that the 3D-QSAR model was capable of exploring the spatial distribution of important fragments. The obtained results suggested that proposed combination of 2D and 3D QSAR models could be useful in predicting the α-glucosidase inhibiting activity of andrographolide derivatives.

  6. Fruit Wines Inhibitory Activity Against α-Glucosidase.

    Science.gov (United States)

    Cakar, Uros; Grozdanic, Nada; Petrovic, Aleksandar; Pejin, Boris; Nastasijevic, Branislav; Markovic, Bojan; Dordevic, Brizita

    2017-01-01

    Fruit wines are well known for their profound health-promoting properties including both enzyme activations and inhibitions. They may act preventive in regard to diabetes melitus and other chronic diseases. Potential α-glucosidase inhibitory activity of fruit wines made from blueberry, black chokeberry, blackberry, raspberry and sour cherry was the subject of this study. In order to increase the alcohol content due to enriched extraction of total phenolics, sugar was added in the fruit pomace of the half of the examined fruit wine samples. Compared with acarbose used as a positive control (IC50 = 73.78 µg/mL), all fruit wine samples exhibited higher α-glucosidase inhibitory activity. Indeed, blueberry wine samples stood out, both prepared with IC50 = 24.14 µg/mL, lyophilised extract yield 3.23% and without IC50 = 46.39 µg/mL, lyophilised extract yield 2.89% and with addition of sugar before fermentation. Chlorogenic acid predominantly contributed to α-glucosidase inhibitory activity of the blueberry, black chokeberry and sour cherry wine samples. However, ellagic acid, a potent α-glucosidase inhibitor possessing a planar structure, only slightly affected the activity of the blueberry wine samples, due to the lower concentration. In addition to this, molecular docking study of chlorogenic acid pointed out the importance of binding energy (-8.5 kcal/mol) for the inhibition of the enzyme. In summary, fruit wines made from blueberry should be primarily taken into consideration as a medicinal food targeting diabetes mellitus type 2 in the early stage, if additional studies would confirm their therapeutic potential for the control of postprandial hyperglycemia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. α-Glucosidase inhibitory activity of selected Malaysian plants

    Directory of Open Access Journals (Sweden)

    Dzatil Awanis Mohd Bukhari

    2017-01-01

    Full Text Available Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.

  8. α-Glucosidase Inhibitory Activity of Selected Malaysian Plants.

    Science.gov (United States)

    Mohd Bukhari, Dzatil Awanis; Siddiqui, Mohammad Jamshed; Shamsudin, Siti Hadijah; Rahman, Md Mukhlesur; So'ad, Siti Zaiton Mat

    2017-01-01

    Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.

  9. Beta-Glucosidases from a new Aspergillus species can substitute commercial beta-glucosidases for saccharification of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Annette; Lubeck, Peter Stephensen; Lubeck, Mette; Teller, Philip Johan; Kiaer Ahring, Birgitte

    2011-07-01

    Exploitation of lignocellulosic biomasses for the production of biofuels and biochemicals gives a promising alternative to the world's limited fossil energy resources. Cellulose is of great interest in terms of producing sugars for biofuels and biochemicals, since its hydrolysis product, glucose, can readily be fermented into ethanol or converted into high-value chemicals. The hydrolysis of cellulose involves the synergistic action of cellobiohydrolases, endoglucanases and B-glucosidases, and B-glucosidases is key in ensuring final glucose release and the decrease of the accumulation of cellobiose and shorter cellodextrins, known as product inhibitors of the cellobiohydrolases. The aim of the present work was to search for efficient B-glucosidase-producing fungi using a screening strategy based on wheat bran as fermentation substrate. The fungi selected originated from several different countries and fungal fermentation broth were compared with an onsite enzyme production in mind. The broth of the best strain was tested against commercial enzyme preparations based on enzyme kinetics and it proved to be a valid substitute.

  10. Cloning a cDNA for the lysosomal alpha-glucosidase

    NARCIS (Netherlands)

    KONINGS, A.; HUPKES, P.; Versteeg, R.; Grosveld, G.; Reuser, A.; Galjaard, H.

    1984-01-01

    Messenger RNA was isolated from monkey testes and size-fractionated on sucrose gradients. In vitro translation of these mRNA fractions resulted in nascent, labeled alpha-glucosidase that could be precipitated with anti human alpha-glucosidase antiserum. A cDNA library was constructed from the most

  11. α-Amylase and α-glucosidase inhibitory effects of Sclerocarya birrea ...

    African Journals Online (AJOL)

    Inhibition of intestinal α-amylase and α-glucosidase is an important strategy to control post-prandial hyperglycemia associated with type 2 diabetes mellitus. In vitro inhibitory effects of crude Sclerocarya birrea stem bark (SBSB) extracts against human urinary α-amylase and Bacillus steatothermophilus α-glucosidase were ...

  12. Characterization of different crystal forms of the alpha-glucosidase MalA from Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Ernst, Heidi Asschenfeldt; Willemoës, Martin; Lo Leggio, Leila

    2005-01-01

    MalA is an alpha-glucosidase from the hyperthermophilic archaeon Sulfolobus solfataricus. It belongs to glycoside hydrolase family 31, which includes several medically interesting alpha-glucosidases. MalA and its selenomethionine derivative have been overproduced in Escherichia coli...

  13. Impaired performance of skeletal muscle in alpha-glucosidase knockout mice

    NARCIS (Netherlands)

    Hesselink, R.P; Gorselink, M.; Schaart, G.; Wagenmakers, A.J.M.; Kamphoven, G.; Reuser, A.J.J.; Vusse, van der G.J.; Drost, M.R.

    2002-01-01

    Glycogen storage disease type II (GSD II) is an inherited progressive muscle disease in which lack of functional acid -glucosidase (AGLU) results in lysosomal accumulation of glycogen. We report on the impact of a null mutation of the acid -glucosidase gene (AGLU-/-) in mice on the force production

  14. Regulation of the cellulolytic system in Trichoderma reesei by sophorose: induction of cellulase and repression of beta-glucosidase.

    OpenAIRE

    Sternberg, D; Mandels, G R

    1980-01-01

    Sophorose has two regulatory roles in the production of cellulase enzymes in Trichoderma reesei: beta-glucosidase repression and cellulase induction. Sophorose also is hydrolyzed by the mycelial-associated beta-glucosidase. Repression of beta-glucosidase reduces sophorose hydrolysis and thus may increase cellulase induction.

  15. Purification and properties of two /beta/-glucosidases isolated from Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Witte, K.; Wartenberg, A.

    1989-01-01

    The cellulase complex of the fungus Aspergillus niger (strain CBS 554.65=ATCC 16 888) was fractionated by gel filtration yielding six pronounced peaks. Only proteins from the fraction corresponding to the first peak (96 kDa) showed /beta/-glucosidase activity vs. the substrate 4-nitrophenyl-/beta/-D-glucopyranoside (pNPG). These proteins have been fractionated by chromatofocusing, yielding two /beta/-glucosidases (I and II) which are shown to be homogeneous in isoelectric focusing experiments (pI=4.6 and 3.8, respectively). Kinetic experiments with pNPG, MU-glucopyranoside and cellobiose revealed that both types of /beta/-glucosidases behave like aryl-/beta/-glucosidases, /beta/-Glucosidase-I acting on pNPG exhibits a split kinetics characterized by high and low substrate-concentration kinetics which are differentiated by different values of V and of K/sub m/. In addition, /beta/-glucosidase-II is shown to be an exo-glucohydrolase as deduced from experiments with MU-cellobiopyranoside. Experimental features should be emphasized; usual soft-gel ion-exchange materials did not work in the chromatofocusing separation of the two /beta/-glucosidases, in contrast to the 10 /mu/-Si 500=DEAE exchange material (Serva) typically used in HPLC-experiments. Furthermore, protein content determinations based on different procedures yielded widely differing values. (orig.).

  16. The Role of α-Glucosidase in Germinating Barley Grains1[W][OA

    Science.gov (United States)

    Stanley, Duncan; Rejzek, Martin; Naested, Henrik; Smedley, Mark; Otero, Sofía; Fahy, Brendan; Thorpe, Frazer; Nash, Robert J.; Harwood, Wendy; Svensson, Birte; Denyer, Kay; Field, Robert A.; Smith, Alison M.

    2011-01-01

    The importance of α-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementary chemical-genetic and reverse-genetic approaches. We identified iminosugar inhibitors of a recombinant form of an α-glucosidase previously discovered in barley endosperm (ALPHA-GLUCOSIDASE97 [HvAGL97]), and applied four of them to germinating grains. All four decreased the Glc-to-maltose ratio in the endosperm 10 d after imbibition, implying inhibition of maltase activity. Three of the four inhibitors also reduced starch degradation and seedling growth, but the fourth did not affect these parameters. Inhibition of starch degradation was apparently not due to inhibition of amylases. Inhibition of seedling growth was primarily a direct effect of the inhibitors on roots and coleoptiles rather than an indirect effect of the inhibition of endosperm metabolism. It may reflect inhibition of glycoprotein-processing glucosidases in these organs. In transgenic seedlings carrying an RNA interference silencing cassette for HvAgl97, α-glucosidase activity was reduced by up to 50%. There was a large decrease in the Glc-to-maltose ratio in these lines but no effect on starch degradation or seedling growth. Our results suggest that the α-glucosidase HvAGL97 is the major endosperm enzyme catalyzing the conversion of maltose to Glc but is not required for starch degradation. However, the effects of three glucosidase inhibitors on starch degradation in the endosperm indicate the existence of unidentified glucosidase(s) required for this process. PMID:21098673

  17. The distribution of active β-glucosidase-producing microbial communities in composting.

    Science.gov (United States)

    Zang, Xiangyun; Liu, Meiting; Wang, Han; Fan, Yihong; Zhang, Haichang; Liu, Jiawen; Xing, Enlu; Xu, Xiuhong; Li, Hongtao

    2017-12-01

    The composting ecosystem is a suitable source for the discovery of novel microorganisms and secondary metabolites. Cellulose degradation is an important part of the global carbon cycle, and β-glucosidases complete the final step of cellulose hydrolysis by converting cellobiose to glucose. This work analyzes the succession of β-glucosidase-producing microbial communities that persist throughout cattle manure - rice straw composting, and evaluates their metabolic activities and community advantage during the various phases of composting. Fungal and bacterial β-glucosidase genes belonging to glycoside hydrolase families 1 and 3 (GH1 and GH3) amplified from DNA were classified and gene abundance levels were analyzed. The major reservoirs of β-glucosidase genes were the fungal phylum Ascomycota and the bacterial phyla Firmicutes, Actinobacteria, Proteobacteria, and Deinococcus-Thermus. This indicates that a diverse microbial community utilizes cellobiose. The succession of dominant bacteria was also detected during composting. Firmicutes was the dominant bacteria in the thermophilic phase of composting; there was a shift to Actinomycetes in the maturing stage. Proteobacteria accounted for the highest proportions during the heating and thermophilic phases of composting. By contrast, the fungal phylum Ascomycota was a minor microbial community constituent in thermophilic phase of composting. Combined with the analysis of the temperature, cellulose degradation rate and the carboxymethyl cellulase and β-glucosidase activities showed that the bacterial GH1 family β-glucosidase genes make greater contribution in cellulose degradation at the later thermophilic stage of composting. In summary, even GH1 bacteria families β-glucosidase genes showing low abundance in DNA may be functionally important in the later thermophilic phase of composting. The results indicate that a complex community of bacteria and fungi expresses β-glucosidases in compost. Several β-glucosidase

  18. α-Glucosidase inhibitors and phytotoxins from Streptomyces xanthophaeus.

    Science.gov (United States)

    Wei, Jing; Zhang, Xiu-Yun; Deng, Shan; Cao, Lin; Xue, Quan-Hong; Gao, Jin-Ming

    2017-09-01

    Twenty-four metabolites 1-24 were isolated from the fermentation broth of Streptomyces xanthophaeus. Their structures were elucidated on the basis of spectroscopic analysis and by comparison of their NMR data with literature data reported. Daidzein (1), genistein (2) and gliricidin (3) inhibited α-glucosidase in vitro with IC 50 values of 174.2, 36.1 and 47.4 μM, respectively, more potent than the positive control, acarbose. Docking study revealed that the amino acid residue Thr 215 is the essential binding site for active ligands 2. In addition, the phytotoxic effects of all compounds were assayed on radish seedlings, five of which, 3, 8, 13, 15 and 18, inhibited the growth of radish (Raphanus sativus) seedlings with inhibitory rates of >60% at a concentration of 100 ppm, which was comparable or superior to the positive control glyphosate. This is the first report of the phytotoxicity of the compounds.

  19. Properties of native and immobilised preparations of. beta. -D-glucosidase from Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Wohlpart, D.L.

    1982-01-01

    The enzyme ..beta..-D-glucosidase from Aspergillus niger has been immobilised through its carbohydrate moiety on concanavalin A-Sepharose and on cyanogen bromide-activated Sepharose after aminoalkylation of the carbohydrate side chains of the enzyme. For comparison, the enzyme was also immobilised on microcrystalline cellulose through its protein moiety. High retention of activity and a decrease in K/sub m/ and V/sub max/ were observed when ..beta..-D-glucosidase was immobilised by these methods. An increase in the thermal stability of the immobilised ..beta..-D-glucosidase preparations over the soluble enzyme was achieved if it was treated with glutaraldehyde before its adsorption on concanavalin A-Sepharose or if the enzyme immobilised on cyanogen bromide-activated Sepharose was subsequently treated with glutaralydehyde. Treatment of ..beta..-D-glucosidase immobilised on microcrystalline cellulose with glutaraldehyde hardy increased its thermal stability over the soluble enzyme.

  20. Properties of native and immobilised preparations of beta-d-glucosidase from Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Wohlpart, D.L.

    1982-04-01

    The enzyme beta-glucosidase from Aspergillus niger has been immobilised through its carbohydrate moiety on concanavalin A-Sepharose and on cyanogen bromide-activated Sepharose after aminoalkylation of the carbohydrate side chains of the enzyme. For comparison, the enzyme was also immobilised on microcrystalline cellulose through its protein moiety. High retention of activity and a decrease in Km and Vmax were observed when beta-D-glucosidase was immobilised by these methods. An increase in the thermal stability of the immobilized beta-D-glucosidase preparations over the soluble enzyme was achieved if it was treated with glutaraldehyde before its adsorption on concanavalin A-Sepharose or if the enzyme immobilised on cyanogen bromide-activated Sepharose was subsequently treated with glutaraldehyde. Treatment of beta-D-glucosidase immobilised on microcrystalline cellulose with glutaraldehyde hardly increased its thermal stability over the soluble enzyme. (Refs. 24).

  1. The catalytic potency of ß-glucosidase from Pyroccus furiosus in the direct glucosylation reaction

    NARCIS (Netherlands)

    Roode, de B.M.; Meer, van der T.D.; Kaper, T.; Franssen, M.C.R.; Padt, van der A.; Oost, van der J.; Boom, R.M.

    2001-01-01

    Enzymes from extremophiles operate at conditions that are different from their `normal' counterparts, and are therefore a useful extension of the enzyme toolbox. In this paper, the direct glucosylation reaction mediated by a hyperthermophilic -glucosidase from Pyrocuccus furiosus was investigated.

  2. Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard; Jørgensen, Henning

    2013-01-01

    adsorbed strongly to lignin.The extent of adsorption of β-glucosidase from Cellic® CTec2 was affected by both type of biomass and pretreatment method. With approximately 65% of the β-glucosidases from Cellic® CTec2 adsorbed onto lignin from pretreated wheat straw, the activity of the β......Background: Enzyme recycling is a method to reduce the production costs for advanced bioethanol by lowering the overall use of enzymes. Commercial cellulase preparations consist of many different enzymes that are important for efficient and complete cellulose (and hemicellulose) hydrolysis...... commercial preparations (Novozym 188 and Cellic® CTec2) to substrates mimicking the components in pretreated wheat straw revealed that the Aspergillus niger β-glucosidase in Novozym 188 did not adsorb significantly to any of the components in pretreated wheat straw, whereas the β-glucosidase in Cellic® CTec2...

  3. Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials

    Directory of Open Access Journals (Sweden)

    Peter S. Lübeck

    2013-09-01

    Full Text Available Profitable biomass conversion processes are highly dependent on the use of efficient enzymes for lignocellulose degradation. Among the cellulose degrading enzymes, beta-glucosidases are essential for efficient hydrolysis of cellulosic biomass as they relieve the inhibition of the cellobiohydrolases and endoglucanases by reducing cellobiose accumulation. In this review, we discuss the important role beta-glucosidases play in complex biomass hydrolysis and how they create a bottleneck in industrial use of lignocellulosic materials. An efficient beta-glucosidase facilitates hydrolysis at specified process conditions, and key points to consider in this respect are hydrolysis rate, inhibitors, and stability. Product inhibition impairing yields, thermal inactivation of enzymes, and the high cost of enzyme production are the main obstacles to commercial cellulose hydrolysis. Therefore, this sets the stage in the search for better alternatives to the currently available enzyme preparations either by improving known or screening for new beta-glucosidases.

  4. Alpha-glucosidase inhibitory and antiplasmodial properties of terpenoids from the leaves of Buddleja saligna Willd

    Czech Academy of Sciences Publication Activity Database

    Chukwujekwu, J. C.; Rengasamy, K.R.R.; de Kock, C. A.; Smith, P. J.; Poštová Slavětínská, Lenka; van Staden, J.

    2016-01-01

    Roč. 31, č. 1 (2016), s. 63-66 ISSN 1475-6366 Institutional support: RVO:61388963 Keywords : alpha-glucosidase * antidiabetic * antiplasmodial * Buddleja saligna * terpenoids Subject RIV: CC - Organic Chemistry Impact factor: 4.293, year: 2016

  5. Production and localization of cellulases and. beta. -glucosidase from the thermophilic fungus Thielavia terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Breuil, C; Wojtczak, G; Saddler, J N

    1986-01-01

    The enzyme production and localization of Thielavia terrestris strains C464 and NRRL 8126 were compared to determine their optimum temperature and pH for cellulase activity. High levels of intracellular ..beta..-glucosidase activity were detected in the former strain. The intracellular ..beta..-glucosidase of both strains were more thermostable than the extra-cellular enzyme; the half life of T. terrestris (C464) endoglucanase activity at 60 degrees C was greater than 96 hours. 12 references.

  6. Triterpenes as uncompetitive inhibitors of α-glucosidase from flowers of Punica granatum L.

    Science.gov (United States)

    Salah El Dine, Riham; Ma, Qiong; Kandil, Zeinab A; El-Halawany, Ali M

    2014-01-01

    The α-glucosidase and maltase inhibitory effects of Punica granatum L. flowers (PGF) were investigated. The methanol extract (PGFMe), n-hexane extract (PGFH), chloroform extract (PGFC) and the remaining water fraction (PGFW) were assayed for their α-glucosidase and maltase inhibitory effects. PGFW showed potent α-glucosidase inhibition with IC₅₀ of 0.8 μg/mL followed by PGFMe (IC₅₀ of 4.0 μg/mL) then PGFC (IC₅₀ of 5.21 μg/mL) in comparison to acarbose (0.9 μM). Due to its selectivity towards α-glucosidase, PGFC was subjected to bioactivity-guided isolation of its main active constituents. Five known compounds (1-5) were identified as β-sitosterol (1), oleanolic acid (2), ursolic acid (3), p-coumaric acid (4) and apigenin (5). Ursolic and oleanolic acids showed potent α-glucosidase inhibition (IC₅₀ of 39.0 and 35.0 μM, respectively), while they did not show significant maltase inhibition. Kinetic study using the double Lineweaver-Burk plot revealed that ursolic acid uncompetitively inhibited α-glucosidase in comparison with acarbose as a competitive inhibitor.

  7. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition.

    Science.gov (United States)

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus J; Park, Chanin; Son, Minky; Kim, Jeong Yoon; Yuk, Heung Joo; Lee, Keun Woo; Park, Ki Hun

    2016-05-23

    The α-glucosidase inhibitory potential of Tribulus terrestris extracts has been reported but as yet the active ingredients are unknown. This study attempted to isolate the responsible metabolites and elucidate their inhibition mechanism of α-glucosidase. By fractionating T. terristris extracts, three cinnamic acid amide derivatives (1-3) were ascertained to be active components against α-glucosidase. The lead structure, N-trans-coumaroyltyramine 1, showed significant inhibition of α-glucosidase (IC50 = 0.42 μM). Moreover, all active compounds displayed uncompetitive inhibition mechanisms that have rarely been reported for α-glucosidase inhibitors. This kinetic behavior was fully demonstrated by showing a decrease of both Km and Vmax, and Kik/Kiv ratio ranging between 1.029 and 1.053. We progressed to study how chemical modifications to the lead structure 1 may impact inhibition. An α, β-unsaturation carbonyl group and hydroxyl group in A-ring of cinnamic acid amide emerged to be critical functionalities for α-glucosidase inhibition. The molecular modeling study revealed that the inhibitory activities are tightly related to π-π interaction as well as hydrogen bond interaction between enzyme and inhibitors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Covalent immobilization of β-glucosidase on magnetic particles for lignocellulose hydrolysis.

    Science.gov (United States)

    Alftrén, Johan; Hobley, Timothy John

    2013-04-01

    β-Glucosidase hydrolyzes cellobiose to glucose and is an important enzyme in the consortium used for hydrolysis of cellulosic and lignocellulosic feedstocks. In the present work, β-glucosidase was covalently immobilized on non-porous magnetic particles to enable re-use of the enzyme. It was found that particles activated with cyanuric chloride and polyglutaraldehyde gave the highest bead-related immobilized enzyme activity when tested with p-nitrophenyl-β-D-glucopyranoside (104.7 and 82.2 U/g particles, respectively). Furthermore, the purified β-glucosidase preparation from Megazyme gave higher bead-related enzyme activities compared to Novozym 188 (79.0 and 9.8 U/g particles, respectively). A significant improvement in thermal stability was observed for immobilized enzyme compared to free enzyme; after 5 h (at 65 °C), 36 % of activity remained for the former, while there was no activity in the latter. The performance and recyclability of immobilized β-glucosidase on more complex substrate (pretreated spruce) was also studied. It was shown that adding immobilized β-glucosidase (16 U/g dry matter) to free cellulases (8 FPU/g dry matter) increased the hydrolysis yield of pretreated spruce from ca. 44 % to ca. 65 %. In addition, it was possible to re-use the immobilized β-glucosidase in the spruce and retain activity for at least four cycles. The immobilized enzyme thus shows promise for lignocellulose hydrolysis.

  9. Identifying and characterizing the most significant β-glucosidase of the novel species Aspergillus saccharolyticus

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Anette; Ahring, Birgitte K.; Lubeck, Mette; Ubhayasekera, Wimal; Bruno, Kenneth S.; Culley, David E.; Lubeck, Peter S.

    2012-08-20

    A newly discovered fungal species, Aspergillus saccharolyticus, was found to produce a culture broth rich in beta-glucosidase activity. In this present work, the main beta-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high beta-glucosidase activity and only one visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to beta-glucosidases from aspergilli. Through a PCR approach using degenerate primers and genome walking, a 2919 base pair sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside hydrolase family 3. Homology modeling studies suggested beta-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared to other beta-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, pNPG, and cellodextrins. The enzyme showed good thermostability, was stable at 50°C, and at 60°C it had a half-life of approximately 6 hours.

  10. Formation and release of. beta. -glucosidase by Aspergillus niger ZIMET 43 746 in correlation to process operations

    Energy Technology Data Exchange (ETDEWEB)

    Kerns, G; Dalchow, E; Klappach, G; Meyer, D

    1986-01-01

    The total formation of ..beta..-glucosidase by the wild strain of Aspergillus niger ZIMET 43 746 is non-growth-associated. In discontinuous culture the total ..beta..-glucosidase activity related to the mycelium is increasing with the age of the mycelium. The complete release of the remaining mycelial-associated ..beta..-glucosidase is dependent on the structure of the mycelium. In the cases of the mycelium forms pellets throughout the growth phase than the release of ..beta..-glucosidase is accelerated compared to the release from loosly branched mycelium. Increasing shear stress caused by increasing of the impeller speed promotes the formation of pellets.

  11. Adsorption, immobilization, and activity of beta-glucosidase on different soil colloids.

    Science.gov (United States)

    Yan, Jinlong; Pan, Genxing; Li, Lianqing; Quan, Guixiang; Ding, Cheng; Luo, Ailan

    2010-08-15

    For a better understanding of enzyme stabilization and the subsequent catalytic process in a soil environment, the adsorption, immobilization, and activity of beta-glucosidase on various soil colloids from a paddy soil were studied. The calculated parameters maximum adsorption capacity (q(0)) for fine soil colloids ranged from 169.6 to 203.7 microg mg(-1), which was higher than coarse soil colloids in the range of 81.0-94.6 microg mg(-1), but the lower adsorption affinity (K(L)) was found on fine soil colloids. The percentages of beta-glucosidase desorbed from external surfaces of the coarse soil colloids (27.6-28.5%) were higher than those from the fine soil colloids (17.5-20.2%). Beta-glucosidase immobilized on the coarse inorganic and organic soil colloids retained 72.4% and 69.8% of activity, respectively, which indicated the facilitated effect of soil organic matter in the inhibition of enzyme activity. The residual activity for the fine soil clay is 79-81%. After 30 days of storage at 40 degrees C the free beta-glucosidase retained 66.2% of its initial activity, whereas the soil colloidal particle-immobilized enzyme retained 77.1-82.4% of its activity. The half-lives of free beta-glucosidase appeared to be 95.9 and 50.4 days at 25 and 40 degrees C. Immobilization of beta-glucosidase on various soil colloids enhanced the thermal stability at all temperatures, and the thermal stability was greatly affected by the affinity between the beta-glucosidase molecules and the surface of soil colloidal particles. Due to the protective effect of supports, soil colloidal particle-immobilized enzymes were less sensitive to pH and temperature changes than free enzymes. Data obtained in this study are helpful for further research on the enzymatic mechanisms in carbon cycling and soil carbon storage. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Purification and Partial Characterization of β-Glucosidase in Chayote (Sechium edule

    Directory of Open Access Journals (Sweden)

    Sergio Espíndola Mateos

    2015-10-01

    Full Text Available β-Glucosidase (EC 3.2.1.21 is a prominent member of the GH1 family of glycoside hydrolases. The properties of this β-glucosidase appear to include resistance to temperature, urea, and iodoacetamide, and it is activated by 2-ME, similar to other members. β-Glucosidase from chayote (Sechium edule was purified by ionic-interchange chromatography and molecular exclusion chromatography. Peptides detected by LC-ESI-MS/MS were compared with other β-glucosidases using the BLAST program. This enzyme is a 116 kDa protein composed of two sub-units of 58 kDa and shows homology with Cucumis sativus β-glucosidase (NCBI reference sequence XP_004154617.1, in which seven peptides were found with relative masses ranging from 874.3643 to 1587.8297. The stability of β-glucosidase depends on an initial concentration of 0.2 mg/mL of protein at pH 5.0 which decreases by 33% in a period of 30 h, and then stabilizes and is active for the next 5 days (pH 4.0 gives similar results. One hundred μg/mL β-D-glucose inhibited β-glucosidase activity by more than 50%. The enzyme had a Km of 4.88 mM with p-NPG and a Kcat of 10,000 min−1. The optimal conditions for the enzyme require a pH of 4.0 and a temperature of 50 °C.

  13. Purification and Partial Characterization of β-Glucosidase in Chayote (Sechium edule).

    Science.gov (United States)

    Mateos, Sergio Espíndola; Cervantes, Carlos Alberto Matías; Zenteno, Edgar; Slomianny, Marie-Christine; Alpuche, Juan; Hernández-Cruz, Pedro; Martínez-Cruz, Ruth; Canseco, Maria Del Socorro Pina; Pérez-Campos, Eduardo; Rubio, Manuel Sánchez; Mayoral, Laura Pérez-Campos; Martínez-Cruz, Margarito

    2015-10-23

    β-Glucosidase (EC 3.2.1.21) is a prominent member of the GH1 family of glycoside hydrolases. The properties of this β-glucosidase appear to include resistance to temperature, urea, and iodoacetamide, and it is activated by 2-ME, similar to other members. β-Glucosidase from chayote (Sechium edule) was purified by ionic-interchange chromatography and molecular exclusion chromatography. Peptides detected by LC-ESI-MS/MS were compared with other β-glucosidases using the BLAST program. This enzyme is a 116 kDa protein composed of two sub-units of 58 kDa and shows homology with Cucumis sativus β-glucosidase (NCBI reference sequence XP_004154617.1), in which seven peptides were found with relative masses ranging from 874.3643 to 1587.8297. The stability of β-glucosidase depends on an initial concentration of 0.2 mg/mL of protein at pH 5.0 which decreases by 33% in a period of 30 h, and then stabilizes and is active for the next 5 days (pH 4.0 gives similar results). One hundred μg/mL β-D-glucose inhibited β-glucosidase activity by more than 50%. The enzyme had a Km of 4.88 mM with p-NPG and a Kcat of 10,000 min(-1). The optimal conditions for the enzyme require a pH of 4.0 and a temperature of 50 °C.

  14. Purification and enzymatic characterization of a novel β-1,6-glucosidase from Aspergillus oryzae.

    Science.gov (United States)

    Watanabe, Akira; Suzuki, Moe; Ujiie, Seiryu; Gomi, Katsuya

    2016-03-01

    In this study, among the 10 genes that encode putative β-glucosidases in the glycoside hydrolase family 3 (GH3) with a signal peptide in the Aspergillus oryzae genome, we found a novel gene (AO090038000425) encoding β-1,6-glucosidase with a substrate specificity for gentiobiose. The transformant harboring AO090038000425, which we named bglH, was overexpressed under the control of the improved glaA gene promoter to form a small clear zone around the colony in a plate assay using 4-methylumbelliferyl β-d-glucopyranoside as the fluorogenic substrate for β-glucosidase. We purified BglH to homogeneity and enzymatically characterize this enzyme. The thermal and pH stabilities of BglH were higher than those of other previously studied A. oryzae β-glucosidases, and BglH was stable over a wide temperature range (4°C-60°C). BglH was inhibited by Hg(2+), Zn(2+), glucono-δ-lactone, glucose, dimethyl sulfoxide, and ethanol, but not by ethylenediaminetetraacetic acid. Interestingly, BglH preferentially hydrolyzed gentiobiose rather than other oligosaccharides and aryl β-glucosides, thereby demonstrating that this enzyme is a β-1,6-glucosidase. To the best of our knowledge, this is the first report of the purification and characterization of β-1,6-glucosidase from Aspergillus fungi or from other eukaryotes. This study suggests that it may be possible to find a more suitable β-glucosidase such as BglH for reducing the bitter taste of gentiobiose, and thus for controlling the sweetness of starch hydrolysates in the food industry via genome mining. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    Science.gov (United States)

    2011-01-01

    Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG) by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt.) significantly dampened the postprandial hyperglycemia by 78.2% and 52.0% in maltose and sucrose

  16. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    Directory of Open Access Journals (Sweden)

    Thirumurugan Kavitha

    2011-06-01

    Full Text Available Abstract Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt. significantly dampened the postprandial hyperglycemia by 78.2% and 52

  17. The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting.

    Science.gov (United States)

    Zang, Xiangyun; Liu, Meiting; Fan, Yihong; Xu, Jie; Xu, Xiuhong; Li, Hongtao

    2018-01-01

    Compost habitats sustain a vast ensemble of microbes that engender the degradation of cellulose, which is an important part of global carbon cycle. β-Glucosidase is the rate-limiting enzyme of degradation of cellulose. Thus, analysis of regulation of β-glucosidase gene expression in composting is beneficial to a better understanding of cellulose degradation mechanism. Genetic diversity and expression of β-glucosidase-producing microbial communities, and relationships of cellulose degradation, metabolic products and the relative enzyme activity during natural composting and inoculated composting were evaluated. Compared with natural composting, adding inoculation agent effectively improved the degradation of cellulose, and maintained high level of the carboxymethyl cellulose (CMCase) and β-glucosidase activities in thermophilic phase. Gene expression analysis showed that glycoside hydrolase family 1 (GH1) family of β-glucosidase genes contributed more to β-glucosidase activity in the later thermophilic phase in inoculated compost. In the cooling phase of natural compost, glycoside hydrolase family 3 (GH3) family of β-glucosidase genes contributed more to β-glucosidase activity. Intracellular β-glucosidase activity played a crucial role in the regulation of β-glucosidase gene expression, and upregulation or downregulation was also determined by extracellular concentration of glucose. At sufficiently high glucose concentrations, the functional microbial community in compost was altered, which may contribute to maintaining β-glucosidase activity despite the high glucose content. This research provides an ecological functional map of microorganisms involved in carbon metabolism in cattle manure-rice straw composting. The performance of the functional microbial groups in the two composting treatments is different, which is related to the cellulase activity and cellulose degradation, respectively.

  18. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro

    Science.gov (United States)

    Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.

    2018-03-01

    Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.

  19. Isolation and Characterization of an α-Glucosidase Inhibitor from Musa spp. (Baxijiao Flowers

    Directory of Open Access Journals (Sweden)

    Zhanwu Sheng

    2014-07-01

    Full Text Available The use of α-glucosidase inhibitors is considered to be an effective strategy in the treatment of diabetes. Using a bioassay-guided fractionation technique, five Bacillus stearothermophilus α-glucosidase inhibitors were isolated from the flowers of Musa spp. (Baxijiao. Using NMR spectroscopy analysis they were identified as vanillic acid (1, ferulic acid (2, β-sitosterol (3, daucosterol (4 and 9-(4′-hydroxyphenyl-2-methoxyphenalen-1-one (5. The half maximal inhibitory concentration (IC50 values of compounds 1–5 were 2004.58, 1258.35, 283.67, 247.35 and 3.86 mg/L, respectively. Compared to a known α-glucosidase inhibitor (acarbose, IC50 = 999.31 mg/L, compounds 3, 4 and 5 showed a strong α-glucosidase inhibitory effect. A Lineweaver-Burk plot indicated that compound 5 is a mixed-competitive inhibitor, while compounds 3 and 4 are competitive inhibitors. The inhibition constants (Ki of compounds 3, 4 and 5 were 20.09, 2.34 and 4.40 mg/L, respectively. Taken together, these data show that the compounds 3, 4 and 5 are potent α-glucosidase inhibitors.

  20. Alpha-glucosidase inhibitory effect and inorganic constituents of Phyllanthus amarus Schum. & Thonn. ash

    Directory of Open Access Journals (Sweden)

    Malinee Wongnawa

    2014-10-01

    Full Text Available This study investigated the -glucosidase inhibitory effect and determined the concentration of some inorganic constituents in P. amarus ash. Oral glucose and sucrose tolerance test were performed on normal mice. In vitro -glucosidase inhibitory activity was evaluated by using yeast a-glucosidase. The element concentrations were measured by inductively coupled plasma (ICP spectroscopy. Single oral administration of P. amarus ash did not show antihyperglycemic effect after glucose administration, but decreased blood glucose level after sucrose administration. The ash showed -glucosidase inhibitory activity in vitro with IC50 of 982 mg/mL. The concentrations of K, Ca, Mg, Mn, Fe, Zn, Cu, Pb, Cr, Ni and Co in P. amarus ash were 35049.80±340.64, 3337.24±52.10, 1368.52±13.29, 90.81±1.34, 87.68±1.15, 18.28±0.22, 4.69±0.07, 1.07±0.15, 0.29±0.03, 0.20±0.04 and 0.10±0.02 mg/g, respectively. These results indicate that the antihyperglycemic effect of P. amarus ash might be partly due to the -glucosidase inhibitory activity of the inorganic constituents.

  1. β-Glucosidases from the Fungus Trichoderma: An Efficient Cellulase Machinery in Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Pragya Tiwari

    2013-01-01

    Full Text Available β-glucosidases catalyze the selective cleavage of glucosidic linkages and are an important class of enzymes having significant prospects in industrial biotechnology. These are classified in family 1 and family 3 of glycosyl hydrolase family. β-glucosidases, particularly from the fungus Trichoderma, are widely recognized and used for the saccharification of cellulosic biomass for biofuel production. With the rising trends in energy crisis and depletion of fossil fuels, alternative strategies for renewable energy sources need to be developed. However, the major limitation accounts for low production of β-glucosidases by the hyper secretory strains of Trichoderma. In accordance with the increasing significance of β-glucosidases in commercial applications, the present review provides a detailed insight of the enzyme family, their classification, structural parameters, properties, and studies at the genomics and proteomics levels. Furthermore, the paper discusses the enhancement strategies employed for their utilization in biofuel generation. Therefore, β-glucosidases are prospective toolbox in bioethanol production, and in the near future, it might be successful in meeting the requirements of alternative renewable sources of energy.

  2. Chemical Composition and α-Glucosidase Inhibitory Activity of Vietnamese Citrus Peels Essential Oils

    Directory of Open Access Journals (Sweden)

    Nguyen Hai Dang

    2016-01-01

    Full Text Available Background. Inhibition of α-glucosidase is an important factor to control postprandial hyperglycemia in type 2 diabetes mellitus. Citrus essential oils (CEO are among the most widely used essential oils, and some of them exhibited promising antidiabetic effect. However, the α-glucosidase inhibition of CEO has not been investigated so far. The present work aims to evaluate the α-glucosidase inhibition of essential oils from six Vietnamese Citrus peels. Methods. The chemical composition of essential oils obtained by hydrodistillation from six Citrus peels was analyzed by GC-MS. All essential oils were tested for their inhibitory activity on α-glucosidase using p-nitrophenyl-α-D-glucopyranoside as substrate. Results. In Buddha’s hand and lime peels, the major components were limonene (59.0–61.31% and γ-terpinene (13.98–23.84% while limonene (90.95–95.74% was most abundant in pomelo, orange, tangerine, and calamondin peels. Among the essential oils, the Buddha’s hand oil showed the most significant α-glucosidase inhibitory effect with the IC50 value of 412.2 μg/mL. The combination of the Buddha’s hand essential oil and the antidiabetic drug acarbose increased the inhibitory effect. Conclusions. The results suggested the potential use of Buddha’s hand essential oil as an alternative in treatment of type 2 diabetes mellitus.

  3. Structure of the Sulfolobus solfataricus alpha-glucosidase: Implications for domain conservation and substrate recognition in GH31

    DEFF Research Database (Denmark)

    Ernst, Heidi Asschenfeldt; Lo Leggio, Leila; Willemoes, M.

    2006-01-01

    The crystal structure of a-glucosidase MalA from Sulfolobus solfataricus has been determined at 2.5 Å resolution. It provides a structural model for enzymes representing the major specificity in glycoside hydrolase family 31 (GH31), including a-glucosidases from higher organisms, involved...

  4. Chinese Medicine Amygdalin and β-Glucosidase Combined with Antibody Enzymatic Prodrug System As A Feasible Antitumor Therapy.

    Science.gov (United States)

    Li, Yun-Long; Li, Qiao-Xing; Liu, Rui-Jiang; Shen, Xiang-Qian

    2018-03-01

    Amarogentin is an efficacious Chinese herbal medicine and a component of the bitter apricot kernel. It is commonly used as an expectorant and supplementary anti-cancer drug. β-Glucosidase is an enzyme that hydrolyzes the glycosidic bond between aryl and saccharide groups to release glucose. Upon their interaction, β-glucosidase catalyzes amarogentin to produce considerable amounts of hydrocyanic acid, which inhibits cytochrome C oxidase, the terminal enzyme in the mitochondrial respiration chain, and suspends adenosine triphosphate synthesis, resulting in cell death. Hydrocyanic acid is a cell-cycle-stage-nonspecific agent that kills cancer cells. Thus, β-glucosidase can be coupled with a tumor-specific monoclonal antibody. β-Glucosidase can combine with cancer-cell-surface antigens and specifically convert amarogentin to an active drug that acts on cancer cells and the surrounding antibodies to achieve a killing effect. β-Glucosidase is injected intravenously and recognizes cancer-cell-surface antigens with the help of an antibody. The prodrug amarogentin is infused after β-glucosidase has reached the target position. Coupling of cell membrane peptides with β-glucosidase allows the enzyme to penetrate capillary endothelial cells and clear extracellular deep solid tumors to kill the cells therein. The Chinese medicine amarogentin and β-glucosidase will become an important treatment for various tumors when an appropriate monoclonal antibody is developed.

  5. LC-MS guided isolation of diterpenoids from Sapium insigne with α-glucosidase inhibitory activities.

    Science.gov (United States)

    Yan, De-Xiu; Geng, Chang-An; Yang, Tong-Hua; Huang, Xiao-Yan; Li, Tian-Ze; Gao, Zhen; Ma, Yun-Bao; Peng, Hua; Zhang, Xue-Mei; Chen, Ji-Jun

    2018-04-08

    Ten new (1-10) and ten known (11-20) diterpenoids involving ent-atisane, ent-seco-atisane, ent-kaurane and ent-seco-kaurane types were isolated from Sapium insigne under the guidance of LCMS-IT-TOF analyses. Their structures were characterized by extensive spectroscopic analyses (HRESIMS, UV, IR, 1D and 2D NMR). A putative biosynthetic pathway was proposed for ent-seco-atisane diterpenoids. Their inhibitory activities on α-glucosidase in vitro were tested for the first time. Compound 4 showed moderate inhibitory effect on α-glucosidase with an IC 50 value of 0.34 mM via a noncompetitive inhibition mechanism (K i  = 0.27 mM). The preliminary structure-activity relationships of the ent-atisane diterpenoids inhibiting α-glucosidase were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Maplexins, new α-glucosidase inhibitors from red maple (Acer rubrum) stems.

    Science.gov (United States)

    Wan, Chunpeng; Yuan, Tao; Li, Liya; Kandhi, Vamsikrishna; Cech, Nadja B; Xie, Mingyong; Seeram, Navindra P

    2012-01-01

    Thirteen gallic acid derivatives including five new gallotannins, named maplexins A-E, were isolated from red maple (Acer rubrum) stems. The compounds were identified by spectral analyses. The maplexins varied in number and location of galloyl groups attached to 1,5-anhydro-d-glucitol. The isolates were evaluated for α-glucosidase inhibitory and antioxidant activities. Maplexin E, the first compound identified with three galloyl groups linked to three different positions of 1,5-anhydro-d-glucitol, was 20 fold more potent than the α-glucosidase inhibitory drug, Acarbose (IC(50)=8 vs 160 μM). Structure-activity related studies suggested that both number and position of galloyls attached to 1,5-anhydro-d-glucitol were important for α-glucosidase inhibition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Purification and characterization of recombinant high pI Barley α-Glucosidase

    DEFF Research Database (Denmark)

    Næsted, Henrik; Bojsen, Kirsten; Svensson, Birte

    (MACGREGOR & sissons). recently expression and characterization of the recombinant full length and fully functional barley high pi α-glucosidase in pichia pastoris has been achieved. in order to facilitate protein yield in the mg range, a clone representing an n-terminal hexa histidine tagged recombinant...... form of the enzyme was grown under high cell-density fermentation conditions. this approach enabled a successful protein expression profile under the highly sensitive methanol utilization phase using a biotatb 5 l reactor for the fermentation procedure. the enzyme was purified from 3.5 liter α...... of the native enzyme indicates a possible post-translational glycosylation of the recombinant α-glucosidase. preliminary enzyme kinetic analysis has demonstrated that the purified α-glucosidase displayed high stability during the 5 day long fermenentation and exhibited a specific activity in the range...

  8. Characterization of recombinant high pI Barley α-Glucosidase

    DEFF Research Database (Denmark)

    Næsted, Henrik; Svensson, Birte

    (MacGregor A.W.). Here we present the recent results of the expression and characterization of the recombinant full length barley high pI α-glucosidase in Pichia Pastoris. In order to facilitate in the range of mg protein yield, a clone representing an N-terminal hexa histidine tagged recombinant form...... of the enzyme was grown under high cell-density fermentation conditions. This approach enabled a successful protein expression profile under the highly sensitive methanol utilization phase of the fermentation procedure. The enzyme was purified using a four step purification strategy. Interestingly, the purified...... enzyme exhibits a higher molecular mass than expected from its primary sequence when applied on SDS-PAGE, indicating a possible post translational modification of the recombinant α-glucosidase. Preliminary enzyme kinetic analysis has demonstrated that the purified α-glucosidase is “fully” active when...

  9. Crystallization and preliminary X-ray analysis of Streptococcus mutans dextran glucosidase

    Energy Technology Data Exchange (ETDEWEB)

    Saburi, Wataru; Hondoh, Hironori, E-mail: hondoh@abs.agr.hokudai.ac.jp [Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589 (Japan); Unno, Hideaki [Faculty of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521 (Japan); Okuyama, Masayuki; Mori, Haruhide [Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589 (Japan); Nakada, Toshitaka [Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Matsuura, Yoshiki [Institute for Protein Research, Osaka University, Suita, Osaka 565-0871 (Japan); Kimura, Atsuo [Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589 (Japan)

    2007-09-01

    Dextran glucosidase from S. mutans was crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to 2.2 Å resolution. Dextran glucosidase from Streptococcus mutans is an exo-hydrolase that acts on the nonreducing terminal α-1,6-glucosidic linkage of oligosaccharides and dextran with a high degree of transglucosylation. Based on amino-acid sequence similarity, this enzyme is classified into glycoside hydrolase family 13. Recombinant dextran glucosidase was purified and crystallized by the hanging-drop vapour-diffusion technique using polyethylene glycol 6000 as a precipitant. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 72.72, b = 86.47, c = 104.30 Å. A native data set was collected to 2.2 Å resolution from a single crystal.

  10. Crystallization and preliminary X-ray analysis of Streptococcus mutans dextran glucosidase

    International Nuclear Information System (INIS)

    Saburi, Wataru; Hondoh, Hironori; Unno, Hideaki; Okuyama, Masayuki; Mori, Haruhide; Nakada, Toshitaka; Matsuura, Yoshiki; Kimura, Atsuo

    2007-01-01

    Dextran glucosidase from S. mutans was crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to 2.2 Å resolution. Dextran glucosidase from Streptococcus mutans is an exo-hydrolase that acts on the nonreducing terminal α-1,6-glucosidic linkage of oligosaccharides and dextran with a high degree of transglucosylation. Based on amino-acid sequence similarity, this enzyme is classified into glycoside hydrolase family 13. Recombinant dextran glucosidase was purified and crystallized by the hanging-drop vapour-diffusion technique using polyethylene glycol 6000 as a precipitant. The crystals belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 72.72, b = 86.47, c = 104.30 Å. A native data set was collected to 2.2 Å resolution from a single crystal

  11. Covalent Immobilization of β-Glucosidase on Magnetic Particles for Lignocellulose Hydrolysis

    DEFF Research Database (Denmark)

    Alftrén, Johan; Hobley, Timothy John

    2013-01-01

    β-Glucosidase hydrolyzes cellobiose to glucose and is an important enzyme in the consortium used for hydrolysis of cellulosic and lignocellulosic feedstocks. In the present work, β-glucosidase was covalently immobilized on non-porous magnetic particles to enable re-use of the enzyme. It was found...... that particles activated with cyanuric chloride and polyglutaraldehyde gave the highest bead-related immobilized enzyme activity when tested with p-nitrophenyl-β-D-glucopyranoside (104.7 and 82.2 U/g particles, respectively). Furthermore, the purified β-glucosidase preparation from Megazyme gave higher bead......-related enzyme activities compared to Novozym 188 (79.0 and 9.8 U/g particles, respectively). A significant improvement in thermal stability was observed for immobilized enzyme compared to free enzyme; after 5 h (at 65 °C), 36 % of activity remained for the former, while there was no activity in the latter...

  12. Cloning and expression of N-glycosylation-related glucosidase from Glaciozyma antarctica

    Science.gov (United States)

    Yajit, Noor Liana Mat; Kamaruddin, Shazilah; Hashim, Noor Haza Fazlin; Bakar, Farah Diba Abu; Murad, Abd. Munir Abd.; Mahadi, Nor Muhammad; Mackeen, Mukram Mohamed

    2016-11-01

    The need for functional oligosaccharides in various field is ever growing. The enzymatic approach for synthesis of oligosaccharides is advantageous over traditional chemical synthesis because of the regio- and stereo- selectivity that can be achieved without the need for protection chemistry. In this study, the α-glucosidase I protein sequence from Saccharomyces cerevisiae (UniProt database) was compared using Basic Local Alignment Search Tool (BLAST) with Glaciozyma antarctica genome database. Results showed 33% identity and an E-value of 1 × 10-125 for α-glucosidase I. The gene was amplified, cloned into the pPICZα C vector and used to transform Pichia pastoris X-33 cells. Soluble expression of α-Glucosidase I (˜91 kDa) was achieved at 28 °C with 1.0 % of methanol.

  13. Lanostane triterpenes from the mushroom Ganoderma resinaceum and their inhibitory activities against α-glucosidase.

    Science.gov (United States)

    Chen, Xian-Qiang; Zhao, Jing; Chen, Ling-Xiao; Wang, Shen-Fei; Wang, Ying; Li, Shao-Ping

    2018-05-01

    Eighteen previously undescribed lanostane triterpenes and thirty known analogues were obtained from the fruiting bodies of Ganoderma resinaceum. Resinacein C was isolated from a natural source for the first time. The structures of all the above compounds were elucidated by extensive spectroscopic analysis and comparisons of their spectroscopic data with those reported in the literature. Furthermore, in an in vitro assay, Resinacein C, ganoderic acid Y, lucialdehyde C, 7-oxo-ganoderic acid Z 3 , 7-oxo-ganoderic acid Z, and lucidadiol showed strong inhibitory effects against α-glucosidase compared with the positive control drug acarbose. The structure-activity relationships of ganoderma triterpenes on α-glucosidase inhibition showed that the C-24/C-25 double bond is necessary for α-glucosidase inhibitory activity. Moreover, the carboxylic acid group at C-26 and the hydroxy group at C-15 play important roles in enhancing inhibitory effects of these triterpenes. Copyright © 2018. Published by Elsevier Ltd.

  14. Process development studies for the production of β-glucosidase from Aspergillus phoenicis

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Mary Jane [Univ. of California, Berkeley, CA (United States); Wilke, C. R. [Univ. of California, Berkeley, CA (United States)

    1978-09-01

    This work is concerned with the production of β-glucosidase from Aspergillus phoenicis for use in the enzymatic hydrolysis of cellulose. Kinetic growth data indicate that two distinct periods of growth exist. The observed growth kinetics result from a biochemical differentiation of the filament which is independent of the substrate concentration. The optimum temperature for cell mass and β-glucosidase production was found to be 30°C. The optimum pH for β-glucosidase production is 5 and the highest specific cell growth rate was observed when the growth medium was controlled at pH 4.5. The most economical substrate was 0.75 g/l of Solka Floc, a spruce wood pulp, plus 0.25 g/l of Trichoderma viride cellulase, required because A. phoenicis does not produce all the enzymes required to solubilize cellulose. When freeze-dried A. phoenicis enzyme was added to the hydrolysis of acid treated corn stover by Tricoderma viride cellulase, the total sugar yield was increased by 4 g/l of hydrolysate over the yield of 20 g/l obtained without β-glucosidase addition. In addition, the cellobiose, which accounted for about 10% of the sugar concentration, was converted to glucose, a more widely useable product. Preliminary designs of several processes for the production of β-glucosidase were made. The most economical processes were continuous production schemes. Ball milling was the most cost effective method, but the use of an elevated temperature stage was economical enough to warrant further study. The cost of production of β-glucosidase was found to be too high to justify its addition to a process for enzymatically hydrolyzing cellulose at this time.

  15. REGULATION OF EXPRESSION OF MULTIPLE BETA- GLUCOSIDASES OF ASPERGILLUS TERREUS AND THEIR PURIFICATION AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Asiya Nazir

    2009-02-01

    Full Text Available This study reports the regulation and purification of -glucosidases from a thermotolerant Aspergillus terreus AN1 strain, previously reported for efficient deinking of composite paper waste. The differential expression of four -glucosidase isoforms, in response to carbon sources in production medium, was studied by electrophoretically resolving proteins by polyacrylamide gel electro-phoresis analysis (PAGE and developing zymograms using methylum-belliferyl -D glucoside as substrate. Three -glucosidases (GI, GII & GIII were purified using chromatographic techniques. SDS-PAGE revealed the respective molecular masses of GI, GII, and GIII, as 29, 43, and 98 KDa, and isoelectric point (pI to be 2.8, 3.7, and 3.0. The -glucosidases exhibited diverse pH and temperature optima as well as stability. -Glucosidase I (GI specifically recog-nized pNP--glucopyranoside (pNPG as a substrate, whereas, -glucosidase II (GII and III (GIII also showed activities against cellobiose and salicin. In contrast to GII and GIII, the activity of GI was positively influenced in the presence of hexoses/pentoses and alcohols. Km and Vmax for hydrolysis of pNPG by GI, GII, andGIII were found to be 14.2 mM and 166.9 µmol -1mg protein -1, 4.37 mM, and 34.7 µmol -1mg proteins -1, and 11.1 mM and 378.7µ mol -1 mg protein -1, respectively.

  16. Key aromatic residues at subsites +2 and +3 of glycoside hydrolase family 31 α-glucosidase contribute to recognition of long-chain substrates

    DEFF Research Database (Denmark)

    Tagami, Takayoshi; Okuyama, Masayuki; Nakai, Hiroyuki

    2013-01-01

    Glycoside hydrolase family 31 α-glucosidases (31AGs) show various specificities for maltooligosaccharides according to chain length. Aspergillus niger α-glucosidase (ANG) is specific for short-chain substrates with the highest kcat/Km for maltotriose, while sugar beet α-glucosidase (SBG) prefers...

  17. Magnetic ligand fishing as a targeting tool for HPLC-HRMS-SPE-NMR: α-glucosidase inhibitory ligands and alkylresorcinol glycosides from Eugenia catharinae

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Brighente, Inês M. C.; Moaddel, Ruin

    2015-01-01

    A bioanalytical platform combining magnetic ligand fishing for α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR for structural identification of α-glucosidase inhibitory ligands, both directly from crude plant extracts, is presented. Magnetic beads with N-terminus-coupled α-glucosidase we...

  18. α-Glucosidase inhibitory activities of isoflavanones, isoflavones, and pterocarpans from Mucuna pruriens.

    Science.gov (United States)

    Dendup, Tshewang; Prachyawarakorn, Vilailak; Pansanit, Acharavadee; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat

    2014-05-01

    Three new isoflavanones (1-3) and thirteen known compounds (4-16) were isolated from the roots of Mucuna pruriens. The absolute configurations of isoflavanones 1-3 and parvisoflavanone (4), lespedeol C (5), and uncinanone C (6) were addressed by a circular dichroism technique. Isoflavanones, isoflavones, and pterocarpans of M. pruriens were found to be α-glucosidase inhibitors. Medicarpin (7) and parvisoflavone B (9) were potent α-glucosidase inhibitors (twofold less active than the standard drug acarbose). The production of bioactive metabolites in M. pruriens seems to be season-dependent. Georg Thieme Verlag KG Stuttgart · New York.

  19. Purification and characterization of a beta-glucosidase from the root parasitic plant Orobanche minor Sm.

    Science.gov (United States)

    Sasanuma, Izumi; Hirakawa, Go

    2010-01-01

    The beta-glucosidase of a root parasitic angiosperm, Orobanche minor Sm., was purified and characterized. The optimum pH and temperature for activity of the enzyme were 5.0 and 50 degrees C. The beta-glucosidase was stable at up to 50 degrees C at pH 4.0-10.0. The M(r) was estimated to be 33 kD by SDS-PAGE. The enzyme hydrolyzed p-nitrophenyl-beta-D-glucopyranoside and salicin, but not the cell wall of O. minor or cellohexaose.

  20. α-/β-Glucosidase and α-Amylase Inhibitory Activities of Roselle (Hibiscus sabdariffa L. Ethanol Extract

    Directory of Open Access Journals (Sweden)

    Marisca Evalina Gondokesumo

    2017-03-01

    Full Text Available Background: Diabetes mellitus is a metabolic disease, characterized by hyperglycemia due to disturbance in both insulin secretion and function. One of theurapeutic approaches is to reduce blood glucose levels by inhbiting α-/β-glucosidase and α-amylase involved in carbohydrate digestion. Thus, inhibition of these enzymes play important role in the treatment of diabetes mellitus. Roselle (Hibiscus sabdariffa L. has been known to have several medicinal properties and potency as an antidiabetics agents. This reseacrh aimed to observe antidiabetic properties of roselle ethanol extract (REE towards α-glucosidase, β-glucosidase and α-amylase. Materials and Methods: REE was done with maceration technique using diluent of 70% ethanol. Antidiabetic properties were measured by inhibitory activity of α-amylase, α-glucosidase and β-glucosidase. Results: REE was able to inhibit α-/β-glucosidase and α-amylase in the highest concentration with inhibition percentage of 72.68, 47.34 and 73.08% respectively, and were comparable with Acarbose of 81.49, 50.97, 73.08%. The median inhibitory concentration (IC50 of α-/β-glucosidase and α-amylase of REE were 15.81, 41.77, 18.09 μg/mL respectively, and Acarbose were 9.45, 22.57, 3.64 μg/mL respectively. Conclusions: REE inhibits α-/β-glucosidase and α-amylase. Keywords: Roselle, Acarbose, α-glucosidase, β-glucosidase, α-amylase, antidiabetic

  1. Glucose-tolerant β-glucosidase retrieved from the metagenome

    Directory of Open Access Journals (Sweden)

    Taku eUchiyama

    2015-06-01

    Full Text Available β-glucosidases (BGLs hydrolyze cellooligosaccharides to glucose and play a crucial role in the enzymatic saccharification of cellulosic biomass. Despite their significance for the production of glucose, most identified BGLs are commonly inhibited by low (~mM concentrations of glucose. Therefore, BGLs that are insensitive to glucose inhibition have great biotechnological merit. We applied a metagenomic approach to screen for such rare glucose-tolerant BGLs. A metagenomic library was created in Escherichia coli (approximately 10,000 colonies and grown on LB agar plates containing 5-bromo-4-chloro-3-indolyl-β-D-glucoside, yielding 828 positive (blue colonies. These were then arrayed in 96-well plates, grown in LB, and secondarily screened for activity in the presence of 10% (w/v glucose. Seven glucose-tolerant clones were identified, each of which contained a single bgl gene. The genes were classified into two groups, differing by two nucleotides. The deduced amino acid sequences of these genes were identical (452 aa and found to belong to the glycosyl hydrolase family 1. The recombinant protein (Ks5A7 was overproduced in E. coli as a C-terminal 6 × His-tagged protein and purified to apparent homogeneity. The molecular mass of the purified Ks5A7 was determined to be 54 kDa by SDS-PAGE, and 160 kDa by gel filtration analysis. The enzyme was optimally active at 45°C and pH 5.0–6.5 and retained full or 1.5–2-fold enhanced activity in the presence of 0.1–0.5 M glucose. It had a low KM (78 µM with p-nitrophenyl β-D-glucoside; 0.36 mM with cellobiose and high Vmax (91 µmol min-1 mg-1 with p-nitrophenyl β-D-glucoside; 155 µmol min-1 mg-1 with cellobiose among known glucose-tolerant BGLs and was free from substrate (0.1 M cellobiose inhibition. The efficient use of Ks5A7 in conjunction with Trichoderma reesei cellulases in enzymatic saccharification of alkaline-treated rice straw was demonstrated by increased production of glucose.

  2. [Chemical Constituents from Leaves of Hibiscus syriacus and Their α-Glucosidase Inhibitory Activities].

    Science.gov (United States)

    Wei, Qiang; Ji, Xiao-ying; Xu, Fei; Li, Qian-rong; Yin, Hao

    2015-05-01

    To study the chemical constituents from Hibiscus syriacus leaves and their α-glucosidase inhibitory activities. Column chromatography including macroporous resins, silica gel and Sephadex LH-20 were used for the isolation and purification of all compounds. Spectroscopic methods including physical and chemical properties, 1H-NMR and 13C-NMR were used for the identification of structures. Their α-glucosidase inhibitory activities were detected by a 96-well microplate. 15 compounds were isolated and identified as β-sitosterol(1), β-daucostero (2), β-amyrin (3), oleanolic acid (4), stigmast-4-en-3-one (5), friedelin (6), syriacusin A (7), kaempferol (8), isovitexin (9), vitexin (10), apigenin (11), apigenin-7-O-β-D-glucopyranoside (12), luteolin-7-O-β-D-glucopyranoside (13), vitexin-7-O-β-D-glucopyranoside (14) and rutin (15). All the compounds are isolated from the leaves of Hibiscus syriacus for the first time. Taking acarbose as positive control, the α-glucosidase inhibitory activities of 15 compounds were evaluated. Compounds 7 and 9 have shown strong α-glucosidase inhibitory activities with IC50 of 39.03 ± 0.38 and 32.12 ± 0.62 mg/L, inhibition ratio of 94.95% and 97.15%, respectively.

  3. Potential antiradical and alpha-glucosidase inhibitors from Ecklonia maxima (Osbeck) Papenfuss.

    Science.gov (United States)

    Rengasamy, Kannan R R; Aderogba, Mutalib A; Amoo, Stephen O; Stirk, Wendy A; Van Staden, Johannes

    2013-11-15

    Alpha-glucosidase inhibitors play a potential role in the treatment of type 2 diabetes by delaying glucose absorption in the small intestine. Ecklonia maxima, a brown alga which grows abundantly on the west coast of South Africa, is used to produce alginate, animal feed, nutritional supplements and fertilizer. The crude aqueous methanol extract, four solvent fractions and three phlorotannins: 1,3,5-trihydroxybenezene (phloroglucinol) (1), dibenzo [1,4] dioxine-2,4,7,9-tetraol (2) and hexahydroxyphenoxydibenzo [1,4] dioxine (eckol) (3) isolated from E. maxima were evaluated for antiradical and alpha-glucosidase inhibitory activities. All the phlorotannins tested had strong antioxidant activities on DPPH free radicals with EC50 values ranging from 0.008 to 0.128μM. Compounds 2 and 3 demonstrated stronger antioxidant activity and an alpha-glucosidase inhibitory property than positive controls. These results suggest that E. maxima could be a natural source of potent antioxidants and alpha-glucosidase inhibitors. This study could facilitate effective utilization of E. maxima as an oral antidiabetic drug or functional food ingredient with a promising role in the formulation of medicines and nutrition supplements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Characterization of an extracellular β-glucosidase from Dekkera bruxellensis for resveratrol production

    Directory of Open Access Journals (Sweden)

    Hsiao-Ping Kuo

    2018-01-01

    Full Text Available Polygonum cuspidatum is a widely grown crop with a rich source of polydatin (also called piceid for resveratrol production. Resveratrol is produced from piceid via enzymatic cleavage of the sugar moiety of piceid. In this study, Dekkera bruxellensis mutants were selected based on their high p-nitrophenyl-β-d-glucopyranoside and piceid conversion activities. The enzyme responsible for piceid conversion was a heterodimeric protein complex that was predominantly secreted to the extracellular medium and consisted of two subunits at an equal ratio with molecular masses of 30.5 kDa and 48.3 kDa. The two subunits were identified as SCW4p and glucan-β-glucosidase precursor in D. bruxellensis. Both proteins were individually expressed in Saccharomyces cerevisiae exg1Δ mutants, which lack extracellular β-glucosidase activity, to confirm each protein's enzymatic activities. Only the glucan-β-glucosidase precursor was shown to be a secretory protein with piceid deglycosylation activity. Our pilot experiments of piceid bioconversion demonstrate the possible industrial applications for this glucan-β-glucosidase precursor in the future.

  5. Bio-assay guided isolation of α-glucosidase inhibitory constituents from Hibiscus mutabilis leaves.

    Science.gov (United States)

    Kumar, Deepak; Kumar, Hemanth; Vedasiromoni, J R; Pal, Bikas C

    2012-01-01

    The increasing demand for natural-product-based medicines and health-care products for the management of diabetes encouraged investigation of this commonly available Indian plant. To establish the anti-diabetic (α-glucosidase inhibitory) activity of H. mutabilis leaf extract, isolate and identify the constituents responsible for the activity, and validate a HPLC method for quantification of the active constituents for standardisation of the extract. The methanolic extract of leaves was partitioned between water, n-butanol and ethyl acetate. Bio-assay guided fractionation, based on inhibition of α-glucosidase, allowed isolation and identification of the active components. The active components were quantified using RP-HPLC-DAD validated for linearity, limit of detection, limit of quantification, precision, accuracy and robustness for this plant extract and the partitioned fractions. Ferulic acid and caffeic acid were identified as the α-glucosidase inhibitors present in H. mutabilis. They were partitioned into an ethyl acetate fraction. The HPLC-DAD calibration curve showed good linearity (r² > 0.99). For the recovery studies the %RSD was less than 2%. The interday and intraday variations were found to be less than 4% RSD for retention time and response. The identification of α-glucosidase inhibition activity in H. mutabilis supports further investigations into the possible use of the plant for the management of diabetes. The HPLC method validated for these extracts will be useful in future research with the plant. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Smectite clays as solid supports for immobilization of beta-glucosidase : Synthesis, characterization, and biochemical properties

    NARCIS (Netherlands)

    Serefoglou, Evangelia; Litina, Kiriaki; Gournis, Dimitrios; Kalogeris, Emmanuel; Tzialla, Aikaterini A.; Pavlidis, Ioannis V.; Stamatis, Haralambos; Maccallini, Enrico; Lubomska, Monika; Rudolf, Petra

    2008-01-01

    Nanomaterials as solid supports can improve the efficiency of immobilized enzymes by reducing diffusional limitation as well as by increasing the surface area per mass unit and therefore improving enzyme loading. In this work, beta-glucosidase from almonds was immobilized on two smectite nanoclays.

  7. Inhibitory effect of rhubarb on intestinal α-glucosidase activity in type ...

    African Journals Online (AJOL)

    Purpose: To investigate the inhibitory effect of rhubarb on α-glucosidase activity in the small intestine of rats with type 1 diabetes. Methods: Type 1 diabetic rat model was established by intraperitoneally injecting 30 male SD rats with 1 % streptozocin (STZ). Rats with fasting blood glucose > 11 mmol/L (24) were used for the ...

  8. Antioxidant, Iron-chelating and Anti-glucosidase Activities of Typha ...

    African Journals Online (AJOL)

    Iron chelating activity was assessed using a ferrozine-based assay. Anti- glucosidase activity was determined using 4-nitrophenyl ... flavonoid (TF) content was determined based an aluminum chloride colorimetric assay [6]. TF content was ..... Dietary iron restriction or iron chelation protects from diabetes and loss of β-cell.

  9. Induction and catabolite repression of α-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis

    NARCIS (Netherlands)

    Wijk, R. van; Ouwehand, J.; Bos, T. van den; Koningsberger, V.V.

    1969-01-01

    1. 1. Kinetic data on the repression, the derepression and the induction of α-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis suggested that some site other than the stereospecific site for the induction by maltose was involved in the repression by glucose. 2. 2. A study of the

  10. BGL6 beta-glucosidase and nucleic acids encoding the same

    Science.gov (United States)

    Dunn-Coleman, Nigel [Los Gatos, CA; Ward, Michael [San Francisco, CA

    2009-09-01

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  11. Polypeptides having beta-glucosidase activity and polynucleotides encoding the same

    Science.gov (United States)

    Brown, Kimberly; Harris, Paul

    2013-12-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Inhibitory effect of rhubarb on intestinal α-glucosidase activity in type ...

    African Journals Online (AJOL)

    insulin, and intestinal α-glucosidase were also determined. Results: ... As a serious and chronic metabolic disorder, diabetes ... increased levels of hemoglobin, fasting blood glucose ... Diabetic patients manifest impaired glucose ... improving insulin sensitivity and decreasing ... Guide, is the first-line therapy of postprandial.

  13. Chemo-enzymatic synthesis route to poly(glucosyl-acrylates) using glucosidase from almonds

    NARCIS (Netherlands)

    Kloosterman, Wouter M. J.; Roest, Steven; Priatna, Siti R.; Stavila, Erythrina; Loos, Katja

    2014-01-01

    Novel types of glucosyl-acrylate monomers are obtained by beta-glucosidase from almond catalyzed glycosidation reaction. The saccharide-acrylate monomers were synthesized by reaction of D-glucose with hydroxyl functional acrylates: 2-hydroxyethyl acrylate (2-HEA), 2-hydroxyethyl methacrylate

  14. Improved oligosaccharide synthesis by protein engineering of b-glucosidase from hyperthermophilic Pyrococcus furiosus

    NARCIS (Netherlands)

    Hanson, T.; Kaper, T.; Oost, van der J.; Vos, de W.M.

    2001-01-01

    Enzymatic transglycosylation of lactose into oligosaccharides was studied using wild-type -glucosidase (CelB) and active site mutants thereof (M424K, F426Y, M424K/F426Y) and wild-type -mannosidase (BmnA) of the hyperthermophilic Pyrococcus furiosus. The effects of the mutations on kinetics, enzyme

  15. Characterization and kinetic analysis of a thermostable GH3 ß-glucosidase from Penicillium brasilianum

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Harris, P.V.; Olsen, C.L.

    2010-01-01

    A GH3 beta-glucosidase (BGL) from Penicillium brasilianum was purified to homogeneity after cultivation on a cellulose and xylan rich medium. The BGL was identified in a genomic library, and it was successfully expressed in Aspergillus oryzae. The BGL had excellent stability at elevated...

  16. Pomegranate ellagitannins inhibit α-glucosidase activity in vitro and reduce starch digestibility under simulated gastro-intestinal conditions.

    Science.gov (United States)

    Bellesia, Andrea; Verzelloni, Elena; Tagliazucchi, Davide

    2015-02-01

    Pomegranate extract was tested for its ability to inhibit α-amylase and α-glucosidase activity. Pomegranate extract strongly inhibited rat intestinal α-glucosidase in vitro whereas it was a weak inhibitor of porcine α-amylase. The inhibitory activity was recovered in an ellagitannins-enriched fraction and punicalagin, punicalin, and ellagic acid were identified as α-glucosidase inhibitors (IC(50) of 140.2, 191.4, and 380.9 μmol/L, respectively). Kinetic analysis suggested that the pomegranate extract and ellagitannins inhibited α-glucosidase activity in a mixed mode. The inhibitory activity was demonstrated using an in vitro digestion system, mimicking the physiological gastro-intestinal condition, and potatoes as food rich in starch. Pre-incubation between ellagitannins and α-glucosidase increased the inhibitory activity, suggesting that they acted by binding to α-glucosidase. During digestion punicalin and punicalagin concentration decreased. Despite this loss, the pomegranate extract retained high inhibitory activity. This study suggests that pomegranate ellagitannins may inhibit α-glucosidase activity in vitro possibly affecting in vivo starch digestion.

  17. Rapid Screening for α-Glucosidase Inhibitors from Gymnema sylvestre by Affinity Ultrafiltration–HPLC-MS

    Directory of Open Access Journals (Sweden)

    Mingquan Guo

    2017-04-01

    Full Text Available Gymnema sylvestre R. Br. (Asclepiadaceae has been known to posses potential anti-diabetic activity, and the gymnemic acids were reported as the main bioactive components in this plant species. However, the specific components responsible for the hypoglycemic effect still remain unknown. In the present study, the in vitro study revealed that the extract of G. sylvestre exhibited significant inhibitory activity against α-glucosidase with IC50 at 68.70 ± 1.22 μg/mL compared to acarbose (positive control at 59.03 ± 2.30 μg/mL, which further indicated the potential anti-diabetic activity. To this end, a method based on affinity ultrafiltration coupled with liquid chromatography mass spectrometry (UF-HPLC-MS was established to rapidly screen and identify the α-glucosidase inhibitors from G. sylvestre. In this way, 9 compounds with higher enrichment factors (EFs were identified according to their MS/MS spectra. Finally, the structure-activity relationships revealed that glycosylation could decrease the potential antisweet activity of sapogenins, and other components except gymnemic acids in G. sylvestre could also be good α-glucosidase inhibitors due to their synergistic effects. Taken together, the proposed method combing α-glucosidase and UF-HPLC-MS presents high efficiency for rapidly screening and identifying potential inhibitors of α-glucosidase from complex natural products, and could be further explored as a valuable high-throughput screening (HTS platform in the early anti-diabetic drug discovery stage.

  18. Molecular cloning and characterization of the α-glucosidase II from Bombyx mori and Spodoptera frugiperda.

    Science.gov (United States)

    Watanabe, Satoko; Kakudo, Akemi; Ohta, Masato; Mita, Kazuei; Fujiyama, Kazuhito; Inumaru, Shigeki

    2013-04-01

    The α-glucosidase II (GII) is a heterodimer of α- and β-subunits and important for N-glycosylation processing and quality control of nascent glycoproteins. Although high concentration of α-glucosidase inhibitors from mulberry leaves accumulate in silkworms (Bombyx mori) by feeding, silkworm does not show any toxic symptom against these inhibitors and N-glycosylation of recombinant proteins is not affected. We, therefore, hypothesized that silkworm GII is not sensitive to the α-glucosidase inhibitors from mulberry leaves. However, the genes for B. mori GII subunits have not yet been identified, and the protein has not been characterized. Therefore, we isolated the B. mori GII α- and β-subunit genes and the GII α-subunit gene of Spodoptera frugiperda, which does not feed on mulberry leaves. We used a baculovirus expression system to produce the recombinant GII subunits and identified their enzyme characteristics. The recombinant GII α-subunits of B. mori and S. frugiperda hydrolyzed p-nitrophenyl α-d-glucopyranoside (pNP-αGlc) but were inactive toward N-glycan. Although the B. mori GII β-subunit was not required for the hydrolysis of pNP-αGlc, a B. mori GII complex of the α- and β-subunits was required for N-glycan cleavage. As hypothesized, the B. mori GII α-subunit protein was less sensitive to α-glucosidase inhibitors than was the S. frugiperda GII α-subunit protein. Our observations suggest that the low sensitivity of GII contributes to the ability of B. mori to evade the toxic effect of α-glucosidase inhibitors from mulberry leaves. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Dual role of imidazole as activator/inhibitor of sweet almond (Prunus dulcis β-glucosidase

    Directory of Open Access Journals (Sweden)

    Sara Caramia

    2017-07-01

    Full Text Available The activity of Prunus dulcis (sweet almond β-glucosidase at the expense of p-nitrophenyl-β-d-glucopyranoside at pH 6 was determined, both under steady-state and pre-steady-state conditions. Using crude enzyme preparations, competitive inhibition by 1–5 mM imidazole was observed under both kinetic conditions tested. However, when imidazole was added to reaction mixtures at 0.125–0.250 mM, we detected a significant enzyme activation. To further inspect this effect exerted by imidazole, β-glucosidase was purified to homogeneity. Two enzyme isoforms were isolated, i.e. a full-length monomer, and a dimer containing a full-length and a truncated subunit. Dimeric β-glucosidase was found to perform much better than the monomeric enzyme, independently of the kinetic conditions used to assay enzyme activity. In addition, the sensitivity towards imidazole was found to differ between the two isoforms. While monomeric enzyme was indeed found to be relatively insensitive to imidazole, dimeric β-glucosidase was observed to be significantly activated by 0.125–0.250 mM imidazole under pre-steady-state conditions. Further, steady-state assays revealed that the addition of 0.125 mM imidazole to reaction mixtures increases the Km of dimeric enzyme from 2.3 to 6.7 mM. The activation of β-glucosidase dimer by imidazole is proposed to be exerted via a conformational transition poising the enzyme towards proficient catalysis.

  20. Dual role of imidazole as activator/inhibitor of sweet almond (Prunus dulcis) β-glucosidase.

    Science.gov (United States)

    Caramia, Sara; Gatius, Angela Gala Morena; Dal Piaz, Fabrizio; Gaja, Denis; Hochkoeppler, Alejandro

    2017-07-01

    The activity of Prunus dulcis (sweet almond) β-glucosidase at the expense of p -nitrophenyl-β-d-glucopyranoside at pH 6 was determined, both under steady-state and pre-steady-state conditions. Using crude enzyme preparations, competitive inhibition by 1-5 mM imidazole was observed under both kinetic conditions tested. However, when imidazole was added to reaction mixtures at 0.125-0.250 mM, we detected a significant enzyme activation. To further inspect this effect exerted by imidazole, β-glucosidase was purified to homogeneity. Two enzyme isoforms were isolated, i.e. a full-length monomer, and a dimer containing a full-length and a truncated subunit. Dimeric β-glucosidase was found to perform much better than the monomeric enzyme, independently of the kinetic conditions used to assay enzyme activity. In addition, the sensitivity towards imidazole was found to differ between the two isoforms. While monomeric enzyme was indeed found to be relatively insensitive to imidazole, dimeric β-glucosidase was observed to be significantly activated by 0.125-0.250 mM imidazole under pre-steady-state conditions. Further, steady-state assays revealed that the addition of 0.125 mM imidazole to reaction mixtures increases the K m of dimeric enzyme from 2.3 to 6.7 mM. The activation of β-glucosidase dimer by imidazole is proposed to be exerted via a conformational transition poising the enzyme towards proficient catalysis.

  1. Strain improvement and optimization for β-glucosidase production in Aspergillus niger by low-energy N+ implantation

    International Nuclear Information System (INIS)

    Diao Jinshan; Wang Li; Chen Zhen; Liu Hui; Nie Guangjun; Zheng Zhiming

    2010-01-01

    Low-energy N + implantation was employed to mutate Aspergillus niger Au to enhance productivity of β-glucosidase. Effects of N + on strains, survival and mutation rate were studied. After several rounds of implantation, activity of β-glucosidase of the final mutant Au 0847 reached 13.75 U/mL, which is higher by 106.8% than that of original strain Au, and its heritability was stabilized. Activity of β-glucosidase of Au 0847 reached 30.53 U/mL after further fermentation condition optimization. (authors)

  2. A novel extracellular β-glucosidase from Trichosporon asahii: yield prediction, evaluation and application for aroma enhancement of Cabernet Sauvignon.

    Science.gov (United States)

    Wang, Yuxia; Xu, Yan; Li, Jiming

    2012-08-01

    The production and application of novel β-glucosidase from Trichosporon asahii were studied. The β-glucosidase yield was improved by response surface methodology, and the optimal media constituents were determined to be dextrin 4.67% (w/v), yeast extract 2.99% (w/v), MgSO(4) 0.01% (w/v), and K(2) HPO(4) 0.02% (w/v). As a result, β-glucosidase production was enhanced from 123.72 to 215.66 U/L. The effects of different enological factors on the activity of β-glucosidases from T. asahii were investigated in comparison to commercial enzymes. β-Glucosidase from T. asahii was activated in the presence of sugars in the range from 10% to 40% (w/v), with the exception of glucose (slight inhibition), and retained higher relative activities than commercial enzymes under the same conditions. In addition, ethanol, in concentrations between 5% and 20% (v/v), also increased the β-glucosidase activity. Although the β-glucosidase activity decreased with decreasing pH, the residual activity of T. asahii was still above 50% at the average wine pH (pH 3.5). Due to these properties, extracellular β-glucosidase from T. asahii exhibited a better ability than commercial enzymes in hydrolyzing aromatic precursors that remained in young finished wine. The excellent performs of this β-glucosidase in wine aroma enhancement and sensory evaluation indicated that the β-glucosidase has a potential application to individuate suitable preparations that can complement and optimize grape or wine quality during the winemaking process or in the final wine. The present study demonstrated the usefulness of response surface methodology based on the central composite design for yield enhancement of β-glucosidase from T. asahii. The investigation of the primary characteristics of the enzyme and its application in young red wine suggested that the β-glucosidase from T. asahii can provide more impetus for aroma improvement in the future. © 2012 Institute of Food Technologists®

  3. Focused directed evolution of beta-glucosidases: theoretical versus real effectiveness of a minimal working setup and simple robust screening

    Czech Academy of Sciences Publication Activity Database

    Mazura, P.; Filipi, T.; Souček, P.; Brzobohatý, Břetislav

    2011-01-01

    Roč. 346, č. 2 (2011), s. 238-242 ISSN 0008-6215 Institutional support: RVO:68081707 Keywords : Directed evolution * beta-Glucosidase * Mutagenesis Subject RIV: BO - Biophysics Impact factor: 2.332, year: 2011

  4. Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II

    NARCIS (Netherlands)

    A.G.A. Bijvoet (Agnes); A.J.J. Reuser (Arnold); H. van Hirtum (Hans); M.A. Kroos (Marian); E.H. van de Kamp; O. Schoneveld; P. Visser (Pim); J.P. Brakenhoff (Just); M. Weggeman (Miranda); E.J.J.M. van Corven (Emiel); A.T. van der Ploeg (Ans)

    1999-01-01

    textabstractPompe's disease or glycogen storage disease type II (GSDII) belongs to the family of inherited lysosomal storage diseases. The underlying deficiency of acid alpha-glucosidase leads in different degrees of severity to glycogen storage in heart, skeletal

  5. Synthesis and Biological Evaluation of 3-Benzylidene-4-chromanone Derivatives as Free Radical Scavengers and α-Glucosidase Inhibitors.

    Science.gov (United States)

    Takao, Koichi; Yamashita, Marimo; Yashiro, Aruki; Sugita, Yoshiaki

    2016-01-01

    A series of 3-benzylidene-4-chromanone derivatives (3-20) were synthesized and the structure-activity relationships for antioxidant and α-glucosidase inhibitory activities were evaluated. Among synthesized compounds, compounds 5, 13, 18, which contain catechol moiety, showed the potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity (5: EC50 13 µM; 13: EC50 14 µM; 18: EC50 13 µM). The compounds 12, 14, 18 showed higher α-glucosidase inhibitory activity (12: IC50 15 µM; 14: IC50 25 µM; 18: IC50 28 µM). The compound 18 showed both of potent DPPH radical scavenging and α-glucosidase inhibitory activities. These data suggest that 3-benzylidene-4-chromanone derivatives, such as compound 18, may serve as the lead compound for the development of novel α-glucosidase inhibitors with antioxidant activity.

  6. Effects of Hibiscus sabdariffa Linn. fruit extracts on α-glucosidase enzyme, glucose diffusion and wound healing activities

    Directory of Open Access Journals (Sweden)

    Raheem Mohssin Shadhan

    2017-05-01

    Conclusions: It is established that methanolic extract and fractions from H. sabdariffa Linn. fruit can inhibit the α-glucosidase enzyme and glucose movement as well as influence the wound healing activity positively.

  7. Light induced expression of β-glucosidase in Escherichia coli with autolysis of cell.

    Science.gov (United States)

    Chang, Fei; Zhang, Xianbing; Pan, Yu; Lu, Youxue; Fang, Wei; Fang, Zemin; Xiao, Yazhong

    2017-11-07

    β-Glucosidase has attracted substantial attention in the scientific community because of its pivotal role in cellulose degradation, glycoside transformation and many other industrial processes. However, the tedious and costly expression and purification procedures have severely thwarted the industrial applications of β-glucosidase. Thus development of new strategies to express β-glucosidases with cost-effective and simple procedure to meet the increasing demands on enzymes for biocatalysis is of paramount importance. Light activated cassette YF1/FixJ and the SRRz lysis system were successfully constructed to produce Bgl1A(A24S/F297Y), a mutant β-glucosidase tolerant to both glucose and ethanol. By optimizing the parameters for light induction, Bgl1A(A24S/F297Y) activity reached 33.22 ± 2.0 U/mL and 249.92 ± 12.25 U/mL in 250-mL flask and 3-L fermentation tank, respectively, comparable to the controls of 34.02 ± 1.96 U/mL and 322.21 ± 10.16 U/mL under similar culture conditions with IPTG induction. To further simplify the production of our target protein, the SRRz lysis gene cassette from bacteriophage Lambda was introduced to trigger cell autolysis. As high as 84.53 ± 6.79% and 77.21 ± 4.79% of the total β-glucosidase were released into the lysate after cell autolysis in 250 mL flasks and 3-L scale fermentation with lactose as inducer of SRRz. In order to reduce the cost of protein purification, a cellulose-binding module (CBM) from Clostridium thermocellum was fused into the C-terminal of Bgl1A(A24S/F297Y) and cellulose was used as an economic material to adsorb the fusion enzyme from the lysate. The yield of the fusion protein could reach 92.20 ± 2.27% after one-hour adsorption at 25 °C. We have developed an efficient and inexpensive way to produce β-glucosidase for potential industrial applications by using the combination of light induction, cell autolysis, and CBM purification strategy.

  8. Identification of PTP1B and α-Glucosidase Inhibitory Serrulatanes from Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α-Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR.

    Science.gov (United States)

    Wubshet, Sileshi G; Tahtah, Yousof; Heskes, Allison M; Kongstad, Kenneth T; Pateraki, Irini; Hamberger, Björn; Møller, Birger L; Staerk, Dan

    2016-04-22

    According to the International Diabetes Federation, type 2 diabetes (T2D) has reached epidemic proportions, affecting more than 382 million people worldwide. Inhibition of protein tyrosine phosphatase-1B (PTP1B) and α-glucosidase is a recognized therapeutic approach for management of T2D and its associated complications. The lack of clinical drugs targeting PTP1B and side effects of the existing α-glucosidase drugs, emphasize the need for new drug leads for these T2D targets. In the present work, dual high-resolution PTP1B and α-glucosidase inhibition profiles of Eremophila gibbosa, E. glabra, and E. aff. drummondii "Kalgoorlie" were used for pinpointing α-glucosidase and/or PTP1B inhibitory constituents directly from the crude extracts. A subsequent targeted high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy (HPLC-HRMS-SPE-NMR) analysis and preparative-scale HPLC isolation led to identification of 21 metabolites from the three species, of which 16 were serrulatane-type diterpenoids (12 new) associated with either α-glucosidase and/or PTP1B inhibition. This is the first report of serrulatane-type diterpenoids as potential α-glucosidase and/or PTP1B inhibitors.

  9. α-Glucosidase inhibitory activities of fatty acids purified from the internal organ of sea cucumber Stichopus japonicas.

    Science.gov (United States)

    Nguyen, T H; Kim, S M

    2015-04-01

    α-Glucosidase inhibitory activities of the various solvent fractions (n-hexane, CHCl3 , EtOAc, BuOH, and water) of sea cucumber internal organ were investigated. 1,3-Dipalmitolein (1) and cis-9-octadecenoic acid (2) with potent α-glucosidase inhibitory activity were purified from the n-hexane fraction of sea cucumber internal organ. IC50 values of compounds 1 and 2 were 4.45 and 14.87 μM against Saccharomyces cerevisiae α-glucosidase. These compounds mildly inhibited rat-intestinal α-glucosidase. In addition, both compounds showed a mixed competitive inhibition against S. cerevisiae α-glucosidase and were very stable at pH 2 up to 60 min. The KI values of compounds 1 and 2 were 0.48 and 1.24 μM, respectively. Therefore, the internal organ of sea cucumber might be a potential new source of α-glucosidase inhibitors suitably used for prevention of obesity and diabetes mellitus. © 2015 Institute of Food Technologists®

  10. Differential Involvement of β-Glucosidases from Hypocrea jecorina in Rapid Induction of Cellulase Genes by Cellulose and Cellobiose

    Science.gov (United States)

    Zhou, Qingxin; Xu, Jintao; Kou, Yanbo; Lv, Xinxing; Zhang, Xi; Zhao, Guolei; Zhang, Weixin; Chen, Guanjun

    2012-01-01

    Appropriate perception of cellulose outside the cell by transforming it into an intracellular signal ensures the rapid production of cellulases by cellulolytic Hypocrea jecorina. The major extracellular β-glucosidase BglI (CEL3a) has been shown to contribute to the efficient induction of cellulase genes. Multiple β-glucosidases belonging to glycosyl hydrolase (GH) family 3 and 1, however, exist in H. jecorina. Here we demonstrated that CEL1b, like CEL1a, was an intracellular β-glucosidase displaying in vitro transglycosylation activity. We then found evidence that these two major intracellular β-glucosidases were involved in the rapid induction of cellulase genes by insoluble cellulose. Deletion of cel1a and cel1b significantly compromised the efficient gene expression of the major cellulase gene, cbh1. Simultaneous absence of BglI, CEL1a, and CEL1b caused the induction of the cellulase gene by cellulose to further deteriorate. The induction defect, however, was not observed with cellobiose. The absence of the three β-glucosidases, rather, facilitated the induced synthesis of cellulase on cellobiose. Furthermore, addition of cellobiose restored the productive induction on cellulose in the deletion strains. The results indicate that the three β-glucosidases may not participate in transforming cellobiose beyond hydrolysis to provoke cellulase formation in H. jecorina. They may otherwise contribute to the accumulation of cellobiose from cellulose as inducing signals. PMID:23002106

  11. Inhibition of α-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel.

    Science.gov (United States)

    Zhang, Sheng; Li, Xiang-Zhou

    2015-01-22

    We isolated and purified polysaccharides from the Camellia oleifera Abel. fruit hull and studied its hypoglycemic potential. Our results revealed six polysaccharides (CFPA-1-5 & CFPB) from the aqueous extract from the defatted C. oleifera fruit hull. Purified polysaccharides (purity >90%) were investigated for the inhibition of α-glucosidase activity in vitro. Two polysaccharides, CFPB and CFPA-3 were present in high concentration in the fruit hull and showed a dose-dependent inhibition of α-glucosidase activity, with IC50 concentrations of 11.80 and 10.95 μg/mL, respectively. This result suggests that polysaccharides (CFP) extracted from the fruit hull of C. oleifera may have potential as functional foods with featuring a hypoglycemic effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Release Profile of Andrographis paniculata Leaf Extract Nanocapsule as α-Glucosidase Inhibitors

    Science.gov (United States)

    Zahrani, K.; Imansari, F.; Utami, T. S.; Arbianti, R.

    2017-07-01

    Andrographis paniculata is one of 13 leading commodities Indonesian medicinal plants through the Ditjen POM. Andrographolide as main active compound has been shown to have many pharmacological activities, one of which is as α-glucosidase enzyme inhibitors which has clinical potential as an antitumor, antiviral, antidiabetic, and immunoregulator agents. This study aims to do nanoencapsulation of Andrographis paniculatar leaf extract to increase its active compound bioavailability and get a release profile through synthetic fluids media simulation. Nanoencapsulation with ionic gelation method result the encapsulation efficiency and loading capacity values of 73.47% and 46.29% at 2%: 1% of chitosan: STPP ratio. The maximum α-glucosidase inhibition of 37.17% was obtained at 16% concentration. Burst release at gastric pH conditions indicate that most of the drug (in this study is an Andrographis paniculata leaf extract) adsorbed on the surface of the nanoparticles an indicates that the kind of nanoparticle formed is nanosphere.

  13. Interaction mode between catalytic and regulatory subunits in glucosidase II involved in ER glycoprotein quality control.

    Science.gov (United States)

    Satoh, Tadashi; Toshimori, Takayasu; Noda, Masanori; Uchiyama, Susumu; Kato, Koichi

    2016-11-01

    The glycoside hydrolase family 31 (GH31) α-glucosidases play vital roles in catabolic and regulated degradation, including the α-subunit of glucosidase II (GIIα), which catalyzes trimming of the terminal glucose residues of N-glycan in glycoprotein processing coupled with quality control in the endoplasmic reticulum (ER). Among the known GH31 enzymes, only GIIα functions with its binding partner, regulatory β-subunit (GIIβ), which harbors a lectin domain for substrate recognition. Although the structural data have been reported for GIIα and the GIIβ lectin domain, the interaction mode between GIIα and GIIβ remains unknown. Here, we determined the structure of a complex formed between GIIα and the GIIα-binding domain of GIIβ, thereby providing a structural basis underlying the functional extension of this unique GH31 enzyme. © 2016 The Protein Society.

  14. PRODUCTION OF RECOMBINANT HIGH pI-BARLEY α-GLUCOSIDASE

    DEFF Research Database (Denmark)

    Næsted, Henrik; Svensson, Birte

    plantlet [1]. Recently, expression and characterization of the recombinant full length, fully functional barley high pI α-glucosidase in Pichia pastoris has been achieved. To enable production of recombinant protein in mg amounts, a transformant harbouring a clone encoding the N-terminally hexa histidine...... tagged recombinant form of the enzyme was propagated using a high cell-density fermentation procedure. This system resulted in successful expression under the highly sensitive methanol utilization phase conducting the fermentation process using a BiostatB 5 L reactor. The recombinant high pI α...... glycosylation of the recombinant α-glucosidase. The enzyme activity was highly stable during the 5 day long fermentation. Characterisation of the enzymatic properties confirmed the specific activity actually to be superior to that of the native enzyme purified from malt [2]. The kinetic parameters Km, Vmax...

  15. New Biflavonoids with α-Glucosidase and Pancreatic Lipase Inhibitory Activities from Boesenbergia rotunda

    Directory of Open Access Journals (Sweden)

    Nutputsorn Chatsumpun

    2017-10-01

    Full Text Available Roots of Boesenbergia rotunda (L. Mansf. are prominent ingredients in the cuisine of several Asian countries, including Thailand, Malaysia, Indonesia, India, and China. An extract prepared from the roots of this plant showed strong inhibitory activity against enzymes α-glucosidase and pancreatic lipase and was subjected to chromatographic separation to identify the active components. Three new biflavonoids of the flavanone-chalcone type (9, 12, and 13 were isolated, along with 12 known compounds. Among the 15 isolates, the three new compounds showed stronger inhibitory activity against α-glucosidase than the drug acarbose but displayed lower pancreatic lipase inhibitory effect than the drug orlistat. The results indicated the potential of B. rotunda roots as a functional food for controlling after-meal blood glucose levels.

  16. Heterocyclic Compounds: Effective α-Amylase and α-Glucosidase Inhibitors.

    Science.gov (United States)

    Saeedi, Mina; Hadjiakhondi, Abbas; Nabavi, Seyed Mohammad; Manayi, Azadeh

    2017-01-01

    Diabetes Mellitus (DM) is a metabolic disease characterized by high blood sugar levels. Recently, it has emerged as an important and global health problem with long-term complications and high economic burden. α-Amylase (α-Amy) and α-glucosidase (α-Gls) are two enzymes which are involved in the hydrolysis of starch into sugars and disaccharides leading to the increase of blood glucose level. Hence, inhibition of α-amylase and α-glucosidase plays key role in the treatment of type 2 diabetes. Heterocyclic compounds -both synthetic and naturally occurring derivatives- possess efficient biological properties. At this juncture, they have demonstrated potent inhibitory activity against α-Amy and α-Gls and were found to be versatile tools for the development of novel anti-diabetic agents.

  17. A diterpenoid sugiol from Metasequoia glyptostroboides with α-glucosidase and tyrosinase inhibitory potential

    Directory of Open Access Journals (Sweden)

    Vivek K. Bajpai

    2014-08-01

    Full Text Available Nowadays use of plant derived natural compounds have become a topic of increasing interest in food and medicine industries due to their multitude of biological and therapeutic properties. In this study, a diterpenoid compound sugiol, isolated from Metasequoia glyptostroboides was evaluated for α–glucosidase and tyrosinase inhibitory efficacy in terms of its potent anti-diabetic and anti-melanogenesis potential, respectively. As a result, sugiol at the concentration range of (100-10,000 µg/mL and (20-500 µg/mL showed potent efficacy on inhibiting α-glucosidase and tyrosinase enzymes in vitro ranging from 12.34-63.47% and 28.22-67.43%, respectively. These findings confirm the therapeutic potential of diterpenoid compound sugiol from M. glyptostroboides as a novel candidate for using in food and medicine industry which may have practical potential to cure skin and diabetes mellitus type-2 related disorders.

  18. Phytochemicals Content, Antioxidant and α-Glucosidase Inhibition Activity of Bouea Macrophylla Griff Seed Extract

    International Nuclear Information System (INIS)

    Zainah Adam; Hazlina Ahmad Hassali; Rosniza Razali

    2016-01-01

    Bouea macrophylla Griff or locally known as kundang is one of the common fruit plant available in Malaysia. This plant from Anacardiaceae family is native to Southeast Asia particularly in Malaysia, Thailand and Indonesia. Medicinal values of this plant is not yet been explored. The present study was done to evaluate phytochemicals constituents in B. macrophylla seed extract qualitatively and quantitatively. Biological evaluations focusing on antioxidant and α-glucosidase inhibition were also performed. Qualitative phytochemicals screening revealed the presence of anthraquinones, terpenoids, flavanoids, tannins, alkaloids, glycosides, reducing sugar, steroids, triterpenes, phenolic, coumarine and proteins in B. macrophylla seed extract. Quantitative determination showed that B. macrophylla seed extract contains high amount of phenolic compounds (689.17±37.50 mg GAE/ g extract), but low amount of flavonoids (2.78±0.01 mg QE/ g extract), suggesting that most of the phenolics in B. macrophylla seed extract were non-flavonoids. Antioxidant assays showed that the extract possesses strong reducing power and DPPH radical scavenging activity (IC_5_0: 4.73±0.51 μg/ ml). These activities were almost comparable to that of vitamin C. α-Glucosidase inhibition study showed that the extract inhibited alpha-glucosidase activity potently with the IC_5_0 value of 0.55±0.04 mg/ ml, suggesting the ability of the plant to delay glucose absorption in small intestine, hence reduces hyperglycemia in diabetic condition. Potent antioxidant and α-glucosidase inhibitory activity of the extract might be attributed to the presence of high amount of phenolic compounds. In conclusion, this study showed that B. macrophylla seed extract contains various phytochemicals, possess strong antioxidant property and showed promising antidiabetic activity. These results indicate that B. macrophylla might have the potential to be developed as new pharmacological agent targeting on oxidative stress

  19. An isozyme of acid alpha-glucosidase with reduced catalytic activity for glycogen.

    OpenAIRE

    Beratis, N G; LaBadie, G U; Hirschhorn, K

    1980-01-01

    Both the common and a variant isozyme of acid alpha-glucosidase have been purified from a heterozygous placenta with CM-Sephadex, ammonium sulfate precipitation, dialysis, Amicon filtration, affinity chromatography by Sephadex G-100, and DEAE-cellulose chromatography. Three and two activity peaks, from the common and variant isozymes, respectively, were obtained by DEAE-cellulose chromatography using a linear NaCl gradient. The three peaks of activity of the common isozyme were eluted with 0....

  20. Cellulolytic and xylanolytic potential of high β-glucosidase-producing Trichoderma from decaying biomass.

    Science.gov (United States)

    Okeke, Benedict C

    2014-10-01

    Availability, cost, and efficiency of microbial enzymes for lignocellulose bioconversion are central to sustainable biomass ethanol technology. Fungi enriched from decaying biomass and surface soil mixture displayed an array of strong cellulolytic and xylanolytic activities. Strains SG2 and SG4 produced a promising array of cellulolytic and xylanolytic enzymes including β-glucosidase, usually low in cultures of Trichoderma species. Nucleotide sequence analysis of internal transcribed spacer 2 (ITS2) region of rRNA gene revealed that strains SG2 and SG4 are closely related to Trichoderma inhamatum, Trichoderma piluliferum, and Trichoderma aureoviride. Trichoderma sp. SG2 crude culture supernatant correspondingly displayed as much as 9.84 ± 1.12, 48.02 ± 2.53, and 30.10 ± 1.11 units mL(-1) of cellulase, xylanase, and β-glucosidase in 30 min assay. Ten times dilution of culture supernatant of strain SG2 revealed that total activities were about 5.34, 8.45, and 2.05 orders of magnitude higher than observed in crude culture filtrate for cellulase, xylanase, and β-glucosidase, respectively, indicating that more enzymes are present to contact with substrates in biomass saccharification. In parallel experiments, Trichoderma species SG2 and SG4 produced more β-glucosidase than the industrial strain Trichoderma reesei RUT-C30. Results indicate that strains SG2 and SG4 have potential for low cost in-house production of primary lignocellulose-hydrolyzing enzymes for production of biomass saccharides and biofuel in the field.

  1. Total phenolic compounds, antioxidant potential and α-glucosidase inhibition by Tunisian Euphorbia paralias L.

    Directory of Open Access Journals (Sweden)

    Malek Besbes Hlila

    2016-08-01

    Full Text Available Objective: To examine the potential antioxidant and anti-α-glucosidase inhibitory activities of Tunisian Euphorbia paralias L. leaves and stems extracts and their composition of total polyphenol and flavonoids. Methods: The different samples were tested for their antiradical activities by using 2, 2’- azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and 1,1-diphenyl-2-picrylhydrazyl (DPPH assays. In α-glucosidase activity, α-glucosidase (0.3 IU/mL and substrate, 2500 µmol/ L p-nitrophenyl α-D-glucopyranoside were used; absorbance was registered at 405 nm. Results: The leaves acetonic extract exhibited the strongest α-glucosidase inhibition [IC50 = (0.0035 ± 0.001 µg/mL], which was 20-fold more active than the standard product (acarbose [IC50 = (0.07 ± 0.01 µg/mL]. Acetonic extract of the leaves exhibited the highest quantity of total phenolic [(95.54 ± 0.04 µg gallic acid equivalent/mg] and flavonoid [(55.16 ± 0.25 µg quercetin equivalent/mg]. The obtained findings presented also that this extract was detected with best antioxidant capacity [IC50 = (0.015 ± 0.01 µg/mL] against DPPH and a value of IC50 equal to (0.02 ± 0.01 µg/mL against ABTS. Positive relationship between polyphenolic content of the tested Euphorbia paralias L. leaves and stems extracts and its antioxidant activity (DPPH and ABTS was detected. Elevated positive linear correlation was got between ABTS and total phenolic (R2 = 0.751. Conclusions: The findings clearly demonstrate that the use of a polar solvent enables extraction of significant quantities of phenol compounds and flavonoids.

  2. Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3

    Directory of Open Access Journals (Sweden)

    Kyung Hoon Chang

    2014-01-01

    Full Text Available The transformation of ginsenoside Rb1 into a specific minor ginsenoside using Aspergillus niger KCCM 11239, as well as the identification of the transformed products and the pathway via thin layer chromatography and high performance liquid chromatography were evaluated to develop a new biologically active material. The conversion of ginsenoside Rb1 generated Rd, Rg3, Rh2, and compound K although the reaction rates were low due to the low concentration. In enzymatic conversion, all of the ginsenoside Rb1 was converted to ginsenoside Rd and ginsenoside Rg3 after 24 h of incubation. The crude enzyme (β-glucosidase from A. niger KCCM 11239 hydrolyzed the β-(1→6-glucosidic linkage at the C-20 of ginsenoside Rb1 to generate ginsenoside Rd and ginsenoside Rg3. Our experimental demonstration showing that A. niger KCCM 11239 produces the ginsenoside-hydrolyzing β-glucosidase reflects the feasibility of developing a specific bioconversion process to obtain active minor ginsenosides.

  3. Determination of a-glucosidase inhibitory activity from selected Fabaceae plants.

    Science.gov (United States)

    Dej-Adisai, Sukanya; Pitakbut, Thanet

    2015-09-01

    Nineteen plants from Fabaceae family, which were used in Thai traditional medicine for treatment of diabetes, were determined of α-glucosidase inhibitory activity via enzymatic reaction. In this reaction, α-glucosidase was used as enzyme, which, reacted with the substrate, p-nitrophenol-D-glucopyranoside (pNPG). After that the product, p-nitro phenol (pNP) will be occurred and observed the yellow colour at 405 nm. In this study, acarbose was used as positive standard which, inhibited this enzyme with IC₅₀ as 331 ± 4.73 μg/ml. Caesalpinia pulcherrima leaves showed the highest activity with IC₅₀ as 436.97 ± 9.44 μg/ml. Furthermore, Bauhinia malabarica leaves presented moderately activity with IC₅₀ as 745.08 ± 11.15 μg/ml. However, the other plants showed mild to none activity of α-glucosidase inhibition. Accordingly, this study can support anti-diabetes of these plants in traditional medicine and it will be the database of the biological activity of Fabaceae plant.

  4. Immobilization of β-glucosidase onto mesoporous silica support: Physical adsorption and covalent binding of enzyme

    Directory of Open Access Journals (Sweden)

    Ivetić Darjana Ž.

    2014-01-01

    Full Text Available This paper investigates β-glucosidase immobilization onto mesoporous silica support by physical adsorption and covalent binding. The immobilization was carried out onto micro-size silica aggregates with the average pore size of 29 nm. During physical adsorption the highest yield of immobilized β-glucosidase was obtained at initial protein concentration of 0.9 mg ml-1. Addition of NaCl increased 1.7-fold, while Triton X-100 addition decreased 6-fold yield of adsorption in comparison to the one obtained without any addition. Covalently bonded β-glucosidase, via glutaraldehyde previously bonded to silanized silica, had higher yield of immobilized enzyme as well as higher activity and substrate affinity in comparison to the one physically adsorbed. Covalent binding did not considerably changed pH and temperature stability of obtained biocatalyst in range of values that are commonly used in reactions in comparison to unbounded enzyme. Furthermore, covalent binding provided biocatalyst which retained over 70% of its activity after 10 cycles of reuse. [Projekat Ministarstva nauke Republike Srbije, br. III 45021

  5. β-d-Glucosidase as "key enzyme" for sorghum cyanogenic glucoside (dhurrin) removal and beer bioflavouring.

    Science.gov (United States)

    Tokpohozin, Sedjro Emile; Fischer, Susann; Sacher, Bertram; Becker, Thomas

    2016-11-01

    Sorghum malt used during African beer processing contains a high level of cyanogenic glucoside (dhurrin), up to 1375 ppm. In traditional sorghum malting and mashing, dhurrin is not sufficiently hydrolyzed due to uncontrolled germination and a high gelatinization temperature. The cyanide content of traditional African beers (11 ppm) is higher than the minimum dose (1 ppm) required to form carcinogenic ethyl carbamate during alcoholic fermentation. In the detoxification process, aryl-β-d-glucosidase (dhurrinase) is the "key component". For significant dhurrin hydrolysis during mashing, optimizing dhurrinase synthesis during malting is a good solution to reduce dhurrin completely to below the harmful dose in the sorghum wort. Lactic acid bacteria which exhibit aryl-β-d-glucosidase prior to alcoholic fermentation may help to reduce ethyl carbamate content in alcoholic beverages. Moreover, some specific β-d-glucosidases have a dual property, being able to cleave and synthesize glucosides bonds and thereby generating good precursors for beer bioflavouring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Yeast α-Glucosidase Inhibitory Phenolic Compounds Isolated from Gynura medica Leaf

    Directory of Open Access Journals (Sweden)

    Chao Tan

    2013-01-01

    Full Text Available Gynura medica leaf extract contains significant amounts of flavonols and phenolic acids and exhibits powerful hypoglycemic activity against diabetic rats in vivo. However, the hypoglycemic active constituents that exist in the plant have not been fully elaborated. The purpose of this study is to isolate and elaborate the hypoglycemic activity compounds against inhibition the yeast α-glucosidase in vitro. Seven phenolic compounds including five flavonols and two phenolic acids were isolated from the leaf of G. medica. Their structures were identified by the extensive NMR and mass spectral analyses as: kaempferol (1, quercetin (2, kaempferol-3-O-β-D-glucopyranoside (3, kaempferol-3-O-rutinoside (4, rutin (5, chlorogenic acid (6 and 3,5-dicaffeoylquinic acid methyl ester (7. All of the compounds except 1 and 3 were isolated for the first time from G. medica. Compounds 1–7 were also assayed for their hypoglycemic activity against yeast α-glucosidase in vitro. All of the compounds except 1 and 6 showed good yeast α-glucosidase inhibitory activity with the IC50 values of 1.67 mg/mL, 1.46 mg/mL, 0.38 mg/mL, 0.10 mg/mL and 0.53 mg/mL, respectively.

  7. Antioxidant and α-glucosidase inhibitory ingredients identified from Jerusalem artichoke flowers.

    Science.gov (United States)

    Wang, Yan-Ming; Zhao, Jian-Qiang; Yang, Jun-Li; Idong, Pema Tsering; Mei, Li-Juan; Tao, Yan-Duo; Shi, Yan-Ping

    2017-11-09

    Jerusalem artichoke (JA, Helianthus tuberosus L.) has been researched extensively due to its wide range of uses, but there are limited studies on its flowers. In this study, we report the first detailed phytochemical study on JA flowers, which yielded 21 compounds. Compound 4 was identified as a major water-soluble yellow pigment of JA flowers. In addition, the methanol extract of JA flowers and the isolates were evaluated for their antioxidant and α-glucosidase inhibitory activities. Among the tested compounds, compound 13 showed the strongest ABTS + free radical scavenging activity with SC 50 value of 2.30 ± 0.13 μg/mL, and compound 6 showed most potent α-glucosidase inhibitory activity with inhibition rate of 60.0% ± 10.3% at a concentration of 250 μg/mL. Results showed that methanol extract of JA flowers exhibited antioxidant and α-glucosidase inhibitory activities which could be attributed to its phenolic ingredients including chlorogenic acid derivatives, flavonoids and phenols.

  8. Synthesis of disaccharides using β-glucosidases from Aspergillus niger, A. awamori and Prunus dulcis.

    Science.gov (United States)

    da Silva, Ayla Sant'Ana; Molina, Javier Freddy; Teixeira, Ricardo Sposina Sobral; Valdivieso Gelves, Luis G; Bon, Elba P S; Ferreira-Leitão, Viridiana S

    2017-11-01

    Glucose conversion into disaccharides was performed with β-glucosidases from Prunus dulcis (β-Pd), Aspergillus niger (β-An) and A. awamori (β-Aa), in reactions containing initial glucose of 700 and 900 g l -1 . The reactions' time courses were followed regarding glucose and product concentrations. In all cases, there was a predominant formation of gentiobiose over cellobiose and also of oligosaccharides with a higher molecular mass. For reactions containing 700 g glucose l -1 , the final substrate conversions were 33, 38, and 23.5% for β-An, β-Aa, and β-Pd, respectively. The use of β-An yielded 103 g gentiobiose l -1 (15.5% yield), which is the highest reported for a fungal β-glucosidase. The increase in glucose concentration to 900 g l -1 resulted in a significant increase in disaccharide synthesis by β-Pd, reaching 128 g gentiobiose l -1 (15% yield), while for β-An and β-Aa, there was a shift toward the synthesis of higher oligosaccharides. β-Pd and the fungal β-An and β-Aa β-glucosidases present quite dissimilar kinetics and selective properties regarding the synthesis of disaccharides; while β-Pd showed the highest productivity for gentiobiose synthesis, β-An presented the highest specificity.

  9. Functional diversity of family 3 β-glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1.

    Science.gov (United States)

    Xia, Wei; Bai, Yingguo; Cui, Ying; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Zhang, Wei; Luo, Huiying; Zhan, Xiuan; Yao, Bin

    2016-06-08

    The fungus Humicola insolens is one of the most powerful decomposers of crystalline cellulose. However, studies on the β-glucosidases from this fungus remain insufficient, especially on glycosyl hydrolase family 3 enzymes. In the present study, we analyzed the functional diversity of three distant family 3 β-glucosidases from Humicola insolens strain Y1, which belonged to different evolutionary clades, by heterogeneous expression in Pichia pastoris strain GS115. The recombinant enzymes shared similar enzymatic properties including thermophilic and neutral optima (50-60 °C and pH 5.5-6.0) and high glucose tolerance, but differed in substrate specificities and kinetics. HiBgl3B was solely active towards aryl β-glucosides while HiBgl3A and HiBgl3C showed broad substrate specificities including both disaccharides and aryl β-glucosides. Of the three enzymes, HiBgl3C exhibited the highest specific activity (158.8 U/mg on pNPG and 56.4 U/mg on cellobiose) and catalytic efficiency and had the capacity to promote cellulose degradation. Substitutions of three key residues Ile48, Ile278 and Thr484 of HiBgl3B to the corresponding residues of HiBgl3A conferred the enzyme activity towards sophorose, and vice versa. This study reveals the functional diversity of GH3 β-glucosidases as well as the key residues in recognizing +1 subsite of different substrates.

  10. Immobilization of Aspergillus awamori β-glucosidase on commercial gelatin: An inexpensive and efficient process.

    Science.gov (United States)

    Nishida, Verônica S; de Oliveira, Roselene F; Brugnari, Tatiane; Correa, Rúbia Carvalho G; Peralta, Rosely A; Castoldi, Rafael; de Souza, Cristina G M; Bracht, Adelar; Peralta, Rosane M

    2018-05-01

    In this work, a β-glucosidase of Aspergillus awamori with a molecular weight of 180 kDa was produced in solid-state cultures using a mixture of pineapple crown leaves and wheat bran. Maximum production of the enzyme (820 ± 30 U/g substrate) was obtained after 8 days of culture at 28 °C and initial moisture of 80%. The crude enzyme was efficiently immobilized on glutaraldehyde cross-linked commercial gelatin. Immobilization changed the kinetics of the enzyme, whose behavior could no longer be described by a saturation function of the Michaelis-Menten type. Comparative evaluation of the free and immobilized enzyme showed that the immobilized enzyme was more thermostable and less inhibited by glucose than the free form. In consequence of these properties, the immobilized enzyme was able to hydrolyze cellobiose more extensively. In association with Trichoderma reesei cellulase, the free and immobilized β-glucosidase increased the liberation of glucose from cellulose 3- and 5-fold, respectively. Immobilization of the A. awamori β-glucosidase on glutaraldehyde cross-linked commercial gelatin is an efficient and cheap method allowing the reuse of the enzyme by at least 10 times. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Heat inactivation kinetics of Hypocrea orientalis β-glucosidase with enhanced thermal stability by glucose.

    Science.gov (United States)

    Xu, Xin-Qi; Shi, Yan; Wu, Xiao-Bing; Zhan, Xi-Lan; Zhou, Han-Tao; Chen, Qing-Xi

    2015-11-01

    Thermal inactivation kinetics of Hypocrea orientalis β-glucosidase and effect of glucose on thermostability of the enzyme have been determined in this paper. Kinetic studies showed that the thermal inactivation was irreversible and first-order reaction. The microscopic rate constants for inactivation of free enzyme and substrate-enzyme complex were both determined, which suggested that substrates can protect β-glucosidase against thermal deactivation effectively. On the other hand, glucose was found to protect β-glucosidase from heat inactivation to remain almost whole activity below 70°C at 20mM concentration, whereas the apparent inactivation rate of BG decreased to be 0.3×10(-3)s(-1) in the presence of 5mM glucose, smaller than that of sugar-free enzyme (1.91×10(-3)s(-1)). The intrinsic fluorescence spectra results showed that glucose also had stabilizing effect on the conformation of BG against thermal denaturation. Docking simulation depicted the interaction mode between glucose and active residues of the enzyme to produce stabilizing effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Free Radical Scavenging and Alpha/Beta-glucosidases Inhibitory Activities of Rambutan (Nephelium lappaceum L. Peel Extract

    Directory of Open Access Journals (Sweden)

    Wahyu Widowati

    2015-12-01

    Full Text Available BACKGROUND: Diabetes mellitus (DM is associated with oxidative reaction and hyperglycemic condition. Human body has an antioxidant defense system toward free radical, but overproduction of free radical causing imbalance condition between the free radical and the antioxidant defense in the body that lead to several diseases, including DM. Glucosidase is an enzyme that hydrolize carbohydrates causing increase of blood glucose level, so by inhibiting this enzyme blood glucose level in plasma could be effectively decreased. Rambutan (Nephelium lappaceum L. peel has been reported to have many potential roles, such as antioxidant and anti-glycemia. Therefore our current study was conducted to evaluate possible effectivity of Rambutan peel to scavenge free radical and to inhibit α- and β-glucosidases. METHODS: Rambutan peel extraction (RPE was performed based on maceration method. Geraniin was used as control. For antioxidant study, 2,2-diphenyl-1- picrylhydrazyl (DPPH free radical scavenging test was performed. For glucosidase inhibitory activity study,  α- and β-glucosidases inhibitory activity tests were performed. Results were analyzed for median of Inhibitory Concentration (IC50. RESULTS: The scavenging activity of RPE was comparable with Geraniin. Meanwhile, the α-glucosidase inhibitory activity of RPE was higher than the one of Geraniin. The α-glucosidase-inhibitory-activity IC50 of RPE and Geraniin were 0.106±0.080 μg/ml and 16.12±0.29 μg/ml, respectively. The β-glucosidase inhibitory activity of RPE was also higher than the one of Geraniin. The β-glucosidase-inhibitory-activity IC50 of RPE and Geraniin were 7.02±0.99 μg/ml and 19.81±0.66 μg/ml, respectively. CONCLUSIONS: Since RPE showed comparable free radical scavenging activity with Geraniin and higher α- and β-glucosidases inhibitory activities than Geraniin, RPE could be suggested as a promising antioxidant and antiglycemic agent.  KEYWORDS

  13. Effect of O-methylated and glucuronosylated flavonoids from Tamarix gallica on α-glucosidase inhibitory activity: structure-activity relationship and synergistic potential.

    Science.gov (United States)

    Ben Hmidene, Asma; Smaoui, Abderrazak; Abdelly, Chedly; Isoda, Hiroko; Shigemori, Hideyuki

    2017-03-01

    O-Methylated and glucuronosylated flavonoids were isolated from Tamarix gallica as α-glucosidase inhibitors. Structure-activity relationship of these flavonoids suggests that catechol moiety and glucuronic acid at C-3 are factors in the increase in α-glucosidase inhibitory activity. Furthermore, rhamnetin, tamarixetin, rhamnazin, KGlcA, KGlcA-Me, QGlcA, and QGlcA-Me exhibit synergistic potential when applied with a very low concentration of acarbose to α-glucosidase from rat intestine.

  14. High-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of anti-diabetic compounds in Eremanthus crotonoides (Asteraceae)

    DEFF Research Database (Denmark)

    Lana e Silva, Eder; Felipe Revoredo Lobo, Jonathas; Vinther, Joachim Møllesøe

    2016-01-01

    with an inhibitory concentration (IC50) of 34.5 μg/mL towards α-glucosidase was investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR. This led to identification of six α-glucosidase inhibitors, namely quercetin (16), trans-tiliroside (17), luteolin (19), quercetin-3.......93 and 5.20 μM, respectively. This is the first report of the α-glucosidase inhibitory activity of compounds 20, 26, and 29, and the findings support the important role of Eremanthus species as novel sources of new drugs and/or herbal remedies for treatment of type 2 diabetes....

  15. Structural and functional insights of β-glucosidases identified from the genome of Aspergillus fumigatus

    Science.gov (United States)

    Dodda, Subba Reddy; Aich, Aparajita; Sarkar, Nibedita; Jain, Piyush; Jain, Sneha; Mondal, Sudipa; Aikat, Kaustav; Mukhopadhyay, Sudit S.

    2018-03-01

    Thermostable glucose tolerant β-glucosidase from Aspergillus species has attracted worldwide interest for their potentiality in industrial applications and bioethanol production. A strain of Aspergillus fumigatus (AfNITDGPKA3) identified by our laboratory from straw retting ground showed higher cellulase activity, specifically the β-glucosidase activity, compared to other contemporary strains. Though A. fumigatus has been known for high cellulase activity, detailed identification and characterization of the cellulase genes from their genome is yet to be done. In this work we have been analyzed the cellulase genes from the genome sequence database of Aspergillus fumigatus (Af293). Genome analysis suggests two cellobiohydrolase, eleven endoglucanase and seventeen β-glucosidase genes present. β-Glucosidase genes belong to either Glycohydro1 (GH1 or Bgl1) or Glycohydro3 (GH3 or Bgl3) family. The sequence similarity suggests that Bgl1 and Bgl3 of A. fumagatus are phylogenetically close to those of A. fisheri and A. oryzae. The modelled structure of the Bgl1 predicts the (β/α)8 barrel type structure with deep and narrow active site, whereas, Bgl3 shows the (α/β)8 barrel and (α/β)6 sandwich structure with shallow and open active site. Docking results suggest that amino acids Glu544, Glu466, Trp408,Trp567,Tyr44,Tyr222,Tyr770,Asp844,Asp537,Asn212,Asn217 of Bgl3 and Asp224,Asn242,Glu440, Glu445, Tyr367, Tyr365,Thr994,Trp435,Trp446 of Bgl1 are involved in the hydrolysis. Binding affinity analyses suggest that Bgl3 and Bgl1 enzymes are more active on the substrates like 4-methylumbelliferyl glycoside (MUG) and p-nitrophenyl-β-D-1, 4-glucopyranoside (pNPG) than on cellobiose. Further docking with glucose suggests that Bgl1 is more glucose tolerant than Bgl3. Analysis of the Aspergillus fumigatus genome may help to identify a β-glucosidase enzyme with better property and the structural information may help to develop an engineered recombinant enzyme.

  16. Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from Agrimonia Pilosa Ledeb.

    Science.gov (United States)

    Liu, Xi; Zhu, Liancai; Tan, Jun; Zhou, Xuemei; Xiao, Ling; Yang, Xian; Wang, Bochu

    2014-01-10

    In Chinese traditional medicine, Agrimonia pilosa Ledeb (APL) exhibits great effect on treatment of type 2 diabetes mellitus (T2DM), however its mechanism is still unknown. Considering that T2DM are correlated with postprandial hyperglycemia and oxidative stress, we investigated the α-glucosidase inhibitory activity and the antioxidant activity of flavonoid compound (FC) and triterpenoid compound (TC) from APL. Entire plants of APL were extracted using 95% ethanol and 50% ethanol successively. The resulting extracts were partitioned and isolated by applying liquid chromatography using silica gel column and Sephadex LH 20 column to give FC and TC. The content of total flavonoids in FC and the content of total triterpenoids in TC were determined by using UV spectrophotometry. HPLC analysis was used to identify and quantify the monomeric compound in FC and TC. The α-glucosidase inhibitory activities were determined using the chromogenic method with p-nitrophenyl-α-D-glucopyranoside as substrate. Antioxidant activities were assessed through three kinds of radical scavenging assays (DPPH radical, ABTS radical and hydroxyl radical) & β-carotene-linoleic acid assay. The results indicate FC is abundant of quercitrin, and hyperoside, and TC is abundant of 1β, 2β, 3β, 19α-tetrahydroxy-12-en-28-oic acid (265.2 mg/g) and corosolic acid (100.9 mg/g). The FC & the TC have strong α-glucosidase inhibitory activities with IC50 of 8.72 μg/mL and 3.67 μg/mL, respectively. We find that FC show competitive inhibition against α-glucosidase, while the TC exhibits noncompetitive inhibition. Furthermore, The FC exhibits significant radical scavenging activity with the EC50 values of 7.73 μg/mL, 3.64 μg/mL and 5.90 μg/mL on DPPH radical, hydroxyl radical and ABTS radical, respectively. The FC also shows moderate anti-lipid peroxidation activity with the IC50 values of 41.77 μg/mL on inhibiting β-carotene bleaching. These results imply that the FC and the TC could be

  17. A novel beta-glucosidase from the cell wall of maize (Zea mays L.): rapid purification and partial characterization

    Science.gov (United States)

    Nematollahi, W. P.; Roux, S. J.

    1999-01-01

    Plants have a variety of glycosidic conjugates of hormones, defense compounds, and other molecules that are hydrolyzed by beta-glucosidases (beta-D-glucoside glucohydrolases, E.C. 3.2.1.21). Workers have reported several beta-glucosidases from maize (Zea mays L.; Poaceae), but have localized them mostly by indirect means. We have purified and partly characterized a 58-Ku beta-glucosidase from maize, which we conclude from a partial sequence analysis, from kinetic data, and from its localization is not identical to any of those already reported. A monoclonal antibody, mWP 19, binds this enzyme, and localizes it in the cell walls of maize coleoptiles. An earlier report showed that mWP19 inhibits peroxidase activity in crude cell wall extracts and can immunoprecipitate peroxidase activity from these extracts, yet purified preparations of the 58 Ku protein had little or no peroxidase activity. The level of sequence similarity between beta-glucosidases and peroxidases makes it unlikely that these enzymes share epitopes in common. Contrary to a previous conclusion, these results suggest that the enzyme recognized by mWP19 is not a peroxidase, but there is a wall peroxidase closely associated with the 58 Ku beta-glucosidase in crude preparations. Other workers also have co-purified distinct proteins with beta-glucosidases. We found no significant charge in the level of immunodetectable beta-glucosidase in mesocotyls or coleoptiles that precedes the red light-induced changes in the growth rate of these tissues.

  18. Kinetics, improved activity and thermostability of endoglucanase and beta glucosidase from a mutant-derivative of aspergillus niger ms82

    International Nuclear Information System (INIS)

    Sohail, M.; Ahmad, A.; Khan, S.A.; Uddin, F.

    2013-01-01

    A mutant MS301 of Aspergillus niger MS82 showed 1.5 to 2.5-fold improved endoglucanase and beta-glucosidase activity when grown on crude lignocellulosic substrates under solid-state and submerged conditions. Indicators of thermal stability of enzymes (Tm and T1/2) showed that the wild type and mutant endoglucanase was more heat-resistant compared to beta-glucosidase. However, mutant and parent enzymes shared almost the same values for melting temperatures and half-lives. Endoglucanase and beta-glucosidase from both the strains showed optimum activity under acidic pH. Energy of activation (Ea) of mutant beta-glucosidase was substantially lower than the parent enzyme while Ea of mutant endoglucanase was slightly less than the parent. The lowered Ea values can be attributed to the improved beta-glucosidase activity of the mutant strain. Moreover, the MS301 enzymes were better in hydrolyzing purified and crude cellulosic materials than the parent MS82. (author)

  19. Inhibition of protein tyrosine phosphatase (PTP1B) and α-glucosidase by geranylated flavonoids from Paulownia tomentosa.

    Science.gov (United States)

    Song, Yeong Hun; Uddin, Zia; Jin, Young Min; Li, Zuopeng; Curtis-Long, Marcus John; Kim, Kwang Dong; Cho, Jung Keun; Park, Ki Hun

    2017-12-01

    Protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase are important targets to treat obesity and diabetes, due to their deep correlation with insulin and leptin signalling, and glucose regulation. The methanol extract of Paulownia tomentosa fruits showed potent inhibition against both enzymes. Purification of this extract led to eight geranylated flavonoids (1-8) displaying dual inhibition of PTP1B and α-glucosidase. The isolated compounds were identified as flavanones (1-5) and dihydroflavonols (6-8). Inhibitory potencies of these compounds varied accordingly, but most of the compounds were highly effective against PTP1B (IC 50  = 1.9-8.2 μM) than α-glucosidase (IC 50  = 2.2-78.9 μM). Mimulone (1) was the most effective against PTP1B with IC 50  = 1.9 μM, whereas 6-geranyl-3,3',5,5',7-pentahydroxy-4'-methoxyflavane (8) displayed potent inhibition against α-glucosidase (IC 50  = 2.2 μM). All inhibitors showed mixed type Ι inhibition toward PTP1B, and were noncompetitive inhibitors of α-glucosidase. This mixed type behavior against PTP1B was fully demonstrated by showing a decrease in V max , an increase of K m , and K ik /K iv ratio ranging between 2.66 and 3.69.

  20. Aqueous extracts of Roselle (Hibiscus sabdariffa Linn.) varieties inhibit α-amylase and α-glucosidase activities in vitro.

    Science.gov (United States)

    Ademiluyi, Adedayo O; Oboh, Ganiyu

    2013-01-01

    This study sought to investigate the inhibitory effect of aqueous extracts of two varieties (red and white) of Hibiscus sabdariffa (Roselle) calyces on carbohydrate hydrolyzing enzymes (α-amylase and α-glucosidase), with the aim of providing the possible mechanism for their antidiabetes properties. Aqueous extracts were prepared (1:100 w/v) and the supernatant used for the analysis. The extracts caused inhibition of α-amylase and α-glucosidase activities in vitro.The IC(50) revealed that the red variety (25.2 μg/mL) exhibited higher α-glucosidase inhibitory activity than the white variety (47.4 μg/mL), while the white variety (90.5 μg/mL) exhibited higher α-amylase inhibitory activity than the red variety (187.9 μg/mL). However, the α-glucosidase inhibitory activities of both calyces were higher than that of their α-amylase. In addition, the red variety possessed higher antioxidant capacity as exemplified by the (•)OH scavenging abilities, Fe(2+) chelating ability, and inhibition of Fe(2+)-induced pancreatic lipid peroxidation in vitro. The enzyme inhibitory activities and antioxidant properties of the roselle extracts agreed with their phenolic content. Hence, inhibition of α-amylase and α-glucosidase, coupled with strong antioxidant properties could be the possible underlying mechanism for the antidiabetes properties of H. sabdariffa calyces; however, the red variety appeared to be more potent.

  1. Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors.

    Science.gov (United States)

    Fatmawati, Sri; Kondo, Ryuichiro; Shimizu, Kuniyoshi

    2013-11-01

    A series of lanostane-type triterpenoids, identified as ganoderma alcohols and ganoderma acids, were isolated from the fruiting body of Ganoderma lingzhi. Some of these compounds were confirmed as active inhibitors of the in vitro human recombinant aldose reductase. This paper aims to explain the structural requirement for α-glucosidase inhibition. Our structure-activity studies of ganoderma alcohols showed that the OH substituent at C-3 and the double-bond moiety at C-24 and C-25 are necessary to increase α-glucosidase inhibitory activity. The structure-activity relationships of ganoderma acids revealed that the OH substituent at C-11 is an important feature and that the carboxylic group in the side chain is essential for the recognition of α-glucosidase inhibitory activity. Moreover, the double-bond moiety at C-20 and C-22 in the side chain and the OH substituent at C-3 of ganoderma acids improve α-glucosidase inhibitory activity. These results provide an approach with which to consider the structural requirements of lanostane-type triterpenoids from G. lingzhi. An understanding of these requirements is considered necessary in order to improve a new type of α-glucosidase inhibitor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Synthesis of Sulochrin-125I and Its Binding Affinity as α-Glucosidase Inhibitor using Radioligand Binding Assay (RBA Method

    Directory of Open Access Journals (Sweden)

    W. Lestari

    2014-04-01

    Full Text Available Most of diabetics patients have type 2 diabetes mellitus or non insulin dependent diabetes mellitus. Treatment type 2 diabetes mellitus can be done by inhibiting α-glucosidase enzyme which converts carbohydrates into glucose. Sulochrin is one of the potential compounds which can inhibit the function of α-glucosidase enzyme. This study was carried out to obtain data of sulochrin binding with α-glucosidase enzyme as α-glucosidase inhibitor using Radioligand Binding Assay (RBA method. Primary reagent required in RBA method is labeled radioactive ligand (radioligand. In this study, the radioligand was sulochrin-125I and prior to sulochrin-125I synthesis, the sulochrin-I was synthesized. Sulochrin-I and sulochrin-125I were synthesized and their bindings were studied using Radioligand Binding Assay method. Sulochrin-I was synthesized with molecular formula C17H15O7I and molecular weight 457.9940. Sulochrin-125I was synthesized from sulochrin-I by isotope exchange method. From the RBA method, dissociation constant (Kd and maximum binding (Bmax were obtained 26.316 nM and Bmax 9.302 nM respectively. This low Kd indicated that sulochrin was can bind to α-glucosidase

  3. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk.

    Science.gov (United States)

    Van den Hout, Johanna M P; Kamphoven, Joep H J; Winkel, Léon P F; Arts, Willem F M; De Klerk, Johannes B C; Loonen, M Christa B; Vulto, Arnold G; Cromme-Dijkhuis, Adri; Weisglas-Kuperus, Nynke; Hop, Wim; Van Hirtum, Hans; Van Diggelen, Otto P; Boer, Marijke; Kroos, Marian A; Van Doorn, Pieter A; Van der Voort, Edwin; Sibbles, Barbara; Van Corven, Emiel J J M; Brakenhoff, Just P J; Van Hove, Johan; Smeitink, Jan A M; de Jong, Gerard; Reuser, Arnold J J; Van der Ploeg, Ans T

    2004-05-01

    Recent reports warn that the worldwide cell culture capacity is insufficient to fulfill the increasing demand for human protein drugs. Production in milk of transgenic animals is an attractive alternative. Kilogram quantities of product per year can be obtained at relatively low costs, even in small animals such as rabbits. We tested the long-term safety and efficacy of recombinant human -glucosidase (rhAGLU) from rabbit milk for the treatment of the lysosomal storage disorder Pompe disease. The disease occurs with an estimated frequency of 1 in 40,000 and is designated as orphan disease. The classic infantile form leads to death at a median age of 6 to 8 months and is diagnosed by absence of alpha-glucosidase activity and presence of fully deleterious mutations in the alpha-glucosidase gene. Cardiac hypertrophy is characteristically present. Loss of muscle strength prevents infants from achieving developmental milestones such as sitting, standing, and walking. Milder forms of the disease are associated with less severe mutations and partial deficiency of alpha-glucosidase. In the beginning of 1999, 4 critically ill patients with infantile Pompe disease (2.5-8 months of age) were enrolled in a single-center open-label study and treated intravenously with rhAGLU in a dose of 15 to 40 mg/kg/week. Genotypes of patients were consistent with the most severe form of Pompe disease. Additional molecular analysis failed to detect processed forms of alpha-glucosidase (95, 76, and 70 kDa) in 3 of the 4 patients and revealed only a trace amount of the 95-kDa biosynthetic intermediate form in the fourth (patient 1). With the more sensitive detection method, 35S-methionine incorporation, we could detect low-level synthesis of -glucosidase in 3 of the 4 patients (patients 1, 2, and 4) with some posttranslation modification from 110 kDa to 95 kDa in 1 of them (patient 1). One patient (patient 3) remained totally deficient with both detection methods (negative for cross

  4. Identification of a β-glucosidase from the Mucor circinelloides genome by peptide pattern recognition.

    Science.gov (United States)

    Huang, Yuhong; Busk, Peter Kamp; Grell, Morten Nedergaard; Zhao, Hai; Lange, Lene

    2014-12-01

    Mucor circinelloides produces plant cell wall degrading enzymes that allow it to grow on complex polysaccharides. Although the genome of M. circinelloides has been sequenced, only few plant cell wall degrading enzymes are annotated in this species. We applied peptide pattern recognition, which is a non-alignment based method for sequence analysis to map conserved sequences in glycoside hydrolase families. The conserved sequences were used to identify similar genes in the M. circinelloides genome. We found 12 different novel genes encoding members of the GH3, GH5, GH9, GH16, GH38, GH47 and GH125 families in M. circinelloides. One of the two GH3-encoding genes was predicted to encode a β-glucosidase (EC 3.2.1.21). We expressed this gene in Pichia pastoris KM71H and found that the purified recombinant protein had relative high β-glucosidase activity (1.73U/mg) at pH5 and 50°C. The Km and Vmax with p-nitrophenyl-β-d-glucopyranoside as substrate was 0.20mM and 2.41U/mg, respectively. The enzyme was not inhibited by glucose and retained 84% activity at glucose concentrations up to 140mM. Although zygomycetes are not considered to be important degraders of lignocellulosic biomass in nature, the present finding of an active β-glucosidase in M. circinelloides demonstrates that enzymes from this group of fungi have a potential for cellulose degradation. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Soluble and Membrane-Bound β-Glucosidases Are Involved in Trimming the Xyloglucan Backbone.

    Science.gov (United States)

    Sampedro, Javier; Valdivia, Elene R; Fraga, Patricia; Iglesias, Natalia; Revilla, Gloria; Zarra, Ignacio

    2017-02-01

    In many flowering plants, xyloglucan is a major component of primary cell walls, where it plays an important role in growth regulation. Xyloglucan can be degraded by a suite of exoglycosidases that remove specific sugars. In this work, we show that the xyloglucan backbone, formed by (1→4)-linked β-d-glucopyranosyl residues, can be attacked by two different Arabidopsis (Arabidopsis thaliana) β-glucosidases from glycoside hydrolase family 3. While BGLC1 (At5g20950; for β-glucosidase active against xyloglucan 1) is responsible for all or most of the soluble activity, BGLC3 (At5g04885) is usually a membrane-anchored protein. Mutations in these two genes, whether on their own or combined with mutations in other exoglycosidase genes, resulted in the accumulation of partially digested xyloglucan subunits, such as GXXG, GXLG, or GXFG. While a mutation in BGLC1 had significant effects on its own, lack of BGLC3 had only minor effects. On the other hand, double bglc1 bglc3 mutants revealed a synergistic interaction that supports a role for membrane-bound BGLC3 in xyloglucan metabolism. In addition, bglc1 bglc3 was complemented by overexpression of either BGLC1 or BGLC3 In overexpression lines, BGLC3 activity was concentrated in a microsome-enriched fraction but also was present in soluble form. Finally, both genes were generally expressed in the same cell types, although, in some cases, BGLC3 was expressed at earlier stages than BGLC1 We propose that functional specialization could explain the separate localization of both enzymes, as a membrane-bound β-glucosidase could specifically digest soluble xyloglucan without affecting the wall-bound polymer. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. High-resolution bioactivity profiling combined with HPLC-HRMS-SPE-NMR: α-glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae)

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Moresco, Henrique H.; Tahtah, Yousof

    2015-01-01

    , and therefore improved drug leads or functional foods containing α-glucosidase inhibitors are needed for management of blood glucose. In this study, leaves of Myrcia palustris were investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC–HRMS–SPE–NMR. This led to identification...

  7. Digestive beta-glucosidases from the wood-feeding higher termite, Nasutitermes takasagoensis: intestinal distribution, molecular characterization, and alteration in sites of expression.

    Science.gov (United States)

    Tokuda, Gaku; Miyagi, Mio; Makiya, Hiromi; Watanabe, Hirofumi; Arakawa, Gaku

    2009-12-01

    beta-Glucosidase [EC 3.2.1.21] hydrolyzes cellobiose or cello-oligosaccharides into glucose during cellulose digestion in termites. SDS-PAGE and zymogram analyses of the digestive system in the higher termite Nasutitermes takasagoensis revealed that beta-glucosidase activity is localized in the salivary glands and midgut as dimeric glycoproteins. Degenerate PCR using primers based on the N-terminal amino acid sequences of the salivary beta-glucosidase resulted in cDNA fragments of 1.7 kb, encoding 489 amino acids with a sequence similar to glycosyl hydrolase family 1. Moreover, these primers amplified cDNA fragments from the midgut, and the deduced amino acid sequences are 87-91% identical to those of the salivary beta-glucosidases. Successful expression of the cDNAs in Escherichia coli implies that these sequences also encode functional beta-glucosidases. These results indicate that beta-glucosidases that primarily contribute to the digestive process of N. takasagoensis are produced in the midgut. Reverse transcription-PCR analysis indicated the site-specific expression of beta-glucosidase mRNAs in the salivary glands and midgut. These results suggest that termites have developed the ability to produce beta-glucosidases in the midgut, as is the case for endo-beta-1,4-glucanase, in which the site of expression has shifted from the salivary glands of lower termites to the midgut of higher termites. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Lactic Acid Bacteria Producing Inhibitor of Alpha Glucosidase Isolated from Ganyong (Canna Edulis) and Kimpul (Xanthosoma sagittifolium)

    Science.gov (United States)

    Nurhayati, Rifa; Miftakhussolikhah; Frediansyah, Andri; Lailatul Rachmah, Desy

    2017-12-01

    Type 2 diabetes is a disease that caused by the failure of insulin secretion by the beta cells of the pancreas and insulin resistance in peripheral levels. One therapy for diabetics is by inhibiting the activity of α-glucosidase. Lactic acid bacteria have the ability to inhibit of α-glucosidase activity. The aims of this research was to isolation and screening of lactic acid bacteria from ganyong tuber (Canna Edulis) and kimpul tuber (Xanthosoma sagittifolium), which has the ability to inhibit the activity of α-glucosidase. Eightteen isolates were identified as lactic acid bacteria and all of them could inhibit the activity of α-glukosidase. The GN 8 isolate was perform the highest inhibition acivity.

  9. α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure-activity relationship study.

    Science.gov (United States)

    Proença, Carina; Freitas, Marisa; Ribeiro, Daniela; Oliveira, Eduardo F T; Sousa, Joana L C; Tomé, Sara M; Ramos, Maria J; Silva, Artur M S; Fernandes, Pedro A; Fernandes, Eduarda

    2017-12-01

    α-Glucosidase inhibitors are described as the most effective in reducing post-prandial hyperglycaemia (PPHG) from all available anti-diabetic drugs used in the management of type 2 diabetes mellitus. As flavonoids are promising modulators of this enzyme's activity, a panel of 44 flavonoids, organised in five groups, was screened for their inhibitory activity of α-glucosidase, based on in vitro structure-activity relationship studies. Inhibitory kinetic analysis and molecular docking calculations were also applied for selected compounds. A flavonoid with two catechol groups in A- and B-rings, together with a 3-OH group at C-ring, was the most active, presenting an IC 50 much lower than the one found for the most widely prescribed α-glucosidase inhibitor, acarbose. The present work suggests that several of the studied flavonoids have the potential to be used as alternatives for the regulation of PPHG.

  10. Expression, purification and preliminary crystallographic analysis of the recombinant β-glucosidase (BglA) from the halothermophile Halothermothrix orenii

    International Nuclear Information System (INIS)

    Kori, Lokesh D.; Hofmann, Andreas; Patel, Bharat K. C.

    2010-01-01

    A β-glucosidase A (BglA) from the thermophile Halothermothrix orenii has been cloned, purified and crystallized in an orthorhombic space group. X-ray diffraction data have been collected to 3.5 Å resolution, and the structure was solved by molecular replacement, revealing the presence of two molecules in the asymmetric unit. The β-glucosidase A gene (bglA) has been cloned from the halothermophilic bacterium Halothermothrix orenii and the recombinant enzyme (BglA; EC 3.2.1.21) was bacterially expressed, purified using metal ion-affinity chromatography and subsequently crystallized. Orthorhombic crystals were obtained that diffracted to a resolution limit of 3.5 Å. The crystal structure with two molecules in the asymmetric unit was solved by molecular replacement using a library of known glucosidase structures. Attempts to collect higher resolution diffraction data from crystals grown under different conditions and structure refinement are currently in progress

  11. Biochemical and kinetic characterization of the multifunctional β-glucosidase/β-xylosidase/α-arabinosidase, Bgxa1.

    Science.gov (United States)

    Gruninger, R J; Gong, X; Forster, R J; McAllister, T A

    2014-04-01

    Functional screening of a metagenomic library constructed with DNA extracted from the rumen contents of a grass/hay-fed dairy cow identified a protein, β-glucosidase/β-xylosidase/α-arabinosidase gene (Bgxa1), with high levels of β-glucosidase activity. Purified Bgxa1 was highly active against p-nitrophenyl-β-D-glucopyranoside (pNPG), cellobiose, p-nitrophenyl-β-D-xylopyranoside (pNPX) and p-nitrophenyl-α-D-arabinofuranoside (pNPAf), suggesting it is a multifunctional β-glucosidase/β-xylosidase/α-arabinosidase. Kinetic analysis of the protein indicated that Bgxa1 has the greatest catalytic activity against pNPG followed by pNPAf and pNPX, respectively. The catalytic efficiency of β-glucosidase activity was 100× greater than β-xylosidase or α-arabinosidase. The pH and temperature optima for the hydrolysis of selected substrates also differed considerably with optima of pH 6.0/45 °C and pH 8.5/40 °C for pNPG and pNPX, respectively. The pH dependence of pNPAf hydrolysis displayed a bimodal distribution with maxima at both pH 6.5 and pH 8.5. The enzyme exhibited substrate-dependent responses to changes in ionic strength. Bgxa1 was highly stable over a broad pH range retaining at least 70 % of its relative catalytic activity from pH 5.0-10.0 with pNPG as a substrate. Homology modelling was employed to probe the structural basis of the unique specificity of Bgxa1 and revealed the deletion of the PA14 domain and insertions in loops adjacent to the active site. This domain has been found to be an important determinant in the substrate specificity of proteins related to Bgxa1. It is postulated that these indels are, in part, responsible for the multifunctional activity of Bgxa1. Bgxa1 acted synergistically with endoxylanase (Xyn10N18) when incubated with birchwood xylan, increasing the release of reducing sugars by 168 % as compared to Xyn10N18 alone. Examination of Bgxa1 and Xyn10N18 synergy with a cellulase for the saccharification of alkali-treated straw

  12. Competitive inhibitor of cellular alpha-glucosidases protects mice from lethal dengue virus infection

    OpenAIRE

    Chang, Jinhong; Schul, Wouter; Yip, Andy; Xu, Xiaodong; Guo, Ju-Tao; Block, Timothy M.

    2011-01-01

    Dengue virus infection causes diseases in people, ranging from the acute febrile illness Dengue fever, to life-threatening Dengue Hemorrhagic Fever/Dengue Shock Syndrome. We previously reported that a host cellular α-glucosidases I and II inhibitor, imino sugar CM-10-18, potently inhibited dengue virus replication in cultured cells, and significantly reduced viremia in dengue virus infected AG129 mice. In this report we show that CM-10-18 also significantly protects mice from death and/or dis...

  13. The role of certain oxidative enzymes, catalase, and beta-glucosidase on virulence of Cephalosporium maydis.

    Science.gov (United States)

    Abd-Elrazik, A; Darweish, F A; Rushdi, M H

    1978-01-01

    Isolates of Cephalosporium maydis varied in their pathogenicity to D.C. 67 maize cultivar from highly to weakly pathogenic. Highly pathogenic isolates showed lower activity of polyphenol oxidase, peroxidase, cytochrome oxidase, and beta-glucosidase enzymes and higher activity of catalase and dehydrogenase than weakly pathogenic isolates. Enzymes production by the tested isolates increased as the culture age increased; except in case of catalase enzyme, the reverse action was detected. The role of these enzymes in the virulence of C. maydis is suggested and discussed.

  14. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico.

    Science.gov (United States)

    Jhong, Chien-Hung; Riyaphan, Jirawat; Lin, Shih-Hung; Chia, Yi-Chen; Weng, Ching-Feng

    2015-01-01

    The alpha-glucosidase inhibitor is a common oral anti-diabetic drug used for controlling carbohydrates normally converted into simple sugars and absorbed by the intestines. However, some adverse clinical effects have been observed. The present study seeks an alternative drug that can regulate the hyperglycemia by down-regulating alpha-glucosidase and alpha-amylase activity by molecular docking approach to screen the hyperglycemia antagonist against alpha-glucosidase and alpha-amylase activities from the 47 natural compounds. The docking data showed that Curcumin, 16-hydroxy-cleroda-3,13-dine-16,15-olide (16-H), Docosanol, Tetracosanol, Antroquinonol, Berberine, Catechin, Quercetin, Actinodaphnine, and Rutin from 47 natural compounds had binding ability towards alpha-amylase and alpha-glucosidase as well. Curcumin had a better biding ability of alpha-amylase than the other natural compounds. Analyzed alpha-glucosidase activity reveals natural compound inhibitors (below 0.5 mM) are Curcumin, Actinodaphnine, 16-H, Quercetin, Berberine, and Catechin when compared to the commercial drug Acarbose (3 mM). A natural compound with alpha-amylase inhibitors (below 0.5 mM) includes Curcumin, Berberine, Docosanol, 16-H, Actinodaphnine/Tetracosanol, Catechin, and Quercetin when compared to Acarbose (1 mM). When taken together, the implication is that molecular docking is a fast and effective way to screen alpha-glucosidase and alpha-amylase inhibitors as lead compounds of natural sources isolated from medicinal plants. © 2015 International Union of Biochemistry and Molecular Biology.

  15. Combined use of high-resolution α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR for investigation of antidiabetic principles in crude plant extracts

    DEFF Research Database (Denmark)

    Kongstad, Kenneth Thermann; Özdemir, Ceylan; Barzak, Asmah

    2015-01-01

    Type 2 diabetes is a metabolic disorder affecting millions of people worldwide, and new drug leads or functional foods containing selective α-glucosidase inhibitors are needed. Crude extract of 24 plants were assessed for α-glucosidase inhibitory activity. Methanol extracts of Cinnamomum zeylanicum...... bark, Rheum rhabarbarum peel, and Rheum palmatum root and ethyl acetate extracts of C. zeylanicum bark, Allium ascalonicum peel, and R. palmatum root showed IC50 values below 20 μg/mL. Subsequently, high-resolution α-glucosidase profiling was used in combination with high-performance liquid...... chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy for identification of metabolites responsible for the α-glucosidase inhibitory activity. Quercetin (1) and its dimer (2), trimer (3), and tetramer (4) were identified as main α-glucosidase inhibitors...

  16. In vivo biotinylation of recombinant beta-glucosidase enables simultaneous purification and immobilization on streptavidin coated magnetic particles

    DEFF Research Database (Denmark)

    Alftrén, Johan; Ottow, Kim Ekelund; Hobley, Timothy John

    2013-01-01

    Beta-glucosidase from Bacillus licheniformis was in vivo biotinylated in Escherichia coli and subsequently immobilized directly from cell lysate on streptavidin coated magnetic particles. In vivo biotinylation was mediated by fusing the Biotin Acceptor Peptide to the C-terminal of beta......-glucosidase and co-expressing the BirA biotin ligase. The approach enabled simultaneous purification and immobilization of the enzyme from crude cell lysate on magnetic particles because of the high affinity and strong interaction between biotin and streptavidin. After immobilization of the biotinylated beta...

  17. A proteomics strategy to discover beta-glucosidases from Aspergillus fumigatus with two-dimensional page in-gel activity assay and tandem mass spectrometry.

    Science.gov (United States)

    Kim, Kee-Hong; Brown, Kimberly M; Harris, Paul V; Langston, James A; Cherry, Joel R

    2007-12-01

    Economically competitive production of ethanol from lignocellulosic biomass by enzymatic hydrolysis and fermentation is currently limited, in part, by the relatively high cost and low efficiency of the enzymes required to hydrolyze cellulose to fermentable sugars. Discovery of novel cellulases with greater activity could be a critical step in overcoming this cost barrier. beta-Glucosidase catalyzes the final step in conversion of glucose polymers to glucose. Despite the importance, only a few beta-glucosidases are commercially available, and more efficient ones are clearly needed. We developed a proteomics strategy aiming to discover beta-glucosidases present in the secreted proteome of the cellulose-degrading fungus Aspergillus fumigatus. With the use of partial or complete protein denaturing conditions, the secretory proteome was fractionated in a 2DGE format and beta-glucosidase activity was detected in the gel after infusion with a substrate analogue that fluoresces upon hydrolysis. Fluorescing spots were subjected to tryptic-digestion, and identification as beta-glucosidases was confirmed by tandem mass spectrometry. Two novel beta-glucosidases of A. fumigatus were identified by this in situ activity staining method, and the gene coding for a novel beta-glucosidase ( EAL88289 ) was cloned and heterologously expressed. The expressed beta-glucosidase showed far superior heat stability to the previously characterized beta-glucosidases of Aspergillus niger and Aspergillus oryzae. Improved heat stability is important for development of the next generation of saccharifying enzymes capable of performing fast cellulose hydrolysis reactions at elevated temperatures, thereby lowering the cost of bioethanol production. The in situ activity staining approach described here would be a useful tool for cataloguing and assessing the efficiency of beta-glucosidases in a high throughput fashion.

  18. Structural analysis of β-glucosidase mutants derived from a hyperthermophilic tetrameric structure

    International Nuclear Information System (INIS)

    Nakabayashi, Makoto; Kataoka, Misumi; Mishima, Yumiko; Maeno, Yuka; Ishikawa, Kazuhiko

    2014-01-01

    Substitutive mutations that convert a tetrameric β-glucosidase into a dimeric state lead to improvement of its crystal quality. β-Glucosidase from Pyrococcus furiosus (BGLPf) is a hyperthermophilic tetrameric enzyme which can degrade cellooligosaccharides to glucose under hyperthermophilic conditions and thus holds promise for the saccharification of lignocellulosic biomass at high temperature. Prior to the production of large amounts of this enzyme, detailed information regarding the oligomeric structure of the enzyme is required. Several crystals of BGLPf have been prepared over the past ten years, but its crystal structure had not been solved until recently. In 2011, the first crystal structure of BGLPf was solved and a model was constructed at somewhat low resolution (2.35 Å). In order to obtain more detailed structural data on BGLPf, the relationship between its tetrameric structure and the quality of the crystal was re-examined. A dimeric form of BGLPf was constructed and its crystal structure was solved at a resolution of 1.70 Å using protein-engineering methods. Furthermore, using the high-resolution crystal structural data for the dimeric form, a monomeric form of BGLPf was constructed which retained the intrinsic activity of the tetrameric form. The thermostability of BGLPf is affected by its oligomeric structure. Here, the biophysical and biochemical properties of engineered dimeric and monomeric BGLPfs are reported, which are promising prototype models to apply to the saccharification reaction. Furthermore, details regarding the oligomeric structures of BGLPf and the reasons why the mutations yielded improved crystal structures are discussed

  19. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.

    Science.gov (United States)

    Javed, Muhammad Rizwan; Rashid, Muhammad Hamid; Riaz, Muhammad; Nadeem, Habibullah; Qasim, Muhammad; Ashiq, Nourin

    2018-01-01

    Cellulose represents a major source of fermentable sugars in lignocellulosic biomass and a combined action of hydrolytic enzymes (exoglucanases , endoglucanases and β-glucosidases) is required to effectively convert cellulose to glucose that can be fermented to bio-ethanol. However, in-order to make the production of bio-ethanol an economically feasible process, the costs of the enzymes to be used for hydrolysis of the raw material need to be reduced and an increase in specific activity or production efficiency of cellulases is required. Among the cellulases, β-glucosidase not only hydrolyzes cellobiose to glucose but it also reduces the cellobiose inhibition, resulting in efficient functioning of endo- and exo-glucanases. Therefore, in the current study kinetic and thermodynamic characteristics of highly active β-glucosidase from randomly mutated Aspergillus niger NIBGE-06 have been evaluated for its industrial applications. The main objective of this study was the identification of mutations and determination of their effect on the physiochemical, kinetic and thermodynamic characteristics of β-glucosidase activity and stability. Pure cultures of Aspergillus niger NIBGE and its 2-Deoxy-D-glucose resistant γ-rays mutant Aspergillus niger NIBGE-06 were grown on Vogel's medium containing wheat bran (3% w/v), at 30±1 °C for 96-108 h. Crude enzymes from both strains were subjected to ammonium sulfate precipitation and column chromatography on Fast Protein Liquid Chromatography (FPLC) system. The purified β-glucosidases from both fungal sources were characterized for their native and subunit molecular mass through FPLC and SDS-PAGE, respectively. The purified enzymes were then comparatively characterized for their optimum temperature, activation energy (Ea), temperature quotient (Q10), Optimum pH, Heat of ionization (ΔHI) of active site residues , Michaelis-Menten constants (Vmax, Km, kcat and kcat/Km) and thermodynamics of irreversible inactivation through

  20. Functional and structural characterization of a β-glucosidase involved in saponin metabolism from intestinal bacteria.

    Science.gov (United States)

    Yan, Shan; Wei, Peng-Cheng; Chen, Qiao; Chen, Xin; Wang, Shi-Cheng; Li, Jia-Ru; Gao, Chuan

    2018-02-19

    Saponins are natural glycosides widely used in medicine and the food industry. Although saponin metabolism in human is dependent on intestinal microbes, few involving bacteria enzymes have been identified. We cloned BlBG3, a GH3 β-glucosidase from Bifidobacterium longum, from human stool. We found that BlBG3 catalyzes the hydrolysis of glycoside furostanol and ginsenoside Rb1 at higher efficiency than other microbial β-glucosidases. Structural analysis of BlBG3 in complex with d-glucose revealed its three unique loops, which form a deep pocket and participate in substrate binding. To understand how substrate is bound to the pocket, molecular docking was performed and the binding interactions of protobioside with BlBG3 were revealed. Mutational study suggested that R484 and H642 are critical for enzymatic activity. Our study presents the first structural and functional analysis of a saponin-processing enzyme from human microbiota. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. alpha-Glucosidase-albumin conjugates: effect of chronic administration in mice

    International Nuclear Information System (INIS)

    Allen, T.M.; Murray, L.; Bhardwaj, D.; Poznansky, M.J.

    1985-01-01

    Enzyme albumin conjugates have been proposed as a means of increasing the efficacy of enzyme use in vivo and decreasing immune response to the enzyme. Particulate drug carriers, however, have a pronounced tendency to localize in the mononuclear phagocyte (reticuloendothelial) system. The authors have examined in mice the effect on phagocytic index, tissue distribution and organ size of continued administration of conjugates of alpha-glucosidase with either homologous or heterologous albumin. Mice received 10 X 2-mg injections of bovine serum albumin (BSA) or mouse serum albumin (MSA), either free, polymerized or conjugated with alpha-glucosidase. Experiments involving BSA had to be terminated before the end of the experiment because of anaphylaxis, but these reactions were less severe to the polymerized albumin than to free albumin. Free BSA, BSA polymer and BSA-enzyme conjugates all caused a decrease in phagocytic index after six injections. Mice receiving MSA showed no evidence of anaphylaxis, but mice receiving six or more injections of free MSA, MSA polymer or MSA-enzyme conjugate had significantly decreased phagocytic indices as compared to controls. Phagocytic indices had returned to normal by 7 days after the final injection. Tissue distribution of 125 I-labeled albumin preparations was determined in either naive or chronically injected mice

  2. Chemical constituents of gold-red apple and their α-glucosidase inhibitory activities.

    Science.gov (United States)

    He, Qian-Qian; Yang, Liu; Zhang, Jia-Yu; Ma, Jian-Nan; Ma, Chao-Mei

    2014-10-01

    Ten compounds were isolated and purified from the peels of gold-red apple (Malus domestica) for the 1st time. The identified compounds are 3β, 20β-dihydroxyursan-28-oic acid (1), 2α-hydroxyoleanolic acid (2), euscaphic acid (3), 3-O-p-coumaroyl tormentic acid (4), ursolic acid (5), 2α-hydroxyursolic acid (6), oleanolic acid (7), betulinic acid (8), linolic acid (9), and α-linolenic acid (10). Their structures were determined by interpreting their nuclear magnetic resonance and mass spectrometry (MS) spectra, and by comparison with literature data. Compound 1 is new, and compound 2 is herein reported for the 1st time for the genus Malus. α-Glucosidase inhibition assay revealed 6 of the triterpenoid isolates as remarkable α-glucosidase inhibitors, with betulinic acid showing the strongest inhibition (IC50 = 15.19 μM). Ultra-performance liquid chromatography-electrospray ionization MS analysis of the fruit peels, pomace, flesh, and juice revealed that the peels and pomace contained high levels of triterpenes, suggesting that wastes from the fruit juice industry could serve as rich sources of bioactive triterpenes. © 2014 Institute of Food Technologists®

  3. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts.

    Science.gov (United States)

    Lordan, Sinéad; Smyth, Thomas J; Soler-Vila, Anna; Stanton, Catherine; Ross, R Paul

    2013-12-01

    To date, numerous studies have reported on the antidiabetic properties of various plant extracts through inhibition of carbohydrate-hydrolysing enzymes. The objective of this research was to evaluate extracts of seaweeds for α-amylase and α-glucosidase inhibitory effects. Cold water and ethanol extracts of 15 seaweeds were initially screened and from this, five brown seaweed species were chosen. The cold water and ethanol extracts of Ascophyllum nodosum had the strongest α-amylase inhibitory effect with IC50 values of 53.6 and 44.7 μg/ml, respectively. Moreover, the extracts of Fucus vesiculosus Linnaeus were found to be potent inhibitors of α-glucosidase with IC50 values of 0.32 and 0.49 μg/ml. The observed effects were associated with the phenolic content and antioxidant activity of the extracts, and the concentrations used were below cytotoxic levels. Overall, our findings suggest that brown seaweed extracts may limit the release of simple sugars from the gut and thereby alleviate postprandial hyperglycaemia. Copyright © 2013. Published by Elsevier Ltd.

  4. α-Glucosidase and tyrosinase inhibitory effects of an abietane type diterpenoid taxoquinone from Metasequoia glyptostroboides.

    Science.gov (United States)

    Bajpai, Vivek K; Park, Yong-Ha; Na, MinKyun; Kang, Sun Chul

    2015-03-26

    Nowadays plant derived natural compounds have gained huge amount of research attention especially in food and medicine industries due to their multitude of biological and therapeutic properties as alternative medicines. In this study, a diterpenoid compound taxoquinone, isolated from Metasequoia glyptostroboides was evaluated for its α-glucosidase and tyrosinase inhibitory efficacy in terms of its potent anti-diabetic and depigmentation potential, respectively. As a result, taxoquinone at the concentration range of 100-3,000 μg/mL and 200-1,000 μg/mL showed potent efficacy on inhibiting α-glucosidase and tyrosinase enzymes by 9.24-51.32% and 11.14-52.32%, respectively. The findings of this study clearly evident potent therapeutic efficacy of an abietane diterpenoid taxoquinone isolated from M. glyptostroboides with a possibility for using it as a novel candidate in food and medicine industry as a natural alternative medicine to prevent diabetes mellitus type-2 related disorders and as a depigmentation agent.

  5. Purification, crystallization and preliminary X-ray analysis of a hexameric β-glucosidase from wheat

    International Nuclear Information System (INIS)

    Sue, Masayuki; Yamazaki, Kana; Kouyama, Jun-ichi; Sasaki, Yasuyuki; Ohsawa, Kanju; Miyamoto, Toru; Iwamura, Hajime; Yajima, Shunsuke

    2005-01-01

    Recombinant β-glucosidase from wheat seedlings complexed with a substrate aglycone has been crystallized in a hexameric active form. A diffraction data set has been collected at 1.7 Å. The wheat β-glucosidase TaGlu1b, which is only active in a hexameric form, was tagged with 6×His at the N-terminus, overexpressed in Escherichia coli and purified in two steps. The protein complexed with a substrate aglycone was crystallized at 293 K from a solution containing 10 mM HEPES pH 7.2, 1 M LiSO 4 and 150 mM NaCl using the hanging-drop vapour-diffusion method. Diffraction data were collected to 1.7 Å at the Photon Factory. The crystal belongs to space group P4 1 32, with unit-cell parameters a = b = c = 194.65 Å, α = β = γ = 90°. The asymmetric unit was confirmed by molecular-replacement solution to contain one monomer, giving a solvent content of 72.1%

  6. Insight into glucosidase II from the red marine microalga Porphyridium sp. (Rhodophyta).

    Science.gov (United States)

    Levy-Ontman, Oshrat; Fisher, Merav; Shotland, Yoram; Tekoah, Yoram; Malis Arad, Shoshana

    2015-12-01

    N-glycosylation of proteins is one of the most important post-translational modifications that occur in various organisms, and is of utmost importance for protein function, stability, secretion, and loca-lization. Although the N-linked glycosylation pathway of proteins has been extensively characterized in mammals and plants, not much information is available regarding the N-glycosylation pathway in algae. We studied the α 1,3-glucosidase glucosidase II (GANAB) glycoenzyme in a red marine microalga Porphyridium sp. (Rhodophyta) using bioinformatic and biochemical approaches. The GANAB-gene was found to be highly conserved evolutionarily (compo-sed of all the common features of α and β subunits) and to exhibit similar motifs consistent with that of homolog eukaryotes GANAB genes. Phylogenetic analysis revealed its wide distribution across an evolutionarily vast range of organisms; while the α subunit is highly conserved and its phylogenic tree is similar to the taxon evolutionary tree, the β subunit is less conserved and its pattern somewhat differs from the taxon tree. In addition, the activity of the red microalgal GANAB enzyme was studied, including functional and biochemical characterization using a bioassay, indicating that the enzyme is similar to other eukaryotes ortholog GANAB enzymes. A correlation between polysaccharide production and GANAB activity, indicating its involvement in polysaccharide biosynthesis, is also demonstrated. This study represents a valuable contribution toward understanding the N-glycosylation and polysaccharide biosynthesis pathways in red microalgae. © 2015 Phycological Society of America.

  7. Small molecule inhibitors of ER α-glucosidases are active against multiple hemorrhagic fever viruses.

    Science.gov (United States)

    Chang, Jinhong; Warren, Travis K; Zhao, Xuesen; Gill, Tina; Guo, Fang; Wang, Lijuan; Comunale, Mary Ann; Du, Yanming; Alonzi, Dominic S; Yu, Wenquan; Ye, Hong; Liu, Fei; Guo, Ju-Tao; Mehta, Anand; Cuconati, Andrea; Butters, Terry D; Bavari, Sina; Xu, Xiaodong; Block, Timothy M

    2013-06-01

    Host cellular endoplasmic reticulum α-glucosidases I and II are essential for the maturation of viral glycosylated envelope proteins that use the calnexin mediated folding pathway. Inhibition of these glycan processing enzymes leads to the misfolding and degradation of these viral glycoproteins and subsequent reduction in virion secretion. We previously reported that, CM-10-18, an imino sugar α-glucosidase inhibitor, efficiently protected the lethality of dengue virus infection of mice. In the current study, through an extensive structure-activity relationship study, we have identified three CM-10-18 derivatives that demonstrated superior in vitro antiviral activity against representative viruses from four viral families causing hemorrhagic fever. Moreover, the three novel imino sugars significantly reduced the mortality of two of the most pathogenic hemorrhagic fever viruses, Marburg virus and Ebola virus, in mice. Our study thus proves the concept that imino sugars are promising drug candidates for the management of viral hemorrhagic fever caused by variety of viruses. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives.

    Science.gov (United States)

    Taha, Muhammad; Shah, Syed Adnan Ali; Afifi, Muhammad; Imran, Syahrul; Sultan, Sadia; Rahim, Fazal; Khan, Khalid Mohammed

    2018-04-01

    We have synthesized seventeen Coumarin based derivatives (1-17), characterized by 1 HNMR, 13 CNMR and EI-MS and evaluated for α-glucosidase inhibitory potential. Among the series, all derivatives exhibited outstanding α-glucosidase inhibition with IC 50 values ranging between 1.10 ± 0.01 and 36.46 ± 0.70 μM when compared with the standard inhibitor acarbose having IC 50 value 39.45 ± 0.10 μM. The most potent derivative among the series is derivative 3 having IC 50 value 1.10 ± 0.01 μM, which are many folds better than the standard acarbose. The structure activity relationship (SAR) was mainly based upon by bring about difference of substituent's on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Aqueous Extract of Annona macroprophyllata: A Potential α-Glucosidase Inhibitor

    Science.gov (United States)

    Brindis, F.; González-Trujano, M. E.; González-Andrade, M.; Aguirre-Hernández, E.; Villalobos-Molina, R.

    2013-01-01

    Annona genus contains plants used in folk medicine for the treatment of diabetes. In the present study, an aqueous extract prepared from Annona macroprophyllata (Annonaceae, also known as A. diversifolia) leaves was evaluated on both the activity of yeast α-glucosidase (an in vitro assay) and sucrose tolerance in Wistar rats. The results have shown that the aqueous extract from A. macroprophyllata inhibits the yeast α-glucosidase with an IC50 = 1.18 mg/mL, in a competitive manner with a K i = 0.97 mg/mL, a similar value to that of acarbose (K i = 0.79 mg/mL). The inhibitory activity of A. macroprophyllata was reinforced by its antihyperglycemic effect, at doses of 100, 300, and 500 mg/kg in rats. Chromatographic analysis identified the flavonoids rutin and isoquercitrin in the most polar fractions of A. macroprophyllata crude extract, suggesting that these flavonoids are part of the active constituents in the plant. Our results support the use of A. macroprophyllata in Mexican folk medicine to control postprandial glycemia in people with diabetes mellitus, involving active constituents of flavonoid nature. PMID:24298552

  10. Reclamation of Marine Chitinous Materials for the Production of α-Glucosidase Inhibitors via Microbial Conversion

    Directory of Open Access Journals (Sweden)

    Van Bon Nguyen

    2017-11-01

    Full Text Available Six kinds of chitinous materials have been used as sole carbon/nitrogen (C/N sources for producing α-glucosidase inhibitors (aGI by Paenibacillus sp. TKU042. The aGI productivity was found to be highest in the culture supernatants using demineralized crab shell powder (deCSP and demineralized shrimp shell powder (deSSP as the C/N source. The half maximal inhibitory concentration (IC50 and maximum aGI activity of fermented deCSP (38 µg/mL, 98%, deSSP (108 µg/mL, 89%, squid pen powder (SPP (422 µg/mL, 98%, and shrimp head powder (SHP (455 µg/mL, 92% were compared with those of fermented nutrient broth (FNB (81 µg/mL, 93% and acarbose (1095 µg/mL, 74%, a commercial antidiabetic drug. The result of the protein/chitin ratio on aGI production showed that the optimal ratio was 0.2/1. Fermented deCSP showed lower IC50 and higher maximum inhibitory activity than those of acarbose against rat intestinal α-glucosidase.

  11. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase.

    Science.gov (United States)

    Ercan, Pınar; El, Sedef Nehir

    2016-08-15

    The total saponin content and its in vitro bioaccessibilities in Tribulus terrestris and chickpea were determined by a static in vitro digestion method (COST FA1005 Action INFOGEST). Also, in vitro inhibitory effects of the chosen food samples on lipid and starch digestive enzymes were determined by evaluating the lipase, α-amylase and α-glucosidase activities. The tested T. terrestris and chickpea showed inhibitory activity against α-glucosidase (IC50 6967 ± 343 and 2885 ± 85.4 μg/ml, respectively) and α-amylase (IC50 343 ± 26.2 and 167 ± 6.12 μg/ml, respectively). The inhibitory activities of T. terrestris and chickpea against lipase were 15.3 ± 2.03 and 9.74 ± 1.09 μg/ml, respectively. The present study provides the first evidence that these food samples (T. terrestris, chickpea) are potent inhibitors of key enzymes in digestion of carbohydrates and lipids in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Edible seaweed as future functional food: Identification of α-glucosidase inhibitors by combined use of high-resolution α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR.

    Science.gov (United States)

    Liu, Bingrui; Kongstad, Kenneth T; Wiese, Stefanie; Jäger, Anna K; Staerk, Dan

    2016-07-15

    Crude chloroform, ethanol and acetone extracts of nineteen seaweed species were screened for their antioxidant and α-glucosidase inhibitory activity. Samples showing more than 60% α-glucosidase inhibitory activity, at a concentration of 1 mg/ml, were furthermore investigated using high-resolution α-glucosidase inhibition profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy (HR-bioassay/HPLC-HRMS-SPE-NMR). The results showed Ascophyllum nodosum and Fucus vesicolosus to be rich in antioxidants, equaling a Trolox equivalent antioxidant capacity of 135 and 108 mM Troloxmg(-1) extract, respectively. HR-bioassay/HPLC-HRMS-SPE-NMR showed the α-glucosidase inhibitory activity of A. nodosum, F. vesoculosus, Laminaria digitata, Laminaria japonica and Undaria pinnatifida to be caused by phlorotannins as well as fatty acids - with oleic acid, linoleic acid and eicosapentaenoic acid being the most potent with IC50 values of 0.069, 0.075 and 0.10 mM, respectively, and showing a mixed-type inhibition mode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis.

    NARCIS (Netherlands)

    Laar, F.A. van de; Lucassen, P.L.B.J.; Akkermans, R.P.; Lisdonk, E.H. van de; Rutten, G.E.H.M.; Weel, C. van

    2005-01-01

    OBJECTIVE: To review the effects of monotherapy with alpha-glucosidase inhibitors (AGIs) for patients with type 2 diabetes, with respect to mortality, morbidity, glycemic control, insulin levels, plasma lipids, body weight, and side effects. RESEARCH DESIGN AND METHODS: We systematically searched

  14. Identification of newly isolated Talaromyces pinophilus and statistical optimization of β-glucosidase production under solid-state fermentation.

    Science.gov (United States)

    El-Naggar, Noura El-Ahmady; Haroun, S A; Oweis, Eman A; Sherief, A A

    2015-01-01

    Fungi able to degrade agriculture wastes were isolated from different soil samples, rice straw, and compost; these isolates were screened for their ability to produce β-glucosidase. The most active fungal isolate was identified as Talaromyces pinophilus strain EMOO 13-3. The Plackett-Burman design is used for identifying the significant variables that influence β-glucosidase production under solid-state fermentation. Fifteen variables were examined for their significances on the production of β-glucosidase in 20 experimental runs. Among the variables screened, moisture content, Tween 80, and (NH4)2SO4 had significant effects on β-glucosidase production with confidence levels above 90% (p fermentation conditions: substrate amount 0.5 (g/250 mL flask), NaNO3 0.5 (%), KH2PO4 0.3 (%), KCl 0.02 (%), MgSO4 · 7H2O 0.01 (%), CaCl2 0.01 (%), yeast extract 0.07 (%), FeSO4 · 7H2O 0.0002 (%), Tween 80 0.02 (%), (NH4)2SO4 0.3 (%), pH 6.5, temperature 25°C, moisture content 1 (mL/g dry substrate), inoculum size 0.5 (mL/g dry substrate), and incubation period 5 days.

  15. The enhanced inhibition of water extract of black tea under baking treatment on α-amylase and α-glucosidase.

    Science.gov (United States)

    Tong, Da-Peng; Zhu, Ke-Xue; Guo, Xiao-Na; Peng, Wei; Zhou, Hui-Ming

    2018-02-01

    This paper studied the inhibition of water extract of natural or baked black tea on the activity of α-amylase and α- glucosidase. Baking treatment was found to be one effective way to enhance the inhibition of black tea on both α-amylase and α- glucosidase, and IC 50 of water extract of baked black tea (BBTWE) were 1.213mg/mL and 4.190mg/mL, respectively, while IC 50 of water extract of black tea (BTWE) were 1.723mg/mL and 6.056mg/mL, respectively. This study further studied the mechanism of the effect of water extract on α-amylase and α- glucosidase using HPLC, circular dichroism, and synchronous fluorescence. HPLC analysis of tea polyphenols showed that the content of tea polyphenols with low polarity increased after baking. In addition, BBTWE had higer abilty on decreasing the hydrophobicity of tryptophan residues than BTWE for both α-amylase and α- glucosidase.The increase of α-helix proportion of α-amylase when treated with BBTWE was more obvious than that when treated with BTWE. In a word, thermal process of baked foods may be beneficial for tea polyphenols to reduce the rate of starch digestion. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Molecular Architecture of Strictosidine Glucosidase: The Gateway to the Biosynthesis of the Monoterpenoid Indole Alkaloid Family[W

    Science.gov (United States)

    Barleben, Leif; Panjikar, Santosh; Ruppert, Martin; Koepke, Juergen; Stöckigt, Joachim

    2007-01-01

    Strictosidine β-d-glucosidase (SG) follows strictosidine synthase (STR1) in the production of the reactive intermediate required for the formation of the large family of monoterpenoid indole alkaloids in plants. This family is composed of ∼2000 structurally diverse compounds. SG plays an important role in the plant cell by activating the glucoside strictosidine and allowing it to enter the multiple indole alkaloid pathways. Here, we report detailed three-dimensional information describing both native SG and the complex of its inactive mutant Glu207Gln with the substrate strictosidine, thus providing a structural characterization of substrate binding and identifying the amino acids that occupy the active site surface of the enzyme. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-207, Glu-416, His-161, and Trp-388 in catalysis. Comparison of the catalytic pocket of SG with that of other plant glucosidases demonstrates the structural importance of Trp-388. Compared with all other glucosidases of plant, bacterial, and archaeal origin, SG's residue Trp-388 is present in a unique structural conformation that is specific to the SG enzyme. In addition to STR1 and vinorine synthase, SG represents the third structural example of enzymes participating in the biosynthetic pathway of the Rauvolfia alkaloid ajmaline. The data presented here will contribute to deciphering the structure and reaction mechanism of other higher plant glucosidases. PMID:17890378

  17. In Vitro α-Glucosidase Inhibitory Activity of Ethanol Extract of Buas-buas (Premna serratifolia Linn

    Directory of Open Access Journals (Sweden)

    Dini Hadiarti

    2017-08-01

    Full Text Available In 2008, diabetics in Indonesia has reached 8,5 million of 11,1 % prevalence in West Kalimantan. It was estimated to reach 14,1 million in 2035. The treatment of diabetes may occur adverse reactions such as hypoglycemia, lipoatrophy, lipohypertrophy, lactic acidosis, gastrointestinal disturbances, allergic reactions, and obesity. Therefore, it is necessary to find an alternative medicine to overcome this problem. Buas-buas (Premna serratifolia Linn could supposedly be an anti diabetic by inhibiting the α-glucosidase enzyme, due to the compositions of secondary metabolites, cardioprotective activity and it has a similar genus with Premna serratifolia Linn. The soxhlet extraction result from Premna serrtifolia Linn leaf powders produced of 34,1 % yield. Meanwhile, the activity of α-glucosidase in vitroinhibition test with amicroplate reader in various concentrations of samples of 0,125, 0,5, 1, 1,5, 2, dan 2,5 2% (b/v were obtained the absorptions of 37,95, 74,77, 86,15, 91,03 and 91,69 %, respectively. The extraction of Premna serratifolia Linn leaf revealed that the concentration of 2 % of sample inhibited in vitro α-glucosidase with a percentage of 91,03 %. The extraction of Premna serratifolia Linn leafinhibited α-glucosidase of 97 % from the percentage of Acarboseinhibition.

  18. α-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from Dendrobium formosum

    Directory of Open Access Journals (Sweden)

    Prachyaporn Inthongkaew

    Full Text Available ABSTRACT A methanol extract from the whole plant of Dendrobium formosum Roxb. ex Lindl., Orchidaceae, showed inhibitory potential against α-glucosidase and pancreatic lipase enzymes. Chromatographic separation of the extract resulted in the isolation of twelve phenolic compounds. The structures of these compounds were determined through analysis of NMR and HR-ESI-MS data. All of the isolates were evaluated for their α-glucosidase and pancreatic lipase inhibitory activities, as well as glucose uptake stimulatory effect. Among the isolates, 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone (12 showed the highest α-glucosidase and pancreatic lipase inhibitory effects with an IC50 values of 126.88 ± 0.66 µM and 69.45 ± 10.14 µM, respectively. An enzyme kinetics study was conducted by the Lineweaver-Burk plot method. The kinetics studies revealed that compound 12 was a non-competitive inhibitor of α-glucosidase and pancreatic lipase enzymes. Moreover, lusianthridin at 1 and 10 µg/ml and moscatilin at 100 µg/ml showed glucose uptake stimulatory effect without toxicity on L6 myotubes. This study is the first report on the phytochemical constituents and anti-diabetic and anti-obesity activities of D. formosum.

  19. Functional analysis of the active site of the maize beta-glucosidase Zm-p60.1

    Czech Academy of Sciences Publication Activity Database

    Fohlerová, Radka; Mazura, Pavel; Janda, L.; Chaloupková, R.; Jeřábek, P.; Damborský, J.; Brzobohatý, Břetislav

    2005-01-01

    Roč. 409, - (2005), S3 [2nd International Symposium Auxins and Cytokinins in Plant Development, 07.07.2005-12.07.2005] R&D Projects: GA ČR(CZ) GA203/02/0865 Institutional research plan: CEZ:AV0Z50040507 Keywords : beta-glucosidase * active site Subject RIV: BO - Biophysics

  20. Chemical Constituents of Malaysian U. cordata var. ferruginea and Their in Vitro α-Glucosidase Inhibitory Activities

    Directory of Open Access Journals (Sweden)

    Nur Hakimah Abdullah

    2016-04-01

    Full Text Available Continuing our interest in the Uncaria genus, the phytochemistry and the in-vitro α-glucosidase inhibitory activities of Malaysian Uncaria cordata var. ferruginea were investigated. The phytochemical study of this plant, which employed various chromatographic techniques including recycling preparative HPLC, led to the isolation of ten compounds with diverse structures comprising three phenolic acids, two coumarins, three flavonoids, a terpene and an iridoid glycoside. These constituents were identified as 2-hydroxybenzoic acid or salicylic acid (1, 2,4-dihydroxybenzoic acid (2, 3,4-dihydroxybenzoic acid (3, scopoletin or 7-hydroxy-6-methoxy-coumarin (4, 3,4-dihydroxy-7-methoxycoumarin (5, quercetin (6, kaempferol (7, taxifolin (8, loganin (9 and β-sitosterol (10. Structure elucidation of the compounds was accomplished with the aid of 1D and 2D Nuclear Magnetic Resonance (NMR spectral data and Ultraviolet-Visible (UV-Vis, Fourier Transform Infrared (FTIR spectroscopy and mass spectrometry (MS. In the α-glucosidase inhibitory assay, the crude methanolic extract of the stems of the plant and its acetone fraction exhibited strong α-glucosidase inhibition activity of 87.7% and 89.2%, respectively, while its DCM fraction exhibited only moderate inhibition (75.3% at a concentration of 1 mg/mL. The IC50 values of both fractions were found to be significantly lower than the standard acarbose suggesting the presence of potential α-glucosidase inhibitors. Selected compounds isolated from the active fractions were then subjected to α-glucosidase assay in which 2,4-dihydroxybenzoic acid and quercetin showed strong inhibitory effects against the enzyme with IC50 values of 549 and 556 μg/mL compared to acarbose (IC50 580 μg/mL while loganin and scopoletin only showed weak α-glucosidase inhibition of 44.9% and 34.5%, respectively. This is the first report of the isolation of 2-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid and loganin from the genus

  1. Selected Tea and Tea Pomace Extracts Inhibit Intestinal α-Glucosidase Activity in Vitro and Postprandial Hyperglycemia in Vivo

    Directory of Open Access Journals (Sweden)

    Jungbae Oh

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a metabolic disorder characterized by postprandial hyperglycemia, which is an early defect of T2DM and thus a primary target for anti-diabetic drugs. A therapeutic approach is to inhibit intestinal α-glucosidase, the key enzyme for dietary carbohydrate digestion, resulting in delayed rate of glucose absorption. Although tea extracts have been reported to have anti-diabetic effects, the potential bioactivity of tea pomace, the main bio waste of tea beverage processing, is largely unknown. We evaluated the anti-diabetic effects of three selected tea water extracts (TWE and tea pomace extracts (TPE by determining the relative potency of extracts on rat intestinal α-glucosidase activity in vitro as well as hypoglycemic effects in vivo. Green, oolong, and black tea bags were extracted in hot water and the remaining tea pomace were dried and further extracted in 70% ethanol. The extracts were determined for intestinal rat α-glucosidases activity, radical scavenging activity, and total phenolic content. The postprandial glucose-lowering effects of TWE and TPE of green and black tea were assessed in male Sprague-Dawley (SD rats and compared to acarbose, a known pharmacological α-glucosidase inhibitor. The IC50 values of all three tea extracts against mammalian α-glucosidase were lower or similar in TPE groups than those of TWE groups. TWE and TPE of green tea exhibited the highest inhibitory effects against α-glucosidase activity with the IC50 of 2.04 ± 0.31 and 1.95 ± 0.37 mg/mL respectively. Among the specific enzymes tested, the IC50 values for TWE (0.16 ± 0.01 mg/mL and TPE (0.13 ± 0.01 mg/mL of green tea against sucrase activity were the lowest compared to those on maltase and glucoamylase activities. In the animal study, the blood glucose level at 30 min after oral intake (0.5 g/kg body wt of TPE and TWE of both green and black tea was significantly reduced compared to the control in sucrose-loaded SD

  2. Cloning and Molecular Characterization of an Alpha-Glucosidase (MalH) from the Halophilic Archaeon Haloquadratum walsbyi.

    Science.gov (United States)

    Cuebas-Irizarry, Mara F; Irizarry-Caro, Ricardo A; López-Morales, Carol; Badillo-Rivera, Keyla M; Rodríguez-Minguela, Carlos M; Montalvo-Rodríguez, Rafael

    2017-11-21

    We report the heterologous expression and molecular characterization of the first extremely halophilic alpha-glucosidase (EC 3.2.1.20) from the archaeon Haloquadratum walsbyi . A 2349 bp region ( Hqrw_2071 ) from the Hqr. walsbyi C23 annotated genome was PCR-amplified and the resulting amplicon ligated into plasmid pET28b(+), expressed in E. coli Rosetta cells, and the resulting protein purified by Ni-NTA affinity chromatography. The recombinant protein showed an estimated molecular mass of 87 kDa, consistent with the expected value of the annotated protein, and an optimal activity for the hydrolysis of α-PNPG was detected at 40 °C, and at pH 6.0. Enzyme activity values were the highest in the presence of 3 M NaCl or 3-4 M KCl. However, specific activity values were two-fold higher in the presence of 3-4 M KCl when compared to NaCl suggesting a cytoplasmic localization. Phylogenetic analyses, with respect to other alpha-glucosidases from members of the class Halobacteria, showed that the Hqr. walsbyi MalH was most similar (up to 41%) to alpha-glucosidases and alpha-xylosidases of Halorubrum . Moreover, computational analyses for the detection of functional domains, active and catalytic sites, as well as 3D structural predictions revealed a close relationship with an E. coli YicI-like alpha-xylosidase of the GH31 family. However, the purified enzyme did not show alpha-xylosidase activity. This narrower substrate range indicates a discrepancy with annotations from different databases and the possibility of specific substrate adaptations of halophilic glucosidases due to high salinity. To our knowledge, this is the first report on the characterization of an alpha-glucosidase from the halophilic Archaea, which could serve as a new model to gain insights into carbon metabolism in this understudied microbial group.

  3. Cloning and Molecular Characterization of an Alpha-Glucosidase (MalH from the Halophilic Archaeon Haloquadratum walsbyi

    Directory of Open Access Journals (Sweden)

    Mara F. Cuebas-Irizarry

    2017-11-01

    Full Text Available We report the heterologous expression and molecular characterization of the first extremely halophilic alpha-glucosidase (EC 3.2.1.20 from the archaeon Haloquadratum walsbyi. A 2349 bp region (Hqrw_2071 from the Hqr. walsbyi C23 annotated genome was PCR-amplified and the resulting amplicon ligated into plasmid pET28b(+, expressed in E. coli Rosetta cells, and the resulting protein purified by Ni-NTA affinity chromatography. The recombinant protein showed an estimated molecular mass of 87 kDa, consistent with the expected value of the annotated protein, and an optimal activity for the hydrolysis of α-PNPG was detected at 40 °C, and at pH 6.0. Enzyme activity values were the highest in the presence of 3 M NaCl or 3–4 M KCl. However, specific activity values were two-fold higher in the presence of 3–4 M KCl when compared to NaCl suggesting a cytoplasmic localization. Phylogenetic analyses, with respect to other alpha-glucosidases from members of the class Halobacteria, showed that the Hqr. walsbyi MalH was most similar (up to 41% to alpha-glucosidases and alpha-xylosidases of Halorubrum. Moreover, computational analyses for the detection of functional domains, active and catalytic sites, as well as 3D structural predictions revealed a close relationship with an E. coli YicI-like alpha-xylosidase of the GH31 family. However, the purified enzyme did not show alpha-xylosidase activity. This narrower substrate range indicates a discrepancy with annotations from different databases and the possibility of specific substrate adaptations of halophilic glucosidases due to high salinity. To our knowledge, this is the first report on the characterization of an alpha-glucosidase from the halophilic Archaea, which could serve as a new model to gain insights into carbon metabolism in this understudied microbial group.

  4. Assessment of constituents in Allium by multivariate data analysis, high-resolution α-glucosidase inhibition assay and HPLC-SPE-NMR

    DEFF Research Database (Denmark)

    Schmidt, Jeppe Secher; Nyberg, Nils; Stærk, Dan

    2014-01-01

    Bulbs and leaves of 35 Allium species and cultivars bought or collected in 2010–2012 were investigated with multivariate data analysis, high-resolution α-glucosidase inhibition assays and HPLC-HRMS-SPE-NMR with the aim of exploring the potential of Allium as a future functional food for management...... of type 2 diabetes. It was found that 30 out of 106 crude extracts showed more than 80% inhibition of the α-glucosidase enzyme at a concentration of 40 mg/mL (dry sample) or 0.4 g/mL (fresh sample). High-resolution α-glucosidase biochromatograms of these extracts allowed fast identification of three...

  5. Biotransformation of soy flour isoflavones by Aspergillus niger NRRL 3122 β-glucosidase enzyme.

    Science.gov (United States)

    Abdella, Asmaa; El-Baz, Ashraf F; Ibrahim, Ibrahim A; Mahrous, Emad Eldin; Yang, Shang-Tian

    2017-12-11

    β-glucosidase enzyme produced from Aspergillus niger NRRL 3122 has been partially purified and characterised. Its molecular weight was 180 KDa. The optimal pH and temperature were 3.98 and 55 °C, respectively. It promoted the hydrolysis of soy flour isoflavone glycosides to their aglycone. Two-level Plackett-Burman design was applied and effective variables for genistein production were determined. Reaction time had a significant positive effect, and pH had a significant negative effect. They were further evaluated using Box-Behnken model. Accordingly, the optimal combination of the major reaction affecting factors was reaction time, 5 h and pH, 4. The concentration of genistein increased by 11.73 folds using this optimal combination. The antioxidant activity of the non-biotransformed and biotransformed soy flour extracts was determined by DPPH method. It was found that biotransformation increased the antioxidant activity by four folds.

  6. Immobilization of Aspergillus niger. beta. -D-glucosidase on aminated chitin and alumina/alginate

    Energy Technology Data Exchange (ETDEWEB)

    Bon, E.; Freire, D.; Mendes, M.F.; Soares. V.F.

    1986-01-01

    The immobilization of ..beta..-glucosidase was studied by (a) covalent coupling to aminated chitin (IME-C) and (b) adsorption onto alumina followed by gel entrapment of the suspension with calcium alginate (IME-A). The levels of catalytic activity determined against salicin at 50 C were 23.0 U/g and 0.2 U/g for the IME-C and IMA-A respectively. The first system was shown to be quite stable with a loss of only 2% of the initial activity over 14 days. The IME-A system had a half life of 14 days. The activity of IME-C was studied using cellobiose and enzymatic hydrolysates of sugar cane bagasse at several cellobiose concentrations. The activities obtained with cellobiose were 104.0 U/g and 72.0 U/g respectively. 13 references.

  7. a-glucosidase Inhibitors From Paraguayan Natural Medicine, Ñangapiry, The Leaves Of Eugenia Uniflora.

    Science.gov (United States)

    Matsumura, T; Kasai, M; Hayashi, T; Arisawa, M; Momose, Y; Arai, I; Amagaya, S; Komatsu, Y

    2000-01-01

    The water-soluble extract from a Paraguayan natural medicine, Nangapiry, the leaves of Eugenia uniflora L. (Myrtaceae), which has been used as an antidiabetic agent, was found to show inhibitory activities on the increase of plasma glucose level in the sucrose tolerance test (STT) conducted with mice. The portion adsorbed on a cation exchange resin was also found to inhibit a-glucosidases. From the active portion, two new active compounds named uniflorines A ( 1 ) and B ( 2 ) and known (+)-(3a, 4a, 5ß)-1-methylpiperidine-3, 4, 5-triol ( 3 ) were isolated. The structures of uniflorines A and B were determined as (-)-(1S, 2R, 6S, 7R, 8R, 8aR)-1,2,6,7,8-pentahydroxyindolizidine and (+)-(1S, 2R, 5R, 7R, 8S, 8aS)-1,2,5,7,8-pentahydroxyindolizidine by spectral means, respectively.

  8. Enhanced cellulase and β-glucosidase production by a mutant of Alternaria alternata

    International Nuclear Information System (INIS)

    Macris, B.J.

    1984-01-01

    The cellulolytic activity of the wild type and a mutant strain of A. alternata was investigated. Mutants were induced by gamma radiation. A suspension of about 10 5 condidia/mL in 0.05M phosphate buffer pH 5 were irradiated in a gamma-cell-type (Cammacell 220, Atomic Energy of Canada Limited, Ottawa, Canada) 60 Co source with a dose rate of 2.5 krad/min. The amount of radiation given was 70 krad which resulted in about 10% survival level. The stock culture was maintained on a sterile growth medium supplemented with 1% cellulose 123 and 0.3% agar. Following the incubation period, the fungal biomass was harvested by centrifugation (5000g for 10 min) and the clarified supernatant was used as the source of cellulase and β-glucosidase

  9. Biochemical and Molecular Characterization of a Barley Seed ß-Glucosidase

    DEFF Research Database (Denmark)

    Leah, R.; Kigel, J.; Svendsen, I.

    1995-01-01

    blot analysis with the cDNA as probe indicated that BGQ60 is encoded by a single gene, and that BGQ60 mRNA only accumulates in the starchy endosperm tissue of late developing seeds. The bgq60 structural gene of approximately 5 kilobases contains an open reading frame encoding 485 amino acids...... during barley seed development and germination are discussed.......A 60-kDa ß-glucosidase (BGQ60) was purified and characterized from seeds of barley (Hordeum vulgare L.). BGQ60 catalytic activity was restricted to the cleavage of short-chain oligosaccharides composed of(1, 2) -,(1, 2, 3) -, and/or(1, 2, 3, 4) -ß-linked glucose or mannose units...

  10. Four New Flavonoids with α-Glucosidase Inhibitory Activities from Morus alba var. tatarica.

    Science.gov (United States)

    Zhang, Ya-Long; Luo, Jian-Guang; Wan, Chuan-Xing; Zhou, Zhong-Bo; Kong, Ling-Yi

    2015-11-01

    Four new flavonoids, mortatarins A-D (1-4, resp.), along with eight known flavonoids (5-12) were isolated from the root bark of Morus alba var. tatarica. Their structures were established on the basis of spectroscopic data analysis, and the absolute configuration of 4 was determined by analysis of its CD spectrum. All isolates were tested for inhibitory activities against α-glucosidase. Compounds 4, 7, and 8 exhibited a significant degree of inhibition with IC50 values of 5.0 ± 0.3, 7.5 ± 0.5, and 5.9 ± 0.2 μM, respectively. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  11. Isoindolinone-containing meroterpenoids with α-glucosidase inhibitory activity from mushroom Hericium caput-medusae.

    Science.gov (United States)

    Chen, Lin; Li, Zheng-Hui; Yao, Jian-Neng; Peng, Yue-Ling; Huang, Rong; Feng, Tao; Liu, Ji-Kai

    2017-10-01

    Hericium caput-medusae is an edible and medicinal mushroom closely relative to H. erinaceus. According to our detailed chemical investigation, two novel isoindolinone-containing meroterpene dimers, caputmedusins A (1) and B (2), as well as nine analogues, caputmedusins C-K (3-11), were isolated from the fermentation broth of H. caput-medusae. Their structures were elucidated by analyses of 1D and 2D NMR spectroscopic methods. The absolute configurations of 1-4 were speculated based on the specific optical rotation and biogenetic consideration. The absolute configurations of 10 and 11 were rationalized by the calculation of 1 H NMR chemical shifts. Caputmedusins A-C (1-3) showed moderate inhibitory activity against α-glucosidase with the IC 50 values of 39.2, 36.2 and 40.8μM, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements.

    Science.gov (United States)

    Goyal, Megha; Chaudhuri, Tapan K; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5-1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).

  13. An isozyme of acid alpha-glucosidase with reduced catalytic activity for glycogen.

    Science.gov (United States)

    Beratis, N G; LaBadie, G U; Hirschhorn, K

    1980-03-01

    Both the common and a variant isozyme of acid alpha-glucosidase have been purified from a heterozygous placenta with CM-Sephadex, ammonium sulfate precipitation, dialysis, Amicon filtration, affinity chromatography by Sephadex G-100, and DEAE-cellulose chromatography. Three and two activity peaks, from the common and variant isozymes, respectively, were obtained by DEAE-cellulose chromatography using a linear NaCl gradient. The three peaks of activity of the common isozyme were eluted with 0.08, 0.12, and 0.17 M NaCl, whereas the two peaks of the variant, with 0.01 and 0.06 M NaCl. The pH optimum and thermal denaturation at 57 degrees C were the same in all enzyme peaks of both isozymes. Rabbit antiacid alpha-glucosidase antibodies produced against the common isozyme were found to cross-react with both peaks of the variant isozyme. The two isozymes shared antigenic identity and had similar Km's with maltose as substrate. Normal substrate saturation kinetics were observed with the common isozyme when glycogen was the substrate, but the variant produced an S-shaped saturation curve indicating a phase of negative and positive cooperativity at low and high glycogen concentrations, respectively. The activity of the variant was only 8.6% and 19.2% of the common isozyme when assayed with nonsaturating and saturating concentrations of glycogen, respectively. A similar rate of hydrolysis of isomaltose by both isozymes was found indicating that the reduced catalytic activity of the variant isozyme toward glycogen is not the result of a reduced ability of this enzyme to cleave the alpha-1,6 linkages of glycogen.

  14. Antioxidant, cytotoxic and alpha-glucosidase inhibition activities from the Mexican berry "Anacahuita" (Cordia boissieri).

    Science.gov (United States)

    Viveros-Valdez, Ezequiel; Jaramillo-Mora, Carlos; Oranday-Cardenas, Azucena; Mordn-Martinez, Javier; Carranza-Rosales, Pilar

    2016-09-01

    This study describes the total phenolic and flavonoid content as well as cytotoxic, alpha-glucosidase inhibition and antiradical/antioxidant potential of extracts obtained from the edible fruits of Cordia boissieri, which is widely distributed throughout northeastern Mexico. Phenolic and flavonoid content were evaluated by means of the Folin-Ciocalteu method and aluminum chloride colorimetric assay respectively. The antiradical/antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and Trolox Equivalent Antioxidant Capacity (TEAC) assays. Cytotoxic activity was assessed by means of human cancer cell lines (MCF-7 and HeLa), alpha-glucosidase inhibition was determined by colorimetric assay using p-Nitrophenyl a-D-glucopyranoside (PNPG) as a substrate. Results indicate that extract of C. boissieri fruit has a good antioxidant potential to show a EC₅₀: 137.76 ± 35 ptg/mL and 65 ±2 ltM/g in the DPPH and TEAC assays respectively, inhibitor of the enzyme alpha-glu- cosidase involved in sugar uptake (ICSO: 215.20 ± 35 μg/ mL), cytotoxic activities against MCF-7 (IC50: 310 ± 42 μg/mL) and HeLa (IC₅₀0: 450.4 ±21μgg/mL) cancer cell lines as well as an important phenolic content with 230 t 23 mg/1OOg and 54±11 mg100g g of phenols and flavonoids totals respectively. These results point towards an interesting potential for the fruits of C. boissieri as chemopreventive properties and expand the possibilities.

  15. Effects of Fruit Toxins on Intestinal and Microbial β-Glucosidase Activities of Seed-Predating and Seed-Dispersing Rodents (Acomys spp.).

    Science.gov (United States)

    Kohl, Kevin D; Samuni-Blank, Michal; Lymberakis, Petros; Kurnath, Patrice; Izhaki, Ido; Arad, Zeev; Karasov, William H; Dearing, M Denise

    2016-01-01

    Plant secondary compounds (PSCs) have profound influence on the ecological interaction between plants and their consumers. Glycosides, a class of PSC, are inert in their intact form and become toxic on activation by either plant β-glucosidase enzymes or endogenous β-glucosidases produced by the intestine of the plant-predator or its microbiota. Many insect herbivores decrease activities of endogenous β-glucosidases to limit toxin exposure. However, such an adaptation has never been investigated in nonmodel mammals. We studied three species of spiny mice (Acomys spp.) that vary in their feeding behavior of the glycoside-rich fruit of Ochradenus baccatus. Two species, the common (Acomys cahirinus) and Crete (Acomys minous) spiny mice, behaviorally avoid activating glycosides, while the golden spiny mouse (Acomys russatus) regularly consumes activated glycosides. We fed each species a nontoxic diet of inert glycosides or a toxic diet of activated fruit toxins and investigated the responses of intestinal and microbial β-glucosidase activities. We found that individuals feeding on activated toxins had lower intestinal β-glucosidase activity and that the species that behaviorally avoid activating glycosides also had lower intestinal β-glucosidase activity regardless of treatment. The microbiota represented a larger source of toxin liberation, and the toxin-adapted species (golden spiny mouse) exhibited almost a fivefold increase in microbial β-glucosidase when fed activated toxins, while other species showed slight decreases. These results are contrary to those in insects, where glycoside-adapted species have lower β-glucosidase activity. The glycoside-adapted golden spiny mouse may have evolved tolerance mechanisms such as enhanced detoxification rather than avoidance mechanisms.

  16. Mammalian Mucosal ?-Glucosidases Coordinate with ?-Amylase in the Initial Starch Hydrolysis Stage to Have a Role in Starch Digestion beyond Glucogenesis

    OpenAIRE

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R.; Gidley, Michael J.; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing pre...

  17. Divergent clinical outcomes of alpha-glucosidase enzyme replacement therapy in two siblings with infantile-onset Pompe disease treated in the symptomatic or pre-symptomatic state

    OpenAIRE

    Matsuoka, Takashi; Miwa, Yoshiyuki; Tajika, Makiko; Sawada, Madoka; Fujimaki, Koichiro; Soga, Takashi; Tomita, Hideshi; Uemura, Shigeru; Nishino, Ichizo; Fukuda, Tokiko; Sugie, Hideo; Kosuga, Motomichi; Okuyama, Torayuki; Umeda, Yoh

    2016-01-01

    Pompe disease is an autosomal recessive, lysosomal glycogen storage disease caused by acid ?-glucosidase deficiency. Infantile-onset Pompe disease (IOPD) is the most severe form and is characterized by cardiomyopathy, respiratory distress, hepatomegaly, and skeletal muscle weakness. Untreated, IOPD generally results in death within the first year of life. Enzyme replacement therapy (ERT) with recombinant human acid alpha glucosidase (rhGAA) has been shown to markedly improve the life expectan...

  18. Nutrient Content, Phytonutrient Composition, Alpha Amylase, Alpha Glucosidase Inhibition Activity and Antioxidant Activity of the Stoechospermum Marginatum Collected in Pre Monsoon Season

    OpenAIRE

    Reka Palanivel; Thahira Banu Azeez; Seethalakshmi Muthaya

    2017-01-01

    The objective of this study was to investigate the nutrient content, phytonutrient composition, physicochemical properties, alpha amylase and alpha glucosidase inhibition activity and antioxidant activity of the brown algae Stoechospermum marginatum collected from Gulf of Mannar, Tamil Nadu, India in pre monsoon season (June- September, 2015). Six and eight hours of ethanol and aqueous extract of Stoechospermum marginatum were used for phytonutrient screening, alpha amylase, alpha glucosidase...

  19. Separation of antioxidant and α-glucosidase inhibitory flavonoids from the aerial parts of Asterothamnus centrali-asiaticus.

    Science.gov (United States)

    Wang, Yan-Ming; Zhao, Jian-Qiang; Yang, Jun-Li; Tao, Yan-Duo; Mei, Li-Juan; Shi, Yan-Ping

    2017-06-01

    A new flavonoid, along with 16 known ones, was separated from the aerial parts of Asterothamnus centrali-asiaticus. Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR techniques and HRESIMS. To confirm the structure of the new compound, computational prediction of its 13 C chemical shifts was performed. All of the 17 flavonoids were reported from A. centrali-asiaticus for the first time. In addition, all flavonoids were evaluated for their antioxidant and α-glucosidase inhibitory activities. The results showed that 10 of them exhibited antioxidant activity. Meanwhile, four flavonoids displayed α-glucosidase inhibitory effect with IC 50 values ranging from 38.9 to 299.7 μM.

  20. Correlation between L-Carnitine and alpha-1, 4-glucosidase activity in the semen of normal, infertile and vasectomized men.

    Science.gov (United States)

    Tremblay, R R; Chapdelaine, P; Roy, R; Thabet, M

    1982-01-01

    The semen content of L-carnitine and of alpha 1, 4-glucosidase has been measured in subjects consulting for evaluation of their fertility. A close correlation (r=0.684) was found between both parameters over the range of azoospermia to normal zoospermia. A significant number of patients with oligo or azoospermia displayed normal values of L-carnitine and of alpha-1, 4-glucosidase while approximately 50% showed levels in the low spectrum of vasectomized men. On the basis of these findings, an obstructive pathology at epididymal or vas deferens level was established by vasography and/or bilateral scrotal exploration in 9 patients with azoospermia. These 2 epididymal markers might thus be useful in the hands of the practicing andrologist who has to determine precisely the site of a dysfunction in the reproductive system which leads to infertility.

  1. Purification, enzymatic characterization, and nucleotide sequence of a high-isoelectric-point alpha-glucosidase from barley malt

    DEFF Research Database (Denmark)

    Frandsen, T P; Lok, F; Mirgorodskaya, E

    2000-01-01

    in the transition state complex. Mass spectrometry of tryptic fragments assigned the 92-kD protein to a barley cDNA (GenBank accession no. U22450) that appears to encode an alpha-glucosidase. A corresponding sequence (HvAgl97; GenBank accession no. AF118226) was isolated from a genomic phage library using a c......High-isoelectric-point (pI) alpha-glucosidase was purified 7, 300-fold from an extract of barley (Hordeum vulgare) malt by ammonium sulfate fractionation, ion-exchange, and butyl-Sepharose chromatography. The enzyme had high activity toward maltose (k(cat) = 25 s(-1)), with an optimum at pH 4...

  2. Unexpected High Digestion Rate of Cooked Starch by the Ct-Maltase-Glucoamylase Small Intestine Mucosal α-Glucosidase Subunit

    Science.gov (United States)

    Lin, Amy Hui-Mei; Nichols, Buford L.; Quezada-Calvillo, Roberto; Avery, Stephen E.; Sim, Lyann; Rose, David R.; Naim, Hassan Y.; Hamaker, Bruce R.

    2012-01-01

    For starch digestion to glucose, two luminal α-amylases and four gut mucosal α-glucosidase subunits are employed. The aim of this research was to investigate, for the first time, direct digestion capability of individual mucosal α-glucosidases on cooked (gelatinized) starch. Gelatinized normal maize starch was digested with N- and C-terminal subunits of recombinant mammalian maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) of varying amounts and digestion periods. Without the aid of α-amylase, Ct-MGAM demonstrated an unexpected rapid and high digestion degree near 80%, while other subunits showed 20 to 30% digestion. These findings suggest that Ct-MGAM assists α-amylase in digesting starch molecules and potentially may compensate for developmental or pathological amylase deficiencies. PMID:22563462

  3. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus.

    Science.gov (United States)

    Zhu, Zhen-Yuan; Luo, You; Dong, Guo-Ling; Ren, Yuan-Yuan; Chen, Li-Jing; Guo, Ming-Zhu; Wang, Xiao-Ting; Yang, Xue-Ying; Zhang, Yongmin

    2016-06-01

    A novel homogeneous polysaccharide fraction (APS) was extracted from Astragalus by hot water and purified by Sephadex G-100 and G-75 column. Its molecular weight was 693kDa. APS and APS with ultra-high pressure treatment exhibited significant inhibitory abilities on a-glucosidase, inhibition rate from high to low in order was 400MPa-APS, 300MPa-APS, 500MPa-APS and APS. The inhibition ​percentage of 400MPa-APS (1.5mg/mL) was 49% (max.). This suggested that the inhibitory activity of APS on a-glucosidase was improved by ultra-high pressure treatment. FT-IR, SEM, CD spectra, atomic force microscope and Congo red test analysis of APS and 400MPa-APS showed ultra-high pressure treatment didn't change the preliminary structure but had an effect on its advanced structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A ?-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production

    OpenAIRE

    Li, Chengcheng; Lin, Fengming; Li, Yizhen; Wei, Wei; Wang, Hongyin; Qin, Lei; Zhou, Zhihua; Li, Bingzhi; Wu, Fugen; Chen, Zhan

    2016-01-01

    Background The conversion of cellulose by cellulase to fermentable sugars for biomass-based products such as cellulosic biofuels, biobased fine chemicals and medicines is an environment-friendly and sustainable process, making wastes profitable and bringing economic benefits. Trichoderma reesei is the well-known major workhorse for cellulase production in industry, but the low ?-glucosidase activity in T. reesei cellulase leads to inefficiency in biomass degradation and limits its industrial ...

  5. Screening of β-Glucosidase and β-Xylosidase Activities in Four Non-Saccharomyces Yeast Isolates.

    Science.gov (United States)

    López, María Consuelo; Mateo, José Juan; Maicas, Sergi

    2015-08-01

    The finding of new isolates of non-Saccharomyces yeasts, showing beneficial enzymes (such as β-glucosidase and β-xylosidase), can contribute to the production of quality wines. In a selection and characterization program, we have studied 114 isolates of non-Saccharomyces yeasts. Four isolates were selected because of their both high β-glucosidase and β-xylosidase activities. The ribosomal D1/D2 regions were sequenced to identify them as Pichia membranifaciens Pm7, Hanseniaspora vineae Hv3, H. uvarum Hu8, and Wickerhamomyces anomalus Wa1. The induction process was optimized to be carried on YNB-medium supplemented with 4% xylan, inoculated with 106 cfu/mL and incubated 48 h at 28 °C without agitation. Most of the strains had a pH optimum of 5.0 to 6.0 for both the β-glucosidase and β-xylosidase activities. The effect of sugars was different for each isolate and activity. Each isolate showed a characteristic set of inhibition, enhancement or null effect for β-glucosidase and β-xylosidase. The volatile compounds liberated from wine incubated with each of the 4 yeasts were also studied, showing an overall terpene increase (1.1 to 1.3-folds) when wines were treated with non-Saccharomyces isolates. In detail, terpineol, 4-vinyl-phenol and 2-methoxy-4-vinylphenol increased after the addition of Hanseniaspora isolates. Wines treated with Hanseniaspora, Wickerhamomyces, or Pichia produced more 2-phenyl ethanol than those inoculated with other yeasts. © 2015 Institute of Food Technologists®

  6. Seasonal variation and distribution of total and active microbial community of beta-glucosidase encoding genes in coniferous forest soil

    Czech Academy of Sciences Publication Activity Database

    Pathan, S.I.; Žifčáková, Lucia; Ceccherini, M.T.; Pantani, O.L.; Větrovský, Tomáš; Baldrian, Petr

    2017-01-01

    Roč. 105, February (2017), s. 71-80 ISSN 0038-0717 R&D Projects: GA ČR(CZ) GA16-08916S Grant - others:Transbiodiverse(CZ) 7. RP Marie Curie ITN FP7/2007e2013 project 289949 Institutional support: RVO:61388971 Keywords : Beta-Glucosidases * Forest soil * Bacteria Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.857, year: 2016

  7. Treatment with acarbose, an alpha-glucosidase inhibitor, reduces increased albumin excretion in streptozotocin-diabetic rats.

    Science.gov (United States)

    Cohen, M P; Vasselli, J R; Neuman, R G; Witt, J

    1995-10-01

    1. We examined the effect of the alpha-glucosidase inhibitor acarbose on urinary albumin excretion (UAE) in streptozotocin diabetic rats. 2. Treatment with acarbose for 8 weeks after induction of diabetes prevented the significant increase in UAE observed in untreated diabetic rats relative to nondiabetic controls. 3. Acarbose significantly reduced integrated glycemia, which correlated with albumin excretion rates, and exerts a salutary effect on diabetic renal dysfunction.

  8. Production and biochemical characterization of α-glucosidase from Aspergillus niger ITV-01 isolated from sugar cane bagasse.

    Science.gov (United States)

    Del Moral, S; Barradas-Dermitz, D M; Aguilar-Uscanga, M G

    2018-01-01

    Aspergillus niger ITV-01 presents amylolytic activity, identified as α-glucosidase, an enzyme that only produces α-d-glucose from soluble starch and that presents transglucosylase activity on α-d-glucopyranosyl-(1-4)-α-d-glucopyranose (maltose) (200 gL -1 ). Biochemical characterization was performed on A. niger ITV-01 α-glucosidase; its optimum parameters were pH 4.3, temperature 80 °C but stable at 40 °C, with an energy of activation (Ea) 176.25 kJ mol -1 . Using soluble starch as the substrate, K m and V max were 5 mg mL -1 and 1000 U mg -1 , respectively. As α-glucosidase is not a metalloenzyme, calcium and EDTA did not have any effect on its activity. The molecular weight was estimated by SDS-PAGE to be about 75 kDa. It was also active in methanol and ethanol. When ammonium sulfate (AS) and yeast extract (YE) nitrogen sources and calcium effect were evaluated, the greatest activity occurred using YE and calcium, as opposed to AS media where no activity was detected. The results obtained showed that this enzyme has industrial application potential in the processes to produce either ethanol or malto-oligosaccharides from α-d-glucopyranosyl-(1-4)-α-d-glucopyranose (maltose).

  9. Production of beta-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk.

    Science.gov (United States)

    Donkor, O N; Shah, N P

    2008-01-01

    The study determined beta-glucosidase activity of commercial probiotic organisms for hydrolysis of isoflavone to aglycones in fermenting soymilk. Soymilk made with soy protein isolate (SPI) was fermented with Lactobacillus acidophilus LAFTI L10, Bifidobacterium lactis LAFTI B94, and Lactobacillus casei LAFTI L26 at 37 degrees C for 48 h and the fermented soymilk was stored for 28 d at 4 degrees C. beta-Glucosidase activity of organisms was determined using rho-nitrophenyl beta-D-glucopyranoside as a substrate and the hydrolysis of isoflavone glycosides to aglycones by these organisms was carried out. The highest level of growth occurred at 12 h for L. casei L26, 24 h for B. lactis B94, and 36 h for L. acidophilus L10 during fermentation in soymilk. Survival after storage at 4 degrees C for 28 d was 20%, 15%, and 11% greater (P < 0.05) than initial cell counts, respectively. All the bacteria produced beta-glucosidase, which hydrolyzed isoflavone beta-glycosides to isoflavone aglycones. The decrease in the concentration of beta-glycosides and the increase in the concentration of aglycones were significant (P < 0.05) in the fermented soymilk. Increased isoflavone aglycone content in fermented soymilk is likely to improve the biological functionality of soymilk.

  10. Combination of α-glucosidase inhibitor and ribavirin for the treatment of dengue virus infection in vitro and in vivo.

    Science.gov (United States)

    Chang, Jinhong; Schul, Wouter; Butters, Terry D; Yip, Andy; Liu, Boping; Goh, Anne; Lakshminarayana, Suresh B; Alonzi, Dominic; Reinkensmeier, Gabriele; Pan, Xiaoben; Qu, Xiaowang; Weidner, Jessica M; Wang, Lijuan; Yu, Wenquan; Borune, Nigel; Kinch, Mark A; Rayahin, Jamie E; Moriarty, Robert; Xu, Xiaodong; Shi, Pei-Yong; Guo, Ju-Tao; Block, Timothy M

    2011-01-01

    Cellular α-glucosidases I and II are enzymes that sequentially trim the three terminal glucoses in the N-linked oligosaccharides of viral envelope glycoproteins. This process is essential for the proper folding of viral glycoproteins and subsequent assembly of many enveloped viruses, including dengue virus (DENV). Imino sugars are substrate mimics of α-glucosidases I and II. In this report, we show that two oxygenated alkyl imino sugar derivatives, CM-9-78 and CM-10-18, are potent inhibitors of both α-glucosidases I and II in vitro and in treated animals, and efficiently inhibit DENV infection of cultured human cells. Pharmacokinetic studies reveal that both compounds are well tolerated at doses up to 100mg/kg in rats and have favorable pharmacokinetic properties and bioavailability in mice. Moreover, we showed that oral administration of either CM-9-78 or CM-10-18 reduces the peak viremia of DENV in mice. Interestingly, while treatment of DENV infected mice with ribavirin alone did not reduce the viremia, combination therapy of ribavirin with sub-effective dose of CM-10-18 demonstrated a significantly enhanced antiviral activity, as indicated by a profound reduction of the viremia. Our findings thus suggest that combination therapy of two broad-spectrum antiviral agents may provide a practically useful approach for the treatment of DENV infection. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Combination of alpha-glucosidase inhibitor and ribavirin for the treatment of Dengue virus infection in vitro and in vivo

    Science.gov (United States)

    Chang, Jinhong; Schul, Wouter; Butters, Terry D.; Yip, Andy; Liu, Boping; Goh, Anne; Lakshminarayana, Suresh B.; Alonzi, Dominic; Reinkensmeier, Gabriele; Pan, Xiaoben; Qu, Xiaowang; Weidner, Jessica M.; Wang, Lijuan; Yu, Wenquan; Borune, Nigel; Kinch, Mark A.; Rayahin, Jamie E.; Moriarty, Robert; Xu, Xiaodong; Shi, Pei-Yong; Guo, Ju-Tao; Block, Timothy M.

    2010-01-01

    Cellular α-glucosidases I and II are enzymes that sequentially trim the three terminal glucoses in the N-linked oligosaccharides of viral envelope glycoproteins. This process is essential for the proper folding of viral glycoproteins and subsequent assembly of many enveloped viruses, including dengue virus (DENV). Imino sugars are substrate mimics of α-glucosidases I and II. In this report, we show that two oxygenated alkyl imino sugar derivatives, CM-9-78 and CM-10-18, are potent inhibitors of both α-glucosidases I and II in vitro and in treated animals, and efficiently inhibit DENV infection of cultured human cells. Pharmacokinetic studies reveal that both compounds are well tolerated at doses up to 100mg/kg in rats and have favorable pharmacokinetic properties and bioavailability in mice. Moreover, we showed that oral administration of either CM-9-78 or CM-10-18 reduces the peak viremia of DENV in mice. Interestingly, while treatment of DENV infected mice with ribavirin alone did not reduce the viremia, combination therapy of ribavirin with sub-effective dose of CM-10-18 demonstrated a significantly enhanced antiviral activity, as indicated by a profound reduction of the viremia. Our findings thus suggest that combination therapy of two broad-spectrum antiviral agents may provide a practically useful approach for the treatment of DENV infection. PMID:21073903

  12. Effects of Undaria pinnatifida, Himanthalia elongata and Porphyra umbilicalis extracts on in vitro α-glucosidase activity and glucose diffusion.

    Science.gov (United States)

    Schultz Moreira, Adriana R; Garcimartín, Alba; Bastida, Sara; Jiménez-Escrig, Antonio; Rupérez, Pilar; Green, Brian D; Rafferty, Eamon; Sánchez-Muniz, Francisco J; Benedí, Juana

    2014-06-01

    Seaweeds are good sources of dietary fibre, which can influence glucose uptake and glycemic control. To investigate and compare the in vitro inhibitory activity of different extracts from Undaria pinnatifida (Wakame), Himanthalia elongata (Sea spaghetti) and Porphyra umbilicalis (Nori) on α-glucosidase activity and glucose diffusion. The in vitro effects Chloroform-, ethanol- and water-soluble extracts of the three algae were assayed on α- glucosidase activity and glucose diffusion through membrane. Principal Components Analysis (PCA) was applied to identify patterns in the data and to discriminate which extract will show the most proper effect. Only water extracts of Sea spaghetti possessed significant in vitro inhibitory effects on α-glucosidase activity (26.2% less mmol/L glucose production than control, p < 0.05) at 75 min. PCA distinguished Sea spaghetti effects, supporting that soluble fibre and polyphenols were involved. After 6 h, Ethanol-Sea spaghetti and water-Wakame extracts exerted the highest inhibitory effects on glucose diffusion (65.0% and 60.2% vs control, respectively). This extracts displayed the lowest slopes for glucose diffusion-time lineal adjustments (68.2% and 62.8% vs control, respectively). The seaweed hypoglycemic effects appear multi-faceted and not necessarily concatenated. According to present results, ethanol and water extracts of Sea spaghetti, and water extracts of Wakame could be useful for the development of functional foods with specific hypoglycemic properties. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  13. Development of a highly efficient indigo dyeing method using indican with an immobilized beta-glucosidase from Aspergillus niger.

    Science.gov (United States)

    Song, Jingyuan; Imanaka, Hiroyuki; Imamura, Koreyoshi; Kajitani, Kouichi; Nakanishi, Kazuhiro

    2010-09-01

    A highly efficient method for dyeing textiles with indigo is described. In this method, the substrate, indican is first hydrolyzed at an acidic pH of 3 using an immobilized beta-glucosidase to produce indoxyl, under which conditions indigo formation is substantially repressed. The textile sample is then dipped in the prepared indoxyl solution and the textile is finally exposed to ammonia vapor for a short time, resulting in rapid indigo dyeing. As an enzyme, we selected a beta-glucosidase from Aspergillus niger, which shows a high hydrolytic activity towards indican and was thermally stable at temperatures up to 50-60 degrees C, in an acidic pH region. The A. niger beta-glucosidase, when immobilized on Chitopearl BCW-3001 by treatment with glutaraldehyde, showed an optimum reaction pH similar to that of the free enzyme with a slightly higher thermal stability. The kinetics for the hydrolysis of indican at pH 3, using the purified free and immobilized enzymes was found to follow Michaelis-Menten type kinetics with weak competitive inhibition by glucose. Using the immobilized enzyme, we successfully carried out repeated-batch and continuous hydrolyses of indican at pH 3 when nitrogen gas was continuously supplied to the substrate solution. Various types of model textiles were dyed using the proposed method although the color yield varied, depending on the type of textile used. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Thermotoga neapolitana β-glucosidase B

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Pernilla [Department of Biotechnology, Centre for Chemistry and Chemical Engineering, Lund University, Box 124, S-221 00 Lund (Sweden); Pramhed, Anna [Department of Molecular Biophysics, Centre for Chemistry and Chemical Engineering, Lund University, Box 124, S-221 00 Lund (Sweden); Kanders, Erik; Hedström, Martin; Karlsson, Eva Nordberg, E-mail: eva.nordberg-karlsson@biotek.lu.se [Department of Biotechnology, Centre for Chemistry and Chemical Engineering, Lund University, Box 124, S-221 00 Lund (Sweden); Logan, Derek T., E-mail: eva.nordberg-karlsson@biotek.lu.se [Department of Molecular Biophysics, Centre for Chemistry and Chemical Engineering, Lund University, Box 124, S-221 00 Lund (Sweden); Department of Biotechnology, Centre for Chemistry and Chemical Engineering, Lund University, Box 124, S-221 00 Lund (Sweden)

    2007-09-01

    Here, the expression, purification, crystallization and X-ray diffraction data of a family 3 β-glucosidase from the hyperthermophilic bacterium Thermotoga neapolitana are reported. β-Glucosidases belong to families 1, 3 and 9 of the glycoside hydrolases and act on cello-oligosaccharides. Family 1 and 3 enzymes are retaining and are reported to have transglycosylation activity, which can be used to produce oligosaccharides and glycoconjugates. Family 3 enzymes are less well characterized than their family 1 homologues and to date only two crystal structures have been solved. Here, the expression, purification, crystallization and X-ray diffraction data of a family 3 β-glucosidase from the hyperthermophilic bacterium Thermotoga neapolitana are reported. Crystals of selenomethionine-substituted protein have also been grown. The crystals belong to space group C222{sub 1}, with unit-cell parameters a = 74.9, b = 127.0, c = 175.2 Å. Native data have been collected to 2.4 Å resolution and the structure has been solved to 2.7 Å using the selenomethionine MAD method. Model building and refinement of the structure are under way.

  15. Combining rational and random strategies in β-glucosidase Zm-p60.1 protein library construction.

    Directory of Open Access Journals (Sweden)

    Dušan Turek

    Full Text Available Saturation mutagenesis is a cornerstone technique in protein engineering because of its utility (in conjunction with appropriate analytical techniques for assessing effects of varying residues at selected positions on proteins' structures and functions. Site-directed mutagenesis with degenerate primers is the simplest and most rapid saturation mutagenesis technique. Thus, it is highly appropriate for assessing whether or not variation at certain sites is permissible, but not necessarily the most time- and cost-effective technique for detailed assessment of variations' effects. Thus, in the presented study we applied the technique to randomize position W373 in β-glucosidase Zm-p60.1, which is highly conserved among β-glucosidases. Unexpectedly, β-glucosidase activity screening of the generated variants showed that most variants were active, although they generally had significantly lower activity than the wild type enzyme. Further characterization of the library led us to conclude that a carefully selected combination of randomized codon-based saturation mutagenesis and site-directed mutagenesis may be most efficient, particularly when constructing and investigating randomized libraries with high fractions of positive hits.

  16. Combining rational and random strategies in β-glucosidase Zm-p60.1 protein library construction.

    Science.gov (United States)

    Turek, Dušan; Klimeš, Pavel; Mazura, Pavel; Brzobohatý, Břetislav

    2014-01-01

    Saturation mutagenesis is a cornerstone technique in protein engineering because of its utility (in conjunction with appropriate analytical techniques) for assessing effects of varying residues at selected positions on proteins' structures and functions. Site-directed mutagenesis with degenerate primers is the simplest and most rapid saturation mutagenesis technique. Thus, it is highly appropriate for assessing whether or not variation at certain sites is permissible, but not necessarily the most time- and cost-effective technique for detailed assessment of variations' effects. Thus, in the presented study we applied the technique to randomize position W373 in β-glucosidase Zm-p60.1, which is highly conserved among β-glucosidases. Unexpectedly, β-glucosidase activity screening of the generated variants showed that most variants were active, although they generally had significantly lower activity than the wild type enzyme. Further characterization of the library led us to conclude that a carefully selected combination of randomized codon-based saturation mutagenesis and site-directed mutagenesis may be most efficient, particularly when constructing and investigating randomized libraries with high fractions of positive hits.

  17. In silico design of fragment-based drug targeting host processing α-glucosidase i for dengue fever

    Science.gov (United States)

    Toepak, E. P.; Tambunan, U. S. F.

    2017-02-01

    Dengue is a major health problem in the tropical and sub-tropical regions. The development of antiviral that targeting dengue’s host enzyme can be more effective and efficient treatment than the viral enzyme. Host enzyme processing α-glucosidase I has an important role in the maturation process of dengue virus envelope glycoprotein. The inhibition of processing α-glucosidase I can become a promising target for dengue fever treatment. The antiviral approach using in silico fragment-based drug design can generate drug candidates with high binding affinity. In this research, 198.621 compounds were obtained from ZINC15 Biogenic Database. These compounds were screened to find the favorable fragments according to Rules of Three and pharmacological properties. The screening fragments were docked into the active site of processing α-glucosidase I. The potential fragment candidates from the molecular docking simulation were linked with castanospermine (CAST) to generate ligands with a better binding affinity. The Analysis of ligand - enzyme interaction showed ligands with code LRS 22, 28, and 47 have the better binding free energy than the standard ligand. Ligand LRS 28 (N-2-4-methyl-5-((1S,3S,6S,7R,8R,8aR)-1,6,7,8-tetrahydroxyoctahydroindolizin-3-yl) pentyl) indolin-1-yl) propionamide) itself among the other ligands has the lowest binding free energy. Pharmacological properties prediction also showed the ligands LRS 22, 28, and 47 can be promising as the dengue fever drug candidates.

  18. Inhibition of β-galactosidase and α-glucosidase synthesis in petroleum refinery effluent bacteria by phenolic compounds

    Directory of Open Access Journals (Sweden)

    Gideon C. Okpokwasili

    2011-04-01

    Full Text Available Inhibition of α-glucosidase (EC 3.2.1.20 and β-galactosidase (EC 3.2.1.23 biosynthesis by phenolic compounds (phenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol in Escherichia coli, Bacillus and Pseudomonas species isolated from petroleum refinery wastewater was assessed. At sufficient concentrations, phenols inhibited the induction of α-glucosidase and β-galactosidase. The patterns of these toxic effects can be mathematically described with logistic and sigmoid dose-response models. The median inhibitory concentrations (IC50 varied among the phenols, the bacteria and enzymes. Quantitative structure–activity relationship (QSAR models based on the logarithm of the octanol–water partition coefficient (log10Kow were developed for each bacterium. The correlation coefficients varied between 0.84and 0.99 for the enzymes. The test results indicated α-glucosidase and β-galactosidase biosynthesis as important microbial indices for evaluation of toxicity of phenolic compounds.

  19. Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae beta-glucosidase and endoglucanase.

    Science.gov (United States)

    Kotaka, Atsushi; Bando, Hiroki; Kaya, Masahiko; Kato-Murai, Michiko; Kuroda, Kouichi; Sahara, Hiroshi; Hata, Yoji; Kondo, Akihiko; Ueda, Mitsuyoshi

    2008-06-01

    Three beta-glucosidase- and two endoglucanase-encoding genes were cloned from Aspergillus oryzae, and their gene products were displayed on the cell surface of the sake yeast, Saccharomyces cerevisiae GRI-117-UK. GRI-117-UK/pUDB7 displaying beta-glucosidase AO090009000356 showed the highest activity against various substrates and efficiently produced ethanol from cellobiose. On the other hand, GRI-117-UK/pUDCB displaying endoglucanase AO090010000314 efficiently degraded barley beta-glucan to glucose and smaller cellooligosaccharides. GRI-117-UK/pUDB7CB codisplaying both beta-glucosidase AO090009000356 and endoglucanase AO090010000314 was constructed. When direct ethanol fermentation from 20 g/l barley beta-glucan as a model substrate was performed with the codisplaying strain, the ethanol concentration reached 7.94 g/l after 24 h of fermentation. The conversion ratio of ethanol from beta-glucan was 69.6% of the theoretical ethanol concentration produced from 20 g/l barley beta-glucan. These results showed that sake yeast displaying A. oryzae cellulolytic enzymes can be used to produce ethanol from cellulosic materials. Our constructs have higher ethanol production potential than the laboratory constructs previously reported.

  20. Honokiol trimers and dimers via biotransformation catalyzed by Momordica charantia peroxidase: novel and potent α-glucosidase inhibitors.

    Science.gov (United States)

    He, Ye; Wang, Xiao-Bing; Fan, Bo-Yi; Kong, Ling-Yi

    2014-01-15

    Ten honokiol oligomers (1-10), including four novel trimers (1-4) and four novel dimers (5-8), were obtained by means of biotransformation of honokiol catalyzed by Momordica charantia peroxidase (MCP) for the first time. Their structures were established on the basis of spectroscopic methods. The biological results demonstrated that most of the oligomers were capable of inhibiting α-glucosidase with significant abilities, which were one to two orders of magnitude more potent than the substrate, honokiol. In particular, compound 2, the honokiol trimer, displayed the greatest inhibitory activity against α-glucosidase with an IC50 value of 1.38μM. Kinetic and CD studies indicated that 2 inhibited α-glucosidase in a reversible, mixed-type manner and caused conformational changes in the secondary structure of the enzyme protein. These findings suggested that 2 might be exploited as a promising drug candidate for the treatment of diabetes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Phytochemical Screening, Alpha-Glucosidase Inhibition, Antibacterial and Antioxidant Potential of Ajuga bracteosa Extracts.

    Science.gov (United States)

    Hafeez, Kokab; Andleeb, Saiqa; Ghousa, Tahseen; Mustafa, Rozina G; Naseer, Anum; Shafique, Irsa; Akhter, Kalsoom

    2017-01-01

    Ajuga bracteosa, a medicinal herb, is used by local community to cure a number of diseases such as inflammation, jaundice bronchial asthma, cancer and diabetes. The aim of present work was to evaluate the antioxidant potential, in vitro antidiabetic and antimicrobial effects of A. bracteosa. n-hexane, ethyl acetate, chloroform, acetone, methanol and aqueous extracts of Ajuga bracteosa roots, were prepared via maceration. Antibacterial activity was carried out by agar well diffusion method. Quantitative and qualitative phytochemical screening was done. The antioxidant activity was determined by iron (II) chelating activity, iron reducing power, DPPH, and ABTS free radical scavenging methods, Antidiabetic activity was evaluated through inhibition of α-glucosidase assay. Phytochemical analysis showed the presence of phenols, flavonoids, tannins, saponins, quinines, terpenoids, xanthoproteins, glycosides, carbohydrates, steroids, phytosterols and amino acids. DPPH and ABTS potential values were recorded as 61.92% to 88.84% and 0.11% to 38.82%, respectively. Total phenolic and total flavonoid contents were expressed as gallic acid and rutin equivalents. Total iron content was expressed as FeSO4 equivalents. Chloroform and n-hexane extracts showed significant enzyme inhibition potential with IC50 values of 29.92 μg/ml and 131.7 μg/ml respectively. Aqueous extract showed maximum inhibition of E. coli, S. typhimurium, E. amnigenus, S. pyogenes, and S. aureus, (18.0±1.0 mm, 12.5±0.7 mm, 17.0±0.0 mm, 11.0±0.0 mm and 15.3±2.0 mm mm), respectively. Similarly, n-hexane extract showed maximum inhibition of E. coli, E. amnigenus, S. aureus (11.6±1.5 mm; 11.3±1.5 mm; 13.3±0.5 mm). This study also shows that n-hexane, chloroform, ethyl acetate and aqueous extracts of A. bracteosa root possess α-glucosidase inhibitory activities and therefore it may be used as hypoglycemic agents in the management of postprandial hyperglycemia. Ajuga bracteosa root extracts may provide a

  2. Stability of commercial glucanase and β-glucosidase preparations under hydrolysis conditions

    Directory of Open Access Journals (Sweden)

    Oscar Rosales-Calderon

    2014-06-01

    Full Text Available The cost of enzymes makes enzymatic hydrolysis one of the most expensive steps in the production of lignocellulosic ethanol. Diverse studies have used commercial enzyme cocktails assuming that change in total protein concentration during hydrolysis was solely due to adsorption of endo- and exoglucanases onto the substrate. Given the sensitivity of enzymes and proteins to media conditions this assumption was tested by evaluating and modeling the protein concentration of commercial cocktails at hydrolysis conditions. In the absence of solid substrate, the total protein concentration of a mixture of Celluclast 1.5 L and Novozyme 188 decreased by as much as 45% at 50 °C after 4 days. The individual cocktails as well as a mixture of both were stable at 20 °C. At 50 °C, the protein concentration of Celluclast 1.5 was relatively constant but Novozyme 188 decreased by as much as 77%. It was hypothesized that Novozyme 188 proteins suffer a structural change at 50 °C which leads to protein aggregation and precipitation. Lyophilized β-glucosidase (P-β-glucosidase at 50 °C exhibited an aggregation rate which was successfully modeled using first order kinetics (R2 = 0.97. By incorporating the possible presence of chaperone proteins in Novozyme 188, the protein aggregation observed for this cocktail was successfully modeled (R2 = 0.96. To accurately model the increasing protein stability observed at high cocktail loadings, the model was modified to include the presence of additives in the cocktail (R2 = 0.98. By combining the measurement of total protein concentration with the proposed Novozyme 188 protein aggregation model, the endo- and exoglucanases concentration in the solid and liquid phases during hydrolysis can be more accurately determined. This methodology can be applied to various systems leading to optimization of enzyme loading by minimizing the excess of endo- and exoglucanases. In addition, the monitoring of endo- and exoglucanases

  3. Genetic and biochemical characterization of an oligo-α-1,6-glucosidase from Lactobacillus plantarum.

    Science.gov (United States)

    Delgado, Susana; Flórez, Ana Belén; Guadamuro, Lucía; Mayo, Baltasar

    2017-04-04

    Although encoded in the genome of many Lactobacillus spp. strains, α-glucosidases have received little attention compared to other glycosyl hydrolases. In this study, a putative oligosaccharide(oligo)-α-1,6-glucosidase-encoding gene (malL) was identified in the genome of Lactobacillus plantarum LL441. malL coded for 572 amino acid residues with a calculated total molecular mass of 66.31kDa. No predicted signal peptide was observed, suggesting this enzyme to be localized within the cytoplasm of the cell. Homology studies of the deduced amino acid sequence in the area of its active sites classified the enzyme as a member of the α-amylase (AmyAC) superfamily of glycosyl hydrolases (GH), family 13 (GH13), subfamily 31 (GH13_31). malL was cloned in Escherichia coli and the coded enzyme overexpressed as a histidine-tagged protein (MalL His ). It was then purified and characterized. MalL His protein showed strong hydrolytic activity towards 4-nitrophenyl-α-d-glucopyranoside (pNP-α-Glu) but not to other pNP-α-d- or pNP-β-d-derivatives. When using pNP-α-Glu as a substrate, MalL His showed similar specific activities between pH5.0 and 6.0, and between 20 and 42°C (optimum 30°C). Among the natural carbohydrates assayed, MalL His showed specificity towards isomaltose (V max and K m values of 40.64μmolmin -1 mg -1 and 6.22mM) and much less to isomaltulose (V max and K m values of 168.86μmolmin -1 mg -1 and 244.52mM). However, under the conditions of the assay, the enzyme showed no transglycosylation activity. Characterization of the entire complement of glycosidases in L. plantarum might reveal how strains of this species could be used in new biotechnological applications or in the development of functional foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase

    Directory of Open Access Journals (Sweden)

    Hogan Shelly

    2010-08-01

    Full Text Available Abstract Background Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. Treatment of postprandial hyperglycemia can be achieved by inhibiting intestinal α-glucosidase, the key enzyme for oligosaccharide digestion and further glucose absorption. Grape pomace is winemaking byproduct rich in bioactive food compounds such as phenolic antioxidants. This study evaluated the anti-diabetic potential of two specific grape pomace extracts by determining their antioxidant and anti-postprandial hyperglycemic activities in vitro and in vivo. Methods The extracts of red wine grape pomace (Cabernet Franc and white wine grape pomace (Chardonnay were prepared in 80% ethanol. An extract of red apple pomace was included as a comparison. The radical scavenging activities and phenolic profiles of the pomace extracts were determined through the measurement of oxygen radical absorbance capacity, DPPH radical scavenging activity, total phenolic content and flavonoids. The inhibitory effects of the pomace extracts on yeast and rat intestinal α-glucosidases were determined. Male 6-week old C57BLKS/6NCr mice were treated with streptozocin to induce diabetes. The diabetic mice were then treated with vehicle or the grape pomace extract to determine whether the oral intake of the extract can suppress postprandial hyperglycemia through the inhibition of intestinal α-glucosidases. Results The red grape pomace extract contained significantly higher amounts of flavonoids and phenolic compounds and exerted stronger oxygen radical absorbance capacity than the red apple pomace extract. Both the grape pomace extracts but not the apple pomace extract exerted significant inhibition on intestinal α-glucosidases and the inhibition appears to be specific. In the animal study, the oral intake of the grape pomace extract (400 mg/kg body weight significantly suppressed the postprandial hyperglycemia by 35% in streptozocin

  5. Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase.

    Science.gov (United States)

    Hogan, Shelly; Zhang, Lei; Li, Jianrong; Sun, Shi; Canning, Corene; Zhou, Kequan

    2010-08-27

    Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. Treatment of postprandial hyperglycemia can be achieved by inhibiting intestinal α-glucosidase, the key enzyme for oligosaccharide digestion and further glucose absorption. Grape pomace is winemaking byproduct rich in bioactive food compounds such as phenolic antioxidants. This study evaluated the anti-diabetic potential of two specific grape pomace extracts by determining their antioxidant and anti-postprandial hyperglycemic activities in vitro and in vivo. The extracts of red wine grape pomace (Cabernet Franc) and white wine grape pomace (Chardonnay) were prepared in 80% ethanol. An extract of red apple pomace was included as a comparison. The radical scavenging activities and phenolic profiles of the pomace extracts were determined through the measurement of oxygen radical absorbance capacity, DPPH radical scavenging activity, total phenolic content and flavonoids. The inhibitory effects of the pomace extracts on yeast and rat intestinal α-glucosidases were determined. Male 6-week old C57BLKS/6NCr mice were treated with streptozocin to induce diabetes. The diabetic mice were then treated with vehicle or the grape pomace extract to determine whether the oral intake of the extract can suppress postprandial hyperglycemia through the inhibition of intestinal α-glucosidases. The red grape pomace extract contained significantly higher amounts of flavonoids and phenolic compounds and exerted stronger oxygen radical absorbance capacity than the red apple pomace extract. Both the grape pomace extracts but not the apple pomace extract exerted significant inhibition on intestinal α-glucosidases and the inhibition appears to be specific. In the animal study, the oral intake of the grape pomace extract (400 mg/kg body weight) significantly suppressed the postprandial hyperglycemia by 35% in streptozocin-induced diabetic mice following starch challenge. This is the

  6. Synergisms in Alpha-glucosidase Inhibition and Antioxidant Activity of Camellia sinensis L. Kuntze and Eugenia uniflora L. Ethanolic Extracts

    Science.gov (United States)

    Vinholes, Juliana; Vizzotto, Márcia

    2017-01-01

    Background: Camellia sinensis, the most consumed and popular beverages worldwide, and Eugenia uniflora, a Brazilian native species, have been already confirmed to have beneficial effects in the treatment of diabetes mellitus. However, their potential acting together against an enzyme linked to this pathology has never been exploited. Objective: The aim of this study was to evaluate the inhibitory properties of individual and combined ethanolic extracts of the leaves of C. sinensis and E. uniflora over alpha-glucosidase, a key digestive enzyme used on the Type 2 diabetes mellitus (T2DM) control. In addition, their inhibitory activity against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) and peroxyl radicals was also assayed. Materials and Methods: Enzyme inhibition and antioxidant potential were assessed based on in vitro assays. Total phenolic compounds, carotenoids, and chlorophylls A and B were achieved using spectrophotometric methods. Results: E. uniflora was almost 40 times more active on alpha-glucosidase than C. sinensis and combined extracts showed a significant synergistic effect with an obtained IC50 value almost 5 times lower than the theoretical value. C. sinensis extract was twice more active than E. uniflora concerning DPPH•, in contrast, E. uniflora was almost 10 times more effective than C. sinensis on inhibition of peroxyl radicals with a significant synergistic effect for combined extracts. The extracts activities may be related with their phytochemicals, mainly phenolic compounds, and chlorophylls. Conclusion: Combined C. sinensis and E. uniflora ethanolic extracts showed synergistic effect against alpha-glucosidase and lipid peroxidation. These herbal combinations can be used to control postprandial hyperglycemia and can also provide antioxidant defenses to patients with T2DM. SUMMARY Alfa-glucosidase and antioxidant Interaction between Camellia sinensis L. Kuntze and Eugenia uniflora L. ethanolic extracts was investigated.Extracts showed

  7. Synergisms in Alpha-glucosidase Inhibition and Antioxidant Activity of Camellia sinensis L. Kuntze and Eugenia uniflora L. Ethanolic Extracts.

    Science.gov (United States)

    Vinholes, Juliana; Vizzotto, Márcia

    2017-01-01

    Camellia sinensis , the most consumed and popular beverages worldwide, and Eugenia uniflora , a Brazilian native species, have been already confirmed to have beneficial effects in the treatment of diabetes mellitus. However, their potential acting together against an enzyme linked to this pathology has never been exploited. The aim of this study was to evaluate the inhibitory properties of individual and combined ethanolic extracts of the leaves of C. sinensis and E. uniflora over alpha-glucosidase, a key digestive enzyme used on the Type 2 diabetes mellitus (T2DM) control. In addition, their inhibitory activity against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH • ) and peroxyl radicals was also assayed. Enzyme inhibition and antioxidant potential were assessed based on in vitro assays. Total phenolic compounds, carotenoids, and chlorophylls A and B were achieved using spectrophotometric methods. E. uniflora was almost 40 times more active on alpha-glucosidase than C. sinensis and combined extracts showed a significant synergistic effect with an obtained IC 50 value almost 5 times lower than the theoretical value. C. sinensis extract was twice more active than E. uniflora concerning DPPH • , in contrast, E. uniflora was almost 10 times more effective than C. sinensis on inhibition of peroxyl radicals with a significant synergistic effect for combined extracts. The extracts activities may be related with their phytochemicals, mainly phenolic compounds, and chlorophylls. Combined C. sinensis and E. uniflora ethanolic extracts showed synergistic effect against alpha-glucosidase and lipid peroxidation. These herbal combinations can be used to control postprandial hyperglycemia and can also provide antioxidant defenses to patients with T2DM. Alfa-glucosidase and antioxidant Interaction between Camellia sinensis L. Kuntze and Eugenia uniflora L. ethanolic extracts was investigated.Extracts showed synergistic effect over alpha-glucosidase and peroxyl radicals

  8. α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum serratifolium

    Directory of Open Access Journals (Sweden)

    Md. Yousof Ali

    2017-12-01

    Full Text Available Sargassum serratifolium C. Agardh (Phaeophyceae, Fucales is a marine brown alga that belongs to the family Sargassaceae. It is widely distributed throughout coastal areas of Korea and Japan. S. serratifolium has been found to contain high concentrations of plastoquinones, which have strong anti-cancer, anti-inflammatory, antioxidant, and neuroprotective activity. This study aims to investigate the anti-diabetic activity of S. serratifolium and its major constituents through inhibition of protein tyrosine phosphatase 1B (PTP1B, α-glucosidase, and ONOO−-mediated albumin nitration. S. serratifolium ethanolic extract and fractions exhibited broad PTP1B and α-glucosidase inhibitory activity (IC50, 1.83~7.04 and 3.16~24.16 µg/mL for PTP1B and α-glucosidase, respectively. In an attempt to identify bioactive compounds, three plastoquinones (sargahydroquinoic acid, sargachromenol and sargaquinoic acid were isolated from the active n-hexane fraction of S. serratifolium. All three plastoquinones exhibited dose-dependent inhibitory activity against PTP1B in the IC50 range of 5.14–14.15 µM, while sargachromenol and sargaquinoic acid showed dose-dependent inhibitory activity against α-glucosidase (IC50 42.41 ± 3.09 and 96.17 ± 3.48 µM, respectively. In the kinetic study of PTP1B enzyme inhibition, sargahydroquinoic acid and sargaquinoic acid led to mixed-type inhibition, whereas sargachromenol displayed noncompetitive-type inhibition. Moreover, plastoquinones dose-dependently inhibited ONOO−-mediated albumin nitration. Docking simulations of these plastoquinones demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B and α-glucosidase, indicating that these plastoquinones have high affinity and tight binding capacity towards the active site of the enzymes. These results demonstrate that S. serratifolium and its major plastoquinones may have the potential as functional food ingredients for the

  9. Synthesis of Isomalto-Oligosaccharides by Pichia pastoris Displaying the Aspergillus niger α-Glucosidase.

    Science.gov (United States)

    Zhao, Nannan; Xu, Yanshan; Wang, Kuang; Zheng, Suiping

    2017-11-01

    We explored the ability of an Aspergillus niger α-glucosidase displayed on P. pastoris to act as a whole-cell biocatalyst (Pp-ANGL-GCW61) system to synthesize isomalto-oligosaccharides (IMOs). IMOs are a mixture that includes isomaltose (IG 2 ), panose (P), and isomaltotriose (IG 3 ). In this study, the IMOs were synthesized by a hydrolysis-transglycosylation reaction in an aqueous system of maltose. In a 2 mL reaction system, the IMOs were synthesized with a conversion rate of approximately 49% in 2 h when 30% maltose was utilized under optimal conditions by Pp-ANGL-GCW61. Additionally, the 0.5-L reaction system was conducted in a 2-L stirred reactor with a conversion rate of approximately 44% in 2 h. Moreover, the conversion rate was relatively stable after the whole-cell catalyst was reused three times. In conclusion, Pp-ANGL-GCW61 has a high reaction efficiency and operational stability, which makes it a powerful biocatalyst available for industrial scale synthesis.

  10. Stabilization of dimeric β-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions.

    Science.gov (United States)

    Vazquez-Ortega, Perla Guadalupe; Alcaraz-Fructuoso, Maria Teresa; Rojas-Contreras, Juan A; López-Miranda, Javier; Fernandez-Lafuente, Roberto

    2018-03-01

    The dimeric enzyme β-glucosidase from Aspergillus niger has been immobilized on different amino-agarose beads at pH 5 and 7, exploiting the versatility of glutaraldehyde. The stability of the free enzyme depended on enzyme concentration. Immobilization via ion exchange improved enzyme stability/activity, depending on the immobilization pH. However, the enzyme was desorbed in 75 mM NaCl at pH 7 and some stability/enzyme concentration dependence still existed. of these biocatalysts with glutaraldehyde increased enzyme stability (e.g. at pH 5, after incubation under conditions where the enzyme just ionically exchanged was fully inactivated, the activity of the glutaraldehyde treated enzyme remained unaltered). Immobilization on glutaraldehyde pre-activated supports yielded a higher increase in enzyme activity, but the stabilization was lower. While when measuring the enzyme activity at pH 4 there were no changes after immobilization, all immobilized enzymes were more active than the free enzyme at pH 6 and 7 (2-3 times). The Ki/Km ratio did not significantly decrease in any immobilized biocatalysts, and in some cases it worsened in a significant way (by a 9 fold factor using preactivated supports). The new biocatalysts are significantly more stable and avoid enzyme subunit desorption, being the immobilization pH a key point in their design. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Gaucher disease: Physical, kinetic and immunologic investigations of human and canine acid β-glucosidase

    International Nuclear Information System (INIS)

    Fabbro, D.E.

    1988-01-01

    Kinetic and immunologic techniques were developed to investigate the nature of the acid β-glucosidase (β-Glc) defects which results in human and canine Gaucher disease (GD). Two new affinity columns, using the potent inhibitors of β-Glc (N-alkyl-deoxynojirimycins) as affinity ligands, were synthesized and methods were developed to obtain homogeneous β-Glc from normal human placenta. Polyclonal and monoclonal (representing 14 different epitopes from 18 clones) antibodies were produced to the pure normal β-Glc. Monospecific polyclonal IgG and tritiated-bromo-conduritol B epoxide ([ 3 H]Br-CBE), a specific covalent active site directed inhibitor of β-Glc, were used to quantitate the functional catalytic sites in normal and Type 1 Ashkenazi Jewish GD (AJGD) enzyme preparations: The k cat values for several new substrates with the mutant enzymes from spleen were about 1.5-fold less than the respective normal enzyme, indicating a nearly normal catalytic capacity of the mutant enzymes. Immunoblotting studies with polyclonal or several monoclonal antibodies indicated three molecular forms of β-Glc (M r = 67,000, 62,000 to 65,000 and 58,000) in fibroblast extracts from normals and Type 1 AJGD patients. In comparison, only one form of cross-reacting immunologic material (CRIM) was detected in fibroblast extracts from Types 2 and 3 or several non-Jewish Type 1 GD patients

  12. Magnetic tumor targeting of β-glucosidase immobilized iron oxide nanoparticles

    Science.gov (United States)

    Zhou, Jie; Zhang, Jian; David, Allan E.; Yang, Victor C.

    2013-09-01

    Directed enzyme/prodrug therapy (DEPT) has promising application for cancer therapy. However, most current DEPT strategies face shortcomings such as the loss of enzyme activity during preparation, low delivery and transduction efficiency in vivo and difficultly of monitoring. In this study, a novel magnetic directed enzyme/prodrug therapy (MDEPT) was set up by conjugating β-glucosidase (β-Glu) to aminated, starch-coated, iron oxide magnetic iron oxide nanoparticles (MNPs), abbreviated as β-Glu-MNP, using glutaraldehyde as the crosslinker. This β-Glu-MNP was then characterized in detail by size distribution, zeta potential, FTIR spectra, TEM, SQUID and magnetophoretic mobility analysis. Compared to free enzyme, the conjugated β-Glu on MNPs retained 85.54% ± 6.9% relative activity and showed much better temperature stability. The animal study results showed that β-Glu-MNP displays preferable pharmacokinetics characteristics in relation to MNPs. With an adscititious magnetic field on the surface of a tumor, a significant quantity of β-Glu-MNP was selectively delivered into a subcutaneous tumor of a glioma-bearing mouse. Remarkably, the enzyme activity of the delivered β-Glu in tumor lesions showed as high as 20.123±5.022 mU g-1 tissue with 2.14 of tumor/non-tumor β-Glu activity.

  13. Alpha-glucosidase inhibitory and antiplasmodial properties of terpenoids from the leaves of Buddleja saligna Willd.

    Science.gov (United States)

    Chukwujekwu, Jude C; Rengasamy, Kannan R R; de Kock, Carmen A; Smith, Peter J; Slavětínská, Lenka Poštová; van Staden, Johannes

    2016-01-01

    In our continuing search for biologically active natural product(s) of plant origin, Buddleja saligna, a South African medicinal plant, was screened in line with its traditional use for antidiabetic (yeast alpha glucosidase inhibitory) and antiplasmodial (against a chloroquine sensitive strain of Plasmodium falciparum (NF54)) activities. The hexane fraction showed the most promising activity with regards to its antidiabetic (IC(50) = 260 ± 0.112 µg/ml) and antiplasmodial (IC(50) = 8.5 ± 1.6 µg/ml) activities. Using activity guided fractionation three known terpenoids (betulonic acid, betulone and spinasterol) were isolated from this species for the first time. The compounds displayed varying levels of biological activities (antidiabetic: 27.31 µg/ml ≥ IC(50) ≥ 5.6 µg/ml; antiplasmodial: 14 µg/ml ≥ IC(50) ≥ 2 µg/ml) with very minimal toxicity.

  14. Seasonal variation in Hibiscus sabdariffa (Roselle) calyx phytochemical profile, soluble solids and α-glucosidase inhibition.

    Science.gov (United States)

    Ifie, Idolo; Ifie, Beatrice E; Ibitoye, Dorcas O; Marshall, Lisa J; Williamson, Gary

    2018-09-30

    Seasonal variations in crops can alter the profile and amount of constituent compounds and consequentially any biological activity. Differences in phytochemical profile, total phenolic content and inhibitory activity on α-glucosidase (maltase) of Hibiscus sabdariffa calyces grown in South Western Nigeria were determined over wet and dry seasons. The phenolic profile, organic acids and sugars were analysed using HPLC, while inhibition of rat intestinal maltase was measured enzymically. There was a significant increase (1.4-fold; p ≤ 0.05) in total anthocyanin content in the dry compared to wet planting seasons, and maltase inhibition from the dry season was slightly more potent (1.15-fold, p ≤ 0.05). Fructose (1.8-fold), glucose (1.8-fold) and malic acid (3.7-fold) were significantly higher (p ≤ 0.05) but citric acid was lower (62-fold, p ≤ 0.008) in the dry season. Environmental conditions provoke metabolic responses in Hibiscus sabdariffa affecting constituent phytochemicals and nutritional value. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Nanoencapsulation of dietary flavonoid fisetin: Formulation and in vitro antioxidant and α-glucosidase inhibition activities.

    Science.gov (United States)

    Sechi, Mario; Syed, Deeba N; Pala, Nicolino; Mariani, Alberto; Marceddu, Salvatore; Brunetti, Antonio; Mukhtar, Hasan; Sanna, Vanna

    2016-11-01

    The bioactive flavonoid fisetin (FS) is a diet-derived antioxidant that is being increasingly investigated for its health-promoting effects. Unfortunately, the poor physicochemical and pharmacokinetic properties affect and limit the clinical application. In this study, novel polymeric nanoparticles (NPs), based on Poly-(ε-caprolactone) (PCL) and PLGA-PEG-COOH, encapsulating FS were formulated as suitable oral controlled release systems. Results showed NPs having a mean diameter of 140-200nm, and a percent loading of FS ranging from 70 to 82%. In vitro release studies revealed that NPs are able to protect and preserve the release of FS in gastric simulated conditions, also controlling the release in the intestinal medium. Moreover, the DPPH and ABTS scavenging capacity of FS, as well as α-glucosidase inhibition activity, that resulted about 20-fold higher than commercial Acarbose, were retained during nanoencapsulation process. In summary, our developed NPs can be proposed as an attractive delivery system to control the release of antioxidant and anti-hyperglycemic FS for nutraceutical and/or therapeutic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized β-glucosidase.

    Science.gov (United States)

    Borges, Diogo Gontijo; Baraldo, Anderson; Farinas, Cristiane Sanchez; Giordano, Raquel de Lima Camargo; Tardioli, Paulo Waldir

    2014-09-01

    The β-glucosidase (BG) enzyme plays a vital role in the hydrolysis of lignocellulosic biomass. Supplementation of the hydrolysis reaction medium with BG can reduce inhibitory effects, leading to greater conversion. In addition, the inclusion of immobilized BG can be a useful way of increasing enzyme stability and recyclability. BG was adsorbed on polyacrylic resin activated by carboxyl groups (BG-PC) and covalently attached to glyoxyl-agarose (BG-GA). BG-PC exhibited similar behavior to soluble BG in the hydrolysis of cellobiose, while BG-GA hydrolyzed the same substrate at a lower rate. However, the thermal stability of BG-GA was higher than that of free BG. Hydrolysis of pretreated sugarcane bagasse catalyzed by soluble cellulase supplemented with immobilized BG improved the conversion by up to 40% after 96 h of reaction. Both derivatives remained stable up to the third cycle and losses of activity were less than 50% after five cycles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. New α-Glucosidase Inhibitory Triterpenic Acid from Marine Macro Green Alga Codium dwarkense Boergs

    Directory of Open Access Journals (Sweden)

    Liaqat Ali

    2015-07-01

    Full Text Available The marine ecosystem has been a key resource for secondary metabolites with promising biological roles. In the current study, bioassay-guided phytochemical investigations were carried out to assess the presence of enzyme inhibitory chemical constituents from the methanolic extract of marine green alga—Codium dwarkense. The bioactive fractions were further subjected to chromatographic separations, which resulted in the isolation of a new triterpenic acid; dwarkenoic acid (1 and the known sterols; androst-5-en-3β-ol (2, stigmasta-5,25-dien-3β,7α-diol (3, ergosta-5,25-dien-3β-ol (4, 7-hydroxystigmasta-4,25-dien-3-one-7-O-β-d-fucopyranoside (5, 7-hydroxystigmasta-4,25-dien-3-one (6, and stigmasta-5,25-dien-3β-ol (7. The structure elucidation of the new compound was carried out by combined mass spectrometry and 1D (1H and 13C and 2D (HSQC, HMBC, COSY, and NOESY NMR spectroscopic data. The sub-fractions and pure constituents were assayed for enzymatic inhibition of alpha-glucosidase. Compound 1 showed significant inhibition at all concentrations. Compounds 2, 3, 5, and 7 exhibited a dose-dependent response, whereas compounds 4–6 showed moderate inhibition. Utilizing such marine-derived biological resources could lead to drug discoveries related to anti-diabetics.

  18. Promiscuous activity of ER glucosidase II discovered through donor specificity analysis of UGGT

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Atsushi, E-mail: miyagawa.atsushi@nitech.ac.jp [RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-Ku, Nagoya 466-8555 (Japan); Totani, Kiichiro [Department of Materials and Life Science, Seikei University, Musashino, Tokyo 180-8633 (Japan); Matsuo, Ichiro [Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Ito, Yukishige, E-mail: yukito@riken.jp [RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); ERATO Japan Science and Technology Agency, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2010-12-17

    Research highlights: {yields} UGGT has a narrow donor specificity. {yields} UGGT gave several non-natural high-mannose-type glycans. {yields} G-II has a promiscuous activity as broad specificity hexosidase. -- Abstract: In glycoprotein quality control system in the endoplasmic reticulum (ER), UGGT (UDP-glucose:glycoprotein glucosyltransferase) and glucosidase II (G-II) play key roles. UGGT serves as a glycoprotein folding sensor by virtue of its unique specificity to glucosylate glycoproteins at incompletely folded stage. By using various UDP-Glc analogues, we first analyzed donor specificity of UGGT, which was proven to be rather narrow. However, marginal activity was observed with UDP-galactose and UDP-glucuronic acid as well as with 3-, 4- and 6-deoxy glucose analogues to give corresponding transfer products. Intriguingly, G-II smoothly converted all of them back to Man{sub 9}GlcNAc{sub 2}, providing an indication that G-II has a promiscuous activity as a broad specificity hexosidase.

  19. Design, synthesis, α-glucosidase inhibitory activity, molecular docking and QSAR studies of benzimidazole derivatives

    Science.gov (United States)

    Dinparast, Leila; Valizadeh, Hassan; Bahadori, Mir Babak; Soltani, Somaieh; Asghari, Behvar; Rashidi, Mohammad-Reza

    2016-06-01

    In this study the green, one-pot, solvent-free and selective synthesis of benzimidazole derivatives is reported. The reactions were catalyzed by ZnO/MgO containing ZnO nanoparticles as a highly effective, non-toxic and environmentally friendly catalyst. The structure of synthesized benzimidazoles was characterized using spectroscopic technics (FT-IR, 1HNMR, 13CNMR). Synthesized compounds were evaluated for their α-glucosidase inhibitory potential. Compounds 3c, 3e, 3l and 4n were potent inhibitors with IC50 values ranging from 60.7 to 168.4 μM. In silico studies were performed to explore the binding modes and interactions between enzyme and synthesized benzimidazoles. Developed linear QSAR model based on density and molecular weight could predict bioactivity of newly synthesized compounds well. Molecular docking studies revealed the availability of some hydrophobic interactions. In addition, the bioactivity of most potent compounds had good correlation with estimated free energy of binding (ΔGbinding) which was calculated according to docked best conformations.

  20. Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice.

    Science.gov (United States)

    Wang, Zhiqiang; Hwang, Seung Hwan; Lee, Sun Youb; Lim, Soon Sung

    2016-06-01

    Jerusalem artichoke has inhibitory activity against α-glucosidase and decreases fasting serum glucose levels, which may be related to its fructan content. The biological activity of fructan can be influenced by the degree of polymerization. Thus, in this study, the inhibitory effects of original and fermented purple Jerusalem artichoke (PJA) on α-glucosidase were compared in vitro. Additionally, the anti-diabetes effect of Lactobacillus plantarum-fermented PJA (LJA) was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db). The water extract of PJA was fermented by L. plantarum, and two strains of Bacillus subtilis to compare their anti-α-glucosidase activities in vitro by α-glucosidase assays. The anti-diabetes effect of LJA was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db) for seven weeks. During the experiment, food intake, body weight, and fasting blood glucose were measured every week. At the end of the treatment period, several diabetic parameters and the intestinal α-glucosidase activity were measured. The LJA showed the highest α-glucosidase inhibitory activity in vitro. In the in vivo study, it resulted in a significantly lower blood glucose concentration than the control. Serum insulin and HDL cholesterol levels were significantly higher and the concentrations of triglycerides, non-esterified fatty acids, and total cholesterol were significant lower in mice treated with LJA after seven weeks. In addition, the intestinal α-glucosidase activity was partially inhibited. These results suggested that LJA regulates blood glucose and has potential use as a dietary supplement.

  1. Overexpression of an exotic thermotolerant β-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw

    Directory of Open Access Journals (Sweden)

    Dashtban Mehdi

    2012-05-01

    Full Text Available Abstract Background Trichoderma reesei is a widely used industrial strain for cellulase production, but its low yield of β-glucosidase has prevented its industrial value. In the hydrolysis process of cellulolytic residues by T. reesei, a disaccharide known as cellobiose is produced and accumulates, which inhibits further cellulases production. This problem can be solved by adding β-glucosidase, which hydrolyzes cellobiose to glucose for fermentation. It is, therefore, of high vvalue to construct T. reesei strains which can produce sufficient β-glucosidase and other hydrolytic enzymes, especially when those enzymes are capable of tolerating extreme conditions such as high temperature and acidic or alkali pH. Results We successfully engineered a thermostable β-glucosidase gene from the fungus Periconia sp. into the genome of T. reesei QM9414 strain. The engineered T. reesei strain showed about 10.5-fold (23.9 IU/mg higher β-glucosidase activity compared to the parent strain (2.2 IU/mg after 24 h of incubation. The transformants also showed very high total cellulase activity (about 39.0 FPU/mg at 24 h of incubation whereas the parent strain almost did not show any total cellulase activity at 24 h of incubation. The recombinant β-glucosidase showed to be thermotolerant and remains fully active after two-hour incubation at temperatures as high as 60°C. Additionally, it showed to be active at a wide pH range and maintains about 88% of its maximal activity after four-hour incubation at 25°C in a pH range from 3.0 to 9.0. Enzymatic hydrolysis assay using untreated, NaOH, or Organosolv pretreated barley straw as well as microcrystalline cellulose showed that the transformed T. reesei strains released more reducing sugars compared to the parental strain. Conclusions The recombinant T. reesei overexpressing Periconia sp. β-glucosidase in this study showed higher β-glucosidase and total cellulase activities within a shorter incubation

  2. Preliminary phytochemical screening and alpha-glucosidase inhibitory activity of Philippine taro (Colocasia esculenta (L.) Schott var. PSB-VG #9)

    Science.gov (United States)

    Lebosada, Richemae Grace R.; Librando, Ivy L.

    2017-01-01

    The study was conducted to determine the anti-hyperglycemic property in terms of α-glucosidase inhibitory activity of the various parts (corm, leaf and petiole) of Colocasia esculenta (L.) Schott var. PSB-VG #9. Each of the plant parts were extracted with 95% ethanol and concentrated using a rotary evaporator at 40 °C. The crude extracts were screened for the presence of alkaloids, flavonoids, glycosides and saponins using Thin Layer Chromatography. The α-glucosidase inhibitory activity of the crude extracts (50 mg/L) were assayed spectrophotometrically using a microplate reader. The results of the phytochemical screening revealed the presence of alkaloids, flavonoids, and saponins in the leaf part while flavonoids and saponins were detected in the petiole and only saponins were present in the corm. The assay showed that the percentage α-glucosidase inhibition of the 50 mg/L ethanolic crude extract of the corm, leaves and petiole of C. esculenta are 68.03, 71.64 and 71.39%, respectively. Statistical analysis shows significant differences in the α-glucosidase inhibition among the various plant parts. It can be concluded that the ethanolic crude extracts of the different parts of C. esculenta (L.) Schott var. PSB-VG #9 exhibited inhibitory activity against α-glucosidase and the presence of phytochemicals like alkaloids, flavonoids and saponins may have contributed greatly to the inhibitory activity of the plant extract and can be further subjected for isolation of the therapeutically active compounds with antidiabetes potency.

  3. Edible seaweed as future functional food: Identification of α-glucosidase inhibitors by combined use of high-resolution α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR

    DEFF Research Database (Denmark)

    Liu, Bingrui; Kongstad, Kenneth Thermann; Wiese, Stefanie

    2016-01-01

    -glucosidase inhibition profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy (HR-bioassay/HPLC–HRMS–SPE–NMR). The results showed Ascophyllum nodosum and Fucus vesicolosus to be rich in antioxidants, equaling...... as fatty acids – with oleic acid, linoleic acid and eicosapentaenoic acid being the most potent with IC50 values of 0.069, 0.075 and 0.10 mM, respectively, and showing a mixed-type inhibition mode....

  4. Effects of mutation of Asn694 in Aspergillus niger α-glucosidase on hydrolysis and transglucosylation.

    Science.gov (United States)

    Ma, Min; Okuyama, Masayuki; Sato, Megumi; Tagami, Takayoshi; Klahan, Patcharapa; Kumagai, Yuya; Mori, Haruhide; Kimura, Atsuo

    2017-08-01

    Aspergillus niger α-glucosidase (ANG), a member of glycoside hydrolase family 31, catalyzes hydrolysis of α-glucosidic linkages at the non-reducing end. In the presence of high concentrations of maltose, the enzyme also catalyzes the formation of α-(1→6)-glucosyl products by transglucosylation and it is used for production of the industrially useful panose and isomaltooligosaccharides. The initial transglucosylation by wild-type ANG in the presence of 100 mM maltose [Glc(α1-4)Glc] yields both α-(1→6)- and α-(1→4)-glucosidic linkages, the latter constituting ~25% of the total transfer reaction product. The maltotriose [Glc(α1-4)Glc(α1-4)Glc], α-(1→4)-glucosyl product disappears quickly, whereas the α-(1→6)-glucosyl products panose [Glc(α1-6)Glc(α1-4)Glc], isomaltose [Glc(α1-6)Glc], and isomaltotriose [Glc(α1-6)Glc(α1-6)Glc] accumulate. To modify the transglucosylation properties of ANG, residue Asn694, which was predicted to be involved in formation of the plus subsites of ANG, was replaced with Ala, Leu, Phe, and Trp. Except for N694A, the mutations enhanced the initial velocity of the α-(1→4)-transfer reaction to produce maltotriose, which was then degraded at a rate similar to that by wild-type ANG. With increasing reaction time, N694F and N694W mutations led to the accumulation of larger amounts of isomaltose and isomaltotriose than achieved with the wild-type enzyme. In the final stage of the reaction, the major product was panose (N694A and N694L) or isomaltose (N694F and N694W).

  5. Expression of β-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants.

    Science.gov (United States)

    Singh, Nameirakpam Dolendro; Kumar, Shashi; Daniell, Henry

    2016-03-01

    Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the aetiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β-glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript were confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography, time of flight mass spectrometer data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (per g DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to five-fold in BGL1 transgenic flowers. This study opens the possibility of increasing artemisinin content by manipulating trichomes' density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Expression of Beta-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants

    Science.gov (United States)

    Singh, Nameirakpam Dolendro; Kumar, Shashi; Daniell, Henry

    2015-01-01

    Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the etiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript was confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography (HPLC, MS-TOF) data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (g-1DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to 5-fold in BGL1 transgenic flowers. The present study opens the possibility of increasing artemisinin content by manipulating trichomes density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children. PMID:26360801

  7. Mapping the T helper cell response to acid α-glucosidase in Pompe mice.

    Science.gov (United States)

    Nayak, Sushrusha; Sivakumar, Ramya; Cao, Ou; Daniell, Henry; Byrne, Barry J; Herzog, Roland W

    2012-06-01

    Pompe disease is a neuromuscular disease caused by an inherited deficiency of the lysosomal enzyme acid α-glucosidase (GAA). The resulting accumulation of glycogen causes muscle weakness with the severe form of the disease resulting in death by cardiorespiratory failure in the first year of life. The only available treatment, enzyme replacement therapy (ERT) with recombinant GAA (rhGAA), is severely hampered by antibody responses that reduce efficacy and cause immunotoxicities. Currently, Pompe mice represent the only pre-clinical model for development of new treatments and for immunological studies. While antibody formation following ERT in this model has been described, the underlying T cell response has not been studied. In order to define the T helper response to rhGAA in Pompe mice, immunodominant CD4(+) T cell epitopes were mapped in GAA(-/-) 129SVE mice using ELISpot. Additionally, cytokine responses and antibody formation against rhGAA during ERT were measured. Among the three CD4(+) T cell epitopes identified, only epitope IFLGPEPKSVVQ, predicted to be the strongest MHC II binder, consistently contributed to IL-4 production. Frequencies of IL-4 producing T cells were considerably higher than those of IL-17 or IFN-γ producing cells, suggesting a predominantly Th2 cell mediated response. This is further supported by IgG1 being the prevalent antibody subclass against rhGAA during ERT and consistent with prior reports on IgE formation and anaphylaxis in this model. These results will facilitate mechanistic studies of the immune response to rhGAA in Pompe mice during development of new therapies and tolerance protocols. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Alpha-Glucosidase Enzyme Biosensor for the Electrochemical Measurement of Antidiabetic Potential of Medicinal Plants.

    Science.gov (United States)

    Mohiuddin, M; Arbain, D; Islam, A K M Shafiqul; Ahmad, M S; Ahmad, M N

    2016-12-01

    A biosensor for measuring the antidiabetic potential of medicinal plants was developed by covalent immobilization of α-glucosidase (AG) enzyme onto amine-functionalized multi-walled carbon nanotubes (MWCNTs-NH2). The immobilized enzyme was entrapped in freeze-thawed polyvinyl alcohol (PVA) together with p-nitrophenyl-α-D-glucopyranoside (PNPG) on the screen-printed carbon electrode at low pH to prevent the premature reaction between PNPG and AG enzyme. The enzymatic reaction within the biosensor is inhibited by bioactive compounds in the medicinal plant extracts. The capability of medicinal plants to inhibit the AG enzyme on the electrode correlates to the potential of the medicinal plants to inhibit the production of glucose from the carbohydrate in the human body. Thus, the inhibition indicates the antidiabetic potential of the medicinal plants. The performance of the biosensor was evaluated to measure the antidiabetic potential of three medicinal plants such as Tebengau (Ehretis laevis), Cemumar (Micromelum pubescens), and Kedondong (Spondias dulcis) and acarbose (commercial antidiabetic drug) via cyclic voltammetry, amperometry, and spectrophotometry. The cyclic voltammetry (CV) response for the inhibition of the AG enzyme activity by Tebengau plant extracts showed a linear relation in the range from 0.423-8.29 μA, and the inhibition detection limit was 0.253 μA. The biosensor exhibited good sensitivity (0.422 μA/mg Tebengau plant extracts) and rapid response (22 s). The biosensor retains approximately 82.16 % of its initial activity even after 30 days of storage at 4 °C.

  9. Enzymatic and structural characterization of hydrolysis of gibberellin A4 glucosyl ester by a rice β-D-glucosidase.

    Science.gov (United States)

    Hua, Yanling; Sansenya, Sompong; Saetang, Chiraporn; Wakuta, Shinji; Ketudat Cairns, James R

    2013-09-01

    In order to identify a rice gibberellin ester β-D-glucosidase, gibberellin A4 β-D-glucosyl ester (GA4-GE) was synthesized and used to screen rice β-glucosidases. Os3BGlu6 was found to have the highest hydrolysis activity to GA4-GE among five recombinantly expressed rice glycoside hydrolase family GH1 enzymes from different phylogenic clusters. The kinetic parameters of Os3BGlu6 and its mutants E178Q, E178A, E394D, E394Q and M251N for hydrolysis of p-nitrophenyl β-D-glucopyranoside (pNPGlc) and GA4-GE confirmed the roles of the catalytic acid/base and nucleophile for hydrolysis of both substrates and suggested M251 contributes to binding hydrophobic aglycones. The activities of the Os3BGlu6 E178Q and E178A acid/base mutants were rescued by azide, which they transglucosylate to produce β-D-glucopyranosyl azide, in a pH-dependent manner, while acetate also rescued Os3BGlu6 E178A at low pH. High concentrations of sodium azide (200-400 mM) inhibited Os3BGlu6 E178Q but not Os3BGlu6 E178A. The structures of Os3BGlu6 E178Q crystallized with either GA4-GE or pNPGlc had a native α-D-glucosyl moiety covalently linked to the catalytic nucleophile, E394, which showed the hydrogen bonding to the 2-hydroxyl in the covalent intermediate. These data suggest that a GH1 β-glucosidase uses the same retaining catalytic mechanism to hydrolyze 1-O-acyl glucose ester and glucoside. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones* #

    Science.gov (United States)

    Yan, Feng-ying; Xia, Wei; Zhang, Xiao-xu; Chen, Sha; Nie, Xin-zheng; Qian, Li-chun

    2016-01-01

    An extracellular β-glucosidase produced by Aspergillus terreus was identified, purified, characterized and was tested for the hydrolysis of soybean isoflavone. Matrix-assisted laser desorption/ionization with tandem time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS) revealed the protein to be a member of the glycosyl hydrolase family 3 with an apparent molecular mass of about 120 kDa. The purified β-glucosidase showed optimal activity at pH 5.0 and 65 °C and was very stable at 50 °C. Moreover, the enzyme exhibited good stability over pH 3.0–8.0 and possessed high tolerance towards pepsin and trypsin. The kinetic parameters K m (apparent Michaelis-Menten constant) and V max (maximal reaction velocity) for p-nitrophenyl-β-D-glucopyranoside (pNPG) were 1.73 mmol/L and 42.37 U/mg, respectively. The K m and V max for cellobiose were 4.11 mmol/L and 5.7 U/mg, respectively. The enzyme efficiently converted isoflavone glycosides to aglycones, with a hydrolysis rate of 95.8% for daidzin, 86.7% for genistin, and 72.1% for glycitin. Meanwhile, the productivities were 1.14 mmol/(L·h) for daidzein, 0.72 mmol/(L·h) for genistein, and 0.19 mmol/(L·h) for glycitein. This is the first report on the application of A. terreus β-glucosidase for converting isoflavone glycosides to their aglycones in soybean products. PMID:27256679

  11. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones.

    Science.gov (United States)

    Yan, Feng-Ying; Xia, Wei; Zhang, Xiao-Xu; Chen, Sha; Nie, Xin-Zheng; Qian, Li-Chun

    2016-06-01

    An extracellular β-glucosidase produced by Aspergillus terreus was identified, purified, characterized and was tested for the hydrolysis of soybean isoflavone. Matrix-assisted laser desorption/ionization with tandem time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS) revealed the protein to be a member of the glycosyl hydrolase family 3 with an apparent molecular mass of about 120 kDa. The purified β-glucosidase showed optimal activity at pH 5.0 and 65 °C and was very stable at 50 °C. Moreover, the enzyme exhibited good stability over pH 3.0-8.0 and possessed high tolerance towards pepsin and trypsin. The kinetic parameters Km (apparent Michaelis-Menten constant) and Vmax (maximal reaction velocity) for p-nitrophenyl-β-D-glucopyranoside (pNPG) were 1.73 mmol/L and 42.37 U/mg, respectively. The Km and Vmax for cellobiose were 4.11 mmol/L and 5.7 U/mg, respectively. The enzyme efficiently converted isoflavone glycosides to aglycones, with a hydrolysis rate of 95.8% for daidzin, 86.7% for genistin, and 72.1% for glycitin. Meanwhile, the productivities were 1.14 mmol/(L·h) for daidzein, 0.72 mmol/(L·h) for genistein, and 0.19 mmol/(L·h) for glycitein. This is the first report on the application of A. terreus β-glucosidase for converting isoflavone glycosides to their aglycones in soybean products.

  12. Alpha amylase and Alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis

    Directory of Open Access Journals (Sweden)

    Gladis Raja Malar Chelladurai

    2018-05-01

    Full Text Available ABSTRACT Our present investigation deals with the phytochemical screening, estimation of total flavonoids, terpenoids and tannin contents to evaluate the anti-diabetic activities of Salacia oblonga stem followed by GC-MS analysis. It explores the natural compounds and the potential α-amylase and α-glucosidase inhibitory actions of stem extracts. The aqueous stem extract was selected from other extracts (ethanol, acetone, petroleum ether and chloroform for the in vitro study of anti-diabetic activity by alpha amylase and alpha glucosidase inhibitory assays. The stem extract was also analyzed by gas chromatography mass spectrometry to identify the natural chemical components. Phytochemical analysis of aqueous stem extract showed major classes of secondary metabolites such as phenols, flavonoids, alkaloids, terpenoids, tannins, saponins. The total flavonoid, terpenoid, and tannin contents were quantified as 19.82±0.06 mg QE/g, 96.2±0.20 mg/g and 11.25±0.03 mg TAE/g respectively. The percentage inhibition of assays showed maximum inhibitory effects (59.46±0.04% and 68.51±0.01% at a concentration of 100 mg/mL. The IC50 values of stem extract was found to be 73.56 mg/mL and 80.90 mg/mL for alpha amylase and alpha glucosidase inhibition. Fifteen chemical constituents were found by GC-MS analysis. This study suggest the aqueous stem extract of Salacia oblonga might be considered as potential source of bio active constituents with excellent antidiabetic activity.

  13. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant.

    Science.gov (United States)

    Huang, Renliang; Guo, Hong; Su, Rongxin; Qi, Wei; He, Zhimin

    2017-03-01

    Recycling cellulases by substrate adsorption is a promising strategy for reducing the enzyme cost of cellulosic ethanol production. However, β-glucosidase has no carbohydrate-binding module (CBM). Thus, additional enzymes are required in each cycle to achieve a high ethanol yield. In this study, we report a new method of recycling cellulases without β-glucosidase supplementation using lignocellulosic substrate, an engineered strain expressing β-glucosidase and Tween 80. The cellulases and Tween 80 were added to an aqueous suspension of diluted sulfuric acid/ammonia-treated corncobs in a simultaneous saccharification and fermentation (SSF) process for ethanol production. Subsequently, the addition of fresh pretreated corncobs to the fermentation liquor and remaining solid residue provided substrates with absorbed cellulases for the next SSF cycle. This method provided excellent ethanol production in three successive SSF cycles without requiring the addition of new cellulases. For a 10% (w/v) solid loading, a cellulase dosage of 30 filter paper units (FPU)/g cellulose, 0.5% Tween 80, and 2 g/L of the engineered strain, approximately 90% of the initial ethanol concentration from the first SSF process was obtained in the next two SSF processes, with a total ethanol production of 306.27 g/kg corncobs and an enzyme productivity of 0.044 g/FPU. Tween 80 played an important role in enhancing cellulase recovery. This new enzyme recycling method is more efficient and practical than other reported methods. Biotechnol. Bioeng. 2017;114: 543-551. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Heterologous expression of a Rauvolfia cDNA encoding strictosidine glucosidase, a biosynthetic key to over 2000 monoterpenoid indole alkaloids.

    Science.gov (United States)

    Gerasimenko, Irina; Sheludko, Yuri; Ma, Xueyan; Stöckigt, Joachim

    2002-04-01

    Strictosidine glucosidase (SG) is an enzyme that catalyses the second step in the biosynthesis of various classes of monoterpenoid indole alkaloids. Based on the comparison of cDNA sequences of SG from Catharanthus roseus and raucaffricine glucosidase (RG) from Rauvolfia serpentina, primers for RT-PCR were designed and the cDNA encoding SG was cloned from R. serpentina cell suspension cultures. The active enzyme was expressed in Escherichia coli and purified to homogeneity. Analysis of its deduced amino-acid sequence assigned the SG from R. serpentina to family 1 of glycosyl hydrolases. In contrast to the SG from C. roseus, the enzyme from R. serpentina is predicted to lack an uncleavable N-terminal signal sequence, which is believed to direct proteins to the endoplasmic reticulum. The temperature and pH optimum, enzyme kinetic parameters and substrate specificity of the heterologously expressed SG were studied and compared to those of the C. roseus enzyme, revealing some differences between the two glucosidases. In vitro deglucosylation of strictosidine by R. serpentina SG proceeds by the same mechanism as has been shown for the C. roseus enzyme preparation. The reaction gives rise to the end product cathenamine and involves 4,21-dehydrocorynantheine aldehyde as an intermediate. The enzymatic hydrolysis of dolichantoside (Nbeta-methylstrictosidine) leads to several products. One of them was identified as a new compound, 3-isocorreantine A. From the data it can be concluded that the divergence of the biosynthetic pathways leading to different classes of indole alkaloids formed in R. serpentina and C. roseus cell suspension cultures occurs at a later stage than strictosidine deglucosylation.

  15. In vitro alpha glucosidase inhibition and free-radical scavenging activity of propolis from Thai stingless bees in mangosteen orchard

    Directory of Open Access Journals (Sweden)

    Boonyadist Vongsak

    Full Text Available ABSTRACTThe chemical component and biological activity of propolis depend on flora area of bee collection and bee species. In the study, the propolis from three stingless bee species, Lepidotrigona ventralis Smith, Lepidotrigona terminata Smith, and Tetragonula pagdeni Schwarz, was collected in the same region of mangosteen garden from Thailand. Total phenolic content, alpha glucosidase inhibitory effect, and free-radical scavenging activity using FRAP, ABTS, DPPH assays were determined. The most potent activity of propolis extract was investigated for bioactive compounds and their quantity. The ethanol extract of T. pagdeni propolis had the highest total phenolic content 12.83 ± 0.72 g of gallic acid equivalents in 100 g of the extract, and the strongest alpha glucosidase inhibitory effect with the IC50 of 70.79 ± 6.44 µg/ml. The free-radical scavenging activity evaluated by FRAP, ABTS, DPPH assays showed the FRAP value of 279.70 ± 20.55 µmol FeSO4 equivalent/g extract and the IC50 of 59.52 ± 10.76 and 122.71 ± 11.76 µg/ml, respectively. Gamma- and alpha-mangostin from T. pagdeni propolis extract were isolated and determined for the biological activity. Gamma-mangostin exhibited the strongest activity for both alpha glucosidase inhibitory effect and free-radical scavenging activity. Using HPLC quantitative analysis method, the content of gamma- and alpha-mangostin in the extract was found to be 0.94 ± 0.01 and 2.77 ± 0.08% (w/w, respectively. These findings suggested that T. pagdeni propolis may be used as a more suitable raw material for nutraceutical and pharmaceutical products and these mangostin derivatives as markers.

  16. Preparation of lactose-free pasteurized milk with a recombinant thermostable β-glucosidase from Pyrococcus furiosus

    Science.gov (United States)

    2013-01-01

    Background Lactose intolerance is a common health concern causing gastrointestinal symptoms and avoidance of dairy products by afflicted individuals. Since milk is a primary source of calcium and vitamin D, lactose intolerant individuals often obtain insufficient amounts of these nutrients which may lead to adverse health outcomes. Production of lactose-free milk can provide a solution to this problem, although it requires use of lactase from microbial sources and increases potential for contamination. Use of thermostable lactase enzymes can overcome this issue by functioning under pasteurization conditions. Results A thermostable β-glucosidase gene from Pyrococcus furiosus was cloned in frame with the Saccharomyces cerecisiae a-factor secretory signal and expressed in Pichia pastoris strain X-33. The recombinant enzyme was purified by a one-step method of weak anion exchange chromatography. The optimum temperature and pH for this β-glucosidase activity was 100°C and pH 6.0, respectively. The enzyme activity was not significantly inhibited by Ca2+. We tested the additive amount, hydrolysis time, and the influence of glucose on the enzyme during pasteurization and found that the enzyme possessed a high level of lactose hydrolysis in milk that was not obviously influenced by glucose. Conclusions The thermostablity of this recombinant β-glucosidase, combined with its neutral pH activity and favorable temperature activity optima, suggest that this enzyme is an ideal candidate for the hydrolysis of lactose in milk, and it would be suitable for application in low-lactose milk production during pasteurization. PMID:24053641

  17. Probing the aglycon binding site of a b-glucosidase: a collection of C-1-modified 2,5-dideoxy-2,5-imino-D-mannitol derivatives and their structure-activity relationships as competitive inhibitors

    DEFF Research Database (Denmark)

    Wrodnigg, Tanja; Diness, Frederik; Gruber, Christoph

    2004-01-01

    A range of new C-1 modified derivatives of the powerful glucosidase inhibitor 2,5-dideoxy-2,5-imino-D-mannitol has been synthesised and their biological activities probed with the b-glucosidase from Agrobacterium sp. Ki values are compared with those of previously prepared close relatives. Findings...

  18. Release Profile and Inhibition Test of The Nanoparticles A. Paniculata Extract as Inhibitor of α-Glucosidase in The Process of Carbohydrates Breakdown Into Glucose Diabetes Mellitus

    Science.gov (United States)

    Imansari, Farisa; Sahlan, Muhammad; Arbianti, Rita

    2017-07-01

    Andrographis paniculata (A.paniculata) contain the main active substances Andrographolide which helps lower glucose levels in diabetics by inhibiting the enzyme α-glucosidase. The ability of the extract A.paniculata in lowering glucose levels will increase with the technique encapsulation with a coating of composition Chitosan-STPP as a drug delivery to the target organ. This study aimed to get an overview of A.paniculata release profile of nanoparticles in a synthetic fluid media with various concentrations of coating and inhibition testing nasty shard extract in inhibiting the enzyme α-glucosidase. This research resulted in nanoparticles by coating efficiency and loading capacity of chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. The ability of A.paniculata extracts as α-glucosidase enzyme inhibitors has been demonstrated in this study, the percent inhibition of 33.17%.

  19. Thermal stability of Trichoderma reesei c30 cellulase and aspergillus niger; -glucosidase after ph and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  20. Thermal stability of Trichoderma reesei C30 cellulase and Aspergillus niger. beta. -glucosidase after pH and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger ..beta..-glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  1. Intestinal α-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract of Moringa stenopetala leaves.

    Science.gov (United States)

    Toma, Alemayehu; Makonnen, Eyasu; Mekonnen, Yelamtsehay; Debella, Asfaw; Addisakwattana, Sirichai

    2014-06-03

    Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. One of the successful methods to prevent of the onset of diabetes is to control postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in the aggressive delay of the carbohydrate digestion of absorbable monosaccharides. The aim of the present study is to investigate the effect of the extract of the leaves of Moringa stenopetala on α-glucosidase, pancreatic α-amylase, pancreatic lipase, and pancreatic cholesterol esterase activities, and, therefore find out the relevance of the plant in controlling blood sugar and lipid levels. The dried leaves of Moringa stenopetala were extracted with hydroalcoholic solvent and dried using rotary vapor under reduced pressure. The dried extracts were determined for the total phenolic compounds, flavonoid content and condensed tannins content by using Folin-Ciocateu's reagent, AlCl3 and vanillin assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively. The phytochemical analysis indicated that flavonoid, total phenolic, and condensed tannin contents in the extract were 71.73 ± 2.48 mg quercetin equivalent/g of crude extract, 79.81 ± 2.85 mg of gallic acid equivalent/g of crude extract, 8.82 ± 0.77 mg catechin equivalent/g of crude extract, respectively. The extract inhibited intestinal sucrase more than intestinal maltase with IC50 value of 1.47 ± 0.19 mg/ml. It also slightly inhibited pancreatic α-amylase, pancreatic lipase and pancreatic cholesterol esterase. The result demonstrated the beneficial biochemical effects of Moringa stenopetala by inhibiting intestinal α-glucosidase, pancreatic cholesterol esterase and pancreatic lipase activities. A

  2. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment.

    Science.gov (United States)

    Sabiu, S; O'Neill, F H; Ashafa, A O T

    2016-05-13

    Corn silk (Zea mays L., Stigma maydis) is an important herb used traditionally in many parts of the world to treat array of diseases including diabetes mellitus. Inhibitors of α-amylase and α-glucosidase offer an effective strategy to modulate levels of post prandial hyperglycaemia via control of starch metabolism. This study evaluated α-amylase and α-glucosidase inhibitory potentials of corn silk aqueous extract. Active principles and antioxidant attributes of the extract were also analysed. The α-amylase inhibitory potential of the extract was investigated by reacting its different concentrations with α-amylase and starch solution, while α-glucosidase inhibition was determined by pre-incubating α-glucosidase with different concentrations of the extract followed by addition of p-nitrophenylglucopyranoside. The mode(s) of inhibition of the enzymes were determined using Lineweaver-Burke plot. In vitro analysis of the extract showed that it exhibited potent and moderate inhibitory potential against α-amylase and α-glucosidase, respectively. The inhibition was concentration-dependent with respective half-maximal inhibitory concentration (IC50) values of 5.89 and 0.93mg/mL. Phytochemical analyses revealed the presence of alkaloids, flavonoids, phenols, saponins, tannins and phytosterols as probable inhibitory constituents. Furthermore, the extract remarkably scavenges reactive oxygen species like DPPH and nitric oxide radicals, elicited good reducing power and a significant metal chelating attributes. Overall, the non-competitive and uncompetitive mechanism of action of corn silk extract is due to its inhibitory effects on α-amylase and α-glucosidase, respectively. Consequently, this will reduce the rate of starch hydrolysis, enhance palliated glucose levels, and thus, lending credence to hypoglycaemic candidature of corn silk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    Science.gov (United States)

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R; Gidley, Michael J; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function.

  4. Carbon dots for fluorescent detection of α-glucosidase activity using enzyme activated inner filter effect and its application to anti-diabetic drug discovery

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Weiheng [Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165 (China); Wu, Di [School of Life Sciences, Xiamen University, Xiamen 361005 (China); Xia, Lian [Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165 (China); Chen, Xuefeng [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xian 710021 (China); Li, Guoliang, E-mail: 61254368@163.com [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xian 710021 (China); Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165 (China); Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Centre for Food Safety Risk Assessment, Beijing 100021 (China); Qiu, Nannan [Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Centre for Food Safety Risk Assessment, Beijing 100021 (China); Chen, Guang; Sun, Zhiwei; You, Jinmao [Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165 (China); Wu, Yongning, E-mail: wuyongning@cfsa.net.cn [Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Centre for Food Safety Risk Assessment, Beijing 100021 (China)

    2017-06-22

    Recently, α-glucosidase inhibitor has been widely used in clinic for diabetic therapy. In the present study, a facile and sensitive fluorescent assay based on enzyme activated inner filter effect (IFE) on nitrogen-doped carbon dots (CDs) was first developed for the detection of α-glucosidase. The N-doped CDs with green emission were prepared by a one-step hydrothermal synthesis and gave the fluorescence quantum yield of 30%, which were used as the signal output. Through α-glucosidase catalysis, 4-nitrophenol was released from 4-nitrophenyl-α-D-glucopyranoside (NGP). Interestingly, the absorption of 4-nitrophenol and the excitation of CDs were completely overlapping. Due to its great molar absorptivity, 4-nitrophenol was capable of acting as a powerful absorber to affect the fluorescent signal of CDs (i.e. IFE). By converting the absorption signals into fluorescence signals, the facile fluorescence assay strategy could be realized for α-glucosidase activity sensing, which effectively avoided the complex modification of the surface of CDs or construction of the nanoprobes. The established IFE-based sensing platform offered a low detection limit of 0.01 U/mL (S/N = 3). This proposed sensing approach has also been expanded to the inhibitor screening and showed excellent applicability. As a typical α-glucosidase inhibitor, acarbose was investigated with a low detection limit of 10{sup −8} M. This developed method enjoyed many merits including simplicity, lost cost, high sensitivity, good reproducibility and excellent selectivity, which also provided a new insight on the application of CDs to develop the facile and sensitive biosensor. - Highlights: • Green N-doped CDs were first prepared by a facile synthesis process. • IFE-based sensor without covalent linking or surface modifications was developed. • The method was successfully applied to α-glucosidase detection. • The method can be employed for sensitive screening of anti-diabetes drugs.

  5. Photobiosynthesis of stable and functional silver/silver chloride nanoparticles with hydrolytic activity using hyperthermophilic β-glucosidases with industrial potential.

    Science.gov (United States)

    Araújo, Juscemácia N; Tofanello, Aryane; da Silva, Viviam M; Sato, Juliana A P; Squina, Fabio M; Nantes, Iseli L; Garcia, Wanius

    2017-09-01

    The β-glucosidases are important enzymes employed in a large number of processes and industrial applications, including biofuel production from biomass. Therefore, in this study, we reported for the first time the photobiosynthesis of stable and functional silver/silver chloride nanoparticles (Ag/AgCl-NPs) using two hyperthermostable bacterial β-glucosidases with industrial potential. The syntheses were straightforward and rapid processes carried out by mixing β-glucosidase and silver nitrate (in buffer 10mM Tris-HCl, pH 8) under irradiation with light (over a wavelength range of 450-600nm), therefore, compatible with the green chemistry procedure. Synthesized Ag/AgCl-NPs were characterized using a series of physical techniques. Absorption spectroscopy showed a strong absorption band centered at 460nm due to surface plasmon resonance of the Ag-NPs. X-ray diffraction analysis revealed that the Ag/AgCl-NPs were purely crystalline in nature. Under electron microscopy, Ag/AgCl-NPs of variable diameter ranging from 10 to 100nm can be visualized. Furthermore, electron microscopy, zeta potential and Fourier transform infrared spectroscopy results confirmed the presence of β-glucosidases coating and stabilizing the Ag/AgCl-NPs. Finally, the results showed that the enzymatic activities were maintained in the β-glucosidases assisted Ag/AgCl-NPs. The information described here should provide a useful basis for future studies of β-glucosidases assisted Ag/AgCl-NPs, including biotechnological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Carbon dots for fluorescent detection of α-glucosidase activity using enzyme activated inner filter effect and its application to anti-diabetic drug discovery

    International Nuclear Information System (INIS)

    Kong, Weiheng; Wu, Di; Xia, Lian; Chen, Xuefeng; Li, Guoliang; Qiu, Nannan; Chen, Guang; Sun, Zhiwei; You, Jinmao; Wu, Yongning

    2017-01-01

    Recently, α-glucosidase inhibitor has been widely used in clinic for diabetic therapy. In the present study, a facile and sensitive fluorescent assay based on enzyme activated inner filter effect (IFE) on nitrogen-doped carbon dots (CDs) was first developed for the detection of α-glucosidase. The N-doped CDs with green emission were prepared by a one-step hydrothermal synthesis and gave the fluorescence quantum yield of 30%, which were used as the signal output. Through α-glucosidase catalysis, 4-nitrophenol was released from 4-nitrophenyl-α-D-glucopyranoside (NGP). Interestingly, the absorption of 4-nitrophenol and the excitation of CDs were completely overlapping. Due to its great molar absorptivity, 4-nitrophenol was capable of acting as a powerful absorber to affect the fluorescent signal of CDs (i.e. IFE). By converting the absorption signals into fluorescence signals, the facile fluorescence assay strategy could be realized for α-glucosidase activity sensing, which effectively avoided the complex modification of the surface of CDs or construction of the nanoprobes. The established IFE-based sensing platform offered a low detection limit of 0.01 U/mL (S/N = 3). This proposed sensing approach has also been expanded to the inhibitor screening and showed excellent applicability. As a typical α-glucosidase inhibitor, acarbose was investigated with a low detection limit of 10"−"8 M. This developed method enjoyed many merits including simplicity, lost cost, high sensitivity, good reproducibility and excellent selectivity, which also provided a new insight on the application of CDs to develop the facile and sensitive biosensor. - Highlights: • Green N-doped CDs were first prepared by a facile synthesis process. • IFE-based sensor without covalent linking or surface modifications was developed. • The method was successfully applied to α-glucosidase detection. • The method can be employed for sensitive screening of anti-diabetes drugs.

  7. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    Directory of Open Access Journals (Sweden)

    Sushil Dhital

    Full Text Available Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph, and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary

  8. Mammalian Mucosal α-Glucosidases Coordinate with α-Amylase in the Initial Starch Hydrolysis Stage to Have a Role in Starch Digestion beyond Glucogenesis

    Science.gov (United States)

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R.; Gidley, Michael J.; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function. PMID

  9. Lactucaxanthin - a potential anti-diabetic carotenoid from lettuce (Lactuca sativa) inhibits α-amylase and α-glucosidase activity in vitro and in diabetic rats.

    Science.gov (United States)

    Gopal, Sowmya Shree; Lakshmi, Magisetty Jhansi; Sharavana, Gurunathan; Sathaiah, Gunaseelan; Sreerama, Yadahally N; Baskaran, Vallikannan

    2017-03-22

    Intestinal and pancreatic α-amylase and α-glucosidase inhibitors offer an approach to lower the levels of post-prandial hyperglycemia through the control of dietary starch breakdown in digestion. This study hypothesized that lactucaxanthin (Lxn) in lettuce (Lactuca sativa) inhibits the activity of α-amylase and α-glucosidase. In this study, the interaction of Lxn with α-amylase and α-glucosidase in silico and its inhibitory effect on these enzymes were studied using in vitro and STZ-induced diabetic rat models. Lxn was isolated from lettuce with 96% purity confirmed by HPLC and LCMS. The in silico analysis showed that Lxn has a lower binding energy (-6.05 and -6.34 kcal mol -1 ) with α-amylase and α-glucosidase compared to their synthetic inhibitors, acarbose (-0.21 kcal mol -1 ) and miglitol (-2.78 kcal mol -1 ), respectively. In vitro α-amylase and α-glucosidase inhibition assays revealed that Lxn had IC 50 values of 435.5 μg mL -1 and 1.84 mg mL -1 , but acarbose has values of 2.5 and 16.19 μg mL -1 . The in vivo results showed an increased activity for α-amylase and α-glucosidase in the intestine (4.7 and 1.30 fold, p < 0.05) and pancreas (1.3 and 1.48 fold, p < 0.05) of STZ induced diabetic rats compared to normal rats. Whereas the activity decreased (p < 0.05) in the Lxn fed diabetic rats, except for the intestinal α-glucosidase activity (1.69 ± 0.12 PNP per min per mg protein). This was confirmed by the low blood glucose level (239.4 ± 18.2 mg dL -1 ) in diabetic rats fed Lxn compared to the diabetic group (572.2 ± 30.5 mg dL -1 , p < 0.05). Lxn significantly inhibited (p < 0.05) the activity of α-amylase and α-glucosidase and could be of medical and nutritional relevance in the treatment of diabetes.

  10. High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production.

    Science.gov (United States)

    Cheng, Xiaoliang; Hiras, Jennifer; Deng, Kai; Bowen, Benjamin; Simmons, Blake A; Adams, Paul D; Singer, Steven W; Northen, Trent R

    2013-01-01

    Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS)-based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC), Medium 84 + rolled oats, and M9TE + MCC at 45°C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45°C than at all other temperatures. While T. bispora is reported to grow optimally at 60°C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45°C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.

  11. Human acid β-glucosidase: isolation and amino acid sequence of a peptide containing the catalytic site

    International Nuclear Information System (INIS)

    Dinur, T.; Osiecki, K.M.; Legler, G.; Gatt, S.; Desnick, R.J.; Grabowski, G.A.

    1986-01-01

    Human acid β-glucosidase (D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) cleaves the glucosidic bonds of glucosylceramide and synthetic β-glucosides. The deficient activity of this hydrolase is the enzymatic defect in the subtypes and variants of Gaucher disease, the most prevalent lysosomal storage disease. To isolate and characterize the catalytic site of the normal enzyme, brominated 3 H-labeled conduritol B epoxide ( 3 H-Br-CBE), which inhibits the enzyme by binding covalently to this site, was used as an affinity label. Under optimal conditions 1 mol of 3 H-Br-CBE bound to 1 mol of pure enzyme protein, indicating the presence of a single catalytic site per enzyme subunit. After V 8 protease digestion of the 3 H-Br-CBE-labeled homogeneous enzyme, three radiolabeled peptides, designated peptide A, B, or C, were resolved by reverse-phase HPLC. The partial amino acid sequence (37 residues) of peptide A (M/sub r/, 5000) was determined. The sequence of this peptide, which contained the catalytic site, had exact homology to the sequence near the carboxyl terminus of the protein, as predicted from the nucleotide sequence of the full-length cDNA encoding acid β-glucosidase

  12. First glycoside hydrolase family 2 enzymes from Thermus antranikianii and Thermus brockianus with β-glucosidase activity

    Directory of Open Access Journals (Sweden)

    Carola eSchröder

    2015-06-01

    Full Text Available Two genes tagh2 and tbgh2 coding for enzymes with hydrolytic activity towards esculin were identified from the extreme thermophilic, aerobic bacteria Thermus antranikianii (Ta and T. brockianus (Tb. Shortened conserved domains predicted a membership of the enzymes of glycoside hydrolase (GH family 2. At present, β-galactosidase activity is found frequently in GH family 2 but β-glucosidase activity has not been reported in this family before. The enzymes TaGH2 and TbGH2 preferred hydrolysis of nitrophenol-linked β-D-glucopyranosides with specific activities of 3,966 U/mg and 660 U/mg, respectively. Residual activities of 40 % (TaGH2 and 51 % (TbGH2 towards 4-NP-β-D-galactopyranoside were observed. Furthermore, TaGH2 hydrolyzed cellobiose. TbGH2, however, showed no activity on cellobiose or lactose. The enzymes exhibited highest activity at 95 °C (TaGH2 and 90 °C (TbGH2 at pH 6.5. Both enzymes were extremely thermostable and thermal activation up to 250 % was observed at temperatures between 50 and 60 °C. Accordingly, the first thermoactive glycoside hydrolase family 2 enzymes with β glucosidase activity have been identified and characterized. The hydrolysis of cellobiose is a unique property of TaGH2 when compared to the enzymes of GH family 2.

  13. How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation.

    Science.gov (United States)

    Pentzold, Stefan; Zagrobelny, Mika; Rook, Fred; Bak, Søren

    2014-08-01

    Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points, before and during feeding as well as during digestion, and at several levels such as the insects’ feeding behaviour, physiology and metabolism. Insect adaptations frequently circumvent or counteract the activity of the plant β-glucosidases, bioactivating enzymes that are a key element in the plant’s two-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists and specialists, and can act on different classes of defence compounds. We discuss how generalist and specialist insects appear to differ in their ability to use these different types of adaptations: in generalists, adaptations are often inducible, whereas in specialists they are often constitutive. Future studies are suggested to investigate in detail how insect adaptations act in combination to overcome plant chemical defences and to allow ecologically relevant conclusions.

  14. Extracts of Coreopsis tinctoria Nutt. Flower Exhibit Antidiabetic Effects via the Inhibition of α-Glucosidase Activity

    Directory of Open Access Journals (Sweden)

    Wujie Cai

    2016-01-01

    Full Text Available The aim of this study was to assay the effects of Coreopsis tinctoria Nutt. flower extracts on hyperglycemia of diet-induced obese mice and the underlying mechanisms. Coreopsis tinctoria flower was extracted with ethanol and water, respectively. The total phenol, flavonoid levels, and the constituents of the extracts were measured. For the animal experiments, C57BL/6 mice were fed with a chow diet, high-fat diet, or high-fat diet mixed with 0.4% (w/w water and ethanol extracts of Coreopsis tinctoria flower for 8 weeks. The inhibitory effects of the extracts on α-glucosidase activity and the antioxidant properties were assayed in vitro. We found that the extracts blocked the increase of fasting blood glucose, serum triglyceride (TG, insulin, leptin, and liver lipid levels and prevented the development of glucose tolerance impairment and insulin resistance in the C57BL/6 mice induced by a high-fat diet. The extracts inhibited α-glycosidase activity and increased oxidant activity in vitro. In conclusion, Coreopsis tinctoria flower extracts may ameliorate high-fat diet-induced hyperglycemia and insulin resistance. The underling mechanism may be via the inhibition of α-glucosidase activity. Our data indicate that Coreopsis tinctoria flower could be used as a beverage supplement and a potential source of drugs for treatment of diabetics.

  15. [Evaluate drug interaction of multi-components in Morus alba leaves based on α-glucosidase inhibitory activity].

    Science.gov (United States)

    Ji, Tao; Su, Shu-Lan; Guo, Sheng; Qian, Da-Wei; Ouyang, Zhen; Duan, Jin-Ao

    2016-06-01

    Column chromatography was used for enrichment and separation of flavonoids, alkaloids and polysaccharides from the extracts of Morus alba leaves; glucose oxidase method was used with sucrose as the substrate to evaluate the multi-components of M. alba leaves in α-glucosidase inhibitory models; isobole method, Chou-Talalay combination index analysis and isobolographic analysis were used to evaluate the interaction effects and dose-effect characteristics of two components, providing scientific basis for revealing the hpyerglycemic mechanism of M. alba leaves. The components analysis showed that flavonoid content was 5.3%; organic phenolic acids content was 10.8%; DNJ content was 39.4%; and polysaccharide content was 18.9%. Activity evaluation results demonstrated that flavonoids, alkaloids and polysaccharides of M. alba leaves had significant inhibitory effects on α-glucosidase, and the inhibitory rate was increased with the increasing concentration. Alkaloids showed most significant inhibitory effects among these three components. Both compatibility of alkaloids and flavonoids, and the compatibility of alkaloids and polysaccharides demonstrated synergistic effects, but the compatibility of flavonoids and polysaccharides showed no obvious synergistic effects. The results have confirmed the interaction of multi-components from M. alba leaves to regulate blood sugar, and provided scientific basis for revealing hpyerglycemic effectiveness and mechanism of the multi-components from M. alba leaves. Copyright© by the Chinese Pharmaceutical Association.

  16. High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production

    Directory of Open Access Journals (Sweden)

    Xiaoliang eCheng

    2013-12-01

    Full Text Available Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC, Medium 84 + rolled oats, and M9TE + MCC at 45 °C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45 °C than at all other temperatures. While T. bispora is reported to grow optimally at 60 °C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45 °C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.

  17. Production of Ginsenoside F2 by Using Lactococcus lactis with Enhanced Expression of β-Glucosidase Gene from Paenibacillus mucilaginosus.

    Science.gov (United States)

    Li, Ling; Shin, So-Yeon; Lee, Soo Jin; Moon, Jin Seok; Im, Wan Taek; Han, Nam Soo

    2016-03-30

    This study aimed to produce a pharmacologically active minor ginsenoside F2 from the major ginsenosides Rb1 and Rd by using a recombinant Lactococcus lactis strain expressing a heterologous β-glucosidase gene. The nucleotide sequence of the gene (BglPm) was derived from Paenibacillus mucilaginosus and synthesized after codon optimization, and the two genes (unoptimized and optimized) were expressed in L. lactis NZ9000. Codon optimization resulted in reduction of unfavorable codons by 50% and a considerable increase in the expression levels (total activities) of β-glucosidases (0.002 unit/mL, unoptimized; 0.022 unit/mL, optimized). The molecular weight of the enzyme was 52 kDa, and the purified forms of the enzymes could successfully convert Rb1 and Rd into F2. The permeabilized L. lactis expressing BglPm resulted in a high conversion yield (74%) of F2 from the ginseng extract. Utilization of this microbial cell to produce F2 may provide an alternative method to increase the health benefits of Panax ginseng.

  18. Repetitive postprandial hyperglycemia increases cardiac ischemia/reperfusion injury: prevention by the alpha-glucosidase inhibitor acarbose.

    Science.gov (United States)

    Frantz, Stefan; Calvillo, Laura; Tillmanns, Jochen; Elbing, Inka; Dienesch, Charlotte; Bischoff, Hilmar; Ertl, Georg; Bauersachs, Johann

    2005-04-01

    Protective effects of the alpha-glucosidase inhibitor acarbose have been reported for various diabetic complications. In the STOP-NIDDM study, even patients without overt diabetes, but with impaired glucose tolerance, had a reduction in cardiovascular events when treated with acarbose. Therefore, we investigated the effect of repetitive postprandial hyperglycemia on the cardiac ischemia/reperfusion injury in vivo. Mice were treated daily by single applications of placebo, sucrose (4 g/kg body weight), or sucrose + acarbose (10 mg/kg body weight) by gavage for 7 days. Acarbose treatment significantly reduced the sucrose-induced increase in plasma glucose concentration. Subsequently, animals underwent 30 min of ischemia by coronary artery ligation and 24 h of reperfusion in vivo. In the sucrose group, ischemia/reperfusion damage was significantly increased (infarct/area at risk, placebo vs. sucrose, 38.8+/-7.5% vs. 62.2+/-4.8%, P<0.05). This was prevented by acarbose treatment (infarct/area at risk 30.7+/-7.2%). While myocardial inflammation was similar in all groups, oxidative stress as indicated by a significant increase in lipid peroxides was enhanced in the sucrose, but not in the sucrose + acarbose group. In summary, repetitive postprandial hyperglycemia increases ischemia/reperfusion damage. This effect can be prevented by treatment with the alpha-glucosidase inhibitor acarbose.

  19. Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome.

    Science.gov (United States)

    Uchiyama, Taku; Yaoi, Katusro; Miyazaki, Kentaro

    2015-01-01

    β-glucosidases (BGLs) hydrolyze cello-oligosaccharides to glucose and play a crucial role in the enzymatic saccharification of cellulosic biomass. Despite their significance for the production of glucose, most identified BGLs are commonly inhibited by low (∼mM) concentrations of glucose. Therefore, BGLs that are insensitive to glucose inhibition have great biotechnological merit. We applied a metagenomic approach to screen for such rare glucose-tolerant BGLs. A metagenomic library was created in Escherichia coli (∼10,000 colonies) and grown on LB agar plates containing 5-bromo-4-chloro-3-indolyl-β-D-glucoside, yielding 828 positive (blue) colonies. These were then arrayed in 96-well plates, grown in LB, and secondarily screened for activity in the presence of 10% (w/v) glucose. Seven glucose-tolerant clones were identified, each of which contained a single bgl gene. The genes were classified into two groups, differing by two nucleotides. The deduced amino acid sequences of these genes were identical (452 aa) and found to belong to the glycosyl hydrolase family 1. The recombinant protein (Ks5A7) was overproduced in E. coli as a C-terminal 6 × His-tagged protein and purified to apparent homogeneity. The molecular mass of the purified Ks5A7 was determined to be 54 kDa by SDS-PAGE, and 160 kDa by gel filtration analysis. The enzyme was optimally active at 45°C and pH 5.0-6.5 and retained full or 1.5-2-fold enhanced activity in the presence of 0.1-0.5 M glucose. It had a low KM (78 μM with p-nitrophenyl β-D-glucoside; 0.36 mM with cellobiose) and high V max (91 μmol min(-1) mg(-1) with p-nitrophenyl β-D-glucoside; 155 μmol min(-1) mg(-1) with cellobiose) among known glucose-tolerant BGLs and was free from substrate (0.1 M cellobiose) inhibition. The efficient use of Ks5A7 in conjunction with Trichoderma reesei cellulases in enzymatic saccharification of alkaline-treated rice straw was demonstrated by increased production of glucose.

  20. Engineering the cytokinin-glucoside specificity of the maize beta-D-glucosidase Zm-p60.1 using site-directed random mutagenesis

    Czech Academy of Sciences Publication Activity Database

    Filipi, T.; Mazura, P.; Janda, L.; Kiran, N.S.; Brzobohatý, Břetislav

    2012-01-01

    Roč. 74, FEB2012 (2012), s. 40-48 ISSN 0031-9422 Institutional support: RVO:68081707 Keywords : beta-Glucosidase * cis-Zeatin-O-beta-D-glucopyranoside * Cytokinin metabolism Subject RIV: BO - Biophysics Impact factor: 3.050, year: 2012

  1. Quickly Screening for Potential α-Glucosidase Inhibitors from Guava Leaves Tea by Bioaffinity Ultrafiltration Coupled with HPLC-ESI-TOF/MS Method.

    Science.gov (United States)

    Wang, Lu; Liu, Yufeng; Luo, You; Huang, Kuiying; Wu, Zhenqiang

    2018-02-14

    Guava leaves tea (GLT) has a potential antihyperglycemic effect. Nevertheless, it is unclear which compound plays a key role in reducing blood sugar. In this study, GLT extract (IC 50 = 19.37 ± 0.21 μg/mL) exhibited a stronger inhibitory potency against α-glucosidase than did acarbose (positive control) at IC 50 = 178.52 ± 1.37 μg/mL. To rapidly identify the specific α-glucosidase inhibitor components from GLT, an approach based on bioaffinity ultrafiltration combined with high performance liquid chromatography coupled to electrospray ionization-time-of-flight-mass spectrometry (BAUF-HPLC-ESI-TOF/MS) was developed. Under the optimal bioaffinity ultrafiltration conditions, 11 corresponding potential α-glucosidase inhibitors with high affinity degrees (ADs) were screened and identified from the GLT extract. Quercetin (IC 50 = 4.51 ± 0.71 μg/mL) and procyanidin B3 (IC 50 = 28.67 ± 5.81 μg/mL) were determined to be primarily responsible for the antihyperglycemic effect, which further verified the established screening method. Moreover, structure-activity relationships were discussed. In conclusion, the BAUF-HPLC-ESI-TOF/MS method could be applied to determine the potential α-glucosidase inhibitors from complex natural products quickly.

  2. Recombinant human acid alpha-glucosidase: high level production in mouse milk, biochemical characteristics, correction of enzyme deficiency in GSDII KO mice

    NARCIS (Netherlands)

    A.G.A. Bijvoet (Agnes); M.A. Kroos (Marian); F.R. Pieper (Frank); M. Van der Vliet (Martin); H.A. de Boer (Herman); A.T. van der Ploeg (Ans); M.Ph. Verbeet (Martin); A.J.J. Reuser (Arnold)

    1998-01-01

    textabstractGlycogen storage disease type II (GSDII) is caused by lysosomal acid alpha-glucosidase deficiency. Patients have a rapidly fatal or slowly progressive impairment of muscle function. Enzyme replacement therapy is under investigation. For large-scale, cost-effective

  3. [superscript 1]H NMR Spectroscopy-Based Configurational Analysis of Mono- and Disaccharides and Detection of ß-Glucosidase Activity: An Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Periyannan, Gopal R.; Lawrence, Barbara A.; Egan, Annie E.

    2015-01-01

    A [superscript 1]H NMR spectroscopy-based laboratory experiment explores mono- and disaccharide structural chemistry, and the enzyme-substrate specificity of glycosidic bond cleavage by ß-glucosidase towards cellobiose (ß-linked gluco-disaccharide) and maltose (a-linked gluco-disaccharide). Structural differences between cellobiose, maltose, and…

  4. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes

    DEFF Research Database (Denmark)

    Trinh, Thi Dieu Binh; Stærk, Dan; Jäger, Anna K

    2016-01-01

    Ethnopharmacological relevance The 18 plant species investigated in this study have been used as herbal antidiabetic remedies in Vietnamese traditional medicines. This study aimed to evaluate their ability to inhibit α-glucosidase and α-amylase, two key enzymes involved in serum glucose regulation...

  5. Nutrient Content, Phytonutrient Composition, Alpha Amylase, Alpha Glucosidase Inhibition Activity and Antioxidant Activity of the Stoechospermum Marginatum Collected in Pre Monsoon Season

    Directory of Open Access Journals (Sweden)

    Reka Palanivel

    2017-03-01

    Full Text Available The objective of this study was to investigate the nutrient content, phytonutrient composition, physicochemical properties, alpha amylase and alpha glucosidase inhibition activity and antioxidant activity of the brown algae Stoechospermum marginatum collected from Gulf of Mannar, Tamil Nadu, India in pre monsoon season (June- September, 2015. Six and eight hours of ethanol and aqueous extract of Stoechospermum marginatum were used for phytonutrient screening, alpha amylase, alpha glucosidase inhibition activity and antioxidant activity. From the results of the study it is understood that Stoechospermum marginatum contain a high amount of carbohydrate, protein, crude fiber and phytonutrients like tannin, flavonoid, saponin, alkaloid, terpenoids, steroid and total phenolic content. The physicochemical properties namely Water absorption and Swelling power were very promising. Alpha amylase and alpha glucosidase inhibition activity was recorded to be high in both aqueous and ethanol extracts of eight hour extraction than in extracts taken from six hours extraction. Antioxidant activity was detected using DPPH, FRAP, beta carotene scavenging and H2O2 assay and found to have a high radical scavenging activity. Stoechospermum marginatum possess a valuable amount of total phenolic content and other phytonutrients and physicochemical properties, it may the reason for the potential inhibition of alpha amylase, alpha glucosidase and antioxidant activity. It is concluded from the study that the brown algae may be incorporated into foods to enhance their nutritional and therapeutic value.

  6. Magnetic Ligand Fishing as a Targeting Tool for HPLC-HRMS-SPE-NMR: α-Glucosidase Inhibitory Ligands and Alkylresorcinol Glycosides from Eugenia catharinae.

    Science.gov (United States)

    Wubshet, Sileshi G; Brighente, Inês M C; Moaddel, Ruin; Staerk, Dan

    2015-11-25

    A bioanalytical platform combining magnetic ligand fishing for α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR for structural identification of α-glucosidase inhibitory ligands, both directly from crude plant extracts, is presented. Magnetic beads with N-terminus-coupled α-glucosidase were synthesized and characterized for their inherent catalytic activity. Ligand fishing with the immobilized enzyme was optimized using an artificial test mixture consisting of caffeine, ferulic acid, and luteolin before proof-of-concept with the crude extract of Eugenia catharinae. The combination of ligand fishing and HPLC-HRMS-SPE-NMR identified myricetin 3-O-α-L-rhamnopyranoside, myricetin, quercetin, and kaempferol as α-glucosidase inhibitory ligands in E. catharinae. Furthermore, HPLC-HRMS-SPE-NMR analysis led to identification of six new alkylresorcinol glycosides, i.e., 5-(2-oxopentyl)resorcinol 4-O-β-D-glucopyranoside, 5-propylresorcinol 4-O-β-D-glucopyranoside, 5-pentylresorcinol 4-O-[α-D-apiofuranosyl-(1→6)]-β-D-glucopyranoside, 5-pentylresorcinol 4-O-β-D-glucopyranoside, 4-hydroxy-3-O-methyl-5-pentylresorcinol 1-O-β-D-glucopyranoside, and 3-O-methyl-5-pentylresorcinol 1-O-[β-D-glucopyranosyl-(1→6)]-β-D-glucopyranoside.

  7. Alpha-glucosidase Inhibitory and Antioxidant Potential of Antidiabetic Herb Alternanthera sessilis: Comparative Analyses of Leaf and Callus Solvent Fractions.

    Science.gov (United States)

    Chai, Tsun-Thai; Khoo, Chee-Siong; Tee, Chong-Siang; Wong, Fai-Chu

    2016-01-01

    Alternanthera sessilis is a medicinal herb which is consumed as vegetable and used as traditional remedies of various ailments in Asia and Africa. This study aimed to investigate the antiglucosidase and antioxidant activity of solvent fractions of A. sessilis leaf and callus. Leaf and callus methanol extracts were fractionated to produce hexane, chloroform, ethyl acetate, butanol, and water fractions. Antiglucosidase and 1,1-diphenyl-2-picrylhydrazyl scavenging activities as well as total phenolic (TP), total flavonoid (TF), and total coumarin (TC) contents were evaluated. Lineweaver-Burk plot analysis was performed on leaf and callus fractions with the strongest antiglucosidase activity. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractions. Callus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractions. LEF and CEF were identified as noncompetitive and competitive α-glucosidase inhibitors, respectively. LEF and CEF had greater antiglucosidase activity than acarbose. Leaf fractions had higher phytochemical contents than callus fractions. LEF had the highest TP, TF, and TC contents. Antiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. LEF had potent antiglucosidase activity and concurrent antioxidant activity. CEF had the highest antiglucosidase activity among all fractions. Callus culture is a promising tool for enhancing production of potent α-glucosidase inhibitors. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractionsCallus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12

  8. Glycoside hydrolase family 13 α-glucosidases encoded by Bifidobacterium breve UCC2003; A comparative analysis of function, structure and phylogeny.

    Science.gov (United States)

    Kelly, Emer D; Bottacini, Francesca; O'Callaghan, John; Motherway, Mary O'Connell; O'Connell, Kerry Joan; Stanton, Catherine; van Sinderen, Douwe

    2016-05-02

    Bifidobacterium breve is a noted inhabitant and one of the first colonizers of the human gastro intestinal tract (GIT). The ability of this bacterium to persist in the GIT is reflected by the abundance of carbohydrate-active enzymes that are encoded by its genome. One such family of enzymes is represented by the α-glucosidases, of which three, Agl1, Agl2 and MelD, have previously been identified and characterized in the prototype B. breve strain UCC2003. In this report, we describe an additional B. breve UCC2003-encoded α-glucosidase, along with a B. breve UCC2003-encoded α-glucosidase-like protein, designated here as Agl3 and Agl4, respectively, which together with the three previously described enzymes belong to glycoside hydrolase (GH) family 13. Agl3 was shown to exhibit hydrolytic specificity towards the α-(1→6) linkage present in palatinose; the α-(1→3) linkage present in turanose; the α-(1→4) linkages found in maltotriose and maltose; and to a lesser degree, the α-(1→2) linkage found in sucrose and kojibiose; and the α-(1→5) linkage found in leucrose. Surprisingly, based on the substrates analyzed, Agl4 did not exhibit biologically relevant α-glucosidic activity. With the presence of four functionally active GH13 α-glucosidases, B. breve UCC2003 is capable of hydrolyzing all α-glucosidic linkages that can be expected in glycan substrates in the lower GIT. This abundance of α-glucosidases provides B. breve UCC2003 with an adaptive ability and metabolic versatility befitting the transient nature of growth substrates in the GIT. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A defence-related Olea europaea β-glucosidase hydrolyses and activates oleuropein into a potent protein cross-linking agent.

    Science.gov (United States)

    Koudounas, Konstantinos; Banilas, Georgios; Michaelidis, Christos; Demoliou, Catherine; Rigas, Stamatis; Hatzopoulos, Polydefkis

    2015-04-01

    Oleuropein, the major secoiridoid compound in olive, is involved in a sophisticated two-component defence system comprising a β-glucosidase enzyme that activates oleuropein into a toxic glutaraldehyde-like structure. Although oleuropein deglycosylation studies have been monitored extensively, an oleuropein β-glucosidase gene has not been characterized as yet. Here, we report the isolation of OeGLU cDNA from olive encoding a β-glucosidase belonging to the defence-related group of terpenoid-specific glucosidases. In planta recombinant protein expression assays showed that OeGLU deglycosylated and activated oleuropein into a strong protein cross-linker. Homology and docking modelling predicted that OeGLU has a characteristic (β/α)8 TIM barrel conformation and a typical construction of a pocket-shaped substrate recognition domain composed of conserved amino acids supporting the β-glucosidase activity and non-conserved residues associated with aglycon specificity. Transcriptional analysis in various olive organs revealed that the gene was developmentally regulated, with its transcript levels coinciding well with the spatiotemporal patterns of oleuropein degradation and aglycon accumulation in drupes. OeGLU upregulation in young organs reflects its prominent role in oleuropein-mediated defence system. High gene expression during drupe maturation implies an additional role in olive secondary metabolism, through the degradation of oleuropein and reutilization of hydrolysis products. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.).

    Science.gov (United States)

    Poovitha, Sundar; Parani, Madasamy

    2016-07-18

    α-amylase and α-glucosidase digest the carbohydrates and increase the postprandial glucose level in diabetic patients. Inhibiting the activity of these two enzymes can control postprandial hyperglycemia, and reduce the risk of developing diabetes. Bitter gourd or balsam pear is one of the important medicinal plants used for controlling postprandial hyperglycemia in diabetes patients. However, there is limited information available on the presence of α-amylase and α-glucosidase inhibiting compounds. In the current study, the protein extracts from the fruits of M. charantia var. charantia (MCC) and M. charantia var. muricata (MCM) were tested for α-amylase and α-glucosidase inhibiting activities in vitro, and glucose lowering activity after oral administration in vivo. The protein extract from both MCC and MCM inhibited the activity of α-amylase and α-glucosidase through competitive inhibition, which was on par with Acarbose as indicated by in vitro percentage of inhibition (66 to 69 %) and IC50 (0.26 to 0.29 mg/ml). Both the protein extracts significantly reduced peak blood glucose and area under the curve in Streptozotocin-induced diabetic rats, which were orally challenged with starch and sucrose. Protein extracts from the fruits of the two varieties of bitter gourd inhibited α-amylase and α-glucosidase in vitro and lowered the blood glucose level in vivo on par with Acarbose when orally administrated to Streptozotocin-induced diabetic rats. Further studies on mechanism of action and methods of safe and biologically active delivery will help to develop an anti-diabetic oral protein drug from these plants.

  11. Antioxidant and α-glucosidase activities of benzoic acid derivate from the bark of Myristica fatua Houtt

    Science.gov (United States)

    Megawati, Darmawan, Akhmad; Fajriah, Sofa; Primahana, Gian; Dewi, Rizna Triana; Minarti, Meiliawati, Lia

    2017-11-01

    Myrictica fatua Houtt widely used in Indonesian as one of the traditional medicinal plants. Cancer and diabetic mellitus (DM) type 2 are two degenerative diseases caused by the presence of excessive free radicals in the body. Antioxidant and anti-diabetic active compounds were needed to reduce the risk of the diseases. One of the chemical compound groups that can be used as antioxidant and antidiabetic is phenolic compound. Isolation of the methanolic extract of the bark of M. fatua Houtt using chromatography methods led to the isolation of phenolic compound. Methyl 3,4-dihydroxybenzoate showed antioxidant and antidiabetic activities through DPPH free radicals scavenger and α-glucosidase inhibitions activities test showed IC50 value 7.96 and 7.68 ug / mL, respectively

  12. An Improved Neutral a-Glucosidase Assay for Assessment of Epididymal Function—Validation and Comparison to the WHO Method

    Directory of Open Access Journals (Sweden)

    Frank Eertmans

    2014-01-01

    Full Text Available Neutral a-glucosidase (NAG activity in human seminal plasma is an important indicator for epididymis functionality. In the present study, the classic World Health Organization (WHO method has been adapted to enhance assay robustness. Changes include modified enzyme reaction buffer composition and usage of an alternative enzyme inhibitor for background correction (glucose instead of castanospermine. Both methods have been tested in parallel on 144 semen samples, obtained from 94 patients/donors and 50 vasectomized men (negative control, respectively. Passing-Bablok regression analysis demonstrated equal assay performance. In terms of assay validation, analytical specificity, detection limit, measuring range, precision, and cut-off values have been calculated. These data confirm that the adapted method is a reliable, improved tool for NAG analysis in human semen.

  13. Human Acid β-Glucosidase Inhibition by Carbohydrate Derived Iminosugars: Towards New Pharmacological Chaperones for Gaucher Disease.

    Science.gov (United States)

    Parmeggiani, Camilla; Catarzi, Serena; Matassini, Camilla; D'Adamio, Giampiero; Morrone, Amelia; Goti, Andrea; Paoli, Paolo; Cardona, Francesca

    2015-09-21

    A collection of carbohydrate-derived iminosugars belonging to three structurally diversified sub-classes (polyhydroxylated pyrrolidines, piperidines, and pyrrolizidines) was evaluated for inhibition of human acid β-glucosidase (glucocerebrosidase, GCase), the deficient enzyme in Gaucher disease. The synthesis of several new pyrrolidine analogues substituted at the nitrogen or α-carbon atom with alkyl chains of different lengths suggested an interpretation of the inhibition data and led to the discovery of two new GCase inhibitors at sub-micromolar concentration. In the piperidine iminosugar series, two N-alkylated derivatives were found to rescue the residual GCase activity in N370S/RecNcil mutated human fibroblasts (among which one up to 1.5-fold). This study provides the starting point for the identification of new compounds in the treatment of Gaucher disease. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Interpretation of acid α-glucosidase activity in creatine kinase elevation: A case of Becker muscular dystrophy.

    Science.gov (United States)

    Oitani, Yoshiki; Ishiyama, Akihiko; Kosuga, Motomichi; Iwasawa, Kentaro; Ogata, Ayako; Tanaka, Fumiko; Takeshita, Eri; Shimizu-Motohashi, Yuko; Komaki, Hirofumi; Nishino, Ichizo; Okuyama, Torayuki; Sasaki, Masayuki

    2018-05-16

    Diagnosis of Pompe disease is sometimes challenging because it exhibits clinical similarities to muscular dystrophy. We describe a case of Becker muscular dystrophy (BMD) with a remarkable reduction in activity of the acid α-glucosidase (GAA) enzyme, caused by a combination of pathogenic mutation and polymorphism variants resulting in pseudodeficiency in GAA. The three-year-old boy demonstrated asymptomatic creatine kinase elevation. Neither exon deletion nor duplication was detected on multiplex ligation-dependent probe amplification (MLPA) of DMD. GAA enzyme activity in both dried blood spots and lymphocytes was low, at 11.7% and 7.7% of normal, respectively. However, genetic analysis of GAA detected only heterozygosity for a nonsense mutation (c.118C > T, p.Arg40 ∗ ). Muscle pathology showed no glycogen deposits and no high acid phosphatase activity. Hematoxylin-eosin staining detected scattered regenerating fibers; the fibers were faint and patchy on immunochemistry staining of dystrophin. The amount of dystrophin protein was reduced to 11.8% of normal, on Western blotting analysis. Direct sequencing analysis of DMD revealed hemizygosity for a nonsense mutation (c.72G > A, p.Trp24 ∗ ). The boy was diagnosed with BMD, despite remarkable reduction in GAA activity; further, he demonstrated heterozygosity for [p.Gly576Ser; p.Glu689Lys] polymorphism variants that indicated pseudodeficiency on another allele in GAA. Pseudodeficiency alleles are detected in approximately 4% of the Asian population; these demonstrate low activity of acid α-glucosidase (GAA), similar to levels found in Pompe disease. Clinicians should be careful in their interpretations of pseudodeficiency alleles that complicate diagnosis in cases of elevated creatine kinase. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. 5-Bromo-2-aryl benzimidazole derivatives as non-cytotoxic potential dual inhibitors of α-glucosidase and urease enzymes.

    Science.gov (United States)

    Arshad, Tanzila; Khan, Khalid Mohammed; Rasool, Najma; Salar, Uzma; Hussain, Shafqat; Asghar, Humna; Ashraf, Mohammed; Wadood, Abdul; Riaz, Muhammad; Perveen, Shahnaz; Taha, Muhammad; Ismail, Nor Hadiani

    2017-06-01

    On the basis of previous report on promising α-glucosidase inhibitory activity of 5-bromo-2-aryl benzimidazole derivatives, these derivatives were further screened for urease inhibitory and cytotoxicity activity in order to get more potent and non-cytotoxic potential dual inhibitor for the patients suffering from diabetes as well as peptic ulcer. In this study, all compounds showed varying degree of potency in the range of (IC 50 =8.15±0.03-354.67±0.19μM) as compared to standard thiourea (IC 50 =21.25±0.15μM). It is worth mentioning that derivatives 7 (IC 50 =12.07±0.05μM), 8 (IC 50 =10.57±0.12μM), 11 (IC 50 =13.76±0.02μM), 14 (IC 50 =15.70±0.12μM) and 22 (IC 50 =8.15±0.03μM) were found to be more potent inhibitors than standard. All compounds were also evaluated for cytotoxicity towards 3T3 mouse fibroblast cell line and found to be completely non-toxic. Previously benzimidazole 1-25 were also showed α-glucosidase inhibitory potential. In silico studies were performed on the lead molecules i.e.2, 7, 8, 11, 14, and 22, in order to rationalize the binding interaction of compounds with the active site of urease enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells

    Science.gov (United States)

    Kim, Dae Jung; Kang, Yun Hwan; Kim, Kyoung Kon; Kim, Tae Woo; Park, Jae Bong

    2017-01-01

    BACKGROUND/OBJECTIVES Recent living condition improvements, changes in dietary habits, and reductions in physical activity are contributing to an increase in metabolic syndrome symptoms including diabetes and obesity. Through such societal developments, humankind is continuously exposed to metabolic diseases such as diabetes, and the number of the victims is increasing. This study investigated Cordyceps militaris water extract (CMW)-induced glucose uptake in HepG2 cells and the effect of CMW treatment on glucose metabolism. MATERIALS/METHODS Colorimetric assay kits were used to determine the glucokinase (GK) and pyruvate dehydrogenase (PDH) activities, glucose uptake, and glycogen content. Either RT-PCR or western blot analysis was performed for quantitation of glucose transporter 2 (GLUT2), hepatocyte nuclear factor 1 alpha (HNF-1α), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phosphorylated AMP-activated protein kinase (pAMPK), phosphoenolpyruvate carboxykinase, GK, PDH, and glycogen synthase kinase 3 beta (GSK-3β) expression levels. The α-glucosidase inhibitory activities of acarbose and CMW were evaluated by absorbance measurement. RESULTS CMW induced glucose uptake in HepG2 cells by increasing GLUT2 through HNF-1α expression stimulation. Glucose in the cells increased the CMW-induced phosphorylation of AMPK. In turn, glycolysis was stimulated, and glyconeogenesis was inhibited. Furthermore, by studying the mechanism of action of PI3k, Akt, and GSK-3β, and measuring glycogen content, the study confirmed that the glucose was stored in the liver as glycogen. Finally, CMW resulted in a higher level of α-glucosidase inhibitory activity than that from acarbose. CONCLUSION CMW induced the uptake of glucose into HepG2 cells, as well, it induced metabolism of the absorbed glucose. It is concluded that CMW is a candidate or potential use in diabetes prevention and treatment. PMID:28584574

  17. Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae.

    Science.gov (United States)

    Uchima, Cristiane Akemi; Tokuda, Gaku; Watanabe, Hirofumi; Kitamoto, Katsuhiko; Arioka, Manabu

    2011-03-01

    Neotermes koshunensis is a lower termite that secretes endogenous β-glucosidase in the salivary glands. This β-glucosidase (G1NkBG) was successfully expressed in Aspergillus oryzae. G1NkBG was purified to homogeneity from the culture supernatant through ammonium sulfate precipitation and anion exchange, hydrophobic, and gel filtration chromatographies with a 48-fold increase in purity. The molecular mass of the native enzyme appeared as a single band at 60 kDa after gel filtration analysis, indicating that G1NkBG is a monomeric protein. Maximum activity was observed at 50 °C with an optimum pH at 5.0. G1NkBG retained 80% of its maximum activity at temperatures up to 45 °C and lost its activity at temperatures above 55 °C. The enzyme was stable from pH 5.0 to 9.0. G1NkBG was most active towards laminaribiose and p-nitrophenyl-β-D-fucopyranoside. Cellobiose, as well as cello-oligosaccharides, was also well hydrolyzed. The enzyme activity was slightly stimulated by Mn(2+) and glycerol. The K(m) and V(max) values were 0.77 mM and 16 U/mg, respectively, against p-nitrophenyl-β-D-glucopyranoside. An unusual finding was that G1NkBG was stimulated by 1.3-fold when glucose was present in the reaction mixture at a concentration of 200 mM. These characteristics, particularly the stimulation of enzyme activity by glucose, make G1NkBG of great interest for biotechnological applications, especially for bioethanol production.

  18. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.

    Science.gov (United States)

    Li, Chengcheng; Lin, Fengming; Li, Yizhen; Wei, Wei; Wang, Hongyin; Qin, Lei; Zhou, Zhihua; Li, Bingzhi; Wu, Fugen; Chen, Zhan

    2016-09-01

    The conversion of cellulose by cellulase to fermentable sugars for biomass-based products such as cellulosic biofuels, biobased fine chemicals and medicines is an environment-friendly and sustainable process, making wastes profitable and bringing economic benefits. Trichoderma reesei is the well-known major workhorse for cellulase production in industry, but the low β-glucosidase activity in T. reesei cellulase leads to inefficiency in biomass degradation and limits its industrial application. Thus, there are ongoing interests in research to develop methods to overcome this insufficiency. Moreover, although β-glucosidases have been demonstrated to influence cellulase production and participate in the regulation of cellulase production, the underlying mechanism remains unclear. The T. reesei recombinant strain TRB1 was constructed from T. reesei RUT-C30 by the T-DNA-based mutagenesis. Compared to RUT-C30, TRB1 displays a significant enhancement of extracellular β-glucosidase (BGL1) activity with 17-fold increase, a moderate increase of both the endoglucanase (EG) activity and the exoglucanase (CBH) activity, a minor improvement of the total filter paper activity, and a faster cellulase induction. This superiority of TRB1 over RUT-C30 is independent on carbon sources and improves the saccharification ability of TRB1 cellulase on pretreated corn stover. Furthermore, TRB1 shows better resistance to carbon catabolite repression than RUT-C30. Secretome characterization of TRB1 shows that the amount of CBH, EG and BGL in the supernatant of T. reesei TRB1 was indeed increased along with the enhanced activities of these three enzymes. Surprisingly, qRT-PCR and gene cloning showed that in TRB1 β-glucosidase cel3D was mutated through the random insertion by AMT and was not expressed. The T. reesei recombinant strain TRB1 constructed in this study is more desirable for industrial application than the parental strain RUT-C30, showing extracellular β-glucosidase hyper

  19. Synthèses enzymatiques de néoglucoconjugués catalysées par l'alpha-glucosidase purifiée de la blatte Periplaneta americana (Linnaeus

    Directory of Open Access Journals (Sweden)

    Kamenan A.

    2005-01-01

    Full Text Available Enzymatic synthesis of neoglucoconjugates by purified α-glucosidase from cockroach Periplaneta americana (Linnaeus. Cockroach Periplaneta americana (Linnaeus contains in his digestive tract an acid (pH 5,0 and mesophile (50°C α-glucosidase. This enzyme, purified to homogeneity, hydrolyses highly maltose, sucrose and p-nitrophenyl-α-Dglucopyranoside. The ability of α-glucosidase from cockroach purified to homogeneity to catalyse transglucosylation reactions was tested using maltose and saccharose as glucosyl donors and 2-phenylethanol and phenol as acceptors. The experimental conditions were optimized in relation to the time course of the reaction, pH and concentrations of glucosyl donors and acceptors. The yields in transglucosylation reactions at 37 °C were very high and could attain 67% and 48% with 2-phenylethanol and phenol respectively as glucosyl acceptors. This α-glucosidase hydrolyzed the products formed. It seems that the products formed were the phenylethyl-α-D-glucoside and phenyl-α-D-glucoside. These results suggest that α- glucosidase from cockroach is an exoglucosidase which catalyse the splitting of the α-glucosyl residue from the non reducing terminal of the substrate to liberate α-glucose. This comportment indicates that this enzyme operated by a mechanism involving the retention of the anomeric configuration. On the basis of this work, α-glucosidase from P. americana appears to be a valuable tool for the preparation of α-neoglucoconjugates.

  20. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, Martin [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Panjikar, Santosh [European Molecular Biology Laboratory Hamburg, Outstation Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Barleben, Leif [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Stöckigt, Joachim [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); College of Pharmaceutical Sciences, Zhejiang University, 353 Yan An Road, 310031 Hangzhou (China)

    2006-03-01

    Raucaffricine glucosidase, an enzyme involved in the biosynthesis of monoterpenoid indole alkaloids in the plant Rauvolfia serpentina, was crystallized by the hanging-drop vapour-diffusion method using PEG4000 as precipitant. The crystals diffract to 2.3 Å resolution and belong to space group I222. Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å.

  1. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    International Nuclear Information System (INIS)

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-01-01

    Raucaffricine glucosidase, an enzyme involved in the biosynthesis of monoterpenoid indole alkaloids in the plant Rauvolfia serpentina, was crystallized by the hanging-drop vapour-diffusion method using PEG4000 as precipitant. The crystals diffract to 2.3 Å resolution and belong to space group I222. Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å

  2. Synthesis of (E)-N'-[1-(2,4-Dihydroxyphenyl)ethylidene]substituted hydrazides as possible alpha-glucosidase and butyrylcholinesterase Inhibitors

    International Nuclear Information System (INIS)

    Abbasi, M.A.; Shah, S.A.H.; Siddiqui, S.Z.; Khan, K.M.

    2017-01-01

    In the current research work, (E)-N'-[1-(2,4-dihydroxyphenyl)ethylidene]substituted hydrazides were synthesized in a couple of steps and their enzyme inhibition potential was analyzed. Firstly 2,4-hydroxyacetophenone (1) was reacted with hydrated hydrazine (2) under stirring to yield (E)-4-(1-hydrazonoethyl)benzene-1,3-diol (3) which was further reacted with different acid halides, (4a-i) to afford (E)-[1-(2,4-dihydroxyphenyl)ethylidene]substituted hydrazides (5a-i). These synthesized compounds were characterized by EI-MS, 1H-NMR spectral techniques and were also evaluated against a-glucosidase and butyrylcholinesterase enzymes. The synthesized compounds were found to be acceptable inhibitors of a-glucosidase and decent inhibition against butyrylcholinesterase. (author)

  3. OPTIMIZATION OF FERMENTATION PARAMETERS FOR THE PRODUCTION OF EXTRACELLULAR ENDOGLUCANASE, β –GLUCOSIDASE AND ENDOXYLANASE BY A CHROMIUM RESISTANT STRAIN OF TRICHODERMA PSEUDOKONINGII

    Directory of Open Access Journals (Sweden)

    Rina Rani Ray

    2013-08-01

    Full Text Available Trichoderma pseudokoningii, a chromate reducing fungal strain, was isolated from the tannery-effluents. The present Cr (VI resistant strain was found to produce good amount of various extracellular enzymes that included cellulases (endoglucanase and β–glucosidase and hemicellulase (endoxylanase in submerged fermentation (SmF. The titre of β–glucosidase was found to be higher than that of endoglucanase. Cellulases were best induced in presence of 1% of respective substrates whereas only 0.5% xylan could induce endoxylanase production in this strain. Although the optimum temperature for all three enzymes was found to be 27oC, the pH optimum of cellulases (pH 5 were different from that of endoxylanase (pH 6. Under optimized conditions, maximum of production of all these enzymes was achieved within 48 hours of cultivation. Among nitrogen sources tested, potassium nitrate was found to be the most effective followed by gelatin.

  4. Silver(I) complexes of 2,4-dihydroxybenzaldehyde-amino acid Schiff bases-Novel noncompetitive α-glucosidase inhibitors.

    Science.gov (United States)

    Zheng, Jingwei; Ma, Lin

    2015-01-01

    A series of silver(I) complexes of 2,4-dihydroxybenzaldehyde-amino acid Schiff bases were designed and tested for α-glucosidase inhibition. Our results indicate that all the silver complexes (4a-18a) possessed strong inhibitory activity at μmolL(-1) level, especially glutamine (12a) and histidine (18a) Schiff base silver(I) complexes exhibited an IC50 value of less than 0.01μmolL(-1). This series of compounds exhibited noncompetitive inhibition characteristics in kinetic studies. In addition, we investigated the mechanism of inhibition and the structure-activity relationships of the amino acid Schiff base silver complexes. Our results reveal that Schiff base silver complexes may be explored for their therapeutic potential as alternatives of α-glucosidase inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Retargeting a maize beta-glucosidase to the vacuole - Evidence from intact plants that zeatin-O-glucoside is stored in the vacuole

    Czech Academy of Sciences Publication Activity Database

    Kiran, N.S.; Benková, Eva; Reková, A.; Dubová, J.; Malbeck, Jiří; Palme, K.; Brzobohatý, B.

    2012-01-01

    Roč. 79, JUL 2012 (2012), s. 67-77 ISSN 0031-9422 R&D Projects: GA MŠk(CZ) LC06034; GA MŠk(CZ) 1M06030; GA AV ČR(CZ) IAA600380507 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50040702; CEZ:AV0Z50040507 Keywords : Nicotiana tabacum * tobacco * beta-glucosidase Subject RIV: BO - Biophysics Impact factor: 3.050, year: 2012

  6. Inhibition of protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase by xanthones from Cratoxylum cochinchinense, and their kinetic characterization.

    Science.gov (United States)

    Li, Zuo Peng; Song, Yeong Hun; Uddin, Zia; Wang, Yan; Park, Ki Hun

    2018-02-01

    Cratoxylum cochinchinense displayed significant inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase, both of which are key target enzymes to attenuate diabetes and obesity. The compounds responsible for both enzymes inhibition were identified as twelve xanthones (1-12) among which compounds 1 and 2 were found to be new ones. All of them simultaneously inhibited PTP1B with IC 50 s of (2.4-52.5 µM), and α-glucosidase with IC 50 values of (1.7-72.7 µM), respectively. Cratoxanthone A (3) and γ-mangostin (7) were estimated to be most active inhibitors against both PTP1B (IC 50  = 2.4 µM for 3, 2.8 µM for 7) and α-glucosidase (IC 50  = 4.8 µM for 3, 1.7 µM for 7). In kinetic studies, all isolated xanthones emerged to be mixed inhibitors of α-glucosidase, whereas they behaved as competitive inhibitors of PTP1B. In time dependent experiments, compound 3 showed isomerization inhibitory behavior with following kinetic parameters: K i app  = 2.4 µM; k 5  = 0.05001 µM -1  S -1 and k 6  = 0.02076 µM -1  S -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Bacteria as source of diglycosidase activity: Actinoplanes missouriensis produces 6-O-alpha-l-rhamnosyl-beta-d-glucosidase active on flavonoids

    Czech Academy of Sciences Publication Activity Database

    Neher, B.D.; Mazzaferro, L.S.; Kotík, Michael; Oyhenart, J.; Halada, Petr; Křen, Vladimír; Breccia, J.D.

    2016-01-01

    Roč. 100, č. 7 (2016), s. 3061-3070 ISSN 0175-7598 R&D Projects: GA MŠk(CZ) LD13042; GA MŠk(CZ) LD15085; GA MŠk 7AMB13AR005 Institutional support: RVO:61388971 Keywords : alpha-L-rhamnosidase * beta-D-glucosidase * Inverting glycosidase Subject RIV: CE - Biochemistry Impact factor: 3.420, year: 2016

  8. Optimization of a fermented pumpkin-based beverage to improve Lactobacillus mali survival and α-glucosidase inhibitory activity: A response surface methodology approach

    Directory of Open Access Journals (Sweden)

    W.Y. Koh

    2018-03-01

    Full Text Available The aim of this research was to develop an optimum fermentation and composition model for a new fermented pumpkin-based beverage with high probiotic survival and α-glucosidase inhibitory activity. Relationship between fermentation temperature, inoculum and ingredient concentration with response variables (fermentation time at the fermentation endpoint pH 4.5, survival rate of Lactobacillus mali K8 in pumpkin-based beverage treated with simulated gastrointestinal tract enzyme fluids, α-glucosidase inhibitory activity and sensory overall acceptability after 4 weeks of refrigerated storage was investigated using response surface methodology. Optimal formulation was obtained at an approximation of 40% pumpkin puree concentration, 8 Log CFU/mL inoculum and at 35 °C. The product derived from this optimum formula reached the fermentation endpoint after 28.34 ± 0.10 h and the quality change during 4 weeks storage was studied. The product achieved 88.56 ± 0.67% of L. mali survival after treatment with simulated gastric and intestinal juices; demonstrated 95.89 ± 0.30% α-glucosidase inhibitory activity, as well as scored 6.99 ± 0.40 on sensory overall acceptability after 4 weeks of storage. These findings illustrated that the model is effective in improving probiotic survival and α-glucosidase inhibitory activity with excellent sensory acceptability, thus may offer a dietary means for the management of hyperglycaemia. Keywords: Probiotics, Response surface methodology, Box-Behnken, Hyperglycaemia, Functional food

  9. Influence of season, environment and feeding habits on the enzymatic activity of peptidase and β-glucosidase in the gastrointestinal tract of two Siluriformes fishes (Teleostei

    Directory of Open Access Journals (Sweden)

    Silvana Duarte

    2013-06-01

    Full Text Available The enzymatic activities involved in the digestion of proteins and carbohydrates were compared among three organs of the digestive track of two Siluriformes fish species, and between two areas: a reservoir, and an area downriver of it. Our aim was to test the hypothesis that the digestive organs of species with varied feeding habits have different enzymatic activities, and that the enzymatic activity differs among seasons and environmental conditions. The iliophagous/herbivorous species Hypostomus auroguttatus Kner, 1854 had higher trypsin-like, chymotrypsin-like peptidase and β-glucosidase activity in the intestine when compared with the omnivorous species Pimelodus maculatus Lacepède, 1803, whereas the latter had more hepatic trypsin-like activity than the former. The peak of activity of the three enzymes in H. auroguttatus was recorded in the winter and spring. On the other hand, P. maculatus tended to have the more prominent peptidase and β-glucosidase activity in the summer, and the smallest in the winter. The intestine of H. auroguttatus had higher enzymatic (trypsin, chymotrypsin and β-glucosidase activity than the stomach and the liver. For P. maculatus, the highest β-glucosidase activity was found in the liver. The enzymatic activity of H. aurogutattus did not differ between lotic and lentic systems, whereas P. maculatus had comparatively higher stomach and hepatic trypsin levels and hepatic chymotrypsin-like activities in the reservoir than down in the river. These findings indicate that, in H. auroguttatus, most digestive activity occurs in the intestine, which is long and adapted for the digestion of bottom-river vegetable matter and detritus. The seasons and the type of the system (lentic vs. lotic seem to affect the enzymatic activity for these two species differently, a likely consequence of their different lifestyles.

  10. High performance liquid chromatography profiling of health-promoting phytochemicals and evaluation of antioxidant, anti-lipoxygenase, iron chelating and anti-glucosidase activities of wetland macrophytes.

    Science.gov (United States)

    Ooh, Keng-Fei; Ong, Hean-Chooi; Wong, Fai-Chu; Sit, Nam-Weng; Chai, Tsun-Thai

    2014-08-01

    The phytochemistry and bioactivity of wetland macrophytes are underexplored. Plants are known as the natural sources of phytochemical beneficial to health. The objective of this study is to analyze the phytochemical profiles and bioactivities of 10 extracts prepared from different plant parts of wetland macrophytes Hanguana malayana, Ludwigia adscendens and Monochoria hastata. High performance liquid chromatography (HPLC) was used to analyze the phytochemical profile of the extracts. Antioxidant assay such as 2,2-diphenyl-1-picrylhydrazyl, nitric oxide (NO) radical scavenging activity and ferric reducing antioxidant power were performed. Bioactivity assays carried out were anti-lipoxygenase, anti-glucosidase, and iron chelating. Leaf extract of L. adscendens had the highest 2,2-diphenyl-1-picrylhydrazyl (half of maximal effective concentration [EC50] =0.97 mg/mL) and NO (EC50 = 0.31 mg/mL) scavenging activities. The extract also exhibited the highest iron chelating (EC50 = 3.24 mg/mL) and anti-glucosidase (EC50 = 27.5 μg/mL) activities. The anti-glucosidase activity of L. adscendens leaf extract was comparable or superior to those of acarbose, myricetin and quercetin. Correlation between iron chelating and radical scavenging activities among the extracts implies the presence of dual-function phytoconstituents with concurrent iron chelating and radical scavenging activities. HPLC analysis revealed the presence of p-coumaric acid (p-CA), gallic acid (GA) and myricetin in all or most extracts. M. hastata fruit and leaf extracts had the highest p-hydroxybenzoic acid content. Antioxidant and anti-glucosidase activities of the extracts were correlated with p-CA, GA, and myricetin contents. Our study demonstrated that wetland macrophytes H. malayana, L. adscendens and M. hastata are potential sources of health-promoting phytochemicals with potent therapeutically-relevant bioactivities.

  11. High performance liquid chromatography profiling of health-promoting phytochemicals and evaluation of antioxidant, anti-lipoxygenase, iron chelating and anti-glucosidase activities of wetland macrophytes

    Science.gov (United States)

    Ooh, Keng-Fei; Ong, Hean-Chooi; Wong, Fai-Chu; Sit, Nam-Weng; Chai, Tsun-Thai

    2014-01-01

    Background: The phytochemistry and bioactivity of wetland macrophytes are underexplored. Plants are known as the natural sources of phytochemical beneficial to health. Objective: The objective of this study is to analyze the phytochemical profiles and bioactivities of 10 extracts prepared from different plant parts of wetland macrophytes Hanguana malayana, Ludwigia adscendens and Monochoria hastata. Materials and Methods: High performance liquid chromatography (HPLC) was used to analyze the phytochemical profile of the extracts. Antioxidant assay such as 2,2-diphenyl-1-picrylhydrazyl, nitric oxide (NO) radical scavenging activity and ferric reducing antioxidant power were performed. Bioactivity assays carried out were anti-lipoxygenase, anti-glucosidase, and iron chelating. Results: Leaf extract of L. adscendens had the highest 2,2-diphenyl-1-picrylhydrazyl (half of maximal effective concentration [EC50] =0.97 mg/mL) and NO (EC50 = 0.31 mg/mL) scavenging activities. The extract also exhibited the highest iron chelating (EC50 = 3.24 mg/mL) and anti-glucosidase (EC50 = 27.5 μg/mL) activities. The anti-glucosidase activity of L. adscendens leaf extract was comparable or superior to those of acarbose, myricetin and quercetin. Correlation between iron chelating and radical scavenging activities among the extracts implies the presence of dual-function phytoconstituents with concurrent iron chelating and radical scavenging activities. HPLC analysis revealed the presence of p-coumaric acid (p-CA), gallic acid (GA) and myricetin in all or most extracts. M. hastata fruit and leaf extracts had the highest p-hydroxybenzoic acid content. Antioxidant and anti-glucosidase activities of the extracts were correlated with p-CA, GA, and myricetin contents. Conclusion: Our study demonstrated that wetland macrophytes H. malayana, L. adscendens and M. hastata are potential sources of health-promoting phytochemicals with potent therapeutically-relevant bioactivities. PMID:25298659

  12. In vitro inhibitory effects on α-glucosidase and α-amylase level and antioxidant potential of seeds of Phoenix dactylifera L.

    Directory of Open Access Journals (Sweden)

    Shah Alam Khan

    2016-04-01

    Conclusions: The present study confirms that disposed waste of Omani dates is a rich source of dietary antioxidant because of its high TPC. The pits due to their inhibitory effects on α-glucosidase and α-amylase level could be used as a monotherapy along with an appropriate diabetic diet and exercise or might be in conjunction with antidiabetic therapy to manage and prevent progression of diabetes.

  13. Identification of a feedback loop involving β-glucosidase 2 and its product sphingosine sheds light on the molecular mechanisms in Gaucher disease.

    Science.gov (United States)

    Schonauer, Sophie; Körschen, Heinz G; Penno, Anke; Rennhack, Andreas; Breiden, Bernadette; Sandhoff, Konrad; Gutbrod, Katharina; Dörmann, Peter; Raju, Diana N; Haberkant, Per; Gerl, Mathias J; Brügger, Britta; Zigdon, Hila; Vardi, Ayelet; Futerman, Anthony H; Thiele, Christoph; Wachten, Dagmar

    2017-04-14

    The lysosomal acid β-glucosidase GBA1 and the non-lysosomal β-glucosidase GBA2 degrade glucosylceramide (GlcCer) to glucose and ceramide in different cellular compartments. Loss of GBA2 activity and the resulting accumulation of GlcCer results in male infertility, whereas mutations in the GBA1 gene and loss of GBA1 activity cause the lipid-storage disorder Gaucher disease. However, the role of GBA2 in Gaucher disease pathology and its relationship to GBA1 is not well understood. Here, we report a GBA1-dependent down-regulation of GBA2 activity in patients with Gaucher disease. Using an experimental approach combining cell biology, biochemistry, and mass spectrometry, we show that sphingosine, the cytotoxic metabolite accumulating in Gaucher cells through the action of GBA2, directly binds to GBA2 and inhibits its activity. We propose a negative feedback loop, in which sphingosine inhibits GBA2 activity in Gaucher cells, preventing further sphingosine accumulation and, thereby, cytotoxicity. Our findings add a new chapter to the understanding of the complex molecular mechanism underlying Gaucher disease and the regulation of β-glucosidase activity in general. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Evaluation of Total Flavonoids, Myricetin, and Quercetin from Hovenia dulcis Thunb. As Inhibitors of α-Amylase and α-Glucosidase.

    Science.gov (United States)

    Meng, Yonghong; Su, Anping; Yuan, Shuang; Zhao, Huaguo; Tan, Siyuan; Hu, Chingyuan; Deng, Hong; Guo, Yurong

    2016-12-01

    This study was designed to investigate the inhibition effect and mechanism of total flavonoids, myricetin and quercetin extracted from Hovenia dulcis Thunb. on α-amylase and α-glucosidase in order to explore the potential use of Hovenia flavonoids in alleviating postprandial hyperglycemia. The results demonstrate that total flavonoids, myricetin, and quercetin were effective inhibitors of α-amylase with IC 50 values of 32.8, 662 and 770 μg ml -1 , respectively. And all three were effective inhibitors of α-glucosidase with IC 50 values of 8, 3 and 32 μg ml -1 , respectively. Enzyme kinetics tests and Lineweaver-Burk results showed the inhibition effects of total flavonoids, myricetin and quercrtin on α-amylase were all reversible and competitive, and the effects on α-glucosidase were all reversible but non-competitive. This study revealed that Hovenia flavonoids, especially myricetin, are effective and promising functional foods in alleviating type 2 diabetes mellitus.

  15. Xanthium strumarium as an Inhibitor of α-Glucosidase, Protein Tyrosine Phosphatase 1β, Protein Glycation and ABTS⁺ for Diabetic and Its Complication.

    Science.gov (United States)

    Hwang, Seung Hwan; Wang, Zhiqiang; Yoon, Ha Na; Lim, Soon Sung

    2016-09-16

    Phytochemical investigation of the natural products from Xanthium strumarium led to the isolation of fourteen compounds including seven caffeoylquinic acid (CQA) derivatives. The individual compounds were screened for inhibition of α-glucosidase, protein tyrosine phosphatase 1β (PTP1β), advanced glycation end products (AGEs), and ABTS⁺ radical scavenging activity using in vitro assays. Among the isolated compounds, methyl-3,5-di-caffeoyquinic acid exhibited significant inhibitory activity against α-glucosidase (18.42 μM), PTP1β (1.88 μM), AGEs (82.79 μM), and ABTS⁺ (6.03 μM). This effect was marked compared to that of the positive controls (acarbose 584.79 μM, sumarin 5.51 μM, aminoguanidine 1410.00 μM, and trolox 29.72 μM respectively). In addition, 3,5-di-O-CQA (88.14 μM) and protocatechuic acid (32.93 μM) had a considerable inhibitory effect against α-glucosidase and ABTS⁺. Based on these findings, methyl-3,5-di-caffeoyquinic acid was assumed to be potentially responsible for the anti-diabetic actions of X. strumarium.

  16. Xanthium strumarium as an Inhibitor of α-Glucosidase, Protein Tyrosine Phosphatase 1β, Protein Glycation and ABTS+ for Diabetic and Its Complication

    Directory of Open Access Journals (Sweden)

    Seung Hwan Hwang

    2016-09-01

    Full Text Available Phytochemical investigation of the natural products from Xanthium strumarium led to the isolation of fourteen compounds including seven caffeoylquinic acid (CQA derivatives. The individual compounds were screened for inhibition of α-glucosidase, protein tyrosine phosphatase 1β (PTP1β, advanced glycation end products (AGEs, and ABTS+ radical scavenging activity using in vitro assays. Among the isolated compounds, methyl-3,5-di-caffeoyquinic acid exhibited significant inhibitory activity against α-glucosidase (18.42 μM, PTP1β (1.88 μM, AGEs (82.79 μM, and ABTS+ (6.03 μM. This effect was marked compared to that of the positive controls (acarbose 584.79 μM, sumarin 5.51 μM, aminoguanidine 1410.00 μM, and trolox 29.72 μM respectively. In addition, 3,5-di-O-CQA (88.14 μM and protocatechuic acid (32.93 μM had a considerable inhibitory effect against α-glucosidase and ABTS+. Based on these findings, methyl-3,5-di-caffeoyquinic acid was assumed to be potentially responsible for the anti-diabetic actions of X. strumarium.

  17. Expression, purification, crystallization and preliminary X-ray analysis of rice (Oryza sativa L.) Os4BGlu12 β-glucosidase

    International Nuclear Information System (INIS)

    Sansenya, Sompong; Ketudat Cairns, James R.; Opassiri, Rodjana

    2010-01-01

    Recombinant rice Os4BGlu12 β-glucosidase purified from E. coli was crystallized with and without 2,4-dinitrophenyl-2-deoxy-2-fluoro-β-d-glucopyranoside. Rice (Oryza sativa L.) Os4BGlu12, a glycoside hydrolase family 1 β-glucosidase (EC 3.2.1.21), was expressed as a fusion protein with an N-terminal thioredoxin/His 6 tag in Escherichia coli strain Origami B (DE3) and purified with subsequent removal of the N-terminal tag. Native Os4BGlu12 and its complex with 2,4-dinitrophenyl-2-deoxy-2-fluoro-β-d-glucopyranoside (DNP2FG) were crystallized using 19% polyethylene glycol (3350 or 2000, respectively) in 0.1 M Tris–HCl pH 8.5, 0.16 M NaCl at 288 K. Diffraction data sets for the apo and inhibitor-bound forms were collected to 2.50 and 2.45 Å resolution, respectively. The space group and the unit-cell parameters of the crystal indicated the presence of two molecules per asymmetric unit, with a solvent content of 50%. The structure of Os4BGlu12 was successfully solved in space group P4 3 2 1 2 by molecular replacement using the white clover cyanogenic β-glucosidase structure as a search model

  18. α-Glucosidase inhibition and antioxidant activity of an oenological commercial tannin. Extraction, fractionation and analysis by HPLC/ESI-MS/MS and (1)H NMR.

    Science.gov (United States)

    Muccilli, Vera; Cardullo, Nunzio; Spatafora, Carmela; Cunsolo, Vincenzo; Tringali, Corrado

    2017-01-15

    Two batches of the oenological tannin Tan'Activ R, (toasted oak wood - Quercus robur), were extracted with ethanol. A fractionation on XAD-16 afforded four fractions for each extract. Extracts and fractions were evaluated for antioxidant activity (DPPH), polyphenol content (GAE) and yeast α-glucosidase inhibitory activity. Comparable results were obtained for both columns, fractions X1B and X2B showing the highest antioxidant activity. Fractions X1C and X2C notably inhibited α-glucosidase, with IC50=9.89 and 8.05μg/mL, respectively. Fractions were subjected to HPLC/ESI-MS/MS and (1)H NMR analysis. The main phenolic constituents of both X1B and X2B were a monogalloylglucose isomer (1), a HHDP-glucose isomer (2), castalin (3) gallic acid (4), vescalagin (5), and grandinin (or its isomer roburin E, 6). X1C and X2C showed a complex composition, including non-phenolic constituents. Fractionation of X2C gave a subfraction, with enhanced α-glucosidase inhibitory activity (IC50=6.15μg/mL), with castalagin (7) as the main constituent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. High-resolution bioactivity profiling combined with HPLC-HRMS-SPE-NMR: α-Glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae).

    Science.gov (United States)

    Wubshet, Sileshi G; Moresco, Henrique H; Tahtah, Yousof; Brighente, Inês M C; Staerk, Dan

    2015-08-01

    Type 2 diabetes (T2D) is an endocrine metabolic disease with a worldwide prevalence of more than 8%, and an expected increase close to 50% in the next 15-20years. T2D is associated with severe and life-threatening complications like retinopathy, neuropathy, nephropathy, and cardiovascular diseases, and therefore improved drug leads or functional foods containing α-glucosidase inhibitors are needed for management of blood glucose. In this study, leaves of Myrcia palustris were investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR. This led to identification of casuarinin, myricetin 3-O-β-d-(6″-galloyl)galactopyranoside, kaempferol 3-O-β-d-galactopyranoside, myricetin, and quercetin as α-glucosidase inhibitors. In addition, four acetylated ellagic acid rhamnosides, i.e., 4-O-(2″,4″-O-diacetyl-α-l-rhamnopyranosyl)ellagic acid, 4-O-(2″,3″-O-diacetyl-α-l-rhamnopyranosyl)ellagic acid, 4-O-(3″,4″-O-diacetyl-α-l-rhamnopyranosyl)ellagic acid, and 4-O-(2″,3″,4″-O-triacetyl-α-l-rhamnopyranosyl)ellagic acid were identified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Expression of a codon-optimized β-glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose.

    Science.gov (United States)

    Ríos-Fránquez, Francisco Javier; González-Bautista, Enrique; Ponce-Noyola, Teresa; Ramos-Valdivia, Ana Carmela; Poggi-Varaldo, Héctor Mario; García-Mena, Jaime; Martinez, Alfredo

    2017-05-01

    Bioethanol is one of the main biofuels produced from the fermentation of saccharified agricultural waste; however, this technology needs to be optimized for profitability. Because the commonly used ethanologenic yeast strains are unable to assimilate cellobiose, several efforts have been made to express cellulose hydrolytic enzymes in these yeasts to produce ethanol from lignocellulose. The C. flavigenabglA gene encoding β-glucosidase catalytic subunit was optimized for preferential codon usage in S. cerevisiae. The optimized gene, cloned into the episomal vector pRGP-1, was expressed, which led to the secretion of an active β-glucosidase in transformants of the S. cerevisiae diploid strain 2-24D. The volumetric and specific extracellular enzymatic activities using pNPG as substrate were 155 IU L -1 and 222 IU g -1 , respectively, as detected in the supernatant of the cultures of the S. cerevisiae RP2-BGL transformant strain growing in cellobiose (20 g L -1 ) as the sole carbon source for 48 h. Ethanol production was 5 g L -1 after 96 h of culture, which represented a yield of 0.41 g g -1 of substrate consumed (12 g L -1 ), equivalent to 76% of the theoretical yield. The S. cerevisiae RP2-BGL strain expressed the β-glucosidase extracellularly and produced ethanol from cellobiose, which makes this microorganism suitable for application in ethanol production processes with saccharified lignocellulose.

  1. Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake.

    Science.gov (United States)

    Liu, Shuyuan; Ai, Zeyi; Qu, Fengfeng; Chen, Yuqiong; Ni, Dejiang

    2017-11-01

    The objective of the present study was to evaluate the effect of steeping temperature on the biological activities of green tea, including the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity, α-glucosidase and α-amylase inhibitory activities, and glucose uptake inhibitory activity in Caco-2 cells. Results showed that, with increasing extraction temperature, the polyphenol content increased, which contributed to enhance antioxidant activity and inhibitory effects on α-glucosidase and α-amylase. Green tea steeped at 100°C showed the highest DPPH radical-scavenging activity and inhibitory effects on α-glucosidase and α-amylase activities with EC 50 or IC 50 values of 6.15μg/mL, 0.09mg/mL, and 6.31mg/mL, respectively. However, the inhibitory potential on glucose uptake did not show an upward trend with increasing extraction temperature. Green tea steeped at 60°C had significantly stronger glucose uptake inhibitory activity (ptea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Low concentration of sodium bicarbonate improves the bioactive compound levels and antioxidant and α-glucosidase inhibitory activities of tartary buckwheat sprouts.

    Science.gov (United States)

    Qin, Peiyou; Wei, Aichun; Zhao, Degang; Yao, Yang; Yang, Xiushi; Dun, Baoqing; Ren, Guixing

    2017-06-01

    This study aimed to investigate the effects of different concentrations of sodium bicarbonate (NaHCO 3 ) on the accumulation of flavonoids, total phenolics and d-chiro-inositol (DCI), as well as the antioxidant and α-glucosidase inhibitory activities, in tartary buckwheat sprouts. Treatment with low concentrations of NaHCO 3 (0.05, 0.1, and 0.2%) resulted in an increase in flavonoids, total phenolic compounds and DCI concentrations, and improved DPPH radical-scavenging and α-glucosidase inhibition activities compared with the control (0%). The highest levels of total flavonoids (26.69mg/g DW), individual flavonoids (rutin, isoquercitrin, quercetin, and kaempferol), total phenolic compounds (29.31mg/g DW), DCI (12.56mg/g DW), as well as antioxidant and α-glucosidase inhibition activities, were observed in tartary buckwheat sprouts treated with 0.05% NaHCO 3 for 96h. These results indicated that appropriate treatment with NaHCO 3 could improve the healthy benefits of tartary buckwheat sprouts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl β-glucosidases screened from Aspergillus oryzae genome.

    Science.gov (United States)

    Kudo, Kanako; Watanabe, Akira; Ujiie, Seiryu; Shintani, Takahiro; Gomi, Katsuya

    2015-12-01

    By a global search of the genome database of Aspergillus oryzae, we found 23 genes encoding putative β-glucosidases, among which 10 genes with a signal peptide belonging to glycoside hydrolase family 3 (GH3) were overexpressed in A. oryzae using the improved glaA gene promoter. Consequently, crude enzyme preparations from three strains, each harboring the genes AO090038000223 (bglA), AO090103000127 (bglF), and AO090003001511 (bglJ), showed a substrate preference toward p-nitrophenyl-β-d-glucopyranoside (pNPGlc) and thus were purified to homogeneity and enzymatically characterized. All the purified enzymes (BglA, BglF, and BglJ) preferentially hydrolyzed aryl β-glycosides, including pNPGlc, rather than cellobiose, and these enzymes were proven to be aryl β-glucosidases. Although the specific activity of BglF toward all the substrates tested was significantly low, BglA and BglJ showed appreciably high activities toward pNPGlc and arbutin. The kinetic parameters of BglA and BglJ for pNPGlc suggested that both the enzymes had relatively higher hydrolytic activity toward pNPGlc among the fungal β-glucosidases reported. The thermal and pH stabilities of BglA were higher than those of BglJ, and BglA was particularly stable in a wide pH range (pH 4.5-10). In contrast, BglJ was the most heat- and alkaline-labile among the three β-glucosidases. Furthermore, BglA was more tolerant to ethanol than BglJ; as a result, it showed much higher hydrolytic activity toward isoflavone glycosides in the presence of ethanol than BglJ. This study suggested that the mining of novel β-glucosidases exhibiting higher activity from microbial genome sequences is of great use for the production of beneficial compounds such as isoflavone aglycones. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Purification and Characterization of a Ginsenoside Rb1-Hydrolyzing β-Glucosidase from Aspergillus niger KCCM 11239

    Directory of Open Access Journals (Sweden)

    Kyung Hoon Chang

    2012-09-01

    Full Text Available Rb1-hydrolyzing β-glucosidase from Aspergillus niger KCCM 11239 was studied to develop a bioconversion process for minor ginsenosides. The specific activity of the purified enzyme was 46.5 times greater than that of the crude enzyme. The molecular weight of the native enzyme was estimated to be approximately 123 kDa. The optimal pH of the purified enzyme was pH 4.0, and the enzyme proved highly stable over a pH range of 5.0–10.0. The optimal temperature was 70 °C, and the enzyme became unstable at temperatures above 60 °C. The enzyme was inhibited by Cu2+, Mg2+, Co2+, and acetic acid (10 mM. In the specificity tests, the enzyme was found to be active against ginsenoside Rb1, but showed very low levels of activity against Rb2, Rc, Rd, Re, and Rg1. The enzyme hydrolyzed the 20-C,β-(1→6-glucoside of ginsenoside Rb1 to generate ginsenoside Rd and Rg3, and hydrolyzed 3-C,β-(1→2-glucoside to generate F2. The properties of the enzyme indicate that it could be a useful tool in biotransformation applications in the ginseng industry, as well as in the development of novel drug compounds.

  5. Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for α-glucosidase inhibition.

    Science.gov (United States)

    Rasheed, Dalia M; Porzel, Andrea; Frolov, Andrei; El Seedi, Hesham R; Wessjohann, Ludger A; Farag, Mohamed A

    2018-06-01

    Roselle (Hibiscus sabdariffa) is a functional food with potential health benefits, consumed either as hot or cold beverage. To ensure quality control of its various products, accurate measurement of active metabolites is warranted. Herein, we propose a combination of ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) and nuclear magnetic resonance (NMR) analytical platforms for the untargeted characterization of metabolites in two roselle cultivars, Aswan and Sudan-1. The analyses revealed 33 metabolites, including sugars, flavonoids, anthocyanins, phenolic and aliphatic organic acids. Their relative contents in cultivars were assessed via principle component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS). Impact of the different extraction methods (decoction, infusion and maceration) was compared by quantitative 1 H NMR spectroscopy, revealing cold maceration to be optimal for preserving anthocyanins, whereas infusion was more suited for recovering organic acids. The metabolite pattern revealed by the different extraction methods was found in good correlation for their ability to inhibit α-glucosidase enzyme. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Polyketides with α-Glucosidase Inhibitory Activity from a Mangrove Endophytic Fungus, Penicillium sp. HN29-3B1.

    Science.gov (United States)

    Liu, Yayue; Yang, Qin; Xia, Guoping; Huang, Hongbo; Li, Hanxiang; Ma, Lin; Lu, Yongjun; He, Lei; Xia, Xuekui; She, Zhigang

    2015-08-28

    Five new compounds, pinazaphilones A and B (1, 2), two phenolic compounds (4, 5), and penicidone D (6), together with the known Sch 1385568 (3), (±)-penifupyrone (7), 3-O-methylfunicone (8), 5-methylbenzene-1,3-diol (9), and 2,4-dihydroxy-6-methylbenzoic acid (10) were obtained from the culture of the endophytic fungus Penicillium sp. HN29-3B1, which was isolated from a fresh branch of the mangrove plant Cerbera manghas collected from the South China Sea. Their structures were determined by analysis of 1D and 2D NMR and mass spectroscopic data. Structures of compounds 4 and 7 were further confirmed by a single-crystal X-ray diffraction experiment using Cu Kα radiation. The absolute configurations of compounds 1-3 were assigned by quantum chemical calculations of the electronic circular dichroic spectra. Compounds 2, 3, 5, and 7 inhibited α-glucosidase with IC50 values of 28.0, 16.6, 2.2, and 14.4 μM, respectively, and are thus more potent than the positive control, acarbose.

  7. Chemical profile and antiacetylcholinesterase, antityrosinase, antioxidant and α-glucosidase inhibitory activity of Cynometra cauliflora L. leaves.

    Science.gov (United States)

    Ado, Muhammad Abubakar; Abas, Faridah; Ismail, Intan Safinar; Ghazali, Hasanah M; Shaari, Khozirah

    2015-02-01

    The aim of the current study was (i) to evaluate the bioactive potential of the leaf methanolic extract of Cynometra cauliflora L., along with its respective hexane, dichloromethane, ethyl acetate (EtOAc), n-butanol (n-BuOH) and aqueous fractions, in inhibiting the enzymes α-glucosidase, acetylcholinesterase (AChE) and tyrosinase as well as evaluating their antioxidant activities. (ii) In addition, in view of the limited published information regarding the metabolite profile of C. cauliflora, we further characterized the profiles of the EtOAc and n-BuOH fractions using liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry. The leaf methanolic extract of C. cauliflora exhibited potent inhibition of all three enzymes and high antioxidant activity. The bioactivity was found to be concentrated in the EtOAc and n-BuOH fractions. A total of 18 compounds were identified in these bioactive fractions, comprising a procyanidin trimer, procyanidin tetramer, procyanidin hexamer, taxifolin pentoside, catechin, vitexin, isovitexin, kaempferol hexoside, quercetin pentoside, quercetin hexoside, apigenin-6-C-glucoside-8-C-glucoside, kaempferol-coumaroyl hexoside and isorhamnetin hexoside. The results indicated that C. cauliflora, the leaves in particular, is a rich source of bioactive compounds and could be beneficial for further development of high-value phytomedicinal preparations and functional food products. © 2014 Society of Chemical Industry.

  8. A new phenylpropanoid and an alkylglycoside from Piper retrofractum leaves with their antioxidant and α-glucosidase inhibitory activity.

    Science.gov (United States)

    Luyen, Bui Thi Thuy; Tai, Bui Huu; Thao, Nguyen Phuong; Yang, Seo Young; Cuong, Nguyen Manh; Kwon, Young In; Jang, Hae Dong; Kim, Young Ho

    2014-09-01

    Two new compounds, piperoside (1) and isoheptanol 2(S)-O-β-D-xylopyranosyl (1→6)-O-β-D-glucopyranoside (11), along with 10 known compounds 3,4-dihydroxyallylbenzene (2), 1,2-di-O-β-D-glucopyranosyl-4-allylbenzene (3), tachioside (4), benzyl-O-β-D-glucopyranoside (5), icariside F2 (6), dihydrovomifoliol-3'-O-β-D-glucopyranoside (7), isopropyl O-β-D-glucopyranoside (8), isopropyl primeveroside (9), n-butyl O-β-D-glucopyranoside (10), isoheptanol 2(S)-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside (12), were isolated from the leaves of Piper retrofractum. Their structures were determined from 1D-NMR, 2D-NMR, and HR-ESI-MS spectral, a modified Mosher's method, and comparisons with previous reports. All of the isolated compounds showed modest α-glucosidase inhibitory (4.60±1.74% to 11.97±3.30%) and antioxidant activities under the tested conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Exchanging a single amino acid residue generates or weakens a +2 cellooligosaccharide binding subsite in rice β-glucosidases.

    Science.gov (United States)

    Sansenya, Sompong; Maneesan, Janjira; Cairns, James R Ketudat

    2012-04-01

    Os3BGlu6, Os3BGlu7, and Os4BGlu12 are rice glycoside hydrolase family 1 β-glucosidases, the structures of which have been solved by X-ray crystallography. In complex structures, Os3BGlu7 residue Asn245 hydrogen bonds to the second sugar in the +1 subsite for laminaribiose and the third sugar in the +2 subsite for cellotetraose and cellopentaose. The corresponding Os3BGlu6 residue, Met251, appears to block the binding of cellooligosaccharides at the +2 subsite, whereas His252 in this position in Os4BGlu12 could hydrogen bond to oligosaccharides. Mutation of Os3BGlu6 Met251 to Asn resulted in a 15-fold increased k(cat)/K(m) value for hydrolysis of laminaribiose compared to wild type Os3BGlu6 and 9 to 24-fold increases for cellooligosaccharides with degrees of polymerization (DP) of 2-5. On the other hand, mutation of Os3BGlu7 Asn245 to Met decreased the k(cat)/K(m) of hydrolysis by 6.5-fold for laminaribiose and 17 to 30-fold for cellooligosaccharides with DP >2, while mutation of Os4BGlu12 His252 to Met decreased the corresponding k(cat)/K(m) values 2 to 6-fold. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Comprehensive enzymatic analysis of the amylolytic system in the digestive fluid of the sea hare, Aplysia kurodai: Unique properties of two α-amylases and two α-glucosidases

    Directory of Open Access Journals (Sweden)

    Akihiko Tsuji

    2014-01-01

    Full Text Available Sea lettuce (Ulva pertusa is a nuisance species of green algae that is found all over the world. East-Asian species of the marine gastropod, the sea hare Aplysia kurodai, shows a clear feeding preference for sea lettuce. Compared with cellulose, sea lettuce contains a higher amount of starch as a storage polysaccharide. However, the entire amylolytic system in the digestive fluid of A. kurodai has not been studied in detail. We purified α-amylases and α-glucosidases from the digestive fluid of A. kurodai and investigated the synergistic action of these enzymes on sea lettuce. A. kurodai contain two α-amylases (59 and 80 kDa and two α-glucosidases (74 and 86 kDa. The 59-kDa α-amylase, but not the 80-kDa α-amylase, was markedly activated by Ca2+ or Cl−. Both α-amylases degraded starch and maltoheptaose, producing maltotriose, maltose, and glucose. Glucose production from starch was higher with 80-kDa α-amylase than with 59-kDa α-amylase. Kinetic analysis indicated that 74-kDa α-glucosidase prefers short α-1,4-linked oligosaccharide, whereas 86-kDa α-glucosidase prefers large α-1,6 and α-1,4-linked polysaccharides such as glycogen. When sea lettuce was used as a substrate, a 2-fold greater amount of glucose was released by treatment with 59-kDa α-amylase and 74-kDa α-glucosidase than by treatment with 45-kDa cellulase and 210-kDa β-glucosidase of A. kurodai. Unlike mammals, sea hares efficiently digest sea lettuce to glucose by a combination of two α-amylases and two α-glucosidases in the digestive fluids without membrane-bound maltase–glucoamylase and sucrase–isomaltase complexes.

  11. Enzymatic Synthesis of the Flavone Glucosides, Prunin and Isoquercetin, and the Aglycones, Naringenin and Quercetin, with Selective α-L-Rhamnosidase and β-D-Glucosidase Activities of Naringinase

    Directory of Open Access Journals (Sweden)

    Hélder Vila-Real

    2011-01-01

    Full Text Available The production of flavonoid glycosides by removing rhamnose from rutinosides can be accomplished through enzymatic catalysis. Naringinase is an enzyme complex, expressing both α-L-rhamnosidase and β-D-glucosidase activities, with application in glycosides hydrolysis. To produce monoglycosylated flavonoids with naringinase, the expression of β-D-glucosidase activity is not desirable leading to the need of expensive methods for α-L-rhamnosidase purification. Therefore, the main purpose of this study was the inactivation of β-D-glucosidase activity expressed by naringinase keeping α-L-rhamnosidase with a high retention activity. Response surface methodology (RSM was used to evaluate the effects of temperature and pH on β-D-glucosidase inactivation. A selective inactivation of β-D-glucosidase activity of naringinase was achieved at 81.5∘C and pH 3.9, keeping a very high residual activity of α-L-rhamnosidase (78%. This was a crucial achievement towards an easy and cheap production method of very expensive flavonoids, like prunin and isoquercetin starting from naringin and rutin, respectively.

  12. Trichoderma virens β-glucosidase I (BGLI) gene; expression in Saccharomyces cerevisiae including docking and molecular dynamics studies.

    Science.gov (United States)

    Wickramasinghe, Gammadde Hewa Ishan Maduka; Rathnayake, Pilimathalawe Panditharathna Attanayake Mudiyanselage Samith Indika; Chandrasekharan, Naduviladath Vishvanath; Weerasinghe, Mahindagoda Siril Samantha; Wijesundera, Ravindra Lakshman Chundananda; Wijesundera, Wijepurage Sandhya Sulochana

    2017-06-21

    Cellulose, a linear polymer of β 1-4, linked glucose, is the most abundant renewable fraction of plant biomass (lignocellulose). It is synergistically converted to glucose by endoglucanase (EG) cellobiohydrolase (CBH) and β-glucosidase (BGL) of the cellulase complex. BGL plays a major role in the conversion of randomly cleaved cellooligosaccharides into glucose. As it is well known, Saccharomyces cerevisiae can efficiently convert glucose into ethanol under anaerobic conditions. Therefore, S.cerevisiae was genetically modified with the objective of heterologous extracellular expression of the BGLI gene of Trichoderma virens making it capable of utilizing cellobiose to produce ethanol. The cDNA and a genomic sequence of the BGLI gene of Trichoderma virens was cloned in the yeast expression vector pGAPZα and separately transformed to Saccharomyces cerevisiae. The size of the BGLI cDNA clone was 1363 bp and the genomic DNA clone contained an additional 76 bp single intron following the first exon. The gene was 90% similar to the DNA sequence and 99% similar to the deduced amino acid sequence of 1,4-β-D-glucosidase of T. atroviride (AC237343.1). The BGLI activity expressed by the recombinant genomic clone was 3.4 times greater (1.7 x 10 -3  IU ml -1 ) than that observed for the cDNA clone (5 x 10 -4  IU ml -1 ). Furthermore, the activity was similar to the activity of locally isolated Trichoderma virens (1.5 x 10 -3  IU ml -1 ). The estimated size of the protein was 52 kDA. In fermentation studies, the maximum ethanol production by the genomic and the cDNA clones were 0.36 g and 0.06 g /g of cellobiose respectively. Molecular docking results indicated that the bare protein and cellobiose-protein complex behave in a similar manner with considerable stability in aqueous medium. The deduced binding site and the binding affinity of the constructed homology model appeared to be reasonable. Moreover, it was identified that the five hydrogen bonds formed

  13. α-Glucosidase Inhibition and Antibacterial Activity of Secondary Metabolites from the Ecuadorian Species Clinopodium taxifolium (Kunth Govaerts

    Directory of Open Access Journals (Sweden)

    Vladimir Morocho

    2018-01-01

    Full Text Available The phytochemical investigation of both volatile and fixed metabolites of Clinopodium taxifolium (Kunth Govaerts (Lamiaceae was performed for the first time. It allowed the isolation and characterization of the essential oil and six known compounds: carvacrol (1, squalane (2, uvaol (3, erythrodiol (4, ursolic acid (5, and salvigenin (6. Their structures were identified and characterized by Nuclear Magnetic Resonance (NMR and Gas Chromatography coupled to Mass Spectroscopy (GC-MS, and corroborated by literature. The essential oil of the leaves was obtained by hydrodistillation in two different periods and analyzed by GC-MS and GC coupled to Flame Ionization Detector (GC-FID. A total of 54 compounds were detected, of which 42 were identified (including trace constituents. The major constituents were carvacrol methyl ether (18.9–23.2%, carvacrol (13.8–16.3% and, carvacryl acetate (11.4–4.8%. The antibacterial activities were determined as Minimum Inhibition Concentration (MIC against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa and Micrococcus luteus. The hexane and methanol extracts exhibited activity only against Klebsiella pneumoniae (250 and 500 μg/mL respectively, while the ethyl acetate extract was inactive. The hypoglycemic activity was evaluated by the in vitro inhibition of α-glucosidase. The ethyl acetate (EtOAc extract showed strong inhibitory activity with IC50 = 24.88 µg/mL, however methanolic and hexanic extracts showed weak activity. As a pure compound, only ursolic acid showed a strong inhibitory activity, with IC50 = 72.71 μM.

  14. Molecular Structural Basis for the Cold Adaptedness of the Psychrophilic β-Glucosidase BglU in Micrococcus antarcticus.

    Science.gov (United States)

    Miao, Li-Li; Hou, Yan-Jie; Fan, Hong-Xia; Qu, Jie; Qi, Chao; Liu, Ying; Li, De-Feng; Liu, Zhi-Pei

    2016-01-22

    Psychrophilic enzymes play crucial roles in cold adaptation of microbes and provide useful models for studies of protein evolution, folding, and dynamic properties. We examined the crystal structure (2.2-Å resolution) of the psychrophilic β-glucosidase BglU, a member of the glycosyl hydrolase 1 (GH1) enzyme family found in the cold-adapted bacterium Micrococcus antarcticus. Structural comparison and sequence alignment between BglU and its mesophilic and thermophilic counterpart enzymes (BglB and GlyTn, respectively) revealed two notable features distinct to BglU: (i) a unique long-loop L3 (35 versus 7 amino acids in others) involved in substrate binding and (ii) a unique amino acid, His299 (Tyr in others), involved in the stabilization of an ordered water molecule chain. Shortening of loop L3 to 25 amino acids reduced low-temperature catalytic activity, substrate-binding ability, the optimal temperature, and the melting temperature (Tm). Mutation of His299 to Tyr increased the optimal temperature, the Tm, and the catalytic activity. Conversely, mutation of Tyr301 to His in BglB caused a reduction in catalytic activity, thermostability, and the optimal temperature (45 to 35°C). Loop L3 shortening and H299Y substitution jointly restored enzyme activity to the level of BglU, but at moderate temperatures. Our findings indicate that loop L3 controls the level of catalytic activity at low temperatures, residue His299 is responsible for thermolability (particularly heat lability of the active center), and long-loop L3 and His299 are jointly responsible for the psychrophilic properties. The described structural basis for the cold adaptedness of BglU will be helpful for structure-based engineering of new cold-adapted enzymes and for the production of mutants useful in a variety of industrial processes at different temperatures. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Specific amino acids responsible for the cold adaptedness of Micrococcus antarcticus β-glucosidase BglU.

    Science.gov (United States)

    Miao, Li-Li; Fan, Hong-Xia; Qu, Jie; Liu, Ying; Liu, Zhi-Pei

    2017-03-01

    Psychrophilic enzymes display efficient activity at moderate or low temperatures (4-25 °C) and are therefore of great interest in biotechnological industries. We previously examined the crystal structure of BglU, a psychrophilic β-glucosidase from the bacterium Micrococcus antarcticus, at 2.2 Å resolution. In structural comparison and sequence alignment with mesophilic (BglB) and thermophilic (GlyTn) counterpart enzymes, BglU showed much lower contents of Pro residue and of charged amino acids (particularly positively charged) on the accessible surface area. In the present study, we investigated the roles of specific amino acid residues in the cold adaptedness of BglU. Mutagenesis assays showed that the mutations G261R and Q448P increased optimal temperature (from 25 to 40-45 °C) at the expense of low-temperature activity, but had no notable effects on maximal activity or heat lability. Mutations A368P, T383P, and A389E significantly increased optimal temperature (from 25 to 35-40 °C) and maximal activity (~1.5-fold relative to BglU). Thermostability of A368P and A389E increased slightly at 30 °C. Mutations K163P, N228P, and H301A greatly reduced enzymatic activity-almost completely in the case of H301A. Low contents of Pro, Arg, and Glu are important factors contributing to BglU's psychrophilic properties. Our findings will be useful in structure-based engineering of psychrophilic enzymes and in production of mutants suitable for a variety of industrial processes (e.g., food production, sewage treatment) at cold or moderate temperatures.

  16. Serological response and diagnostic value of recombinant candida cell wall protein enolase, phosphoglycerate kinase and β- glucosidase

    Directory of Open Access Journals (Sweden)

    Zhengxin eHe

    2015-09-01

    Full Text Available There are no specific signs and symtoms for invasive candidiasis (IC, which makes its diagnosis a challenge. Efforts have been made for decades to establish serological assays for rapid diagnosis of invasive candidiasis, but none of them have found widespread clinical use. Using a systemic candiasis murine model, serological response to recombinant proteins of enolase (rEno1, phosphoglycerate kinase (rPgk1 and β-glucosidase (rBgl2 were evaluated and rEno1 was found to possess the strongest immunoreactivity, followed by rPgk1 and rBgl2. Likewise, IgG antibody titers to rEno1, rPgk1 and rBgl2 in the positive sera of proven IC patients were determined by ELISA. Results show anti-rEno1 antibody possesses the highest titer, followed by rPgk1 and rBgl2. Antibodies against rEno1, rPgk1 and rBgl2 were detected by ELISA tests in a group of 52 proven IC patients or 50 healthy subjects, The sensitivity, specificity, positive and negative predictive values were 88.5%, 90.0%, 90.2%, and 88.2% for anti-rEno1 detection, 86.5%, 92.0%, 91.8% and 86.8% for anti-rPgk1 detection, and 80.8%, 90.0%, 89.4% and 81.8% for anti-rBgl2 detection, respectively. The data clearly demonstrate that the recombinant proteins of Eno1, Pgk1 and Bgl2 are promising candidates for IC serodiagnosis. There’s great possibility that the recombinant Eno1 will be more applicable in serodiagnosis and vaccine research on account of its strong serological response.

  17. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice.

    Science.gov (United States)

    Su, Jin; Sherman, Alexandra; Doerfler, Phillip A; Byrne, Barry J; Herzog, Roland W; Daniell, Henry

    2015-10-01

    Deficiency of acid alpha glucosidase (GAA) causes Pompe disease in which the patients systemically accumulate lysosomal glycogen in muscles and nervous systems, often resulting in infant mortality. Although enzyme replacement therapy (ERT) is effective in treating patients with Pompe disease, formation of antibodies against rhGAA complicates treatment. In this report, we investigated induction of tolerance by oral administration of GAA expressed in chloroplasts. Because full-length GAA could not be expressed, N-terminal 410-amino acids of GAA (as determined by T-cell epitope mapping) were fused with the transmucosal carrier CTB. Tobacco transplastomic lines expressing CTB-GAA were generated through site-specific integration of transgenes into the chloroplast genome. Homoplasmic lines were confirmed by Southern blot analysis. Despite low-level expression of CTB-GAA in chloroplasts, yellow or albino phenotype of transplastomic lines was observed due to binding of GAA to a chloroplast protein that has homology to mannose-6 phosphate receptor. Oral administration of the plant-made CTB-GAA fusion protein even at 330-fold lower dose (1.5 μg) significantly suppressed immunoglobulin formation against GAA in Pompe mice injected with 500 μg rhGAA per dose, with several-fold lower titre of GAA-specific IgG1 and IgG2a. Lyophilization increased CTB-GAA concentration by 30-fold (up to 190 μg per g of freeze-dried leaf material), facilitating long-term storage at room temperature and higher dosage in future investigations. This study provides the first evidence that oral delivery of plant cells is effective in reducing antibody responses in ERT for lysosomal storage disorders facilitating further advances in clinical investigations using plant cell culture system or in vitro propagation. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Phylogenomically guided identification of industrially relevant GH1 β-glucosidases through DNA synthesis and nanostructure-initiator mass spectrometry.

    Science.gov (United States)

    Heins, Richard A; Cheng, Xiaoliang; Nath, Sangeeta; Deng, Kai; Bowen, Benjamin P; Chivian, Dylan C; Datta, Supratim; Friedland, Gregory D; D'Haeseleer, Patrik; Wu, Dongying; Tran-Gyamfi, Mary; Scullin, Chessa S; Singh, Seema; Shi, Weibing; Hamilton, Matthew G; Bendall, Matthew L; Sczyrba, Alexander; Thompson, John; Feldman, Taya; Guenther, Joel M; Gladden, John M; Cheng, Jan-Fang; Adams, Paul D; Rubin, Edward M; Simmons, Blake A; Sale, Kenneth L; Northen, Trent R; Deutsch, Samuel

    2014-09-19

    Harnessing the biotechnological potential of the large number of proteins available in sequence databases requires scalable methods for functional characterization. Here we propose a workflow to address this challenge by combining phylogenomic guided DNA synthesis with high-throughput mass spectrometry and apply it to the systematic characterization of GH1 β-glucosidases, a family of enzymes necessary for biomass hydrolysis, an important step in the conversion of lignocellulosic feedstocks to fuels and chemicals. We synthesized and expressed 175 GH1s, selected from over 2000 candidate sequences to cover maximum sequence diversity. These enzymes were functionally characterized over a range of temperatures and pHs using nanostructure-initiator mass spectrometry (NIMS), generating over 10,000 data points. When combined with HPLC-based sugar profiling, we observed GH1 enzymes active over a broad temperature range and toward many different β-linked disaccharides. For some GH1s we also observed activity toward laminarin, a more complex oligosaccharide present as a major component of macroalgae. An area of particular interest was the identification of GH1 enzymes compatible with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), a next-generation biomass pretreatment technology. We thus searched for GH1 enzymes active at 70 °C and 20% (v/v) [C2mim][OAc] over the course of a 24-h saccharification reaction. Using our unbiased approach, we identified multiple enzymes of different phylogentic origin with such activities. Our approach of characterizing sequence diversity through targeted gene synthesis coupled to high-throughput screening technologies is a broadly applicable paradigm for a wide range of biological problems.

  19. Gene cloning and characterization of a cold-adapted β-glucosidase belonging to glycosyl hydrolase family 1 from a psychrotolerant bacterium Micrococcus antarcticus.

    Science.gov (United States)

    Fan, Hong-Xia; Miao, Li-Li; Liu, Ying; Liu, Hong-Can; Liu, Zhi-Pei

    2011-06-10

    The gene bglU encoding a cold-adapted β-glucosidase (BglU) was cloned from Micrococcus antarcticus. Sequence analysis revealed that the bglU contained an open reading frame of 1419 bp and encoded a protein of 472 amino acid residues. Based on its putative catalytic domains, BglU was classified as a member of the glycosyl hydrolase family 1 (GH1). BglU possessed lower arginine content and Arg/(Arg+Lys) ratio than mesophilic GH1 β-glucosidases. Recombinant BglU was purified with Ni2+ affinity chromatography and subjected to enzymatic characterization. SDS-PAGE and native staining showed that it was a monomeric protein with an apparent molecular mass of 48 kDa. BglU was particularly thermolabile since its half-life time was only 30 min at 30°C and it exhibited maximal activity at 25°C and pH 6.5. Recombinant BglU could hydrolyze a wide range of aryl-β-glucosides and β-linked oligosaccharides with highest activity towards cellobiose and then p-nitrophenyl-β-d-glucopyranoside (pNPG). Under the optimal conditions with pNPG as substrate, the K(m) and k(cat) were 7 mmol/L and 7.85 × 103/s, respectively. This is the first report of cloning and characterization of a cold-adapted β-glucosidase belonging to GH1 from a psychrotolerant bacterium. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of α-amylase and α-glucosidase by highbush blueberry (Vaccinium corombosum).

    Science.gov (United States)

    Johnson, Michelle H; Lucius, Anita; Meyer, Tessa; de Mejia, Elvira Gonzalez

    2011-08-24

    The berry fruits of highbush blueberry (Vaccinium corymbosum) contain bioactive compounds with potential health benefits. The objective was to evaluate blueberries grown in southern Illinois as well as the effect of fermentation, at two different temperatures, on chemical and physical parameters. Fruits from fifteen blueberry cultivars were analyzed. Fruit diameter ranged from 12.8 mm to 18.7 mm, pH from 2.6 to 3.7, reducing sugars from 6.4% to 15.2%, total sugars from 13.9% to 21.6%, total polyphenols from 0.39 to 1.00 mg gallic acid equivalents (GAE)/g blueberry and antioxidant capacity from 5.8 to 10.9 μM Trolox equivalents (TE)/g. In vitro α-amylase and α-glucosidase inhibitory capacity relative to the positive control acarbose, a known anti-diabetic drug, showed a range from 91.8 to 103.3% for α-amylase and from 103.2% to 190.8% for α-glucosidase. Wines prepared from several of these blueberry cultivars were analyzed throughout fermentation and compared at room temperature and cold temperature fermentation for pH (3.5 to 6.3), °Brix (13.6 to 29.7), total polyphenols (375.4 to 657.1 μg GAE/mL wine), and antioxidant capacity (4.5 to 25.1 mM TE). The wines were also tested for their in vitro capacity to inhibit α-amylase and α-glucosidase and maintained similar inhibitory action as the berries. Highbush blueberry cultivars and their fermented beverages are good natural sources of antioxidants and starch-degrading enzyme inhibitors important for type 2 diabetes management.

  1. Intracellular β-Glucosidases CEL1a and CEL1b Are Essential for Cellulase Induction on Lactose in Trichoderma reesei

    Science.gov (United States)

    Xu, Jintao; Zhao, Guolei; Kou, Yanbo; Zhang, Weixin; Zhou, Qingxin; Chen, Guanjun

    2014-01-01

    Lactose (1,4-O-β-d-galacto-pyranosyl-d-glucose) induces cellulolytic enzymes in Trichoderma reesei and is in fact one of the most important soluble carbon sources used to produce cellulases on an industrial level. The mechanism underlying the induction is, however, not fully understood. In this study, we investigated the cellular functions of the intracellular β-glucosidases CEL1a and CEL1b in the induction of cellulase genes by lactose in T. reesei. We demonstrated that while CEL1a and CEL1b were functionally equivalent in mediating the induction, the simultaneous absence of these intracellular β-glucosidases abolished cbh1 gene expression on lactose. d-Galactose restored the efficient cellulase gene induction in the Δcel1a strain independently of its reductive metabolism, but not in the Δcel1a Δcel1b strain. A further comparison of the transcriptional responses of the Δcel1a Δcel1b strain complemented with wild-type CEL1a or a catalytically inactive CEL1a version and the Δcel1a strain constitutively expressing CEL1a or the Kluyveromyces lactis β-galactosidase LAC4 showed that both the CEL1a protein and its glycoside hydrolytic activity were indispensable for cellulase induction by lactose. We also present evidence that intracellular β-glucosidase-mediated lactose induction is further conveyed to XYR1 to ensure the efficiently induced expression of cellulase genes. PMID:24879125

  2. Contribution of Musa paradisiaca in the inhibition of α-amylase, α-glucosidase and Angiotensin-I converting enzyme in streptozotocin induced rats.

    Science.gov (United States)

    Shodehinde, Sidiqat A; Ademiluyi, Adedayo O; Oboh, Ganiyu; Akindahunsi, Afolabi A

    2015-07-15

    Unripe plantain based-diets are part of folklore remedy for the management of diabetes in tropical Africa; however, with the dearth of information on the rationale behind this practice; this study therefore, sought to investigate the antihyperglycemic effect of traditional unripe plantain products (Amala and Booli) in high fat fed/low dose streptozotocin-induced diabetic rats and to provide a possible rationale for their antidiabetic properties. Diabetes was induced experimentally by high fat fed/low dose streptozotocin-diabetic rats (25mg/kg body wt.) and the diabetic rats were fed diets supplemented with 20-40% Amala and Booli for 14 days. The effect of the diets on the blood glucose level, pancreatic α-amylase, intestinal α-glucosidase and Angiotensin-I converting enzyme (ACE) activities and plasma antioxidant status as well as amylose/amylopectin content of the unripe plantain products were determined. A marked increase in the blood glucose, α-amylase, α-glucosidase and ACE activities with a corresponding decrease in plasma antioxidant status was recorded in diabetic rats. However, these indices were significantly (P < 0.05) reversed after unripe plantain product supplemented diet treatments for 14 days. Also, the amylose/amylopectin ratio of the products is 1:3. This study revealed that unripe plantain products exert antihyperglycemic effects which could be attributed to the inhibition of α-amylase and α-glucosidase activities by their constituent phytochemicals as well as their amylose/amylopectin contents in the diabetic rats, hence, providing the possible rationale behind their antidiabetic properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A novel low-temperature-active β-glucosidase from symbiotic Serratia sp. TN49 reveals four essential positions for substrate accommodation.

    Science.gov (United States)

    Zhou, Junpei; Zhang, Rui; Shi, Pengjun; Huang, Huoqing; Meng, Kun; Yuan, Tiezheng; Yang, Peilong; Yao, Bin

    2011-10-01

    A 2,373-bp full-length gene (bglA49) encoding a 790-residue polypeptide (BglA49) with a calculated mass of 87.8 kDa was cloned from Serratia sp. TN49, a symbiotic bacterium isolated from the gut of longhorned beetle (Batocera horsfieldi) larvae. The deduced amino acid sequence of BglA49 showed the highest identities of 80.1% with a conceptually translated protein from Pantoea sp. At-9b (EEW02556), 38.3% with the identified glycoside hydrolase (GH) family 3 β-glucosidase from Clostridium stercorarium NCBI 11754 (CAB08072), and sp. G5 (ABL09836) and Paenibacillus sp. C7 (AAX35883). The recombinant enzyme (r-BglA49) was expressed in Escherichia coli and displayed the typical characteristics of low-temperature-active enzymes, such as low temperature optimum (showing apparent optimal activity at 35°C), activity at low temperatures (retaining approximately 60% of its maximum activity at 20°C and approximately 25% at 10°C). Compared with the thermophilic GH 3 β-glucosidase, r-BglA49 had fewer hydrogen bonds and salt bridges and less proline residues. These features might relate to the increased structure flexibility and higher catalytic activity at low temperatures of r-BglA49. The molecular docking study of four GH 3 β-glucosidases revealed five conserved positions contributing to substrate accommodation, among which four positions of r-BglA49 (R192, Y228, D260, and E449) were identified to be essential based on site-directed mutagenesis analysis.

  4. Study of the role of epididymal alpha-glucosidase in the fertility of male rats by the administration of the enzyme inhibitor castanospermine.

    Science.gov (United States)

    Yeung, C H; Cooper, T G

    1994-11-01

    The activity of epididymal alpha-glucosidase in adult rats was rapidly suppressed to histochemically undetectable levels within 2 days by the continuous release of the enzyme inhibitor castanospermine via a peritoneal osmotic pump at a rate of 100-200 nmol h-1. It was established that mating activities overnight depleted 72% of the spermatozoa in the distal cauda, which was replenished in 2 days, and that fertility began to decline 3 weeks after efferent duct ligation. Male rats of proven mating proficiency and fertility were treated with castanospermine, or buffered saline as control, for up to 30 days and enzyme inhibition was confirmed at the end of treatment by histochemistry. Fertility was normal at the first mating test on day 7, significantly decreased at the second mating on day 9, but recovered in a stepwise manner at subsequent matings on days 12 and 14. Delaying the third mating until day 25 did not sustain the transient subfertility. However, prolonging sperm storage in the distal cauda epididymides and preventing replenishment with freshly matured spermatozoa, by efferent duct ligation for 14 days performed on day 15 during castanospermine administration, caused a decrease in fertility and a change in the kinematics of epididymal spermatozoa of the castanospermine-treated group. In control rats, binding of epididymal spermatozoa to Vicia faba, a lectin specific for glucose and glucosamine, and mannose and mannosamine residues, decreased from the proximal caput to the distal corpus coincident with the increase in alpha-glucosidase activity on the epithelial brush border. Lectin binding then increased in the cauda where enzyme activity was absent. However, castanospermine treatment did not significantly alter this binding profile. The findings suggest that epididymal alpha-glucosidase does not play a crucial role in the development of sperm fertilizing capacity, but may be involved in the preparation of spermatozoa for storage.

  5. Malaysian brown seaweeds Sargassum siliquosum and Sargassum polycystum: Low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase inhibition activities.

    Science.gov (United States)

    Nagappan, Hemlatha; Pee, Poh Ping; Kee, Sandra Hui Yin; Ow, Ji Tsong; Yan, See Wan; Chew, Lye Yee; Kong, Kin Weng

    2017-09-01

    Two Malaysian brown seaweeds, Sargassum siliquosum and Sargassum polycystum were first extracted using methanol to get the crude extract (CE) and further fractionated to obtain fucoxanthin-rich fraction (FRF). Samples were evaluated for their phenolic, flavonoid, and fucoxanthin contents, as well as their inhibitory activities towards low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase. In LDL oxidation assay, an increasing trend in antioxidant activity was observed as the concentration of FRF (0.04-0.2mg/mL) and CE (0.2-1.0mg/mL) increased, though not statistically significant. As for serum oxidation assay, significant decrease in antioxidant activity was observed as concentration of FRF increased, while CE showed no significant difference in inhibitory activity across the concentrations used. The IC 50 values for ACE inhibitory activity of CE (0.03-0.42mg/mL) were lower than that of FRF (0.94-1.53mg/mL). When compared to reference drug Voglibose (IC 50 value of 0.61mg/mL) in the effectiveness in inhibiting α-amylase, CE (0.58mg/mL) gave significantly lower IC 50 values while FRF (0.68-0.71mg/mL) had significantly higher IC 50 values. The α-glucosidase inhibitory activity of CE (IC 50 value of 0.57-0.69mg/mL) and FRF (IC 50 value of 0.50-0.53mg/mL) were comparable to that of reference drug (IC 50 value of 0.54mg/mL). Results had shown the potential of S. siliquosum and S. polycystum in reducing cardiovascular diseases related risk factors following their inhibitory activities on ACE, α-amylase and α-glucosidase. In addition, it is likelihood that FRF possessed antioxidant activity at low concentration level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of Onion (Allium cepa L. Extract Administration on Intestinal α-Glucosidases Activities and Spikes in Postprandial Blood Glucose Levels in SD Rats Model

    Directory of Open Access Journals (Sweden)

    Sun-Ho Kim

    2011-06-01

    Full Text Available Diets high in calories and sweetened foods with disaccharides frequently lead to exaggerated postprandial spikes in blood glucose. This state induces immediate oxidant stress and free radicals which trigger oxidative stress-linked diabetic complications. One of the therapeutic approaches for decreasing postprandial hyperglycemia is to retard absorption of glucose by the inhibition of carbohydrate hydrolyzing enzymes,α-amylase and α-glucosidases, in the digestive organs. Therefore, the inhibitory activity of Korean onion (Allium cepa L. extract against rat intestinal α-glucosidases, such as sucrase, maltase, and porcine pancreatic α-amylase were investigated in vitro and in vivo. The content of quercetin in ethyl alcohol extract of onion skin (EOS was 6.04 g/100 g dried weight of onion skin. The in vitro half-maximal inhibitory concentrations (IC50 of EOS and quercetin, a major phenolic in onion, on rat intestinal sucrase were 0.40 and 0.11 mg/mL, respectively. The postprandial blood glucose lowering effects of EOS and quercetin were compared to a known type 2 diabetes drug (Acarbose, a strong α-glucosidase inhibitor in the Sprague-Dawley (SD rat model. In rats fed on sucrose, EOS significantly reduced the blood glucose spike after sucrose loading. The area under the blood glucose-time curve (AUClast in EOS-treated SD rats (0.5 g-EOS/kg was significantly lower than in untreated SD rats (259.6 ± 5.1 vs. 283.1 ± 19.2 h·mg/dL. The AUClast in quercetin-treated SD rats (0.5 g-quercetin/kg was similar to in EOS-treated group (256.1 ± 3.2 vs. 259.6 ± 5.1 h·mg/dL. Results from this study indicates that although quercetin does have blood glucose lowering potential via α-glucosidase inhibition, there are other bioactive compounds present in onion skin. Furthermore, the effects of two weeks administration of EOS in a high carbohydrate-dietary mixture (Pico 5053 on sucrase and maltase activities in intestine were evaluated in SD rat model

  7. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis.

    Science.gov (United States)

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-03-01

    Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 A, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 A.

  8. In vitro antioxidant and, α-glucosidase inhibitory activities and comprehensive metabolite profiling of methanol extract and its fractions from Clinacanthus nutans.

    Science.gov (United States)

    Alam, Md Ariful; Zaidul, I S M; Ghafoor, Kashif; Sahena, F; Hakim, M A; Rafii, M Y; Abir, H M; Bostanudin, M F; Perumal, V; Khatib, A

    2017-03-31

    This study was aimed to evaluate antioxidant and α-glucosidase inhibitory activity, with a subsequent analysis of total phenolic and total flavonoid content of methanol extract and its derived fractions from Clinacanthus nutans accompanied by comprehensive phytochemical profiling. Liquid-liquid partition chromatography was used to separate methanolic extract to get hexane, ethyl acetate, butanol and residual aqueous fractions. The total antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging and ferric reducing antioxidant power assay (FRAP). The antidiabetic activity of methanol extract and its consequent fractions were examined by α-glucosidase inhibitory bioassay. The chemical profiling was carried out by gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC Q-TOF MS). The total yield for methanol extraction was (12.63 ± 0.98) % (w/w) and highest fractionated value found for residual aqueous (52.25 ± 1.01) % (w/w) as compared to the other fractions. Significant DPPH free radical scavenging activity was found for methanolic extract (63.07 ± 0.11) % and (79.98 ± 0.31) % for ethyl acetate fraction among all the fractions evaluated. Methanol extract was the most prominent in case of FRAP (141.89 ± 0.87 μg AAE/g) whereas most effective reducing power observed in ethyl acetate fraction (133.6 ± 0.2987 μg AAE/g). The results also indicated a substantial α-glucosidase inhibitory activity for butanol fraction (72.16 ± 1.0) % and ethyl acetate fraction (70.76 ± 0.49) %. The statistical analysis revealed that total phenolic and total flavonoid content of the samples had the significant (p < 0.05) impact on DPPH free radical scavenging and α-glucosidase inhibitory activity. Current results proposed the therapeutic potential of Clinacanthus nutans, especially ethyl acetate and butanol fraction as chemotherapeutic agent against oxidative related cellular damages and control the

  9. Revisiting overexpression of a heterologous β-glucosidase in Trichoderma reesei: fusion expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities.

    Science.gov (United States)

    Xue, Xianli; Wu, Yilan; Qin, Xing; Ma, Rui; Luo, Huiying; Su, Xiaoyun; Yao, Bin

    2016-07-11

    The filamentous fungus Trichoderma reesei has the capacity to secret large amounts of cellulase and is widely used in a variety of industries. However, the T. reesei cellulase is weak in β-glucosidase activity, which results in accumulation of cellobiose inhibiting the endo- and exo-cellulases. By expressing an exogenous β-glucosidase gene, the recombinant T. reesei cellulase is expected to degrade cellulose into glucose more efficiently. The thermophilic β-glucosidase NfBgl3A from Neosartorya fischeri is chosen for overexpression in T. reesei due to its robust activity. In vitro, the Pichia pastoris-expressed NfBgl3A aided the T. reesei cellulase in releasing much more glucose with significantly lower amounts of cellobiose from crystalline cellulose. The NfBgl3A gene was hence fused to the cbh1 structural gene and assembled between the strong cbh1 promoter and cbh1 terminator to obtain pRS-NfBgl3A by using the DNA assembler method. pRS-NfBgl3A was transformed into the T. reesei uridine auxotroph strain TU-6. Six positive transformants showed β-glucosidase activities of 2.3-69.7 U/mL (up to 175-fold higher than that of wild-type). The largely different β-glucosidase activities in the transformants may be ascribed to the gene copy numbers of NfBgl3A or its integration loci. The T. reesei-expressed NfBgl3A showed highly similar biochemical properties to that expressed in P. pastoris. As expected, overexpression of NfBgl3A enhanced the overall cellulase activity of T. reesei. The CBHI activity in all transformants increased, possibly due to the extra copies of cbh1 gene introduced, while the endoglucanase activity in three transformants also largely increased, which was not observed in any other studies overexpressing a β-glucosidase. NfBgl3A had significant transglycosylation activity, generating sophorose, a potent cellulase inducer, and other oligosaccharides from glucose and cellobiose. We report herein the successful overexpression of a thermophilic N

  10. Production of enzymatically active recombinant full-length barley high pI alpha-glucosidase of glycoside family 31 by high cell-density fermentation of Pichia pastoris and affinity purification

    DEFF Research Database (Denmark)

    Næsted, Henrik; Kramhøft, Birte; Lok, F.

    2006-01-01

    Recombinant barley high pI alpha-glucosidase was produced by high cell-density fermentation of Pichia pastoris expressing the cloned full-length gene. The gene was amplified from a genomic clone and exons (coding regions) were assembled by overlap PCR. The resulting cDNA was expressed under contr...... nM x s(-1), and 85 s(-1) using maltose as substrate. This work presents the first production of fully active recombinant alpha-glucosidase of glycoside hydrolase family 31 from higher plants. (c) 2005 Elsevier Inc. All rights reserved....

  11. Comprehensive enzymatic analysis of the cellulolytic system in digestive fluid of the Sea Hare Aplysia kurodai. Efficient glucose release from sea lettuce by synergistic action of 45 kDa endoglucanase and 210 kDa ß-glucosidase.

    Directory of Open Access Journals (Sweden)

    Akihiko Tsuji

    Full Text Available Although many endo-ß-1,4-glucanases have been isolated in invertebrates, their cellulolytic systems are not fully understood. In particular, gastropod feeding on seaweed is considered an excellent model system for production of bioethanol and renewable bioenergy from third-generation feedstocks (microalgae and seaweeds. In this study, enzymes involved in the conversion of cellulose and other polysaccharides to glucose in digestive fluids of the sea hare (Aplysia kurodai were screened and characterized to determine how the sea hare obtains glucose from sea lettuce (Ulva pertusa. Four endo-ß-1,4-glucanases (21K, 45K, 65K, and 95K cellulase and 2 ß-glucosidases (110K and 210K were purified to a homogeneous state, and the synergistic action of these enzymes during cellulose digestion was analyzed. All cellulases exhibited cellulase and lichenase activities and showed distinct cleavage specificities against cellooligosaccharides and filter paper. Filter paper was digested to cellobiose, cellotriose, and cellotetraose by 21K cellulase, whereas 45K and 65K enzymes hydrolyzed the filter paper to cellobiose and glucose. 210K ß-glucosidase showed unique substrate specificity against synthetic and natural substrates, and 4-methylumbelliferyl (4MU-ß-glucoside, 4MU-ß-galactoside, cello-oligosaccharides, laminarin, and lichenan were suitable substrates. Furthermore, 210K ß-glucosidase possesses lactase activity. Although ß-glucosidase and cellulase are necessary for efficient hydrolysis of carboxymethylcellulose to glucose, laminarin is hydrolyzed to glucose only by 210K ß-glucosidase. Kinetic analysis of the inhibition of 210K ß-glucosidase by D-glucono-1,5-lactone suggested the presence of 2 active sites similar to those of mammalian lactase-phlorizin hydrolase. Saccharification of sea lettuce was considerably stimulated by the synergistic action of 45K cellulase and 210K ß-glucosidase. Our results indicate that 45K cellulase and 210K ß-glucosidase

  12. Enzymatic hydrolysis of pretreated Alfa fibers (Stipa tenacissima) using β-d-glucosidase and xylanase of Talaromyces thermophilus from solid-state fermentation.

    Science.gov (United States)

    Mallek-Fakhfakh, Hanen; Fakhfakh, Jawhar; Walha, Kamel; Hassairi, Hajer; Gargouri, Ali; Belghith, Hafedh

    2017-10-01

    This work aims at realizing an optimal hydrolysis of pretreated Alfa fibers (Stipa tenacissima) through the use of enzymes produced from Talaromyces thermophilus AX4, namely β-d-glucosidase and xylanase, by a solid state fermentation process of an agro-industrial waste (wheat bran supplemented with lactose). The carbon source was firstly selected and the optimal values of three other parameters were determined: substrate loading (10g), moisture content (85%) and production time (10days); which led to an optimized enzymatic juice. The outcome was then supplemented with cellulases of T. reesei and used to optimize the enzymatic saccharification of alkali-pretreated Alfa fibers (PAF). The maximum saccharification yield of 83.23% was achieved under optimized conditions (substrate concentration 3.7% (w/v), time 144h and enzyme loading of 0.8 FPU, 15U CMCase, 60U β-d-glucosidase and 125U xylanase).The structural modification of PAF due to enzymatic saccharification was supported by the changes of morphologic and chemical composition observed through macroscopic representation, FTIR and X-Ray analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Purification, crystallization and preliminary X-ray analysis of rice BGlu1 β-glucosidase with and without 2-deoxy-2-fluoro-β-d-glucoside

    International Nuclear Information System (INIS)

    Chuenchor, Watchalee; Pengthaisong, Salila; Yuvaniyama, Jirundon; Opassiri, Rodjana; Svasti, Jisnuson; Ketudat Cairns, James R.

    2006-01-01

    Rice BGlu1 β-glucosidase was purified from recombinant E. coli and crystallized with and without the inhibitor 2-deoxy-2-fluoro-β-d-glucose. The crystals diffracted to 2.15 and 2.75 Å, respectively. Rice (Oryza sativa) BGlu1 β-glucosidase was expressed in Escherichia coli with N-terminal thioredoxin and hexahistidine tags and purified by immobilized metal-affinity chromatography (IMAC). After removal of the N-terminal tags, cation-exchange and S-200 gel-filtration chromatography yielded a 50 kDa BGlu1 with >95% purity. The free enzyme and a complex with 2,4-dinitrophenyl-2-deoxy-2-fluoro-β-d-glucopyranoside inhibitor were crystallized by microbatch and hanging-drop vapour diffusion. Small tetragonal crystals of BGlu1 with and without inhibitor grew in 18%(w/v) PEG 8000 with 0.1 M sodium cacodylate pH 6.5 and 0.2 M zinc acetate. Crystals of BGlu1 with inhibitor were streak-seeded into 23%(w/v) PEG MME 5000, 0.2 M ammonium sulfate, 0.1 M MES pH 6.7 to yield larger crystals. Crystals with and without inhibitor diffracted to 2.15 and 2.75 Å resolution, respectively, and had isomorphous orthorhombic unit cells belonging to space group P2 1 2 1 2 1

  14. Alpha-glucosidase inhibitor, acarbose, improves glycamic control and reduces body weight in type 2 diabetes: Findings on indian patients from the pooled data analysis

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2013-01-01

    Full Text Available Alpha-glucosidase inhibitors are widely used especially in Asian countries as a treatment option for type 2 diabetes patients with high postprandial glycemia (PPG. The higher carbohydrate in the Indian diets lead to greater prandial glycemic excursion, increased glucosidase, and incretin activity in the gut and may need special therapeutic strategies to tackle these glucose peaks. This is the subgroup analysis of Indian subjects who participated in the GlucoVIP study that investigated the effectiveness and tolerability of acarbose as add-on or monotherapy in a range of patients with type 2 diabetes mellitus. A total of 1996 Indian patients were included in the effectiveness analysis. After 12.5 weeks (mean, the mean change in 2-hour PPG from baseline was −74.4 mg/dl, mean HbA1c decreased by -1.0%, and mean fasting blood glucose decreased by -37.9 mg/dl. The efficacy of acarbose was rated "very good" or "good" in 91.1% of patients, and tolerability as "very good" or "good" in 88.0% of patients. The results of this observational study suggest that acarbose was effective and well tolerated in the Indian patients with T2DM.

  15. Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on α-amylase and α-glucosidase activities.

    Science.gov (United States)

    Hemalatha, P; Bomzan, Dikki Pedenla; Sathyendra Rao, B V; Sreerama, Yadahally N

    2016-05-15

    Whole grain quinoa and its milled fractions were evaluated for their phenolic composition in relation to their antioxidant properties and inhibitory effects on α-amylase and α-glucosidase activities. Compositional analysis by HPLC-DAD showed that the distribution of phenolic compounds in quinoa is not entirely localised in the outer layers of the kernel. Milling of whole grain quinoa resulted in about 30% loss of total phenolic content in milled grain. Ferulic and vanillic acids were the principal phenolic acids and rutin and quercetin were predominant flavonoids detected in whole grain and milled fractions. Quinoa milled fractions exhibited numerous antioxidant activities. Despite having relatively lower phenolic contents, dehulled and milled grain fractions showed significantly (p ⩽ 0.05) higher metal chelating activity than other fractions. Furthermore, extracts of bran and hull fractions displayed strong inhibition towards α-amylase [IC50, 108.68 μg/ml (bran) and 148.23 μg/ml (hulls)] and α-glucosidase [IC50, 62.1 μg/ml (bran) and 68.14 μg/ml (hulls)] activities. Thus, whole grain quinoa and its milled fractions may serve as functional food ingredients in gluten-free foods for promoting health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Treebupachatsakul, Treesukon; Shioya, Koki; Nakazawa, Hikaru; Kawaguchi, Takashi; Morikawa, Yasushi; Shida, Yosuke; Ogasawara, Wataru; Okada, Hirofumi

    2015-12-01

    The capacity of Trichoderma reesei cellulase to degrade lignocellulosic biomass has been enhanced by the construction of a recombinant T. reesei strain expressing Aspergillus aculeatus β-glucosidase I. We have confirmed highly efficient ethanol production from converge-milled Japanese cedar by recombinant T. reesei expressing A. aculeatus β-glucosidase I (JN11). We investigated the ethanol productivity of JN11 and compared it with the cocktail enzyme T. reesei PC-3-7 with reinforced cellobiase activity by the commercial Novozyme 188. Results showed that the ethanol production efficiency under enzymatic hydrolysis of JN11 was comparable to the cocktail enzyme both on simultaneous saccharification and fermentation (SSF) or separate hydrolysis and fermentation (SHF) processes. Moreover, the cocktail enzyme required more protein loading for attaining similar levels of ethanol conversion as JN11. We propose that JN11 is an intrinsically economical enzyme that can eliminate the supplementation of BGL for PC-3-7, thereby reducing the cost of industrial ethanol production from lignocellulosic biomass. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7

    Science.gov (United States)

    Zanphorlin, Leticia Maria; de Giuseppe, Priscila Oliveira; Honorato, Rodrigo Vargas; Tonoli, Celisa Caldana Costa; Fattori, Juliana; Crespim, Elaine; de Oliveira, Paulo Sergio Lopes; Ruller, Roberto; Murakami, Mario Tyago

    2016-03-01

    Psychrophilic enzymes evolved from a plethora of structural scaffolds via multiple molecular pathways. Elucidating their adaptive strategies is instrumental to understand how life can thrive in cold ecosystems and to tailor enzymes for biotechnological applications at low temperatures. In this work, we used X-ray crystallography, in solution studies and molecular dynamics simulations to reveal the structural basis for cold adaptation of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. We discovered that the selective pressure of low temperatures favored mutations that redesigned the protein surface, reduced the number of salt bridges, exposed more hydrophobic regions to the solvent and gave rise to a tetrameric arrangement not found in mesophilic and thermophilic homologues. As a result, some solvent-exposed regions became more flexible in the cold-adapted tetramer, likely contributing to enhance enzymatic activity at cold environments. The tetramer stabilizes the native conformation of the enzyme, leading to a 10-fold higher activity compared to the disassembled monomers. According to phylogenetic analysis, diverse adaptive strategies to cold environments emerged in the GH1 family, being tetramerization an alternative, not a rule. These findings reveal a novel strategy for enzyme cold adaptation and provide a framework for the semi-rational engineering of β-glucosidases aiming at cold industrial processes.

  18. Chemical Constituents of Muehlenbeckia tamnifolia (Kunth) Meisn (Polygonaceae) and Its In Vitro α-Amilase and α-Glucosidase Inhibitory Activities.

    Science.gov (United States)

    Torres-Naranjo, María; Suárez, Alirica; Gilardoni, Gianluca; Cartuche, Luis; Flores, Paola; Morocho, Vladimir

    2016-11-02

    The phytochemical investigation of Muehlenbeckia tamnifolia , collected in Loja-Ecuador, led to the isolation of nine known compounds identified as: lupeol acetate ( 1 ); cis - p -coumaric acid ( 2 ); lupeol ( 3 ); β-sitosterol ( 4 ) trans - p -coumaric acid ( 5 ); linoleic acid ( 6 ) (+)-catechin ( 7 ); afzelin ( 8 ) and quercitrin ( 9 ). The structures of the isolated compounds were determined based on analysis of NMR and MS data, as well as comparison with the literature. The hypoglycemic activity of crude extracts and isolated compounds was assessed by the ability to inhibit α-amylase and α-glucosidase enzymes. The hexane extract showed weak inhibitory activity on α-amylase, with an IC 50 value of 625 µg·mL -1 , while the other extracts and isolated compounds were inactive at the maximum dose tested. The results on α-glucosidase showed more favorable effects; the hexanic and methanolic extracts exhibited a strong inhibitory activity with IC 50 values of 48.22 µg·mL -1 and 19.22 µg·mL -1 , respectively. Four of the nine isolated compounds exhibited strong inhibitory activity with IC 50 values below 8 µM, much higher than acarbose (377 uM). Linoleic acid was the most potent compound (IC 50 = 0.42 µM) followed by afzelin, (+)-catechin and quercitrin.

  19. Inhibitory Potential of Five Traditionally Used Native Antidiabetic Medicinal Plants on α-Amylase, α-Glucosidase, Glucose Entrapment, and Amylolysis Kinetics In Vitro

    Directory of Open Access Journals (Sweden)

    Carene M. N. Picot

    2014-01-01

    Full Text Available Five traditionally used antidiabetic native medicinal plants of Mauritius, namely, Stillingia lineata (SL, Faujasiopsis flexuosa (FF, Erythroxylum laurifolium (EL, Elaeodendron orientale (EO, and Antidesma madagascariensis (AM, were studied for possible α-amylase and α-glucosidase inhibitory property, glucose entrapment, and amylolysis kinetics in vitro. Only methanolic extracts of EL, EO, and AM (7472.92±5.99, 1745.58±31.66, and 2222.96±13.69 μg/mL, resp. were found to significantly (P<0.05 inhibit α-amylase and were comparable to acarbose. EL, EO, AM, and SL extracts (5000 μg/mL were found to significantly (P<0.05 inhibit α-glucosidase (between 87.41±3.31 and 96.87±1.37% inhibition. Enzyme kinetic studies showed an uncompetitive and mixed type of inhibition. Extracts showed significant (P<0.05 glucose entrapment capacities (8 to 29% glucose diffusion retardation index (GDRI, with SL being more active (29% GDRI and showing concentration-dependent activity (29, 26, 21, 14, and 5%, resp.. Amylolysis kinetic studies showed that methanolic extracts were more potent inhibitors of α-amylase compared to aqueous extracts and possessed glucose entrapment properties. Our findings tend to provide justification for the hypoglycaemic action of these medicinal plants which has opened novel avenues for the development of new phytopharmaceuticals geared towards diabetes management.

  20. Efficiency of three buffers for extracting B-glucosidase enzyme in different soil orders: Evaluating the role of soil organic matter

    Directory of Open Access Journals (Sweden)

    Viviana Gutiérrez

    2017-01-01

    Full Text Available The objective of this research was to evaluate extraction methods for β - glucosidases comparing three buffer solutions (MUB, acetate, and maleate at different incubation times (0.5 h to 10 h and in three different soil orders (Mollisols, Andisols and Ultisols. Seven acidic soils were evaluated, showing differences in pH, OM, and clay contents. To evaluate the effect of OM as enzymes source, one soil of each order was treated to partially remove its OM and then the enzyme assay was performed. When using MUB and maleate buffers the highest (32 and 31 μg - p NP g - soil - 1 h - 1 in average , respec tively were found, and the latter was significantly (p < 0.050 correlated with the soil clay content. The activity obtained with acetate buffer was much lower ( 3 8.2 μg - p NP g - soil - 1 h - 1 in average . The use of MUB buffer with 1 h of incubation is suggested as extraction method, showing good reproducibility and allowing to express higher enzyme potential for soil comparisons. For the Andisol and Ultisol, the enzyme activity significantly decreased with the OM removal (% indicating that OM is the major sourc e of the measured β - glucosidase activity, while a different trend was observed for the Mollisol, in which the mineral fraction (mainly 2:1 type clay appears to be involved in the increased enzyme activity displayed after the initial OM removal.

  1. High-theabrownins instant dark tea product by Aspergillus niger via submerged fermentation: α-glucosidase and pancreatic lipase inhibition and antioxidant activity.

    Science.gov (United States)

    Wang, Yuwan; Zhang, Mingyue; Zhang, Zhengzhu; Lu, Hengqian; Gao, Xueling; Yue, Pengxiang

    2017-12-01

    Theabrownins (TB) are bioactive components that are usually extracted from Chinese dark tea, in which they are present at low concentrations. The present study aimed to produce an instant dark tea high in theabrownins via submerged fermentation by the fungus Aspergillus niger. Three fermentation parameters that affect theabrownins content (i.e. inoculum size, liquid-solid ratio and rotation speed) were optimized using response surface methodology. Optimum fermentation conditions were modeled to be an inoculum of 5.40% (v/v), a liquid-solid ratio of 27.45 mL g -1 and a rotation speed of 184 rpm and were predicted to yield 292.99 g kg -1 TB. Under these experimentally conditions, the TB content of the instant dark tea was 291.93 g kg -1 . The antioxidant capacity and α-glucosidase and pancreatic lipase inhibitory activities of the high-TB instant black tea were higher than four other typical instant dark tea products. The results of the present study show that careful management of culture conditions can produce a dark tea high in theabrownins. Furthermore, high-theabrownins instant dark tea could serve as a source of bioactive products and be used in functional foods as an ingredient imparting antioxidant properties and the ability to inhibit pancreatic lipase and α-glucosidase. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. alpha-Glucosidase inhibition (acarbose) fails to enhance secretion of glucagon-like peptide 1 (7-36 amide) and to delay gastric emptying in Type 2 diabetic patients

    DEFF Research Database (Denmark)

    Hücking, K; Kostic, Z; Pox, C

    2005-01-01

    AIM: Acarbose is able to enhance GLP-1 release and delay gastric emptying in normal subjects. The effect of alpha-glucosidase inhibition on GLP-1 has been less evident in Type 2 diabetic patients. The aim of this study was to investigate the possible influence of acarbose on GLP-1 release and gas...

  3. Expression analysis of β-glucosidase genes that regulate abscisic acid homeostasis during watermelon (Citrullus lanatus) development and under stress conditions.

    Science.gov (United States)

    Li, Qian; Li, Ping; Sun, Liang; Wang, Yanping; Ji, Kai; Sun, Yufei; Dai, Shengjie; Chen, Pei; Duan, Chaorui; Leng, Ping

    2012-01-01

    The aim of this study was to obtain new insights into the mechanisms that regulate endogenous abscisic acid (ABA) levels by β-glucosidase genes during the development of watermelons (Citrullus lanatus) and under drought stress conditions. In total, five cDNAs from watermelons were cloned by using reverse transcription-PCR (RT-PCR). They included three cDNAs (ClBG1, ClBG2 and ClBG3) homologous to those that encode β-glucosidase l that hydrolyzes the ABA glucose ester (ABA-GE) to release active ABA, ClNCED4, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, and ClCYP707A1, encoding ABA 8'-hydroxylase. A BLAST homology search revealed that the sequences of cDNAs and the deduced amino acids of these genes showed a high degree of homology to comparable molecules of other plant species. During fruit development and ripening, the expressions of ClBG1, ClNCED4 and ClCYP707A1 were relatively low at an early stage, increased rapidly along with fruit ripening, and reached the highest levels at 27 days after full bloom (DAFB) at the harvest stage. This trend was consistent with the accumulation of ABA. The ClBG2 gene on the other hand was highly expressed at 5 DAFB, and then decreased gradually with fruit development. Unlike ClBG1 and ClBG2, the expression of ClBG3 was low at an early stage; its expression peak occurred at 15 DAFB and then declined to the lowest point. When watermelon seedlings were subjected to drought stress, expressions of ClBG1 and ClCYP707A1 were significantly down-regulated, while expressions of ClBG2 and ClNCED4 were up-regulated in the roots, stems and leaves. The expression of ClBG3 was down-regulated in root tissue, but was up-regulated in stems and leaves. In conclusion, endogenous ABA content was modulated by a dynamic balance between biosynthesis and catabolism regulated by ClNCED4, ClCYP707A1 and ClBGs during development and under drought stress condition. It seems likely that β-glucosidase genes are

  4. Effect of pH, Temperature, and Chemicals on the Endoglucanases and β-Glucosidases from the Thermophilic Fungus Myceliophthora heterothallica F.2.1.4. Obtained by Solid-State and Submerged Cultivation

    Directory of Open Access Journals (Sweden)

    Vanessa de Cássia Teixeira da Silva

    2016-01-01

    Full Text Available This work reports endoglucanase and beta-glucosidase production by the thermophilic fungus Myceliophthora heterothallica in solid-state (SSC and submerged (SmC cultivation. Wheat bran and sugarcane bagasse were used for SSC and cardboard for SmC. Highest endoglucanase production in SSC occurred after 192 hours: 1,170.6 ± 0.8 U/g, and in SmC after 168 hours: 2,642 ± 561 U/g. The endoglucanases and beta-glucosidases produced by both cultivation systems showed slight differences concerning their optimal pH and temperature. The number of endoglucanases was also different: six isoforms in SSC and ten in SmC. Endoglucanase activity remained above 50% after incubation between pH 3.0 and 9.0 for 24 h for both cultivation systems. The effect of several chemicals displayed variation between SSC and SmC isoenzymes. Manganese activated the enzymes from SmC but inhibited those from SSC. For β-glucosidases, maximum production on SmC was 244 ± 48 U/g after 168 hours using cardboard as carbon source. In SSC maximum production reached 10.9 ± 0.3 U/g after 240 h with 1 : 1 wheat bran and sugarcane bagasse. Manganese exerted a significant activation on SSC β-glucosidases, and glucose inhibited the enzymes from both cultivation systems. FeCl3 exerted the strongest inhibition for endoglucanases and β-glucosidases.

  5. Simultaneous quantification of ten constituents of Xanthoceras sorbifolia Bunge using UHPLC-MS methods and evaluation of their radical scavenging, DNA scission protective, and α-glucosidase inhibitory activities.

    Science.gov (United States)

    Zhang, Yu; Ma, Jian-Nan; Ma, Chun-Li; Qi, Zhi; Ma, Chao-Mei

    2015-11-01

    The present study was designed to investigate the bioactive constituents of Xanthoceras sorbifolia in terms of amounts and their antioxidant, DNA scission protection, and α-glucosidase inhibitory activities. Simultaneous quantification of 10 X. sorbifolia constituents was carried out by a newly established ultra-high performance liquid chromatography-quadrupole mass spectrometry method (UHPLC-MS). The antioxidant activities were evaluated by measuring DPPH radical scavenging and DNA scission protective activities. The α-glucosidase inhibitory activities were investigated by using an assay with α-glucosidase from Bacillus Stearothermophilus and disaccharidases from mouse intestine. We found that the wood of X. sorbifolia was rich in phenolic compounds with the contents of catechin, epicatechin, myricetin, and dihydromyricetin being 0.12-0.19, 1.94-2.16, 0.77-0.91, and 6.76-7.89 mg·g(-1), respectively. The four constituents strongly scavenged DPPH radicals (with EC50 being 4.2, 3.8 and 5.7 μg·mL(-1), respectively) and remarkably protected peroxyl radical-induced DNA strand scission (92.10%, 94.66%, 75.44% and 89.95% of protection, respectively, at a concentration of 10 μmol·L(-1)). A dimeric flavan 3-ol, epigallocatechin-(4β→8, 2β→O-7)-epicatechin potently inhibited α-glucosidase with an IC50 value being as low as 1.2 μg·mL(-1). The established UHPLC-MS method could serve as a quality control tool for X. sorbifolia. In conclusion, the high contents of antioxidant and α-glucosidase inhibitory constituents in X. sorbifolia support its use as complementation of other therapeutic agents for metabolic disorders, such as diabetes and hypertension. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  6. Assay of the β-glucosidase activity with natural labelled and artificial substrates in leukocytes from homozygotes and heterozygotes with the Norrbottnian type (Type 3) of Gaucher disease

    International Nuclear Information System (INIS)

    Svennerholm, L.; Haakansson, G.; Dreborg, S.

    1980-01-01

    Leukocytes were isolated from 14 patients (7 males and 7 females) with Gaucher disease of the Norrbottnian type (Type 3), 32 obligate heterozygotes (16 males and 16 females) for this disease and 20 controls (10 males and 10 females). After collection, the cells were transported in dry ice to the laboratory, where they were assayed. The assays were repeated after the cells had been stored for 12 months. β-Glucosidase activity was assayed with D-[glucose-U- 14 C]glucosylceramide at pH 5.8 with Cutscum-Na-cholate as a detergent and 4-methylumbelliferyl-β-glucoside at pH 4.1 with Triton-Na-taurocholate as a detergent. The activities of two marker enzymes, 4-methylumbelliferyl-β-galactosidase and N-acetyl-β-glucosaminidase, were assayed in aliquots of the same leukocyte samples. (Auth.)

  7. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    Science.gov (United States)

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-01-01

    Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å. PMID:16511316

  8. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase

    Directory of Open Access Journals (Sweden)

    Adisakwattana Sirichai

    2012-07-01

    Full Text Available Abstract Background Plant-based foods have been used in traditional health systems to treat diabetes mellitus. The successful prevention of the onset of diabetes consists in controlling postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in aggressive delay of carbohydrate digestion to absorbable monosaccharide. In this study, five plant-based foods were investigated for intestinal α-glucosidase and pancreatic α-amylase. The combined inhibitory effects of plant-based foods were also evaluated. Preliminary phytochemical analysis of plant-based foods was performed in order to determine the total phenolic and flavonoid content. Methods The dried plants of Hibiscus sabdariffa (Roselle, Chrysanthemum indicum (chrysanthemum, Morus alba (mulberry, Aegle marmelos (bael, and Clitoria ternatea (butterfly pea were extracted with distilled water and dried using spray drying process. The dried extracts were determined for the total phenolic and flavonoid content by using Folin-Ciocateu’s reagent and AlCl3 assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS reagent, respectively. Results The phytochemical analysis revealed that the total phenolic content of the dried extracts were in the range of 230.3-460.0 mg gallic acid equivalent/g dried extract. The dried extracts contained flavonoid in the range of 50.3-114.8 mg quercetin equivalent/g dried extract. It was noted that the IC50 values of chrysanthemum, mulberry and butterfly pea extracts were 4.24±0.12 mg/ml, 0.59±0.06 mg/ml, and 3.15±0.19 mg/ml, respectively. In addition, the IC50 values of chrysanthemum, mulberry and butterfly pea extracts against intestinal sucrase were 3.85±0.41 mg/ml, 0.94±0.11 mg/ml, and 4.41±0.15 mg/ml, respectively

  9. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase.

    Science.gov (United States)

    Adisakwattana, Sirichai; Ruengsamran, Thanyachanok; Kampa, Patcharaporn; Sompong, Weerachat

    2012-07-31

    Plant-based foods have been used in traditional health systems to treat diabetes mellitus. The successful prevention of the onset of diabetes consists in controlling postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in aggressive delay of carbohydrate digestion to absorbable monosaccharide. In this study, five plant-based foods were investigated for intestinal α-glucosidase and pancreatic α-amylase. The combined inhibitory effects of plant-based foods were also evaluated. Preliminary phytochemical analysis of plant-based foods was performed in order to determine the total phenolic and flavonoid content. The dried plants of Hibiscus sabdariffa (Roselle), Chrysanthemum indicum (chrysanthemum), Morus alba (mulberry), Aegle marmelos (bael), and Clitoria ternatea (butterfly pea) were extracted with distilled water and dried using spray drying process. The dried extracts were determined for the total phenolic and flavonoid content by using Folin-Ciocateu's reagent and AlCl3 assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively. The phytochemical analysis revealed that the total phenolic content of the dried extracts were in the range of 230.3-460.0 mg gallic acid equivalent/g dried extract. The dried extracts contained flavonoid in the range of 50.3-114.8 mg quercetin equivalent/g dried extract. It was noted that the IC50 values of chrysanthemum, mulberry and butterfly pea extracts were 4.24±0.12 mg/ml, 0.59±0.06 mg/ml, and 3.15±0.19 mg/ml, respectively. In addition, the IC50 values of chrysanthemum, mulberry and butterfly pea extracts against intestinal sucrase were 3.85±0.41 mg/ml, 0.94±0.11 mg/ml, and 4.41±0.15 mg/ml, respectively. Furthermore, the IC50 values of roselle and butterfly pea

  10. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase

    Science.gov (United States)

    2012-01-01

    Background Plant-based foods have been used in traditional health systems to treat diabetes mellitus. The successful prevention of the onset of diabetes consists in controlling postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in aggressive delay of carbohydrate digestion to absorbable monosaccharide. In this study, five plant-based foods were investigated for intestinal α-glucosidase and pancreatic α-amylase. The combined inhibitory effects of plant-based foods were also evaluated. Preliminary phytochemical analysis of plant-based foods was performed in order to determine the total phenolic and flavonoid content. Methods The dried plants of Hibiscus sabdariffa (Roselle), Chrysanthemum indicum (chrysanthemum), Morus alba (mulberry), Aegle marmelos (bael), and Clitoria ternatea (butterfly pea) were extracted with distilled water and dried using spray drying process. The dried extracts were determined for the total phenolic and flavonoid content by using Folin-Ciocateu’s reagent and AlCl3 assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively. Results The phytochemical analysis revealed that the total phenolic content of the dried extracts were in the range of 230.3-460.0 mg gallic acid equivalent/g dried extract. The dried extracts contained flavonoid in the range of 50.3-114.8 mg quercetin equivalent/g dried extract. It was noted that the IC50 values of chrysanthemum, mulberry and butterfly pea extracts were 4.24±0.12 mg/ml, 0.59±0.06 mg/ml, and 3.15±0.19 mg/ml, respectively. In addition, the IC50 values of chrysanthemum, mulberry and butterfly pea extracts against intestinal sucrase were 3.85±0.41 mg/ml, 0.94±0.11 mg/ml, and 4.41±0.15 mg/ml, respectively. Furthermore, the IC50 values

  11. Vermistatin derivatives with α-glucosidase inhibitory activity from the mangrove endophytic fungus Penicillium sp. HN29-3B1.

    Science.gov (United States)

    Liu, Yayue; Xia, Guoping; Li, Hanxiang; Ma, Lin; Ding, Bo; Lu, Yongjun; He, Lei; Xia, Xuekui; She, Zhigang

    2014-07-01

    Three new vermistatin derivatives, 6-demethylpenisimplicissin (1), 5'-hydroxypenisimplicissin (2), and 2''-epihydroxydihydrovermistatin (3), along with five known vermistatin analogues, methoxyvermistatin (4), vermistatin (5), 6-demethylvermistatin (6), hydroxyvermistatin (7), and penisimplicissin (8), were isolated from the culture of the mangrove endophytic fungus Penicillium sp. HN29-3B1 from Cerbera manghas. Their structures were elucidated mainly by nuclear magnetic resonance spectroscopy. The absolute configurations of compounds 1 and 2 were deduced on the basis of circular dichroism data. The absolute structures of compounds 3 and 5 were confirmed by a single-crystal X-ray diffraction experiment using Cu Kα radiation. In the bioactivity assay, compounds 1 and 3 exhibited α-glucosidase inhibitory activity with IC50 values of 9.5 ± 1.2 and 8.0 ± 1.5 µM, respectively. The plausible biosynthetic pathways for all compounds are discussed. Georg Thieme Verlag KG Stuttgart · New York.

  12. Appetite and Gut Hormones Response to a Putative α-Glucosidase Inhibitor, Salacia Chinensis, in Overweight/Obese Adults: A Double Blind Randomized Controlled Trial.

    Science.gov (United States)

    Hao, Lihong; Schlussel, Yvette; Fieselmann, Krista; Schneider, Stephen H; Shapses, Sue A

    2017-08-12

    Animal studies indicate Salacia reduces body weight, possibly due to its α-glucosidase inhibitor (α-GI) properties, but this has not been examined previously. In this study, a randomized, placebo-controlled, three-way cross-over design was used to evaluate whether Salacia Chinensis (SC) reduces appetite in healthy overweight/obese individuals (body mass index 28.8 ±3.6 kg/m²; 32 ± 12 years). Forty-eight participants were fasted overnight and consumed a dose of SC (300 or 500 mg) or placebo with a fixed breakfast meal at each visit. Appetite sensations, glycemic indices and gastrointestinal peptides were measured. Results indicated that SC had no effect on postprandial appetite. However, in women, hunger was reduced by SC compared to placebo at multiple time points (300 mg; p appetite modulator.

  13. Spatial separation of the cyanogenic β-glucosidase ZfBGD2 and cyanogenic glucosides in the haemolymph of Zygaena larvae facilitates cyanide release

    DEFF Research Database (Denmark)

    Pentzold, Stefan; Jensen, Mikael Kryger; Matthes, Annemarie

    2017-01-01

    . Cyanogenic plants contain cyanogenic glucosides and release hydrogen cyanide due to such a well-characterized two-component system. Some arthropods are also cyanogenic, but comparatively little is known about their system. Here, we identify a specific β-glucosidase (ZfBGD2) involved in cyanogenesis from...... larvae of Zygaena filipendulae (Lepidoptera, Zygaenidae), and analyse the spatial organization of cyanide release in this specialized insect. High levels of ZfBGD2 mRNA and protein were found in haemocytes by transcriptomic and proteomic profiling. Heterologous expression in insect cells showed that Zf......BGD2 hydrolyses linamarin and lotaustralin, the two cyanogenic glucosides present in Z. filipendulae. Linamarin and lotaustralin as well as cyanide release were found exclusively in the haemoplasma. Phylogenetic analyses revealed that ZfBGD2 clusters with other insect β...

  14. From Soil to Structure, a Novel Dimeric β-Glucosidase Belonging to Glycoside Hydrolase Family 3 Isolated from Compost Using Metagenomic Analysis

    Science.gov (United States)

    McAndrew, Ryan P.; Park, Joshua I.; Heins, Richard A.; Reindl, Wolfgang; Friedland, Gregory D.; D'haeseleer, Patrik; Northen, Trent; Sale, Kenneth L.; Simmons, Blake A.; Adams, Paul D.

    2013-01-01

    A recent metagenomic analysis sequenced a switchgrass-adapted compost community to identify enzymes from microorganisms that were specifically adapted to switchgrass under thermophilic conditions. These enzymes are being examined as part of the pretreatment process for the production of “second-generation” biofuels. Among the enzymes discovered was JMB19063, a novel three-domain β-glucosidase that belongs to the GH3 (glycoside hydrolase 3) family. Here, we report the structure of JMB19063 in complex with glucose and the catalytic variant D261N crystallized in the presence of cellopentaose. JMB19063 is first structure of a dimeric member of the GH3 family, and we demonstrate that dimerization is required for catalytic activity. Arg-587 and Phe-598 from the C-terminal domain of the opposing monomer are shown to interact with bound ligands in the D261N structure. Enzyme assays confirmed that these residues are absolutely essential for full catalytic activity. PMID:23580647

  15. Differentiation of Yersinia enterocolitica biotype 1A from pathogenic Yersinia enterocolitica biotypes by detection of β-glucosidase activity: comparison of two chromogenic culture media and Vitek2.

    Science.gov (United States)

    Karhukorpi, Jari; Päivänurmi, Marjut

    2014-01-01

    Aesculin hydrolysis (ESC) is one of the key reactions in differentiating pathogenic Yersinia enterocolitica biotypes 1B, 2, 3, 4 and 5 from the less-pathogenic biotype 1A. Because the ESC reaction is caused by β-glucosidase (βGLU) activity of the bacteria, we studied whether two commonly used methods (BBL CHROMagar Orientation and Vitek2 Gram-negative identification card) could be used in assessing βGLU activity of 74 Yersinia strains. Both methods were sensitive (100 % and 97 %) and specific (100 % and 100 %) in differentiating βGLU-positive YE BT1A from βGLU-negative Y. enterocolitica biotypes. For a subset of strains (n = 69), a new selective CHROMagar Yersinia showed excellent agreement with the strains' βGLU activity. Thus all the methods evaluated in this study may be used to differentiate between YE BT1A and other Y. enterocolitica biotypes.

  16. Differential effects of sugars and the alpha-glucosidase inhibitor acarbose (Bay g 5421) on satiety in the Zucker obese rat.

    Science.gov (United States)

    Maggio, C A; Decarr, L B; Vasselli, J R

    1987-01-01

    To examine the satiety responses of Zucker obese and lean rats to simple sugars, adult male rats were given equicaloric intragastric infusions of fructose, glucose, and sucrose. All three sugars reduced the short-term intakes of both genotypes, although no reliable between-genotype differences in the satiety effects of the sugars were observed. Within each genotype, fructose had a larger satiety effect than sucrose. To examine a potential basis for the observed effects, rats were given sucrose infusions containing the intestinal glucosidase inhibitor acarbose (Bay g 5421). In obese rats, addition of a low dose of acarbose increased the satiety effect of sucrose infusion. Delaying carbohydrate absorption via acarbose administration may alter gastrointestinal and/or postabsorptive satiety processes, and may prove useful as a probe for investigating the nature of satiety signals.

  17. In vitro anti-diabetic activity of flavonoids and pheophytins from Allophylus cominia Sw . on PTP1B, DPPIV, alpha-glucosidase and alpha-amylase enzymes.

    Science.gov (United States)

    Semaan, D G; Igoli, J O; Young, L; Marrero, E; Gray, A I; Rowan, E G

    2017-05-05

    Ethno-botanical information from diabetic patients in Cuba led to the identification of Allophylus cominia as a possible source of new drugs for the treatment of type 2 diabetes mellitus (T2-DM). Chemical characterization of the extracts from A. cominia was carried out using chromatographic and spectroscopic methods. The extracts were tested for their activity on PTP1B, DPPIV, α-glucosidase enzymes and α-amylase. The flavonoid rich fractions from A. cominia inhibited DPPIV enzyme (75.3±2.33%) at 30µg/ml and produced a concentration-dependent inhibition against DPPIV with a Ki value of 2.6µg/ml. At 30µg/ml, flavonoids and pheophytins extracts significantly inhibited PTP1B enzyme (100±2.6% and 68±1% respectively). The flavonoids, pheophytin A and pheophytin B fractions showed significant concentration-dependent inhibition against PTP1B with Ki values of 3µg/ml, 0.64µg/ml and 0.88µg/ml respectively. At 30µg/ml, the flavonoid fraction significantly inhibited α-glucosidase enzyme (86±0.3%) in a concentration-dependent pattern with a Ki value of 2µg/ml. None of the fractions showed significant effects on α-amylase. Fatty acids, tannins, pheophytins A and B, and a mixture of flavonoids were detected in the methanolic extract from A. cominia. The identified flavonoids were mearnsitrin, quercitrin, quercetin-3-alloside, and naringenin-7-glucoside. The pharmacological effects of the extracts from A. cominia earlier observed in experimental diabetic models was confirmed in this study. Thus a new drug or formulation for the treatment of T2-DM could be developed from A. cominia. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Purification, gene cloning, and biochemical characterization of a β-glucosidase capable of hydrolyzing sesaminol triglucoside from Paenibacillus sp. KB0549.

    Directory of Open Access Journals (Sweden)

    Arun Nair

    Full Text Available The triglucoside of sesaminol, i.e., 2,6-O-di(β-D-glucopyranosyl-β-D- glucopyranosylsesaminol (STG, occurs abundantly in sesame seeds and sesame oil cake and serves as an inexpensive source for the industrial production of sesaminol, an anti-oxidant that displays a number of bioactivities beneficial to human health. However, STG has been shown to be highly resistant to the action of β-glucosidases, in part due to its branched-chain glycon structure, and these circumstances hampered the efficient utilization of STG. We found that a strain (KB0549 of the genus Paenibacillus produced a novel enzyme capable of efficiently hydrolyzing STG. This enzyme, termed PSTG, was a tetrameric protein consisting of identical subunits with an approximate molecular mass of 80 kDa. The PSTG gene was cloned on the basis of the partial amino acid sequences of the purified enzyme. Sequence comparison showed that the enzyme belonged to the glycoside hydrolase family 3, with significant similarities to the Paenibacillus glucocerebrosidase (63% identity and to Bgl3B of Thermotoga neapolitana (37% identity. The recombinant enzyme (rPSTG was highly specific for β-glucosidic linkage, and k cat and k cat/K m values for the rPSTG-catalyzed hydrolysis of p-nitrophenyl-β-glucopyraniside at 37°C and pH 6.5 were 44 s(-1 and 426 s(-1 mM(-1, respectively. The specificity analyses also revealed that the enzyme acted more efficiently on sophorose than on cellobiose and gentiobiose. Thus, rPSTG is the first example of a β-glucosidase with higher reactivity for β-1,2-glucosidic linkage than for β-1,4- and β-1,6-glucosidic linkages, as far as could be ascertained. This unique specificity is, at least in part, responsible for the enzyme's ability to efficiently decompose STG.

  19. Expression plasticity and evolutionary changes extensively shape the sugar-mimic alkaloid adaptation of non-digestive glucosidase in lepidopteran mulberry-specialist insects.

    Science.gov (United States)

    Li, Xiaotong; Shi, Liangen; Dai, Xiangping; Chen, Yajie; Xie, Hongqing; Feng, Min; Chen, Yuyin; Wang, Huabing

    2018-05-12

    During the co-evolutionary arms race between plants and herbivores, insects evolved systematic adaptive plasticity to minimise the chemical defence effects of their host plants. Previous studies mainly focused on the expressional plasticity of enzymes in detoxification and digestion. However, the expressional response and adaptive evolution of other fundamental regulators against host phytochemicals are largely unknown. Glucosidase II (GII), which is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit, is an evolutionarily conserved enzyme that regulates glycoprotein folding. In this study, we found that GIIα expression of the mulberry-specialist insect was significantly induced by mulberry leaf extract, 1-Deoxynojirimycin (1-DNJ), whereas GIIβ transcripts were not significantly changed. Moreover, positive selection was detected in GIIα when the mulberry-specialist insects diverged from the lepidopteran order; whereas GIIβ was mainly subjected to purifying selection, thus indicating an asymmetrically selective pressure of GII subunits. In addition, positively selected sites were enriched in the GIIα of mulberry-specialist insects, and located around the 1-DNJ binding sites and in the C-terminal region, which could result in conformational changes that affect catalytic activity and substrate-binding efficiency. These results show that expression plasticity and evolutionary changes extensively shape sugar-mimic alkaloids adaptation of non-digestive glucosidase in lepidopteran mulberry-specialist insects. Our study provides novel insights into a deep understanding of the sequestration and adaptation of phytophagous specialists to host defensive compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Dual High-Resolution α-Glucosidase and Radical Scavenging Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of Minor and Major Constituents Directly from the Crude Extract of Pueraria lobata

    DEFF Research Database (Denmark)

    Liu, Bingrui; Kongstad, Kenneth Thermann; Qinglei, Sun

    2015-01-01

    The crude methanol extract of Pueraria lobata was investigated by dual high-resolution α-glucosidase inhibition and radical scavenging profiling combined with hyphenated HPLC-HRMS-SPE-NMR. Direct analysis of the crude extract without preceding purification was facilitated by combining chromatograms...... from two analytical-scale HPLC separations of 120 and 600 μg on-column, respectively. High-resolution α-glucosidase and radical scavenging profiles were obtained after microfractionation of the eluate in 96-well microplates. This allowed full bioactivity profiling of individual peaks in the HPLC...... chromatogram of the crude methanol extract. Subsequent HPLC-HRMS-SPE-NMR analysis allowed identification of 21 known compounds in addition to two new compounds, i.e., 3′-methoxydaidzein 8-C-[α-d-apiofuranosyl-(1→6)]-β-d-glucopyranoside and 6″-O-malonyl-3′-methoxydaidzin, as well as an unstable compound...

  1. In Vitro Studies on the Antioxidant Property and Inhibition of α-Amylase, α-Glucosidase, and Angiotensin I-Converting Enzyme by Polyphenol-Rich Extracts from Cocoa (Theobroma cacao) Bean.

    Science.gov (United States)

    Oboh, Ganiyu; Ademosun, Ayokunle O; Ademiluyi, Adedayo O; Omojokun, Olasunkanmi S; Nwanna, Esther E; Longe, Kuburat O

    2014-01-01

    Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL), α-glucosidase (1.84 ± 0.17 mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL), NO (6.98 ± 0.886 mg/mL), OH (3.72 ± 0.26 mg/mL), and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension.

  2. In Vitro Studies on the Antioxidant Property and Inhibition of α-Amylase, α-Glucosidase, and Angiotensin I-Converting Enzyme by Polyphenol-Rich Extracts from Cocoa (Theobroma cacao Bean

    Directory of Open Access Journals (Sweden)

    Ganiyu Oboh

    2014-01-01

    Full Text Available Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH, 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS, hydroxyl (OH, and nitric oxide (NO] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL, α-glucosidase (1.84 ± 0.17 mg/mL, and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart] activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL, NO (6.98 ± 0.886 mg/mL, OH (3.72 ± 0.26 mg/mL, and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension.

  3. In Vitro Studies on the Antioxidant Property and Inhibition of α-Amylase, α-Glucosidase, and Angiotensin I-Converting Enzyme by Polyphenol-Rich Extracts from Cocoa (Theobroma cacao) Bean

    Science.gov (United States)

    Ademosun, Ayokunle O.; Ademiluyi, Adedayo O.; Omojokun, Olasunkanmi S.; Nwanna, Esther E.; Longe, Kuburat O.

    2014-01-01

    Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL), α-glucosidase (1.84 ± 0.17 mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL), NO (6.98 ± 0.886 mg/mL), OH (3.72 ± 0.26 mg/mL), and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension. PMID:25295218

  4. Efficient production of lignocellulolytic enzymes xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1

    Directory of Open Access Journals (Sweden)

    Leda Maria Fortes Gottschalk

    2013-01-01

    Full Text Available The production of xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by Aspergillus awamori 2B.361 U2/1, a hyper producer of glucoamylase and pectinase, was evaluated using selected conditions regarding nitrogen nutrition. Submerged cultivations were carried out at 30 ºC and 200 rpm in growth media containing 30 g wheat bran/L as main carbon source and either yeast extract, ammonium sulfate, sodium nitrate or urea, as nitrogen sources; in all cases it was used a fixed molar carbon to molar nitrogen concentration of 10.3. The use of poor nitrogen sources favored the accumulation of xylanase, β-xylosidase and ferulic acid esterase to a peak concentrations of 44,880; 640 and 118 U/L, respectively, for sodium nitrate and of 34,580, 685 and 170 U/L, respectively, for urea. However, the highest β-glucosidase accumulation of 10,470 U/L was observed when the rich organic nitrogen source yeast extract was used. The maxima accumulation of filter paper activity, xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by A. awamori 2B.361 U2/1 was compared to that produced by Trichoderma reesei Rut-C30. The level of β-glucosidase was over 17-fold higher for the Aspergillus strain, whereas the levels of xylanase and β-xylosidase were over 2-fold higher. This strain also produced ferulic acid esterase (170 U/L, which was not detected in the T. reesei culture.

  5. Serviceberry [Amelanchier alnifolia (Nutt.) Nutt. ex. M. Roem (Rosaceae)] leaf extract inhibits mammalian α-glucosidase activity and suppresses postprandial glycemic response in a mouse model of diet-induced obesity and hyperglycemia.

    Science.gov (United States)

    Zhang, Albert J; Rimando, Agnes M; Fish, Wilbert; Mentreddy, Srinivasa R; Mathews, Suresh T

    2012-09-28

    Serviceberry or Saskatoon berry [Amelanchier alnifolia (Nutt.) Nutt. ex. M. Roem (Rosaceae)], native to the North Glacier forests of the Rocky Mountains in Montana, has been used by the Blackfeet Indian tribe in alleviation of diabetes. Anecdotally, tea made from twigs and leaves have been used for optimum health and diabetes management. However, such traditional knowledge of the medicinal properties of Amelanchier alnifolia has not been validated by scientific studies. The goal of this study was to identify potential antidiabetic mechanisms of serviceberry. Serviceberry plant samples consisting of leaves, twigs, and leaves with berries were extracted and fractionated. Ethyl acetate and water fractions were tested for inhibition of α-glucosidase activity in vitro. Diet-induced obese, hyperglycemic C57Bl6 mice were administered serviceberry leaf extract prior to sucrose-, starch-, or glucose-loading to test for α-glucosidase inhibition and decreased post-prandial glycemic response. In the course of screening for potential antidiabetic mechanisms, serviceberry leaf extracts and subfractions demonstrated potent inhibitory activity against mammalian intestinal α-glucosidase activity (EC 3.2.1.20). Further, in an animal model of diet-induced obesity and hyperglycemia, serviceberry leaf subfraction demonstrated significant inhibition of intestinal α-glucosidase activity, and delayed the absorption of carbohydrates, resulting in significant lowering of post-prandial blood glucose concentrations, similar to the antidiabetic drug Acarbose™. These findings indicating that serviceberry leaf extract may lower post-prandial glycemic response corroborate traditional knowledge of the Blackfeet Indians of Montana, and potentially offer a complementary approach in the treatment of diabetes. Published by Elsevier Ireland Ltd.

  6. A novel class of α-glucosidase and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of ganomycin I in KK-Ay mice.

    Science.gov (United States)

    Wang, Kai; Bao, Li; Ma, Ke; Zhang, Jinjin; Chen, Baosong; Han, Junjie; Ren, Jinwei; Luo, Huajun; Liu, Hongwei

    2017-02-15

    Three new meroterpenoids, ganoleucin A-C (1-3), together with five known meroterpenoids (4-8), were isolated from the fruiting bodies of Ganoderma leucocontextum. The structures of the new compounds were elucidated by extensive spectroscopic analysis, circular dichroism (CD) spectroscopy, and chemical transformation. The inhibitory effects of 1-8 on HMG-CoA reductase and α-glucosidase were tested in vitro. Ganomycin I (4), 5, and 8 showed stronger inhibitory activity against HMG-CoA reductase than the positive control atorvastatin. Compounds 1, and 3-8 presented potent noncompetitive inhibitory activity against α-glucosidase from both yeast and rat small intestinal mucosa. Ganomycin I (4), the most potent inhibitor against both α-glucosidase and HMG-CoA reductase, was synthesized and evaluated for its in vivo bioactivity. Pharmacological results showed that ganomycin I (4) exerted potent and efficacious hypoglycemic, hypolipidemic, and insulin-sensitizing effects in KK-A y mice. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. PTP1B, α-glucosidase, and DPP-IV inhibitory effects for chromene derivatives from the leaves of Smilax china L.

    Science.gov (United States)

    Zhao, Bing Tian; Le, Duc Dat; Nguyen, Phi Hung; Ali, Md Yousof; Choi, Jae-Sue; Min, Byung Sun; Shin, Heung Mook; Rhee, Hae Ik; Woo, Mi Hee

    2016-06-25

    Two new flavonoids, bismilachinone (11) and smilachinin (14), were isolated from the leaves of Smilax china L. together with 14 known compounds. Their structures were elucidated using spectroscopic methods. The PTP1B, α-glucosidase, and DPP-IV inhibitory activities of compounds 1-16 were evaluated at the molecular level. Among them, compounds 4, 7, and 10 showed moderate DPP-IV inhibitory activities with IC50 values of 20.81, 33.12, and 32.93 μM, respectively. Compounds 3, 4, 6, 11, 12, and 16 showed strong PTP1B inhibitory activities, with respective IC50 values of 7.62, 10.80, 0.92, 2.68, 9.77, and 24.17 μM compared with the IC50 value for the positive control (ursolic acid: IC50 = 1.21 μM). Compounds 2-7, 11, 12, 15, and 16 showed potent α-glucosidase inhibitory activities, with respective IC50 values of 8.70, 81.66, 35.11, 35.92, 7.99, 26.28, 11.28, 62.68, 44.32, and 70.12 μM. The positive control, acarbose, displayed an IC50 value of 175.84 μM. In the kinetic study for the PTP1B enzyme, compounds 6, 11, and 12 displayed competitive inhibition with Ki values of 3.20, 8.56, and 5.86 μM, respectively. Compounds 3, 4, and 16 showed noncompetitive inhibition with Ki values of 18.75, 5.95, and 22.86 μM, respectively. Molecular docking study for the competitive inhibitors (6, 11, and 12) radically corroborates the binding affinities and inhibition of PTP1B enzymes. These results indicated that the leaves of Smilax china L. may contain compounds with anti-diabetic activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.

    Science.gov (United States)

    Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti

    2014-08-01

    The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant

  9. Identification and characterization of a ginsenoside-transforming β-glucosidase from Pseudonocardia sp. Gsoil 1536 and its application for enhanced production of minor ginsenoside Rg2(S.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available The ginsenoside Rg2(S, which is one of the pharmaceutical components of ginseng, is known to have neuroprotective, anti-inflammation, and anti-diabetic effects. However, the usage of ginsenoside Rg2(S is restricted owing to the small amounts found in white and red ginseng. To enhance the production of ginsenoside Rg2(S as a 100 gram unit with high specificity, yield, and purity, an enzymatic bioconversion method was developed to adopt the recombinant glycoside hydrolase (BglPC28, which is a ginsenoside-transforming recombinant β-glucosidase from Pseudonocardia sp. strain Gsoil 1536. The gene, termed bglPC28, encoding β-glucosidase (BglPC28 belonging to the glycoside hydrolase family 3 was cloned. bglPC28 consists of 2,232 bp (743 amino acid residues with a predicted molecular mass of 78,975 Da. This enzyme was overexpressed in Escherichia coli BL21(DE3 using a GST-fused pGEX 4T-1 vector system. The optimum conditions of the recombinant BglPC28 were pH 7.0 and 37 °C. BglPC28 can effectively transform the ginsenoside Re to Rg2(S; the Km values of PNPG and Re were 6.36 ± 1.10 and 1.42 ± 0.13 mM, respectively, and the Vmax values were 40.0 ± 2.55 and 5.62 ± 0.21 µmol min-1 mg-1 of protein, respectively. A scaled-up biotransformation reaction was performed in a 10 L jar fermenter at pH 7.0 and 30°C for 12 hours with a concentration of 20 mg/ml of ginsenoside Re from American ginseng roots. Finally, 113 g of Rg2(S was produced from 150 g of Re with 84.0 ± 1.1% chromatographic purity. These results suggest that this enzymatic method could be usefully exploited in the preparation of ginsenoside Rg2(S in the cosmetics, functional food, and pharmaceutical industries.

  10. Divergent clinical outcomes of alpha-glucosidase enzyme replacement therapy in two siblings with infantile-onset Pompe disease treated in the symptomatic or pre-symptomatic state.

    Science.gov (United States)

    Matsuoka, Takashi; Miwa, Yoshiyuki; Tajika, Makiko; Sawada, Madoka; Fujimaki, Koichiro; Soga, Takashi; Tomita, Hideshi; Uemura, Shigeru; Nishino, Ichizo; Fukuda, Tokiko; Sugie, Hideo; Kosuga, Motomichi; Okuyama, Torayuki; Umeda, Yoh

    2016-12-01

    Pompe disease is an autosomal recessive, lysosomal glycogen storage disease caused by acid α-glucosidase deficiency. Infantile-onset Pompe disease (IOPD) is the most severe form and is characterized by cardiomyopathy, respiratory distress, hepatomegaly, and skeletal muscle weakness. Untreated, IOPD generally results in death within the first year of life. Enzyme replacement therapy (ERT) with recombinant human acid alpha glucosidase (rhGAA) has been shown to markedly improve the life expectancy of patients with IOPD. However, the efficacy of ERT in patients with IOPD is affected by the presence of symptoms and cross-reactive immunologic material (CRIM) status. We have treated two siblings with IOPD with ERT at different ages: the first was symptomatic and the second was asymptomatic. The female proband (Patient 1) was diagnosed with IOPD and initiated ERT at 4 months of age. Her younger sister (Patient 2) was diagnosed with IOPD at 10 days of age and initiated ERT at Day 12. Patient 1, now 6 years old, is alive but bedridden, and requires 24-hour invasive ventilation due to gradually progressive muscle weakness. In Patient 2, typical symptoms of IOPD, including cardiac failure, respiratory distress, progressive muscle weakness, hepatomegaly and myopathic facial features were largely absent during the first 12 months of ERT. Her cardiac function and mobility were well-maintained for the first 3 years, and she had normal motor development. However, she developed progressive hearing impairment and muscle weakness after 3 years of ERT. Both siblings have had low anti-rhGAA immunoglobulin G (IgG) antibody titers during ERT and have tolerated the treatment well. These results suggest that initiation of ERT during the pre-symptomatic period can prevent and/or attenuate the progression of IOPD, including cardiomyopathy, respiratory distress, and muscle weakness for first several years of ERT. However, to improve the long-term efficacy of ERT for IOPD, new strategies

  11. Purification and characterization of novel bi-functional GH3 family β-xylosidase/β-glucosidase from Aspergillus niger ADH-11.

    Science.gov (United States)

    Patel, Harshvadan; Kumar, Adepu Kiran; Shah, Amita

    2018-04-01

    β-Xylosidase plays an important role in xylan degradation by relieving the end product inhibition of endo-xylanase caused by xylo-oligosaccharides. β-Xylosidase has a wide range of applications in food, feed, paper and pulp, pharmaceutical industries and in bioconversion of lignocellulosic biomass. Hence, in the present study focused on purification, biochemical characterization and partial sequencing of purified β-xylosidase from xylanolytic strain Aspergillus niger ADH-11. Acetone precipitation followed by GPC using Sephacryl S-200 yielded 20.59-fold purified β-xylosidase with 58.30% recovery. SDS-PAGE analysis of purified β-xylosidase relieved a monomeric subunit with a molecular weight 120.48kDa. Kinetic parameters of purified β-xylosidase viz Km, Vmax, Kcat and catalytic efficiency were assessed. Purified β-xylosidase was additionally active on p-nitrophenyl-β-d-glucopyranoside substrate also. Moreover, peptide mass fingerprinting analysis support our biochemical studies and showed that the purified protein is a novel β-xylosidase with β-glucosidase activity and belongs to the bi-functional GH3 superfamily. Besides, tolerance of purified β-xylosidase towards glucose and xylose was also assessed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Enzymology and Structure of the GH13_31 Glucan 1,6-α-Glucosidase That Confers Isomaltooligosaccharide Utilization in the Probiotic Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Fredslund, Folmer; Majumder, Avishek

    2012-01-01

    or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α......-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure...... of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive...

  13. KAPASITAS ANTIOKSIDAN DAN INHIBITOR ALFA GLUKOSIDASE EKSTRAK UMBI BAWANG DAYAK [Antioxidant and Alpha-Glucosidase Inhibitory Properties of Bawang Dayak Bulb Extracts

    Directory of Open Access Journals (Sweden)

    Andi Early Febrinda*

    2013-12-01

    Full Text Available Bawang dayak (Eleutherine palmifolia is an indigenous plant in Borneo traditionally used by Dayak tribes to treat any kind of degenerative deseases including diabetes mellitus. The purpose of this research was to measure antioxidant and antidiabetic capacities of water and ethanolic extracts of bawang dayak bulb. Parameters evaluated in this research were phytochemical screening, total phenolics, flavonoid content, DPPH free-radical scavenging activity, and alpha glucosidase inhibiting (AGI activity. The result showed that the total phenolics and flavonoid content in bawang dayak ethanolic extract (217.71 mg GAE/g and 65.35 mg QE/g were higher than that of the water extract (139.93 mg GAE/g and 16.95 mg QE/g. The ethanolic extract also had higher antioxidant and AGI activities (IC50 112 and 241 ppm than that of the water extract (IC50 526 and 505 ppm. In addition, the IC50 values for AGI in bawang dayak ethanolic extract was lower than acarbose which is known as a commercial antidiabetic agent.

  14. Enhanced Production of Gypenoside LXXV Using a Novel Ginsenoside-Transforming β-Glucosidase from Ginseng-Cultivating Soil Bacteria and Its Anti-Cancer Property

    Directory of Open Access Journals (Sweden)

    Chang-Hao Cui

    2017-05-01

    Full Text Available Minor ginsenosides, such as compound K, Rg3(S, which can be produced by deglycosylation of ginsenosides Rb1, showed strong anti-cancer effects. However, the anticancer effects of gypenoside LXXV, which is one of the deglycosylated shapes of ginsenoside Rb1, is still unknown due to the rarity of its content in plants. Here, we cloned and characterized a novel ginsenoside-transforming β-glucosidase (BglG167b derived from Microbacterium sp. Gsoil 167 which can efficiently hydrolyze gypenoside XVII into gypenoside LXXV, and applied it to the production of gypenoside LXXV at the gram-scale with high specificity. In addition, the anti-cancer activity of gypenoside LXXV was investigated against three cancer cell lines (HeLa, B16, and MDA-MB231 in vitro. Gypenoside LXXV significantly reduced cell viability, displaying an enhanced anti-cancer effect compared to gypenoside XVII and Rb1. Taken together, this enzymatic method would be useful in the preparation of gypenoside LXXV for the functional food and pharmaceutical industries.

  15. Cellulase with high β-glucosidase activity by Penicillium oxalicum under solid state fermentation and its use in hydrolysis of cassava residue.

    Science.gov (United States)

    Su, Lin-Hui; Zhao, Shuai; Jiang, Sui-Xin; Liao, Xu-Zhong; Duan, Cheng-Jie; Feng, Jia-Xun

    2017-02-01

    In this study, we investigated cellulase production by Penicillium oxalicum EU2106 under solid-state fermentation (SSF) and its hydrolysis efficiency toward NaOH-H 2 O 2 -pretreated cassava residue (NHCR) produced after bioethanol fermentation. Optimization of SSF cultivation conditions for P. oxalicum EU2106 using a Box-behnken design-based response-surface methodology resulted in maximal cellulase activity of 34.0 ± 2.8 filter-paper units/g dry substrate, exhibiting a ~ twofold increase relative to activities obtained under non-optimized conditions. Furthermore, SSF-derived cellulase converted 94.3 ± 1.5% of NHCR cellulose into glucose within 96 h. Interestingly, P. oxalicum EU2106 produced higher β-glucosidase activity under SSF conditions than that under submerged-state fermentation conditions, resulting in the elimination of cellobiose inhibition during the early stages of NHCR cellulose hydrolysis. Overall, this work provided an alternative for a potential cellulase source and a preferred option for cassava residue biotechnological application.

  16. Net-Immobilization of β-glucosidase on Nonwoven Fabrics to Lower the Cost of “Cellulosic Ethanol” and Increase Cellulose Conversions

    Science.gov (United States)

    Zhu, Xing; He, Bin; Zhao, Changwen; Fan, Rong; Zhang, Lihua; Wang, Guan; Ma, Yuhong; Yang, Wantai

    2016-03-01

    The main limitation preventing the use of enzymatic cellulosic ethanol in industrial production is its higher cost which is mainly due to the elevated price of β-glucosidase (BG). Herein, we report on a simple strategy for the in-situ encapsulation of BG for repeated cellulosic ethanol production. In this strategy, BG was net-immobilized into a poly(ethylene glycol) (PEG) net-cloth layer on a PP nonwoven fabric by way of the visible light-induced surface controlled/living graft cross-linking polymerization. The visible light and mild reaction conditions could ensure the activity retention of BG during immobilization, while the non-swelling uniform net-mesh formed by living cross-linking polymerization could prevent the leakage of BG effectively (at the immobilization rate of more than 98.6% and the leakage rate of only 0.4%). When the BG-loaded fabric was used in combination with free cellulase (CEL), the results of the catalytic reaction demonstrated that these BG-loaded fabrics could not only give a 40% increase in cellulose conversions but also be reused for more than fifteen batches without losing the activity. These BG-loaded fabrics with characteristics including easy separation, excellent operation stability, a low cost of the polymeric matrix and a simple fabrication process are particularly interesting for a future bio-fuel production strategy.

  17. [Temperature sensitivity of soil organic carbon mineralization and β-glucosidase enzymekinetics in the northern temperate forests at different altitudes, China].

    Science.gov (United States)

    Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa

    2016-01-01

    Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.

  18. Transglycosylation properties of maltodextrin glucosidase (MalZ) from Escherichia coli and its application for synthesis of a nigerose-containing oligosaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyung-Mo [Center for Agricultural Biomaterials and Department of Food Science and Biotechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Shim, Jae-Hoon [Department of Biology, University of Incheon, Incheon 406-772 (Korea, Republic of); Park, Jong-Tae; Kim, Sung-Hee [Center for Agricultural Biomaterials and Department of Food Science and Biotechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Young-Wan [Department of Food and Biotechnology, Korea University, Jochiwon 339-700 (Korea, Republic of); Boos, Winfried [Department of Biology, University of Konstanz, Konstanz 78457 (Germany); Park, Kwan-Hwa, E-mail: parkkh@incheon.ac.kr [Department of Biology, University of Incheon, Incheon 406-772 (Korea, Republic of)

    2010-06-18

    The transglycosylation reaction of maltodextrin glucosidase (MalZ) cloned and purified from Escherichia coli K12 was characterized and applied to the synthesis of branched oligosaccharides. Purified MalZ preferentially catalyzed the hydrolysis of maltodextrin, {gamma}-cyclodextrin (CD), and cycloamylose (CA). In addition, when the enzyme was incubated with 5% maltotriose (G3), a series of transfer products were produced. The resulting major transfer products, annotated as T1, T2, and T3, were purified and their structures were determined by TLC, MALDI-TOF/MS, {sup 13}C NMR, and enzymatic analysis. T1 was identified as a novel compound, maltosyl {alpha}-1,3-maltose, whereas T2 and T3 were determined to be isopanose and maltosyl-{alpha}-1,6-maltose, respectively. These results indicated that MalZ transferred sugar moiety mainly to C-3 or C-6-OH of glucose of the acceptor molecule. To obtain highly concentrated transfer products, the enzyme was reacted with 10% liquefied cornstarch, and then glucose and maltose were removed by immobilized yeast. The T1 content of the resulting reaction mixture reached 9.0%. The mixture of T1 containing a nigerose moiety can have an immunopotentiating effect on the human body and may be a potential functional sugar stuff.

  19. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and {beta}-glucosidase

    Energy Technology Data Exchange (ETDEWEB)

    Apiwatanapiwat, Waraporn; Rugthaworn, Prapassorn [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Kasetsart Univ., Bangkok (Thailand). Nanotechnology and Biotechnology Div.; Murata, Yoshinori; Kosugi, Akihiko; Arai, Takamitsu; Mori, Yutaka [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Yamada, Ryosuke; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2011-04-15

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying {alpha}-amylase ({alpha}-AM), glucoamylase, endoglucanase, cellobiohydrase, and {beta}-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley {beta}-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes. (orig.)

  20. Geranylated 2-arylbenzofurans from Morus alba var. tatarica and their α-glucosidase and protein tyrosine phosphatase 1B inhibitory activities.

    Science.gov (United States)

    Zhang, Ya-Long; Luo, Jian-Guang; Wan, Chuan-Xing; Zhou, Zhong-Bo; Kong, Ling-Yi

    2014-01-01

    Ten new geranylated 2-arylbenzofuran derivatives, including two monoterpenoid 2-arylbenzofurans (1 and 2), two geranylated 2-arylbenzofuran enantiomers (3a and 3b), and six geranylated 2-arylbenzofurans (4-9), along with four known 2-arylbenzofurans (10-13) were isolated from the root bark of Morus alba var. tatarica. Their structures and relative configurations were established on the basis of spectroscopic data analysis. Compounds 3-7 with one asymmetric carbon at C-7″ were supposed to be enantiomeric mixtures confirmed by chiral HPLC analysis, and the absolute configurations of each enantiomer in 3-7 were determined by Rh2(OCOCF3)4-induced CD and Snatzke's method. The enantiomers with the substituting group at C-2' exhibited better resolutions on a Chiralpak AD-H column than those with the substituting group at C-4'. Compounds 1-7, 10, 11 and 13, showed α-glucosidase inhibitory activities with IC50 values of 11.9-131.9 μM, and compounds 1 and 9-13 inhibited protein tyrosine phosphatase 1B (PTP1B) with IC50 values of 7.9-38.1 μM. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Two new β-glucosidases from ethanol-fermenting fungus Mucor circinelloides NBRC 4572: enzyme purification, functional characterization, and molecular cloning of the gene.

    Science.gov (United States)

    Kato, Yasuo; Nomura, Taiji; Ogita, Shinjiro; Takano, Maki; Hoshino, Kazuhiro

    2013-12-01

    Two β-glucosidases (BGLs 1 and 2) were purified to homogeneity from the extracellular enzyme preparations of the ethanol-fermenting Mucor circinelloides NBRC 4572 statically grown on rice straw. BGLs 1 and 2 are monomeric glycoproteins whose apparent molecular masses (Ms) are around 78 kDa, which decreased by approximately 10 kDa upon enzymatic deglycosylation. Both BGLs showed similar enzyme characteristics in optimal temperature and pH, stability, and inhibitors. They were active against a wide range of aryl-β-glucosides and β-linked glucose oligosaccharides. Their amino acid sequences shared 81% identity and exhibited less than 60% identity with the known family-3 BGLs. Considering properties such as reduced inhibition by ethanol, glucose, and cellobiose, low transglucosylation activity, wider substrate range, less binding affinity to lignocellulosic materials, and abundant expression, BGL1 is likely to be more suitable for bioethanol production than BGL2 via simultaneous saccharification and fermentation of rice straw with M. circinelloides.

  2. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    Science.gov (United States)

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  3. Free radical scavenging and α-glucosidase inhibition, two potential mechanisms involved in the anti-diabetic activity of oleanolic acid

    International Nuclear Information System (INIS)

    Castellano, J.M.; Guinda, A.; Macias, L.; Santos-Lozano, J.M.; Lapetra, J.; Rada, M.

    2016-01-01

    This work investigates the role of oleanolic acid (OA), isolated from the olive (Olea europaea L.) leaf, as a radical scavenger and inhibitor of the hydrolyzing enzymes of dietary carbohydrates. New evidence is provided showing that OA may capture 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) and peroxyl radicals, and also exert a strong and non-competitive inhibition of α-glucosidase (IC50 10.11 ± 0.30 µM). The kinetic and spectrometric analyses performed indicate that OA interacts with this enzyme inside a hydrophobic pocket, through an endothermic and non spontaneous process of a hydrophobic nature. These are two possible mechanisms by which OA may facilitate a better control of post-prandial hyperglycaemia and oxidative stress, so contributing to preserving insulin signalling. Obesity, insulin resistance and Type 2 Diabetes Mellitus are considered the first pandemics of the 21st century. In this sense, OA might be used in future preventive and therapeutic strategies, as an ingredient in new drugs and functional foods. [es

  4. Characteristics of alpha-glucosidase production from recombinant Aspergillus oryzae by membrane-surface liquid culture in comparison with various cultivation methods.

    Science.gov (United States)

    Morita, Masakazu; Shimamura, Hiroko; Ishida, Natsuko; Imamura, Koreyoshi; Sakiyama, Takaharu; Nakanishi, Kazuhiro

    2004-01-01

    alpha-Glucosidase was produced using recombinant Aspergillus oryzae by membrane-surface liquid culture (MSLC), a method previously developed by the authors and the results compared with other methods, including shaking flask culture (SFC), agar-plate culture (APC), culture on urethane sponge supports (USC), and liquid surface culture (LSC) to determine possible reasons for the advantageous features of MSLC. When yeast extract was used as a nitrogen source, the amount of enzyme produced by MSLC was 5 or more times higher than those for SFC and LSC, but similar to that using APC. Enzyme production in USC was slightly lower than in MSLC and APC. Cell growth was similar irrespective of the cultivation method used. When NaNO3, a typical inorganic nitrogen source was used, enzyme production in all the cultures was lower than that using yeast extract. However, even using NaNO3, the amount of the enzyme produced by MSLC was 8 to 20 times higher than those by SFC, APC, USC, and LSC. Although cell growth using NaNO3 was similar to that for yeast extract in MSLC, it was markedly decreased in SFC, APC, and LSC. The reason for the difference in enzyme productivity for various cultivation methods using yeast extract and NaNO3 as a nitrogen source is discussed, on the basis of the experimental findings. The role of the oxygen transfer effect and gene expression levels in enzyme production were also examined.

  5. Cloning and expression of the Aspergillus oryzae glucan 1,3-beta-glucosidase A (exgA) in Pichia pastoris.

    Science.gov (United States)

    Boonvitthya, Nassapat; Tanapong, Phatrapan; Kanngan, Patcharaporn; Burapatana, Vorakan; Chulalaksananukul, Warawut

    2012-10-01

    The glucan 1,3-beta-glucosidase A gene (exgA) from Aspergillus oryzae and fused to the Saccharomyces cerevisiae signal peptide (α-factor) was expressed under the control of either a constitutive (GAP) or an inducible (AOX1) promoter in Pichia pastoris. A 1.4-fold higher extracellular enzyme activity (2 U/ml) was obtained using the AOX1 inducible expression system than with the GAP constitutive promoter (1.4 U/ml). The purified recombinant ExgA enzyme, with a yield of 10 mg protein/l culture supernatant, was about 40 kDa by SDS-PAGE analysis with a specific activity of 289 U/mg protein. The enzyme was optimally active at 35 °C and pH 5.0 and displayed a K(M) and V(max) of 0.56 mM and 10,042 μmol/(min mg protein), respectively, with p-nitrophenyl-β-D-glucopyranoside as the substrate. Moreover, it was tolerant to glucose inhibition with a K(i) of 365 mM.

  6. Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities: an in vitro study.

    Science.gov (United States)

    El-Beshbishy, Ha; Bahashwan, Sa

    2012-02-01

    The present study investigated the in vitro hypoglycemic activity of basil (Ocimum basilicum) aqueous extract. Preliminary phytochemical screening of the extract revealed the presence of reducing sugars, cardiac glycosides, tannins, saponins, glycosides, flavonoids and steroids. The total polyphenols content (TPC), flavonoids content (FC), percentage diphenylpicrylhydrazyl (DPPH( · )) radical inhibition and total antioxidant status (TAS) were estimated. The FC was 41 ± 2.2 rutin/g dry extract, the TPC was 146 ± 5.26 mg catechin/g dry extract and the TAS was 5.12 ± 0.7 mmol/L. The %DPPH( · ) free radical inhibition was 60%, 54%, 49% and 43%, respectively, for different extract concentrations; 20, 18.2, 16.3 and 14.5 mg/ml, respectively. The extract elicited significant dose-dependent pattern against rat intestinal sucrase (RIS; IC(50) = 36.72 mg/ml), rat intestinal maltase (RIM; IC(50) = 21.31 mg/ml) and porcine pancreatic α-amylase (PPA; IC(50) = 42.50 mg/ml) inhibitory activities. The inhibition was greater against maltase compared with sucrase. These effects may be attributed to the high TPC and FC levels. The linear regression analysis revealed strong significant positive correlations between %DPPH( · ) radical inhibition and each of %RIS, %RIM and %PPA inhibiting activity. Also, strong significant positive correlations between %RIS and either %RIM or %PPA inhibition activity were observed. We concluded therefore that basil aqueous extract via antioxidant and possibly α-glucosidase and α-amylase inhibiting activities, offered positive benefits to control diabetes.

  7. Identification of non-Listeria spp. bacterial isolates yielding a β-D-glucosidase-positive phenotype on Agar Listeria according to Ottaviani and Agosti (ALOA).

    Science.gov (United States)

    Angelidis, Apostolos S; Kalamaki, Mary S; Georgiadou, Sofia S

    2015-01-16

    Agar Listeria according to Ottaviani and Agosti (ALOA) is the mandatory medium used for the detection and enumeration of Listeria monocytogenes in foods according to the official International Organization for Standardization (ISO) methods. On ALOA, Listeria spp. appear as bluish-green colonies due to the production of β-D-glucosidase, an enzyme that cleaves 5-bromo-4-chloro-3-indolyl-β-D-glucopyranoside, a chromogenic substrate included in the formulation of the medium. The present work reports on bacterial isolates (n=64) from ready-to-eat soft cheeses, which are able to grow on ALOA, forming bluish-green colonies and therefore phenotypically resemble Listeria spp. All isolates were also capable of growing on the selective media PALCAM and RAPID L'mono. The isolates were characterised with biochemical tests including those specified in the ISO standards for the confirmation of Listeria spp. and identified via partial sequencing of their 16S rRNA gene. According to sequencing results the isolates represented 12 different bacterial species or species-groups belonging to seven different genera: Bacillus spp. (B. circulans, B. clausii, B. licheniformis and B. oleronius), Cellulosimicrobium spp. (C. funkei), Enterococcus spp. (E. faecalis, E. faecium/durans), Kocuria spp. (K. kristinae), Marinilactibacillus spp. (M. psychrotolerans), Rothia spp. (R. terrae) and Staphylococcus spp. (S. sciuri and S. saprophyticus subsp. saprophyticus/xylosus). Cellulosimicrobium spp. have never been previously isolated from foods. These results significantly extend the list of bacteria previously known as capable of growing on ALOA as bluish-green colonies and suggest that there may be room for further improvement in the medium's inhibitory properties towards non-Listeria spp., Gram-positive bacteria present in foods. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Comparative analysis of the expression level of recombinant ginsenoside-transforming β-glucosidase in GRAS hosts and mass production of the ginsenoside Rh2-Mix

    Science.gov (United States)

    Siddiqi, Muhammad Zubair; Cui, Chang-Hao; Park, Seul-Ki; Han, Nam Soo; Kim, Sun-Chang

    2017-01-01

    The ginsenoside Rh2, a pharmaceutically active component of ginseng, is known to have anticancer and antitumor effects. However, white ginseng and red ginseng have extremely low concentrations of Rh2 or Rh2-Mix [20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3]. To enhance the production of food-grade ginsenoside Rh2, an edible enzymatic bioconversion technique was developed adopting GRAS host strains. A β-glucosidase (BglPm), which has ginsenoside conversion ability, was expressed in three GRAS host strains (Corynebacterium glutamicum, Saccharomyces cerevisiae and Lactococus lactis) by using a different vector system. Enzyme activity in these three GRAS hosts were 75.4%, 11.5%, and 9.3%, respectively, compared to that in the E. coli pGEX 4T-1 expression system. The highly expressed BglPm_C in C. glutamicum can effectively transform the ginsenoside Rg3-Mix [20(S)-Rg3, 20(R)-Rg3, Rk1, Rg5] to Rh2-Mix [20(S)-Rh2, 20(R)-Rh2, Rk2, Rh3] using a scaled-up biotransformation reaction, which was performed in a 10-L jar fermenter at pH 6.5/7.0 and 37°C for 24 h. To our knowledge, this is the first report in which 50 g of PPD-Mix (Rb1, Rb2, Rb3, Rc, and Rd) as a starting substrate was converted to ginsenoside Rg3-Mix by acid heat treatment and then 24.5-g Rh2-Mix was obtained by enzymatic transformation of Rg3-Mix through by BglPm_C. Utilization of this enzymatic method adopting a GRAS host could be usefully exploited in the preparation of ginsenoside Rh2-Mix in cosmetics, functional food, and pharmaceutical industries, thereby replacing the E. coli expression system. PMID:28423055

  9. On the phosphorylase activity of GH3 enzymes: A β-N-acetylglucosaminidase from Herbaspirillum seropedicae SmR1 and a glucosidase from Saccharopolyspora erythraea.

    Science.gov (United States)

    Ducatti, Diogo R B; Carroll, Madison A; Jakeman, David L

    2016-11-29

    A phosphorolytic activity has been reported for beta-N-acetylglucosaminidases from glycoside hydrolase family 3 (GH3) giving an interesting explanation for an unusual histidine as catalytic acid/base residue and suggesting that members from this family may be phosphorylases [J. Biol. Chem. 2015, 290, 4887]. Here, we describe the characterization of Hsero1941, a GH3 beta-N-acetylglucosaminidase from the endophytic nitrogen-fixing bacterium Herbaspirillum seropedicae SmR1. The enzyme has significantly higher activity against pNP-beta-D-GlcNAcp (K m  = 0.24 mM, k cat  = 1.2 s -1 , k cat /K m  = 5.0 mM -1 s -1 ) than pNP-beta-D-Glcp (K m  = 33 mM, k cat  = 3.3 × 10 -3 s -1 , k cat /K m  = 9 × 10 -4  mM -1 s -1 ). The presence of phosphate failed to significantly modify the kinetic parameters of the reaction. The enzyme showed a broad aglycone site specificity, being able to hydrolyze sugar phosphates beta-D-GlcNAc 1P and beta-D-Glc 1P, albeit at a fraction of the rate of hydrolysis of aryl glycosides. GH3 beta-glucosidase EryBI, that does not have a histidine as the general acid/base residue, also hydrolyzed beta-D-Glc 1P, at comparable rates to Hsero1941. These data indicate that Hsero1941 functions primarily as a hydrolase and that phosphorolytic activity is likely adventitious. The prevalence of histidine as a general acid/base residue is not predictive, nor correlative, with GH3 beta-N-acetylglucosaminidases having phosphorolytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Binding of 3,4,5,6-Tetrahydroxyazepanes to the Acid-[beta]-glucosidase Active Site: Implications for Pharmacological Chaperone Design for Gaucher Disease

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Susan D.; Tan, Yun Lei; Grimster, Neil P.; Yu, Zhanqian; Powers, Evan T.; Kelly, Jeffery W.; Lieberman, Raquel L. (Scripps); (GIT)

    2013-03-07

    Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-{beta}-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analogue with an N-linked hydroxyethyl tail stabilizes GCase in a conformation in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a mid-micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R and the non-neuronopathic N370S mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease.

  11. Ionic-liquid-based ultrasound-assisted extraction of isoflavones from Belamcanda chinensis and subsequent screening and isolation of potential α-glucosidase inhibitors by ultrafiltration and semipreparative high-performance liquid chromatography.

    Science.gov (United States)

    Li, Senlin; Li, Sainan; Huang, Yu; Liu, Chunming; Chen, Lina; Zhang, Yuchi

    2017-06-01

    The separation of a compound of interest from its structurally similar homologues to produce high-purity natural products is a challenging problem. This work proposes a novel method for the separation of iristectorigenin A from its structurally similar homologues by ionic-liquid-based ultrasound-assisted extraction and the subsequent screening and isolation of potential α-glucosidase inhibitors via ultrafiltration and semipreparative high-performance liquid chromatography. Ionic-liquid-based ultrasound-assisted extraction was successfully applied to the extraction of tectorigenin, iristectorigenin A, irigenin, and irisflorentin from Belamcanda chinensis. The optimum conditions for the efficient extraction of isoflavones were determined as 1.0 M 1-ethyl-3-methylimidazolium tetrafluoroborate with extraction time of 30 min and a solvent to solid ratio of 30 mL/g. Ultrafiltration with liquid chromatography and mass spectrometry was applied to screen and identify α-glucosidase inhibitors from B. chinensis, followed by the application of semipreparative high-performance liquid chromatography to separate and isolate the active constituents. Four major compounds including tectorigenin, iristectorigenin A, irigenin, and irisflorentin were screened and identified as α-glucosidase inhibitors, and then the four active compounds abovementioned were subsequently isolated by semipreparative high-performance liquid chromatography (99.89, 88.97, 99.79, and 99.97% purity, respectively). The results demonstrate that ionic liquid extraction can be successfully applied to the extraction of isoflavones from B. chinensis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The evolutionary appearance of non-cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous beta-glucosidases resulting from a crucial amino acid substitution

    DEFF Research Database (Denmark)

    Lai, Daniela; Abou Hachem, Maher; Robson, Fran

    2014-01-01

    has the dominant physiological role in rhodiocyanoside degradation. Structural modelling, site-directed mutagenesis and activity assays establish that a glycine residue (G211) in the aglycone binding site of BGD2 is essential for its ability to hydrolyse the endogenous cyanogenic glucosides...... with the Lotus corniculatus clade within the Lotus genus. This suggests the evolutionary scenario that substrate specialization for rhodiocyanosides evolved from a promiscuous activity of a progenitor cyanogenic beta-glucosidase, resembling BGD2, and required no more than a single amino acid substitution....

  13. Triple aldose reductase/α-glucosidase/radical scavenging high-resolution profiling combined with high-performance liquid chromatography – high-resolution mass spectrometry – solid-phase extraction – nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude, extract of Radix Scutellariae

    DEFF Research Database (Denmark)

    Tahtah, Yousof; Kongstad, Kenneth Thermann; Wubshet, Sileshi Gizachew

    2015-01-01

    high-performance liquid chromatography – high-resolution mass spectrometry – solid-phase extraction – nuclear magnetic resonance spectroscopy. The only α-glucosidase inhibitor was baicalein, whereas main aldose reductase inhibitors in the crude extract were baicalein and skullcapflavone II, and main....../α-glucosidase/radical scavenging high-resolution inhibition profile - allowing proof of concept with Radix Scutellariae crude extract as a polypharmacological herbal drug. The triple bioactivity high-resolution profiles were used to pinpoint bioactive compounds, and subsequent structure elucidation was performed with hyphenated...

  14. Biscuits with No Added Sugar Containing Stevia, Coffee Fibre and Fructooligosaccharides Modifies α-Glucosidase Activity and the Release of GLP-1 from HuTu-80 Cells and Serotonin from Caco-2 Cells after In Vitro Digestion.

    Science.gov (United States)

    Martinez-Saez, Nuria; Hochkogler, Christina Maria; Somoza, Veronika; Del Castillo, Maria Dolores

    2017-07-04

    This study assessed the in vitro effects of the bioaccessible food components released during the simulated human digestion of a coffee fibre-containing biscuit (CFB) on α-glucosidase activity, antioxidant capacity and satiety hormones. Digest of CFB presented a significantly ( p < 0.05) lower amount of sugar (68.6 mg/g) and a higher antioxidant capacity (15.1 mg chlorogenic acid eq./g) than that of a sucrose-containing biscuit (SCB). The CFB significantly reduced ( p < 0.05) α-glucosidase activity (IC50 = 3.3 mg/mL) compared to the SCB (IC50 = 6.2 mg/mL). Serotonin and glucagon-like peptide-1 (GLP-1) release by differentiated Caco-2 and HuTu-80 cells, respectively, was stimulated by the CFB (355% at a concentration of 0.5 mg/mL and 278% at a concentration of 0.05 mg/mL) to the same order of magnitude as those of the SCB. To summarize, the CFB was demonstrated to reduce monosaccharide bioaccessibility, to inhibit a diabetes-related digestive enzyme, and to improve the release of satiety hormones.

  15. Evaluation of a Standardized Extract from Morus alba against α-Glucosidase Inhibitory Effect and Postprandial Antihyperglycemic in Patients with Impaired Glucose Tolerance: A Randomized Double-Blind Clinical Trial

    Science.gov (United States)

    Hwang, Seung Hwan; Li, Hong Mei; Wang, Zhiqiang

    2016-01-01

    To evaluate the antihyperglycemic effect of a standardized extract of the leaves of Morus alba (SEMA), the present study was designed to investigate the α-glucosidase inhibitory effect and acute single oral toxicity as well as evaluate blood glucose reduction in animals and in patients with impaired glucose tolerance in a randomized double-blind clinical trial. SEMA was found to inhibit α-glucosidase at a fourfold higher level than the positive control (acarbose), in a concentration-dependent manner. Moreover, blood glucose concentration was suppressed by SEMA in vivo. Clinical signs and weight changes were observed when conducting an evaluation of the acute toxicity of SEMA through a single-time administration, with clinical observation conducted more than once each day. After administration of the SEMA, observation was for 14 days; all of the animals did not die and did not show any abnormal symptoms. In addition, the inhibitory effects of rice coated with SEMA were evaluated in a group of impaired glucose tolerance patients on postprandial glucose and a group of normal persons, and results showed that SEMA had a clear inhibitory effect on postprandial hyperglycemia in both groups. Overall, SEMA showed excellent potential in the present study as a material for improving postprandial hyperglycemia. PMID:27974904

  16. Synthesis, α-glucosidase inhibitory activity and in silico study of tris-indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus.

    Science.gov (United States)

    Taha, Muhammad; Rahim, Fazal; Imran, Syahrul; Ismail, Nor Hadiani; Ullah, Hayat; Selvaraj, Manikandan; Javid, Muhammad Tariq; Salar, Uzma; Ali, Muhammad; Khan, Khalid Mohammed

    2017-10-01

    Discovery of α-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of type-II diabetes mellitus and the other carbohydrate mediated disease. In continuation of our drug discovery research on potential antidiabetic agents, we synthesized novel tris-indole-oxadiazole hybrid analogs (1-21), structurally characterized by various spectroscopic techniques such as 1 H NMR, EI-MS, and 13 C NMR. Elemental analysis was found in agreement with the calculated values. All compounds were evaluated for α-glucosidase inhibiting potential and showed potent inhibitory activity in the range of IC 50 =2.00±0.01-292.40±3.16μM as compared to standard acarbose (IC 50 =895.09±2.04µM). The pharmacokinetic predictions of tris-indole series using descriptor properties showed that almost all compounds in this series indicate the drug aptness. Detailed binding mode analyses with docking simulation was also carried out which showed that the inhibitors can be stabilized by the formation of hydrogen bonds with catalytic residues and the establishment of hydrophobic contacts at the opposite side of the active site. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Antidiabetic effect of polyphenolic extracts from selected edible plants as α-amylase, α -glucosidase and PTP1B inhibitors, and β pancreatic cells cytoprotective agents - a comparative study.

    Science.gov (United States)

    Zakłos-Szyda, Małgorzata; Majewska, Iwona; Redzynia, Małgorzata; Koziołkiewicz, Maria

    2015-01-01

    Type 2 diabetes mellitus, which is usually a result of wrong dietary habits and reduced physical activity, represents 85-95% of all diabetes cases and among other diet related diseases is the major cause of deaths. The disease is characterized mainly by hyperglycemia, which is associated with attenuated insulin sensitivity or beta cells dysfunction caused by multiple stimuli, including oxidative stress and loss of insulin secretion. Since polyphenols possess multiple biological activities and constitute an important part of the human diet, they have recently emerged as critical phytochemicals in type 2 diabetes prevention and treatment. Their hypoglycemic action results from their antioxidative effect involved in recovering of altered antioxidant defenses and restoring insulin secreting machinery in pancreatic cells, or abilities to inhibit the activity of carbohydrates hydrolyzing enzymes (α-amylase and α-glucosidase) or protein tyrosine phosphatase 1B (PTP1B), which is known as the major negative regulator in insulin signaling. This study investigates the total phenolic content (Folin-Ciocalteu and HPLC methods) and antioxidant capacity (ABTS) of 20 polyphenolic extracts obtained from selected edible plants, which were screened in terms of α -amylase, α - glucosidase and protein tyrosine phosphatase 1B inhibitors or protective agents against oxidative stress induced by tertbutylhydroperoxide (t-BOOH) in βTC3 pancreatic beta cells used as a model target for antidiabetes drugs. The study concludes that Chaenomeles japonica, Oenothera paradoxa and Viburnum opulus may be promising natural sources for active compounds with antidiabetic properties.

  18. Jackfruit (Artocarpus heterophyllus Lam.) peel: A better source of antioxidants and a-glucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS.

    Science.gov (United States)

    Zhang, Lu; Tu, Zong-Cai; Xie, Xing; Wang, Hui; Wang, Hao; Wang, Zhen-Xing; Sha, Xiao-Mei; Lu, Yu

    2017-11-01

    Jackfruit (Artocarpus heterophyllus Lam.) peel is an underutilized by-product in both, the production and processing of jackfruit. This research compared the antioxidant and hypoglycemic potential of jackfruit peel with jackfruit pulp, flake and seed for the first time. The phytochemical profile of peel extract was characterized with HPLC-QTOF-MS/MS. Results revealed that peel extract exhibited the highest total phenolic and total flavonoid content, and the phenolics was 4.65, 4.12 and 4.95 times higher than that of pulp, flake and seed extract, respectively. The strongest DPPH and ABTS + scavenging ability, α-glucosidase inhibition were also found in peel extract, and the α-glucosidase inhibition was about 11.8-fold of that of acarbose. The HPLC-QTOF-MS/MS analysis led to the tentative identification of 53 compounds, prenylflavonoids, hydroxycinnamic acids and glycosides are the predominant bioactive compounds. Above results reveal promising potential of jackfruit peel as a new source of natural antioxidants and hypoglycemic agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Sterylglucoside catabolism in Cryptococcus neoformans with endoglycoceramidase-related protein 2 (EGCrP2), the first steryl-β-glucosidase identified in fungi.

    Science.gov (United States)

    Watanabe, Takashi; Ito, Tomoharu; Goda, Hatsumi M; Ishibashi, Yohei; Miyamoto, Tomofumi; Ikeda, Kazutaka; Taguchi, Ryo; Okino, Nozomu; Ito, Makoto

    2015-01-09

    Cryptococcosis is an infectious disease caused by pathogenic fungi, such as Cryptococcus neoformans and Cryptococcus gattii. The ceramide structure (methyl-d18:2/h18:0) of C. neoformans glucosylceramide (GlcCer) is characteristic and strongly related to its pathogenicity. We recently identified endoglycoceramidase-related protein 1 (EGCrP1) as a glucocerebrosidase in C. neoformans and showed that it was involved in the quality control of GlcCer by eliminating immature GlcCer during the synthesis of GlcCer (Ishibashi, Y., Ikeda, K., Sakaguchi, K., Okino, N., Taguchi, R., and Ito, M. (2012) Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J. Biol. Chem. 287, 368-381). We herein identified and characterized EGCrP2, a homologue of EGCrP1, as the enzyme responsible for sterylglucoside catabolism in C. neoformans. In contrast to EGCrP1, which is specific to GlcCer, EGCrP2 hydrolyzed various β-glucosides, including GlcCer, cholesteryl-β-glucoside, ergosteryl-β-glucoside, sitosteryl-β-glucoside, and para-nitrophenyl-β-glucoside, but not α-glucosides or β-galactosides, under acidic conditions. Disruption of the EGCrP2 gene (egcrp2) resulted in the accumulation of a glycolipid, the structure of which was determined following purification to ergosteryl-3β-glucoside, a major sterylglucoside in fungi, by mass spectrometric and two-dimensional nuclear magnetic resonance analyses. This glycolipid accumulated in vacuoles and EGCrP2 was detected in vacuole-enriched fraction. These results indicated that EGCrP2 was involved in the catabolism of ergosteryl-β-glucoside in the vacuoles of C. neoformans. Distinct growth arrest, a dysfunction in cell budding, and an abnormal vacuole morphology were detected in the egcrp2-disrupted mutants, suggesting that EGCrP2 may be a promising target for anti-cryptococcal drugs. EGCrP2, classified into glycohydrolase family 5, is the first steryl-β-glucosidase

  20. An Apoplastic β-Glucosidase is Essential for the Degradation of Flavonol 3-O-β-Glucoside-7-O-α-Rhamnosides in Arabidopsis.

    Science.gov (United States)

    Roepke, Jonathon; Gordon, Harley O W; Neil, Kevin J A; Gidda, Satinder; Mullen, Robert T; Freixas Coutin, José A; Bray-Stone, Delaney; Bozzo, Gale G

    2017-06-01

    Flavonol bisglycosides accumulate in plant vegetative tissues in response to abiotic stress, including simultaneous environmental perturbations (i.e. nitrogen deficiency and low temperature, NDLT), but disappear with recovery from NDLT. Previously, we determined that a recombinant Arabidopsis β-glucosidase (BGLU), BGLU15, hydrolyzes flavonol 3-O-β-glucoside-7-O-α-rhamnosides and flavonol 3-O-β-glucosides, forming flavonol 7-O-α-rhamnosides and flavonol aglycones, respectively. In this study, the transient expression of a BGLU15-Cherry fusion protein in onion epidermal cells demonstrated that BGLU15 was localized to the apoplast. Analysis of BGLU15 T-DNA insertional inactivation lines (bglu15-1 and bglu15-2) revealed negligible levels of BGLU15 transcripts, whereas its paralogs BGLU12 and BGLU16 were expressed in wild-type and bglu15 plants. The recombinant BGLU16 did not hydrolyze quercetin 3-O-β-glucoside-7-O-α-rhamnoside or rhamnosylated flavonols, but was active with the synthetic substrate, p-nitrophenyl-β-d-glucoside. In addition, shoots of both bglu15 mutants contained negligible flavonol 3-O-β-glucoside-7-O-α-rhamnoside hydrolase activity, whereas this activity increased by 223% within 2 d of NDLT recovery in wild-type plants. The levels of flavonol 3-O-β-glucoside-7-O-α-rhamnosides and quercetin 3-O-β-glucoside were high and relatively unchanged in shoots of bglu15 mutants during recovery from NDLT, whereas rapid losses were apparent in wild-type shoots. Moreover, losses of two flavonol 3-O-β-neohesperidoside-7-O-α-rhamnosides and kaempferol 3-O-α-rhamnoside-7-O-α-rhamnoside were evident during recovery from NDLT, regardless of whether BGLU15 was present. A spike in a kaempferol 7-O-α-rhamnoside occurred with stress recovery, regardless of germplasm, suggesting a contribution from hydrolysis of kaempferol 3-O-β-neohesperidoside-7-O-α-rhamnosides and/or kaempferol 3-O-α-rhamnoside-7-O-α-rhamnoside by hitherto unknown mechanisms. Thus

  1. Free radical scavenging and α-glucosidase inhibition, two potential mechanisms involved in the anti-diabetic activity of oleanolic acid

    Directory of Open Access Journals (Sweden)

    Castellano, J. M.

    2016-09-01

    Full Text Available This work investigates the role of oleanolic acid (OA, isolated from the olive (Olea europaea L. leaf, as a radical scavenger and inhibitor of the hydrolyzing enzymes of dietary carbohydrates. New evidence is provided showing that OA may capture 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid and peroxyl radicals, and also exert a strong and non -competitive inhibition of α-glucosidase (IC50 10.11 ± 0.30 μM. The kinetic and spectrometric analyses performed indicate that OA interacts with this enzyme inside a hydrophobic pocket, through an endothermic and non spontaneous process of a hydrophobic nature. These are two possible mechanisms by which OA may facilitate a better control of post-prandial hyperglycaemia and oxidative stress, so contributing to preserving insulin signalling. Obesity, insulin resistance and Type 2 Diabetes Mellitus are considered the first pandemics of the 21st century. In this sense, OA might be used in future preventive and therapeutic strategies, as an ingredient in new drugs and functional foods.Este trabajo estudia el papel del ácido oleanólico (OA, aislado de la hoja de olivo, como secuestrador de radicales libres e inhibidor de enzimas implicados en la hidrolisis de los carbohidratos de la dieta, dos mecanismos por los que el triterpeno podría mitigar la hiperglicemia postprandial y el estrés oxidativo. Se aportan nuevas evidencias que muestran que el OA puede capturar radicales ácido 2,2’-azino-bis-(3-etilbenzotiazolín-6-sulfónico y peroxilo, y que ejerce una potente inhibición no-competitiva de α-glucosidasa (IC50 10.11±0.30 μM. El análisis cinético y espectrométrico llevado a cabo indica que OA interacciona con este enzima en el interior de un bolsillo hidrofóbico, mediante un proceso endotérmico no espontáneo, de naturaleza hidrofóbica. Estos son dos posibles mecanismos por los cuales el OA puede facilitar un mejor control de la hiperglucemia postprandial y el estrés oxidativo

  2. The Role of Polyphenoloxidase, Peroxidase, and β-Glucosidase in Phenolics Accumulation in Olea europaea L. Fruits under Different Water Regimes

    Directory of Open Access Journals (Sweden)

    Marco Cirilli

    2017-05-01

    Full Text Available Olive fruits and oils contain an array of compounds that contribute to their sensory and nutritional properties. Phenolic compounds in virgin oil and olive-derived products have been proven to be highly beneficial for human health, eliciting increasing attention from the food industry and consumers. Although phenolic compounds in olive fruit and oil have been extensively investigated, allowing the identification of the main classes of metabolites and their accumulation patterns, knowledge of the molecular and biochemical mechanisms regulating phenolic metabolism remains scarce. We focused on the role of polyphenoloxidase (PPO, peroxidase (PRX and β-glucosidase (β-GLU gene families and their enzyme activities in the accumulation of phenolic compounds during olive fruit development (35–146 days after full bloom, under either full irrigation (FI or rain-fed (RF conditions. The irrigation regime affected yield, maturation index, mesocarp oil content, fruit size, and pulp-to-pit ratio. Accumulation of fruit phenolics was higher in RF drupes than in FI ones. Members of each gene family were developmentally regulated, affected by water regime, and their transcript levels were correlated with the respective enzyme activities. During the early phase of drupe growth (35–43 days after full bloom, phenolic composition appeared to be linked to β-GLU and PRX activities, probably through their effects on oleuropein catabolism. Interestingly, a higher β-GLU activity was measured in immature RF drupes, as well as a higher content of the oleuropein derivate 3,4-DHPEA-EDA and verbascoside. Activity of PPO enzymes was slightly affected by the water status of trees during ripening (from 120 days after full bloom, but was not correlated with phenolics content. Overall, the main changes in phenolics content appeared soon after the supply of irrigation water and remained thereafter almost unchanged until maturity, despite fruit growth and the progressive

  3. Insight into the substrate specificity change caused by the Y227H mutation of α-glucosidase III from the European honeybee (Apis mellifera through molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Pratchaya Pramoj Na Ayutthaya

    Full Text Available Honey from the European honeybee, Apis mellifera, is produced by α-glucosidases (HBGases and is widely used in food, pharmaceutical, and cosmetic industries. Categorized by their substrate specificities, HBGases have three isoforms: HBGase I, II and III. Previous experimental investigations showed that wild-type HBGase III from Apis mellifera (WT preferred sucrose to maltose as a substrate, while the Y227H mutant (MT preferred maltose to sucrose. This mutant can potentially be used for malt hydrolysis because it can efficiently hydrolyze maltose. In this work, to elucidate important factors contributing to substrate specificity of this enzyme and gain insight into how the Y227H mutation causes substrate specificity change, WT and MT homology models were constructed, and sucrose/maltose was docked into active sites of the WT and MT. AMBER14 was employed to perform three independent molecular dynamics runs for these four complexes. Based on the relative binding free energies calculated by the MM-GBSA method, sucrose is better than maltose for WT binding, while maltose is better than sucrose for MT binding. These rankings support the experimentally observed substrate specificity that WT preferred sucrose to maltose as a substrate, while MT preferred maltose to sucrose, suggesting the importance of binding affinity for substrate specificity. We also found that the Y227H mutation caused changes in the proximities between the atoms necessary for sucrose/maltose hydrolysis that may affect enzyme efficiency in the hydrolysis of sucrose/maltose. Moreover, the per-residue binding free energy decomposition results show that Y227/H227 may be a key residue for preference binding of sucrose/maltose in the WT/MT active site. Our study provides important and novel insight into the binding of sucrose/maltose in the active site of Apis mellifera HBGase III and into how the Y227H mutation leads to the substrate specificity change at the molecular level. This

  4. Aglycone specificity of Thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis

    Directory of Open Access Journals (Sweden)

    Lindahl Sofia

    2011-02-01

    Full Text Available Abstract Background The thermostable β-glucosidase (TnBgl1A from Thermotoga neapolitana is a promising biocatalyst for hydrolysis of glucosylated flavonoids and can be coupled to extraction methods using pressurized hot water. Hydrolysis has however been shown to be dependent on the position of the glucosylation on the flavonoid, and e.g. quercetin-3-glucoside (Q3 was hydrolysed slowly. A set of mutants of TnBgl1A were thus created to analyse the influence on the kinetic parameters using the model substrate para-nitrophenyl-β-D-glucopyranoside (pNPGlc, and screened for hydrolysis of Q3. Results Structural analysis pinpointed an area in the active site pocket with non-conserved residues between specificity groups in glycoside hydrolase family 1 (GH1. Three residues in this area located on β-strand 5 (F219, N221, and G222 close to sugar binding sub-site +2 were selected for mutagenesis and amplified in a protocol that introduced a few spontaneous mutations. Eight mutants (four triple: F219L/P165L/M278I, N221S/P165L/M278I, G222Q/P165L/M278I, G222Q/V203M/K214R, two double: F219L/K214R, N221S/P342L and two single: G222M and N221S were produced in E. coli, and purified to apparent homogeneity. Thermostability, measured as Tm by differential scanning calorimetry (101.9°C for wt, was kept in the mutated variants and significant decrease (ΔT of 5 - 10°C was only observed for the triple mutants. The exchanged residue(s in the respective mutant resulted in variations in KM and turnover. The KM-value was only changed in variants mutated at position 221 (N221S and was in all cases monitored as a 2-3 × increase for pNPGlc, while the KM decreased a corresponding extent for Q3. Turnover was only significantly changed using pNPGlc, and was decreased 2-3 × in variants mutated at position 222, while the single, double and triple mutated variants carrying a mutation at position 221 (N221S increased turnover up to 3.5 × compared to the wild type. Modelling

  5. Production of rare ginsenosides (compound Mc, compound Y and aglycon protopanaxadiol) by β-glucosidase from Dictyoglomus turgidum that hydrolyzes β-linked, but not α-linked, sugars in ginsenosides.

    Science.gov (United States)

    Lee, Gi-Woong; Kim, Kyoung-Rok; Oh, Deok-Kun

    2012-09-01

    Optimal hydrolytic activity of β-glucosidase from Dictyoglomus turgidum for the ginsenoside Rd was at pH 5.5 and 80 °C, with a half-life of ~11 h. The enzyme hydrolysed β-linked, but not α-linked, sugar moieties of ginsenosides. It produced the rare ginsenosides, aglycon protopanaxadiol (APPD), compounds Y, and Mc, via three unique transformation pathways: Rb(1) → Rd → F(2) → compound K → APPD, Rb(2) → compound Y, and Rc → compound Mc. The enzyme converted 0.5 mM Rb(2) and 0.5 mM Rc to 0.5 mM compound Y and 0.5 mM compound Mc after 3 h, respectively, with molar conversion yields of 100 %.

  6. The Evaluation of Dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia).

    Science.gov (United States)

    Konrad, Babij; Anna, Dąbrowska; Marek, Szołtysik; Marta, Pokora; Aleksandra, Zambrowicz; Józefa, Chrzanowska

    2014-01-01

    In the present study, whey protein concentrate (WPC-80) and β-lactoglobulin were hydrolyzed with a noncommercial serine protease isolated from Asian pumpkin ( Cucurbita ficifolia ). Hydrolysates were further fractionated by ultrafiltration using membranes with cut-offs equal 3 and 10 kDa. Peptide fractions of molecular weight lower than 3 and 3-10 kDa were further subjected to the RP-HPLC. Separated preparations were investigated for their potential as the natural inhibitors of dipeptidyl peptidase (DPP-IV), α-glucosidase and angiotensin converting enzyme (ACE). WPC-80 hydrolysate showed higher inhibitory activities against the three tested enzymes than β-lactoglobulin hydrolysate. Especially high biological activities were exhibited by peptide fractions of molecular weight lower than 3 kDa, with ACE IC50 food ingredients in the diet of patients with type 2 diabetes.

  7. Potential of Polygonum cuspidatum Root as an Antidiabetic Food: Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-HRMS and NMR for Identification of Antidiabetic Constituents.

    Science.gov (United States)

    Zhao, Yong; Chen, Martin Xiaoyong; Kongstad, Kenneth Thermann; Jäger, Anna Katharina; Staerk, Dan

    2017-06-07

    The worldwide increasing incidence of type 2 diabetes has fueled an intensified search for food and herbal remedies with preventive and/or therapeutic properties. Polygonum cuspidatum Siebold & Zucc. (Polygonaceae) is used as a functional food in Japan and South Korea, and it is also a well-known traditional antidiabetic herb used in China. In this study, dual high-resolution α-glucosidase and protein-tyrosine phosphatase 1B (PTP1B) inhibition profiling was used for the identification of individual antidiabetic constituents directly from the crude ethyl acetate extract and fractions of P. cuspidatum. Subsequent preparative-scale HPLC was used to isolate a series of α-glucosidase inhibitors, which after HPLC-HRMS and NMR analysis were identified as procyanidin B2 3,3″-O-digallate (3) and (-)-epicatechin gallate (5) with IC 50 values of 0.42 ± 0.02 and 0.48 ± 0.0004 μM, respectively, as well as a series of stilbene analogues with IC 50 value in the range from 6.05 ± 0.05 to 116.10 ± 2.04 μM. In addition, (trans)-emodin-physcion bianthrone (15b) and (cis)-emodin-physcion bianthrone (15c) were identified as potent PTP1B inhibitors with IC 50 values of 2.77 ± 1.23 and 7.29 ± 2.32 μM, respectively. These findings show that P. cuspidatum is a potential functional food for management of type 2 diabetes.

  8. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats.

    Science.gov (United States)

    Gondi, Mahendranath; Prasada Rao, U J S

    2015-12-01

    Peel is a major by-product during processing of mango fruit into pulp. Recent report indicates that the whole peel powder ameliorated diabetes. In the present study, ethanolic extract of mango peel was analysed for its bioactive compounds, evaluated for α-amylase and α-glucosidase inhibitory properties, oral glucose tolerance test, antioxidant properties, plasma insulin level and biochemical parameters related to diabetes. In addition to gallic and protocatechuic acids, the extract also had chlorogenic and ferulic acids, which were not reported earlier in mango peel extracts. The peel extract inhibited α-amylase and α-glucosidase activities, with IC50 values of 4.0 and 3.5 μg/ml. Ethanolic extract of peel showed better glucose utilization in oral glucose tolerance test. Treatment of streptozotocin-induced diabetic rats with the extract decreased fasting blood glucose, fructosamine and glycated hemoglobin levels, and increased plasma insulin level. Peel extract treatment decreased malondialdehyde level, but increased the activities of antioxidant enzymes significantly in liver and kidney compared to diabetic rats. These beneficial effects were comparable to metformin, but better than gallic acid treated diabetic rats. The beneficial effects of peel extract may be through different mechanism like increased plasma insulin levels, decreased oxidative stress and inhibition of carbohydrate hydrolyzing enzyme activities by its bioactive compounds. Thus, results suggest that the peel extract can be a potential source of nutraceutical or can be used in functional foods and this is the first report on antidiabetic properties of mango peel extract.

  9. Kinetics of high-Level of ß-glucosidase production by a 2-deoxyglucose-resistant mutant of Humicola lanuginosa in submerged fermentation Cinética de produção de ß-glucosidase por um mutante de Hemicola lanuginosa resistente a 2-deoxiglucose em fermentação submersa

    Directory of Open Access Journals (Sweden)

    Syed Ali Imran Bokhari

    2008-12-01

    Full Text Available A 2-deoxyglucose-resistant mutant (M7 of Humicola lanuginosa was obtained by exposing conidia to γ-rays and permitting expression in broth containing 0.6% 2-deoxyglucose (DG and cellobiose (1% before plating on DG esculin-ferric ammonium citrate agar medium from which colonies showing faster and bigger blackening zones were selected. Kinetic parameters for enhanced ß-glucosidase (BGL synthesis by M7 were achieved when corncobs acted as the carbon source. The combination between corncobs and corn steep liquor was the best to support higher values of all product formation kinetic parameters. Effect of temperature on the kinetic and thermodynamic attributes of BGL production equilibrium in the wild organismand M7was studied using batch process at eight different temperatures in shake-flask studies. The best performance was found at 45ºC and 20 g L-1 corncobs in 64 h. Both growth and product formation (17.93 U mL-1 were remarkably high at 45ºC and both were coupled under optimum working conditions. Product yield of BGL from the mutant M7 (1556.5 U g-1 dry corncobs was significantly higher than the values reported on all fungal and bacterial systems. Mutation had thermo-stabilization influence on the organism and mutant required lower activation energy for growth and lower magnitudes of enthalpy and entropy for product formation than those demanded by the wild organism, other mesophilic and thermo-tolerant organisms. In the inactivation phase, the organisms needed lower values of activation energy, enthalpy and entropy for product formation equilibrium, confirming thermophilic nature of metabolic network possessed by the mutant organism.Um mutante de Hemicola lanuginosa resistente a 2-deoxiglucose(M7 foi obtido através de exposição de conídios a raios γ, permitindo a expressão em caldo contendo 0,6% de 2-deoxiglucose (DG e celobiose (1% antes da semeadura em ágar DG esculina citrato de ferro amoniacal, da qual foram selecionadas as col

  10. Activity of beta-glucosidase and levels of isoflavone glucosides in soybean cultivars affected by the environment Atividade de beta-glicosidase e níveis de isoflavonóides glicosídios em cultivares de soja, influenciadas pelo ambiente

    Directory of Open Access Journals (Sweden)

    MERCEDES CONCÓRDIA CARRÃO-PANIZZI

    2000-05-01

    Full Text Available The enzyme beta-glucosidase hydrolyses the isoflavone glucosides developing aglycones, which are compounds with anticancer effects, that are also related with the astringency observed in soybean flavor. Due to the importance of this enzyme, a study was carried out to determine beta-glucosidase activity in soybean (Glycine max (L. Merrill cultivars with different contents of isoflavone glucosides (enzyme substrate. The enzyme activity was determined in 51 soybean cultivars sowed in Londrina (latitude 23ºS, in Paraná State, Brazil, and in the cultivar IAS 5 from soybean production regions of different Brazilian states. Among the cultivars, a range of variability of 176.1 to 96.3 units of enzyme activity (cultivars IAC-2 and Embrapa 2, respectively was observed. A significant variability among cultivars could suggest genetic differences. In the states of Rio Grande do Sul, Paraná and Mato Grosso do Sul, the cultivar IAS 5 presented similar average of beta-glucosidase activity: 132.1, 131.9 and 132.5 units, respectively. Among locations in the states, the cultivar IAS 5 presented a variability for enzyme activity from 138.8 to 124.8 units, which were statistically different. In spite of statistics, the numerical values were not too different to assume that environmental conditions affected enzyme activity. A non-significative correlation for isoflavone glucoside concentrations and enzyme activity was observed among cultivars.

  11. Identification of rice Os4BGlu13 as a β-glucosidase which hydrolyzes gibberellin A4 1-O-β-d-glucosyl ester, in addition to tuberonic acid glucoside and salicylic acid derivative glucosides.

    Science.gov (United States)

    Hua, Yanling; Ekkhara, Watsamon; Sansenya, Sompong; Srisomsap, Chantragan; Roytrakul, Sittiruk; Saburi, Wataru; Takeda, Ryosuke; Matsuura, Hideyuki; Mori, Haruhide; Ketudat Cairns, James R

    2015-10-01

    Gibberellin 1-O-β-d-glucose ester hydrolysis activity has been detected in rice seedling extracts, but no enzyme responsible for this activity has ever been purified and identified. Therefore, gibberellin A4 glucosyl ester (GA4-GE) β-d-glucosidase activity was purified from ten-day rice seedling stems and leaves. The family 1 glycoside hydrolase Os4BGlu13 was identified in the final purification fraction. The Os4BGlu13 cDNA was amplified from rice seedlings and expressed as an N-terminal thioredoxin-tagged fusion protein in Escherichia coli. The purified recombinant Os4BGlu13 protein (rOs4BGlu13) had an optimum pH of 4.5, for hydrolysis of p-nitrophenyl β-d-glucopyranoside (pNPGlc), which was the best substrate identified, with a kcat/Km of 637 mM(-1) s(-1). rOs4BGlu13 hydrolyzed helicin best among natural glycosides tested (kcat/Km of 74.4 mM(-1) s(-1)). Os4BGlu13 was previously designated tuberonic acid glucoside (TAG) β-glucosidase (TAGG), and here the kcat/Km of rOsBGlu13 for TAG was 6.68 mM(-1) s(-1), while that for GA4-GE was 3.63 mM(-1) s(-1) and for salicylic acid glucoside (SAG) is 0.88 mM(-1) s(-1). rOs4BGlu13 also hydrolyzed oligosaccharides, with preference for short β-(1 → 3)-linked over β-(1 → 4)-linked glucooligosaccharides. The enzymatic data suggests that Os4BGlu13 may contribute to TAG, SAG, oligosaccharide and GA4-GE hydrolysis in the rice plant, although helicin or a similar compound may be its primary target. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Release of Hormones from Conjugates: Chloroplast Expression of β-Glucosidase Results in Elevated Phytohormone Levels Associated with Significant Increase in Biomass and Protection from Aphids or Whiteflies Conferred by Sucrose Esters1[C][OA

    Science.gov (United States)

    Jin, Shuangxia; Kanagaraj, Anderson; Verma, Dheeraj; Lange, Theo; Daniell, Henry

    2011-01-01

    Transplastomic tobacco (Nicotiana tabacum) plants expressing β-glucosidase (Bgl-1) show modified development. They flower 1 month earlier with an increase in biomass (1.9-fold), height (1.5-fold), and leaf area (1.6-fold) than untransformed plants. Trichome density on the upper and lower leaf surfaces of BGL-1 plants increase by 10- and 7-fold, respectively, harboring 5-fold more glandular trichomes (as determined by rhodamine B staining), suggesting that BGL-1 lines produce more sugar esters than control plants. Gibberellin (GA) levels were investigated because it is a known regulator of flowering time, plant height, and trichome development. Both GA1 and GA4 levels are 2-fold higher in BGL-1 leaves than in untransformed plants but do not increase in other organs. In addition, elevated levels of other plant hormones, including zeatin and indole-3-acetic acid, are observed in BGL-1 lines. Protoplasts from BGL-1 lines divide and form calli without exogenous hormones. Cell division in protoplasts is enhanced 7-fold in the presence of exogenously applied zeatin-O-glucoside conjugate, indicating the release of active hormones from their conjugates. Whitefly (Bemisia tabaci) and aphid (Myzus persicae) populations in control plants are 18 and 15 times higher than in transplastomic lines, respectively. Lethal dose to kill 50% of the test population values of 26.3 and 39.2 μg per whitefly and 23.1 and 35.2 μg per aphid for BGL-1 and untransformed control exudates, respectively, confirm the enhanced toxicity of transplastomic exudates. These data indicate that increase in sugar ester levels in BGL-1 lines might function as an effective biopesticide. This study provides a novel strategy for designing plants for enhanced biomass production and insect control by releasing plant hormones or sugar esters from their conjugates stored within their chloroplasts. PMID:21068365

  13. Release of hormones from conjugates: chloroplast expression of β-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters.

    Science.gov (United States)

    Jin, Shuangxia; Kanagaraj, Anderson; Verma, Dheeraj; Lange, Theo; Daniell, Henry

    2011-01-01

    Transplastomic tobacco (Nicotiana tabacum) plants expressing β-glucosidase (Bgl-1) show modified development. They flower 1 month earlier with an increase in biomass (1.9-fold), height (1.5-fold), and leaf area (1.6-fold) than untransformed plants. Trichome density on the upper and lower leaf surfaces of BGL-1 plants increase by 10- and 7-fold, respectively, harboring 5-fold more glandular trichomes (as determined by rhodamine B staining), suggesting that BGL-1 lines produce more sugar esters than control plants. Gibberellin (GA) levels were investigated because it is a known regulator of flowering time, plant height, and trichome development. Both GA(1) and GA(4) levels are 2-fold higher in BGL-1 leaves than in untransformed plants but do not increase in other organs. In addition, elevated levels of other plant hormones, including zeatin and indole-3-acetic acid, are observed in BGL-1 lines. Protoplasts from BGL-1 lines divide and form calli without exogenous hormones. Cell division in protoplasts is enhanced 7-fold in the presence of exogenously applied zeatin-O-glucoside conjugate, indicating the release of active hormones from their conjugates. Whitefly (Bemisia tabaci) and aphid (Myzus persicae) populations in control plants are 18 and 15 times higher than in transplastomic lines, respectively. Lethal dose to kill 50% of the test population values of 26.3 and 39.2 μg per whitefly and 23.1 and 35.2 μg per aphid for BGL-1 and untransformed control exudates, respectively, confirm the enhanced toxicity of transplastomic exudates. These data indicate that increase in sugar ester levels in BGL-1 lines might function as an effective biopesticide. This study provides a novel strategy for designing plants for enhanced biomass production and insect control by releasing plant hormones or sugar esters from their conjugates stored within their chloroplasts.

  14. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L.

    Science.gov (United States)

    Zhao, Yong; Kongstad, Kenneth Thermann; Jäger, Anna Katharina; Nielsen, John; Staerk, Dan

    2018-06-29

    In this paper, quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with HPLC-HRMS-SPE-NMR were used for studying the polypharmacological properties of crude root bark extract of Morus alba L. This species is used as an anti-diabetic principle in many traditional treatment systems around the world, and the crude ethyl acetate extract of M. alba root bark was found to inhibit α-glucosidase, α-amylase and protein-tyrosine phosphatase 1B (PTP1B) with IC 50 values of 1.70 ± 0.72, 5.16 ± 0.69, and 5.07 ± 0.68 μg/mL as well as showing radical scavenging activity equaling a TEAC value of (3.82 ± 0.14) × 10 4  mM per gram extract. Subsequent investigation of the crude extract using quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling provided a quadruple biochromatogram that allowed direct correlation of the HPLC peaks with one or more of the tested bioactivities. This was used to target subsequent HPLC-HRMS-SPE-NMR analysis towards peaks representing bioactive analytes, and led to identification of a new Diels-Alder adduct named Moracenin E as well as a series of Diels-Alder adducts and isoprenylated flavonoids as potent α-glucosidase and α-amylase inhibitors with IC 50 values in the range of 0.60-27.15 μM and 1.22-69.38 μM, respectively. In addition, these compounds and two 2-arylbenzofurans were found to be potent PTP1B inhibitors with IC 50 values ranging from 4.04 to 21.67 μM. The high-resolution radical scavenging profile also revealed that almost all of the compounds possess radical scavenging activity. In conclusion the quadruple high-resolution profiling method presented here allowed a detailed profiling of individual constituents in crude root bark extract of M. alba, and the method provides a general tool for detailed mapping of bioactive constituents in polypharmacological herbal remedies. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. GLUCOSIDASE GENE FROM ASPERGILLUS NIGER F321

    African Journals Online (AJOL)

    Richard Auta

    Second generation biofuel production involves the use of fungi to degrade an energy ... end of these exposed cellulose chains, which releases molecules of cellobiose .... collection at NCBI Genbank using the web interface of NCBI-. BLAST.

  16. Synthesis, Characterization, Antibacterial, α-Glucosidase Inhibition ...

    African Journals Online (AJOL)

    The off-white precipitates were collected by filtration, washed with distilled water and dried to acquire the compound 3. ... progress of reaction was monitored by TLC. The product was precipitated by adding cold water, filtered, washed with ...... Micellar chromatographic procedure with direct injection for the determination of.

  17. Free radical scavenging and α-glucosidase inhibition, two potential mechanisms involved in the anti-diabetic activity of oleanolic acid; La Captación de radicales libres y la inhibición de α-glucosidasa, dos posibles mecanismos involucrados en la actividad antidiabética del ácido oleanólico.

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, J.M.; Guinda, A.; Macias, L.; Santos-Lozano, J.M.; Lapetra, J.; Rada, M.

    2016-07-01

    This work investigates the role of oleanolic acid (OA), isolated from the olive (Olea europaea L.) leaf, as a radical scavenger and inhibitor of the hydrolyzing enzymes of dietary carbohydrates. New evidence is provided showing that OA may capture 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) and peroxyl radicals, and also exert a strong and non-competitive inhibition of α-glucosidase (IC50 10.11 ± 0.30 µM). The kinetic and spectrometric analyses performed indicate that OA interacts with this enzyme inside a hydrophobic pocket, through an endothermic and non spontaneous process of a hydrophobic nature. These are two possible mechanisms by which OA may facilitate a better control of post-prandial hyperglycaemia and oxidative stress, so contributing to preserving insulin signalling. Obesity, insulin resistance and Type 2 Diabetes Mellitus are considered the first pandemics of the 21st century. In this sense, OA might be used in future preventive and therapeutic strategies, as an ingredient in new drugs and functional foods. [Spanish] Este trabajo estudia el papel del ácido oleanólico (OA), aislado de la hoja de olivo, como secuestrador de radicales libres e inhibidor de enzimas implicados en la hidrolisis de los carbohidratos de la dieta, dos mecanismos por los que el triterpeno podría mitigar la hiperglicemia postprandial y el estrés oxidativo. Se aportan nuevas evidencias que muestran que el OA puede capturar radicales ácido 2,2’-azino-bis-(3-etilbenzotiazolín)-6-sulfónico y peroxilo, y que ejerce una potente inhibición nocompetitiva de α-glucosidasa (IC50 10.11±0.30 µM). El análisis cinético y espectrométrico llevado a cabo indica que OA interacciona con este enzima en el interior de un bolsillo hidrofóbico, mediante un proceso endotérmico no espontáneo, de naturaleza hidrofóbica. Estos son dos posibles mecanismos por los cuales el OA puede facilitar un mejor control de la hiperglucemia postprandial y el estrés oxidativo, lo

  18. Evaluation of α-Glucosidase Inhibitory Activity of Dichloromethane ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research November 2014; 13 (11): ... Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, ... International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index ... development of new drugs with increased ... and Applied Biology, Bahauddin Zakariya.

  19. Evaluation of Glucosidase Inhibitory and Cytotoxic Potential of Five ...

    African Journals Online (AJOL)

    2015-02-09

    Feb 9, 2015 ... 1Centre for Biodiversity Research, 2Department of Chemical Science, 3Department of Biological Science, Faculty of Science,. Universiti Tunku Abdul .... 5-Fluorouracil, an anticancer drug, was used as the positive control.

  20. Isolation and characterization of β-glucosidase producing bacteria ...

    African Journals Online (AJOL)

    Administrator

    2011-10-26

    Oct 26, 2011 ... lase enzyme system, along with endoglucanase and cellobiohydrolase. ... biomass substrates, for synthesis of useful glucosides, in flavor industry for ... 2007) and in the bioconversion of phenolic anti-oxidants from defatted ...

  1. Flowers with Yeast α-Glucosidase Inhibitory Activity

    African Journals Online (AJOL)

    Cholesterol in Hamsters Fed High-Fat Diets. Supplemented with Blueberry Peels and Peel. Extract. J Agric Food Chem 2010; 58: 3984-3991. 7. Xie C, Kang J, Chen JR, Nagarajan S, Badger TM, Wu X. Phenolic Acids Are in Vivo Atheroprotective. Compounds Appearing in the Serum of Rats after. Blueberry Consumption.

  2. Determination of antioxidant and α-glucosidase inhibitory activities ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-14

    Oct 14, 2011 ... 2Majors in Plant Resource Sciences and Environment, College of Applied Life ... Carlsen and co-workers (2010) hypothesized that ... #These authors contributed equally to this work. ... 2diabetes mellitus (T2DM) is a metabolic disease that ... drinks in China, Korea and Japan (Zhou and Yang, 2009).

  3. Purification and characterization of β-glucosidase from newly ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... The enzyme was sensitive to heat, decreasing slowly between 60 and ... conjugated with glucose or malonylglucose in soybean seeds (Wang and Murphy, .... To test the hydrolysis efficiency of Aspergillus sp. MT-0204 β-.

  4. Activity-based protein profiling of glucosidases, fucosidases and glucuronidases

    NARCIS (Netherlands)

    Jiang, J.

    2016-01-01

    Glycoside hydrolases (GHs), enzymes that catalyze the hydrolytic cleavage of glycosidic bonds, receive continuing interest both in fundamental and applied biology and biomedicine. Lysosomal storage disorders (LSDs) are caused by inborn metabolic errors due to deficiency in specific lysosomal

  5. Alpha-Glucosidase Inhibitory and Antioxidant Activity of Solvent ...

    African Journals Online (AJOL)

    regression analysis. Phytochemical contents and correlation with bioactivities. Total phenolic (TP), total proanthocyanidin. (TPro), and total hydroxycinnamic acid ..... An advantage of competitive inhibitors is that their inhibitory action is reversible, thus allowing undesirable effects to be readily mitigated by decreasing the ...

  6. Production and characterization of β-glucosidase from Gongronella ...

    African Journals Online (AJOL)

    sunny t

    2016-04-20

    Apr 20, 2016 ... environment, yet their composition allows the use of such materials as nutrient ... the risk of cardiovascular disease, osteoporosis, menopausal ..... Amazon rainforest Aspergillus strains cultivated on agro-industrial residues:.

  7. Milk glucosidase activity enables suckled pup starch digestion

    Science.gov (United States)

    Starch requires six enzymes for digestion to free glucose: two amylases (salivary and pancreatic) and four mucosal maltase activities; sucrase-isomaltase and maltase-glucoamylase. All are deficient in suckling rodents. The objective of this study is to test (13)C-starch digestion before weaning by m...

  8. Purification and characterization of β-glucosidase from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... natural environments. However they are highly destruc- tive pest, causing significant economic losses through damage to timber-in-service such as building, poles, bridges and railway sleepers in addition to forest, fruit and ornamental trees (Su, 2002). The two most effective control options for subterranean ...

  9. Role of alpha-glucosidase in the fermentable sugar composition of sorghum malt mashes

    CSIR Research Space (South Africa)

    Taylor, JRN

    1994-11-01

    Full Text Available The cause of the high glucose to maltose ratio in sorghum malt worts was studied. Mashing temperature and pH strongly affected both the amount of glucose and the proportion of glucose relative to total fermentable sugars. The relative proportion...

  10. Effect of Extracts of Bilberries (Vaccinium myrtillus L. on Amyloglucosidase and α-Glucosidase Activity

    Directory of Open Access Journals (Sweden)

    Karcheva-Bahchevanska Diana P.

    2017-06-01

    Full Text Available Background:Vaccinium myrtillus L. is a species belonging to the genus Vaccinium of the family Ericaceae. Bilberries have drawn attention due to the multiple benefits for the human health, including antioxidant, anti-inflammatory, anticancer, anti-neurodegenerative, and cardioprotective effects. Recently, bilberries were shown to inhibit the activity of carbohydrate-hydrolysing enzymes that can help reduce the intensity of the metabolic syndrome and prevent type 2 diabetes.

  11. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk.

    NARCIS (Netherlands)

    Hout, J.M. van den; Kamphoven, J.H.; Winkel, L.P.; Arts, W.F.M.; Klerk, J.B.C. de; Loonen, M.C.B.; Vulto, A.G.; Cromme-Dijkhuis, A.H.; Weisglas-Kuperus, N.; Hop, W.C.J.; Hirtum, H. van; Diggelen, O.P. van; Boer, M. de; Kroos, M.A.; Doorn, P.A. van; Voort, E.I. van der; Sibbles, B.; Corven, E.J. van; Brakenhoff, J.P.; Hove, J.L. van; Smeitink, J.A.M.; Jong, G. de; Reuser, A.J.J.; Ploeg, A.T. van der

    2004-01-01

    OBJECTIVE: Recent reports warn that the worldwide cell culture capacity is insufficient to fulfill the increasing demand for human protein drugs. Production in milk of transgenic animals is an attractive alternative. Kilogram quantities of product per year can be obtained at relatively low costs,

  12. α-Amylase and α-glucosidase inhibitory effects of Sclerocarya birrea ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-26

    Oct 26, 2011 ... birrea stem bark (SBSB) extracts against human urinary α-amylase and Bacillus steatothermophilus α ... levels, reduced plasma cholesterol, triglyceride and urea .... cycle and controlled conditions of temperature and humidity.

  13. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk

    NARCIS (Netherlands)

    J.M.P. van den Hout (Johanna); B. Sibbles (Barbara); J.P. Brakenhoff (Just); A.H. Cromme-Dijkhuis (Adri); N. Weisglas-Kuperus (Nynke); A.J.J. Reuser (Arnold); M.A. Boer (Marijke); J.A.M. Smeitink (Jan); O.P. van Diggelen (Otto); E. van der Voort (Edwin); E.J.J.M. van Corven (Emiel); H. van Hirtum (Hans); J.H.J. Kamphoven (Joep); A.T. van der Ploeg (Ans); J. van Hove (Johan); W.F.M. Arts (Willem Frans); P.A. van Doorn (Pieter); J.B.C. de Klerk (Johannes); M.C.B. Loonen (Christa); A.G. Vulto (Arnold); M.A. Kroos (Marian); W.C.J. Hop (Wim); L.P.F. Winkel (Léon); G. de Jong (Gerard)

    2004-01-01

    textabstractOBJECTIVE: Recent reports warn that the worldwide cell culture capacity is insufficient to fulfill the increasing demand for human protein drugs. Production in milk of transgenic animals is an attractive alternative. Kilogram quantities of product per year can be

  14. Glucosidase trimming inhibitors preferentially perturb T cell activation induced by CD2 mAb

    NARCIS (Netherlands)

    van Kemenade, F. J.; Rotteveel, F. T.; van den Broek, L. A.; Baars, P. A.; van Lier, R. A.; Miedema, F.

    1994-01-01

    Glycosidase trimming inhibitors may be used to study contribution of N-linked glycan moieties in T cell function. We have studied the effects of castanospermine (Cas), swainsonine (Swain), 1-deoxynojirimycin (dNM), and 1-deoxymannojirimycin (dMM) on T cell activation and differentiation. Our

  15. Beta-Glucosidase Activity as a Diagnostic Index of Gaucher's Disease

    African Journals Online (AJOL)

    flUId, containing most of the platelets, was discarded and the pellet of leucocytes and remaining red blood cells was diluted in 2 ml of isotonic sodium chloride. Separation of Iymphocytes from the granulocytes and few remaining red blood cells was accompli~hed by using isopycnic centrifugation with Ficoll diatrizoate," 72 ...

  16. Activity-Based Profiling of Retaining β-Glucosidases: A Comparative Study

    NARCIS (Netherlands)

    Witte, Martin D.; Walvoort, Marthe T. C.; Li, Kah-Yee; Kallemeijn, Wouter W.; Donker-Koopman, Wilma E.; Boot, Rolf G.; Aerts, Johannes M. F. G.; Codée, Jeroen D. C.; van der Marel, Gijsbert A.; Overkleeft, Herman S.

    2011-01-01

    Activity-based protein profiling (ABPP) is a versatile strategy to report on enzyme activity in vitro, in situ, and in vivo. The development and use of ABPP tools and techniques has met with considerable success in monitoring physiological processes involving esterases and proteases. Activity-based

  17. Activity-Based Profiling of Retaining beta-Glucosidases : A Comparative Study

    NARCIS (Netherlands)

    Witte, Martin D.; Walvoort, Marthe T. C.; Li, Kah-Yee; Kallemeijn, Wouter W.; Donker-Koopman, Wilma E.; Boot, Rolf G.; Aerts, Johannes M. F. G.; Codee, Jeroen D. C.; van der Marel, Gijsbert A.; Overkleeft, Herman S.

    2011-01-01

    Activity-based protein profiling (ABPP) is a versatile strategy to report on enzyme activity in vitro, in situ, and in vivo. The development and use of ABPP tools and techniques has met with considerable success in monitoring physiological processes involving esterases and proteases. Activity-based

  18. Activity-Based Profiling of Retaining β-Glucosidases : A Comparative Study

    NARCIS (Netherlands)

    Witte, Martin D.; Walvoort, Marthe T.C.; Li, Kah-Yee; Kallemeijn, Wouter W.; Donker-Koopman, Wilma E.; Boot, Rolf G.; Aerts, Johannes M.F.G.; Codée, Jeroen D.C.; Marel, Gijsbert A. van der; Overkleeft, Herman S.

    2011-01-01

    Activity-based protein profiling (ABPP) is a versatile strategy to report on enzyme activity in vitro, in situ, and in vivo. The development and use of ABPP tools and techniques has met with considerable success in monitoring physiological processes involving esterases and proteases. Activity-based

  19. Oligosaccharide synthesis by the hyperthermostable b-glucosidase from Pyrococcus furiosus: kinetics and modelling

    NARCIS (Netherlands)

    Bruins, M.E.; Strubel, M.; Lieshout, van J.F.T.; Janssen, A.E.M.; Boom, R.M.

    2003-01-01

    Oligosaccharides can be synthesised from monosaccharides or disaccharides, using glycosidases as a catalyst. To investigate the potential of this synthesis with beta-glycosidase from Pyrococcus furiosus we determined kinetic parameters for substrate conversion and product formation from cellobiose,

  20. A new highly efficient beta-glucosidase from the novel species, Aspergillus saccharolyticus

    DEFF Research Database (Denmark)

    Sørensen, Annette

    . This is a sustainable solution that is expected to replace today’s oil refineries. Main components of lignocellulosic biomass, primarily consisting of plant cell walls, are cellulose, hemicellulose, and lignin. Prior to enzymatic hydrolysis for generating sugar monomers, the biomass is pretreated. The pretreatment....../S) and AcceleraseDUET (Genencor A/S). The enzyme preparations by Novozymes A/S are used as benchmarks in the following research. Superior enzymes can be obtained either by discovery of new enzymes through different screening strategies or by improvement of known enzymes mainly by different molecular methods...

  1. Cellobiose fermenting yeast produces varied forms of native ß-glucosidase

    Science.gov (United States)

    The rapid growing yeast strain NRRL Y-50464 is robust to environmental stress and resistant to 2-furaldehyde (furfural) and 5-[hydroxymethyl]-2-furaldehyde (HMF). It is able to utilize cellobiose as its sole source of carbon and produces ethanol from lignocellulosic biomass by simultaneous saccharif...

  2. Enzymatic Cellulose Hydrolysis: Enzyme Reusability and Visualization of beta-Glucosidase Immobilized in Calcium Alginate

    DEFF Research Database (Denmark)

    Tsai, Chien Tai; Meyer, Anne S.

    2014-01-01

    by confocal laser scanning microscopy (CLSM). The CLSM images, which we believe are the first to be published, corroborate that more BG aggregates were entrapped in the matrix when the enzymes were cross-linked by glutaraldehyde as opposed to when they are not cross-linked. The particles with the immobilized...

  3. Production of a thermostable B-glucosidase by a mesophilic fungus aspergillus niger NIAB 280

    International Nuclear Information System (INIS)

    Iqbal, M.J.; Rajoka, M.I.; Malik, K.A.

    1991-01-01

    Aspergillus niger NIAB 280 produced extracellular B- glucosidease when grown on different ligno cellulosic substrates. Wheat bran was found to be the best inducer of this enzyme. Maximum enzyme production was found at initial pH 5. When the organisms was grown on easily available carbohydrates, the enzyme was induced only to a basic level essential for microbial growth. The optimum pH for enzyme activity was found to be 3 whereas optimum temperature was 55 degree C. The enzyme retained 100% activity when exposed to a temperature of 50 degree C for 5 days. When this enzyme was added to FPase from T. reesei and celluclast (a commercial cellulase from Novazyme), the %age saccharification as well as glucose production from lignocellulosic biomass was doubled. (author)

  4. Identification of a β-glucosidase from the Mucor circinelloides genome by peptide pattern recognition

    DEFF Research Database (Denmark)

    Yuhong, Huang; Busk, Peter Kamp; Grell, Morten Nedergaard

    2014-01-01

    Mucor circinelloides produces plant cell wall degrading enzymes that allow it to grow on complex polysaccharides. Although the genome of M. circinelloides has been sequenced, only few plant cell wall degrading enzymes are annotated in this species. We applied peptide pattern recognition, which...

  5. Investigation of adsorption kinetics and isotherm of cellulase and B-Glucosidase on lignocellulosic substrates

    Science.gov (United States)

    Clear understanding of enzyme adsorption during enzymatic hydrolysis of lignocellulosic biomass is essential to enhance the cost-efficiency of hydrolysis. However, conclusions from literatures often contradicted each other because enzyme adsorption is enzyme, biomass/pretreatment and experimental co...

  6. Functional significance and structure–activity relationship of food-derived α-glucosidase inhibitors

    NARCIS (Netherlands)

    Stefano, Di Elisa; Oliviero, Teresa; Udenigwe, Chibuike C.

    2018-01-01

    The ageing population, together with unhealthy diets, physical inactivity and obesity are the main drivers of the increased prevalence of Type 2 diabetes mellitus (T2DM). Apart from pharmacological treatments, the food industries can play a significant role in the management of T2DM. One of the main

  7. New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against α-glucosidase and PTP1B.

    Science.gov (United States)

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-06-01

    Nine new sesquiterpenoids, clitocybulol derivatives, clitocybulols G-O (1-9) and three known sesquiterpenoids, clitocybulols C-E (10-12), were isolated from the solid culture of the edible fungus Pleurotus cystidiosus. The structures of compounds 1-12 were determined by spectroscopic methods. The absolute configurations of compounds 1-9 were assigned via the circular dichroism (CD) data analysis. Compounds 1, 6 and 10 showed moderate inhibitory activity against protein tyrosine phosphatase-1B (PTP1B) with IC50 values of 49.5, 38.1 and 36.0μM, respectively. Copyright © 2016. Published by Elsevier B.V.

  8. Combining Rational and Random Strategies in beta-Glucosidase Zm-p60.1 Protein Library Construction

    Czech Academy of Sciences Publication Activity Database

    Turek, D.; Klimeš, P.; Mazura, P.; Brzobohatý, Břetislav

    -, SEP2014 (2014) E-ISSN 1932-6203 Institutional support: RVO:68081707 Keywords : SUBSTRATE AGLYCONE SPECIFICITY * CRYSTAL-STRUCTURES * MAIZE Subject RIV: BO - Biophysics Impact factor: 3.234, year: 2014

  9. Bacterial production, glucosidase activity and particle-associated carbohydrates in Dona Paula bay, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Bhaskar, P.V.; Bhosle, N.B.

    theaquaticenvironmentcontributingupto80%ofthedissolvedand 5–25% of the particulate organic carbon (Decho,1990; Benner et al., 1992; Biersmith and Benner, 1998). Although free and combined amino acids are the most preferred carbon and nitrogen source 1. Introduction... of bulk bacterial biomass and enzyme activity is varyingly attributed to particle-associated bacteria and free-living bacteria (Palumbo et al., 1984; Griffith et al., 1990; Karner and Herndl,1992; Bidle and Fletcher,1995). The enzymatic breakdown...

  10. Biochemical and catalytic properties of two intracellular beta-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides

    DEFF Research Database (Denmark)

    Mamma, D.; Hatzinikolaou, D.G.; Christakopoulos, Paul

    2004-01-01

    ,6)-beta-glucosides as well as aryl beta-glucosides. Determination of k(cat)/K-m revealed that G(II) hydrolyzed 3-8 times more efficiently the above-mentioned substrates. The ability of G(I) and G(II) to deglycosylate various flavonoid glycosides was also investigated. Both enzymes were active against...... flavonoids glycosylated at the 7 position but G(II) hydrolyzed them 5 times more efficiently than G(I). Of the flavanols tested, both enzymes were incapable of hydrolyzing quercetrin and kaempferol-3-glucoside. The main difference between G(I) and G(II) as far as the hydrolysis of flavanols is concerned...

  11. Metabolite profiling, antioxidant, and α-glucosidase inhibitory activities of germinated rice: nuclear-magnetic-resonance-based metabolomics study

    Directory of Open Access Journals (Sweden)

    Phaiwan Pramai

    2018-01-01

    Full Text Available In an attempt to profile the metabolites of three different varieties of germinated rice, specifically black (GBR, red, and white rice, a 1H-nuclear-magnetic-resonance-based metabolomics approach was conducted. Multivariate data analysis was applied to discriminate between the three different varieties using a partial least squares discriminant analysis (PLS-DA model. The PLS model was used to evaluate the relationship between chemicals and biological activities of germinated rice. The PLS-DA score plot exhibited a noticeable separation between the three rice varieties into three clusters by PC1 and PC2. The PLS model indicated that α-linolenic acid, γ-oryzanol, α-tocopherol, γ-aminobutyric acid, 3-hydroxybutyric acid, fumaric acid, fatty acids, threonine, tryptophan, and vanillic acid were significantly correlated with the higher bioactivities demonstrated by GBR that was extracted in 100% ethanol. Subsequently, the proposed biosynthetic pathway analysis revealed that the increased quantities of secondary metabolites found in GBR may contribute to its nutritional value and health benefits.

  12. Combined enzyme mediated fermentation of cellulose and xylose to ethanol by Schizosaccharomyces pombe, cellulase, [beta]-glucosidase, and xylose isomerase

    Science.gov (United States)

    Lastick, S.M.; Mohagheghi, A.; Tucker, M.P.; Grohmann, K.

    1994-12-13

    A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast Schizosaccharomyces pombe ATCC No. 2476, having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35 C to about 40 C until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol. 2 figures.

  13. Production of thermostable β-glucosidase and CMCase by Penicillium sp. LMI01 isolated from the Amazon region

    Directory of Open Access Journals (Sweden)

    Pamella S. Santa-Rosa

    2018-01-01

    Conclusions: The effectiveness and characteristics of these enzymes indicate that LMI01 can be an alternative for the hydrolysis of lignocellulosic materials and should be tested in commercial formulations.

  14. Three-dimensional structures of two heavily N-glycosylated Aspergillus sp family GH3 beta-D-glucosidases

    Czech Academy of Sciences Publication Activity Database

    Agirre, J.; Ariza, A.; Offen, W. A.; Turkenburg, J. P.; Roberts, S. M.; McNicholas, S.; Harris, P. V.; McBrayer, B.; Dohnálek, Jan; Cowtan, K. D.; Davies, G. J.; Wilson, K. S.

    2016-01-01

    Roč. 72, č. 2 (2016), s. 254-265 ISSN 2059-7983 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : cellulose degradation * N-glycan * biofuels * glycoblocks Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.114, year: 2016

  15. Cuparane sesquiterpenes from Laurencia natalensis Kylin as inhibitors of alpha-glucosidase, dipeptidyl peptidase IV and xanthine oxidase

    Czech Academy of Sciences Publication Activity Database

    Rengasamy, K.R.R.; Poštová Slavětínská, Lenka; Kulkarni, M. G.; Stirk, W. A.; Van Staden, J.

    2017-01-01

    Roč. 25, Jul (2017), s. 178-183 ISSN 2211-9264 Institutional support: RVO:61388963 Keywords : 1-deoxyalgoane * dipeptidyl peptidase IV * diabetes * gout * Laurencia natalensis Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 3.994, year: 2016

  16. Effect of Miglitol, an α-Glucosidase Inhibitor, on Postprandial Glucose and Lipid Metabolism in Patients with Type 2 Diabetes

    OpenAIRE

    KANEKO Yukiyo; KUBOKI Koji; HIROI Naoki; WATANABE Takehiko; NISHIMURA Chiaki; YOSHINO Gen

    2011-01-01

    Objective: The effects of miglitol on postprandial glucose and lipid metabolism were investigated in patients with type 2 diabetes mellitus (T2DM) treated with diet alone. Subjects and Methods: A meal tolerance test (MTT) was performed in 26 diabetic patients before and 2 weeks after 150 mg/day miglitol treatment, with the second MTT performed in patients after they had taken a dose of 50 mg miglitol. Results: Miglitol treatment decreased postprandial blood glucose and serum insulin levels 30...

  17. ß-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps.

    NARCIS (Netherlands)

    Mattiacci, L.; Dicke, M.; Posthumus, M.A.

    1995-01-01

    Cabbage plants respond to caterpillar (Pieris brassicae) herbivory by releasing a mixture of volatiles that makes them highly attractive to parasitic wasps (Cotesia glomerata) that attack the herbivores. Cabbage leaves that are artificially damaged and subsequently treated with gut regurgitant of P.

  18. alpha-L-Rhamnosyl-beta-D-glucosidase (Rutinosidase) from Aspergillus niger: Characterization and Synthetic Potential of a Novel Diglycosidase

    Czech Academy of Sciences Publication Activity Database

    Šimčíková, Daniela; Kotík, Michael; Weignerová, Lenka; Halada, Petr; Pelantová, Helena; Adamcová, K.; Křen, Vladimír

    2015-01-01

    Roč. 357, č. 1 (2015), s. 107-117 ISSN 1615-4150 R&D Projects: GA MŠk(CZ) LD13042; GA MŠk(CZ) 7E11011 Institutional support: RVO:61388971 Keywords : diglycosidase * enzyme catalysis * glycosides Subject RIV: CC - Organic Chemistry Impact factor: 6.453, year: 2015

  19. Proof of concept for the simplified breakdown of cellulose by combining Pseudomonas putida strains with surface displayed thermophilic endocellulase, exocellulase and β-glucosidase.

    Science.gov (United States)

    Tozakidis, Iasson E P; Brossette, Tatjana; Lenz, Florian; Maas, Ruth M; Jose, Joachim

    2016-06-10

    The production and employment of cellulases still represents an economic bottleneck in the conversion of lignocellulosic biomass to biofuels and other biocommodities. This process could be simplified by displaying the necessary enzymes on a microbial cell surface. Such an approach, however, requires an appropriate host organism which on the one hand can withstand the rough environment coming along with lignocellulose hydrolysis, and on the other hand does not consume the generated glucose so that it remains available for subsequent fermentation steps. The robust soil bacterium Pseudomonas putida showed a strongly reduced uptake of glucose above a temperature of 50 °C, while remaining structurally intact hence recyclable, which makes it suitable for cellulose hydrolysis at elevated temperatures. Consequently, three complementary, thermophilic cellulases from Ruminiclostridium thermocellum were displayed on the surface of the bacterium. All three enzymes retained their activity on the cell surface. A mixture of three strains displaying each one of these enzymes was able to synergistically hydrolyze filter paper at 55 °C, producing 20 μg glucose per mL cell suspension in 24 h. We could establish Pseudomonas putida as host for the surface display of cellulases, and provided proof-of-concept for a fast and simple cellulose breakdown process at elevated temperatures. This study opens up new perspectives for the application of P. putida in the production of biofuels and other biotechnological products.

  20. Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs

    DEFF Research Database (Denmark)

    Lai, Daniela; Pičmanová, Martina; Abou Hachem, Maher

    2015-01-01

    molecular modelling, and the observation that L. japonicus accessions lacking cyanogenic flowers contain a non-functional BGD3 gene, all support the key role of BGD3 in floral cyanogenesis. The nectar of L. japonicus flowers was also found to contain HNGs and additionally their diglycosides. The observed...

  1. Indigestible dextrin is an excellent inducer for α-amylase, α-glucosidase and glucoamylase production in a submerged culture of Aspergillus oryzae.

    Science.gov (United States)

    Sugimoto, Toshikazu; Shoji, Hiroshi

    2012-02-01

    α-Amylase activities of Aspergillus oryzae grown on dextrin or indigestible dextrin were 7·8 and 27·7 U ml(-1), respectively. Glucoamylase activities of the cultures grown on dextrin or indigestible dextrin were 5·4 and 301 mU ml(-1), respectively. The specific glucoamylase production rate in indigestible dextrin batch culture reached 1·35 U g DW(-1) h(-1). In contrast, biomass concentration of A. oryzae in indigestible dextrin culture was 35% of that in dextrin culture. Thus, the culture method using indigestible dextrin has the potential to improve amylolytic enzyme production and fungal fermentation broth rheology.

  2. Effects of a glucosidase inhibitor (acarbose, BAY g 5421) on the development of obesity and food motivated behavior in Zucker (fafa) rats.

    Science.gov (United States)

    Vasselli, J R; Haraczkiewicz, E; Maggio, C A; Greenwood, M R

    1983-07-01

    BAY g 5421 (acarbose) inhibits carbohydrate digestion in the gut, thereby reducing the rate of glucose absorption. This experiment tested whether long term administration of acarbose to developing Zucker "fatty" (fafa) rats would, by reducing several lipogenic factors, attenuate lipid deposition and reduce the hyperphagia and increased food motivated behavior of these animals. From 7 to 20 weeks of life groups of fatty and lean (FaFa) control rats were fed 0, 20 or 40 mg acarbose/100 g maintenance diet (45% carbohydrate, 35% fat, 20% protein calories), while an additional fatty and lean group were pair-fed to respective 40 mg acarbose groups. Lean groups fed acarbose exhibited dose dependent reductions of body weight, insulin, triglycerides, retroperitoneal and epididymal pad weight, adipocyte size, LPL activity/cell (retroperitoneal pad only), and lipid deposition both in total grams of fat and as a percentage of carcass weight. Fatty groups fed acarbose exhibited dose dependent reductions of insulin, blood glucose, retroperitoneal pad weight, and, at one of the two doses used, significantly lowered body weight, (40 mg), triglycerides (20 mg) and cholesterol (20 mg). However, acarbose-fed fatty groups failed to show significant reductions of adipocyte size, number or LPL activity/cell in retroperitoneal and epididymal fat pads, and maintained their obese body composition, on a percentage basis, at levels not significantly different from that of the 0 mg fatty control group. Acarbose administration led to an initial dose dependent reduction of food intake in both genotypes, which persisted for the lean groups. Fatties fed the 20 mg dose showed a gradual tendency (ns) towards increased daily intake, lever pressed at elevated rates for food pellets, and refed at faster rates following fasting. Fatties fed the 40 mg dose maintained their daily intake at fatty control levels, did not lever press at elevated rates, and showed significantly reduced refeeding following fasting. The 40 mg fatty and both lean acarbose treated groups had decreased sucrose solution preference. Possible bases for these differing effects of the drug on feeding behavior by the groups are considered.

  3. ORF Alignment: NC_004070 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_004070 gi|21911321 >1g5aA 98 625 11 538 8e-95 ... ref|NP_803044.1| putative dextran... glucosidase [Streptococcus pyogenes SSI-1] ... ref|NP_665589.1| putative dextran glucosidase ... ... ... [Streptococcus pyogenes MGAS315] gb|AAM80392.1| putative ... dextran glucosidase [Streptococcus ...pyogenes MGAS315] ... dbj|BAC64877.1| putative dextran glucosidase ...

  4. ORF Alignment: NC_004070 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_004070 gi|21911231 >1g5aA 89 627 2 535 1e-86 ... ref|NP_802959.1| putative dextran... glucosidase [Streptococcus pyogenes SSI-1] ... ref|NP_665499.1| putative dextran glucosidase ... ... ... [Streptococcus pyogenes MGAS315] gb|AAM80302.1| putative ... dextran glucosidase [Streptococcus p...yogenes MGAS315] ... dbj|BAC64792.1| putative dextran glucosidase ...

  5. ORF Alignment: NC_004606 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_004606 gi|28896694 >1g5aA 98 625 11 538 8e-95 ... ref|NP_803044.1| putative dextran... glucosidase [Streptococcus pyogenes SSI-1] ... ref|NP_665589.1| putative dextran glucosidase ... ... ... [Streptococcus pyogenes MGAS315] gb|AAM80392.1| putative ... dextran glucosidase [Streptococcus ...pyogenes MGAS315] ... dbj|BAC64877.1| putative dextran glucosidase ...

  6. ORF Alignment: NC_004606 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_004606 gi|28896609 >1g5aA 89 627 2 535 1e-86 ... ref|NP_802959.1| putative dextran... glucosidase [Streptococcus pyogenes SSI-1] ... ref|NP_665499.1| putative dextran glucosidase ... ... ... [Streptococcus pyogenes MGAS315] gb|AAM80302.1| putative ... dextran glucosidase [Streptococcus p...yogenes MGAS315] ... dbj|BAC64792.1| putative dextran glucosidase ...

  7. Drug: D00625 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D00625 Drug Miglitol (JP17/USAN/INN); Glyset (TN) ... C8H17NO5 D00625.gif ... Antidiabetic... agent ... DG01663 ... alpha-Glucosidase inhibitor ... DG01803 ... Antidiabetic, alpha-glucosidase inhibitor Unclas...sified ... DG02044 ... Hypoglycemics ... DG01803 ... Antidiabetic, alpha-glucosidase inhibitor Same as: C07708 Therapeu

  8. Drug: D01665 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D01665 Drug Voglibose (JP17/USAN/INN); Basen (TN) ... C10H21NO7 D01665.gif ... Antidiabetic... agent ... DG01663 ... alpha-Glucosidase inhibitor ... DG01803 ... Antidiabetic, alpha-glucosidase inhibitor Uncla...ssified ... DG02044 ... Hypoglycemics ... DG01803 ... Antidiabetic, alpha-glucosidase inhibitor Therapeutic category: 3

  9. SwissProt search result: AK066051 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066051 J013051B02 (P10253) Lysosomal alpha-glucosidase precursor (EC 3.2.1.20) (A...cid maltase) (Aglucosidase alfa) [Contains: 76 kDa lysosomal alpha-glucosidase; 70 kDa lysosomal alpha-glucosidase] LYAG_HUMAN 1e-89 ...

  10. SwissProt search result: AK243062 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243062 J100014O03 (P10253) Lysosomal alpha-glucosidase precursor (EC 3.2.1.20) (A...cid maltase) (Aglucosidase alfa) [Contains: 76 kDa lysosomal alpha-glucosidase; 70 kDa lysosomal alpha-glucosidase] LYAG_HUMAN 3e-72 ...

  11. SwissProt search result: AK121014 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121014 J023048A03 (P10253) Lysosomal alpha-glucosidase precursor (EC 3.2.1.20) (A...cid maltase) (Aglucosidase alfa) [Contains: 76 kDa lysosomal alpha-glucosidase; 70 kDa lysosomal alpha-glucosidase] LYAG_HUMAN 6e-81 ...

  12. SwissProt search result: AK121588 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121588 J033037N10 (P10253) Lysosomal alpha-glucosidase precursor (EC 3.2.1.20) (A...cid maltase) (Aglucosidase alfa) [Contains: 76 kDa lysosomal alpha-glucosidase; 70 kDa lysosomal alpha-glucosidase] LYAG_HUMAN 1e-126 ...

  13. SwissProt search result: AK063966 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063966 001-124-A04 (P10253) Lysosomal alpha-glucosidase precursor (EC 3.2.1.20) (...Acid maltase) (Aglucosidase alfa) [Contains: 76 kDa lysosomal alpha-glucosidase; 70 kDa lysosomal alpha-glucosidase] LYAG_HUMAN 1e-145 ...

  14. SwissProt search result: AK105449 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105449 001-125-B12 (P10253) Lysosomal alpha-glucosidase precursor (EC 3.2.1.20) (...Acid maltase) (Aglucosidase alfa) [Contains: 76 kDa lysosomal alpha-glucosidase; 70 kDa lysosomal alpha-glucosidase] LYAG_HUMAN 1e-142 ...

  15. SwissProt search result: AK102309 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102309 J033090B18 (P10253) Lysosomal alpha-glucosidase precursor (EC 3.2.1.20) (A...cid maltase) (Aglucosidase alfa) [Contains: 76 kDa lysosomal alpha-glucosidase; 70 kDa lysosomal alpha-glucosidase] LYAG_HUMAN 1e-145 ...

  16. SwissProt search result: AK110088 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110088 002-160-G07 (P10253) Lysosomal alpha-glucosidase precursor (EC 3.2.1.20) (...Acid maltase) (Aglucosidase alfa) [Contains: 76 kDa lysosomal alpha-glucosidase; 70 kDa lysosomal alpha-glucosidase] LYAG_HUMAN 1e-62 ...

  17. SwissProt search result: AK121428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121428 J023136H14 (P10253) Lysosomal alpha-glucosidase precursor (EC 3.2.1.20) (A...cid maltase) (Aglucosidase alfa) [Contains: 76 kDa lysosomal alpha-glucosidase; 70 kDa lysosomal alpha-glucosidase] LYAG_HUMAN 6e-54 ...

  18. EST Table: DC548736 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available milar to Glucosylceramidase precursor (Beta-glucocerebrosidase) (Acid beta-glucosidase) (D-glucosyl-N-acylsp...ucosylceramidase precursor (Beta-glucocerebrosidase) (Acid beta-glucosidase) (D-g....1| PREDICTED: similar to Glucosylceramidase precursor (Beta-glucocerebrosidase) (Acid beta-glucosidase) (D-

  19. ORF Alignment: NC_004350 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_004350 gi|24379337 >1g5aA 90 627 3 535 7e-83 ... gb|AAN58598.1| dextran glucosidas...e DexB [Streptococcus mutans UA159] ... ref|NP_721292.1| dextran glucosidase DexB [Streptococcus ... ... ... (Exo-1,6-alpha-glucosidase) (Glucodextranase) ... Length = 533 ... Que

  20. Serviceberry [Amerlanchier alnifolia (Nutt.) Nutt. ex. M. Roem(Rosaceae)] leaf exhibits mammalian alpha glucosidase activity and suppresses postprandial glycemic response in a mouse model of diet induced obesity/hyperglycemia

    Science.gov (United States)

    Several plant-based remedies offer cost-effective management of diabetes, but few plant species adapted to North America have been validated for their antidiabetic properties. One such species is serviceberry (Amelanchier alnifolia), found in Browning, MT, which has been traditionally used by the Am...