WorldWideScience

Sample records for glucose oxidase electronic

  1. Facile direct electron transfer in glucose oxidase modified electrodes

    International Nuclear Information System (INIS)

    Wang Dan; Chen Liwei

    2009-01-01

    Glucose oxidase (GOx) is widely used in the glucose biosensor industry. However, mediatorless direct electron transfer (DET) from GOx to electrode surfaces is very slow. Recently, mediatorless DET has been reported via the incorporation of nanomaterials such as carbon nanotubes and nanoparticles in the modification of electrodes. Here we report GOx electrodes showing DET without the need for any nanomaterials. The enzyme after immobilization with poly-L-lysine (PLL) and Nafion retains the biocatalytic activities and oxidizes glucose efficiently. The amperometric response of Nafion-PLL-GOx modified electrode is linearly proportional to the concentration of glucose up to 10 mM with a sensitivity of 0.75 μA/mM at a low detection potential (-0.460 V vs. Ag/AgCl). The methodology developed in this study will have impact on glucose biosensors and biofuel cells and may potentially simplify enzyme immobilization in other biosensing systems.

  2. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    International Nuclear Information System (INIS)

    Haghighi, Behzad; Tabrizi, Mahmoud Amouzadeh

    2011-01-01

    Highlights: → A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. → A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. → The apparent electron transfer rate constant was measured to be 5.27 s -1 . → A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E o ') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k s ) was calculated to be 5.27 s -1 . The dependence of E o ' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  3. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of); Tabrizi, Mahmoud Amouzadeh [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of)

    2011-11-30

    Highlights: > A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. > A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. > The apparent electron transfer rate constant was measured to be 5.27 s{sup -1}. > A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E{sup o}') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k{sub s}) was calculated to be 5.27 s{sup -1}. The dependence of E{sup o}' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  4. Glucose oxidase anode for biofuel cell based on direct electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ivnitski, Dmitri; Branch, Brittany; Atanassov, Plamen [Department of Chemical and Nuclear Engineering, University of New Mexico, 209 Farris Engineering Center, Room 150, Albuquerque, NM 87131-0001 (United States); Apblett, Christopher [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2006-08-15

    This paper presents a new design concept of a glucose oxidase (GO{sub x}) electrode as an anode for the biofuel cell based on direct electron transfer (DET) between the active site of an enzyme and the multi-walled carbon nanotube (MWNT)-modified electrode surface. Toray{sup (R)} carbon paper (TP) with a porous three-dimensional network (78% porosity) was used as a matrix for selectively growing multi-walled carbon nanotubes. The incorporation of MWCNTs into TP was provided by the chemical vapor deposition technique after an electrochemical transition of cobalt metal seeds. This approach has the ability to efficiently promote DET reactions. The morphologies and electrochemical characteristics of the GO{sub x} modified electrodes were investigated by scanning electron microscopy, cyclic voltammetry, and potentiometric methods. The combination of poly-cation polyethylenimine (PEI) with negatively charged glucose oxidase provides formation of circa 100nm thick films on the TP/MWCNT surface. The tetrabutylammonium bromide salt-treated Nafion{sup (R)} was used as GO{sub x} binder and proton-conducting medium. The TP/MWCNT/PEI/GO{sub x}/Nafion{sup (R)} modified electrode operates at 25{sup o}C in 0.02M phosphate buffer solution (pH 6.9) containing 0.1M KCl in the presence of 20mM glucose. The open circuit potential of GO{sub x} anode was between -0.38V and -0.4V vs. Ag/AgCl, which is closer to the redox potential of the FAD/FADH{sub 2} cofactor in the enzyme itself. The GO{sub x} electrode has a potential to work in vivo by using endogenous substances, such as glucose and oxygen. Such a glucose anode allows for the development of a new generation of miniaturized membrane-less biofuel cells. (author)

  5. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing.

    Science.gov (United States)

    Zhou, Xuechou; Tan, Bingcan; Zheng, Xinyu; Kong, Dexian; Li, Qinglu

    2015-11-15

    The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5-5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.

    Science.gov (United States)

    Muguruma, Hitoshi; Hoshino, Tatsuya; Nowaki, Kohei

    2015-01-14

    An electrochemical enzyme biosensor with electronically type-sorted (metallic and semiconducting) single-walled carbon nanotubes (SWNTs) for use in aqueous media is presented. This research investigates how the electronic types of SWNTs influence the amperometric response of enzyme biosensors. To conduct a clear evaluation, a simple layer-by-layer process based on a plasma-polymerized nano thin film (PPF) was adopted because a PPF is an inactive matrix that can form a well-defined nanostructure composed of SWNTs and enzyme. For a biosensor with the glucose oxidase (GOx) enzyme in the presence of oxygen, the response of a metallic SWNT-GOx electrode was 2 times larger than that of a semiconducting SWNT-GOx electrode. In contrast, in the absence of oxygen, the response of the semiconducting SWNT-GOx electrode was retained, whereas that of the metallic SWNT-GOx electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting SWNT-GOx electrode, whereas the metallic SWNT-GOx electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. For a biosensor with the glucose dehydrogenase (GDH; oxygen-independent catalysis) enzyme, the response of the semiconducting SWNT-GDH electrode was 4 times larger than that of the metallic SWNT-GDH electrode. Electrochemical impedance spectroscopy was used to show that the semiconducting SWNT network has less resistance for electron transfer than the metallic SWNT network. Therefore, it was concluded that semiconducting SWNTs are more suitable than metallic SWNTs for electrochemical enzyme biosensors in terms of direct electron transfer as a detection mechanism. This study makes a valuable contribution toward the development of electrochemical biosensors that employ sorted SWNTs and various enzymes.

  7. ENHANCING DIRECT ELECTRON TRANSFER OF GLUCOSE OXIDASE USING A GOLD NANOPARTICLE |TITANATE NANOTUBE NANOCOMPOSITE ON A BIOSENSOR

    International Nuclear Information System (INIS)

    Zhao, Ruoxia; Liu, Xiaoqiang; Zhang, Jiamei; Zhu, Jie; Wong, Danny K.Y.

    2015-01-01

    ABSTRACT: In this paper, we have developed a gold nanoparticle (GNP) decorated titanate nanotubes (TNT) nanocomposite that aids in the direct electron transfer of a large enzyme, such as glucose oxidase (GOD), in which the electroactive site of flavin adenine dinucleotide is deeply buried within the enzyme. The ionic liquid, brominated 1-decyl-3-methyl imidazole, was used to immobilise the nanocomposite and the enzyme on a glassy carbon electrode to further aid in the electron transfer between GOD and the electrode surface. Nafion was also added to anchor the biosensor scaffold. Initially, the tubiform geometry of titanate nanomaterials and the GNP-TNT nanocomposite was confirmed by microscopic and spectroscopic techniques before glucose oxidase was entrapped in the nanocomposite. Based on voltammetric results, this biosensor showed a strong electrocatalytic capability towards glucose (with a heterogeneous electron transfer rate constant of 7.1 s −1 at 180 mV s −1 ) and the calibration for glucose exhibited a high sensitivity (5.1 μA mM −1 ) and a wide linear range (0.01–1.2 mM). These results demonstrated superior analytical performance of our biosensor over others fabricated using bulkier TiO 2 nanoparticles or nanobundles, which could be attributed to a high degree of biocompatibility to glucose oxidase and electrical conductivity of the nanocomposite

  8. Direct electron transfer of glucose oxidase promoted by carbon nanotubes is without value in certain mediator-free applications

    International Nuclear Information System (INIS)

    Wang, Y.; Yao, Y.

    2012-01-01

    We have investigated the direct electron transfer (DET) promoted by carbon nanotubes (CNTs) on an electrode containing immobilized glucose oxidase (GOx) with the aim to develop a third-generation glucose biosensor and a mediator-free glucose biofuel cell anode. GOx was immobilized via chitosan (CS) on a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs). Cyclic voltammetric revealed that the GOx on the surface of such an electrode is unable to simultaneously demonstrate DET with the electrode and to retain its catalytic activity towards glucose, although the MWCNTs alone can promote electron transfer between GOx and electrode. This is interpreted in terms of two types of GOx on the surface, the distribution and properties of which are quite different. The first type exhibits DET capability that results from the collaboration of MWCNTs and metal impurities, but is unable to catalyze the oxidation of glucose. The second type maintains its glucose-specific catalytic capability in the presence of a mediator, which can be enhanced by MWCNTs, but cannot undergo DET with the electrode. As a result, the MWCNTs are capable of promoting the electron transfer, but this is without value in some mediator-free applications such as in third-generation glucose biosensors and in mediator-free anodes for glucose biofuel cells. (author)

  9. Glucose oxidase variants with improved properities

    OpenAIRE

    Fischer, Rainer; Ostafe, Raluca; Prodanovic, Radivoje

    2014-01-01

    Source: WO14173822A3 [EN] The technology provided herein relates to novel variants of microbial glucose oxidase with improved properties, more specifically to polypeptides having glucose oxidase activity as their major enzymatic activity; to nucleic acid molecules encoding said glucose oxidases; vectors and host cells containing the nucleic acids and methods for producing the glucose oxidase; compositions comprising said glucose oxidase; methods for the preparation and production of such enzy...

  10. A glucose biosensor based on direct electron transfer of glucose oxidase immobilized onto glassy carbon electrode modified with nitrophenyl diazonium salt

    International Nuclear Information System (INIS)

    Nasri, Zahra; Shams, Esmaeil

    2013-01-01

    Graphical abstract: - Abstract: This study reports a novel, simple and fast approach for construction of a highly stable glucose biosensor based on the immobilization of glucose oxidase (GOx) onto a glassy carbon electrode (GCE) electrografted with 4-aminophenyl (AP) by diazonium chemistry. Aminophenyl was used as cross-linker for covalent attachment of glucose oxidase to the electrode surface. Cyclic voltammograms of the GOx-modified GCE in phosphate buffer solution exhibited a pair of well-defined redox peaks, attesting the direct electron transfer (DET) of GOx with the underlying electrode. The proposed biosensor could be used to detect glucose based on the consumption of O 2 with the oxidation of glucose catalyzed by GOx and exhibited a wide linear range of glucose from 0.05 mM to 4.5 mM and low detection limit of 10 μM. The surface coverage of active GOx, heterogeneous electron transfer rate constant (k s ) and Michaelis–Menten constant (K M ) of immobilized GOx were 1.23 × 10 −12 mol cm −2 , 4.25 s −1 and 2.95 mM, respectively. The great stability of this biosensor, technically simple and possibility of preparation at short period of time make this method suitable for fabrication of low-cost glucose biosensors

  11. A novel bi-protein bio-interphase of cytochrome c and glucose oxidase: Electron transfer and electrocatalysis

    International Nuclear Information System (INIS)

    Song, Yonghai; Liu, Hongyu; Wang, Yu; Wang, Li

    2013-01-01

    Graphical abstract: Glucose oxidase (GOD) and cytochrome c (Cyt c) were co-entrapped in the poly(diallyldimethylammonium chloride)–graphene nanosheets–gold nanoparticles (PDDA–Gp–AuNPs) nanocomposites modified glassy carbon electrode. Electron transfer and electrocatalysis of the novel bi-protein bio-interphase were investigated. The bio-interphase developed here not only successfully achieved DET of GOD, but also showed great potential for the fabrication of novel glucose biosensors with linear response up to 18 mM. Highlights: ► A bio-interphase composed of cytochrome c and glucose oxidase was developed. ► The electron transfer in the bio-interphase was investigated. ► Electrocatalytic performances of bio-interphase were explored. ► The bio-interphase exhibited good electrocatalytic response glucose. - Abstract: Glucose oxidase (GOD) and cytochrome c (Cyt c) were co-entrapped in the poly(diallyldimethylammonium chloride)–graphene nanosheets–gold nanoparticles (PDDA–Gp–AuNPs) hybrid nanocomposites modified glassy carbon electrode to prepare a novel bi-protein bio-interphase. Electron transfer and electrocatalysis of the bi-protein bio-interphase were investigated in detail. The results showed that the PDDA–Gp–AuNPs nanocomposites accelerated the electron transfer between proteins and electrode. The bi-protein exhibited effective direct electron transfer (DET) reaction with an apparent rate constant (k s ) of 2.36 s −1 . The optimal molar ratio and total amount of Cyt c and GOD in the bio-interphase for DET of GOD was estimated to be about 3:1 and 1.40 nmol, respectively. The bi-protein bio-interphase could be used to detect glucose based on the consumption of O 2 with the oxidation of glucose catalyzed by GOD. The resulted biosensor exhibits wide linear range from 2.0 to 18.0 mM. Thus, this study not only successfully achieved DET of GOD, but also constructed a novel biosensor for glucose detection

  12. Gold-Coated M13 Bacteriophage as a Template for Glucose Oxidase Biofuel Cells with Direct Electron Transfer.

    Science.gov (United States)

    Blaik, Rita A; Lan, Esther; Huang, Yu; Dunn, Bruce

    2016-01-26

    Glucose oxidase-based biofuel cells are a promising source of alternative energy for small device applications, but still face the challenge of achieving robust electrical contact between the redox enzymes and the current collector. This paper reports on the design of an electrode consisting of glucose oxidase covalently attached to gold nanoparticles that are assembled onto a genetically engineered M13 bacteriophage using EDC-NHS chemistry. The engineered phage is modified at the pIII protein to attach onto a gold substrate and serves as a high-surface-area template. The resulting "nanomesh" architecture exhibits direct electron transfer (DET) and achieves a higher peak current per unit area of 1.2 mA/cm(2) compared to most other DET attachment schemes. The final enzyme surface coverage on the electrode was calculated to be approximately 4.74 × 10(-8) mol/cm(2), which is a significant improvement over most current glucose oxidase (GOx) DET attachment methods.

  13. Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution

    Energy Technology Data Exchange (ETDEWEB)

    Marconnet, C. [Laboratoire de Genie des Procedes et des Materiaux, Ecole Centrale Paris, Grande Voie des Vignes, 92290 CHATENAY-MALABRY (France)], E-mail: cyril.marconnet@yahoo.fr; Wouters, Y. [Science et Ingenierie des Materiaux et Procedes, Institut National Polytechnique de Grenoble, F-38402 Saint-Martin d' Heres Cedex (France); Miserque, F. [Laboratoire de Reactivite des Surfaces et des Interfaces, CEA Saclay, Bat. 391, 91191 GIF-SUR-YVETTE (France); Dagbert, C. [Laboratoire de Genie des Procedes et des Materiaux, Ecole Centrale Paris, Grande Voie des Vignes, 92290 CHATENAY-MALABRY (France)], E-mail: catherine.dagbert@ecp.fr; Petit, J.-P. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, INPG, F-38402 Saint-Martin d' Heres Cedex (France); Galerie, A. [Science et Ingenierie des Materiaux et Procedes, Institut National Polytechnique de Grenoble, F-38402 Saint-Martin d' Heres Cedex (France); Feron, D. [Service de Corrosion et du Comportement des Materiaux dans leur Environnement, CEA Saclay, Bat. 458, 91191 GIF-SUR-YVETTE (France)

    2008-12-01

    This article deals with the interaction between the passive layer formed on UNS S30403 and S31254 stainless steels and an enzymatic solution containing glucose oxidase (GOx) and its substrate D-glucose. This enzymatic solution is often used to reproduce in laboratory the ennoblement occuring in non-sterile aerated aqueous environments because of the biofilm settlement on the surface of the metallic material. GOx catalyses the oxidation of D-glucose to gluconic acid by reducing oxygen to hydrogen peroxide and produces an organic acid. Thanks to photocurrent measurements, XPS analysis and Mott-Schottky diagrams, it is here shown that such an environment generates modifications in the chemical composition and electronic structure of the passive layer: it induces a relative enrichment of the n-type semi-conducting phase containing chromium (chromine Cr{sub 2}O{sub 3}) and an increase of the donors density in the space charge region.

  14. Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution

    International Nuclear Information System (INIS)

    Marconnet, C.; Wouters, Y.; Miserque, F.; Dagbert, C.; Petit, J.-P.; Galerie, A.; Feron, D.

    2008-01-01

    This article deals with the interaction between the passive layer formed on UNS S30403 and S31254 stainless steels and an enzymatic solution containing glucose oxidase (GOx) and its substrate D-glucose. This enzymatic solution is often used to reproduce in laboratory the ennoblement occuring in non-sterile aerated aqueous environments because of the biofilm settlement on the surface of the metallic material. GOx catalyses the oxidation of D-glucose to gluconic acid by reducing oxygen to hydrogen peroxide and produces an organic acid. Thanks to photocurrent measurements, XPS analysis and Mott-Schottky diagrams, it is here shown that such an environment generates modifications in the chemical composition and electronic structure of the passive layer: it induces a relative enrichment of the n-type semi-conducting phase containing chromium (chromine Cr 2 O 3 ) and an increase of the donors density in the space charge region

  15. Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiao-Chien [Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250, Wuxing St., Taipei 11031, Taiwan (China); Tu, Yi-Ming; Hou, Chung-Che [Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Tao-Yuan 33302, Taiwan (China); Lin, Yu-Chen [Wah Hong industrial Co. Ltd., 6 Lixing St., Guantian Dist., Tainan City 72046,Taiwan (China); Chen, Ching-Hsiang [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Keelung Rd., Sec. 4, Taipei 10607, Taiwan (China); Yang, Kuang-Hsuan, E-mail: khy@mail.vnu.edu.tw [Department of Food and Beverage Management, Vanung University, 1, Van Nung Rd., Shuei-Wei Li, Chung-Li City 32061, Taiwan (China)

    2015-03-31

    Highlights: • Dual hydrogen peroxide and glucose sensor. • Direct electrochemistry of glucose oxidase used MWCNT-Py/GC electrode. • Change sensing function by adjusting pH value. - Abstract: A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel–Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H{sub 2}O{sub 2}) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H{sub 2}O{sub 2} in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H{sub 2}O{sub 2} in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5 × 10{sup −9} mol cm{sup −2}) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM{sup −1} cm{sup −2}) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H{sub 2}O{sub 2} and glucose, thus owning high selectivity and reliability.

  16. Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative

    International Nuclear Information System (INIS)

    Chen, Hsiao-Chien; Tu, Yi-Ming; Hou, Chung-Che; Lin, Yu-Chen; Chen, Ching-Hsiang; Yang, Kuang-Hsuan

    2015-01-01

    Highlights: • Dual hydrogen peroxide and glucose sensor. • Direct electrochemistry of glucose oxidase used MWCNT-Py/GC electrode. • Change sensing function by adjusting pH value. - Abstract: A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel–Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H 2 O 2 ) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H 2 O 2 in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H 2 O 2 in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5 × 10 −9 mol cm −2 ) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM −1 cm −2 ) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H 2 O 2 and glucose, thus owning high selectivity and reliability

  17. Direct electron transfer and biosensing of glucose oxidase immobilized at multiwalled carbon nanotube-alumina-coated silica modified electrode

    International Nuclear Information System (INIS)

    Wu, Wei-Che; Huang, Jian-Lung; Tsai, Yu-Chen

    2012-01-01

    Investigations are reported regarding the direct electrochemical performance of glucose oxidase (GOD) immobilized on a film of multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS). The surface morphology of the GOD/MWCNT-ACS nanobiocomposite is characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized GOD displays a pair of well-defined redox peaks, with a formal potential (E°′) of − 0.466 V versus Ag/AgCl in a 0.1 M phosphate buffer solution (pH 7.5) at a scan rate of 0.05 V s −1 ; also the electrochemical response indicates a surface-controlled electrode process. The dependence of formal potential on solution pH indicates that the direct electron transfer reaction of GOD is a reversible two-electron coupled with a two-proton electrochemical reaction process. The glucose biosensor based on the GOD/MWCNT-ACS nanobiocomposite shows a sensitivity of 0.127 A M −1 cm −2 and an apparent Michaelis–Menten constant of 0.5 mM. Furthermore, the prepared biosensor exhibits excellent anti-interference ability to the commonly co-existed uric acid and ascorbic acid. - Highlights: ► A film composed of MWCNT-ACS was used for biosensor application. ► High sensitivity and good selectivity were obtained for the detection of glucose. ► This approach is potential for fabrication of mediator-free biosensor.

  18. Effect of gold nanoparticles on the structure and electron-transfer characteristics of glucose oxidase redox polyelectrolyte-surfactant complexes.

    Science.gov (United States)

    Cortez, M Lorena; Marmisollé, Waldemar; Pallarola, Diego; Pietrasanta, Lía I; Murgida, Daniel H; Ceolín, Marcelo; Azzaroni, Omar; Battaglini, Fernando

    2014-10-06

    Efficient electrical communication between redox proteins and electrodes is a critical issue in the operation and development of amperometric biosensors. The present study explores the advantages of a nanostructured redox-active polyelectrolyte-surfactant complex containing [Os(bpy)2Clpy](2+) (bpy=2,2'-bipyridine, py= pyridine) as the redox centers and gold nanoparticles (AuNPs) as nanodomains for boosting the electron-transfer propagation throughout the assembled film in the presence of glucose oxidase (GOx). Film structure was characterized by grazing-incidence small-angle X-ray scattering (GISAXS) and atomic force microscopy (AFM), GOx incorporation was followed by surface plasmon resonance (SPR) and quartz-crystal microbalance with dissipation (QCM-D), whereas Raman spectroelectrochemistry and electrochemical studies confirmed the ability of the entrapped gold nanoparticles to enhance the electron-transfer processes between the enzyme and the electrode surface. Our results show that nanocomposite films exhibit five-fold increase in current response to glucose compared with analogous supramolecular AuNP-free films. The introduction of colloidal gold promotes drastic mesostructural changes in the film, which in turn leads to a rigid, amorphous interfacial architecture where nanoparticles, redox centers, and GOx remain in close proximity, thus improving the electron-transfer process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode.

    Science.gov (United States)

    Yu, Yanyan; Chen, Zuanguang; He, Sijing; Zhang, Beibei; Li, Xinchun; Yao, Meicun

    2014-02-15

    In this work, poly (diallyldimethylammonium chloride) (PDDA)-capped gold nanoparticles (AuNPs) functionalized graphene (G)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were fabricated. Based on the electrostatic attraction, the G/MWCNTs hybrid material can be decorated with AuNPs uniformly and densely. The new hierarchical nanostructure can provide a larger surface area and a more favorable microenvironment for electron transfer. The AuNPs/G/MWCNTs nanocomposite was used as a novel immobilization platform for glucose oxidase (GOD). Direct electron transfer (DET) was achieved between GOD and the electrode. Field emission scanning electron microscopy (FESEM), UV-vis spectroscopy and cyclic voltammetry (CV) were used to characterize the electrochemical biosensor. The glucose biosensor fabricated based on GOD electrode modified with AuNPs/G/MWCNTs demonstrated satisfactory analytical performance with high sensitivity (29.72mAM(-1)cm(-2)) and low limit of detection (4.8 µM). The heterogeneous electron transfer rate constant (ΚS) and the apparent Michaelis-Menten constant (Km) of GOD were calculated to be 11.18s(-1) and 2.09 mM, respectively. With satisfactory selectivity, reproducibility, and stability, the nanostructure we proposed offered an alternative for electrode fabricating and glucose biosensing. © 2013 Elsevier B.V. All rights reserved.

  20. Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative.

    Science.gov (United States)

    Chen, Hsiao-Chien; Tu, Yi-Ming; Hou, Chung-Che; Lin, Yu-Chen; Chen, Ching-Hsiang; Yang, Kuang-Hsuan

    2015-03-31

    A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel-Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H2O2) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H2O2 in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H2O2 in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5×10(-9) mol cm(-2)) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM(-1) cm(-2)) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H2O2 and glucose, thus owning high selectivity and reliability. Copyright © 2015. Published by Elsevier B.V.

  1. Direct electron transfer and biosensing of glucose oxidase immobilized at multiwalled carbon nanotube-alumina-coated silica modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei-Che; Huang, Jian-Lung; Tsai, Yu-Chen, E-mail: yctsai@dragon.nchu.edu.tw

    2012-05-01

    Investigations are reported regarding the direct electrochemical performance of glucose oxidase (GOD) immobilized on a film of multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS). The surface morphology of the GOD/MWCNT-ACS nanobiocomposite is characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized GOD displays a pair of well-defined redox peaks, with a formal potential (E Degree-Sign Prime ) of - 0.466 V versus Ag/AgCl in a 0.1 M phosphate buffer solution (pH 7.5) at a scan rate of 0.05 V s{sup -1}; also the electrochemical response indicates a surface-controlled electrode process. The dependence of formal potential on solution pH indicates that the direct electron transfer reaction of GOD is a reversible two-electron coupled with a two-proton electrochemical reaction process. The glucose biosensor based on the GOD/MWCNT-ACS nanobiocomposite shows a sensitivity of 0.127 A M{sup -1} cm{sup -2} and an apparent Michaelis-Menten constant of 0.5 mM. Furthermore, the prepared biosensor exhibits excellent anti-interference ability to the commonly co-existed uric acid and ascorbic acid. - Highlights: Black-Right-Pointing-Pointer A film composed of MWCNT-ACS was used for biosensor application. Black-Right-Pointing-Pointer High sensitivity and good selectivity were obtained for the detection of glucose. Black-Right-Pointing-Pointer This approach is potential for fabrication of mediator-free biosensor.

  2. Electrochemically Functionalized Seamless Three-Dimensional Graphene-Carbon Nanotube Hybrid for Direct Electron Transfer of Glucose Oxidase and Bioelectrocatalysis.

    Science.gov (United States)

    Terse-Thakoor, Trupti; Komori, Kikuo; Ramnani, Pankaj; Lee, Ilkeun; Mulchandani, Ashok

    2015-12-01

    Three-dimensional seamless chemical vapor deposition (CVD) grown graphene-carbon nanotubes (G-CNT) hybrid film has been studied for its potential in achieving direct electron transfer (DET) of glucose oxidase (GOx) and its bioelectrocatalytic activity in glucose detection. A two-step CVD method was employed for the synthesis of seamless G-CNT hybrid film where CNTs are grown on already grown graphene film on copper foil using iron as a catalyst. Physical characterization using SEM and TEM show uniform dense coverage of multiwall carbon nanotubes (MWCNT) grown directly on graphene with seamless contacts. The G-CNT hybrid film was electrochemically modified to introduce oxygenated functional groups for DET favorable immobilization of GOx. Pristine and electrochemically functionalized G-CNT film was characterized by electrochemical impedance spectroscopy (EIS), cyclic voltammetry, X-ray photoelectron-spectroscopy, and Raman spectroscopy. The DET between GOx and electrochemically oxidized G-CNT electrode was studied using cyclic voltammetry which showed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -459 mV at pH 7 corresponding to the redox site of GOx. The constructed electrode detected glucose concentration over the clinically relevant range of 2-8 mM with the highest sensitivity of 19.31 μA/mM/cm(2) compared to reported composite hybrid electrodes of graphene oxide and CNTs. Electrochemically functionalized CVD grown seamless G-CNT structure used in this work has potential to be used for development of artificial mediatorless redox enzyme based biosensors and biofuel cells.

  3. The glucose oxidase-peroxidase assay for glucose

    Science.gov (United States)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  4. Electrochemical studies of biocatalytic anode of sulfonated graphene/ferritin/glucose oxidase layer-by-layer biocomposite films for mediated electron transfer.

    Science.gov (United States)

    Inamuddin; Haque, Sufia Ul; Naushad, Mu

    2016-06-01

    In this study, a bioanode was developed by using layer-by-layer (LBL) assembly of sulfonated graphene (SG)/ferritin (Frt)/glucose oxidase (GOx). The SG/Frt biocomposite was used as an electron transfer elevator and mediator, respectively. Glucose oxidase (GOx) from Aspergillus niger was applied as a glucose oxidation biocatalyst. The electrocatalytic oxidation of glucose using GOx modified electrode increases with an increase in the concentration of glucose in the range of 10-50mM. The electrochemical measurements of the electrode was carried out by using cyclic voltammetry (CV) at different scan rates (20-100mVs(-1)) in 30mM of glucose solution prepared in 0.3M potassium ferrocyanide (K4Fe(CN)6) and linear sweep voltammetry (LSV). A saturation current density of 50±2mAcm(-2) at a scan rate of 100mVs(-1) for the oxidation of 30Mm glucose is achieved. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Graphene-glucose oxidase bioanodes for enzymatic biofuel cells

    DEFF Research Database (Denmark)

    Tang, Jing; Werchmeister, Rebecka Maria Larsen; Engelbrekt, Christian

    2017-01-01

    as supporting material, polyethyleneimine (PEI) as linker and glucose oxidase (GOD) as the chosen enzyme. GOD can catalyze oxidation of glucose to gluconolactone, but needs a mediator to assist electron transfer between the enzyme and electrodes. The redox molecule ferrocene carboxylic acid (Fc...... and systematically investigated. The assembled EBFCs show good reproducibility. EBFCs provide maximum output power density 2.47 μW cm-2 at 35 ℃, indicating the optimized activity of EBFCs fed with glucose....

  6. Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15

    International Nuclear Information System (INIS)

    Wang Kunqi; Yang Hua; Zhu Lin; Ma Zhongsu; Xing Shenyang; Lv Qiang; Liao Jianhui; Liu Changpeng; Xing Wei

    2009-01-01

    In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified with mesoporous carbon FDU-15 (MC-FDU-15) and Nafion by simple technique. The sorption behavior of GOD immobilized on MC-FDU-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that MC-FDU-15 could facilitate the electron exchange between the active center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and MC-FDU-15 matrices display direct, reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 4.095 s -1 in 0.1 M phosphate buffer solution (PBS) (pH 7.12). Furthermore, it was also discovered that, in the presence of O 2 , GOD immobilized on Nafion and MC-FDU-15 matrices could produce a linear response to glucose. Thus, Nafion/GOD-MC-FDU-15/GC electrode is hopeful to be used in glucose biosensor. In addition, GOD immobilized on MC-FDU-15 and Nafion matrices possesses an excellent bioelectrocatalytic activity for the reduction of O 2 . So, the Nafion/GOD-MC-FDU-15/GC electrode can be utilized as the cathode in biofuel cell.

  7. Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer.

    Science.gov (United States)

    Cui, Hui-Fang; Zhang, Kuan; Zhang, Yong-Fang; Sun, Yu-Long; Wang, Jia; Zhang, Wei-De; Luong, John H T

    2013-08-15

    Glucose oxidase (GOD) was adsorbed into a nanoporous TiO₂ film layered on the surface of an iron phthalocyanine (FePc) vertically-aligned carbon nanotube (CNT) modified electrode. A Nafion film was then dropcast on the electrode's surface to improve operational and storage stabilities of the GOD-based electrode. Scanning electron microscopy (SEM) micrographs revealed the formation of FePc and nanoporous TiO₂ nanoparticles along the sidewall and the tip of CNTs. Cyclic voltammograms of the GOD electrode in neutral PBS exhibited a pair of well-defined redox peaks, attesting the direct electron transfer of GOD (FAD/FADH₂) with the underlying electrode. The potential of glucose electro-oxidation under nitrogen was ∼+0.12 V with an oxidation current density of 65.3 μA cm(-2) at +0.77 V. Voltammetric and amperometric responses were virtually unaffected by oxygen, illustrating an efficient and fast direct electron transfer. The modification of the CNT surface with FePc resulted in a biosensor with remarkable detection sensitivity with an oxygen-independent bioelectrocatalysis. In deaerated PBS, the biosensor displayed average response time of 12 s, linearity from 50 μM to 4 mM, and a detection limit of 30 μM (S/N=3) for glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose.

    Science.gov (United States)

    Shuai, Ying; Liu, Changhua; Wang, Jia; Cui, Xiaoyan; Nie, Ling

    2013-06-07

    This work creatively uses peroxidase-like ZnS hollow spheres (ZnS HSs) to cooperate with glucose oxidase (GOx) for glucose determinations. This approach is that the ZnS HSs electrocatalytically oxidate the enzymatically generated H2O2 to O2, and then the O2 circularly participates in the previous glucose oxidation by glucose oxidase. Au nanoparticles (AuNPs) and carbon nanotubes (CNTs) are used as electron transfer and enzyme immobilization matrices, respectively. The biosensor of glucose oxidase-carbon nanotubes-Au nanoparticles-ZnS hollow spheres-gold electrode (GOx-CNT-AuNPs-ZnS HSs-GE) exhibits a rapid response, a low detection limit (10 μM), a wide linear range (20 μM to 7 mM) as well as good anti-interference, long-term longevity and reproducibility.

  9. Glucose Oxidase Catalyzed Self-Assembly of Bioelectroactive Gold Nanostructures

    Science.gov (United States)

    2010-01-01

    polymer matrix), however, electrons generated at the FAD/FADH2 active site of glucose oxidase (GOx) must tunnel ca. 15 through the protein shell...described as a surface bound thiolate [33]. Recently, the presence of free thiol groups has been proposed as a mechanism for gold reduction in pure enzymes...simultaneously [38]. The oxidative polymerization of the amines proceeds simulta- neously with the formation of gold nanoparticles such that the polymerized amine

  10. Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.

    Science.gov (United States)

    Suroviec, Alice H

    2017-01-01

    The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.

  11. Cytochemical Localization of Glucose Oxidase in Peroxisomes of Aspergillus niger

    NARCIS (Netherlands)

    Veenhuis, Marten; Dijken, Johannes Pieter van

    1980-01-01

    The subcellular localization of glucose oxidase (E.C. 1.1.3.4) in mycelia of Aspergillus niger has been investigated using cytochemical staining techniques. Mycelia from fermenter cultures, which produced gluconic acid from glucose, contained elevated levels of glucose oxidase and catalase. Both

  12. Optimization of glucose oxidase production by Aspergillus niger

    African Journals Online (AJOL)

    user

    2011-02-28

    Feb 28, 2011 ... manganese, cobalt, thioglycolic acid, and gluconic acid according to (Liu et al., .... In this experiment duplicate media of glucose 10% were adjusted at different ... Glucose oxidase as a pharmaceutical anti oxidant Drug. Devt. ... Plush KS, Hellmuth K, Rinas U (1996). kinetics of glucose oxidase excretion by ...

  13. Chemoenzymatic combination of glucose oxidase with titanium silicalite -1

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Taarning, Esben; Christensen, Claus H.

    2010-01-01

    Zeozymes: A proof-of-concept is presented for the chemoenzymatic combination of titanium silicalite-1 zeolite with glucose oxidase. In this combination, glucose is oxidized to gluconic acid and the H2O2 byproduct formed in situ is used for the simultaneous oxidation of chemical substrates. Both...... a soluble glucose oxidase and a truly integrated heterogeneous combination whereby the oxidase enzyme is anchored onto the zeolite surface are reported....

  14. A highly sensitive electrochemical glucose sensor structuring with nickel hydroxide and enzyme glucose oxidase

    International Nuclear Information System (INIS)

    Mathew, Manjusha; Sandhyarani, N.

    2013-01-01

    Graphical abstract: A combination of Ni 2+ /Ni 3+ redox couple and glucose oxidase has successfully been exploited for the realization of a highly sensitive glucose sensor for the first time. -- Highlights: • A multilayered glucose biosensor with enhanced sensitivity was fabricated. • Combination of Ni 2+ /Ni 3+ redox couple and glucose oxidase has been exploited for the first time. • Exhibits a lower detection limit of 100 nM with a high sensitivity of 16,840 μA mM −1 cm −2 . • The surface shows a low Michaelis–Menten constant value of 2.4 μM. • Detailed mechanism of sensing was proposed and justified. -- Abstract: A multilayered glucose biosensor with enhanced electron transport was fabricated via the sequential electrodeposition of chitosan gold nanocomposite (CGNC) and nickel hydroxide (Ni(OH) 2 ) on a bare gold electrode and subsequent immobilization of glucose oxidase. A thin film of Ni(OH) 2 deposited on CGNC modified gold electrode serves as an electrochemical redox probe as well as a matrix for the immobilization of glucose oxidase retaining its activity. Electron transport property of CGNC has been exploited to enhance the electron transport between the analyte and electrode. Electrochemical characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. Under optimal conditions the biosensor exhibits a linear range from 1 μM to 100 μM with a limit of detection (lod) down to 100 nM. The sensor shows a low Michaelis-Menten constant value of 2.4 μM indicates the high affinity of enzyme to the analyte points to the retained activity of enzyme after immobilization. The present glucose sensor with the high selectivity, sensitivity and stability is promising for practical clinical applications

  15. Reengineered glucose oxidase for amperometric glucose determination in diabetes analytics.

    Science.gov (United States)

    Arango Gutierrez, Erik; Mundhada, Hemanshu; Meier, Thomas; Duefel, Hartmut; Bocola, Marco; Schwaneberg, Ulrich

    2013-12-15

    Glucose oxidase is an oxidoreductase exhibiting a high β-D-glucose specificity and high stability which renders glucose oxidase well-suited for applications in diabetes care. Nevertheless, GOx activity is highly oxygen dependent which can lead to inaccuracies in amperometric β-D-glucose determinations. Therefore a directed evolution campaign with two rounds of random mutagenesis (SeSaM followed by epPCR), site saturation mutagenesis studies on individual positions, and one simultaneous site saturation library (OmniChange; 4 positions) was performed. A diabetes care well suited mediator (quinone diimine) was selected and the GOx variant (T30V I94V) served as starting point. For directed GOx evolution a microtiter plate detection system based on the quinone diimine mediator was developed and the well-known ABTS-assay was applied in microtiter plate format to validate oxygen independency of improved GOx variants. Two iterative rounds of random diversity generation and screening yielded to two subsets of amino acid positions which mainly improved activity (A173, A332) and oxygen independency (F414, V560). Simultaneous site saturation of all four positions with a reduced subset of amino acids using the OmniChange method yielded finally variant V7 with a 37-fold decreased oxygen dependency (mediator activity: 7.4 U/mg WT, 47.5 U/mg V7; oxygen activity: 172.3 U/mg WT, 30.1 U/mg V7). V7 is still highly β-D-glucose specific, highly active with the quinone diimine mediator and thermal resistance is retained (prerequisite for GOx coating of diabetes test stripes). The latter properties and V7's oxygen insensitivity make V7 a very promising candidate to replace standard GOx in diabetes care applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Hofmeister effects on the glucose oxidase hydrogel-modified electrode

    International Nuclear Information System (INIS)

    Suzuki, Aimi; Tsujimura, Seiya

    2016-01-01

    We describe the consistent effect of salts in the electrolyte solution on glucose oxidation current production in the redox hydrogel-modified electrode containing glucose oxidase as an electrocatalyst and Os complex mediator. The ions affect not only on the electron transfer between the enzyme and the Os complex, but also on the hydrogel structure. This study found that the degree of the effect can be characterized by Hofmeister series. The relative decrease in oxidization current is the lowest in the middle of the Hofmeister series, and increases monotonically on either side. An increase of ionic strength inhibits the electron transfer from the active site of glucose oxidase to Os complex. In addition to this, the kosmotropic anions, which are strongly hydrated, caused hydrogel deswelling (shrinking). The more chaotropic an ion is, the more it adsorbs to uncharged parts of polymer/enzyme with dispersion force, and the swelling of the hydrogel decreases the catalytic current. This study impacts the design of hydrogel electrode and selection of electrolyte ions for bioelectronic applications.

  17. A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles

    Science.gov (United States)

    Xiong, Yanmei; Zhang, Yuyan; Rong, Pengfei; Yang, Jie; Wang, Wei; Liu, Dingbin

    2015-09-01

    We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose.We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c5nr03758a

  18. Effects of glucose oxidase on the growth performance, serum ...

    African Journals Online (AJOL)

    Martina

    2016-02-06

    Feb 6, 2016 ... The experiment was conducted to investigate the effects of diets supplemented with ... Keywords: Glucose oxidase, intestinal health, performance, swine ..... This work was supported by the National High-Tech Research and ...

  19. Production of rabbit antibodies against purified Glucose oxidase

    OpenAIRE

    Zia,Muhammad Anjum; Ain,Qurat-ul; Iftikhar,Tehreema; Abbas,Rao Zahid; Rahman,Khalil-ur

    2012-01-01

    Glucose oxidase is an active oxygen species generating enzyme produced from Aspergillus niger grown in submerged fermentation. Disintegration of the mycelium resulted in high glucose oxidase activity that was subjected to ammonium sulfate precipitation at 60-85% saturation rates that resulted to 6.14 U mg -1 specific activity. Purification of enzyme by anion exchange column (DEAE-Cellulose) resulted into 22.53 U mg-1 specific activity and 10.27 fold purification. This was applied to sephadex ...

  20. Mediation of glycosylated and partially-deglycosylated glucose oxidase of Aspergillus niger by a ferrocene-derivatised detergent.

    Science.gov (United States)

    Fraser, D M; Zakeeruddin, S M; Grätzel, M

    1992-01-30

    A ferrocene-derivatised detergent, (11-ferrocenylundecyl) trimethylammonium bromide (FTMAB), when oxidised to the corresponding ferricinium ion, was found by electrochemical studies to be an effective electron acceptor for reduced glucose oxidase of Aspergillus niger (EC 1.13.4) and thus acts as a electron-transfer mediator between glucose oxidase and a working electrode held at a potential sufficiently positive to reoxidise reduced FTMAB. An increase in mediating activity was produced when FTMAB was present in concentrations above its critical micelle concentration. An 'enzyme electrode' was formed by adsorption of glucose oxidase and FTMAB surfactant on a graphite rod. The electrode functioned as an amperometric biosensor for glucose in phosphate-buffered saline solution. A mixed micelle of glucose oxidase and FTMAB, probably adsorbed on the electrode surface, appears to be advantageous for the amperometric determination of glucose. Additionally, glucose oxidase was treated with alpha-mannosidase. When this partially-deglycosylated glucose oxidase was incorporated in an enzyme electrode, a 100-fold increase in the second-order rate constant (k) for electron transfer between the enzyme and FTMAB was observed, together with increased current densities, with respect to the equivalent values for FTMAB and commercial glucose oxidase. The use of deglycosylated enzymes in biosensors is suggested.

  1. An improved glucose/O2 membrane-less biofuel cell through glucose oxidase purification.

    Science.gov (United States)

    Gao, Feng; Courjean, Olivier; Mano, Nicolas

    2009-10-15

    A key objective in any bioelectrochemical systems is to improve the current densities and mass transport limitation. Most of the work is focused on increasing the specific surface of the electrodes or improving the electron transfer between enzymes and electrodes. However, nothing is said about the comparison of purified and non-purified enzyme and their effects on the biosensor efficiency. To illustrate the effect of the enzyme purity, we studied the widely used commercial Glucose Oxidase (GOx) from Aspergillus niger that we are using in our miniature membrane-less biofuel cell. Our results indicate that even if additional compounds contained in the lyophilized enzyme powder do not interfere with its intrinsic catalytic properties, they could prevent a good electron transfer between the enzyme and the electrode surface. By introducing a purified glucose oxidase into a bioelectrocatalyst immobilized on an electrode surface, we show that we can increase the interaction between the enzyme and the redox polymer, forming a better homogenous, leather like gel. At 5mM glucose concentration and under oxygen atmosphere, the current is three-fold higher when using a purified enzyme than it is when using a non-purified enzyme. Built with this novel anode, we showed that a miniature implantable membrane-less glucose-O(2) biofuel cell could produce, under air, twice the power density that is usually obtained when using a non-purified GOx.

  2. Enhanced production of glucose oxidase from UVmutant of ...

    African Journals Online (AJOL)

    UV rays were used as mutagen in wild type strain of Aspergillus niger for enhanced production of glucose oxidase. After mutangenization and selection, mutant A. niger strains, resistant to 2-deoxy-Dglucose were obtained. The mutants showed 1.57 and 1.98 fold increase in activities of extra and intra cellular glucose ...

  3. Ratiometric glucose sensing based on fluorescent oxygen films and glucose oxidase

    Directory of Open Access Journals (Sweden)

    Fengyu Su

    2017-06-01

    Full Text Available A new two-layer sensor film was constructed for sensing glucose based on glucose oxidase and oxygen sensing material. The first layer of film containing the oxygen sensor and intra-reference material was polymerized, then the second layer of glucose oxidase and glutaraldehyde was formed on the oxygen sensor layer. The two-layer sensor film has a resolution up to 0.05 mM and a detection range from 0 to 5 mM to glucose. The effects of pH and temperature on the sensing performance were systematically investigated. The selective detection of glucose among other monosaccharides, such as fructose, mannose and galactose indicated that the sensing film has excellent selectivity. The prepared sensor was successfully applied for glucose sample detection of glucose concentration in artificial tears. Keywords: Glucose sensor, Glucose oxidase, Fluorescence, Oxygen film, Diabetes

  4. Glucose oxidase and graphene bionanocomposite bridged by ionic liquid unit for glucose biosensing application

    DEFF Research Database (Denmark)

    Jiang, Yuanyuan; Zhang, Qixian; Li, Fenghua

    2012-01-01

    activity towards the reduction of O2 and H2O2. Then negatively charged glucose oxidase (GOD) was immobilized onto the composite matrix simply by ionic exchange. The ionic liquid here could improve the dispersibility of graphene and provide a favorable conductive microenvironment for the immobilized GOD......, thus promote its direct electron transfer at the GC electrode. This novel IL-graphene–GOD bionanocomposite could act as a biosensor towards the detection of glucose with a linear response up to 16mM. In this report, the method for immobilizing GOD by ionic interaction is of universality and has...... widespread use, even in other biological systems, which brings a forceful combination between GOD and IL-graphene. Besides, the biosensor is easy to prepare, have good stability, and will have potential application in glucose detection....

  5. Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays

    International Nuclear Information System (INIS)

    Wang, Wei; Xie, Yibing; Du, Hongxiu; Xia, Chi; Wang, Yong; Tian, Fang

    2014-01-01

    A glucose biosensor has been fabricated by immobilizing glucose oxidase (GOx) on unhybridized titanium dioxide nanotube arrays using an optimized cross-linking technique. The TiO 2 nanotube arrays were synthesized directly on a titanium substrate by anodic oxidation. The structure and morphology of electrode material were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical performances of the glucose biosensor were conducted by cyclic voltammetry and chronoamperometry measurements. It gives a linear response to glucose in the 0.05 to 0.65 mM concentration range, with a correlation coefficient of 0.9981, a sensitivity of 199.6 μA mM −1 cm −2 , and a detection limit as low as 3.8 µM. This glucose biosensor exhibited high selectivity for glucose determination in the presence of ascorbic acid, sucrose and other common interfering substances. This glucose biosensor also performed good reproducibility and long-time storage stability. This optimized cross-linking technique could open a new avenue for other enzyme biosensors fabrication. (author)

  6. Optical characterization of porous silicon microcavities for glucose oxidase biosensing

    Science.gov (United States)

    Palestino, G.; Agarwal, V.; Garcia, D. B.; Legros, R.; Pérez, E.; Gergely, C.

    2008-04-01

    PSi microcavity (PSiMc) is characterized by a narrow resonance peak in the optical spectrum that is very sensitive to small changes in the refractive index. We report that the resonant optical cavities of PSi structures can be used to enhance the detection of labeled fluorescent biomolecules. Various PSi configurations were tested in order to compare the optical response of the PSi devices to the capture of organic molecules. Morphological and topographical analyses were performed on PSiMc using Atomic Force (AFM) and Scanning Electron (SEM) microscopies. The heterogeneity in pores lengths resulting from etching process assures a better penetration of larger molecules into the pores and sensor sensitivity depends on the pore size. Molecular detection is monitored by the successive red shifts in the reflectance spectra after the stabilization of PSiMc with 3-aminopropyltriethoxysilane (APTES). The glucose oxidase was cross linked into the PSiMc structures following a silane-glutaraldehyde (GTA) chemistry.

  7. Production of rabbit antibodies against purified Glucose oxidase

    Directory of Open Access Journals (Sweden)

    Muhammad Anjum Zia

    2012-02-01

    Full Text Available Glucose oxidase is an active oxygen species generating enzyme produced from Aspergillus niger grown in submerged fermentation. Disintegration of the mycelium resulted in high glucose oxidase activity that was subjected to ammonium sulfate precipitation at 60-85% saturation rates that resulted to 6.14 U mg -1 specific activity. Purification of enzyme by anion exchange column (DEAE-Cellulose resulted into 22.53 U mg-1 specific activity and 10.27 fold purification. This was applied to sephadex G-200 column for gel filtration chromatography. It was observed that enzyme achieved 59.37 U mg-1of specific activity with 27.08 fold purity and 64.36% recovery. Purified glucose oxidase was injected into rabbits through intravenous route, to raise the glucose oxidase antibodies. After 30 days incubation period, the rabbits were slaughtered and serum was separated from blood. The antibodies were isolated by ammonium sulfate precipitation and confirmed by agar gel precipitation test. This could be a convenient and low cost alternate assay for the estimation of glucose oxidase in biological fluids. Moreover, such antibodies against the said enzyme could be used in various therapeutic and diagnostic applications.

  8. Flow-induced immobilization of glucose oxidase in nonionic micellar nanogels for glucose sensing.

    Science.gov (United States)

    Cardiel, Joshua J; Zhao, Ya; Tonggu, Lige; Wang, Liguo; Chung, Jae-Hyun; Shen, Amy Q

    2014-10-21

    A simple microfluidic platform was utilized to immobilize glucose oxidase (GOx) in a nonionic micellar scaffold. The immobilization of GOx was verified by using a combination of cryogenic electron microscopy (cryo-EM), scanning electron microscopy (SEM), and ultraviolet spectroscopy (UV) techniques. Chronoamperometric measurements were conducted on nanogel-GOx scaffolds under different glucose concentrations, exhibiting linear amperometric responses. Without impacting the lifetime and denaturation of GOx, the nonionic nanogel provides a favorable microenvironment for GOx in biological media. This flow-induced immobilization method in a nonionic nanogel host matrix opens up new pathways for designing a simple, fast, biocompatible, and cost-effective process to immobilize biomolecules that are averse to ionic environments.

  9. Surface reconstitution of glucose oxidase onto a norbornylogous bridge self-assembled monolayer

    International Nuclear Information System (INIS)

    Liu Jingquan; Paddon-Row, Michael N.; Gooding, J. Justin

    2006-01-01

    An electrode construct was fabricated in which a self-assembled monolayer containing a novel norbornylogous bridge was covalently attached to flavin adenine dinucleotide (FAD), the redox active centre of several oxidase enzymes. The electrochemistry of the construct was investigated before and after the reconstitution of glucose oxidase around the surface bound FAD. Rapid rates of electron transfer were observed both before and after the reconstitution of biocatalytically active enzyme. However, no biocatalytic activity was observed under anaerobic conditions suggesting the a lack of enzyme turnover through direct electron transfer. It is proposed that a decrease in the electronic coupling between the redox active FAD and the electrode following reconstitution of the glucose oxidase - a probable consequence of the FAD being immersed in a protein environment - was responsible for the inability of the enzyme to be turned over under anaerobic conditions

  10. A glucose biosensor based on glucose oxidase immobilized on three-dimensional porous carbon electrodes.

    Science.gov (United States)

    Chen, Jingyi; Zhu, Rong; Huang, Jia; Zhang, Man; Liu, Hongyu; Sun, Min; Wang, Li; Song, Yonghai

    2015-08-21

    A novel glucose biosensor was developed by immobilizing glucose oxidase (GOD) on a three-dimensional (3D) porous kenaf stem-derived carbon (3D-KSC) which was firstly proposed as a novel supporting material to load biomolecules for electrochemical biosensing. Here, an integrated 3D-KSC electrode was prepared by using a whole piece of 3D-KSC to load the GOD molecules for glucose biosensing. The morphologies of integrated 3D-KSC and 3D-KSC/GOD electrodes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM results revealed a 3D honeycomb macroporous structure of the integrated 3D-KSC electrode. The TEM results showed some microporosities and defects in the 3D-KSC electrode. The electrochemical behaviors and electrocatalytic performance of the integrated 3D-KSC/GOD electrode were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The effects of pH and scan rates on the electrochemical response of the biosensor have been studied in detail. The glucose biosensor showed a wide linear range from 0.1 mM to 14.0 mM with a high sensitivity of 1.73 μA mM(-1) and a low detection limit of 50.75 μM. Furthermore, the glucose biosensor exhibited high selectivity, good repeatability and reproducibility, and good stability.

  11. A glassy carbon electrode modified with a composite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles in a chitosan matrix for studying the direct electron transfer of glucose oxidase and for enzymatic sensing of glucose

    International Nuclear Information System (INIS)

    Li, Zhenjiang; Sheng, Liying; Xie, Cuicui; Meng, Alan; Zhao, Kun

    2016-01-01

    The authors describe the fabrication of a nanocomposite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles by microwave-assisted synthesis. The composite was further reduced in-situ with hydrazine hydrate and then placed, along with the enzyme glucose oxidase, on a glassy carbon electrode. The synergistic effect of the materials employed in the nanocomposite result in excellent electrocatalytic activity. The Michaelis-Menten constant of the adsorbed GOx is 0.25 mM, implying a remarkable affinity of the GOx for glucose. The amperometric response of the modified GCE is linearly proportional to the concentration of glucose in 0.1 to 12.0 mM concentration range, and the detection limit is 10.6 µM. The biosensor is highly selective, well reproducible and stable. (author)

  12. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes.

    Science.gov (United States)

    Devasenathipathy, Rajkumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Sheng-Tung; Huang, Tsung-Tao; Lin, Chun-Mao; Hwa, Kuo-Yuan; Chen, Ting-Yo; Chen, Bo-Jun

    2015-10-01

    Biopolymer pectin stabilized gold nanoparticles were prepared at graphene and multiwalled carbon nanotubes (GR-MWNTs/AuNPs) and employed for the determination of glucose. The formation of GR-MWNTs/AuNPs was confirmed by scanning electron microscopy, X-ray diffraction, UV-vis and FTIR spectroscopy methods. Glucose oxidase (GOx) was successfully immobilized on GR-MWNTs/AuNPs film and direct electron transfer of GOx was investigated. GOx exhibits highly enhanced redox peaks with formal potential of -0.40 V (vs. Ag/AgCl). The amount of electroactive GOx and electron transfer rate constant were found to be 10.5 × 10(-10) mol cm(-2) and 3.36 s(-1), respectively, which were significantly larger than the previous reports. The fabricated amperometric glucose biosensor sensitively detects glucose and showed two linear ranges: (1) 10 μM - 2 mM with LOD of 4.1 μM, (2) 2 mM - 5.2 mM with LOD of 0.95 mM. The comparison of the biosensor performance with reported sensors reveals the significant improvement in overall sensor performance. Moreover, the biosensor exhibited appreciable stability, repeatability, reproducibility and practicality. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection

    International Nuclear Information System (INIS)

    Wu Ping; Shao Qian; Hu Yaojuan; Jin Juan; Yin Yajing; Zhang Hui; Cai Chenxin

    2010-01-01

    The direct electrochemistry of glucose oxidase (GOx) integrated with graphene was investigated. The voltammetric results indicated that GOx assembled on graphene retained its native structure and bioactivity, exhibited a surface-confined process, and underwent effective direct electron transfer (DET) reaction with an apparent rate constant (k s ) of 2.68 s -1 . This work also developed a novel approach for glucose detection based on the electrocatalytic reduction of oxygen at the GOx-graphene/GC electrode. The assembled GOx could electrocatalyze the reduction of dissolved oxygen. Upon the addition of glucose, the reduction current decreased, which could be used for glucose detection with a high sensitivity (ca. 110 ± 3 μA mM -1 cm -2 ), a wide linear range (0.1-10 mM), and a low detection limit (10 ± 2 μM). The developed approach can efficiently exclude the interference of commonly coexisting electroactive species due to the use of a low detection potential (-470 mV, versus SCE). Therefore, this study has not only successfully achieved DET reaction of GOx assembled on graphene, but also established a novel approach for glucose detection and provided a general route for fabricating graphene-based biosensing platform via assembling enzymes/proteins on graphene surface.

  14. Localization of Glucose Oxidase and Catalase Activities in Aspergillus niger

    NARCIS (Netherlands)

    Witteveen, Cor F.B.; Veenhuis, Marten; Visser, Jaap

    The subcellular localization of glucose oxidase (EC 1.1.3.4) in Aspergillus niger N400 (CBS 120.49) was investigated by (immuno)cytochemical methods. By these methods, the bulk of the enzyme was found to be localized in the cell wall. In addition, four different catalases (EC 1.11.1.6) were

  15. Nanoporous gold assembly of glucose oxidase for electrochemical biosensing

    DEFF Research Database (Denmark)

    Xiao, Xinxin; Ulstrup, Jens; Li, Hui

    2014-01-01

    Nanoporous gold (NPG) is composed of three-dimensional (3D) bicontinuous nanostructures with large surface area. Nano-channels inside NPG provide an ideal local environment for immobilization of enzyme molecules with expected stabilization of the protein molecules. In this work, glucose oxidase (...

  16. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Science.gov (United States)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-01-01

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor. PMID:23203056

  17. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2012-11-01

    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  18. Construction of mutant glucose oxidases with increased dye-mediated dehydrogenase activity.

    Science.gov (United States)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-11-02

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  19. Ratiometric glucose sensing based on fluorescent oxygen films and glucose oxidase

    OpenAIRE

    Fengyu Su; Liqiang Zhang; Xiangxing Kong; Fred Lee; Yanqing Tian; Deirdre R. Meldrum

    2017-01-01

    A new two-layer sensor film was constructed for sensing glucose based on glucose oxidase and oxygen sensing material. The first layer of film containing the oxygen sensor and intra-reference material was polymerized, then the second layer of glucose oxidase and glutaraldehyde was formed on the oxygen sensor layer. The two-layer sensor film has a resolution up to 0.05 mM and a detection range from 0 to 5 mM to glucose. The effects of pH and temperature on the sensing performance were systemati...

  20. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing

    International Nuclear Information System (INIS)

    Kang, Xinhuang; Wang, Jun; Wu, Hong; Aksay, Ilhan A.; Liu, Jun; Lin, Yuehe

    2009-01-01

    Direct electrochemistry of a glucose oxidase (GOD)/graphene/chitosan nanocomposite was studied. The immobilized enzyme retains its bioactivity, exhibits a surface confined, reversible two-proton and two-electron transfer reaction, and has good stability, activity and a fast heterogeneous electron transfer rate with the rate constant (k s ) of 2.83 s -1 . A much higher enzyme loading (1.12 x 10 -9 mol/cm 2 ) is obtained as compared to the bare glass carbon surface. This GOD/graphene/chitosan nanocomposite film can be used for sensitive detection of glucose. The biosensor exhibits a wider linearity range from 0.08 mM to 12 mM glucose with a detection limit of 0.02 mM and much higher sensitivity (37.93 (micro)A mM -1 cm -2 ) as compared with other nanostructured supports. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of graphene, and good biocompatibility of chitosan, which enhances the enzyme absorption and promotes direct electron transfer between redox enzymes and the surface of electrodes.

  1. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    International Nuclear Information System (INIS)

    Xia, Xiaodong; Long, Yunfei; Wang, Jianxiu

    2013-01-01

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ em max = 650 nm, λ ex max = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O 2 to produce H 2 O 2 , which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10 −6 –140 × 10 −6 M and a detection limit of 0.7 × 10 −6 M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells

  2. A Glucose Sensor Based on Glucose Oxidase Immobilized by Electrospinning Nanofibrous Polymer Membranes Modified with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    You Wang

    2013-05-01

    Full Text Available A glucose biosensor based on glucose oxidase immobilized by electrospinning nanofibrous membranes has been developed. Nanofibrous membranes were electrospun from the solution of poly(acrylonitrile-co-acrylic acid containing carbon nanotubes suspension and directly deposited on Pt electrodes for immobilizing glucose oxidase. The morphologies and structure of the nanofibrous membranes with or without carbon nanotubes were characterized by scanning electron microscopy. The fabrication parameters of nanofibers were optimized such as thickness of the nanofibrous membranes and mass ration of carbon nanotubes. The biosensor showed the relationship with a concentration range of 0.1–10 mM and response time was 60 s. The sensitivity of carbon nanotubes modified biosensors was two times larger than which of no carbon nanotubes modified ones. The pH effect, interference and lifetime of biosensors were discussed.

  3. Direct electrochemistry of glucose oxidase and glucose biosensing on a hydroxyl fullerenes modified glassy carbon electrode.

    Science.gov (United States)

    Gao, Yun-Fei; Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, Bao-Lin; Hong, Jun; Sheibani, Nader; Ghourchian, Hedayatollah; Hong, Tao; Moosavi-Movahedi, Ali Akbar

    2014-10-15

    Direct electrochemistry of glucose oxidase (GOD) was achieved when GOD-hydroxyl fullerenes (HFs) nano-complex was immobilized on a glassy carbon (GC) electrode and protected with a chitosan (Chit) membrane. The ultraviolet-visible absorption spectrometry (UV-vis), transmission electron microscopy (TEM), and circular dichroism spectropolarimeter (CD) methods were utilized for additional characterization of the GOD, GOD-HFs and Chit/GOD-HFs. Chit/HFs may preserve the secondary structure and catalytic properties of GOD. The cyclic voltammograms (CVs) of the modified GC electrode showed a pair of well-defined quasi-reversible redox peaks with the formal potential (E°') of 353 ± 2 mV versus Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was calculated to be 2.7 ± 0.2s(-1). The modified electrode response to glucose was linear in the concentrations ranging from 0.05 to 1.0mM, with a detection limit of 5 ± 1 μM. The apparent Michaelis-Menten constant (Km(app)) was 694 ± 8 μM. Thus, the modified electrode could be applied as a third generation biosensor for glucose with high sensitivity, selectivity and low detection limit. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effective immobilization of glucose oxidase on chitosan submicron particles from gladius of Todarodes pacificus for glucose sensing.

    Science.gov (United States)

    Anusha, J R; Fleming, Albin T; Kim, Hee-Je; Kim, Byung Chul; Yu, Kook-Hyun; Raj, C Justin

    2015-08-01

    An effective enzymatic glucose biosensor was developed by immobilizing glucose oxidase on chitosan submicron particles synthesized from the gladius of Todarodes pacificus (GCSP). The chemically synthesized chitosan from gladius was pulverized to submicron particles by ball milling technique, which was further characterized and compared with the standard chitosan (SCS). The degree of deacetylation of GCSP was determined using FTIR spectroscopy which was comparable to the value of standard chitosan. The glucose oxidase (GOx) was immobilized over GCSP on porous zinc oxide/platinum nanoparticle (ZnO/Pt) based electrode. The morphological and structural properties of the electrodes were analyzed using scanning electron microscopy and X-ray diffraction analysis. The glucose sensing behavior of electrode was estimated using electrochemical analysis and showed an excellent analytical performance. The electrode ZnO/Pt/GCSP conjugated with GOx displayed high sensitivity (88.76 μA mM(-1) cm(-2)) with low detection limit in short response time. In addition, the very low value of Michaelis-Menten constant for GCSP based electrode contributes a better affinity of the electrode surface towards glucose oxidase. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Engineering glucose oxidase to minimize the influence of oxygen on sensor response

    International Nuclear Information System (INIS)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2014-01-01

    Glucose oxidase (GOx) is an important industrial enzyme and is recognized as the gold standard for monitoring blood glucose. However, due to its inherent oxidase property, the presence of oxygen affects electrochemical measurements of venous blood glucose employing artificial electron mediators. We therefore attempted to engineer Penicillium amagasakiense-derived GOx into a dehydrogenase by focusing on the amino acid residues predicted to interact with oxygen. Our rational amino acid substitution approach resulted in the construction of the Ser114Ala/Phe355Leu mutant, which has an 11-fold decrease in oxidase activity and 2.8-fold increase in dehydrogenase activity compared with wild-type GOx. As a result, the dehydrogenase/oxidase activity ratio of the engineered enzyme was 32-fold greater than that of the wild-type enzyme. The enzyme sensor constructed with Ser114Ala/Phe355Leu was considerably less affected by oxygen than the wild-type GOx-based sensor at lower glucose concentrations

  6. Glucose Oxidase Directly Immobilized onto Highly Porous Gold Electrodes for Sensing and Fuel Cell applications

    International Nuclear Information System (INIS)

    Toit, Hendrik du; Di Lorenzo, Mirella

    2014-01-01

    Highlights: • Electrochemical adsorption of glucose oxidase (GOx) on highly porous gold (hPG); • Rapid one-step immobilisation protocol with no use of expensive and/or harsh reagents; • Linear response to glucose in the range 50 μM -10 mM; • Lower detection limit, stable over 5 days: 25 μM. • The use of the GOx-hPG in a fuel cell lead to the peak power density of 6 μW cm −2 . - Abstract: The successful implementation of redox-enzyme electrodes in biosensors and enzymatic biofuel cells has been the subject of extensive research. For high sensitivity and high energy-conversion efficiency, the effective electron transfer at the protein-electrode interface has a key role. This is difficult to achieve in the case of glucose oxidase, due to the fact that for this enzyme the redox centre is buried inside the structure, far from any feasible electrode binding sites. This study reports, a simple and rapid methodology for the direct immobilisation of glucose oxidase into highly porous gold electrodes. When the resulting electrode was tested as glucose sensor, a Michaelis-Menten kinetic trend was observed, with a detection limit of 25 μM. The bioelectrode sensitivity, calculated against the superficial surface area of the bioelectrode, was of 22.7 ± 0.1 μA mM −1 cm −2 . This glucose oxidase electrode was also tested as an anode in a glucose/O 2 enzymatic biofuel cell, leading to a peak power density of 6 μW cm −2 at a potential of 0.2 V

  7. Co-immobilization of gold nanoparticles with glucose oxidase to improve bioelectrocatalytic glucose oxidation

    Science.gov (United States)

    Aquino Neto, Sidney; Milton, Ross D.; Crepaldi, Laís B.; Hickey, David P.; de Andrade, Adalgisa R.; Minteer, Shelley D.

    2015-07-01

    Recently, there has been much effort in developing metal nanoparticle catalysts for fuel oxidation, as well as the development of enzymatic bioelectrocatalysts for fuel oxidation. However, there has been little study of the synergy of hybrid electrocatalytic systems. We report the preparation of hybrid bioanodes based on Au nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) co-immobilized with glucose oxidase (GOx). Mediated electron transfer was achieved by two strategies: ferrocene entrapped within polypyrrole and a ferrocene-modified linear poly(ethylenimine) (Fc-LPEI) redox polymer. Electrochemical characterization of the Au nanoparticles supported on MWCNTs indicate that this catalyst exhibits an electrocatalytic response for glucose even in acidic conditions. Using the redox polymer Fc-LPEI as the mediator, voltammetric and amperometric data demonstrated that these bioanodes can efficiently achieve mediated electron transfer and also indicated higher catalytic currents with the hybrid bioelectrode. From the amperometry, the maximum current density (Jmax) achieved with the hybrid bioelectrode was 615 ± 39 μA cm-2, whereas the bioanode employing GOx only achieved a Jmax of 409 ± 26 μA cm-2. Biofuel cell tests are consistent with the electrochemical characterization, thus confirming that the addition of the metallic species into the bioanode structure can improve fuel oxidation and consequently, improve the power generated by the system.

  8. Protein structural development of threadfin bream ( Nemipterus spp.) surimi gels induced by glucose oxidase.

    Science.gov (United States)

    Wang, Lei; Fan, Daming; Fu, Lulu; Jiao, Xidong; Huang, Jianlian; Zhao, Jianxin; Yan, Bowen; Zhou, Wenguo; Zhang, Wenhai; Ye, Weijian; Zhang, Hao

    2018-01-01

    This study investigated the effect of glucose oxidase on the gel properties of threadfin bream surimi. The gel strength of surimi increased with the addition of 0.5‰ glucose oxidase after two-step heating. Based on the results of the chemical interactions, the hydrophobic interaction and disulfide bond of glucose oxidase-treated surimi samples increased compared with the control samples at the gelation temperature and gel modori temperature. The surface hydrophobicity of samples with glucose oxidase and glucose increased significantly ( p glucose oxidase induced more α-helixes to turn into a more elongated random and flocculent structure. Glucose oxidase changes the secondary structure of the surimi protein, making more proteins depolarize and stretch and causing actomyosin to accumulate to each other, resulting in the formation of surimi gel.

  9. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming, E-mail: smchen78@ms15.hinet.net

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (K{sub s}) of GOx at the hybrid biocomposite was calculated to be 11.22 s{sup −1}. The higher K{sub s} value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination.

  10. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    International Nuclear Information System (INIS)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (K s ) of GOx at the hybrid biocomposite was calculated to be 11.22 s −1 . The higher K s value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination

  11. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaodong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Long, Yunfei, E-mail: l_yunfei927@163.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Wang, Jianxiu, E-mail: jxiuwang@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ{sub em} {sub max} = 650 nm, λ{sub ex} {sub max} = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O{sub 2} to produce H{sub 2}O{sub 2}, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10{sup −6}–140 × 10{sup −6} M and a detection limit of 0.7 × 10{sup −6} M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells.

  12. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose.

    Science.gov (United States)

    Qi, Guohua; Wang, Yi; Zhang, Biying; Sun, Dan; Fu, Cuicui; Xu, Weiqing; Xu, Shuping

    2016-10-01

    Glucose oxidase (GOx) possessing a Raman-active chromophore (flavin adenine dinucleotide) is used as a signal reporter for constructing a highly specific "turn off" surface-enhanced Raman scattering (SERS) sensor for glucose. This sensing chip is made by the electrostatic assembly of GOx over silver nanoparticle (Ag NP)-functionalized SERS substrate through a positively charged polyelectrolyte linker under the pH of 6.86. To trace glucose in blood serum, owing to the reduced pH value caused by the production of gluconic acid in the GOx-catalyzed oxidation reaction, the bonding force between GOx and polyelectrolyte weakens, making GOx drop off from the sensing chip. As a result, the SERS intensity of GOx on the chip decreases along with the concentration of glucose. This glucose SERS sensor exhibits excellent selectivity based on the specific GOx/glucose catalysis reaction and high sensitivity to 1.0 μM. The linear sensing range is 2.0-14.0 mM, which also meets the requirement on the working range of the human blood glucose detection. Using GOx as a probe shows superiority over other organic probes because GOx almost has no toxicity to the biological system. This sensing mechanism can be applied for intracellular in vivo SERS monitoring of glucose in the future. Graphical abstract Glucose oxidase is used as a Raman signal reporter for constructing a highly specific glucose surface-enhanced Raman scattering (SERS) sensor.

  13. Graphene-gold nanoparticle composite: application as a good scaffold for construction of glucose oxidase biosensor.

    Science.gov (United States)

    Sabury, Sina; Kazemi, Sayed Habib; Sharif, Farhad

    2015-04-01

    In the present work we report a facile method for fabrication of glucose oxidase immobilized on the partially reduced graphene-gold nanocomposite (PRGO-AuNPs/GOx) as a novel biosensor for determination of glucose concentration. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the morphology of PRGO and PRGO-AuNPs. Also, fast Fourier transformation infrared spectroscopy (FTIR) and UV-Vis spectroscopy were used to confirm formation of graphene and graphene-gold composite. Then, the electrochemical behavior of PRGO-AuNPs/GOx modified electrode was studied by cyclic voltammetry (CV). Our electrochemical studies, especially chronoamperometry (CA), showed that the PRGO-AuNPs/GOx modified electrode has excellent electrocatalytic activity towards the glucose. The limit of detection and sensitivity towards glucose were estimated as 0.06μM and 15.04mAmM(-1), respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Study on the preparation of immobilized glucose oxidase membrane and its application in clinic analysis

    International Nuclear Information System (INIS)

    Yu Ye; Cao Jin; Su Zongxian; Chen Zixiong

    1990-01-01

    The paper deals with the preparation of immobilized glucose oxidase membrane by using two steps irradiation (irradiation gratfting, irradiation entrapping). Some properties of membrane were discussed. The immobilized glucose oxidase membrane with oxygen electrode and oxygen analyser can be satisfied with the clinic analysis for the determination of serum glucose

  15. Switching an O2 sensitive glucose oxidase bioelectrode into an almost insensitive one by cofactor redesign.

    Science.gov (United States)

    Tremey, Emilie; Suraniti, Emmanuel; Courjean, Olivier; Gounel, Sébastien; Stines-Chaumeil, Claire; Louerat, Frédéric; Mano, Nicolas

    2014-06-04

    In the 5-8 mM glucose concentration range, of particular interest for diabetes management, glucose oxidase bioelectrodes are O2 dependent, which decrease their efficiencies. By replacing the natural cofactor of glucose oxidase, we succeeded in turning an O2 sensitive bioelectrode into an almost insensitive one.

  16. Scanning tunneling microscopy studies of glucose oxidase on gold surface

    International Nuclear Information System (INIS)

    Losic, D.; Shapter, J.G.; Gooding, J.J.

    2002-01-01

    Full text: Three immobilization methods have been used for scanning tunneling microscopy (STM) studies of glucose oxidase (GOD) on gold. They are based on a) physical adsorption from solution, b) microcontact printing and c) covalent bonding onto self-assembled monolayers (SAM) of 3-mercaptopropionic acid (MPA). The STM images are used to provide information about the organization of individual GOD molecules and more densely packed monolayers of GOD on electrode surfaces, thus providing information of the role of interfacial structure on biosensor performance. The use of atomically flat gold substrates enables easy distinction of deposited enzyme features from the flat gold substrate. Microcontact printing is found to be a more reliable method than adsorption from solution for preparing individual GOD molecules on the gold surface STM images of printed samples reveal two different shapes of native GOD molecules. One is a butterfly shape with dimensions of 10 ± 1 nm x 6 ± 1 nm, assigned to the lying position of molecule while the second is an approximately spherical shape with dimensions of 6.5 ± 1 nm x 5 ± 1nm assigned to a standing position. Isolated clusters of 5 to 6 GOD molecules are also observed. With monolayer coverage, GOD molecules exhibit a tendency to organize themselves into a two dimensional array with adequate sample stability to obtain high-resolution STM images. Within these two-dimensional arrays are clearly seen repeating clusters of five to six enzyme molecules in a unit STM imaging of GOD monolayers covalently immobilized onto SAM (MPA) are considerably more difficult than when the enzyme is adsorbed directly onto the metal. Cluster structures are observed both high and low coverage despite the fact that native GOD is a negatively charged molecule. Copyright (2002) Australian Society for Electron Microscopy Inc

  17. Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor

    International Nuclear Information System (INIS)

    Qiu Cuicui; Wang Xia; Liu Xueying; Hou Shifeng; Ma Houyi

    2012-01-01

    Highlights: ► Au thin films are formed by electrodeposition and galvanic replacement technology. ► Glucose oxidase is stably immobilized via a simple physical adsorption method. ► The direct electrochemical behavior is obtained on the immobilized glucose oxidase. ► An amperometric sensor of glucose with an excellent sensing capability is achieved. - Abstract: Glucose oxidase (GOx) was stably immobilized via a simple physical adsorption method onto the nanostructured Au thin films fabricated by using electrodeposition and galvanic replacement technology, which provides a facile method to prepare morphology-controllable Au films and also facilitates the preparation and application of enzyme modified electrodes. An obvious advantage of the as-prepared enzyme electrode (denoted as GOx/Au/GCE) is that the nano-Au films provide a favorable microenvironment for GOx and facilitate the electron transfer between the active center of GOx and electrodes. Cyclic voltammetry (CV) results indicate that the immobilized GOx displayed a direct, reversible and surface-confined redox reaction in the phosphate buffer solution. Furthermore, the enzyme modified electrode was used as a glucose bioelectrochemical sensor, exhibiting a linear relationship in the concentration ranges of 2.5–32.5 μmol L −1 and 60–130 μmol L −1 with a detection limit of 0.32 μmol L −1 (S/N = 3) at an applied potential of −0.55 V. Due to the excellent stability, sensitivity and anti-interference ability, the Au thin films are hopeful in the construction of glucose biosensors.

  18. Up-Streaming Process for Glucose Oxidase by Thermophilic Penicillium sp. in Shake Flask

    OpenAIRE

    Muhammad Mohsin JAVED; Aroosh SHABIR; Sana ZAHOOR; Ikram UL-HAQ

    2012-01-01

    The present study is concerned with the production of glucose oxidase (GOD) from thermophilic Penicillium sp. in 250 mL shake flask. Fourteen different strains of thermophilic Penicillium sp. were isolated from the soil and were screened for glucose oxidase production. IIBP-13 strain gave maximum extra-cellular glucose oxidase production as compared to other isolates. Effect of submerged fermentation in shaking and static conditions, different carbon sources and incubation period on the produ...

  19. Immobilization of the Enzyme Glucose Oxidase on Both Bulk and Porous SiO2 Surfaces

    Directory of Open Access Journals (Sweden)

    Fulvia Sinatra

    2008-09-01

    Full Text Available Silicon dioxide surfaces, both bulk and porous, were used to anchor the enzyme glucose oxidase. The immobilization protocol was optimized and the samples characterized using X-ray Photoelectron Spectroscopy, Energy Dispersive X-rays coupled to scanning electron microscopy and enzymatic activity measurements. We show that a uniform layer was obtained by activating the oxide before immobilization. X-ray Photoelectron Spectroscopy measurements carried out on bulk oxide showed that the silicon substrate signal was fully screened after the enzyme deposition showing the absence of uncovered surface regions. The enzyme presence was detected monitoring both the C 1s and N 1s signals. Finally, enzymatic activity measurements confirmed that the glucose oxidase activity was preserved after immobilization and maintained after three months of shelf life if the sample was properly stored. The importance of using porous silicon oxide to maximize the surface area was also evidenced.

  20. In Situ Enzymatically Generated Photoswitchable Oxidase Mimetics and Their Application for Colorimetric Detection of Glucose Oxidase.

    Science.gov (United States)

    Cao, Gen-Xia; Wu, Xiu-Ming; Dong, Yu-Ming; Li, Zai-Jun; Wang, Guang-Li

    2016-07-09

    In this study, a simple and amplified colorimetric assay is developed for the detection of the enzymatic activity of glucose oxidase (GOx) based on in situ formation of a photoswitchable oxidase mimetic of PO₄(3-)-capped CdS quantum dots (QDs). GOx catalyzes the oxidation of 1-thio-β-d-glucose to give 1-thio-β-d-gluconic acid which spontaneously hydrolyzes to β-d-gluconic acid and H₂S; the generated H₂S instantly reacts with Cd(2+) in the presence of Na₃PO₄ to give PO₄(3-)-stabilized CdS QDs in situ. Under visible-light (λ ≥ 400 nm) stimulation, the PO₄(3-)-capped CdS QDs are a new style of oxidase mimic derived by producing some active species, such as h⁺, (•)OH, O₂(•-) and a little H₂O₂, which can oxidize the typical substrate (3,3,5,5-tetramethylbenzydine (TMB)) with a color change. Based on the GOx-triggered growth of the oxidase mimetics of PO₄(3-)-capped CdS QDs in situ, we developed a simple and amplified colorimetric assay to probe the enzymatic activity of GOx. The proposed method allowed the detection of the enzymatic activity of GOx over the range from 25 μg/L to 50 mg/L with a low detection limit of 6.6 μg/L. We believe the PO₄(3-)-capped CdS QDs generated in situ with photo-stimulated enzyme-mimicking activity may find wide potential applications in biosensors.

  1. Optimization of Glucose oxidase towards oxygen independency and high mediator activity for amperometric glucose determination in diabetes analytics

    OpenAIRE

    Arango Gutierrez, Erik Uwe

    2015-01-01

    Glucose oxidase is an oxidoreductase exhibiting a high β-D-glucose specificity and high stability which renders glucose oxidase well-suited for applications in diabetes care. Nevertheless, GOx activity is highly oxygen dependent which can lead to inaccuracies in amperometric β-D-glucose determinations. Therefore a directed evolution campaign with two rounds of random mutagenesis (SeSaM followed by epPCR), site saturation mutagenesis studies, and one simultaneous site saturation library (OmniC...

  2. Factors Affecting Accuracy and Time Requirements of a Glucose Oxidase-Peroxidase Assay for Determination of Glucose

    Science.gov (United States)

    Accurate and rapid assays for glucose are desirable for analysis of glucose and starch in food and feedstuffs. An established colorimetric glucose oxidase-peroxidase method for glucose was modified to reduce analysis time, and evaluated for factors that affected accuracy. Time required to perform t...

  3. Evaluation of different disinfectants on the performance of an on-meter dosed amperometric glucose-oxidase-based glucose meter.

    Science.gov (United States)

    Sarmaga, Don; Dubois, Jeffrey A; Lyon, Martha E

    2011-11-01

    Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). No clinical ( .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. © 2011 Diabetes Technology Society.

  4. Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing

    International Nuclear Information System (INIS)

    Shamsipur, Mojtaba; Amouzadeh Tabrizi, Mahmoud

    2014-01-01

    In this paper, the direct electrochemistry of glucose oxidase (GOD) was accomplished at a glassy carbon electrode modified with electrochemically reduced graphene oxide/sodium dodecyl sulfate (GCE/ERGO/SDS). A pair of reversible peaks is exhibited on GCE/ERGO/SDS/GOD by cyclic voltammetry. The peak-to-peak potential separation of immobilized GOD is 28 mV in 0.1 M phosphate buffer solution (pH 7.0) with a scan rate of 50 mV/s. The average surface coverage is 2.62 × 10 −10 mol cm −2 . The resulting biosensor exhibited a good response to glucose with linear range from 1 to 8 mM (R 2 = 0.9878), good reproducibility and detection limit of 40.8 μM. The results from the biosensor were similar (± 5%) to those obtained from the clinical analyzer. - Highlights: • A direct electron transfer reaction of glucose oxidase was observed on GCE/ERGO/SDS. • This composite film was successfully applied in preparation of glucose biosensor. • The detection limit of the biosensor was estimated to be 40.8 μM. • The results from the sensor were similar to those obtained from the clinical analyzer

  5. Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba; Amouzadeh Tabrizi, Mahmoud, E-mail: mahmoud.tabrizi@gmail.com

    2014-12-01

    In this paper, the direct electrochemistry of glucose oxidase (GOD) was accomplished at a glassy carbon electrode modified with electrochemically reduced graphene oxide/sodium dodecyl sulfate (GCE/ERGO/SDS). A pair of reversible peaks is exhibited on GCE/ERGO/SDS/GOD by cyclic voltammetry. The peak-to-peak potential separation of immobilized GOD is 28 mV in 0.1 M phosphate buffer solution (pH 7.0) with a scan rate of 50 mV/s. The average surface coverage is 2.62 × 10{sup −10} mol cm{sup −2}. The resulting biosensor exhibited a good response to glucose with linear range from 1 to 8 mM (R{sup 2} = 0.9878), good reproducibility and detection limit of 40.8 μM. The results from the biosensor were similar (± 5%) to those obtained from the clinical analyzer. - Highlights: • A direct electron transfer reaction of glucose oxidase was observed on GCE/ERGO/SDS. • This composite film was successfully applied in preparation of glucose biosensor. • The detection limit of the biosensor was estimated to be 40.8 μM. • The results from the sensor were similar to those obtained from the clinical analyzer.

  6. A self-powered glucose biosensor based on pyrolloquinoline quinone glucose dehydrogenase and bilirubin oxidase operating under physiological conditions.

    Science.gov (United States)

    Kulkarni, Tanmay; Slaughter, Gymama

    2017-07-01

    A novel biosensing system capable of simultaneously sensing glucose and powering portable electronic devices such as a digital glucometer is described. The biosensing system consists of enzymatic glucose biofuel cell bioelectrodes functionalized with pyrolloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at the bioanode and biocathode, respectively. A dual-stage power amplification circuit is integrated with the single biofuel cell to amplify the electrical power generated. In addition, a capacitor circuit was incorporated to serve as the transducer for sensing glucose. The open circuit voltage of the optimized biofuel cell reached 0.55 V, and the maximum power density achieved was 0.23 mW/ cm 2 at 0.29 V. The biofuel cell exhibited a sensitivity of 0.312 mW/mM.cm 2 with a linear dynamic range of 3 mM - 20 mM glucose. The overall self-powered glucose biosensor is capable of selectively screening against common interfering species, such as ascorbate and urate and exhibited an operational stability of over 53 days, while maintaining 90 % of its activity. These results demonstrate the system's potential to replace the current glucose monitoring devices that rely on external power supply, such as a battery.

  7. Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase.

    Science.gov (United States)

    Szefler, Beata; Diudea, Mircea V; Putz, Mihai V; Grudzinski, Ireneusz P

    2016-10-27

    Glucose oxidase (GOx) is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of β-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state) to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H₂O₂). GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI). The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD) study of the PEI ligand (C14N8_07_B22) and the GOx enzyme (3QVR) was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1) of -5.8 kcal/mol and (LIG2) of -4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1) and on its surface (LIG2) were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase.

  8. Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase

    Directory of Open Access Journals (Sweden)

    Beata Szefler

    2016-10-01

    Full Text Available Glucose oxidase (GOx is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of β-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H2O2. GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI. The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD study of the PEI ligand (C14N8_07_B22 and the GOx enzyme (3QVR was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1 of −5.8 kcal/mol and (LIG2 of −4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1 and on its surface (LIG2 were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase.

  9. A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva.

    Science.gov (United States)

    Liu, Chengcheng; Sheng, Yongjie; Sun, Yanhong; Feng, Junkui; Wang, Shijin; Zhang, Jin; Xu, Jiacui; Jiang, Dazhi

    2015-08-15

    Biosensors have been widely investigated and utilized in a variety of fields ranging from environmental monitoring to clinical diagnostics. Glucose biosensors have triggered great interest and have been widely exploited since glucose determination is essential for diabetes diagnosis. In here, we designed a novel dual-enzyme biosensor composed of glucose oxidase (GOx) and pistol-like DNAzyme (PLDz) to detect glucose levels in tears and saliva. First, GOx, as a molecular recognition element, catalyzes the oxidation of glucose forming H2O2; then PLDz recognizes the produced H2O2 as a secondary signal and performs a self-cleavage reaction promoted by Mn(2+), Co(2+) and Cu(2+). Thus, detection of glucose could be realized by monitoring the cleavage rate of PLDz. The slope of the cleavage rate of PLDz versus glucose concentration curve was fitted with a Double Boltzmann equation, with a range of glucose from 100 nM to 10mM and a detection limit of 5 μM. We further applied the GOx-PLDz 1.0 biosensor for glucose detection in tears and saliva, glucose levels in which are 720±81 μM and 405±56 μM respectively. Therefore, the GOx-PLDz 1.0 biosensor is able to determine glucose levels in tears and saliva as a noninvasive glucose biosensor, which is important for diabetic patients with frequent/continuous glucose monitoring requirements. In addition, induction of DNAzyme provides a new approach in the development of glucose biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Noorbakhsh, Abdollah

    2011-01-01

    Highlights: → Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. → In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. → Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. → The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. → Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k s ) and Michaelis-Menten constant (K M ), of immobilized GOx were 1.50 x 10 -12 mol cm -2 , 9.2 ± 0.5 s -1 and 3.42(±0

  11. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: absalimi@yahoo.com [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Department of Nanotechnology Engenering, Faculty of Advanced Science and Technology, University of Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2011-07-01

    Highlights: > Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. > In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. > Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. > The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. > Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}), of immobilized GOx were 1.50 x 10{sup -12} mol cm{sup -2}, 9.2 {+-} 0.5 s{sup -1

  12. Fabrication of Amperometric Glucose Sensor Using Glucose Oxidase-Cellulose Nanofiber Aqueous Solution.

    Science.gov (United States)

    Yasuzawa, Mikito; Omura, Yuya; Hiura, Kentaro; Li, Jiang; Fuchiwaki, Yusuke; Tanaka, Masato

    2015-01-01

    Cellulose nanofiber aqueous solution, which remained virtually transparent for more than one week, was prepared by using the clear upper layer of diluted cellulose nanofiber solution produced by wet jet milling. Glucose oxidase (GOx) was easily dissolved in this solution and GOx-immobilized electrode was easily fabricated by simple repetitious drops of GOx-cellulose solution on the surface of a platinum-iridium electrode. Glucose sensor properties of the obtained electrodes were examined in phosphate buffer solution of pH 7.4 at 40°C. The obtained electrode provided a glucose sensor response with significantly high response speed and good linear relationship between glucose concentration and response current. After an initial decrease of response sensitivity for a few days, relatively constant sensitivity was obtained for about 20 days. Nevertheless, the influence of electroactive compounds such as ascorbic acid, uric acid and acetoaminophen were not negletable.

  13. A mediator-free glucose biosensor based on glucose oxidase/chitosan/α-zirconium phosphate ternary biocomposite.

    Science.gov (United States)

    Liu, Li-Min; Wen, Jiwu; Liu, Lijun; He, Deyong; Kuang, Ren-yun; Shi, Taqing

    2014-01-15

    A novel glucose oxidase/chitosan/α-zirconium phosphate (GOD/chitosan/α-ZrP) ternary biocomposite was prepared by co-intercalating glucose oxidase (GOD) and chitosan into the interlayers of α-zirconium phosphate (α-ZrP) via a delamination-reassembly procedure. The results of X-ray diffraction, infrared spectroscopy, circular dichroism, and ultraviolet spectrum characterizations indicated not only the layered and hybrid structure of the GOD/chitosan/α-ZrP ternary biocomposite but also the recovered activity of the intercalated GOD improved by the co-intercalated chitosan. By depositing the GOD/chitosan/α-ZrP biocomposite film onto a glassy carbon electrode, the direct electrochemistry of the intercalated GOD was achieved with a fast electron transfer rate constant, k(s), of 7.48±3.52 s(-1). Moreover, this GOD/chitosan/α-ZrP biocomposite modified electrode exhibited a sensitive response to glucose in the linear range of 0.25-8.0 mM (R=0.9994, n=14), with a determination limit of 0.076 mM. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite.

    Science.gov (United States)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV-visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (Ks) of GOx at the hybrid biocomposite was calculated to be 11.22s(-1). The higher Ks value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05-23.2mM. The limit of detection (LOD) was estimated to be 28μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. © 2013.

  15. Graphene–gold nanoparticle composite: Application as a good scaffold for construction of glucose oxidase biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Sabury, Sina [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Kazemi, Sayed Habib, E-mail: habibkazemi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Sharif, Farhad [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-04-01

    In the present work we report a facile method for fabrication of glucose oxidase immobilized on the partially reduced graphene–gold nanocomposite (PRGO–AuNPs/GOx) as a novel biosensor for determination of glucose concentration. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the morphology of PRGO and PRGO–AuNPs. Also, fast Fourier transformation infrared spectroscopy (FTIR) and UV–Vis spectroscopy were used to confirm formation of graphene and graphene–gold composite. Then, the electrochemical behavior of PRGO–AuNPs/GOx modified electrode was studied by cyclic voltammetry (CV). Our electrochemical studies, especially chronoamperometry (CA), showed that the PRGO–AuNPs/GOx modified electrode has excellent electrocatalytic activity towards the glucose. The limit of detection and sensitivity towards glucose were estimated as 0.06 μM and 15.04 mA mM{sup −1}, respectively. - Highlights: • PGRO–AuNPs modified electrode employed as a reliable scaffold for GODx immobilization. • AuNPs prevent stacking PRGO layers, thus improve the electrochemical behavior of biosensor. • GODx electron transfer was improved because of good interaction with PRGO–AuNP scaffold. • PRGO–AuNP/GODx modified biosensor showed excellent sensitivity towards glucose.

  16. Covalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: A reevaluation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.L.; Rajagopalan, K.V. (Duke Univ. Medical Center, Durham, NC (USA)); London, R.E. (National Institute of Environmental Health Science, Research Triangle Park, NC (USA))

    1989-09-01

    The reported presence of covalently bound phosphate residues in flavoproteins has significant implications with regard to the catalytic mechanisms and structural stability of the specific enzymes themselves and in terms of general cellular metabolic regulation. These considerations have led to a reevaluation of the presence of covalently bound phosphorus in the flavoproteins xanthine oxidase and glucose oxidase. Milk xanthine oxidase purified by a procedure that includes anion-exchange chromatography is shown to contain three phosphate residues. All three are noncovalently associated with the protein, two with the FAD cofactor, and one with the molybdenum cofactor. Results of chemical analysis and {sup 31}P NMR spectroscopy indicate that enzyme purified by this method contains no phosphoserine residues. Xanthine oxidase preparations purified by chromatography on calcium phosphate gel in place of DEAE-Sephadex yielded higher phosphate-to-protein ratios, which could be reduced to the expected values by additional purification on a folate affinity column. Highly active, highly purified preparations of glucose oxidase are shown to contain only the two phosphate residues of the FAD cofactor. The covalently bound bridging phosphate reported by others may arise in aged or degraded preparations of the enzyme but appears not to be a constituent of functional glucose oxidase. These results suggest that the presence of covalent phosphate residues in other flavoproteins should be rigorously reevaluated as well.

  17. Covalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: A reevaluation

    International Nuclear Information System (INIS)

    Johnson, J.L.; Rajagopalan, K.V.; London, R.E.

    1989-01-01

    The reported presence of covalently bound phosphate residues in flavoproteins has significant implications with regard to the catalytic mechanisms and structural stability of the specific enzymes themselves and in terms of general cellular metabolic regulation. These considerations have led to a reevaluation of the presence of covalently bound phosphorus in the flavoproteins xanthine oxidase and glucose oxidase. Milk xanthine oxidase purified by a procedure that includes anion-exchange chromatography is shown to contain three phosphate residues. All three are noncovalently associated with the protein, two with the FAD cofactor, and one with the molybdenum cofactor. Results of chemical analysis and 31 P NMR spectroscopy indicate that enzyme purified by this method contains no phosphoserine residues. Xanthine oxidase preparations purified by chromatography on calcium phosphate gel in place of DEAE-Sephadex yielded higher phosphate-to-protein ratios, which could be reduced to the expected values by additional purification on a folate affinity column. Highly active, highly purified preparations of glucose oxidase are shown to contain only the two phosphate residues of the FAD cofactor. The covalently bound bridging phosphate reported by others may arise in aged or degraded preparations of the enzyme but appears not to be a constituent of functional glucose oxidase. These results suggest that the presence of covalent phosphate residues in other flavoproteins should be rigorously reevaluated as well

  18. Direct electrochemistry and electrocatalysis of glucose oxidase on three-dimensional interpenetrating, porous graphene modified electrode

    International Nuclear Information System (INIS)

    Cui, Min; Xu, Bing; Hu, Chuangang; Shao, Hui Bo; Qu, Liangti

    2013-01-01

    Direct electrochemistry of glucose oxidase (GOD) on three-dimensional (3D) interpenetrating porous graphene electrodes has been reported, which have been fabricated by one-step electrochemical reduction of graphene oxide (GO) from its aqueous suspension. The electrochemically reduced GO (ERGO) modified electrodes exhibited excellent electron transfer properties for GOD and enhanced the enzyme activity and stability by the assistance of chitosan. The immobilized GOD shows a fast electron transfer with the rate constant (k s ) of 6.05 s −1 . It is worth mentioning that in the air-saturated phosphate buffer solution without any mediator, the resultant modified electrodes exhibited low detection limit of 1.7 μM with wide linear range of 0.02–3.2 mM and high sensitivity and high selectivity for measuring glucose. It would also be extended to various enzymes and bioactive molecules to develop the biosensor or other bio-electrochemical devices

  19. Glucose biosensing using glassy carbon electrode modified with polyhydroxy-C60, glucose oxidase and ionic-liquid.

    Science.gov (United States)

    Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, BaoLin; Hong, Jun

    2014-01-01

    Direct electrochemistry of glucose oxidase (GOD) was achieved when an ionic liquid/GOD-Polyhydroxy-C60 functional membrane was confined on a glassy carbon electrode (GCE). The cyclic voltammograms (CVs) of the modified GCE showed a pair of redox peaks with a formal potential (E°') of - 329 ± 2 mV. The heterogeneous electron transfer constant (k(s)) was 1.43 s-1. The modified GCE response to glucose was linear in the range from 0.02 to 2.0 mM. The detection limit was 1 μM. The apparent Michaelis-Menten constant (K(m)(app)) was 1.45 mM.

  20. Mediatorless amperometric bienzyme glucose biosensor based on horseradish peroxidase and glucose oxidase cross-linked to multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Xu, Shuxia; Zhou, Shiyi; Zhang, Xinfeng; Qi, Honglan; Zhang, Chengxiao

    2014-01-01

    We report on a bienzyme-channeling sensor for sensing glucose without the aid of mediator. It was fabricated by cross-linking horseradish peroxidase (HRP) and glucose oxidase (GOx) on a glassy carbon electrode modified with multiwalled carbon nanotubes (MWNTs). The bienzyme was cross-linked with the MWNTs by glutaraldehyde and bovine serum albumin. The MWNTs were employed to accelerate the electron transfer between immobilized HRP and electrode. Glucose was sensed by amperometric reduction of enzymatically generated H 2 O 2 at an applied voltage of −50 mV (vs. Ag/AgCl). Factors influencing the preparation and performance of the bienzyme electrode were investigated in detail. The biosensor exhibited a fast and linear response to glucose in the concentration range from 0.4 to 15 mM, with a detection limit of 0.4 mM. The sensor exhibited good selectivity and durability, with a long-term relative standard deviation of <5 %. Analysis of glucose-spiked human serum samples yielded recoveries between 96 and 101 %. (author)

  1. Development of glucose biosensor based on ZnO nanoparticles film and glucose oxidase-immobilized eggshell membrane

    Directory of Open Access Journals (Sweden)

    Bohari Noor Aini

    2015-06-01

    Full Text Available A novel electrochemical glucose biosensor was developed by depositing an ionic liquid (IL (e.g., 1-ethyl-3-methylimidazolium trifluoromethanesulfonate; [EMIM][Otf], ZnO nanoparticles (ZnONPs and eggshell membrane (ESM on a modified glassy carbon electrode (GCE for determination of glucose. Glucose oxidase (GOx was covalently immobilized on eggshell membrane with glutaraldehyde as a cross-linker. Methylene blue was used as a redox indicator to enhance the electron transfer capacity and to ensure stability of both the oxidized and reduced forms in the reaction of enzyme and substrate. The morphological characteristics of microstructures eggshell membranes, chitosan, GOx/ESM, GOx/ZnONPs/IL/ESM and GOx/ZnONPs-IL/CHIT were observed using scanning electron microscopy (SEM. The effects of scan rate, time and pH on the response of glucose biosensors were studied in detail. Under optimal conditions (pH 6.5, 50 s, cyclic voltammetry showed different glucose concentrations on the range of 1 × 10−12 to 0.6 M, with a detection limit of 1 × 10−13 M. The GOx/ZnONPs/IL/ESM was found to be more sensitive as compared to GOx/ZnONPs-IL/CHIT. This developed glucose biosensor detection approach has several advantages such as fast, simple and convenient method, sensitivity, low cost, eco-friendly, low concentrations and remarkable catalytic activities of current signals during glucose reaction.

  2. Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface.

    Science.gov (United States)

    Wang, Hongwei; Lang, Qiaolin; Liang, Bo; Liu, Aihua

    2015-01-01

    The conventional enzyme-based biosensor requires chemical or physical immobilization of purified enzymes on electrode surface, which often results in loss of enzyme activity and/or fractions immobilized over time. It is also costly. A major advantage of yeast surface display is that it enables the direct utilization of whole cell catalysts with eukaryote-produced proteins being displayed on the cell surface, providing an economic alternative to traditional production of purified enzymes. Herein, we describe the details of the display of glucose oxidase (GOx) on yeast cell surface and its application in the development of electrochemical glucose sensor. In order to achieve a direct electrochemistry of GOx, the entire cell catalyst (yeast-GOx) was immobilized together with multiwalled carbon nanotubes on the electrode, which allowed sensitive and selective glucose detection.

  3. Immobilization of glucose oxidase on graphene and cobalt phthalocyanine composite and its application for the determination of glucose.

    Science.gov (United States)

    Mani, Veerappan; Devasenathipathy, Rajkumar; Chen, Shen-Ming; Huang, Sheng-Tung; Vasantha, V S

    2014-11-01

    We described a simple and facile chemical reduction strategy for the preparation of graphene (GR)-cobalt phthalocyanine (CoPc) composite and explored it for the enzymatic determination of glucose. CoPc is an active mediator and electrocatalysts for the immobilization of GOx and determination of glucose. However, it is not stable on the electrode surface and also suffers from lack of conductivity. Here, we have employed GR as the suitable support to stabilize CoPc through simple chemical reduction method and the resulting composite has been used for the glucose biosensor application. Scanning electron microscopy, X-ray diffraction and Energy-dispersive X-ray spectroscopy studies confirmed the successful formation of composite. Direct electron transfer of glucose oxidase (GOx) was observed with well defined redox peaks at the formal potential of -0.44 V. The amount of electroactive GOx (Г) and electron transfer rate constant (ks) were calculated to be 3.77×10(-10) mol cm(-2) and 3.57 s(-1), respectively. The fabricated amperometric biosensor detects glucose in wide linear concentration range from 10 μM to 14.8 mM with high sensitivity of 5.0 9μA mM(-1) cm(-2). The sensor offered very low detection limit (LOD) of 1.6 μM. In addition, practical feasibility of the sensor has been explored in screen printing carbon electrode with accurate determination of glucose present in human blood serum and urine samples. Furthermore, the sensor exhibited appreciable stability, repeatability and reproducibility results. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Direct comparison of gluco-oligosaccharide oxidase variants and glucose oxidase: substrate range and H2O2 stability.

    Science.gov (United States)

    Vuong, Thu V; Foumani, Maryam; MacCormick, Benjamin; Kwan, Rachel; Master, Emma R

    2016-11-21

    Glucose oxidase (GO) activity is generally restricted to glucose and is susceptible to inactivation by H 2 O 2 . By comparison, the Y300A variant of gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum showed broader substrate range and higher H 2 O 2 stability. Specifically, Y300A exhibited up to 40 times higher activity on all tested sugars except glucose, compared to GO. Moreover, fusion of the Y300A variant to a family 22 carbohydrate binding module from Clostridium thermocellum (CtCBM22A) nearly doubled its catalytic efficiency on glucose, while retaining significant activity on oligosaccharides. In the presence of 200 mM of H 2 O 2 , the recombinant CtCBM22A_Y300A retained 80% of activity on glucose and 100% of activity on cellobiose, the preferred substrate for this enzyme. By contrast, a commercial glucose oxidase reported to contain ≤0.1 units catalase/ mg protein, retained 60% activity on glucose under the same conditions. GOOX variants appear to undergo a different mechanism of inactivation, as a loss of histidine instead of methionine was observed after H 2 O 2 incubation. The addition of CtCBM22A also promoted functional binding of the fusion enzyme to xylan, facilitating its simultaneous purification and immobilization using edible oat spelt xylan, which might benefit the usage of this enzyme preparation in food and baking applications.

  5. Immobilization of Glucose Oxidase on a Carbon Nanotubes/Dendrimer-Ferrocene Modified Electrode for Reagentless Glucose Biosensing.

    Science.gov (United States)

    Zhou, Juan; Li, Huan; Yang, Huasong; Cheng, Hui; Lai, Guosong

    2017-01-01

    Ferrocene-grafted dendrimer was covalently linked to the surface of a carbon nanotubes (CNTs)-chitosan (CS) nanocomposite modified electrode for immobilizing high-content glucose oxidase (GOx), which resulted in the successful development a novel reagentless glucose biosensor. Electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry were used to characterize the preparation process and the enzymatically catalytic response of this biosensor. Due to the excellent electron transfer acceleration of the CNTs and the high-content loading of the GOx biomolecule and ferrocene mediator on the electrode matrix, this biosensor showed excellent analytical performance such as fast response time less than 10 s, wide linear range from 0.02 to 2.91 mM and low detection limit down to 7.5 μM as well as satisfactory stability and reproducibility toward the amperometric glucose determination. In addition, satisfactory result was obtained when it was used for the glucose measurements in human blood samples. Thus this biosensor provides great potentials for practical applications.

  6. Biosensing of glucose in flow injection analysis system based on glucose oxidase-quantum dot modified pencil graphite electrode.

    Science.gov (United States)

    Sağlam, Özlem; Kızılkaya, Bayram; Uysal, Hüseyin; Dilgin, Yusuf

    2016-01-15

    A novel amperometric glucose biosensor was proposed in flow injection analysis (FIA) system using glucose oxidase (GOD) and Quantum dot (ZnS-CdS) modified Pencil Graphite Electrode (PGE). After ZnS-CdS film was electrochemically deposited onto PGE surface, GOD was immobilized on the surface of ZnS-CdS/PGE through crosslinking with chitosan (CT). A pair of well-defined reversible redox peak of GOD was observed at GOD/CT/ZnS-CdS/PGE based on enzyme electrode by direct electron transfer between the protein and electrode. Further, obtained GOD/CT/ZnS-CdS/PGE offers a disposable, low cost, selective and sensitive electrochemical biosensing of glucose in FIA system based on the decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen. Under optimum conditions (flow rate, 1.3mL min(-1); transmission tubing length, 10cm; injection volume, 100μL; and constant applied potential, -500mV vs. Ag/AgCl), the proposed method displayed a linear response to glucose in the range of 0.01-1.0mM with detection limit of 3.0µM. The results obtained from this study would provide the basis for further development of the biosensing using PGE based FIA systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Glucose Oxidase Immobilization on TMAH-Modified Bentonite

    Directory of Open Access Journals (Sweden)

    Ruth Chrisnasari

    2015-03-01

    Full Text Available The influence of bentonite modification by tetramethyl ammonium hydroxide (TMAH on its capability to immobilize glucose oxidase (GOX was studied. Modification of bentonite was conducted by the adding of 0-5% (v/v TMAH. The observed results show that the different concentrations of TMAH affect the percentage of immobilized enzyme. The results of this study show that the best concentration of TMAH is 5% (v/v which can immobilize up to 84.71% of GOX. X-ray diffraction (XRD and Fourier Transforms Infrared Spectroscopy (FTIR studies have been carried out to observe the structural changes in bentonite due to TMAH modification. The obtained immobilized GOX show the optimum catalytic activity on reaction temperature of 40-50 °C and pH of 7. The immobilized GOX kinetics at the optimum conditions determined the Km and Vmax value to be 4.96x10-2 mM and 4.99x10-3 mM.min-1 respectively. In addition, the immobilized GOX on TMAH-modified bentonite is stable enough so it could be re-used six times before its activity decreased by 39.44%.

  8. Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase.

    Science.gov (United States)

    Palod, Pragya Agar; Singh, Vipul

    2015-10-01

    In this paper a novel enzymatic glucose biosensor has been reported in which platinum coated alumina membranes (Anodisc™s) have been employed as templates for the growth of polypyrrole (PPy) nanotube arrays using electrochemical polymerization. The PPy nanotube arrays were grown on Anodisc™s of pore diameter 100 nm using potentiostatic electropolymerization. In order to optimize the polymerization time, immobilization of glucose oxidase (GOx) was first performed using physical adsorption followed by measuring its biosensing response which was examined amperometrically for increasing concentrations of glucose. In order to further improve the sensing performance of the biosensor fabricated for optimum polymerization duration, enzyme immobilization was carried out using cross-linking with glutaraldehyde and bovine serum albumin (BSA). Approximately six fold enhancement in the sensitivity was observed in the fabricated electrodes. The biosensors also showed a wide range of linear operation (0.2-13 mM), limit of detection of 50 μM glucose concentration, excellent selectivity for glucose, notable reliability for real sample detection and substantially improved shelf life. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Modification of Glucose Oxidase biofuel cell by multi-walled carbon nanotubes

    Science.gov (United States)

    Lotfi, Ladan; Farahbakhsh, Afshin; Aghili, Sina

    2018-01-01

    Biofuel cells are a subset of fuel cells that employ biocatalysts. Enzyme-based biofuel cells (EBFCs) generate electrical energy from biofuels such as glucose and ethanol, which are renewable and sustainable energy sources. Glucose biofuel cells (GBFCs) are particularly interesting nowadays due to continuous harvesting of oxygen and glucose from bioavailable substrates, activity inside the human body, and environmental benign, which generate electricity through oxidation of glucose on the anode and reduction of oxygen on the cathode. Promoting the electron transfer of redox enzymes at modified electrode utilizing Nano size materials, such as carbon nanotubes (CNT), to achieve the direct electrochemistry of enzymes has been reported. The polypyrrole-MWCNTs-glucose oxidase (PY-CNT-GOx) electrode has been investigated in the present work. Cyclic voltammetry tests were performed in a three-electrode electrochemical set-up with modified electrode (Pt/PPy/MWCNTs/GOx) was used as working electrode. Platinum flat and Ag/AgCl (saturated KCl) were used as counter electrode and the reference electrode, respectively. The biofuel cells probe was prepared by immobilizing MWCNTs at the tip of a platinum (Pt) electrode (0.5 cm2) with PPy as the support matrix We have demonstrated a well-dispersed nanomaterial PPy/MWNT, which is able to immobilize GOx firmly under the condition of the absence of any other cross-linking agent.

  10. Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Meyer, Anne S.; Jørgensen, Henning

    2017-01-01

    Membrane separation of xylose and glucose can be accomplished via oxidation of glucose to gluconic acid by enzymatic glucose oxidase catalysis. Oxygen for this reaction can be supplied via decomposition of hydrogen peroxide by enzymatic catalase catalysis. In order to maximize the biocatalytic...... productivity of glucose oxidase and catalase (gluconic acid yield per total amount of enzyme) the following system set-ups were compared: immobilization of glucose oxidase alone; co-immobilization of glucose oxidase and catalase; glucose oxidase and catalase free in the membrane bioreactor. Fouling......-induced enzyme immobilization in the porous support of an ultrafiltration membrane was used as strategy for entrapment of glucose oxidase and catalase. The biocatalytic productivity of the membrane reactor was found to be highly related to the oxygen availability, which in turn depended on the reactor...

  11. Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection.

    Science.gov (United States)

    Cui, Jiewu; Adeloju, Samuel B; Wu, Yucheng

    2014-01-27

    A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GO(x)) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA-BSA-GLA-GO(x) nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm(-2) mM(-1) for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5-6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A fine pointed glucose oxidase immobilized electrode for low-invasive amperometric glucose monitoring.

    Science.gov (United States)

    Li, Jiang; Koinkar, Pankaj; Fuchiwaki, Yusuke; Yasuzawa, Mikito

    2016-12-15

    A low invasive type glucose sensor, which has a sensing region at the tip of a fine pointed electrode, was developed for continuous glucose monitoring. Platinum-iridium alloy electrode with a surface area of 0.045mm(2) was settled at the middle of pointed PEEK (Polyetheretherketone) tubing and was employed as sensing electrode. Electrodeposition of glucose oxidase in the presence of surfactant, Triton X-100, was performed for high-density enzyme immobilization followed by the electropolymerization of o-phenylenediamine for the formation of functional entrapping and permselective polymer membrane. Ag/AgCl film was coated on the surface of PEEK tubing as reference electrode. Amperometric responses of the prepared sensors to glucose were measured at a potential of 0.60V (vs. Ag/AgCl). The prepared electrode showed the sensitivity of 2.55μA/cm(2) mM with high linearity of 0.9986, within the glucose concentration range up to 21mM. The detection limit (S/N=3) was determined to be 0.11mM. The glucose sensor properties were evaluated in phosphate buffer solution and in vivo monitoring by the implantation of the sensors in rabbit, while conventional needle type sensors as a reference were used. The results showed that change in output current of the proposed sensor fluctuated similar with one in output current of the conventional needle type sensors, which was also in similar accordance with actual blood sugar level measured by commercially glucose meter. One-point calibration method was used to calibrate the sensor output current. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Chitosan coated on the layers' glucose oxidase immobilized on cysteamine/Au electrode for use as glucose biosensor.

    Science.gov (United States)

    Zhang, Yawen; Li, Yunqiu; Wu, Wenjian; Jiang, Yuren; Hu, Biru

    2014-10-15

    A glucose biosensor was developed via direct immobilization of glucose oxidase (GOD) by self-assembled cysteamine monolayer on Au electrode surface followed by coating chitosan on the surface of electrode. In this work, chitosan film was coated on the surface of GOD as a protection film to ensure the stability and biocompatibility of the constructed glucose biosensor. The different application ranges of sensors were fabricated by immobilizing varied layers of GOD. The modified surface film was characterized by a scanning electron microscope (SEM) and the fabrication process of the biosensor was confirmed through electrochemical impedance spectroscopy (EIS) of ferrocyanide. The performance of cyclic voltammetry (CV) in the absence and presence of 25 mM glucose and ferrocenemethanol showed a diffusion-controlled electrode process and reflected the different maximum currents between the different GOD layers. With the developed glucose biosensor, the detection limits of the two linear responses are 49.96 μM and 316.8 μM with the sensitivities of 8.91 μA mM(-1)cm(-2) and 2.93 μA mM(-1)cm(-2), respectively. In addition, good stability (up to 30 days) of the developed biosensor was observed. The advantages of this new method for sensors construction was convenient and different width ranges of detection can be obtained by modified varied layers of GOD. The sensor with two layers of enzyme displayed two current linear responses of glucose. The present work provided a simplicity and novelty method for producing biosensors, which may help design enzyme reactors and biosensors in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jiewu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Gippsland Campus, Churchill 3842, VIC Australia (Australia); Laboratory of Functional Nanomaterials and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui (China); Adeloju, Samuel B., E-mail: sam.adeloju@monash.edu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Gippsland Campus, Churchill 3842, VIC Australia (Australia); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [Laboratory of Functional Nanomaterials and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui (China)

    2014-01-27

    Graphical abstract: -- Highlights: •Successfully synthesised highly-ordered gold nanowires array with an AAO template. •Fabricated an ultra-sensitive glucose nanobiosensor with the gold nanowires array. •Achieved sensitivity as high as 379.0 μA cm{sup −2} mM{sup −1} and detection limit as low as 50 nM. •Achieved excellent anti-interference with aid of Nafion membrane towards UA and AA. •Enabled successful detection and quantification of glucose in human blood serum. -- Abstract: A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GO{sub x}) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA–BSA–GLA–GO{sub x} nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm{sup −2} mM{sup −1} for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5–6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples.

  15. Interaction of ZnS nanoparticles with flavins and glucose oxidase: A fluorimetric investigation

    International Nuclear Information System (INIS)

    Chatterjee, Anindita; Priyam, Amiya; Ghosh, Debasmita; Mondal, Somrita; Bhattacharya, Subhash C.; Saha, Abhijit

    2012-01-01

    Interactions of luminescence, water soluble ZnS nanoparticles (NPs) with flavins and glucose oxidase have been thoroughly investigated through optical spectroscopy. The photoluminescence of ZnS nanoparticles was quenched severely (∼60%) by riboflavin while other flavins such as flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) show quenching to different extents under analogous conditions. However, interestingly no effect in luminescence intensity of ZnS NPs was observed with protein bound flavins such as in glucose oxidase. Fluorescence lifetime measurement confirmed the quenching to be static in nature. Scavenging of photo-generated electron of ZnS nanoparticles by the flavin molecules may be attributed to the decrease in luminescence intensity. Quenching of ZnS nanoparticles with flavins follows the linear Stern–Volmer plot. The Stern–Volmer constants decreased in the following order: K S−V (Riboflavin)> K S−V (FAD)> K S−V (FMN). This interaction study could generate useful protocol for the fluorimetric determination of riboflavin (vitamin B 2 ) content and also riboflavin status in biological systems. - Highlights: ► Unique interaction specificity of ZnS nanoparticles with flavins has been explored. ► Unlike protein-bound flavin, fluorescence of free flavins was quenched by ZnS nanoparticles. ► FMN and FAD show quenching to different extents under analogous conditions. ► Fluorescence lifetime measurement confirmed the quenching to be static in nature. ► This study is useful for probing riboflavin in biological systems.

  16. Luminol, horseradish peroxidase, and glucose oxidase ternary functionalized graphene oxide for ultrasensitive glucose sensing.

    Science.gov (United States)

    Li, Fang; Ma, Wenjing; Liu, Jiachang; Wu, Xiang; Wang, Yan; He, Jianbo

    2018-01-01

    Luminol, horseradish peroxidase (HRP), and glucose oxidase (GOx) ternary functionalized graphene oxide (HRP/GOx-luminol-GO) with excellent chemiluminescence (CL) activity and specific enzymatic property was prepared via a simple and general strategy for the first time. In this approach, luminol functionalized GO (luminol-GO) was prepared by gently stirring GO with luminol. Then HRP and GOx were further co-immobilized onto the surface of luminol-GO by storing HRP and GOx with luminol-GO at 4 °C overnight, to form HRP/GOx-luminol-GO bionanocomposites. The synthesized HRP/GOx-luminol-GO could react with H 2 O 2 generated from GOx catalyzed glucose oxidization reaction, to produce strong CL emission in the presence of co-immobilized HRP. Thus, we developed an ultrasensitive, homogeneous, reagentless, selective, and simple CL sensing system for glucose detection. The resulting biosensors exhibited ultra-wide linear range from 5.0 nM to 5.0 mM, and an ultra-low detection limit of 1.2 nM, which was more than 3 orders of magnitude lower than previously reported methods. Furthermore, the sensing system was successfully applied for the detection of glucose in human blood samples.

  17. Novel ferrocene-anchored ZnO nanoparticle/carbon nanotube assembly for glucose oxidase wiring: application to a glucose/air fuel cell.

    Science.gov (United States)

    Haddad, Raoudha; Mattei, Jean-Gabriel; Thery, Jessica; Auger, Aurélien

    2015-06-28

    Glucose oxidase (GOx) is immobilized on ZnO nanoparticle-modified electrodes. The immobilized glucose oxidase shows efficient mediated electron transfer with ZnO nanoparticles to which the ferrocenyl moiety is π-stacked into a supramolecular architecture. The constructed ZnO-Fc/CNT modified electrode exhibits high ferrocene surface coverage, preventing any leakage of the π-stacked ferrocene from the newly described ZnO hybrid nanoparticles. The use of the new architecture of ZnO supported electron mediators to shuttle electrons from the redox centre of the enzyme to the surface of the working electrode can effectively bring about successful glucose oxidation. These modified electrodes evaluated as a highly efficient architecture provide a catalytic current for glucose oxidation and are integrated in a specially designed glucose/air fuel cell prototype using a conventional platinum-carbon (Pt/C) cathode at physiological pH (7.0). The obtained architecture leads to a peak power density of 53 μW cm(-2) at 300 mV for the Nafion® based biofuel cell under "air breathing" conditions at room temperature.

  18. Graphene oxide-mediated electrochemistry of glucose oxidase on glassy carbon electrodes.

    Science.gov (United States)

    Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Glucose oxidase (GOD) was immobilized on glassy carbon electrodes in the presence of graphene oxide (GO) as a model system for the interaction between GO and biological molecules. Lyotropic properties of didodecyldimethylammonium bromide (DDAB) were used to stabilize the enzymatic layer on the electrode surface resulting in a markedly improved electrochemical response of the immobilized GOD. Transmission electron microscopy images of the GO with DDAB confirmed the distribution of the GO in a two-dimensional manner as a foil-like material. Although it is known that glassy carbon surfaces are not ideal for hydrogen peroxide detection, successful chronoamperometric titrations of the GOD in the presence of GO with β-d-glucose were performed on glassy carbon electrodes, whereas no current response was detected upon β-d-glucose addition in the absence of GO. The GOD-DDAB-GO system displayed a high turnover efficiency and substrate affinity as a glucose biosensor. The simplicity and ease of the electrode preparation procedure of this GO/DDAB system make it a good candidate for immobilizing other biomolecules for fabrication of amperometric biosensors. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  19. Fabrication and characterization of electrochemically prepared bioanode (polyaniline/ferritin/glucose oxidase) for biofuel cell application

    Science.gov (United States)

    ul Haque, Sufia; Inamuddin; Nasar, Abu; Asiri, Abdullah M.

    2018-01-01

    Porous matrix of polyaniline (PANI) has been electrodeposited along with the entrapment of biocompatible redox mediator ferritin (Frt) and glucose oxidase (GOx) on the surface of glassy carbon (GC) electrode. The characterizations have been carried out by X-ray Diffraction (XRD) and Transmission electron microscopy (TEM). The enhanced electrochemical signal transfer rate from enzyme to the electrode surface was due to the intimate contact of the enzyme with the electrochemically polymerized conducting PANI matrix. The PANI/Frt/GOx modified GC bioanode was used to investigate the electrocatalytic activity as a function of the concentration of glucose in the range of 10-60 mM. It was confirmed by the electrochemical impedance spectroscopy (EIS), the thick deposition of PANI layer becomes more compact due to which the charge transfer resistance of PANI matrix becomes higher. All the electrochemical measurements of the electrode were carried out by using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). CV curves were recorded at different scan rates (20-100 mV/s) at 50 mM of glucose in 0.3 M potassium ferrocyanide. A normalized saturation current density of 22.3 ± 2 mA/cm2 was observed for the oxidation of 50 mM glucose at a scan rate of 100 mV/s.

  20. Layer-by-layer assemblies of chitosan/multi-wall carbon nanotubes and glucose oxidase for amperometric glucose biosensor applications

    International Nuclear Information System (INIS)

    Wu Baoyan; Hou Shihua; Yu Min; Qin Xia; Li, Sha; Chen Qiang

    2009-01-01

    A novel amperometric glucose biosensor based on multilayer films containing chitosan, multi-wall carbon nanotubes (MWCNTs) and glucose oxidase (GOD) was developed. MWCNTs were solubilized in chitosan (Chit-MWCNTs) used to interact with GOD. Poly (allylamine) (PAA) and polyvinylsulfuric acid potassium salt (PVS) were alternately deposited on the cleaned Pt electrode surface ((PVS/PAA) 3 /Pt). The (PVS/PAA) 3 /Pt electrode was alternately immersed in Chit-MWCNTs and GOD to assemble different layers of multilayer films. PBS washing was applied at the end of each assembly deposition for dissociating the weak adsorption. Micrographs of MWCNTs were obtained by scanning electron microscope, and properties of the resulting biosensors were measured by electrochemical measurements. Among the resulting biosensors, the biosensor based on eight layers of multilayer films was best. The resulting biosensor was able to efficiently monitor glucose, with the response time within 8 s, a detection limit of 21 μM estimated at a signal-to-noise ratio of 3, a linear range of 1-10 mM, the sensitivity of 0.45 μA/mM, and well stability. The study can provide a feasible simple approach on developing a new immobilization matrix for biosensors and surface functionalization

  1. A new methodology for the determination of enzyme activity based on carbon nanotubes and glucose oxidase.

    Science.gov (United States)

    Yeşiller, Gülden; Sezgintürk, Mustafa Kemal

    2015-11-10

    In this research, a novel enzyme activity analysis methodology is introduced as a new perspective for this area. The activity of elastase enzyme, which is a digestive enzyme mostly of found in the digestive system of vertebrates, was determined by an electrochemical device composed of carbon nanotubes and a second enzyme, glucose oxidase, which was used as a signal generator enzyme. In this novel methodology, a complex bioactive layer was constructed by using carbon nanotubes, glucose oxidase and a supporting protein, gelatin on a solid, conductive substrate. The activity of elastase was determined by monitoring the hydrolysis rate of elastase enzyme in the bioactive layer. As a result of this hydrolysis of elastase, glucose oxidase was dissociated from the bioactive layer, and following this the electrochemical signal due to glucose oxidase was decreased. The progressive elastase-catalyzed digestion of the bioactive layer containing glucose oxidase decreased the layer's enzymatic efficiency, resulting in a decrease of the glucose oxidation current as a function of the enzyme activity. The ratio of the decrease was correlated to elastase activity level. In this study, optimization experiments of bioactive components and characterization of the resulting new electrochemical device were carried out. A linear calibration range from 0.0303U/mL to 0.0729U/mL of elastase was reported. Real sample analyses were also carried out by the new electrochemical device. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A kinetic study of soluble glucose oxidase using a rotating-disc electrode

    NARCIS (Netherlands)

    Stroe-Biezen, van S.A.M.; Janssen, A.P.M.; Janssen, L.J.J.

    1994-01-01

    In order to determine the kinetic parameters of glucose oxidation catalysed by the enzyme glucose oxidase (GO) the initial velocity of hydrogen peroxide formation was measured using a rotating disc electrode (RDE). The major advantage of this method is the possibility of continuous measurement of

  3. Colorimetric Glucose Assay Based on Magnetic Particles Having Pseudo-peroxidase Activity and Immobilized Glucose Oxidase.

    Science.gov (United States)

    Martinkova, Pavla; Opatrilova, Radka; Kruzliak, Peter; Styriak, Igor; Pohanka, Miroslav

    2016-05-01

    Magnetic particles (MPs) are currently used as a suitable alternative for peroxidase in the construction of novel biosensors, analytic and diagnostic methods. Their better chemical and thermal stabilities predestine them as appropriate pseudo-enzymatic catalysts. In this point of view, our research was focused on preparation of simply and fast method for immobilization of glucose oxidase onto surface of MPs with peroxidase-like activity. Spectrophotometric method (wavelength 450 nm) optimized for glucose determination using modified MPs has been successfully developed. Concentration curve for optimization of method was assayed, and Michaelis-Menten constant (K m) calculated, maximum reaction rate (V max), limit of detection, and correlation coefficient were determined to be 0.13 mmol/l (2.34 mg/dl), 1.79 pkat, 3.74 µmol/l (0.067 mg/dl), and 0.996, respectively. Interferences of other sugars such as sucrose, sorbitol, deoxyribose, maltose, and fructose were determined as well as effect of substances presenting in plasma (ascorbic acid, reduced glutathione, trolox, and urea). Results in comparison with positive and negative controls showed no interferences of the other sugars and no influence of plasma substances to measuring of glucose. The constructed method showed corresponding results with linear dependence and a correlation coefficient of 0.997. Possibility of repeated use of modified MPs was successfully proved.

  4. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection

    International Nuclear Information System (INIS)

    Le, Thi Thanh Tuyen; Tran, Phu Duy; Pham, Xuan Tung; Tong, Duy Hien; Dang, Mau Chien

    2010-01-01

    In this work, the surface of platinum (Pt) nanowires was modified by using several chemicals, including a compound of gelatin gel with SiO 2 , polyvinyl alcohol (PVA) with Prussian blue (PB) mediator and cysteamine self-assembled monolayers (SAM). Then, glucose oxidase (GOD) enzyme was immobilized on the modified surfaces of Pt nanowire electrodes by using techniques of electrochemical adsorption and chemical binding. The GOD immobilized Pt nanowires were used for application in glucose detection by performing a cyclic voltammetry measurement. The detection results showed that GOD was immobilized on all of the tested surfaces and the highest glucose detection sensitivity of 60 μM was obtained when the Pt nanowires were modified by PVA with PB mediator. Moreover, the sensors showed very high current response when the Pt nanowires were modified with the cysteamine SAM. The stability and catalyst activity of GOD are also reported here. For instance, the catalyst activity of GOD retained about 60% of its initial value after it was stored at 4 °C in a 100 mM PBS buffer solution with a pH of 7.2 for a period of 30 days

  5. Glucose Sensor Using U-Shaped Optical Fiber Probe with Gold Nanoparticles and Glucose Oxidase.

    Science.gov (United States)

    Chen, Kuan-Chieh; Li, Yu-Le; Wu, Chao-Wei; Chiang, Chia-Chin

    2018-04-16

    In this study, we proposed a U-shaped optical fiber probe fabricated using a flame heating method. The probe was packaged in glass tube to reduce human factors during experimental testing of the probe as a glucose sensor. The U-shaped fiber probe was found to have high sensitivity in detecting the very small molecule. When the sensor was dipped in solutions with different refractive indexes, its wavelength or transmission loss changed. We used electrostatic self-assembly to bond gold nanoparticles and glucose oxidase (GOD) onto the sensor’s surface. The results over five cycles of the experiment showed that, as the glucose concentration increased, the refractive index of the sensor decreased and its spectrum wavelength shifted. The best wavelength sensitivity was 2.899 nm/%, and the linearity was 0.9771. The best transmission loss sensitivity was 5.101 dB/%, and the linearity was 0.9734. Therefore, the proposed U-shaped optical fiber probe with gold nanoparticles and GOD has good potential for use as a blood sugar sensor in the future.

  6. Study of dynamics of glucose-glucose oxidase-ferricyanide reaction

    Science.gov (United States)

    Nováková, A.; Schreiberová, L.; Schreiber, I.

    2011-12-01

    This work is focused on dynamics of the glucose-glucose oxidase-ferricyanide enzymatic reaction with or without sodium hydroxide in a continuous-flow stirred tank reactor (CSTR) and in a batch reactor. This reaction exhibits pH-variations having autocatalytic character and is reported to provide nonlinear dynamic behavior (bistability, excitability). The dynamical behavior of the reaction was examined within a wide range of inlet parameters. The main inlet parameters were the ratio of concentrations of sodium hydroxide and ferricyanide and the flow rate. In a batch reactor we observed an autocatalytic drop of pH from slightly basic to medium acidic values. In a CSTR our aim was to find bistability in the presence of sodium hydroxide. However, only a basic steady state was found. In order to reach an acidic steady state, we investigated the system in the absence of sodium hydroxide. Under these conditions the transition from the basic to the acidic steady state was observed when inlet glucose concentration was increased.

  7. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection

    Science.gov (United States)

    Thanh Tuyen Le, Thi; Duy Tran, Phu; Pham, Xuan Tung; Hien Tong, Duy; Chien Dang, Mau

    2010-09-01

    In this work, the surface of platinum (Pt) nanowires was modified by using several chemicals, including a compound of gelatin gel with SiO2, polyvinyl alcohol (PVA) with Prussian blue (PB) mediator and cysteamine self-assembled monolayers (SAM). Then, glucose oxidase (GOD) enzyme was immobilized on the modified surfaces of Pt nanowire electrodes by using techniques of electrochemical adsorption and chemical binding. The GOD immobilized Pt nanowires were used for application in glucose detection by performing a cyclic voltammetry measurement. The detection results showed that GOD was immobilized on all of the tested surfaces and the highest glucose detection sensitivity of 60 μM was obtained when the Pt nanowires were modified by PVA with PB mediator. Moreover, the sensors showed very high current response when the Pt nanowires were modified with the cysteamine SAM. The stability and catalyst activity of GOD are also reported here. For instance, the catalyst activity of GOD retained about 60% of its initial value after it was stored at 4 °C in a 100 mM PBS buffer solution with a pH of 7.2 for a period of 30 days.

  8. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4-silica-Au magnetic nanoparticles

    International Nuclear Information System (INIS)

    Wang Aijun; Li Yongfang; Li Zhonghua; Feng Jiuju; Sun Yanli; Chen Jianrong

    2012-01-01

    Monodisperse Fe 3 O 4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe 3 O 4 -silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 × 10 −9 mol·cm −2 , and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 ± 0.6 s −1 . The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 μA·mM −1 cm −2 and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe 3 O 4 -silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: ► Synthesis of monodispersed Fe 3 O 4 nanoparticles. ► Fabrication of core/shell Fe 3 O 4 -silica-Au nanoparticles. ► Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  9. Enzymatic sensing of glucose in artificial saliva using a flat electrode consisting of a nanocomposite prepared from reduced graphene oxide, chitosan, nafion and glucose oxidase

    International Nuclear Information System (INIS)

    Rabti, Amal; Argoubi, Wicem; Raouafi, Noureddine

    2016-01-01

    We report on the preparation of a nanoporous flat electrode by drop casting a nanocomposite consisting of reduced graphene oxide (rGO) and chitosan onto a polyester substrate. An underlying conductive surface is not required. The nanocomposite was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The 3D network of the composite was used as a scaffold for the immobilization of glucose oxidase (GOx). A well-defined signal related to direct GOx electrochemistry was registered and used to monitor levels of glucose. The resulting biosensor displays a linear response to glucose with a detection limit of 5 μM (at an S/N ratio of 3) and a sensitivity of 41.7 μA⋅mM"−"1∙cm"−"2. The sensor was applied to the determination of glucose in artificial saliva. (author)

  10. Glycosylation site-targeted PEGylation of glucose oxidase retains native enzymatic activity.

    Science.gov (United States)

    Ritter, Dustin W; Roberts, Jason R; McShane, Michael J

    2013-04-10

    Targeted PEGylation of glucose oxidase at its glycosylation sites was investigated to determine the effect on enzymatic activity, as well as the bioconjugate's potential in an optical biosensing assay. Methoxy-poly(ethylene glycol)-hydrazide (4.5kDa) was covalently coupled to periodate-oxidized glycosylation sites of glucose oxidase from Aspergillus niger. The bioconjugate was characterized using gel electrophoresis, liquid chromatography, mass spectrometry, and dynamic light scattering. Gel electrophoresis data showed that the PEGylation protocol resulted in a drastic increase (ca. 100kDa) in the apparent molecular mass of the protein subunit, with complete conversion to the bioconjugate; liquid chromatography data corroborated this large increase in molecular size. Mass spectrometry data proved that the extent of PEGylation was six poly(ethylene glycol) chains per glucose oxidase dimer. Dynamic light scattering data indicated the absence of higher-order oligomers in the PEGylated GOx sample. To assess stability, enzymatic activity assays were performed in triplicate at multiple time points over the course of 29 days in the absence of glucose, as well as before and after exposure to 5% w/v glucose for 24h. At a confidence level of 95%, the bioconjugate's performance was statistically equivalent to native glucose oxidase in terms of activity retention over the 29 day time period, as well as following the 24h glucose exposure. Finally, the bioconjugate was entrapped within a poly(2-hydroxyethyl methacrylate) hydrogel containing an oxygen-sensitive phosphor, and the construct was shown to respond approximately linearly with a 220±73% signal change (n=4, 95% confidence interval) over the physiologically-relevant glucose range (i.e., 0-400mg/dL); to our knowledge, this represents the first demonstration of PEGylated glucose oxidase incorporated into an optical biosensing assay. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection.

    Science.gov (United States)

    Gokoglan, Tugba Ceren; Soylemez, Saniye; Kesik, Melis; Toksabay, Sinem; Toppare, Levent

    2015-04-01

    A novel amperometric pyranose oxidase (PyOx) biosensor based on a selenium containing conducting polymer has been developed for the glucose detection. For this purpose, a conducting polymer; poly(4,7-bis(thieno[3,2-b]thiophen-2-yl)benzo[c][1,2,5] selenadiazole) (poly(BSeTT)) was synthesized via electropolymerisation on gold electrode to examine its matrix property for glucose detection. For this purpose, PyOx was used as the model enzyme and immobilised via physical adsorption technique. Amperometric detection of consumed oxygen was monitored at -0.7 V vs Ag reference electrode in a phosphate buffer (50 mM, pH 7.0). K(M)(app), Imax, LOD and sensitivity were calculated as 0.229 mM, 42.37 nA, 3.3 × 10(-4)nM and 6.4 nA/mM cm(2), respectively. Scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS) and cyclic voltammetry (CV) techniques were used to monitor changes in surface morphologies and to run electrochemical characterisations. Finally, the constructed biosensor was applied for the determination of glucose in beverages successfully. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Glucose oxidase/cellulose-carbon nanotube composite paper as a biocompatible bioelectrode for biofuel cells.

    Science.gov (United States)

    Won, Keehoon; Kim, Young-Hoo; An, Seulji; Lee, Hye Jung; Park, Saerom; Choi, Yong-Keun; Kim, Ji Hyeon; Hwang, Hak-In; Kim, Hyung Joo; Kim, Hyungsup; Lee, Sang Hyun

    2013-11-01

    Biofuel cells are devices for generating electrical energy directly from chemical energy of renewable biomass using biocatalysts such as enzymes. Efficient electrical communication between redox enzymes and electrodes is essential for enzymatic biofuel cells. Carbon nanotubes (CNTs) have been recognized as ideal electrode materials because of their high electrical conductivity, large surface area, and inertness. Electrodes consisting entirely of CNTs, which are known as CNT paper, have high surface areas but are typically weak in mechanical strength. In this study, cellulose (CL)-CNT composite paper was fabricated as electrodes for enzymatic biofuel cells. This composite electrode was prepared by vacuum filtration of CNTs followed by reconstitution of cellulose dissolved in ionic liquid, 1-ethyl-3-methylimidazolium acetate. Glucose oxidase (GOx), which is a redox enzyme capable of oxidizing glucose as a renewable fuel using oxygen, was immobilized on the CL-CNT composite paper. Cyclic voltammograms revealed that the GOx/CL-CNT paper electrode showed a pair of well-defined peaks, which agreed well with that of FAD/FADH2, the redox center of GOx. This result clearly shows that the direct electron transfer (DET) between the GOx and the composite electrode was achieved. However, this DET was dependent on the type of CNTs. It was also found that the GOx immobilized on the composite electrode retained catalytic activity for the oxidation of glucose.

  13. Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu Guangqing [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia); School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Adeloju, Samuel B., E-mail: Sam.Adeloju@monash.edu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia); Wu Yucheng [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang Xinyi [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia)

    2012-11-28

    Highlights: Black-Right-Pointing-Pointer Fabrication of well aligned PPyNWA of 20 nm diameter within AAO template. Black-Right-Pointing-Pointer Improvement of electrochemical properties by decoration with PtNPs. Black-Right-Pointing-Pointer Sensitive amperometric and potentiometric detection of glucose by adsorption of GOx on PPyNWA-PtNPs. Black-Right-Pointing-Pointer Detection of as little as 5.6 {mu}M glucose with potentiometric detection. Black-Right-Pointing-Pointer Comparable or better detection limit and sensitivity than some glucose biosensors fabricated with nanomaterials. - Abstract: A novel glucose biosensor, based on the modification of well-aligned polypyrrole nanowires array (PPyNWA) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. The distinct differences in the electrochemical properties of PPyNWA-GOx, PPyNWA-PtNPs, and PPyNWA-PtNPs-GOx electrodes were revealed by cyclic voltammetry. In particular, the results obtained for PPyNWA-PtNPs-GOx biosensor showed evidence of direct electron transfer due mainly to modification with PtNPs. Optimum fabrication of the PPyNWA-PtNPs-GOx biosensor for both potentiometric and amperometric detection of glucose were achieved with 0.2 M pyrrole, applied current density of 0.1 mA cm{sup -2}, polymerization time of 600 s, cyclic deposition of PtNPs from -200 mV to 200 mV, scan rate of 50 mV s{sup -1}, and 20 cycles. A sensitivity of 40.5 mV/decade and a linear range of 10 {mu}M to 1000 {mu}M (R{sup 2} = 0.9936) were achieved for potentiometric detection, while for amperometric detection a sensitivity of 34.7 {mu}A cm{sup -2} mM{sup -1} at an applied potential of 700 mV and a linear range of 0.1-9 mM (R{sup 2} = 0.9977) were achieved. In terms of achievable detection limit, potentiometric detection achieved 5.6 {mu}M of glucose, while amperometric detection achieved 27.7 {mu}M.

  14. Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor

    International Nuclear Information System (INIS)

    Xu Guangqing; Adeloju, Samuel B.; Wu Yucheng; Zhang Xinyi

    2012-01-01

    Highlights: ► Fabrication of well aligned PPyNWA of 20 nm diameter within AAO template. ► Improvement of electrochemical properties by decoration with PtNPs. ► Sensitive amperometric and potentiometric detection of glucose by adsorption of GOx on PPyNWA–PtNPs. ► Detection of as little as 5.6 μM glucose with potentiometric detection. ► Comparable or better detection limit and sensitivity than some glucose biosensors fabricated with nanomaterials. - Abstract: A novel glucose biosensor, based on the modification of well-aligned polypyrrole nanowires array (PPyNWA) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. The distinct differences in the electrochemical properties of PPyNWA–GOx, PPyNWA–PtNPs, and PPyNWA–PtNPs–GOx electrodes were revealed by cyclic voltammetry. In particular, the results obtained for PPyNWA–PtNPs–GOx biosensor showed evidence of direct electron transfer due mainly to modification with PtNPs. Optimum fabrication of the PPyNWA–PtNPs–GOx biosensor for both potentiometric and amperometric detection of glucose were achieved with 0.2 M pyrrole, applied current density of 0.1 mA cm −2 , polymerization time of 600 s, cyclic deposition of PtNPs from −200 mV to 200 mV, scan rate of 50 mV s −1 , and 20 cycles. A sensitivity of 40.5 mV/decade and a linear range of 10 μM to 1000 μM (R 2 = 0.9936) were achieved for potentiometric detection, while for amperometric detection a sensitivity of 34.7 μA cm −2 mM −1 at an applied potential of 700 mV and a linear range of 0.1–9 mM (R 2 = 0.9977) were achieved. In terms of achievable detection limit, potentiometric detection achieved 5.6 μM of glucose, while amperometric detection achieved 27.7 μM.

  15. Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles

    International Nuclear Information System (INIS)

    Su, Shao; Sun, Haofan; Xu, Fei; Yuwen, Lihui; Wang, Lianhui; Fan, Chunhai

    2014-01-01

    An electrochemical glucose biosensor was developed by immobilizing glucose oxidase (GOx) on a glass carbon electrode that was modified with molybdenum disulfide (MoS 2 ) nanosheets that were decorated with gold nanoparticles (AuNPs). The electrochemical performance of the modified electrode was investigated by cyclic voltammetry, and it is found that use of the AuNPs-decorated MoS 2 nanocomposite accelerates the electron transfer from electrode to the immobilized enzyme. This enables the direct electrochemistry of GOx without any electron mediator. The synergistic effect the MoS 2 nanosheets and the AuNPs result in excellent electrocatalytic activity. Glucose can be detected in the concentration range from 10 to 300 μM, and down to levels as low as 2.8 μM. The biosensor also displays good reproducibility and long-term stability, suggesting that it represents a promising tool for biological assays. (author)

  16. Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase

    International Nuclear Information System (INIS)

    Wen, H.; Nallathambi, V.; Chakraborty, D.; Barton, S.C.

    2011-01-01

    Carboxylated carbon nanotubes were coated onto carbon microfiber electrodes to create a micron-scale bioelectrode. This material has a high surface area and can serve as a support for immobilization of enzymes such as glucose oxidase. A typical carbon nanotube loading of 13 μg cm -1 yields a coating thickness of 17 μm and a 2000-fold increase in surface capacitance. The modified electrode was further coated with a biocatalytic hydrogel composed of a conductive redox polymer, glucose oxidase, and a crosslinker to create a glucose bioelectrode. The current density on oxidation of glucose is 16.6 mA cm-2 at 0.5 V (vs. Ag/AgCl) in oxygen-free glucose solution. We consider this approach to be useful for designing and characterizing surface treatments for carbon mats and papers by mimicking their local microenvironment. (author)

  17. Amide group anchored glucose oxidase based anodic catalysts for high performance enzymatic biofuel cell

    Science.gov (United States)

    Chung, Yongjin; Ahn, Yeonjoo; Kim, Do-Heyoung; Kwon, Yongchai

    2017-01-01

    A new enzyme catalyst is formed by fabricating gold nano particle (GNP)-glucose oxidase (GOx) clusters that are then attached to polyethyleneimine (PEI) and carbon nanotube (CNT) with cross-linkable terephthalaldehyde (TPA) (TPA/[CNT/PEI/GOx-GNP]). Especially, amide bonds belonging to TPA play an anchor role for incorporating rigid bonding among GNP, GOx and CNT/PEI, while middle size GNP is well bonded with thiol group of GOx to form strong GNP-GOx cluster. Those bonds are identified by chemical and electrochemical characterizations like XPS and cyclic voltammogram. The anchording effect of amide bonds induces fast electron transfer and strong chemical bonding, resulting in enhancements in (i) catalytic activity, (ii) amount of immobilized GOx and (ii) performance of enzymatic biofuel cell (EBC) including the catalyst. Regarding the catalytic activity, the TPA/[CNT/PEI/GOx-GNP] produces high electron transfer rate constant (6 s-1), high glucose sensitivity (68 μA mM-1 cm-2), high maximum current density (113 μA cm-2), low charge transfer resistance (17.0 Ω cm2) and long-lasting durability while its chemical structure is characterized by XPS confirming large portion of amide bond. In EBC measurement, it has high maximum power density (0.94 mW cm-2) compatible with catalytic acitivity measurements.

  18. Electrochemistry of glucose oxidase immobilized on the carbon nanotube wrapped by polyelectrolyte

    International Nuclear Information System (INIS)

    Wen, Dan; Liu, Ying; Yang, Guocheng; Dong, Shaojun

    2007-01-01

    A more stably dispersing of multi-wall carbon nanotube composite (noted as PDDA-MWNT), which was obtained by wrapping the MWNT with poly(diallydimethylammonium) chloride (PDDA), was used for the immobilization of glucose oxidase (GOD) and its bioelectrochemical studies. The morphologies and structures of the PDDA-MWNT composite were characterized by environment scanning electron microscopy (ESEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry were used to feature the GOD adsorbed onto the electrode modified by PDDA-MWNT composite. The immobilized GOD at the PDDA-MWNT films exhibited a pair of well-defined nearly reversible redox peaks and a fast heterogeneous electron transfer rate with the rate constant (k s ) of 2.76 s -1 . In addition, GOD immobilized in this way retained its bioelectrocatalytic activity for the oxidation of glucose. The method of immobilizing GOD without any additional cross-linking agents presented here is easy and facile, which provides a model for other redox enzymes and proteins

  19. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    International Nuclear Information System (INIS)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-01-01

    Highlights: • We fabricated polyvinyl alcohol/malonic acid nanofibers using electrospinning. • The surface nanofibers were modified by gaseous (air, nitrogen, CO_2 and argon) dielectric barrier discharge. • Among them, air plasma had the most significant effect on glucose oxidase immobilization. • Chemical analysis showed that after modification of nanofibers by air plasma, the carboxyl group increased. • After air plasma treatment, reusability and storage stability of glucose oxidase immobilized on nanofibers improved. - Abstract: Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO_2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  20. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Afshari, Esmail, E-mail: e.afshari@mail.sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Mazinani, Saeedeh [Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, 15875-4413, Tehran (Iran, Islamic Republic of); Ranaei-Siadat, Seyed-Omid [Protein Research Center, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Ghomi, Hamid [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of)

    2016-11-01

    Highlights: • We fabricated polyvinyl alcohol/malonic acid nanofibers using electrospinning. • The surface nanofibers were modified by gaseous (air, nitrogen, CO{sub 2} and argon) dielectric barrier discharge. • Among them, air plasma had the most significant effect on glucose oxidase immobilization. • Chemical analysis showed that after modification of nanofibers by air plasma, the carboxyl group increased. • After air plasma treatment, reusability and storage stability of glucose oxidase immobilized on nanofibers improved. - Abstract: Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO{sub 2}, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  1. In vitro analysis of the role of glucose oxidase from Talaromyces flavus in biocontrol of the plant pathogen Verticillium dahliae.

    OpenAIRE

    Stosz, S K; Fravel, D R; Roberts, D P

    1996-01-01

    Culture filtrates from Talaromyces flavus grown on glucose contained high levels of glucose oxidase activity, while culture filtrates from T. flavus grown on xylan contained negligible glucose oxidase activity. Culture filtrates from T-flavus grown on both media contained complex protein profiles. However, only culture filtrates from T. flavus grown on glucose inhibited germination of microsclerotia of Verticillium dahliae in in vitro inhibition assays. A polyclonal antiserum preparation, pAB...

  2. Interaction of ZnS nanoparticles with flavins and glucose oxidase: A fluorimetric investigation

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Anindita; Priyam, Amiya; Ghosh, Debasmita; Mondal, Somrita [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8, Bidhannagar, Kolkata 700098 (India); Bhattacharya, Subhash C. [Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Saha, Abhijit, E-mail: abhijit@alpha.iuc.res.in [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8, Bidhannagar, Kolkata 700098 (India)

    2012-03-15

    Interactions of luminescence, water soluble ZnS nanoparticles (NPs) with flavins and glucose oxidase have been thoroughly investigated through optical spectroscopy. The photoluminescence of ZnS nanoparticles was quenched severely ({approx}60%) by riboflavin while other flavins such as flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) show quenching to different extents under analogous conditions. However, interestingly no effect in luminescence intensity of ZnS NPs was observed with protein bound flavins such as in glucose oxidase. Fluorescence lifetime measurement confirmed the quenching to be static in nature. Scavenging of photo-generated electron of ZnS nanoparticles by the flavin molecules may be attributed to the decrease in luminescence intensity. Quenching of ZnS nanoparticles with flavins follows the linear Stern-Volmer plot. The Stern-Volmer constants decreased in the following order: K{sub S-V} (Riboflavin)> K{sub S-V} (FAD)> K{sub S-V} (FMN). This interaction study could generate useful protocol for the fluorimetric determination of riboflavin (vitamin B{sub 2}) content and also riboflavin status in biological systems. - Highlights: Black-Right-Pointing-Pointer Unique interaction specificity of ZnS nanoparticles with flavins has been explored. Black-Right-Pointing-Pointer Unlike protein-bound flavin, fluorescence of free flavins was quenched by ZnS nanoparticles. Black-Right-Pointing-Pointer FMN and FAD show quenching to different extents under analogous conditions. Black-Right-Pointing-Pointer Fluorescence lifetime measurement confirmed the quenching to be static in nature. Black-Right-Pointing-Pointer This study is useful for probing riboflavin in biological systems.

  3. Random mutagenesis of aspergillus niger and process optimization for enhanced production of glucose oxidase

    International Nuclear Information System (INIS)

    Haq, I.; Nawaz, A.; Mukhtar, A.N.H.; Mansoor, H.M.Z.; Ameer, S.M.

    2014-01-01

    The study deals with the improvement of wild strain Aspergillus niger IIB-31 through random mutagenesis using chemical mutagens. The main aim of the work was to enhance the glucose oxidase (GOX) yield of wild strain (24.57+-0.01 U/g of cell mass) through random mutagenesis and process optimization. The wild strain of Aspergillus niger IIB-31 was treated with chemical mutagens such as Ethyl methane sulphonate (EMS) and nitrous acid for this purpose. Mutagen treated 98 variants indicating the positive results were picked and screened for the glucose oxidase production using submerged fermentation. EMS treated E45 mutant strain gave the highest glucose oxidase production (69.47 + 0.01 U/g of cell mass), which was approximately 3-folds greater than the wild strain IIB-31. The preliminary cultural conditions for the production of glucose oxidase using submerged fermentation from strain E45 were also optimized. The highest yield of GOD was obtained using 8% glucose as carbon and 0.3% peptone as nitrogen source at a medium pH of 7.0 after an incubation period of 72 hrs at 30 degree. (author)

  4. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement.

    Science.gov (United States)

    Milton, Ross D; Giroud, Fabien; Thumser, Alfred E; Minteer, Shelley D; Slade, Robert C T

    2013-11-28

    Hydrogen peroxide production by glucose oxidase (GOx) and its negative effect on laccase performance have been studied. Simultaneously, FAD-dependent glucose dehydrogenase (FAD-GDH), an O2-insensitive enzyme, has been evaluated as a substitute. Experiments focused on determining the effect of the side reaction of GOx between its natural electron acceptor O2 (consumed) and hydrogen peroxide (produced) in the electrolyte. Firstly, oxygen consumption was investigated by both GOx and FAD-GDH in the presence of substrate. Relatively high electrocatalytic currents were obtained with both enzymes. O2 consumption was observed with immobilized GOx only, whilst O2 concentration remained stable for the FAD-GDH. Dissolved oxygen depletion effects on laccase electrode performances were investigated with both an oxidizing and a reducing electrode immersed in a single compartment. In the presence of glucose, dramatic decreases in cathodic currents were recorded when laccase electrodes were combined with a GOx-based electrode only. Furthermore, it appeared that the major loss of performance of the cathode was due to the increase of H2O2 concentration in the bulk solution induced laccase inhibition. 24 h stability experiments suggest that the use of O2-insensitive FAD-GDH as to obviate in situ peroxide production by GOx is effective. Open-circuit potentials of 0.66 ± 0.03 V and power densities of 122.2 ± 5.8 μW cm(-2) were observed for FAD-GDH/laccase biofuel cells.

  5. An amperometric biosensor for glucose detection from glucose oxidase immobilized in polyaniline-polyvinylsulfonate-potassium ferricyanide film.

    Science.gov (United States)

    Arslan, Fatma; Beskan, Umut

    2014-08-01

    In this study, a novel amperometric glucose biosensor with immobilization of glucose oxidase on electrochemically polymerized polyaniline-polyvinylsulphonate-potassium ferricyanide (Pani-Pvs-Fc) films has been accomplished via the entrapment technique. Potassium ferricyanide was used as the mediator. Determination of glucose was carried out by the oxidation of potassium ferrocyanide at 0.3 V vs. Ag/AgCl. The effects of pH and temperature were investigated, and the optimum pH value was found to be 7.5. The storage stability and the operational stability of the enzyme electrode were also studied.

  6. Oxidative polymerization of 5-hydroxytryptamine to physically and chemically immobilize glucose oxidase for electrochemical biosensing.

    Science.gov (United States)

    Huang, Ting; Liu, Zaichun; Li, Yunlong; Li, Yanqiu; Chao, Long; Chen, Chao; Tan, Yueming; Xie, Qingji; Yao, Shouzhuo; Wu, Yuping

    2018-07-12

    Poly(5-hydroxytryptamine) (poly(5-HT)) is exploited as a new and efficient enzyme-immobilization matrix for amperometric and biofuel cell (BFC)-based biosensing. A GOx-poly(5-HT)-Pd nanoparticles (PdNPs) bionanocomposite is prepared by Na 2 PdCl 4 -initiated oxidized polymerization of 5-hydroxytryptamine (5-HT) in a neutral aqueous solution containing glucose oxidase (GOx), and this bionanocomposite and then chitosan (CS) are cast-coated on a Pd-plated Au electrode to yield a CS/GOx-poly(5-HT)-PdNPs/Pd plate /Au enzyme electrode. Scanning/transmission electron microscopy, UV-vis spectrophotometry and electrochemical quartz crystal microbalance are employed for material characterization and/or process monitoring. Under optimized conditions, the amperometric response of the enzyme electrode is linear with glucose concentration from 2.0 μM to 6.66 mM with a sensitivity of 110 μA mM -1  cm -2 , a limit of detection of 0.2 μM, and excellent operation/storage stability in the first-generation biosensing mode. The sensitivity is larger than those of some conventional electrodes under identical conditions. The enzyme electrode also works well in the second-generation biosensing mode. By using the enzyme electrode as the anode for glucose oxidation and a Pd plate /Au electrode as the cathode for KMnO 4 reduction, a monopolar BFC is constructed as a self-powered biosensor, the current response of which is linear with glucose concentration from 50 μM to 34.5 mM. Experiments also show that poly(5-HT) is a physical and chemical dual-immobilization matrix of enzyme, since the abundant amino groups in poly(5-HT) can be used for chemical bonding of GOx. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Carbon nanotube-based glucose oxidase nanocomposite anode materials for bio-fuel cells

    Science.gov (United States)

    Dudzik, Jonathan

    The field of nanotechnology has benefited medicine, science, and engineering. The advent of Carbon Nanotubes (CNTs) and protein-inorganic interfacing have received much attention due to their unique nanostructures which can be modified to act as a scaffold to house proteins or create nanowires. The current trend incorporates the robustness and specificity characteristics of proteins to the mechanical strength, enlarged surface area, and conductive capabilities emblematic of their inorganic counterparts. Bio-Fuel Cells (BFCs) and Biosensors remain at the forefront and devices such as implantable glucose monitors are closer to realization than ever before. This research strives to exploit potential energy from the eukaryotic enzyme Glucose Oxidase (GOx) during oxidation of its substrate, glucose. During this process, a two-electron transfer occurs at its two FAD redox centres which can be harnessed via an electrochemical setup involving a Multi-Walled Carbon Nanotube (MWCNTs) modified electrode. The objective is to develop a MWCNT-GOx bionanocomposite capable of producing and sustaining a competitive power output. To help with this aim, investigation into a crosslinked enzyme cluster (CEC) immobilization technique is envisioned to amplify power output due to its highly concentrated, reusable, and thermally stable characteristics. Numerous CEC-GOx-MWCNT composites were fabricated with the highest initial output reaching 170 muW/cm 2. It was hypothesized that the carbohydrate moiety increased tunnelling distance and therefore hindered electron transfer. Efforts to produce a recombinant GOx without the encumbrance were unsuccessful. Two sub-clone constructs were explored and although a recombinant protein was identified, it was not confirmed to be GOx. BFC testing on bionanocomposites integrating non-glycosylated GOx could not be performed although there remains a strong contention that the recombinant would demonstrate superior power densities in comparison to its

  8. Dysregulated hepatic expression of glucose transporters in chronic disease: contribution of semicarbazide-sensitive amine oxidase to hepatic glucose uptake.

    Science.gov (United States)

    Karim, Sumera; Liaskou, Evaggelia; Fear, Janine; Garg, Abhilok; Reynolds, Gary; Claridge, Lee; Adams, David H; Newsome, Philip N; Lalor, Patricia F

    2014-12-15

    Insulin resistance is common in patients with chronic liver disease (CLD). Serum levels of soluble vascular adhesion protein-1 (VAP-1) are also increased in these patients. The amine oxidase activity of VAP-1 stimulates glucose uptake via translocation of transporters to the cell membrane in adipocytes and smooth muscle cells. We aimed to document human hepatocellular expression of glucose transporters (GLUTs) and to determine if VAP-1 activity influences receptor expression and hepatic glucose uptake. Quantitative PCR and immunocytochemistry were used to study human liver tissue and cultured cells. We also used tissue slices from humans and VAP-1-deficient mice to assay glucose uptake and measure hepatocellular responses to stimulation. We report upregulation of GLUT1, -3, -5, -6, -7, -8, -9, -10, -11, -12, and -13 in CLD. VAP-1 expression and enzyme activity increased in disease, and provision of substrate to hepatic VAP-1 drives hepatic glucose uptake. This effect was sensitive to inhibition of VAP-1 and could be recapitulated by H2O2. VAP-1 activity also altered expression and subcellular localization of GLUT2, -4, -9, -10, and -13. Therefore, we show, for the first time, alterations in hepatocellular expression of glucose and fructose transporters in CLD and provide evidence that the semicarbazide-sensitive amine oxidase activity of VAP-1 modifies hepatic glucose homeostasis and may contribute to patterns of GLUT expression in chronic disease. Copyright © 2014 the American Physiological Society.

  9. Improvement of the stability and activity of immobilized glucose oxidase on modified iron oxide magnetic nanoparticles

    Science.gov (United States)

    Abbasi, Mahboube; Amiri, Razieh; Bordbar, Abdol-Kalegh; Ranjbakhsh, Elnaz; Khosropour, Ahmad-Reza

    2016-02-01

    Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.

  10. Improvement of the stability and activity of immobilized glucose oxidase on modified iron oxide magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Mahboube, E-mail: mahbubeabbasi@yahoo.com; Amiri, Razieh, E-mail: razieh.amiri@gmail.com; Bordbar, Abdol-Kalegh, E-mail: bordbar@chem.ui.ac.ir; Ranjbakhsh, Elnaz, E-mail: e.ranjbakhsh@yahoo.com; Khosropour, Ahmad-Reza, E-mail: khosropour@chem.ui.ac.ir

    2016-02-28

    Graphical abstract: - Highlights: • Modified iron oxide magnetic nanoparticles were synthesized by co-precipitation method and characterized by TEM and XRD. • Covalent attachment of GOX to MIMNs was confirmed by FT-IR technique. • Optimization of the reaction time and initial amount of the GOX were carried out. • Improvement of activity and stability of immobilized GOX have been increased in comparison of free GOX. - Abstract: Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.

  11. Cross-linked glucose oxidase clusters for biofuel cell anode catalysts

    International Nuclear Information System (INIS)

    Dudzik, Jonathan; Audette, Gerald F; Chang, Wen-Chi; Kannan, A M; Filipek, Slawomir; Viswanathan, Sowmya; Li, Pingzuo; Renugopalakrishnan, V

    2013-01-01

    The efficient localization of increased levels of active enzymes onto conducting scaffolds is important for the development of enzyme-based biofuel cells. Cross-linked enzyme clusters (CEC) of glucose oxidase (GOx) constrained to functionalized carbon nanotubes (CEC-CNTs) were generated in order to evaluate the potential of using CECs for developing GOx-based bioanodes functioning via direct electron transfer from the GOx active site to the CNT scaffold. CEC-CNTs generated from several weight-to-weight ratios of GOx:CNT were examined for comparable catalytic activity to free GOx into the solution, with CEC-CNTs generated from a 100% GOx solution displaying the greatest enzymatic activity. Scanning transmission electron microscopic analysis of CEC-CNTs generated from 100% GOx to CNT (wt/wt) ratios revealed that CEC clusters of ∼78 µm 2 localized to the CNT surface. Electrochemical analysis indicates that the enzyme is engaged in direct electron transfer, and biofuel cells generated using GOx CEC-CNT bioanodes were observed to have a peak power density of ∼180 µW cm −2 . These data indicate that the generation of nano-to-micro-sized active enzyme clusters is an attractive option for the design of enzyme-specific biofuel cell powered implantable devices. (paper)

  12. A low perfusion rate microreactor for the continous monitoring of enzyme characteristics: applications for glucose oxidase.

    NARCIS (Netherlands)

    Posthuma-Trumpie, G.A.; Venema, K.; Berkel, van W.J.H.; Korf, J.

    2007-01-01

    This report describes a versatile and robust microreactor for bioactive proteins physically immobilized on a polyether sulfone filter. The potential of the reactor is illustrated with glucose oxidase immobilized on a filter with a cut-off value of 30 kDa. A flow-injection system was used to deliver

  13. An explanation for the combined effect of xylanase-glucose oxidase in dough systems

    NARCIS (Netherlands)

    Primo-Martín, C.; Wang, M.; Lichtendonk, W.J.; Plijter, J.J.; Hamer, R.J.

    2005-01-01

    In the bakery industry, glucose oxidase is usually used in combination with xylanase. Although many theories exist on the mechanism of action of each enzyme, the positive effect of combining the two is as yet unexplained. In this paper we studied a possible basis for this synergy by focusing on the

  14. Enhancing the rheological performance of wheat flour dough with glucose oxidase, transglutaminase or supplementary gluten

    NARCIS (Netherlands)

    Meerts, Mathieu; Van Ammel, Helene; Meeus, Yannick; Van Engeland, Sarah; Cardinaels, Ruth; Oosterlinck, Filip; Courtin, Christophe M.; Moldenaers, Paula

    2017-01-01

    The enzymes glucose oxidase and transglutaminase are frequently used to improve the breadmaking performance of wheat flours, as they have the ability to considerably alter the viscoelastic nature of the gluten network. To evaluate a flour’s breadmaking performance, rheological tests offer an

  15. A low perfusion rate microreactor for continuous monitoring of enzyme characteristics : application to glucose oxidase

    NARCIS (Netherlands)

    Posthuma-Trumpie, G. A.; Venema, K.; van Berkel, W. J. H.; Korf, J.

    This report describes a versatile and robust microreactor for bioactive proteins physically immobilized on a polyether sulfone filter. The potential of the reactor is illustrated with glucose oxidase immobilized on a filter with a cut-off value of 30 kDa. A flow-injection system was used to deliver

  16. Addition of glucose oxidase for the improvement of refrigerated dough quality

    Science.gov (United States)

    Refrigerated dough encompasses a wide range of products and is a very popular choice for consumers. Two of the largest problems that occur during refrigerated dough storage are dough syruping and loss of dough strength. The goal of this study was to evaluate glucose oxidase as an additive to refri...

  17. Covalent immobilization of glucose oxidase on amino MOFs via post-synthetic modification

    NARCIS (Netherlands)

    Tudisco, C.G.; Zolubas, G.; Seoane de la Cuesta, B.; Zafarani, H.; Kazemzad Asiabi, M.; Gascon Sabate, J.; Hagedoorn, P.L.; Rassaei, L.

    2016-01-01

    The post-synthetic modification (PSM) of two amino-MOFs with glucose oxidase is reported in this study. The multi-step approach preserved the MOFs' structure and allowed the production of enzyme-functionalized MOFs (MOFs@GOx), which retained the enzymatic activity and showed selective properties

  18. Novel glucose biosensor based on a glassy carbon electrode modified with hollow gold nanoparticles and glucose oxidase

    International Nuclear Information System (INIS)

    Wang, W.; Ying, S.; Zhang, Z.; Huang, S.

    2011-01-01

    A novel glucose biosensor is presented as that based on a glassy carbon electrode modified with hollow gold nanoparticles (HGNs) and glucose oxidase. The sensor exhibits a better differential pulse voltammetric response towards glucose than the one based on conventional gold nanoparticles of the same size. This is attributed to the good biological conductivity and biocompatibility of HGNs. Under the optimal conditions, the sensor displays a linear range from 2.0 x 10 -6 to 4.6 x 10 -5 M of glucose, with a detection limit of 1.6 x 10 -6 M (S/N = 3). Good reproducibility, stability and no interference make this biosensor applicable to the determination of glucose in samples such as sports drinks. (author)

  19. Effect of gamma irradiation on aspergillus niger for enhanced production of glucose oxidase

    International Nuclear Information System (INIS)

    Zia, M.A.; Rasul, S.

    2012-01-01

    Developing countries have a high prevalence of diabetes and their populations are suffering from associated adverse factors. Such a frequency requires more effective diagnosis, mostly achieved by glucose diagnostic kits. Although high priced kits are available in market but local production of such kits can be highly cost effective and may confer the decline in incidence of the disease. Glucose oxidase is the key enzyme for the determination of glucose in such analytical tools. Enhanced production of glucose oxidase was performed by mutagenesis of Aspergillus niger by gamma irradiation. A dose of 80 krad was found as optimum for derivation of positive mutant strains. Following the screening by triton X-100 and 2-deoxy-D-glucose, the selected strains A. niger G-80-A, A. niger G-80-B and A. niger G-80-C showed 27.5, 23.20 and 20.55 UmL/sub -1/ glucose oxidase activity in enzyme diffusion zone test; which is much higher to parental strain (7.5 UmL/sup -1/). A. niger G-80-A was subjected to submerged fermentation and obtained highest yields after 36 h, at CSL 2%, pH 6.5, 30 degree C, KH/sub 2/PO/sub 4/ 0.8% and urea 0.3%. Partial purification by ammonium sulfate resulted in 175 UmL/sup -1/ of glucose oxidase activity after dialysis. Kinetic parameters like optimum pH, temperature, K/sub m/ and V/sub max/ were found to be 6.0 (180 +- 2 UmL/sup -1/), 30 degree C (185 +- 0.5 UmL/sup -1/), 5.26 mM and 400 U mL/sup -1/, respectively. Active inhibition of the enzyme by increasing concentration of PLP in reaction mixture confirmed the presence of functional lysyl residue on the active site of enzyme. (author)

  20. Liquid-Phase Packaging of a Glucose Oxidase Solution with Parylene Direct Encapsulation and an Ultraviolet Curing Adhesive Cover for Glucose Sensors

    OpenAIRE

    Seiichi Takamatsu; Hisanori Takano; Nguyen Binh-Khiem; Tomoyuki Takahata; Eiji Iwase; Kiyoshi Matsumoto; Isao Shimoyama

    2010-01-01

    We have developed a package for disposable glucose sensor chips using Parylene encapsulation of a glucose oxidase solution in the liquid phase and a cover structure made of an ultraviolet (UV) curable adhesive. Parylene was directly deposited onto a small volume (1 μL) of glucose oxidase solution through chemical vapor deposition. The cover and reaction chamber were constructed on Parylene film using a UV-curable adhesive and photolithography. The package was processed at room temperature to ...

  1. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.

    Science.gov (United States)

    Wongnate, Thanyaporn; Chaiyen, Pimchai

    2013-07-01

    Enzymes in the glucose-methanol-choline (GMC) oxidoreductase superfamily catalyze the oxidation of an alcohol moiety to the corresponding aldehyde. In this review, the current understanding of the sugar oxidation mechanism in the reaction of pyranose 2-oxidase (P2O) is highlighted and compared with that of other enzymes in the GMC family for which structural and mechanistic information is available, including glucose oxidase, choline oxidase, cholesterol oxidase, cellobiose dehydrogenase, aryl-alcohol oxidase, and pyridoxine 4-oxidase. Other enzymes in the family that have been newly discovered or for which less information is available are also discussed. A large primary kinetic isotope effect was observed for the flavin reduction when 2-d-D-glucose was used as a substrate, but no solvent kinetic isotope effect was detected for the flavin reduction step. The reaction of P2O is consistent with a hydride transfer mechanism in which there is stepwise formation of d-glucose alkoxide prior to the hydride transfer. Site-directed mutagenesis of P2O and pH-dependence studies indicated that His548 is a catalytic base that facilitates the deprotonation of C2-OH in D-glucose. This finding agrees with the current mechanistic model for aryl-alcohol oxidase, glucose oxidase, cellobiose dehydrogenase, methanol oxidase, and pyridoxine 4-oxidase, but is different from that of cholesterol oxidase and choline oxidase. Although all of the GMC enzymes share similar structural folding and use the hydride transfer mechanism for flavin reduction, they appear to have subtle differences in the fine-tuned details of how they catalyze substrate oxidation. © 2013 The Authors Journal compilation © 2013 FEBS.

  2. Davallialactone reduces inflammation and repairs dentinogenesis on glucose oxidase-induced stress in dental pulp cells.

    Science.gov (United States)

    Lee, Young-Hee; Kim, Go-Eun; Song, Yong-Beom; Paudel, Usha; Lee, Nan-Hee; Yun, Bong-Sik; Yu, Mi-Kyung; Yi, Ho-Keun

    2013-11-01

    The chronic nature of diabetes mellitus (DM) raises the risk of oral complication diseases. In general, DM causes oxidative stress to organs. This study aimed to evaluate the cellular change of dental pulp cells against glucose oxidative stress by glucose oxidase with a high glucose state. The purpose of this study was to test the antioxidant character of davallialactone and to reduce the pathogenesis of dental pulp cells against glucose oxidative stress. The glucose oxidase with a high glucose concentration was tested for hydroxy peroxide (H2O2) production, cellular toxicity, reactive oxygen species (ROS) formation, induction of inflammatory molecules and disturbance of dentin mineralization in human dental pulp cells. The anti-oxidant effect of Davallilactone was investigated to restore dental pulp cells' vitality and dentin mineralization via reduction of H2O2 production, cellular toxicity, ROS formation and inflammatory molecules. The treatment of glucose oxidase with a high glucose concentration increased H2O2 production, cellular toxicity, and inflammatory molecules and disturbed dentin mineralization by reducing pulp cell activity. However, davallialactone reduced H2O2 production, cellular toxicity, ROS formation, inflammatory molecules, and dentin mineralization disturbances even with a long-term glucose oxidative stress state. The results of this study imply that the development of oral complications is related to the irreversible damage of dental pulp cells by DM-induced oxidative stress. Davallialactone, a natural antioxidant, may be useful to treat complicated oral disease, representing an improvement for pulp vital therapy. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. A laccase-glucose oxidase biofuel cell prototype operating in a physiological buffer

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, Frederic [Universite de Rennes I, Institut de Chimie, UMR CNRS 6510, 35042 Rennes (France); Kavanagh, Paul; Leech, Donal [Department of Chemistry, National University of Ireland, Galway (Ireland)

    2006-07-15

    Here we report on the design and study of a biofuel cell consisting of a glucose oxidase-based anode (Aspergillus niger) and a laccase-based cathode (Trametes versicolor) using osmium-based redox polymers as mediators of the biocatalysts' electron transfer at graphite electrode surfaces. The graphite electrodes of the device are modified with the deposition and immobilization of the appropriate enzyme and the osmium redox polymer mediator. A redox polymer [Os(4,4'-diamino-2,2'bipyridine){sub 2}(poly(N-vinylimidazole))-(poly(N-vinylimidazole)){sub 9}Cl]Cl (E{sup 0}'=-0.110V versus Ag/AgCl) of moderately low redox potential is used for the glucose oxidizing anode and a redox polymer [Os(phenanthroline){sub 2}(poly(N-vinylimidazole)){sub 2}-(poly(N-vinylimidazole)){sub 8}]Cl {sub 2} (E{sup 0}'=0.49V versus Ag/AgCl) of moderately high redox potential is used at the dioxygen reducing cathode. The enzyme and redox polymer are cross-linked with polyoxyethylene bis(glycidyl ether). The working biofuel cell was studied under air at 37{sup o}C in a 0.1M phosphate buffer solution of pH range 4.4-7.4, containing 0.1M sodium chloride and 10mM glucose. Under physiological conditions (pH 7.4) maximum power density, evaluated from the geometric area of the electrode, reached 16{mu}W/cm{sup 2} at a cell voltage of 0.25V. At lower pH values maximum power density was 40{mu}W/cm{sup 2} at 0.4V (pH 5.5) and 10{mu}W/cm{sup 2} at 0.3V (pH 4.4). (author)

  4. A laccase-glucose oxidase biofuel cell prototype operating in a physiological buffer

    International Nuclear Information System (INIS)

    Barriere, Frederic; Kavanagh, Paul; Leech, Donal

    2006-01-01

    Here we report on the design and study of a biofuel cell consisting of a glucose oxidase-based anode (Aspergillus niger) and a laccase-based cathode (Trametes versicolor) using osmium-based redox polymers as mediators of the biocatalysts' electron transfer at graphite electrode surfaces. The graphite electrodes of the device are modified with the deposition and immobilization of the appropriate enzyme and the osmium redox polymer mediator. A redox polymer [Os(4,4'-diamino-2,2'bipyridine) 2 (poly{N-vinylimidazole})-(poly{ N-vinylimidazole}) 9 Cl]Cl (E ' = -0.110 V versus Ag/AgCl) of moderately low redox potential is used for the glucose oxidizing anode and a redox polymer [Os(phenanthroline) 2 (poly{N-vinylimidazole}) 2 -(poly{N-vinylimidazole}) 8 ]Cl 2 (E ' = 0.49 V versus Ag/AgCl) of moderately high redox potential is used at the dioxygen reducing cathode. The enzyme and redox polymer are cross-linked with polyoxyethylene bis(glycidyl ether). The working biofuel cell was studied under air at 37 deg. C in a 0.1 M phosphate buffer solution of pH range 4.4-7.4, containing 0.1 M sodium chloride and 10 mM glucose. Under physiological conditions (pH 7.4) maximum power density, evaluated from the geometric area of the electrode, reached 16 μW/cm 2 at a cell voltage of 0.25 V. At lower pH values maximum power density was 40 μW/cm 2 at 0.4 V (pH 5.5) and 10 μW/cm 2 at 0.3 V (pH 4.4)

  5. Thermal Characterization of Purified Glucose Oxidase from A Newly Isolated Aspergillus Niger UAF-1

    Science.gov (United States)

    Anjum Zia, Muhammad; Khalil-ur-Rahman; K. Saeed, Muhammad; Andaleeb, Fozia; I. Rajoka, Muhammad; A. Sheikh, Munir; A. Khan, Iftikhar; I. Khan, Azeem

    2007-01-01

    An intracellular glucose oxidase was isolated from the mycelium extract of a locally isolated strain of Aspergillus niger UAF-1. The enzyme was purified to a yield of 28.43% and specific activity of 135 U mg−1 through ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The enzyme showed high affinity for D-glucose with a Km value of 2.56 mM. The enzyme exhibited optimum catalytic activity at pH 5.5. Temperature optimum for glucose oxidase, catalyzed D-glucose oxidation was 40°C. The enzyme showed a high thermostability having a half-life 30 min, enthalpy of denaturation 99.66 kJ mol−1 and free energy of denaturation 103.63 kJ mol−1. These characteristics suggest the use of glucose oxidase from Aspergillus niger UAF-1 as an analytical reagent and in the design of biosensors for clinical, biochemical and diagnostic assays. PMID:18193107

  6. Immobilized glucose oxidase--catalase and their deactivation in a differential-bed loop reactor.

    Science.gov (United States)

    Prenosil, J E

    1979-01-01

    Glucose oxidase containing catalase was immobilized with a copolymer of phenylenediamine and glutaraldehyde on pumice and titania carrier to study the enzymatic oxidation of glucose in a differential-bed loop reactor. The reaction rate was found to be first order with respect to the concentration of limiting oxygen substrate, suggesting a strong external mass-transfer resistance for all the flow rates used. The partial pressure of oxygen was varied from 21.3 up to 202.6 kPa. The use of a differential-bed loop reactor for the determination of the active enzyme concentration in the catalyst with negligible internal pore diffusion resistance is shown. Catalyst deactivation was studied, especially with respect to the presence of catalase. It is believed that the hydrogen peroxide formed in the oxidation reaction deactivates catalase first; if an excess of catalase is present, the deactivation of glucose oxidase remains small. The mathematical model subsequently developed adequately describes the experimental results.

  7. Liquid-Phase Packaging of a Glucose Oxidase Solution with Parylene Direct Encapsulation and an Ultraviolet Curing Adhesive Cover for Glucose Sensors

    Directory of Open Access Journals (Sweden)

    Seiichi Takamatsu

    2010-06-01

    Full Text Available We have developed a package for disposable glucose sensor chips using Parylene encapsulation of a glucose oxidase solution in the liquid phase and a cover structure made of an ultraviolet (UV curable adhesive. Parylene was directly deposited onto a small volume (1 μL of glucose oxidase solution through chemical vapor deposition. The cover and reaction chamber were constructed on Parylene film using a UV-curable adhesive and photolithography. The package was processed at room temperature to avoid denaturation of the glucose oxidase. The glucose oxidase solution was encapsulated and unsealed. Glucose sensing was demonstrated using standard amperometric detection at glucose concentrations between 0.1 and 100 mM, which covers the glucose concentration range of diabetic patients. Our proposed Parylene encapsulation and UV-adhesive cover form a liquid phase glucose-oxidase package that has the advantages of room temperature processing and direct liquid encapsulation of a small volume solution without use of conventional solidifying chemicals.

  8. Controlled fabrication of gold nanoparticles biomediated by glucose oxidase immobilized on chitosan layer-by-layer films

    International Nuclear Information System (INIS)

    Caseli, Luciano; Santos, David S. dos; Aroca, Ricardo F.; Oliveira, Osvaldo N.

    2009-01-01

    The control of size and shape of metallic nanoparticles is a fundamental goal in nanochemistry, and crucial for applications exploiting nanoscale properties of materials. We present here an approach to the synthesis of gold nanoparticles mediated by glucose oxidase (GOD) immobilized on solid substrates using the Layer-by-Layer (LbL) technique. The LbL films contained four alternated layers of chitosan and poly(styrene sulfonate) (PSS), with GOD in the uppermost bilayer adsorbed on a fifth chitosan layer: (chitosan/PSS) 4 /(chitosan/GOD). The films were inserted into a solution containing gold salt and glucose, at various pHs. Optimum conditions were achieved at pH 9, producing gold nanoparticles of ca. 30 nm according to transmission electron microscopy. A comparative study with the enzyme in solution demonstrated that the synthesis of gold nanoparticles is more efficient using immobilized GOD.

  9. Direct electrochemistry and electrocatalysis of a glucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin.

    Science.gov (United States)

    Bai, Lijuan; Yuan, Ruo; Chai, Yaqin; Yuan, Yali; Wang, Yan; Xie, Shunbi

    2012-11-18

    For the first time, a glucose oxidase-functionalized bioconjugate was prepared and served as a new trace label through its direct electrochemistry and electrocatalysis in a sandwich-type electrochemical aptasensor for ultrasensitive detection of thrombin.

  10. Direct electrochemical sensing of glucose using glucose oxidase immobilized on functionalized carbon nanotubes via a novel metal chelate-based affinity method

    International Nuclear Information System (INIS)

    Tu, X.; Zhao, Y.; Luo, S.; Luo, X.; Feng, L.

    2012-01-01

    We report on a novel amperometric glassy carbon biosensing electrode for glucose. It is based on the immobilization of a highly sensitive glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The new technique for immobilization is exploiting the affinity of Co(II) ions to the histidine and cysteine moieties on the surface of GOx. The direct electrochemistry of immobilized GOx revealed that the functionalized CNTs greatly improve the direct electron transfer between GOx and the surface of the electrode to give a pair of well-defined and almost reversible redox peaks and undergoes fast heterogeneous electron transfer with a rate constant (k s) of 0. 59 s -1 . The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor is capable of detecting glucose at levels as low as 0.01 mM, and has excellent operational stability (with no decrease in the activity of enzyme over a 10 days period). The method of immobilizing GOx is easy and also provides a model technique for potential use with other redox enzymes and proteins. (author)

  11. Enhanced Production of Glucose Oxidase Using Penicillium notatum and Rice Polish

    OpenAIRE

    Shazia Sabir; Haq Nawaz Bhatti; Muhammad Anjum Zia; Munir Ahmad Sheikh

    2007-01-01

    Glucose oxidase (GOD) is an important enzyme that finds a wide range of applications in food and pharmaceutical industry. In this investigation the feasibility of using rice polish as a substrate for the production of GOD by Penicillium notatum in submerged fermentation (SmF) has been evaluated. The intention was to enhance total GOD activity by the selection of economical substrate, microorganism and consecutive optimization of various cultural conditions. Maximum GOD activity of (112±5) U/m...

  12. Evaluation of Antimicrobial Activity of Glucose Oxidase from Aspergillus niger EBL-A and Penicillium notatum

    OpenAIRE

    Zia, Muhammad Anjum; Riaz, Ayesha; Rasul, Samreen; Abbas, Rao Zahid

    2013-01-01

    This work aimed to study the production and purification of glucose oxidase by Aspergillus niger and Penicillium notatum using corn steep liquor as the substrate and evaluate its antimicrobial activity for use in pharmaceutical and food industries. The enzyme was purified by ammonium sulfate precipitation (60-85%), DEAE-cellulose ion exchange and Sephadex G-200 size exclusion chromatography. The crude enzyme extracts of A. niger and P. notatum showed 2.32 and 5.53 U mg-1 specific activities, ...

  13. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase

    Directory of Open Access Journals (Sweden)

    Wenjun Zhang

    2015-06-01

    Full Text Available It is very important for human health to rapidly and accurately detect glucose levels in biological environments, especially for diabetes mellitus. We proposed a simple, highly sensitive, accurate, convenient, low-cost, and disposable glucose biosensor on a single chip. A working (sensor electrode, a counter electrode, and a reference electrode are integrated on a single chip through micro-fabrication. The working electrode is functionalized through a layer-by-layer (LBL assembly of single-walled carbon nanotubes (SWNTs and multilayer films composed of chitosan (CS, gold nanoparticles (GNp, and glucose oxidase (GOx to obtain high sensitivity and accuracy. The glucose sensor has following features: (1 direct electron transfer between GOx and the electrode surface; (2 on-a-chip; (3 glucose detection down to 0.1 mg/dL (5.6 μM; (4 good sensing linearity over 0.017–0.81 mM; (5 high sensitivity (61.4 μA/mM-cm2 with a small reactive area (8 mm2; (6 fast response; (7 high reproducibility and repeatability; (8 reliable and accurate saliva glucose detection. Thus, this disposable biosensor will be an alternative for real time tracking of glucose levels from body fluids, e.g. saliva, in a noninvasive, pain-free, accurate, and continuous way. In addition to being used as a disposable glucose biosensor, it also provides a suitable platform for on-chip electrochemical sensing for other chemical agents and biomolecules.

  14. Direct electrochemistry of glucose oxidase on novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers composite film.

    Science.gov (United States)

    Zhang, Xueping; Liu, Dong; Li, Libo; You, Tianyan

    2015-05-06

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve as a platform for GOx immobilization. The cyclic voltammetry of immobilized GOx showed a pair of well-defined redox peaks in O2-free solution, indicating the DET of GOx. With the addition of glucose, the anodic peak current increased, while the cathodic peak current decreased, which demonstrated the DET-based bioelectrocatalysis. The detection of glucose based on the DET of GOx was achieved, which displayed high sensitivity, stability and selectivity, with a low detection limit of 2 μM and wide linear range of 12-1000 μM. These results demonstrate that the as-obtained NCNSs@CNFs can serve as an ideal platform for the construction of the third-generation glucose biosensor.

  15. Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor.

    Science.gov (United States)

    Pakapongpan, Saithip; Poo-Arporn, Rungtiva P

    2017-07-01

    A novel approach of the immobilization of a highly selective and stable glucose biosensor based on direct electrochemistry was fabricated by a self-assembly of glucose oxidase (GOD) on reduced graphene oxide (RGO) covalently conjugated to magnetic nanoparticles (Fe 3 O 4 NPs) modified on a magnetic screen-printed electrode (MSPE). The RGO-Fe 3 O 4 nanocomposite has remarkable enhancement in large surface areas, is favorable environment for enzyme immobilization, facilitates electron transfer between enzymes and electrode surfaces and possesses superparamagnetism property. The morphology and electrochemical properties of RGO-Fe 3 O 4 /GOD were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, cyclic voltammetry (CV) and amperometry. The modified electrode was a fast, direct electron transfer with an apparent electron transfer rate constant (k s ) of 13.78s -1 . The proposed biosensor showed fast amperometric response (3s) to glucose with a wide linear range from 0.05 to 1mM, a low detection limit of 0.1μM at a signal to noise ratio of 3 (S/N=3) and good sensitivity (5.9μA/mM). The resulting biosensor has high stability, good reproducibility, excellent selectivity and successfully applied detection potential at -0.45V. This mediatorless glucose sensing used the advantages of covalent bonding and self-assembly as a new approach for immobilizing enzymes without any binder. It would be worth noting that it opens a new avenue for fabricating excellent electrochemical biosensors. This is a new approach that reporting the immobilization of glucose oxidase on reduced graphene oxide (RGO) covalently conjugated to magnetic nanoparticles (Fe 3 O 4 NPs) by electrostatic interaction and modified screen printed electrode. We propose the reagentless with fabrication method without binder and adhesive agents for immobilized enzyme. Fe 3 O 4 NPs increasing surface area to enhance the immobilization and prevent

  16. Expression and Characterization of Glucose Oxidase from Aspergillus niger in Yarrowia lipolytica.

    Science.gov (United States)

    Khadivi Derakshan, Fatemeh; Darvishi, Farshad; Dezfulian, Mehrouz; Madzak, Catherine

    2017-08-01

    Glucose oxidase (GOX) is currently used in clinical, pharmaceutical, food and chemical industries. The aim of this study was expression and characterization of Aspergillus niger glucose oxidase gene in the yeast Yarrowia lipolytica. For the first time, the GOX gene of A. niger was successfully expressed in Y. lipolytica using a mono-integrative vector containing strong hybrid promoter and secretion signal. The highest total glucose oxidase activity was 370 U/L after 7 days of cultivation. An innovative method was used to cell wall disruption in current study, and it could be recommended to use for efficiently cell wall disruption of Y. lipolytica. Optimum pH and temperature for recombinant GOX activity were 5.5 and 37 °C, respectively. A single band with a molecular weight of 80 kDa similar to the native and pure form of A. niger GOX was observed for the recombinant GOX in SDS-PAGE analysis. Y. lipolytica is a suitable and efficient eukaryotic expression system to production of recombinant GOX in compered with other yeast expression systems and could be used to production of pure form of GOX for industrial applications.

  17. Biological Effects of Potato Plants Transformation with Glucose Oxidase Gene and their Resistance to Hyperthermia

    Directory of Open Access Journals (Sweden)

    O.I. Grabelnych

    2017-02-01

    Full Text Available It is known that regulation of plant tolerance to adverse environmental factors is connected with short term increase of the concentration of endogenous reactive oxygen species (ROS, which are signalling molecules for the induction of protective mechanisms. Introduction and expression of heterologous gox gene, which encodes glucose oxidase enzyme in plant genome, induce constantly higher content of hydrogen peroxide in plant tissues. It is not known how the introduction of native or modified gox gene affects the plant resistance to high-temperature stress, one of the most commonly used model for the study of stress response and thermal tolerance. In this study, we investigated biological effects of transformation and evaluated the resistance to temperature stress of potato plants with altered levels of glucose oxidase expression. Transformation of potato plants by gox gene led to the more early coming out from tuber dormancy of transformed plants and slower growth rate. Transformants containing the glucose oxidase gene were more sensitive to lethal thermal shock (50 °C, 90 min than the transformant with the empty vector (pBI or untransformed plants (CK. Pre-heating of plants at 37 °C significantly weakened the damaging effect of lethal thermal shock. This attenuation was more significant in the non-transformed plants.

  18. Immobilization of glucose oxidase on sepharose by UV-initiated graft copolymerization

    International Nuclear Information System (INIS)

    D'Angiuro, L.; Cremonesi, P.

    1982-01-01

    The performance of a new method of enzyme immobilization based on photochemically initiated direct graft copolymerization was recently investigated. The immobilization reaction can be carried out in a simple way and by carefully selecting the reaction conditions, the enzyme-graft copolymer can be obtained as the main reaction product. Coupling efficiency of glucose oxidase has been found to depend only on the amount of photocatalyst (FeCl 3 ) fixed on Sepharose used as polysaccharide support. Small quantities of glycidylmethacrylate (GMA) (0.25 g/g dry Sepharose) are sufficient but necessary to achieve the best enzyme coupling efficiency (20-40%). Enzyme immobilization occurs very rapidly and the entire reaction occurs within 60 min. Reaction patterns and physicochemical characteristics of the obtained enzyme-graft copolymers exclude the glucose oxidase entrapment: therefore a covalent attachment mechanism may be proposed. The kinetic parameters of immobilized glucose oxidase (K/sub m/' = 2.0 x 10 -2 M) are quite similar to those of free enzyme (K/sub m/ = 1.93 x 10 -2 M), and no diffusion limitation phenomena are evidenced in samples having different enzyme or polymer content. Lyophilization, thermostability, and long-term continuous operation also have been investigated. The advantages of this method over that using vinylenzyme copolymerization are discussed

  19. Evaluation of Antimicrobial Activity of Glucose Oxidase from Aspergillus niger EBL-A and Penicillium notatum

    Directory of Open Access Journals (Sweden)

    Muhammad Anjum Zia

    2013-12-01

    Full Text Available This work aimed to study the production and purification of glucose oxidase by Aspergillus niger and Penicillium notatum using corn steep liquor as the substrate and evaluate its antimicrobial activity for use in pharmaceutical and food industries. The enzyme was purified by ammonium sulfate precipitation (60-85%, DEAE-cellulose ion exchange and Sephadex G-200 size exclusion chromatography. The crude enzyme extracts of A. niger and P. notatum showed 2.32 and 5.53 U mg-1 specific activities, respectively, which after desalting was 15.52 and 12.05 U mg-1, and after ion exchange and gel filtration chromatography was 29.09 - 62 and 25.72 - 59.37 U mg-1 for A. niger and P. notatum, respectively. The antimicrobial activity was determined by disc diffusion method against selected microbial strains where glucose oxidase from A. niger showed anti-bacterial activity, while no fungicidal effects were shown by both A. niger and P. notatum glucose oxidases.

  20. Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis.

    Science.gov (United States)

    Cui, Caixia; Chen, Haibin; Chen, Biqiang; Tan, Tianwei

    2017-02-01

    In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.

  1. Fabrication of Mediatorless/Membraneless Glucose/Oxygen Based Biofuel Cell using Biocatalysts Including Glucose Oxidase and Laccase Enzymes

    Science.gov (United States)

    Christwardana, Marcelinus; Kim, Ki Jae; Kwon, Yongchai

    2016-07-01

    Mediatorless and membraneless enzymatic biofuel cells (EBCs) employing new catalytic structure are fabricated. Regarding anodic catalyst, structure consisting of glucose oxidase (GOx), poly(ethylenimine) (PEI) and carbon nanotube (CNT) is considered, while three cathodic catalysts consist of glutaraldehyde (GA), laccase (Lac), PEI and CNT that are stacked together in different ways. Catalytic activities of the catalysts for glucose oxidation and oxygen reduction reactions (GOR and ORR) are evaluated. As a result, it is confirmed that the catalysts work well for promotion of GOR and ORR. In EBC tests, performances of EBCs including 150 μm-thick membrane are measured as references, while those of membraneless EBCs are measured depending on parameters like glucose flow rate, glucose concentration, distance between two electrodes and electrolyte pH. With the measurements, how the parameters affect EBC performance and their optimal conditions are determined. Based on that, best maximum power density (MPD) of membraneless EBC is 102 ± 5.1 μW · cm-2 with values of 0.5 cc · min-1 (glucose flow rate), 40 mM (glucose concentration), 1 mm (distance between electrodes) and pH 3. When membrane and membraneless EBCs are compared, MPD of the membraneless EBC that is run at the similar operating condition to EBC including membrane is speculated as about 134 μW · cm-2.

  2. A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase.

    Science.gov (United States)

    Del Barrio, Melisa; Cases, Rafael; Cebolla, Vicente; Hirsch, Thomas; de Marcos, Susana; Wilhelm, Stefan; Galbán, Javier

    2016-11-01

    Upon near-infrared excitation Tm(3+)+Yb(3+) doped fluorohafnate glasses present upconversion properties and emit visible light. This property permits to use these glasses (UCG) as excitation sources for fluorescent optical biosensors. Taking this into account, in this work a fluorescent biosensor for glucose determination is designed and evaluated. The biosensor combines the UCG and the fluorescence of the enzyme glucose oxidase chemically modified with a fluorescein derivative (GOx-FS), whose intensity is modified during the enzymatic reaction with glucose. Optical parameters have been optimized and a mathematical model describing the behavior of the analytical signal is suggested. Working in FIA mode, the biosensor responds to glucose concentrations up to, at least, 15mM with a limit of detection of 1.9mM. The biosensor has a minimum lifetime of 9 days and has been applied to glucose determination in drinks. The applicability of the sensor was tested by glucose determination in two fruit juices. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Biofabrication Using Pyrrole Electropolymerization for the Immobilization of Glucose Oxidase and Lactate Oxidase on Implanted Microfabricated Biotransducers

    Directory of Open Access Journals (Sweden)

    Christian N. Kotanen

    2014-03-01

    Full Text Available The dual responsive Electrochemical Cell-on-a-Chip Microdisc Electrode Array (ECC MDEA 5037 is a recently developed electrochemical transducer for use in a wireless, implantable biosensor system for the continuous measurement of interstitial glucose and lactate. Fabrication of the biorecognition membrane via pyrrole electropolymerization and both in vitro and in vivo characterization of the resulting biotransducer is described. The influence of EDC-NHS covalent conjugation of glucose oxidase with 4-(3-pyrrolyl butyric acid (monomerization and with 4-sulfobenzoic acid (sulfonization on biosensor performance was examined. As the extent of enzyme conjugation was increased sensitivity decreased for monomerized enzymes but increased for sulfonized enzymes. Implanted biotransducers were examined in a Sprague-Dawley rat hemorrhage model. Resection after 4 h and subsequent in vitro re-characterization showed a decreased sensitivity from 0.68 (±0.40 to 0.22 (±0.17 µA·cm−2·mM−1, an increase in the limit of detection from 0.05 (±0.03 to 0.27 (±0.27 mM and a six-fold increase in the response time from 41 (±18 to 244 (±193 s. This evidence reconfirms the importance of biofouling at the bio-abio interface and the need for mitigation strategies to address the foreign body response.

  4. Urotensin II inhibits skeletal muscle glucose transport signaling pathways via the NADPH oxidase pathway.

    Directory of Open Access Journals (Sweden)

    Hong-Xia Wang

    Full Text Available Our previous studies have demonstrated that the urotensin (UII and its receptor are up-regulated in the skeletal muscle of mice with type II diabetes mellitus (T2DM, but the significance of UII in skeletal muscle insulin resistance remains unknown. The purpose of this study was to investigate the effect of UII on NADPH oxidase and glucose transport signaling pathways in the skeletal muscle of mice with T2DM and in C2C12 mouse myotube cells. KK/upj-AY/J mice (KK mice were divided into the following groups: KK group, with saline treatment for 2 weeks; KK+ urantide group, with daily 30 µg/kg body weight injections over the same time period of urantide, a potent urotensin II antagonist peptide; Non-diabetic C57BL/6J mice were used as normal controls. After urantide treatment, mice were subjected to an intraperitoneal glucose tolerance test, in addition to measurements of the levels of ROS, NADPH oxidase and the phosphorylated AKT, PKC and ERK. C2C12 cells were incubated with serum-free DMEM for 24 hours before conducting the experiments, and then administrated with 100 nM UII for 2 hours or 24 hours. Urantide treatment improved glucose tolerance, decreased the translocation of the NADPH subunits p40-phox and p47-phox, and increased levels of the phosphorylated PKC, AKT and ERK. In contrast, UII treatment increased ROS production and p47-phox and p67-phox translocation, and decreased the phosphorylated AKT, ERK1/2 and p38MAPK; Apocynin abrogated this effect. In conclusion, UII increased ROS production by NADPH oxidase, leading to the inhibition of signaling pathways involving glucose transport, such as AKT/PKC/ERK. Our data imply a role for UII at the molecular level in glucose homeostasis, and possibly in skeletal muscle insulin resistance in T2DM.

  5. Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode.

    Science.gov (United States)

    Palanisamy, Selvakumar; Karuppiah, Chelladurai; Chen, Shen-Ming

    2014-02-01

    The direct electrochemistry of glucose oxidase (GOx) was successfully realized on electrochemically reduced graphene oxide and silver nanoparticles (RGO/Ag) nanocomposite modified electrode. The fabricated nanocomposite was characterized by field emission scanning electron microscope and energy dispersive spectroscopy. The GOx immobilized nanocomposite modified electrode showed a pair of well-defined redox peaks with a formal potential (E°) of -0.422 V, indicating that the bioactivity of GOx was retained. The heterogeneous electron transfer rate constant (Ks) of GOx at the nanocomposite was calculated to be 5.27 s(-1), revealing a fast direct electron transfer of GOx. The GOx immobilized RGO/Ag nanocomposite electrode exhibited a good electrocatalytic activity toward glucose over a linear concentration range from 0.5 to 12.5 mM with a detection limit of 0.16 mM. Besides, the fabricated biosensor showed an acceptable sensitivity and selectivity for glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Enhanced amperometric response of a glucose oxidase and horseradish peroxidase based bienzyme glucose biosensor modified with a film of polymerized toluidine blue containing reduced graphene oxide

    International Nuclear Information System (INIS)

    Wang, Fang; Gong, Wencheng; Wang, Lili; Chen, Zilin

    2015-01-01

    Reduced graphene oxide (RGO) was used to construct a bienzyme biosensor containing horseradish peroxidase (HRP) and glucose oxidase (GOx). A poly(toluidine blue) (pTB) film containing RGO acted as both enzyme immobilization matrix and electron transfer mediator. The bienzyme biosensor was characterized by electrochemical techniques and displays a highly sensitive amperometric response to glucose and hydrogen peroxide (H 2 O 2 ) at a potential as low as −0.1 V (vs. SCE). It is shown that use of RGO causes a strong enhancement on the amperometric responses. H 2 O 2 formed by the action of GOx in the presence of oxygen can be further reduced by HRP in the pTB film contacting the RGO modified electrode. In the absence of oxygen, glucose oxidation proceeds by another mechanism in which electron transfer occurs from GOx to the electrode and with pTB acting as the mediator. Amperometric responses to glucose and H2O2 follow Michaelis-Menten kinetics. The experimental conditions were optimized, and under these conditions glucose can be determined in the 80 μM to 3.0 mM range with a detection limit of 50 μM. H 2 O 2 , in turn, can be quantified in up to 30.0 μM concentration with a detection limit of 0.2 μM. The bienzyme biosensor is reproducible, repeatable and stable. Finally, it has been successfully applied to the determination of glucose in plasma samples. (author)

  7. The use of different glucose oxidases for the development of an amperometric reagentless glucose biosensor based on gold nanoparticles covered by polypyrrole

    International Nuclear Information System (INIS)

    German, Natalija; Kausaite-Minkstimiene, Asta; Ramanavicius, Arunas; Semashko, Tatiana; Mikhailova, Raisa; Ramanaviciene, Almira

    2015-01-01

    Graphical abstract: Display Omitted -- ABSTRACT: The amperometric glucose biosensors based on adsorbed electron transfer mediator (ETM) tetrathiafulvalene (TTF) or 1,10-phenanthroline-5,6-dione (PD) and glucose oxidase (GOx) from Aspergillus niger (GOx A.niger ), Penicillium adametzii (GOx P.adametzii ) or Penicillium funiculosum (GOx P.funiculosum ) cross-linked with glutaraldehyde were investigated. ETM and enzyme were immobilized layer by layer on bare graphite rod electrode (GR) premodified with gold nanoparticles (AuNP) of (i) 3.5 nm (GOx/ETM/AuNP 3.5 /GR), (ii) 6.0 nm (GOx/ETM/AuNP 6.0 /GR) and (iii) 13.0 nm (GOx/ETM/AuNP 13.0 /GR) size. The amperometric signals for all the developed biosensors were higher using PD in comparison with TTF. The biosensor based on GOx P.funiculosum showed higher analytical signal to glucose in a comparison to biosensors based on GOx A.niger and GOx P.adametzii . The registered current to glucose using GOx P.funiculosum /PD/AuNP 3.5 /GR electrode was linear in the glucose range from 0.1 to 10.0 mmol L −1 and the limit of detection was 0.024 mmol L −1 . Enzymatical synthesis of polypyrrole (Ppy) layer on the electrode was applied in order to expand the linear glucose detection range. After 22 h of polymerization the amperometric signal was linear in the glucose concentration range from 0.1 to 25.0 mmol L −1 , while after 69 h this rage was increased up to 50.0 mmol L −1 . Additionally Ppy layer on the electrode surface reduced the influence of interfering species on the amperometric signal. The performance of developed biosensor was investigated in human serum samples

  8. Enzymatic activity of Glucose Oxidase from Aspergillus niger IPBCC.08.610 On Modified Carbon Paste Electrode as Glucose Biosensor

    Science.gov (United States)

    Rohmayanti, T.; Ambarsari, L.; Maddu, A.

    2017-03-01

    Glucose oxidase (GOx) has been developed as glucose sensor for measuring blood glucose level because of its specificity to glucose oxidation. This research aimed to determine kinetic parameters of GOx activity voltametrically and further test its potential as a glucose biosensor. GOx, in this research, was produced by local fungi Aspergillus niger IPBCC.08.610 which was isolated from local vine in Tarakan, East Borneo, Indonesia. GOx was immobilized with glutaraldehyde, which cross-linked onto modified carbon paste electrode (MCPE) nanofiber polyaniline. Intracellular GOx activity was higher than extracellular ones. Immobilized GOx used glutaraldehyde 2.5% and dripped on the surface of MCPE nanofiber polyaniline. MCPE have a high conductance in copper with the diameter of 3 mm. The concentration of glucose in the lowest concentration of 0.2 mM generated a current value of 0.413 mA while 2 mM of glucose induced a current of 3,869 mA value. Km and Imax of GOx in MCPE activities polyaniline nanofiber were 2.88 mM and 3.869 mA,respectively, with turnover (Kcat) of 13 s-1. Sensitivity was 1.09 mA/mM and response time to produce a maximum peak current was 25 seconds. Km value was then converted into units of mg/dL and obtained 56.4 mg/dL. GOximmo-IPB|MCPE electrode is potential to be able to detect blood glucose level in a normal condition and hypoglycemia conditions

  9. Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Liu, M.

    2012-01-01

    We report on a highly sensitive glucose biosensor that was fabricated from a composite made from mesoporous hydroxyapatite and mesoporous titanium dioxide which then were ultrasonically mixed with multi-walled carbon nanotubes to form a rough nanocomposite film. This film served as a platform to immobilize glucose oxidase onto a glassy carbon electrode. The morphological and electrochemical properties of the film were examined by scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometry were used to characterize the electrochemical performances of the biosensor which exhibited excellent electrocatalytic activity to the oxidation of glucose. At an operating potential of 0. 3 V and pH 6. 8, the sensor displays a sensitivity of 57. 0 μA mM -1 cm -2 , a response time of <5 s, a linear dynamic range from 0. 01 to 15. 2 mM, a correlation coefficient of 0. 9985, and a detection limit of 2 μM at an SNR of 3. No interferences are found for uric acid, ascorbic acid, dopamine and most carbohydrates. The sensor is stable and was successfully applied to the determination of glucose in real samples. (author)

  10. Glucose impairs aspirin inhibition in platelets through a NAD(P)H oxidase signaling pathway.

    Science.gov (United States)

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2017-07-01

    Hyperglycemia has been suggested to play a role in the increased platelet resistance to antiplatelet therapy in patients with diabetes mellitus. Exposure to high glucose impairs platelet inhibition by aspirin. It has been found that antioxidant agents reduce the effect of glucose, confirming the involvement of reactive oxygen species (ROS) in the effect of glucose. The aim of the study was to examine the mechanism of ROS increase by high glucose in aspirin-treated platelets. Platelet aggregation was measured by the optical method, and the production of ROS was detected using luminol-dependent horseradish peroxidase-enhanced chemiluminescence. We found that glucose did not affect ADP-induced platelet aggregation. However, it reduced the effect of aspirin on platelet aggregation, which was accompanied by an increase in ROS generation. The inhibition of NAD(P)H oxidase (NOX) prevented the glucose effect and ROS generation. The same result was recorded after the inhibition of p38 mitogen-activated protein kinases (p38 MAPK), phospholipase A 2 (PLA 2 ) or 12-lipoxygenase (12-LOX). The inhibition of TxA 2 receptor did not decrease the effect of glucose indicating that the effect was not caused by activation of TxA 2 receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing.

    Science.gov (United States)

    Shamsipur, Mojtaba; Tabrizi, Mahmoud Amouzadeh

    2014-12-01

    In this paper, the direct electrochemistry of glucose oxidase (GOD) was accomplished at a glassy carbon electrode modified with electrochemically reduced graphene oxide/sodium dodecyl sulfate (GCE/ERGO/SDS). A pair of reversible peaks is exhibited on GCE/ERGO/SDS/GOD by cyclic voltammetry. The peak-to-peak potential separation of immobilized GOD is 28 mV in 0.1 M phosphate buffer solution (pH7.0) with a scan rate of 50 mV/s. The average surface coverage is 2.62×10(-10) mol cm(-2). The resulting biosensor exhibited a good response to glucose with linear range from 1 to 8 mM (R(2)=0.9878), good reproducibility and detection limit of 40.8 μM. The results from the biosensor were similar (±5%) to those obtained from the clinical analyzer. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles

    International Nuclear Information System (INIS)

    Karuppiah, Chelladurai; Palanisamy, Selvakumar; Chen, Shen-Ming; Veeramani, Vediyappan; Periakaruppan, Prakash

    2014-01-01

    We have studied the direct electrochemistry of glucose oxidase (GOx) immobilized on electrochemically fabricated graphite nanosheets (GNs) and zinc oxide nanoparticles (ZnO) that were deposited on a screen printed carbon electrode (SPCE). The GNs/ZnO composite was characterized by using scanning electron microscopy and elemental analysis. The GOx immobilized on the modified electrode shows a well-defined redox couple at a formal potential of −0.4 V. The enhanced direct electrochemistry of GOx (compared to electrodes without ZnO or without GNs) indicates a fast electron transfer at this kind of electrode, with a heterogeneous electron transfer rate constant (Ks) of 3.75 s −1 . The fast electron transfer is attributed to the high conductivity and large edge plane defects of GNs and good conductivity of ZnO-NPs. The modified electrode displays a linear response to glucose in concentrations from 0.3 to 4.5 mM, and the sensitivity is 30.07 μA mM −1 cm −2 . The sensor exhibits a high selectivity, good repeatability and reproducibility, and long term stability. (author)

  13. Yeast surface displaying glucose oxidase as whole-cell biocatalyst: construction, characterization, and its electrochemical glucose sensing application.

    Science.gov (United States)

    Wang, Hongwei; Lang, Qiaolin; Li, Liang; Liang, Bo; Tang, Xiangjiang; Kong, Lingrang; Mascini, Marco; Liu, Aihua

    2013-06-18

    The display of glucose oxidase (GOx) on yeast cell surface using a-agglutinin as an anchor motif was successfully developed. Both the immunochemical analysis and enzymatic assay showed that active GOx was efficiently expressed and translocated on the cell surface. Compared with conventional GOx, the yeast cell surface that displayed GOx (GOx-yeast) demonstrated excellent enzyme properties, such as good stability within a wide pH range (pH 3.5-11.5), good thermostability (retaining over 94.8% enzyme activity at 52 °C and 84.2% enzyme activity at 56 °C), and high d-glucose specificity. In addition, direct electrochemistry was achieved at a GOx-yeast/multiwalled-carbon-nanotube modified electrode, suggesting that the host cell of yeast did not have any adverse effect on the electrocatalytic property of the recombinant GOx. Thus, a novel electrochemical glucose biosensor based on this GOx-yeast was developed. The as-prepared biosensor was linear with the concentration of d-glucose within the range of 0.1-14 mM and a low detection limit of 0.05 mM (signal-to-noise ratio of S/N = 3). Moreover, the as-prepared biosensor is stable, specific, reproducible, simple, and cost-effective, which can be applicable for real sample detection. The proposed strategy to construct robust GOx-yeast may be applied to explore other oxidase-displaying-system-based whole-cell biocatalysts, which can find broad potential application in biosensors, bioenergy, and industrial catalysis.

  14. A multisyringe flow injection system with immobilized glucose oxidase based on homogeneous chemiluminescence detection

    International Nuclear Information System (INIS)

    Manera, Matias; Miro, Manuel; Estela, Jose Manuel; Cerda, Victor

    2004-01-01

    In this paper, enzyme containing reactors are for the first time implemented in the multisyringe flow injection analysis (MSFIA) technique interfaced with chemiluminescence detection for biochemical assays. The automated methodology is based on the on-line substrate conversion in an oxidase packed-bed reactor and the post-column chemiluminogenic catalysed-reaction of the generated oxidising species with an organic molecule (namely, 3-aminophthalhydrazide) in front of the photosensor module. Various catalysts in homogeneous phase are compared taking advantage of the benefits of the MSFIA concept. On one hand, mineral catalysts (namely, Co(II)) are assessed, on the other hand, minute and accurate volumes of soluble organic species (viz., horseradish peroxidase (HRP)) are readily handled without requiring further immobilization protocols. The potentials of the MSFIA-CL concept with immobilisation of the proper oxidase protein are demonstrated using glucose as a model of substrate. Despite the different pH and kinetic requirements for both the substrate conversion in the enzyme-reactor and the Co(II)/HRP-mediated luminol oxidation integrated in the flow system, the MSFIA approach warrants maximum yields owing to the independent optimisation of the physical and chemical parameters of the various reactions involved. Under the optimised configurations and experimental variables, dynamic working ranges from 2.5x10 -6 to 1.0x10 -3 mol l -1 glucose may be obtained for both detection schemes by proper photomultiplier gain selection. The detection and determination limits calculated at the 3σ and 10σ level were 8.6x10 -7 and 2.0x10 -6 mol l -1 glucose, respectively, for the Co(II)-luminol system, and 1.3x10 -6 and 2.3x10 -6 mol l -1 glucose, respectively, for the HRP-luminol procedure. The repeatability (n=10) at the 1.0x10 -5 mol l -1 level was slightly better for the Co(II)-catalysed reaction (2.5% versus 4.0%). The developed MSFIA-CL methodology was used for kinetic

  15. Immobilization of Glucose Oxidase on Modified-Carbon-Paste-Electrodes for Microfuel Cell

    Directory of Open Access Journals (Sweden)

    Laksmi Ambarsari

    2016-03-01

    Full Text Available Glucose oxidase (GOx is being developed for many applications such as an implantable fuel cell, due to its attractive property of operating under physiological conditions. This study reports the functional immobilization of glucose oxidase onto polyaniline-nanofiber-modified-carbon-paste-electrodes (GOx/MCPE as bioanodes in fuel cell applications. In particular, GOx is immobilized onto the electrode surface via a linker molecule (glutaraldehyde. Polyaniline, synthesized by the interfacial polymerization method, produces a morphological form of nanofibers (100-120 nm which have good conductivity. The performance of the polyaniline-modified-carbon-paste-electrode (MCPE was better than the carbon- paste-electrode (CPE alone. The optimal pH and temperature of the GOx/MCPE were 4.5 (in 100 mM acetate buffer and 65 °C, respectively. The GOx/MCPE exhibit high catalytic performances (activation energy 16.4 kJ mol-1, have a high affinity for glucose (Km value 37.79 µM and can have a maximum current (Imax of 3.95 mA. The sensitivity of the bioelectrode also was high at 57.79 mA mM-1 cm-2.

  16. Glucose biosensor based on a platinum electrode modified with rhodium nanoparticles and with glucose oxidase immobilized on gold nanoparticles

    International Nuclear Information System (INIS)

    Guo, Xishan; Jian, Jinming; Liang, Bo; Ye, Xuesong; Zhang, Yelei

    2014-01-01

    We have developed an enzymatic glucose biosensor that is based on a flat platinum electrode which was covered with electrophoretically deposited rhodium (Rh) nanoparticles and then sintered to form a large surface area. The biosensor was obtained by depositing glucose oxidase (GOx), Nafion, and gold nanoparticles (AuNPs) on the Rh electrode. The electrical potential and the fractions of Nafion and GOx were optimized. The resulting biosensor has a very high sensitivity (68.1 μA mM −1 cm −2 ) and good linearity in the range from 0.05 to 15 mM (r = 0.989). The limit of detection is as low as 0.03 mM (at an SNR of 3). The glucose biosensor also is quite selective and is not interfered by electroactive substances including ascorbic acid, uric acid and acetaminophen. The lifespan is up to 90 days. It was applied to the determination of glucose in blood serum, and the results compare very well with those obtained with a clinical analyzer. (author)

  17. Amperometric glucose biosensor based on layer-by-layer films of microperoxidase-11 and liposome-encapsulated glucose oxidase.

    Science.gov (United States)

    Graça, J S; de Oliveira, R F; de Moraes, M L; Ferreira, M

    2014-04-01

    An important step in several bioanalytical applications is the immobilization of biomolecules. Accordingly, this procedure must be carefully chosen to preserve their biological structure and fully explore their properties. For this purpose, we combined the versatility of the layer-by-layer (LbL) method for the immobilization of biomolecules with the protective behavior of liposome-encapsulated systems to fabricate a novel amperometric glucose biosensor. To obtain the biosensing unit, an LbL film of the H2O2 catalyst polypeptide microperoxidase-11 (MP-11) was assembled onto an indium-tin oxide (ITO) electrode followed by the deposition of a liposome-encapsulated glucose oxidase (GOx) layer. The biosensor response toward glucose detection showed a sensitivity of 0.91±0.09 (μA/cm2)/mM and a limit of detection (LOD) of 8.6±1.1 μM, demonstrating an improved performance compared to similar biosensors with a single phospholipid-liposome or even containing a non-encapsulated GOx layer. Finally, glucose detection was also performed in a zero-lactose milk sample to demonstrate the potential of the biosensor for food analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake.

    Science.gov (United States)

    Carpéné, Christian; Grès, Sandra; Rascalou, Simon

    2013-06-01

    The antidepressant phenelzine is a monoamine oxidase inhibitor known to inhibit various other enzymes, among them semicarbazide-sensitive amine oxidase (currently named primary amine oxidase: SSAO/PrAO), absent from neurones but abundant in adipocytes. It has been reported that phenelzine inhibits adipocyte differentiation of cultured preadipocytes. To further explore the involved mechanisms, our aim was to study in vitro the acute effects of phenelzine on de novo lipogenesis in mature fat cells. Therefore, glucose uptake and incorporation into lipid were measured in mouse adipocytes in response to phenelzine, other hydrazine-based SSAO/PrAO-inhibitors, and reference agents. None of the inhibitors was able to impair the sevenfold activation of 2-deoxyglucose uptake induced by insulin. Phenelzine did not hamper the effect of lower doses of insulin. However, insulin-stimulated glucose incorporation into lipids was dose-dependently inhibited by phenelzine and pentamidine, but not by semicarbazide or BTT2052. In contrast, all these SSAO/PrAO inhibitors abolished the transport and lipogenesis stimulation induced by benzylamine. These data indicate that phenelzine does not inhibit glucose transport, the first step of lipogenesis, but inhibits at 100 μM the intracellular triacylglycerol assembly, consistently with its long-term anti-adipogenic effect and such rapid action was not found with all the hydrazine derivatives tested. Therefore, the alterations of body weight control consecutive to the use of this antidepressant drug might be not only related to central effects on food intake/energy expenditure, but could also depend on its direct action in adipocytes. Nonetheless, phenelzine antilipogenic action is not merely dependent on SSAO/PrAO inhibition.

  19. Stability of glucose oxidase and catalase adsorbed on variously activated 13X zeolite.

    Science.gov (United States)

    Pifferi, P G; Vaccari, A; Ricci, G; Poli, G; Ruggeri, O

    1982-10-01

    The use of 13X zeolite (0.1-0.4-mm granules), treated with 2N and 0.01N HCI, 0.01M citric acid, 0.1M citric-phosphate buffer (pH 3.6), and in untreated form to adsorb glucose oxidase of fungal origin and microbial catalase was examined. Physicochemical analysis of the support demonstrated that its crystalline structure, greatly altered by the HCl and buffer, could be partially maintained with citric acid. The specific adsorption of the enzymes increased with decreasing pH and proved to be considerable for all the supports. The stability with storage at 25 degrees C is strictly correlated with the titrable acidity of the activated zeolite expressed as meq NaOH/g and with pH value of the activation solution. It proved to be lower than 55 h for both enzymes if adsorbed on zeolite treated with 2N HCl, and 15-fold and 30-fold higher for glucose oxidase and catalase adsorbed, respectively, on zeolite treated with the 0.1M citric-phosphate buffer and 0.01M citric acid. The specific adsorption of glucose oxidase and catalase was, respectively, 1840 U/g at pH 3.0 and 6910 U/g at pH 5.0. Their half-life at 25 degrees C with storage at pH 3.5 for the former and at pH 5.0 for the latter was 800 and 1560 h vs. 40 and 110 h for the corresponding free enzymes.

  20. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    Science.gov (United States)

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    Science.gov (United States)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-11-01

    Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  2. Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose

    International Nuclear Information System (INIS)

    Yang, S.; Lu, Z.; Luo, S.; Liu, C.; Tang, Y.

    2013-01-01

    We have electrodeposited a composite film consisting of graphene oxide, chitosan and glucose oxidase directly on a glassy carbon electrode (GCE) through electrochemical reduction of a solution of the 3 components under controlled direct electrical potential. The procedure takes only several minutes, and the thickness of the resulting film is uniform and controllable. The GOx has uncompromised bioactivity and exhibits reversible 2-proton and 2-electron transfer in presence of glucose. It therefore can be used amperometric sensing of glucose. The biosensor has a fast response (<3 s), a detection limit of 0.4 μM (which is 50-fold lower compared to the biosensor prepared by drop-casting solutions of the same materials onto an GCE), and a linear response in the 0.4 μM to 2 mM concentration range (which again is much better than that of the biosensor prepared by the drop-casting method). Other features include high reproducibility, long-time storage stability, and satisfactory selectivity. We presume that the direct single-step electrodeposition of this nanocomposite offers a promising approach towards novel types of highly sensitive and stable electrochemical biosensors. (author)

  3. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions.

    Science.gov (United States)

    Nguyen, Le Truc; Yang, Kun-Lin

    2017-05-01

    Cascade reactions involved unstable intermediates are often encountered in biological systems. In this study, we developed combined cross-linked enzyme aggregates (combi-CLEA) to catalyze a cascade reaction which involves unstable hydrogen peroxide as an intermediate. The combi-CLEA contains two enzymes̶ glucose oxidase (GOx) and horseradish peroxidase (HRP) which are cross-linked together as solid aggregates. The first enzyme GOx catalyzes the oxidation of glucose and produces hydrogen peroxide, which is used by the second enzyme HRP to oxidize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The apparent reaction rate of the cascade reaction reaches 10.5±0.5μM/min when the enzyme ratio is 150:1 (GOx:HRP). Interestingly, even in the presence of catalase, an enzyme that quickly decomposes hydrogen peroxide, the reaction rate only decreases by 18.7% to 8.3±0.3μM/min. This result suggests that the intermediate hydrogen peroxide is not decomposed by catalase due to a short diffusion distance between GOx and HRP in the combi-CLEA. Scanning electron microscopy images suggest that combi-CLEA particles are hollow spheres and have an average diameter around 250nm. Because of their size, combi-CLEA particles can be entrapped inside a nylon membrane for detecting glucose by using the cascade reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The study of a fluorescent biosensor based on polyelectrolyte microcapsules with encapsulated glucose oxidase

    Science.gov (United States)

    Kazakova, L. I.; Sirota, N. P.; Sirota, T. V.; Shabarchina, L. I.

    2017-09-01

    A fluorescent biosensor is synthesized and described. The biosensor consists of polyelectrolyte microcapsules with glucose oxidase (GOx) entrapped in the cavities and an oxygen-sensitive fluorescent indicator Ru(dpp) immobilized in shells, where Ru(dpp) is tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride. The theoretical activity of the encapsulated GOx and the effect storage time and medium composition have on the stability of sensor microcapsules are determined from polarographic measurements. No change in the activity of the encapsulated enzyme and or its loss to the storage medium are detected over the test period. The dispersion medium (water or a phosphate buffer) are shown to have no effect on the activity of microcapsules with immobilized GOx. The described optical sensor could be used as an alternative to electrochemical sensors for in vitro determination of glucose in the clinically important range of concentrations (up to 10 mmol/L).

  5. Ultra-high-throughput screening method for the directed evolution of glucose oxidase.

    Science.gov (United States)

    Ostafe, Raluca; Prodanovic, Radivoje; Nazor, Jovana; Fischer, Rainer

    2014-03-20

    Glucose oxidase (GOx) is used in many industrial processes that could benefit from improved versions of the enzyme. Some improvements like higher activity under physiological conditions and thermal stability could be useful for GOx applications in biosensors and biofuel cells. Directed evolution is one of the currently available methods to engineer improved GOx variants. Here, we describe an ultra-high-throughput screening system for sorting the best enzyme variants generated by directed evolution that incorporates several methodological refinements: flow cytometry, in vitro compartmentalization, yeast surface display, fluorescent labeling of the expressed enzyme, delivery of glucose substrate to the reaction mixture through the oil phase, and covalent labeling of the cells with fluorescein-tyramide. The method enables quantitative screening of gene libraries to identify clones with improved activity and it also allows cells to be selected based not only on the overall activity but also on the specific activity of the enzyme. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods.

    Science.gov (United States)

    Gonzalez-Navarro, Felix F; Stilianova-Stoytcheva, Margarita; Renteria-Gutierrez, Livier; Belanche-Muñoz, Lluís A; Flores-Rios, Brenda L; Ibarra-Esquer, Jorge E

    2016-10-26

    Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.

  7. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Felix F. Gonzalez-Navarro

    2016-10-01

    Full Text Available Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.

  8. Synthesis and characterization of microparticles based on poly-methacrylic acid with glucose oxidase for biosensor applications.

    Science.gov (United States)

    Hervás Pérez, J P; López-Ruiz, B; López-Cabarcos, E

    2016-01-01

    In the line of the applicability of biocompatible monomers pH and temperature dependent, we assayed poly-methacrylic acid (p-MAA) microparticles as immobilization system in the design of enzymatic biosensors. Glucose oxidase was used as enzyme model for the study of microparticles as immobilization matrices and as biological material in the performance of glucose biosensors. The enzyme immobilization method was optimized by investigating the influence of monomer concentration and cross-linker content (N',N'-methylenebisacrylamide), used in the preparation of the microparticles in the response of the biosensors. The kinetics of the polymerization and the effects of the temperature were studied, also the conversion of the polymerization was determinates by a weight method. The structure of the obtained p-MAA microparticles were studied through scanning electron microscopy (SEM) and differential scanning microscopy (DSC). The particle size measurements were performed with a Galai-Cis 1 particle analyzer system. Furthermore, the influence of the swelling behavior of hydrogel matrix as a function of pH and temperature were studied. Analytical properties such as sensitivity, linear range, response time and detection limit were studied for the glucose biosensors. The sensitivity for glucose detection obtained with poly-methacrylic acid (p-MAA) microparticles was 11.98mAM(-1)cm(-2) and 10μM of detection limit. A Nafion® layer was used to eliminate common interferents of the human serum such as uric and ascorbic acids. The biosensors were used to determine glucose in human serum samples with satisfactory results. When stored in a frozen phosphate buffer solution (pH 6.0) at -4°C, the useful lifetime of all biosensors was at least 550 days. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Development of Silicalite/Glucose Oxidase-Based Biosensor and Its Application for Glucose Determination in Juices and Nectars

    Science.gov (United States)

    Dudchenko, Oleksandr Ye; Pyeshkova, Viktoriya M.; Soldatkin, Oleksandr O.; Akata, Burcu; Kasap, Berna O.; Soldatkin, Alexey P.; Dzyadevych, Sergei V.

    2016-02-01

    The application of silicalite for improvement of enzyme adsorption on new stainless steel electrodes is reported. Glucose oxidase (GOx) was immobilized by two methods: cross-linking by glutaraldehyde (GOx-GA) and cross-linking by glutaraldehyde along with GOx adsorption on silicalite-modified electrode (SME) (GOx-SME-GA). The GOx-SME-GA biosensors were characterized by a four- to fivefold higher sensitivity than GOx-GA biosensor. It was concluded that silicalite together with GA sufficiently enhances enzyme adhesion on stainless steel electrodes. The developed GOx-SME-GA biosensors were characterized by good reproducibility of biosensor preparation (relative standard deviation (RSD)—18 %), improved signal reproducibility (RSD of glucose determination was 7 %), and good storage stability (29 % loss of activity after 18-day storage). A series of fruit juices and nectars was analyzed using GOx-SME-GA biosensor for determination of glucose concentration. The obtained results showed good correlation with the data of high-performance liquid chromatography (HPLC) ( R = 0.99).

  10. Architecture effects of glucose oxidase/Au nanoparticle composite Langmuir-Blodgett films on glucose sensing performance

    Science.gov (United States)

    Wang, Ke-Hsuan; Wu, Jau-Yann; Chen, Liang-Huei; Lee, Yuh-Lang

    2016-03-01

    The Langmuir-Blodgett (LB) deposition technique is employed to prepare nano-composite films consisting of glucose oxidase (GOx) and gold nanoparticles (AuNPs) for glucose sensing applications. The GOx and AuNPs are co-adsorbed from an aqueous solution onto an air/liquid interface in the presence of an octadecylamine (ODA) template monolayer, forming a mixed (GOx-AuNP) monolayer. Alternatively, a composite film with a cascade architecture (AuNP/GOx) is also prepared by sequentially depositing monolayers of AuNPs and GOx. The architecture effects of the composite LB films on the glucose sensing are studied. The results show that the presence of AuNPs in the co-adsorption system does not affect the adsorption amount and preferred conformation (α-helix) of GOx. Furthermore, the incorporation of AuNPs in both composite films can significantly improve the sensing performance. However, the enhancement effects of the AuNPs in the two architectures are distinct. The major effect of the AuNPs is on the facilitation of charge-transfer in the (GOx-AuNP) film, but on the increase of catalytic activity in the (AuNP/GOx) one. Therefore, the sensing performance can be greatly improved by utilizing a film combining both architectures (AuNP/GOx-AuNP).

  11. Development of a glucose oxidase-based biocatalyst adopting both physical entrapment and crosslinking, and its use in biofuel cells

    Science.gov (United States)

    Chung, Yongjin; Ahn, Yeonjoo; Christwardana, Marcelinus; Kim, Hansung; Kwon, Yongchai

    2016-04-01

    New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance.New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high

  12. Surface modification of Fe_2O_3/Fe_3O_4 nanocomposites for use in immobilization of glucose oxidase

    International Nuclear Information System (INIS)

    Albuquerque, I.L.T.; Santos, P.T.A.; Costa, A.C.F.M.; Oliveira, L.S.C.

    2017-01-01

    The increase in the number of people with diabetes in recent years and the high cost-benefit ratio of the existing biosensor technology have increased the interest for the development of glucose detection biosensor based on immobilization of glucose-oxidase (GOD) mainly using magnetic nanoparticles. In this context, nanocomposites of Fe_2O_3/Fe_3O_4 were prepared by combustion reaction and their surface was functionalized with 3-aminopropyltriethoxysilane via silanization reaction and with chitosan via functionalization to obtain a hybrid material that was evaluated as possible GOD immobilizer. The samples were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry, scanning electron microscopy, transmission electron microscopy, magnetic properties and in vitro cytotoxicity. The results revealed that it was possible to obtain the ferrimagnetic composite, the surface modification reduced the saturation magnetization, but maintained the ferrimagnetic characteristics, and all samples were considered non-toxic. For preliminary testing of the GOD immobilization it was revealed that the nanocomposite modified with silane and chitosan showed the better result, about 2.7 mg of immobilized GOD for 100 mg of nanocomposite, which makes this material a potential alternative to manufacture GOD biosensors. (author)

  13. Zinc oxide inverse opal electrodes modified by glucose oxidase for electrochemical and photoelectrochemical biosensor.

    Science.gov (United States)

    Xia, Lei; Song, Jian; Xu, Ru; Liu, Dali; Dong, Biao; Xu, Lin; Song, Hongwei

    2014-09-15

    The ZnO inverse opal photonic crystals (IOPCs) were synthesized by the sol-gel method using the polymethylmethacrylate (PMMA) as a template. For glucose detection, glucose oxidase (GOD) was further immobilized on the inwall and surface of the IOPCs. The biosensing properties toward glucose of the Nafion/GOD/ZnO IOPCs modified FTO electrodes were carefully studied and the results indicated that the sensitivity of ZnO IOPCs modified electrode was 18 times than reference electrode due to the large surface area and uniform porous structure of ZnO IOPCs. Moreover, photoelectrochemical detection for glucose using the electrode was realized and the sensitivity approached to 52.4 µA mM(-1) cm(-2), which was about four times to electrochemical detection (14.1 µA mM(-1) cm(-2)). It indicated that photoelectrochemical detection can highly improve the sensor performance than conventional electrochemical method. It also exhibited an excellent anti-interference property and a good stability at the same time. This work provides a promising approach for realizing excellent photoelectrochemical biosensor of similar semiconductor photoelectric material. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Isolation and Characterization of a Catabolite Repression-Insensitive Mutant of a Methanol Yeast, Candida boidinii A5, Producing Alcohol Oxidase in Glucose-Containing Medium

    OpenAIRE

    Sakai, Yasuyoshi; Sawai, Tohru; Tani, Yoshiki

    1987-01-01

    Mutants exhibiting alcohol oxidase (EC 1.1.3.13) activity when grown on glucose in the presence of methanol were found among 2-deoxyglucose-resistant mutants derived from a methanol yeast, Candida boidinii A5. One of these mutants, strain ADU-15, showed the highest alcohol oxidase activity in glucose-containing medium. The growth characteristics and also the induction and degradation of alcohol oxidase were compared with the parent strain and mutant strain ADU-15. In the parent strain, initia...

  15. Gold electrode modified with a self-assembled glucose oxidase and 2,6-pyridinedicarboxylic acid as novel glucose bioanode for biofuel cells

    NARCIS (Netherlands)

    Ammam, Malika; Fransaer, Jan

    2014-01-01

    In this study, we have constructed a gold electrode modified with (3-aminopropyl)trimethoxysilane/2,6-pyridinedicarboxylic acid/glucose oxidase (abbreviated as, Au/ATS/PDA/GOx) by sequential chemical adsorption. Au/ATS/PDA/GOx electrode was characterized by Fourier Transform Infrared Spectroscopy

  16. Inducible versus constitutive immunity: Examining effects of colony infection on glucose oxidase and Defensin-1 production in honey bees

    Science.gov (United States)

    Honey bees use a variety of defense mechanisms to reduce disease infection and spread throughout the colony. Many of these defenses rely on the collective action of multiple individuals to prevent, reduce or eradicate pathogens—often referred as 'social immunity'. Glucose oxidase (GOX) and some anti...

  17. Identifying the Oscillatory Mechanism of the Glucose Oxidase-Catalase Coupled Enzyme System.

    Science.gov (United States)

    Muzika, František; Jurašek, Radovan; Schreiberová, Lenka; Radojković, Vuk; Schreiber, Igor

    2017-10-12

    We provide experimental evidence of periodic and aperiodic oscillations in an enzymatic system of glucose oxidase-catalase in a continuous-flow stirred reactor coupled by a membrane with a continuous-flow reservoir supplied with hydrogen peroxide. To describe such dynamics, we formulate a detailed mechanism based on partial results in the literature. Finally, we introduce a novel method for estimation of unknown kinetic parameters. The method is based on matching experimental data at an oscillatory instability with stoichiometric constraints of the mechanism formulated by applying the stability theory of reaction networks. This approach has been used to estimate rate coefficients in the catalase part of the mechanism. Remarkably, model simulations show good agreement with the observed oscillatory dynamics, including apparently chaotic intermittent behavior. Our method can be applied to any reaction system with an experimentally observable dynamical instability.

  18. High electro-catalytic activities of glucose oxidase embedded one-dimensional ZnO nanostructures

    International Nuclear Information System (INIS)

    Sarkar, Nirmal K; Bhattacharyya, Swapan K

    2013-01-01

    One-dimensional ZnO nanorods and nanowires are separately synthesized on Zn substrate by simple hydrothermal processes at low temperatures. Electro-catalytic responses of glucose oxidase/ZnO/Zn electrodes using these two synthesized nanostructures of ZnO are reported and compared with others available in literature. It is apparent the Michaelis–Menten constant, K M app , for the present ZnO nanowire, having a greater aspect ratio, is found to be the lowest when compared with others. This sensor shows lower oxidation peak potential with a long detection range of 6.6 μM–380 mM and the highest sensitivity of ∼35.1 μA cm −2 mM −1 , among the reported values in the literature. Enzyme catalytic efficiency and turnover numbers are also found to be remarkably high. (paper)

  19. Proximity does not contribute to activity enhancement in the glucose oxidase-horseradish peroxidase cascade

    Science.gov (United States)

    Zhang, Yifei; Tsitkov, Stanislav; Hess, Henry

    2016-12-01

    A proximity effect has been invoked to explain the enhanced activity of enzyme cascades on DNA scaffolds. Using the cascade reaction carried out by glucose oxidase and horseradish peroxidase as a model system, here we study the kinetics of the cascade reaction when the enzymes are free in solution, when they are conjugated to each other and when a competing enzyme is present. No proximity effect is found, which is in agreement with models predicting that the rapidly diffusing hydrogen peroxide intermediate is well mixed. We suggest that the reason for the activity enhancement of enzymes localized by DNA scaffolds is that the pH near the surface of the negatively charged DNA nanostructures is lower than that in the bulk solution, creating a more optimal pH environment for the anchored enzymes. Our findings challenge the notion of a proximity effect and provide new insights into the role of DNA scaffolds.

  20. Radiation induced deactivation, post deactivation of horse radish peroxidase, glucose oxidase and the protective effect

    International Nuclear Information System (INIS)

    Yi Min; Zhong Qun; Chen Yiqing; Ha Hongfei

    1993-01-01

    In order to check the fact if the radiation induced post deactivation are possessed by all the enzymes, the radiation effects of horse radish peroxidase (HRP) and glucose oxidase (GOD) were investigated. It was found that in dilute aqueous solution the irradiated HRP has the post deactivation also. The effects of absorbed dose, initial HRP concentration in solution, atmosphere, temperature and additives (three kinds of complex agents: EDTA, CDTA and D) on the post deactivation of HRP were investigated. The regularity of post deactivation of HRP is similar with the catalase. Oxygen in enzyme samples is necessary for the post deactivation. 5 x 10 -3 mol/l of the three additives could control the phenomenon efficiently. Of course, the radiation deactivation of HRP was given as well. In the case of GOD the post deactivation was not found, although it's radiation deactivation is serious. It means that the radiation induced post deactivation is not a common phenomenon for all enzymes

  1. Enhanced Production of Glucose Oxidase Using Penicillium notatum and Rice Polish

    Directory of Open Access Journals (Sweden)

    Shazia Sabir

    2007-01-01

    Full Text Available Glucose oxidase (GOD is an important enzyme that finds a wide range of applications in food and pharmaceutical industry. In this investigation the feasibility of using rice polish as a substrate for the production of GOD by Penicillium notatum in submerged fermentation (SmF has been evaluated. The intention was to enhance total GOD activity by the selection of economical substrate, microorganism and consecutive optimization of various cultural conditions. Maximum GOD activity of (112±5 U/mL was achieved under optimum growth conditions: rice polish 5 g, incubation period 72 h, buffering agent 3 % (by mass per volume, incubation temperature (30±1 °C and pH=6.0. Addition of carbon and nitrogen sources further enhanced the enzyme yield, indicating an economically attractive process for GOD production.

  2. Rational redesign of glucose oxidase for improved catalytic function and stability.

    Directory of Open Access Journals (Sweden)

    J Todd Holland

    Full Text Available Glucose oxidase (GOx is an enzymatic workhorse used in the food and wine industries to combat microbial contamination, to produce wines with lowered alcohol content, as the recognition element in amperometric glucose sensors, and as an anodic catalyst in biofuel cells. It is naturally produced by several species of fungi, and genetic variants are known to differ considerably in both stability and activity. Two of the more widely studied glucose oxidases come from the species Aspergillus niger (A. niger and Penicillium amagasakiense (P. amag., which have both had their respective genes isolated and sequenced. GOx from A. niger is known to be more stable than GOx from P. amag., while GOx from P. amag. has a six-fold superior substrate affinity (K(M and nearly four-fold greater catalytic rate (k(cat. Here we sought to combine genetic elements from these two varieties to produce an enzyme displaying both superior catalytic capacity and stability. A comparison of the genes from the two organisms revealed 17 residues that differ between their active sites and cofactor binding regions. Fifteen of these residues in a parental A. niger GOx were altered to either mirror the corresponding residues in P. amag. GOx, or mutated into all possible amino acids via saturation mutagenesis. Ultimately, four mutants were identified with significantly improved catalytic activity. A single point mutation from threonine to serine at amino acid 132 (mutant T132S, numbering includes leader peptide led to a three-fold improvement in k(cat at the expense of a 3% loss of substrate affinity (increase in apparent K(M for glucose resulting in a specify constant (k(cat/K(M of 23.8 (mM(-1 · s(-1 compared to 8.39 for the parental (A. niger GOx and 170 for the P. amag. GOx. Three other mutant enzymes were also identified that had improvements in overall catalysis: V42Y, and the double mutants T132S/T56V and T132S/V42Y, with specificity constants of 31.5, 32.2, and 31.8 mM(-1 · s

  3. Design of Amperometric Biosensors for the Detection of Glucose Prepared by Immobilization of Glucose Oxidase on Conducting (PolyThiophene Films

    Directory of Open Access Journals (Sweden)

    Maria Pilo

    2018-01-01

    Full Text Available Enzyme-based sensors have emerged as important analytical tools with application in diverse fields, and biosensors for the detection of glucose using the enzyme glucose oxidase have been widely investigated. In this work, the preparation of biosensors by electrochemical polymerization of (polythiophenes, namely 2,2′-bithiophene (2,2′-BT and 4,4′-bis(2-methyl-3-butyn-2-ol-2,2′-bithiophene (4,4′-bBT, followed by immobilization of glucose oxidase on the films, is described. N-cyclohexyl-N′-(2-morpholinoethylcarbodiimide metho-p-toluenesulfonate (CMC was used as a condensing agent, and p-benzoquinone (BQ was used as a redox mediator in solution. The glucose oxidase electrodes with films of 2,2′-BT and 4,4′-bBT were then tested for their ability in detecting glucose from synthetic and real samples (pear, apricot, and peach fruit juices.

  4. Influence of partial pressure of oxygen in blood samples on measurement performance in glucose-oxidase-based systems for self-monitoring of blood glucose.

    Science.gov (United States)

    Baumstark, Annette; Schmid, Christina; Pleus, Stefan; Haug, Cornelia; Freckmann, Guido

    2013-11-01

    Partial pressure of oxygen (pO2) in blood samples can affect blood glucose (BG) measurements, particularly in systems that employ the glucose oxidase (GOx) enzyme reaction on test strips. In this study, we assessed the impact of different pO2 values on the performance of five GOx systems and one glucose dehydrogenase (GDH) system. Two of the GOx systems are labeled by the manufacturers to be sensitive to increased blood oxygen content, while the other three GOx systems are not. Aliquots of 20 venous samples were adjusted to the following pO2 values: oxygen sensitive. © 2013 Diabetes Technology Society.

  5. Enhanced electrochemical sensitivity of enzyme precipitate coating (EPC)-based glucose oxidase biosensors with increased free CNT loadings.

    Science.gov (United States)

    Kim, Jae Hyun; Jun, Sun-Ae; Kwon, Yongchai; Ha, Su; Sang, Byong-In; Kim, Jungbae

    2015-02-01

    Enzymatic electrodes were fabricated by using three different immobilizations of glucose oxidase (GOx): covalent enzyme attachment (CA), enzyme coating (EC), and enzyme precipitate coating (EPC), here referred to as CA-E, EC-E, and EPC-E, respectively. When additional carbon nanotubes (CNTs) were introduced from 0 to 75wt% for the EPC-E design, its initial biosensor sensitivity was improved from 2.40×10(-3) to 16.26×10(-3) A∙M(-1)∙cm(-2), while its electron charge transfer rate constant was increased from 0.33 to 1.47s(-1). When a fixed ratio of CNTs was added for three different electrode systems, EPC-E showed the best glucose sensitivity and long-term thermal stability. For example, when 75wt% of additional CNTs was added, the initial sensitivity of EPC-E was 16.26×10(-3) A∙M(-1)∙cm(-2), while those of EC-E and CA-E were only 6.42×10(-3) and 1.18×10(-3) A∙M(-1)∙cm(-2), respectively. Furthermore, EPC-E retained 63% of its initial sensitivity after thermal treatment at 40°C over 41days, while EC-E and CA-E showed only 12% and 1% of initial sensitivities, respectively. Consequently, the EPC approach with additional CNTs achieved both high sensitivity and long-term stability, which are required for continuous and accurate glucose monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine.

    Science.gov (United States)

    Röcker, Jessica; Schmitt, Matthias; Pasch, Ludwig; Ebert, Kristin; Grossmann, Manfred

    2016-11-01

    Due to the increase of sugar levels in wine grapes as one of the impacts of climate change, alcohol reduction in wines becomes a major focus of interest. This study combines the use of glucose oxidase and catalase activities with the aim of rapid conversion of glucose into non-fermentable gluconic acid. The H2O2 hydrolysing activity of purified catalase is necessary in order to stabilize glucose oxidase activity. After establishing the adequate enzyme ratio, the procedure was applied in large-scale trials (16L- and 220L-scale) of which one was conducted in a winery under industrial wine making conditions. Both enzyme activity and wine flavour were clearly influenced by the obligatory aeration in the different trials. With the enzyme treatment an alcohol reduction of 2%vol. was achieved after 30h of aeration. However the enzyme treated wines were significantly more acidic and less typical. Copyright © 2016. Published by Elsevier Ltd.

  7. Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations.

    Science.gov (United States)

    Fraser, D A; Hessvik, N P; Nikolić, N; Aas, V; Hanssen, K F; Bøhn, S K; Thoresen, G H; Rustan, A C

    2012-07-01

    The aim of the present work was to study the effects of benfotiamine (S-benzoylthiamine O-monophosphate) on glucose and lipid metabolism and gene expression in differentiated human skeletal muscle cells (myotubes) incubated for 4 days under normal (5.5 mM glucose) and hyperglycemic (20 mM glucose) conditions. Myotubes established from lean, healthy volunteers were treated with benfotiamine for 4 days. Glucose and lipid metabolism were studied with labeled precursors. Gene expression was measured using real-time polymerase chain reaction (qPCR) and microarray technology. Benfotiamine significantly increased glucose oxidation under normoglycemic (35 and 49% increase at 100 and 200 μM benfotiamine, respectively) as well as hyperglycemic conditions (70% increase at 200 μM benfotiamine). Benfotiamine also increased glucose uptake. In comparison, thiamine (200 μM) increased overall glucose metabolism but did not change glucose oxidation. In contrast to glucose, mitochondrial lipid oxidation and overall lipid metabolism were unchanged by benfotiamine. The expression of NADPH oxidase 4 (NOX4) was significantly downregulated by benfotiamine treatment under both normo- and hyperglycemic conditions. Gene set enrichment analysis (GSEA) showed that befotiamine increased peroxisomal lipid oxidation and organelle (mitochondrial) membrane function. In conclusion, benfotiamine increases mitochondrial glucose oxidation in myotubes and downregulates NOX4 expression. These findings may be of relevance to type 2 diabetes where reversal of reduced glucose oxidation and mitochondrial capacity is a desirable goal.

  8. Influence of gamma irradiation on polymerization of pyrrole and glucose oxidase immobilization onto poly (pyrrole)/poly (vinyl alcohol) matrix

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Sarada, E-mail: sarada@nuclearmalaysia.gov.my [Department of Radiation Technology, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia); Bakar, Ahmad Ashrif A., E-mail: ashrif@ukm.edu.my [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia); Thevy Ratnam, Chantara [Department of Radiation Technology, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Kamaruddin, Nur Hasiba [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia); Shaari, Sahbudin [Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia)

    2017-04-01

    Graphical abstract: The illustration of pyrrole polymerization, PVA crosslinking and immobilization of GOx onto polymer matrix. - Highlights: • Immobilization of glucose oxidase onto polymer matrices by gamma irradiation is proposed. • Crosslinking and grafting of polymers implies the immobilization reaction. • The mechanisms relies on gamma irradiation doses. • A simple single step process of polymerization, cross linking and immobilization by mean of gamma irradiation as was shown in Graphical abstract. - Abstract: This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy

  9. Influence of gamma irradiation on polymerization of pyrrole and glucose oxidase immobilization onto poly (pyrrole)/poly (vinyl alcohol) matrix

    International Nuclear Information System (INIS)

    Idris, Sarada; Bakar, Ahmad Ashrif A.; Thevy Ratnam, Chantara; Kamaruddin, Nur Hasiba; Shaari, Sahbudin

    2017-01-01

    Graphical abstract: The illustration of pyrrole polymerization, PVA crosslinking and immobilization of GOx onto polymer matrix. - Highlights: • Immobilization of glucose oxidase onto polymer matrices by gamma irradiation is proposed. • Crosslinking and grafting of polymers implies the immobilization reaction. • The mechanisms relies on gamma irradiation doses. • A simple single step process of polymerization, cross linking and immobilization by mean of gamma irradiation as was shown in Graphical abstract. - Abstract: This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy

  10. On the Possibility of Uphill Intramolecular Electron Transfer in Multicopper Oxidases: Electrochemical and Quantum Chemical Study of Bilirubin Oxidase

    Czech Academy of Sciences Publication Activity Database

    Shleev, S.; Andoralov, V.; Falk, M.; Reimann, C. T.; Ruzgas, T.; Srnec, Martin; Ryde, U.; Rulíšek, Lubomír

    2012-01-01

    Roč. 24, č. 7 (2012), s. 1524-1540 ISSN 1040-0397 Grant - others:7th Framework Program(XE) NMP4-SL-2009-229255 Institutional research plan: CEZ:AV0Z40550506 Keywords : bilirubin oxidase * intramolecular electron transfer * rate-limiting catalytic step * reorganization energy * QM/MM calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.817, year: 2012

  11. Intramolecular electron transfer in ascorbate oxidase is enhanced in the presence of oxygen

    DEFF Research Database (Denmark)

    Farver, O; Wherland, S; Pecht, I

    1994-01-01

    Intramolecular electron transfer from the type 1 copper center to the type 3 copper(II) pair is induced in the multi-copper enzyme, ascorbate oxidase, following pulse radiolytic reduction of the type 1 Cu(II) ion. In the presence of a slight excess of dioxygen over ascorbate oxidase, interaction...... between the trinuclear copper center and O2 is observed even with singly reduced ascorbate oxidase molecules. Under these conditions, the rate constant for intramolecular electron transfer from type 1 Cu(I) to type 3 Cu(II) increases 5-fold to 1100 +/- 300 s-1 (20 degrees C, pH 5.8) as compared...

  12. The effects of carbon nanotube addition and oxyfluorination on the glucose-sensing capabilities of glucose oxidase-coated carbon fiber electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Yun, Jumi; Kim, Jong Gu [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2 M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Bae, Tae-Sung [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2 M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Korea Basic Science Institute (KBSI), Jeonju 561-756 (Korea, Republic of); Lee, Young-Seak, E-mail: youngslee@cnu.ac.kr [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2 M, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-01-15

    Glucose-sensing electrodes were constructed from carbon fibers by electrospinning and heat treatment. By controlling the pore size, the specific surface area and pore volume of the electrospun carbon fibers were increased for efficient immobilization of the glucose oxidase. Carbon nanotubes were embedded as an electrically conductive additive to improve the electrical property of the porous carbon fibers. In addition, the surface of the porous carbon fibers was modified with hydrophilic functional groups by direct oxyfluorination to increase the affinity between the hydrophobic carbon surface and the hydrophilic glucose oxidase molecules. The porosity of the carbon fibers was improved significantly with approximately 28- and 35-fold increases in the specific surface area and pore volume, respectively. The number of chemical bonds between carbon and oxygen were increased with higher oxygen content during oxyfluorination based on the X-ray photoelectron spectroscopy results. Glucose sensing was carried out by current voltagram and amperometric methods. A high-performance glucose sensor was obtained with high sensitivity and rapid response time as a result of carbon nanotube addition, physical activation and surface modification. The mechanism of the highly sensitive prepared glucose sensor was modeled by an enzyme kinetics study using the Michaelis-Menten equation.

  13. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe{sub 3}O{sub 4}-silica-Au magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Aijun [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Li Yongfang [College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003 (China); Li Zhonghua [Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Feng Jiuju, E-mail: jjfengnju@gmail.com [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Sun Yanli [Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Chen Jianrong [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China)

    2012-08-01

    Monodisperse Fe{sub 3}O{sub 4} magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe{sub 3}O{sub 4}-silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 Multiplication-Sign 10{sup -9} mol{center_dot}cm{sup -2}, and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 {+-} 0.6 s{sup -1}. The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 {mu}A{center_dot}mM{sup -1} cm{sup -2} and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe{sub 3}O{sub 4}-silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: Black-Right-Pointing-Pointer Synthesis of monodispersed Fe{sub 3}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer Fabrication of core/shell Fe{sub 3}O{sub 4}-silica-Au nanoparticles. Black-Right-Pointing-Pointer Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  14. Effect of different NADH oxidase levels on glucose metabolism by Lactococus lactis : kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance

    NARCIS (Netherlands)

    Neves, A.R.; Ramos, A.; Costa, H.; Swam, van I.I.; Hugenholtz, J.; Kleerebezem, M.; Vos, de W.M.; Santos, H.

    2002-01-01

    Three isogenic strains of Lactococcus lactis with different levels of H2O-forming NADH oxidase activity were used to study the effect of oxygen on glucose metabolism: the parent strain L. lactis MG1363, a NOX- strain harboring a deletion of the gene coding for H2O-forming NADH oxidase, and a NOX

  15. Downregulation of Lysyl Oxidase Protects Retinal Endothelial Cells From High Glucose-Induced Apoptosis.

    Science.gov (United States)

    Kim, Dongjoon; Mecham, Robert P; Trackman, Philip C; Roy, Sayon

    2017-05-01

    To investigate the effect of reducing high glucose (HG)-induced lysyl oxidase (LOX) overexpression and increased activity on retinal endothelial cell apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (N) or HG (30 mM glucose) medium for 7 days. In parallel, RRECs were grown in HG medium and transfected with LOX small interfering RNA (siRNA), scrambled siRNA as control, or exposed to β-aminopropionitrile (BAPN), a LOX inhibitor. LOX expression, AKT activation, and caspase-3 activity were determined by Western blot (WB) analysis and apoptosis by differential dye staining assay. Moreover, to determine whether diabetes-induced LOX overexpression alters AKT activation and promotes apoptosis, changes in LOX expression, AKT phosphorylation, caspase-3 activation, and Bax expression were assessed in retinas of streptozotocin (STZ)-induced diabetic mice and LOX heterozygous knockout (LOX+/-) mice. WB analysis indicated significant LOX overexpression and reduced AKT activation under HG condition in RRECs. Interestingly, when cells grown in HG were transfected with LOX siRNA or exposed to BAPN, the number of apoptotic cells was significantly decreased concomitant with increased AKT phosphorylation. Diabetic mouse retinas exhibited LOX overexpression, decreased AKT phosphorylation, and increased Bax and caspase-3 activation compared to values in nondiabetic mice. In LOX+/- mice, reduced LOX levels were observed with increased AKT activity, and reduced Bax and caspase-3 activity. Furthermore, decreased levels of LOX in the LOX+/- mice was protective against diabetes-induced apoptosis. Findings from this study indicate that preventing LOX overexpression may be protective against HG-induced apoptosis in retinal vascular cells associated with diabetic retinopathy.

  16. Novel urchin-like In2O3–chitosan modified electrode for direct electrochemistry of glucose oxidase and biosensing

    International Nuclear Information System (INIS)

    Yang Zhanjun; Huang Xiaochun; Zhang Rongcai; Li Juan; Xu Qin; Hu Xiaoya

    2012-01-01

    Highlights: ► The urchin-like In 2 O 3 –CS film is proposed for the immobilization of protein. ► The direct electrochemistry of glucose oxidase and biosensing was studied. ► The constructed glucose biosensor shows excellent performances. ► This matrix provides a new and efficient approach for the direct electrochemistry. - Abstract: A novel urchin-like In 2 O 3 –chitosan modified glassy carbon electrode (GCE) is for the first time prepared. The direct electrochemistry of glucose oxidase (GOD) immobilized on the surface of modified GCE and biosensing are studied. The urchin-like In 2 O 3 nanostructure-based matrix has large specific surface area and provides a favorable and biocompatible microenvironment for promoting the direct electron transfer between proteins and electrode surface. The properties of different modified electrode are characterized by scanning electron microscopy (SEM), electrochemical impedance spectra (EIS), UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry, respectively. The constructed glucose biosensor shows wide linear range (5.0 × 10 −6 to 1.3 × 10 −3 M), low detection limit (1.9 × 10 −6 M), a Michaelis–Menten constant of 0.37 mM. The proposed biosensor has good sensitivity, excellent selectivity, good reproducibility and stability. This urchin-like In 2 O 3 –chitosan matrix provides a new approach and efficient matrix for the direct electrochemistry of proteins and developing novel types of biosensors.

  17. Covalent Anchoring of Chloroperoxidase and Glucose Oxidase on the Mesoporous Molecular Sieve SBA-15

    Directory of Open Access Journals (Sweden)

    Martin Hartmann

    2010-02-01

    Full Text Available Functionalization of porous solids plays an important role in many areas, including heterogeneous catalysis and enzyme immobilization. In this study, large-pore ordered mesoporous SBA-15 molecular sieves were synthesized with tetraethyl orthosilicate (TEOS in the presence of the non-ionic triblock co-polymer Pluronic P123 under acidic conditions. These materials were grafted with 3 aminopropyltrimethoxysilane (ATS, 3-glycidoxypropyltrimethoxysilane (GTS and with 3 aminopropyltrimethoxysilane and glutaraldehyde (GA-ATS in order to provide covalent anchoring points for enzymes. The samples were characterized by nitrogen adsorption, powder X-ray diffraction, solid-state NMR spectroscopy, elemental analysis, diffuse reflectance fourier transform infrared spectroscopy and diffuse reflectance UV/Vis spectroscopy. The obtained grafted materials were then used for the immobilization of chloroperoxidase (CPO and glucose oxidase (GOx and the resulting biocatalysts were tested in the oxidation of indole. It is found that enzymes anchored to the mesoporous host by the organic moieties can be stored for weeks without losing their activity. Furthermore, the covalently linked enzymes are shown to be less prone to leaching than the physically adsorbed enzymes, as tested in a fixed-bed reactor under continuous operation conditions.

  18. Preparation of immobilized glucose oxidase wafer enzyme on calcium-bentonite modified by surfactant

    Science.gov (United States)

    Widi, R. K.; Trisulo, D. C.; Budhyantoro, A.; Chrisnasari, R.

    2017-07-01

    Wafer glucose oxidase (GOx) enzymes was produced by addition of PAH (Poly-Allyamine Hydrochloride) polymer into immobilized GOx enzyme on modified-Tetramethylammonium Hydroxide (TMAH) 5%-calsium-bentonite. The use of surfactant molecul (TMAH) is to modify the surface properties and pore size distribution of the Ca-bentonite. These properties are very important to ensure GOx molecules can be bound on the Ca-bentonit surface to be immobilized. The addition of the polymer (PAH) is expected to lead the substrates to be adsorbed onto the enzyme. In this study, wafer enzymes were made in various concentration ratio (Ca-bentonite : PAH) which are 1:0, 1:1, 1:2 and 1:3. The effect of PAH (Poly-Allyamine Hydrochloride) polymer added with various ratios of concentrations can be shown from the capacitance value on LCR meter and enzyme activity using DNS method. The addition of the polymer (PAH) showed effect on the activity of GOx, it can be shown from the decreasing of capacitance value by increasing of PAH concentration.

  19. Glucose oxidase incorporated collagen matrices for dermal wound repair in diabetic rat models: a biochemical study.

    Science.gov (United States)

    Arul, V; Masilamoni, J G; Jesudason, E P; Jaji, P J; Inayathullah, M; Dicky John, D G; Vignesh, S; Jayakumar, R

    2012-05-01

    Impaired wound healing in diabetes is a well-documented phenomenon. Emerging data favor the involvement of free radicals in the pathogenesis of diabetic wound healing. We investigated the beneficial role of the sustained release of reactive oxygen species (ROS) in diabetic dermal wound healing. In order to achieve the sustained delivery of ROS in the wound bed, we have incorporated glucose oxidase in the collagen matrix (GOIC), which is applied to the healing diabetic wound. Our in vitro proteolysis studies on incorporated GOIC show increased stability against the proteases in the collagen matrix. In this study, GOIC film and collagen film (CF) are used as dressing material on the wound of streptozotocin-induced diabetic rats. A significant increase in ROS (p < 0.05) was observed in the fibroblast of GOIC group during the inflammation period compared to the CF and control groups. This elevated level up regulated the antioxidant status in the granulation tissue and improved cellular proliferation in the GOIC group. Interestingly, our biochemical parameters nitric oxide, hydroxyproline, uronic acid, protein, and DNA content in the healing wound showed that there is an increase in proliferation of cells in GOIC when compared to the control and CF groups. In addition, evidence from wound contraction and histology reveals faster healing in the GOIC group. Our observations document that GOIC matrices could be effectively used for diabetic wound healing therapy.

  20. Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates.

    Science.gov (United States)

    Dubey, Manish K; Zehra, Andleeb; Aamir, Mohd; Meena, Mukesh; Ahirwal, Laxmi; Singh, Siddhartha; Shukla, Shruti; Upadhyay, Ram S; Bueno-Mari, Ruben; Bajpai, Vivek K

    2017-01-01

    Fungal glucose oxidase (GOD) is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production.

  1. Immobilized glucose oxidase by radiation induced polymerization of HEMA at low temperature

    International Nuclear Information System (INIS)

    Cao Jin; Su Zongxian

    1988-01-01

    The immobilized glucose oxidase (GOD) by 60 Co-γ induced polymerization of hydroxyethyl methacrylate (HEMA) at -78 deg C was studied. From the experiment results, it was found that the irradation dose until 1 x 10 4 Gy had not a significant effect on the native GOD activity. When the carrier (HEMA) concentration was 50% and the entrapped amount was 1.0 ml GOD/10 ml phosphoric acid buffer solution, the immobilized GOD had not only elastic, but also had high remaining activity. The native GOD was less sensitive to pH value than the immobilized GOD, but both the proper pH values didn't change. The kinetic reaction results showed, Michaelis constant k'm=1.42 x 10 -2 mol (native GOD km=1.0 x 10 -2 mol). This value indicated that diffuse velocity of substitue was restricted. The activation energies of the immobilized GOD were found to be 13.7kJ/mol

  2. Immobilization of glucose oxidase to nanostructured films of polystyrene-block-poly(2-vinylpyridine).

    Science.gov (United States)

    Bhakta, Samir A; Benavidez, Tomas E; Garcia, Carlos D

    2014-09-15

    A critical step for the development of biosensors is the immobilization of the biorecognition element to the surface of a substrate. Among other materials that can be used as substrates, block copolymers have the untapped potential to provide significant advantages for the immobilization of proteins. To explore such possibility, this manuscript describes the fabrication and characterization of thin-films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP). These films were then used to investigate the immobilization of glucose oxidase, a model enzyme for the development of biosensors. According to the results presented, the nanoporous films can provide significant increases in surface area of the substrate and the immobilization of larger amounts of active enzyme. The characterization of the substrate-enzyme interface discussed in the manuscript aims to provide critical information about relationship between the surface (material, geometry, and density of pores), the protein structure, and the immobilization conditions (pH, and protein concentration) required to improve the catalytic activity and stability of the enzymes. A maximum normalized activity of 3300±700 U m(-2) was achieved for the nanoporous film of PS-b-P2VP. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Glucose Oxidase Adsorption on Sequential Adsorbed Polyelectrolyte Films Studied by Spectroscopic Techniques

    Science.gov (United States)

    Tristán, Ferdinando; Solís, Araceli; Palestino, Gabriela; Gergely, Csilla; Cuisinier, Frédéric; Pérez, Elías

    2005-04-01

    The adsorption of Glucose Oxidase (GOX) on layers of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) deposited on Sequentially Adsorbed Polyelectrolyte Films (SAPFs) were studied by three different spectroscopic techniques. These techniques are: Optical Wave Light Spectroscopy (OWLS) to measure surface density; Fluorescence Resonance Energy Transfer (FRET) to verify the adsorption of GOX on the surface; and Fourier Transform Infrared Spectroscopy in Attenuated Total Reflection mode (FTIR-HATR) to inspect local structure of polyelectrolytes and GOX. Two positive and two negative polyelectrolytes are used: Cationic poly(ethyleneimine) (PEI) and poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrene sulfonate) (PSS) and poly(acrylic acid) (PAA). These spectroscopic techniques do not require any labeling for GOX or SAPFs, specifically GOX and PSS are naturally fluorescent and are used as a couple donor-acceptor for the FRET technique. The SAPFs are formed by a (PEI)-(PSS/PAH)2 film followed by (PAA/PAH)n bilayers. GOX is finally deposited on top of SAPFs at different values of n (n=1..5). Our results show that GOX is adsorbed on positive ended SAPFs forming a monolayer. Contrary, GOX adsorption is not observed on negative ended film polyelectrolyte. GOX stability was tested adding a positive and a negative polyelectrolyte after GOX adsorption. Protein is partially removed by PAH and PAA, with lesser force by PAA.

  4. Detection and light enhancement of glucose oxidase adsorbed on porous silicon microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Palestino, Gabriela [GES-UMR 5650, CNRS-Universite Montpellier II, Montpellier (France); Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Martin, Marta; Legros, Rene; Cloitre, Thierry; Gergely, Csilla [GES-UMR 5650, CNRS-Universite Montpellier II, Montpellier (France); Agarwal, Vivechana [CIICAP, Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Zimanyi, Laszlo [EA4203, Faculte d' Odontologie, Universite Montpellier I, Montpellier (France); Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged (Hungary)

    2009-07-15

    Porous silicon (PSi) structure is used as support material to detect protein infiltration and to induce fluorescence and second harmonic light enhancement from glucose oxidase (GOX). Functionalization and protein infiltration is monitored by specular reflectometry. Optical response enhancement of PSi microcavity structures compared to PSi single layers or Bragg mirrors is observed, when GOX is impregnated. Penetration of organic molecules along the PSi microcavity structure is demonstrated by energy dispersive X-ray profile. Enhanced fluorescence emission of GOX when adsorbed on PSi microcavity is evidenced by multi-photon microscopy (MPM). Second harmonic light generation is observed at some particular pores of PSi and subsequent resonance enhancement of the signal arising from the GOX adsorbed within the pores is detected. Our work evidences an improved device functionality of GOX-PSi microcavities due to strongly confined and localized light emission within these structures. This opens the way towards the application of PSi microcavity structures as amended biosensors based on their locally enhanced optical response. The second main achievement lies in the novelty of the used techniques. In contrast to the specular reflectometry used to monitor the macroscopic optical response of PSi structures, MPM presents a valuable alternative microscopic technique probing individual pores. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. A study of the electron transfer and photothermal effect of gold nanorods on a glucose biosensor

    International Nuclear Information System (INIS)

    Liu Huiyu; Yang Liuqing; Ren Xiangling; Tang Fangqiong; Ren Jun; Chen Dong

    2010-01-01

    A new glucose biosensor based on the electron transfer and photothermal effect of gold nanorods (GNRs) is reported here. The biosensor was prepared by immobilizing glucose oxidase (GOx) on a platinum (Pt) electrode by a composite film consisting of GNRs, polyvinyl butyral (PVB) and glutaraldehyde. GNRs were synthesized by a gold seed-mediated cetyltrimethylammonium bromide (CTAB) surfactant-assisted approach. The fabrication, characterization and analytical performance of the glucose biosensor based on GNRs are described in this paper. Moreover, the modulation of the biosensor by the photothermal effect based on the unique surface plasma resonance (SPR) property of GNRs was investigated for the first time. The results show that the current response of a glucose biosensor can significantly increase, induced by the electrical conductivity and photothermal effect of GNRs.

  6. Influence of gamma irradiation on polymerization of pyrrole and glucose oxidase immobilization onto poly (pyrrole)/poly (vinyl alcohol) matrix

    Science.gov (United States)

    Idris, Sarada; A. Bakar, Ahmad Ashrif; Thevy Ratnam, Chantara; Kamaruddin, Nur Hasiba; Shaari, Sahbudin

    2017-04-01

    This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy/PVA matrix occurred simultaneously upon gamma irradiation. The optimum dose for GOx immobilization in the polymer matrix found to be 40 kGy. Therefore it is clear that this irradiation technique offered a simple single process to produce Py/PVA-GOx film without additional crosslinking and polymerization agents.

  7. Flow-injection amperometric determination of glucose using a biosensor based on immobilization of glucose oxidase onto Au seeds decorated on core Fe₃O₄ nanoparticles.

    Science.gov (United States)

    Samphao, Anchalee; Butmee, Preeyanut; Jitcharoen, Juthamas; Švorc, Ľubomír; Raber, Georg; Kalcher, Kurt

    2015-09-01

    An amperometric biosensor based on chemisorption of glucose oxidase (GOx) on Au seeds decorated on magnetic core Fe3O4 nanoparticles (Fe3O4@Au) and their immobilization on screen-printed carbon electrode bulk-modified with manganese oxide (SPCE{MnO2}) was designed for the determination of glucose. The Fe3O4@Au/GOx modified SPCE{MnO2} was used in a flow-injection analysis (FIA) arrangement. The experimental conditions were investigated in amperometric mode with the following optimized parameters: flow rate 1.7 mL min(-1), applied potential +0.38 V, phosphate buffer solution (PBS; 0.1 mol L(-1), pH 7.0) as carrier and 3.89 unit mm(-2) enzyme glucose oxidase loading on the active surface of the SPCE. The designed biosensor in FIA arrangement yielded a linear dynamic range for glucose from 0.2 to 9.0 mmol L(-1) with a sensitivity of 2.52 µA mM(-1) cm(-2), a detection limit of 0.1 mmol L(-1) and a quantification limit of 0.3 mmol L(-1). Moreover, a good repeatability of 2.8% (number of measurements n=10) and a sufficient reproducibility of 4.0% (number of sensors n=3) were achieved. It was found that the studied system Fe3O4@Au facilitated not only a simpler enzyme immobilization but also provided wider linear range. The practical application of the proposed biosensor for FIA quantification of glucose was tested in glucose sirup samples, honeys and energy drinks with the results in good accordance with those obtained by an optical glucose meter and with the contents declared by the producers. Copyright © 2015. Published by Elsevier B.V.

  8. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors.

    Science.gov (United States)

    Tsuruoka, Nozomu; Sadakane, Takuya; Hayashi, Rika; Tsujimura, Seiya

    2017-03-10

    The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus . At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k ₂ values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  9. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors

    Directory of Open Access Journals (Sweden)

    Nozomu Tsuruoka

    2017-03-01

    Full Text Available The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus. At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k2 values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  10. Development of an Amperometric Glucose Biosensor Based on the Immobilization of Glucose Oxidase on the Se-MCM-41 Mesoporous Composite

    Directory of Open Access Journals (Sweden)

    Sabriye Yusan

    2018-01-01

    Full Text Available A new bioenzymatic glucose biosensor for selective and sensitive detection of glucose was developed by the immobilization of glucose oxidase (GOD onto selenium nanoparticle-mesoporous silica composite (MCM-41 matrix and then prepared as a carbon paste electrode (CPE. Cyclic voltammetry was employed to probe the catalytic behavior of the biosensor. A linear calibration plot is obtained over a wide concentration range of glucose from 1 × 10−5 to 2 × 10−3 M. Under optimal conditions, the biosensor exhibits high sensitivity (0.34 µA·mM−1, low detection limit (1 × 10−4 M, high affinity to glucose (Km = 0.02 mM, and also good reproducibility (R.S.D. 2.8%, n=10 and a stability of about ten days when stored dry at +4°C. Besides, the effects of pH value, scan rate, mediator effects on the glucose current, and electroactive interference of the biosensor were also discussed. As a result, the biosensor exhibited an excellent electrocatalytic response to glucose as well as unique stability and reproducibility.

  11. Novel Dry-Type Glucose Sensor Based on a Metal-Oxide-Semiconductor Capacitor Structure with Horseradish Peroxidase + Glucose Oxidase Catalyzing Layer

    Science.gov (United States)

    Lin, Jing-Jenn; Wu, You-Lin; Hsu, Po-Yen

    2007-10-01

    In this paper, we present a novel dry-type glucose sensor based on a metal-oxide-semiconductor capacitor (MOSC) structure using SiO2 as a gate dielectric in conjunction with a horseradish peroxidase (HRP) + glucose oxidase (GOD) catalyzing layer. The tested glucose solution was dropped directly onto the window opened on the SiO2 layer, with a coating of HRP + GOD catalyzing layer on top of the gate dielectric. From the capacitance-voltage (C-V) characteristics of the sensor, we found that the glucose solution can induce an inversion layer on the silicon surface causing a gate leakage current flowing along the SiO2 surface. The gate current changes Δ I before and after the drop of glucose solution exhibits a near-linear relationship with increasing glucose concentration. The Δ I sensitivity is about 1.76 nA cm-2 M-1, and the current is quite stable 20 min after the drop of the glucose solution is tested.

  12. The Redox Behaviour of Randomly Dispersed Single Walled Carbon Nanotubes both in the Absence and in the Presence of Adsorbed Glucose Oxidase

    Directory of Open Access Journals (Sweden)

    Gareth P. Keeley

    2006-12-01

    Full Text Available The electrochemical behaviour of SWCNTs randomly dispersed on gold and glassy carbon electrode surfaces was characterised via cyclic voltammetry and complex impedance spectroscopy, using the ferri/ferrocyanide couple as a redox active test probe . In subsequent investigations glucose oxidase (GOx was adsorbed onto the SWCNT ensemble without apparent denaturation of the enzyme. Cyclic voltammetry and potential step chronoamperometry were used to quantify and understand the process of electron transfer between the immobilised protein redox site and the working electrode. The effect of pH on the system was also investigated. In particular, we have shown that, for the calculation of electron transfer rate constants for surface-immobilised redox systems, chronoamperometry is preferable to voltammetry, which has been the technique of choice until now.

  13. Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD: Current Updates

    Directory of Open Access Journals (Sweden)

    Manish K. Dubey

    2017-06-01

    Full Text Available Fungal glucose oxidase (GOD is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production.

  14. Glucose oxidase stabilization against thermal inactivation using high hydrostatic pressure and hydrophobic modification.

    Science.gov (United States)

    Halalipour, Ali; Duff, Michael R; Howell, Elizabeth E; Reyes-De-Corcuera, José I

    2017-03-01

    High hydrostatic pressure (HHP) stabilized glucose oxidase (GOx) against thermal inactivation. The apparent first-order kinetics of inactivation of GOx were investigated at 0.1-300 MPa and 58.8-80.0°C. At 240 MPa and 74.5°C, GOx inactivated at a rate 50 times slower than at atmospheric pressure at the same temperature. The apparent activation energy of inactivation at 300 MPa was 281.0 ± 17.4 kJ mol -1 or 1.3-fold smaller than for the inactivation at atmospheric pressure (378.1 ± 25.6 kJ mol -1 ). The stabilizing effect of HHP was greatest at 74.5°C, where the activation volume of 57.0 ± 12.0 cm 3  mol -1 was highest compared to all other studied temperatures. Positive apparent activation volumes for all the treatment temperatures confirmed that HHP favors GOx stabilization. A second approach to increase GOx stability involved crosslinking with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and either aniline or benzoate. The modified enzyme remained fully active with only slight increases in K M (1.3-1.9-fold increases for aniline and benzoate modification, respectively). The thermal stability of GOx increased by 8°C with aniline modification, while it decreased by 0.9°C upon modification with benzoate. Biotechnol. Bioeng. 2017;114: 516-525. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Glucose oxidase-modified carbon-felt-reactor coupled with peroxidase-modified carbon-felt-detector for amperometric flow determination of glucose

    International Nuclear Information System (INIS)

    Wang Yue; Hasebe, Yasushi

    2012-01-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were covalently immobilized on a porous carbon-felt (CF) by using cyanuric chloride (CC) as a linking reagent. The resulting GOx-modified-CF (GOx-ccCF) was used as column-type enzyme reactor and placed on upstream of the HRP-ccCF-based H 2 O 2 flow-detector to fabricate amperometric flow-biosensor for glucose. Sensor setting conditions and the operational conditions were optimized, and the analytical performance characteristics of the resulting flow-biosensor were evaluated. The chemical modification of the GOx via CC was found to be effective to obtain larger catalytic activity as compared with the physical adsorption. Under the optimized conditions (i.e., volume ratio of the GOx-ccCF-reactor to the HRP-ccCF-detector is 1.0; applied potential is − 0.12 V vs. Ag/AgCl; carrier pH is 6.5; and carrier flow rate is 4.3 ml/min), highly selective and quite reproducible peak current responses toward glucose were obtained: the RSD for 30 consecutive injections of 3 mM glucose was 1.04%, and no serious interferences were observed for fructose, ethanol, uric acid, urea and tartaric acid for the amperometric measurements of glucose. The magnitude of the cathodic peak currents for glucose was linear up to 5 mM (sensitivity, 6.38 ± 0.32 μA/μM) with the limit detection of 9.4 μM (S/N = 3, noise level, 20 nA). The present GOx-ccCF-reactor and HRP-ccCF-detector-coupled flow-glucose biosensor was utilized for the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by the conventional spectrophotometry. - Highlights: ► Glucose oxidase (GOx) and peroxidase (HRP) were modified on carbon-felt. ► GOx-CF reactor and HRP-CF detector-coupled flow glucose biosensor was developed. ► This flow biosensor enabled the determination of glucose in beverages and liquors.

  16. Glucose oxidase-modified carbon-felt-reactor coupled with peroxidase-modified carbon-felt-detector for amperometric flow determination of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yue [School of Chemical Engineering, University of Science and Technology LiaoNing, 185 Qianshan Middle Road, High-tech Zone, Anshan, LiaoNing, 114501 (China); Hasebe, Yasushi, E-mail: hasebe@sit.ac.jp [Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293 (Japan)

    2012-04-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were covalently immobilized on a porous carbon-felt (CF) by using cyanuric chloride (CC) as a linking reagent. The resulting GOx-modified-CF (GOx-ccCF) was used as column-type enzyme reactor and placed on upstream of the HRP-ccCF-based H{sub 2}O{sub 2} flow-detector to fabricate amperometric flow-biosensor for glucose. Sensor setting conditions and the operational conditions were optimized, and the analytical performance characteristics of the resulting flow-biosensor were evaluated. The chemical modification of the GOx via CC was found to be effective to obtain larger catalytic activity as compared with the physical adsorption. Under the optimized conditions (i.e., volume ratio of the GOx-ccCF-reactor to the HRP-ccCF-detector is 1.0; applied potential is - 0.12 V vs. Ag/AgCl; carrier pH is 6.5; and carrier flow rate is 4.3 ml/min), highly selective and quite reproducible peak current responses toward glucose were obtained: the RSD for 30 consecutive injections of 3 mM glucose was 1.04%, and no serious interferences were observed for fructose, ethanol, uric acid, urea and tartaric acid for the amperometric measurements of glucose. The magnitude of the cathodic peak currents for glucose was linear up to 5 mM (sensitivity, 6.38 {+-} 0.32 {mu}A/{mu}M) with the limit detection of 9.4 {mu}M (S/N = 3, noise level, 20 nA). The present GOx-ccCF-reactor and HRP-ccCF-detector-coupled flow-glucose biosensor was utilized for the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by the conventional spectrophotometry. - Highlights: Black-Right-Pointing-Pointer Glucose oxidase (GOx) and peroxidase (HRP) were modified on carbon-felt. Black-Right-Pointing-Pointer GOx-CF reactor and HRP-CF detector-coupled flow glucose biosensor was developed. Black-Right-Pointing-Pointer This flow biosensor enabled the determination of glucose in beverages and

  17. Glucose oxidase as a biocatalytic enzyme-based bio-fuel cell using Nafion membrane limiting crossover

    International Nuclear Information System (INIS)

    Naidoo, S; Blottnitz, H; Naidoo, Q; Vaivars, G

    2013-01-01

    A novel combination for an Enzyme-based Biofuel cell included a Nafion membrane as an ion transporter that maintained a working cell charge and inhibited membrane degradation. The prototype cell chamber used oxygen (O 2 ) in the cathode cell and glucose in the anode. The Nafion membrane stability studied here was evidently in the region of 0% loss of conductivity as the charge was constant and increased after the addition of glucose. The prototype cell chamber used NaCl in the cathode cell and glucose oxidase (GOx) in the anodic chamber was successfully studied for membrane stability showed in this study no evidence of poisoning from membrane leakage in a controlled pH environment. There was no crossover at the anaerobic operating ambient temperatures and under physiological pH 5 – 7 conditions. In this research we have successfully used a Nafion membrane together with GOx and under controlled conditions produced respectable power densities

  18. Construction of covalently attached enzyme multilayer films based on the photoreaction of diazo-resins and glucose oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Suxia [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 119 Jie Fang Road, Changchun 130023 (China); Niu Yaming [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 119 Jie Fang Road, Changchun 130023 (China); Sun Changqing [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 119 Jie Fang Road, Changchun 130023 (China)]. E-mail: sunchq@mail.jlu.edu.cn

    2004-10-15

    A novel and facile approach to construct multilayered glucose oxidase (GOx) films on the surface of quartz or CaF{sub 2} slides as well as gold electrodes for use as biosensing interfaces is described. Diazo-resins (DAR) as polycation and glucose oxidase as polyanion were alternately deposited into a multilayer structure using layer-by-layer self-assembly technique based on electrostatic interaction as driving force. Upon near UV irradiation, the adjacent interfaces of the multilayer reacted to form a crosslinking structure which greatly improved the stability of the enzyme films. These changes was monitored and confirmed by UV-vis and IR spectroscopy. Ellipsometric measurements reveal that the enzymes formed sub-molecule layers, and the thickness of the film shows a linear relationship with the number of assembled layers, demonstrating a spatially well-ordered manner in multilayer structure. The covalently attached enzyme multilayer film has a highly permeable structure, and can be used as biosensing interface. Electrochemical and analytical behavior of the enzyme electrodes was studied by cyclic voltammetry (CV) in the presence or absence of glucose. The sensitivity of the enzyme-modified electrodes was estimated through the analysis of voltammetric signals, which can be fine turned to the desired level by adjusting the number of attached bilayers.

  19. Construction of covalently attached enzyme multilayer films based on the photoreaction of diazo-resins and glucose oxidase

    International Nuclear Information System (INIS)

    Zhang Suxia; Niu Yaming; Sun Changqing

    2004-01-01

    A novel and facile approach to construct multilayered glucose oxidase (GOx) films on the surface of quartz or CaF 2 slides as well as gold electrodes for use as biosensing interfaces is described. Diazo-resins (DAR) as polycation and glucose oxidase as polyanion were alternately deposited into a multilayer structure using layer-by-layer self-assembly technique based on electrostatic interaction as driving force. Upon near UV irradiation, the adjacent interfaces of the multilayer reacted to form a crosslinking structure which greatly improved the stability of the enzyme films. These changes was monitored and confirmed by UV-vis and IR spectroscopy. Ellipsometric measurements reveal that the enzymes formed sub-molecule layers, and the thickness of the film shows a linear relationship with the number of assembled layers, demonstrating a spatially well-ordered manner in multilayer structure. The covalently attached enzyme multilayer film has a highly permeable structure, and can be used as biosensing interface. Electrochemical and analytical behavior of the enzyme electrodes was studied by cyclic voltammetry (CV) in the presence or absence of glucose. The sensitivity of the enzyme-modified electrodes was estimated through the analysis of voltammetric signals, which can be fine turned to the desired level by adjusting the number of attached bilayers

  20. Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase.

    Science.gov (United States)

    Kucherenko, I S; Soldatkin, O O; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V; Soldatkin, A P

    2015-11-01

    Creatine kinase (CK: adenosine-5-triphosphate-creatine phosphotransferase) is an important enzyme of muscle cells; the presence of a large amount of the enzyme in blood serum is a biomarker of muscular injuries, such as acute myocardial infarction. This work describes a bi-enzyme (glucose oxidase and hexokinase based) biosensor for rapid and convenient determination of CK activity by measuring the rate of ATP production by this enzyme. Simultaneously the biosensor determines glucose concentration in the sample. Platinum disk electrodes were used as amperometric transducers. Glucose oxidase and hexokinase were co-immobilized via cross-linking with BSA by glutaraldehyde and served as a biorecognition element of the biosensor. The biosensor work at different concentrations of CK substrates (ADP and creatine phosphate) was investigated; optimal concentration of ADP was 1mM, and creatine phosphate - 10 mM. The reproducibility of the biosensor responses to glucose, ATP and CK during a day was tested (relative standard deviation of 15 responses to glucose was 2%, to ATP - 6%, to CK - 7-18% depending on concentration of the CK). Total time of CK analysis was 10 min. The measurements of creatine kinase in blood serum samples were carried out (at 20-fold sample dilution). Twentyfold dilution of serum samples was chosen as optimal for CK determination. The biosensor could distinguish healthy and ill people and evaluate the level of CK increase. Thus, the biosensor can be used as a test-system for CK analysis in blood serum or serve as a component of multibiosensors for determination of important blood substances. Determination of activity of other kinases by the developed biosensor is also possible for research purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    Science.gov (United States)

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  2. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor.

    Science.gov (United States)

    Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong

    2015-09-18

    A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD)₄/Au biosensor exhibited a good linear range of 0.01-8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  3. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2015-09-01

    Full Text Available A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs and glucose oxidase (GOD onto single-walled carbon nanotubes (SWCNTs-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  4. Optical determination of glucose and hydrogen peroxide using a nanocomposite prepared from glucose oxidase and magnetite nanoparticles immobilized on graphene oxide

    International Nuclear Information System (INIS)

    Chang, Qing; Tang, Heqing

    2014-01-01

    Fe 3 O 4 nanoparticles were deposited on sheets of graphene oxide (GO) by a precipitation method, and glucose oxidase (GOx) was then immobilized on this material to produce a GOx/Fe 3 O 4 /GO magnetic nanocomposite containing crosslinked enzyme clusters. The 3-component composite functions as a binary enzyme that was employed in a photometric method for the determination of glucose and hydrogen peroxide where the GOx/Fe 3 O 4 /GO nanoparticles cause the generation of H 2 O 2 which, in turn, oxidize the substrate N,N-diethyl-p-phenylenediamine to form a purple product with an absorption maximum at 550 nm. The absorbance at 550 nm can be correlated to the concentration of glucose and/or hydrogen peroxide. Under optimized conditions, the calibration plot is linear in the 0.5 to 600 μM glucose concentration range, and the detection limit is 0.2 μM. The respective plot for H 2 O 2 ranges from 0.1 to 10 μM, and the detection limit is 0.04 μM. The method was successfully applied to the determination of glucose in human serum samples. The GOx/Fe 3 O 4 /GO nanoparticles are reusable. (author)

  5. Immobilization of glucose oxidase onto a novel platform based on modified TiO{sub 2} and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Nasibeh, E-mail: Haghighi.nasibeh@yahoo.com [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman, E-mail: Rhallaj@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Nanotechnology Research Center, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Nanotechnology Research Center, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2017-04-01

    In this work a new organic–inorganic nanocomposite has been introduced for enzyme immobilization. The composite consisting of graphene oxide (GO) and titanium oxide nanoparticles (TiO{sub 2}) modified with 2, 2′-dithioxo-3, 3′-bis (3-(triethoxysilyl) propyl)-2H, 2′H-[5, 5′-bithiazolylidene]-4, 4′(3H, 3′H)-dione as Organic-Inorganic Supporting Ligand (OISL). The OISL was covalently attached to TiO{sub 2} nanoparticles and employed for obtaining a suitable solid surface to enzyme attachment. The glucose oxidase (GOD) was irreversibly loaded on the GC/GO/TiO{sub 2}-OISL using consecutive cyclic voltammetry. The enzyme immobilization and the enzymatic activity were determined by electrochemical methods. The cyclic voltammogram displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of − 0.465 V and an apparent electron transfer rate constant of 1.74 s{sup −1}. The GO/TiO{sub 2}-OISL can catalyze the electroreduction and electrooxidation of hydrogen peroxide. The GC/GO/TiO{sub 2}-OISL/GOD electrode was used in the hydrogen peroxide determination. The fabricated nanobiocomposite shows dramatic photoelectrocatalytic activity which evaluated by studying the electrocatalytic activity of the fabricated electrode toward hydrogen peroxide in darkness and in the presences of light. - Highlights: • In this work a novel platform used to successful immobilization of glucose oxidase. Due to its large functional group this modified nanoparticles load enzyme (GOD) and remain enzyme whit out denaturation for a long time. • The loaded enzyme shows direct electron transfer and excellent charge transfer kinetic. Also the fabricated nano-bio-composite has good catalytic activity toward hydrogen peroxide during electrooxidation and electro reduction process. • The nano-bio-composite shows excellent photocatalytic activity.

  6. Immobilization of glucose oxidase onto a novel platform based on modified TiO2 and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity

    International Nuclear Information System (INIS)

    Haghighi, Nasibeh; Hallaj, Rahman; Salimi, Abdollah

    2017-01-01

    In this work a new organic–inorganic nanocomposite has been introduced for enzyme immobilization. The composite consisting of graphene oxide (GO) and titanium oxide nanoparticles (TiO 2 ) modified with 2, 2′-dithioxo-3, 3′-bis (3-(triethoxysilyl) propyl)-2H, 2′H-[5, 5′-bithiazolylidene]-4, 4′(3H, 3′H)-dione as Organic-Inorganic Supporting Ligand (OISL). The OISL was covalently attached to TiO 2 nanoparticles and employed for obtaining a suitable solid surface to enzyme attachment. The glucose oxidase (GOD) was irreversibly loaded on the GC/GO/TiO 2 -OISL using consecutive cyclic voltammetry. The enzyme immobilization and the enzymatic activity were determined by electrochemical methods. The cyclic voltammogram displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of − 0.465 V and an apparent electron transfer rate constant of 1.74 s −1 . The GO/TiO 2 -OISL can catalyze the electroreduction and electrooxidation of hydrogen peroxide. The GC/GO/TiO 2 -OISL/GOD electrode was used in the hydrogen peroxide determination. The fabricated nanobiocomposite shows dramatic photoelectrocatalytic activity which evaluated by studying the electrocatalytic activity of the fabricated electrode toward hydrogen peroxide in darkness and in the presences of light. - Highlights: • In this work a novel platform used to successful immobilization of glucose oxidase. Due to its large functional group this modified nanoparticles load enzyme (GOD) and remain enzyme whit out denaturation for a long time. • The loaded enzyme shows direct electron transfer and excellent charge transfer kinetic. Also the fabricated nano-bio-composite has good catalytic activity toward hydrogen peroxide during electrooxidation and electro reduction process. • The nano-bio-composite shows excellent photocatalytic activity.

  7. Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases.

    Science.gov (United States)

    Zhou, Xingxing; Guo, Shijing; Gao, Jiaxi; Zhao, Jianmin; Xue, Shuyan; Xu, Wenju

    2017-12-15

    Based on cascade catalysis amplification driven by glucose oxidase (GOx), a sensitive electrochemical impedimetric aptasensor for protein (carcinoembryonic antigen, CEA as tested model) was proposed by using Cu-based metal-organic frameworks functionalized with Pt nanoparticles, aptamer, hemin and GOx (Pt@CuMOFs-hGq-GOx). CEA aptamer loaded onto Pt@CuMOFs was bound with hemin to form hemin@G-quadruplex (hGq) with mimicking peroxidase activity. Through sandwich-type reaction of target CEA and CEA aptamers (Apt1 and Apt2), the obtained Pt@CuMOFs-hGq-GOx as signal transduction probes (STPs) was captured to the modified electrode interface. When 3,3-diaminobenzidine (DAB) and glucose were introduced, the cascade reaction was initiated by GOx to catalyze the oxidation of glucose, in situ generating H 2 O 2 . Simultaneously, the decomposition of the generated H 2 O 2 was greatly promoted by Pt@CuMOFs and hGq as synergistic peroxide catalysts, accompanying with the significant oxidation process of DAB and the formation of nonconductive insoluble precipitates (IPs). As a result, the electron transfer in the resultant sensing interface was effectively hindered and the electrochemical impedimetric signal (EIS) was efficiently amplified. Thus, the high sensitivity of the proposed CEA aptasensor was successfully improved with 0.023pgmL -1 , which may be promising and potential in assaying certain clinical disease related to CEA. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials.

    Science.gov (United States)

    Scherbahn, V; Putze, M T; Dietzel, B; Heinlein, T; Schneider, J J; Lisdat, F

    2014-11-15

    Two types of carbon nanotube electrodes (1) buckypaper (BP) and (2) vertically aligned carbon nanotubes (vaCNT) have been used for elaboration of glucose/O2 enzymatic fuel cells exploiting direct electron transfer. For the anode pyrroloquinoline quinone dependent glucose dehydrogenase ((PQQ)GDH) has been immobilized on [poly(3-aminobenzoic acid-co-2-methoxyaniline-5-sulfonic acid), PABMSA]-modified electrodes. For the cathode bilirubin oxidase (BOD) has been immobilized on PQQ-modified electrodes. PABMSA and PQQ act as promoter for enzyme bioelectrocatalysis. The voltammetric characterization of each electrode shows current densities in the range of 0.7-1.3 mA/cm(2). The BP-based fuel cell exhibits maximal power density of about 107 µW/cm(2) (at 490 mV). The vaCNT-based fuel cell achieves a maximal power density of 122 µW/cm(2) (at 540 mV). Even after three days and several runs of load a power density over 110 µW/cm(2) is retained with the second system (10mM glucose). Due to a better power exhibition and an enhanced stability of the vaCNT-based fuel cells they have been studied in human serum samples and a maximal power density of 41 µW/cm(2) (390 mV) can be achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. High-content screening of Aspergillus niger with both increased production and high secretion rate of glucose oxidase.

    Science.gov (United States)

    Zhu, Xudong; Sun, Jingchun; Chu, Ju

    2018-01-01

    To develop a rapid, dual-parameter, plate-based screening process to improve production and secretion rate of glucose oxidase simultaneously in Aspergillus niger. A morphology engineering based on CaCO 3 was implemented, where the yield of GOD by A. niger was increased by up to 50%. Analysis of extracellular GOD activity was achieved in 96-well plates. There was a close negative correlation between the total GOD activity and its residual glucose of the fermentation broth. Based on this, a rapid, plate-based, qualitative analysis method of the total GOD activity was developed. Compared with the conventional analysis method using o-dianisidine, a correlation coefficient of -0.92 by statistical analysis was obtained. Using this dual-parameter screening method, we acquired a strain with GOD activity of 3126 U l -1 , which was 146% higher than the original strain. Its secretion rate of GOD was 83, 32% higher than the original strain.

  10. Logic gate system with three outputs and three inputs based on switchable electrocatalysis of glucose by glucose oxidase entrapped in chitosan films.

    Science.gov (United States)

    Liu, Shuang; Wang, Lei; Lian, Wenjing; Liu, Hongyun; Li, Chen-Zhong

    2015-01-01

    A logic-gate system with three outputs and three inputs was developed based on the bioelectrocatalysis of glucose by glucose oxidase (GOx) entrapped in chitosan films on the electrode surface by means of ferrocenedicarboxylic acid (Fc(COOH)2 ). Cyclic voltammetric (CV) signals of Fc(COOH)2 exhibited pH-triggered on/off behavior owing to electrostatic interactions between the film and the probe at different pH levels. The addition of glucose greatly increased the oxidation peak current (Ipa ) through the electrocatalytic reaction. pH and glucose were selected as two inputs. As a reversible inhibitor of GOx, Cu(2+) was chosen as the third input. The combination of three inputs led to Ipa with different values according to different mechanisms, which were defined as three outputs with two thresholds. The logic gate with three outputs by using one type of enzyme provided a novel model to build logic circuits based on biomacromolecules, which might be applied to the intelligent medical diagnostics as smart biosensors in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Glucose biosensor based on immobilization of glucose oxidase on a carbon paste electrode modified with microsphere-attached l-glycine.

    Science.gov (United States)

    Donmez, Soner; Arslan, Fatma; Sarı, Nurşen; Hasanoğlu Özkan, Elvan; Arslan, Halit

    2017-09-01

    In the present study, a novel biosensor that is sensitive to glucose was prepared using the microspheres modified with (4-formyl-3-methoxyphenoxymethyl)polystyrene (FMPS) with l-glycine. Polymeric microspheres having Schiff bases were prepared from FMPS using the glycine condensation method. Glucose oxidase enzyme was immobilized onto modified carbon paste electrode by cross-linking with glutaraldehyde. Oxidation of enzymatically produced H 2 O 2 (+0.5 V vs. Ag/AgCl) was used for determination of glucose. Optimal temperature and pH were found as 50 °C and 8.0, respectively. The glucose biosensor showed a linear working range from 5.0 × 10 -4 to 1.0 × 10 -2 M, R 2 = 0.999. Storage and operational stability of the biosensor were also investigated. The biosensor gave perfect reproducible results after 20 measurements with 3.3% relative standard deviation. It also had good storage stability. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  12. Influence of ionic liquids on the direct electrochemistry of glucose oxidase entrapped in nanogold-N,N-dimethylformamide-ionic liquid composite film

    International Nuclear Information System (INIS)

    Li, Jiangwen; Fan, Cong; Xiao, Fei; Yan, Rui; Fan, Shuangshuang; Zhao, Faqiong; Zeng, Baizhao

    2007-01-01

    Glucose oxidase (GOD) immobilized in nanogold particles (NAs)-N,N-dimethylformamide (DMF) composite film on glassy carbon (GC) electrode exhibits a pair of quasi-reversible and unstable peaks due to the redox of flavin adenine dinucleotide (FAD) of GOD. When ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF 4 ) or trihexyltetradecylphosphorium bis (trifluoromethylsulfony) (P 666,14 NTf 2 ) is introduced in the film, the peaks become small. But ILs 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF 6 ) and 1-octyl-3-methylimidazolium hexafluorophate (OMIMPF 6 ) make the peaks large and stable. In different composite films the formal potential (E 0 ') of GOD is different. UV-vis spectra show that the GOD dispersed in these films almost retains its native structure and there are weak interactions between ILs and GOD. Electrochemical impedance spectra display that NAs can promote the electron transfer between FAD and GC electrode; and ILs can affect the electron transfer through interacting with GOD. The thermal stability of GOD entrapped in NAs-DMF-ILs composite films is also influenced by ILs, and it follows such order as: in NAs-DMF-OMIMPF 6 > in NAs-DMF-BMIMPF 6 ∼ in NAs-DMF-BMIMBF 4 > in NAs-DMF. In addition, GOD immobilized in NAs-DMF-OMIMPF 6 and NAs-DMF-BMIMPF 6 films shows good catalytic activity to the oxidation of glucose. The I max of H 2 O 2 and the apparent K m (Michaelis-Menten constant) for the enzymatic reaction are calculated

  13. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells.

    Science.gov (United States)

    Batchuluun, Battsetseg; Inoguchi, Toyoshi; Sonoda, Noriyuki; Sasaki, Shuji; Inoue, Tomoaki; Fujimura, Yoshinori; Miura, Daisuke; Takayanagi, Ryoichi

    2014-01-01

    Metformin and glucagon like peptide-1 (GLP-1) prevent diabetic cardiovascular complications and atherosclerosis. However, the direct effects on hyperglycemia-induced oxidative stress in endothelial cells are not fully understood. Thus, we aimed to evaluate the effects of metformin and a GLP-1 analog, liraglutide on high glucose-induced oxidative stress. Production of reactive oxygen species (ROS), activation of protein kinase C (PKC) and NAD(P)H oxidase, and changes in signaling molecules in response to high glucose exposure were evaluated in human aortic endothelial cells with and without treatment of metformin and liraglutide, alone or in combination. PKC-NAD(P)H oxidase pathway was assessed by translocation of GFP-fused PKCβ2 isoform and GFP-fused p47phox, a regulatory subunit of NAD(P)H oxidase, in addition to endogenous PKC phosphorylation and NAD(P)H oxidase activity. High glucose-induced ROS overproduction was blunted by metformin or liraglutide treatment, with a further decrease by a combination of these drugs. Exposure to high glucose caused PKCβ2 translocation and a time-dependent phosphorylation of endogenous PKC but failed to induce its translocation and phosphorylation in the cells treated with metformin and liraglutide. Furthermore, both drugs inhibited p47phox translocation and NAD(P)H oxidase activation, and prevented the high glucose-induced changes in intracellulalr diacylglycerol (DAG) level and phosphorylation of AMP-activated protein kinase (AMPK). A combination of these drugs further enhanced all of these effects. Metformin and liraglutide ameliorate high glucose-induced oxidative stress by inhibiting PKC-NAD(P)H oxidase pathway. A combination of these two drugs provides augmented protective effects, suggesting the clinical usefulness in prevention of diabetic vascular complications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Electrochemical biosensor based on glucose oxidase encapsulated within enzymatically synthesized poly(1,10-phenanthroline-5,6-dione).

    Science.gov (United States)

    Ciftci, Hakan; Oztekin, Yasemin; Tamer, Ugur; Ramanaviciene, Almira; Ramanavicius, Arunas

    2014-11-01

    This study is focused on the investigation of electrocatalytic effect of glucose oxidase (GOx) immobilized on the graphite rod (GR) electrode. The enzyme modified electrode was prepared by encapsulation of immobilized GOx within enzymatically formed poly(1,10-phenanthroline-5,6-dione) (pPD) film. The electrochemical responses of such enzymatic electrode (pPD/GOx/GR) vs. different glucose concentrations were examined chronoamperometrically in acetate-phosphate buffer solution (A-PBS), pH 6.0, under aerobic or anaerobic conditions. Amperometric signals of the pPD/GOx/GR electrode exhibited well-defined hyperbolic dependence upon glucose concentration. Amperometric signals at 100mM of glucose were 41.17 and 32.27 μA under aerobic and anaerobic conditions, respectively. Amperometric signals of the pPD/GOx/GR electrode decreased by 6% within seven days. The pPD/GOx/GR electrode showed excellent selectivity in the presence of dopamine and uric acid. Furthermore it had a good reproducibility and repeatability with standard deviation of 9.4% and 8.0%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. An amperometric enzyme electrode and its biofuel cell based on a glucose oxidase-poly(3-anilineboronic acid)-Pd nanoparticles bionanocomposite for glucose biosensing.

    Science.gov (United States)

    Sun, Lingen; Ma, Yixuan; Zhang, Pei; Chao, Long; Huang, Ting; Xie, Qingji; Chen, Chao; Yao, Shouzhuo

    2015-06-01

    A new amperometric enzyme electrode and its biofuel cell were fabricated based on a glucose oxidase (GOx)-poly(3-anilineboronic acid) (PABA)-Pd nanoparticles (PdNPs) bionanocomposite for biosensing of glucose. Briefly, Pd was electroplated on a multiwalled carbon nanotubes (MWCNTs)-modified Au electrode, and the GOx-PABA-PdNPs bionanocomposite was prepared on the Pd(plate)/MWCNTs/Au electrode through the chemical oxidation of a GOx-3-anilineboronic acid adduct by Na2PdCl4, followed by electrode-modification with an outer-layer chitosan (CS) film. The thus-prepared CS/GOx-PABA-PdNPs/Pd(plate)/MWCNTs/Au electrode exhibited a linear amperometric response to glucose concentration from 2.0 μM to 4.5 mM with a sensitivity of 160 μA/mM/cm(2), sub-μM detection limit, and excellent operation/storage stability in the first-generation biosensing mode, as well as excellent analytical performance in the second-generation biosensing mode. The good recoveries of glucose obtained from spiked urine samples revealed the application potential of our amperometric enzyme electrode. In addition, a glucose/O2 biofuel cell was constructed using this enzyme electrode as the anode and a Pt/MWCNTs/Au electrode as the cathode, and this biofuel cell as a self-powered biosensing device showed a linear voltage response to glucose concentration from 100 μM to 13.5 mM with a sensitivity of 43.5 mV/mM/cm(2) and excellent operation/storage stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The immobilisation of trypsin and glucose oxidase onto natural rubber-g.co-HEMA - high energy radiation derived copolymeric support systems

    International Nuclear Information System (INIS)

    Devi, S.; Guthrie, J.T.; Beddows, C.G.

    1990-01-01

    Natural rubber has been grafted with 2-HEMA by three different methods each involving Co(60)γ-radiation as the initiation source. The grafted samples were used in the immobilisation of glucose oxidase and trypsin. Optimisation of immobilisation involving trypsin was studied with regard to the pH and the type of crosslinking agent. It was observed that the immobilised enzyme had superior stability over a wider pH range when compared to the free trypsin. The retention of activity demonstrated by the immobilised trypsin was significant. That of immobilised glucose oxidase was far from being satisfactory. (author)

  17. Amperometric, screen-printed, glucose biosensor for analysis of human plasma samples using a biocomposite water-based carbon ink incorporating glucose oxidase.

    Science.gov (United States)

    Crouch, Eric; Cowell, David C; Hoskins, Stephen; Pittson, Robin W; Hart, John P

    2005-12-01

    This paper describes the optimisation of a screen-printing water-based carbon ink containing cobalt phthalocyanine (CoPC) and glucose oxidase (GOD) for the fabrication of a glucose biosensor. To optimise the performance of the biosensor, the loadings of the electrocatalyst (CoPC) and enzyme (GOD) were varied. It was found that the maximum linear range was achieved with a CoPC loading of 20% (m/m, relative to the mass of carbon) and a GOD loading of 628 U per gram of carbon. In our studies we chose to employ chronoamperometry, as this technique is commonly used for commercial devices. The optimum operating applied potential was found to be +0.5 V, following an incubation period of 60 s. The optimum supporting electrolyte was found to be 0.05 M phosphate buffer at pH 8.0, which resulted in a linear range of 0.2-5 mM, the former represents the detection limit. The sensitivity was 1.12 microA mM(-1). The effect of temperature was also investigated, and it was found that 40 degrees C gave optimal performance. The resulting amperometric biosensors were evaluated by measuring the glucose concentrations for 10 different human plasma samples containing endogenous glucose and also added glucose. The same samples were analysed by a standard spectrophotometric method, and the results obtained by the two different methods were compared. A good correlation coefficient (R(2) = 0.95) and slope (0.98) were calculated from the experimental data, indicating that the new devices hold promise for biomedical studies.

  18. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    Science.gov (United States)

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Influence of Partial Pressure of Oxygen in Blood Samples on Measurement Performance in Glucose-Oxidase-Based Systems for Self-Monitoring of Blood Glucose

    Science.gov (United States)

    Baumstark, Annette; Schmid, Christina; Pleus, Stefan; Haug, Cornelia; Freckmann, Guido

    2013-01-01

    Background Partial pressure of oxygen (pO2) in blood samples can affect blood glucose (BG) measurements, particularly in systems that employ the glucose oxidase (GOx) enzyme reaction on test strips. In this study, we assessed the impact of different pO2 values on the performance of five GOx systems and one glucose dehydrogenase (GDH) system. Two of the GOx systems are labeled by the manufacturers to be sensitive to increased blood oxygen content, while the other three GOx systems are not. Methods Aliquots of 20 venous samples were adjusted to the following pO2 values: pO2 ~70 mmHg, which is considered to be similar to pO2 in capillary blood samples, and the mean BG result at pO2 pO2 pO2 ≥150 mmHg. For both pO2 levels, relative differences of all tested GOx systems were significant (p pO2 values pO2 variations lead to clinically relevant BG measurement deviations in GOx systems, even in GOx systems that are not labeled as being oxygen sensitive. PMID:24351177

  20. Tea polyphenols alleviate high fat and high glucose-induced endothelial hyperpermeability by attenuating ROS production via NADPH oxidase pathway.

    Science.gov (United States)

    Zuo, Xuezhi; Tian, Chong; Zhao, Nana; Ren, Weiye; Meng, Yi; Jin, Xin; Zhang, Ying; Ding, Shibin; Ying, Chenjiang; Ye, Xiaolei

    2014-03-02

    Hyperglycemia-induced endothelial hyperpermeability is crucial to cardiovascular disorders and macro-vascular complications in diabetes mellitus. The objective of this study is to investigate the effects of green tea polyphenols (GTPs) on endothelial hyperpermeability and the role of nicotinamide adenine dinucleotide phosphate (NADPH) pathway. Male Wistar rats fed on a high fat diet (HF) were treated with GTPs (0, 0.8, 1.6, 3.2 g/L in drinking water) for 26 weeks. Bovine aortic endothelial cells (BAECs) were treated with high glucose (HG, 33 mmol/L) and GTPs (0.0, 0.4, or 4 μg/mL) for 24 hours in vitro. The endothelial permeabilities in rat aorta and monolayer BAECs were measured by Evans blue injection method and efflux of fluorescein isothiocyanate (FITC)-dextran, respectively. The reactive oxygen species (ROS) levels in rat aorta and monolayer BAECs were measured by dihydroethidium (DHE) and 2', 7'-dichloro-fluorescein diacetate (DCFH-DA) fluorescent probe, respectively. Protein levels of NADPH oxidase subunits were determined by Western-blot. HF diet-fed increased the endothelial permeability and ROS levels in rat aorta while HG treatments increased the endothelial permeability and ROS levels in cultured BAECs. Co-treatment with GTPs alleviated those changes both in vivo and in vitro. In in vitro studies, GTPs treatments protected against the HG-induced over-expressions of p22phox and p67phox. Diphenylene iodonium chloride (DPI), an inhibitor of NADPH oxidase, alleviated the hyperpermeability induced by HG. GTPs could alleviate endothelial hyperpermeabilities in HF diet-fed rat aorta and in HG treated BAECs. The decrease of ROS production resulting from down-regulation of NADPH oxidase contributed to the alleviation of endothelial hyperpermeability.

  1. Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion.

    Science.gov (United States)

    Tan, Tien Chye; Spadiut, Oliver; Gandini, Rosaria; Haltrich, Dietmar; Divne, Christina

    2014-01-01

    Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D

  2. Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion.

    Directory of Open Access Journals (Sweden)

    Tien Chye Tan

    Full Text Available Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose

  3. Resveratrol prevents high glucose-induced epithelial-mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway.

    Science.gov (United States)

    He, Ting; Guan, Xu; Wang, Song; Xiao, Tangli; Yang, Ke; Xu, Xinli; Wang, Junping; Zhao, Jinghong

    2015-02-15

    Resveratrol (RSV) is reported to have renoprotective activity against diabetic nephropathy, while the mechanisms underlying its function have not been fully elucidated. In this study, we investigate the effect and related mechanism of RSV against high glucose-induced epithelial to mesenchymal transition (EMT) in human tubular epithelial cells (HK-2). A typical EMT is induced by high glucose in HK-2 cells, accompanied by increased levels of reactive oxygen species (ROS). RSV exhibits a strong ability to inhibit high glucose-induced EMT by decreasing intracellular ROS levels via down-regulation of NADPH oxidase subunits NOX1 and NOX4. The activation of extracellular signal-regulated kinase (ERK1/2) is found to be involved in high glucose-induced EMT in HK-2 cells. RSV, like NADPH oxidase inhibitor diphenyleneiodonium, can block ERK1/2 activation induced by high glucose. Our results demonstrate that RSV is a potent agent against high glucose-induced EMT in renal tubular cells via inhibition of NADPH oxidase/ROS/ERK1/2 pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Effects of ascorbic acid and glucose oxidase levels on the viability of probiotic bacteria and the physical and sensory characteristics in symbiotic ice-cream

    Directory of Open Access Journals (Sweden)

    M. B. Akın

    2015-05-01

    Full Text Available In this study, the effects of addition of different amounts of ascorbic acid and glucose oxidase on the properties of symbiotic ice cream were investigated. Ice-cream containing inulin (2 % (w/w was produced by mixing fortified milk fermented with probiotic strains with the ice-cream mixes containing different ascorbic acid and glucose oxidase concentrations (0.025, 0.05, 0.1 (w/w. The cultures were grown (37 °C, 12 h in UHT skimmed milk. The fermented milk was added to the ice-cream mix up to a level of 10 % w/w. Increasing the concentration of ascorbic acid stimulated the growth of Lactobacillus acidophilus LA-5 (L. acidophilus and Bifidobacterium animalis subsp. lactis BB-12 (Bifidobacterium BB-12. On contrary, increasing the concentration of glucose oxidase negatively affected the growth of L. acidophilus and Bifidobacterium BB-12. However, both, ascorbic acid and glucose oxidase concentration had no effect on physical and sensory properties of ice cream. The results suggested that the addition of ascorbic acid stimulated the growth of L. acidophilus and Bifidobacterium BB-12 and could be recommended for ice cream production.

  5. Activation of JNK and c-Jun is involved in glucose oxidase-mediated cell death of human lymphoma cells.

    Science.gov (United States)

    Son, Young-Ok; Jang, Yong-Suk; Shi, Xianglin; Lee, Jeong-Chae

    2009-12-31

    Mitogen-activated protein kinases (MAPK) affect the activation of activator protein-1 (AP-1), which plays an important role in regulating a range of cellular processes. However, the roles of these signaling factors on hydrogen peroxide (H(2)O(2))-induced cell death are unclear. This study examined the effects of H(2)O(2) on the activation of MAPK and AP-1 by exposing the cells to H(2)O(2) generated by either glucose oxidase or a bolus addition. Exposing BJAB or Jurkat cells to H(2)O(2) affected the activities of MAPK differently according to the method of H(2)O(2) exposure. H(2)O(2) increased the AP-1-DNA binding activity in these cells, where continuously generated H(2)O(2) led to an increase in mainly the c-Fos, FosB and c-Jun proteins. The c-Jun-NH(2)-terminal kinase (JNK)-mediated activation of c-Jun was shown to be related to the H(2)O(2)-induced cell death. However, the suppression of H(2)O(2)-induced oxidative stress by either JNK inhibitor or c-Jun specific antisense transfection was temporary in the cells exposed to glucose oxidase but not to a bolus H(2)O(2). This was associated with the disruption of death signaling according to the severe and prolonged depletion of reduced glutathione. Overall, these results suggest that H(2)O(2) may decide differently the mode of cell death by affecting the intracellular redox state of thiol-containing antioxidants, and this depends more closely on the duration exposed to H(2)O(2) than the concentration of this agent.

  6. Extensibility effect of poly(3-hexylthiophene) on the glucose sensing performance of mixed poly(3-hexylthiophene)/octadecylamine/glucose oxidase Langmuir-Blodgett films.

    Science.gov (United States)

    Wang, Ke-Hsuan; Hsu, Wen-Ping; Chen, Liang-Huei; Lin, Wei-Don; Lee, Yuh-Lang

    2017-07-01

    Poly(3-hexylthiophene) (P3HT) is utilized as a material to enhance the glucose sensing performance of glucose oxidase (GOx) Langmuir-Blodgett (LB) films. To enhance the extensibility and homogeneity of the P3HT in the LB films, octadecylamine (ODA) is introduced. The characteristics of the mixed P3HT/ODA Langmuir monolayers are investigated first and then, utilized as template layers to adsorb GOx from the subphase, preparing P3HT/ODA/GOx Langmuir-Blodgett films for glucose sensing. The results show that P3HT molecules tend to aggregate at the air/liquid interface and, furthermore, the P3HT monolayer has a weak ability to adsorb GOx from the subphase. By using mixed P3HT/ODA monolayer, the presence of ODA not only inhibits the aggregation of P3HT, but also increases the adsorption ability of the monolayer to GOx. The extensibility of P3HT and the homogeneity of the P3HT/ODA monolayers are closely related to the concentration of P3HT/ODA stock solutions. On the glucose sensing experiments, the performance of the P3HT/ODA/GOx LB film is greatly improved due to the presence of P3HT and, furthermore, the sensibility increases with increasing extensibility of P3HT molecules. The best sensitivity achieved for the P3HT/ODA/GOx film is 5.4μAmM -1 cm -2 which is over two times the value obtained by the ODA/GOx film (2.3μAmM -1 cm -2 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Rapid electrochemical quantification of Salmonella Pullorum and Salmonella Gallinarum based on glucose oxidase and antibody-modified silica nanoparticles.

    Science.gov (United States)

    Luo, Yiheng; Dou, Wenchao; Zhao, Guangying

    2017-07-01

    In this article, a facile and sensitive electrochemical method for quantification of Salmonella Pullorum and Salmonella Gallinarum (S. Pullorum and S. Gallinarum) was established by monitoring glucose consumption with a personal glucose meter (PGM). Antibody-functionalized magnetic nanoparticles (IgG-MNPs) were used to capture and enrich S. Pullorum and S. Gallinarum, and IgG-MNPs-S. Pullorum and IgG-MNPs-S. Gallinarum complexes were magnetically separated from a sample using a permanent magnet. The trace tag was prepared by loading polyclonal antibodies and high-content glucose oxidase on amino-functionalized silica nanoparticles (IgG-SiNPs-GOx). With a sandwich-type immunoassay format, IgG-SiNPs-GOx were added into the above mixture solution and conjugated to the complexes, forming sandwich composites IgG-MNPs/S. Pullorum and S. Gallinarum/IgG-SiNPs-GOx. The above sandwich composites were dispersed in glucose solution. Before and after the hydrolysis of glucose, the concentration of glucose was measured using PGM. Under optimal conditions, a linear relationship between the decrease of glucose concentration and the logarithm of S. Pullorum and S. Gallinarum concentration was obtained in the concentration range from 1.27 × 10 2 to 1.27 × 10 5  CFU mL -1 , with a detection limit of 7.2 × 10 1  CFU mL -1 (S/N = 3). This study provides a portable, low-cost, and quantitative analytical method for bacteria detection; thus, it has a great potential in the prevention of disease caused by S. Pullorum and S. Gallinarum in poultry. Graphical abstract A schematic illustration of the fabrication process of IgG-SiNPs-GOD nanomaterials (A) and IgG-MNPs (B) and experimental procedure of detection of S. Pullorum and S. Gallinarum using GOD-functionalized silica nanospheres as trace tags based on PGM (C).

  8. A hybrid biocatalyst consisting of silver nanoparticle and naphthalenethiol self-assembled monolayer prepared for anchoring glucose oxidase and its use for an enzymatic biofuel cell

    Science.gov (United States)

    Christwardana, Marcelinus; Kim, Do-Heyoung; Chung, Yongjin; Kwon, Yongchai

    2018-01-01

    A novel hybrid biocatalyst is synthesized by the enzyme composite consisting of silver nanoparticle (AgNP), naphthalene-thiol based couplers (Naph-SH) and glucose oxidase (GOx), which is then bonded with the supporter consisting of polyethyleneimine (PEI) and carbon nanotube (CNT) (CNT/PEI/AgNPs/Naph-SH/GOx) to facilitate glucose oxidation reaction (GOR). Here, the AgNPs play a role in obstructing denaturation of the GOx molecules from the supporter because of Ag-thiol bond, while the PEIs have the AgNPs keep their states without getting ionized by hydrogen peroxide produced during anodic reaction. The Naph-SHs also prevent ionization of the AgNP by forming self-assembled monolayer on their surface. Such roles of each component enable the catalyst to form (i) hydrophobic interaction between the GOx molecules and supporter and (ii) π-conjugated electron pathway between the GOx molecules and AgNP, promoting electron transfer. Catalytic nature of the catalyst is characterized by measuring catalytic activity and performance of enzymatic biofuel cell (EBC) using the catalyst. Regarding the catalytic activity, the catalyst leads to high electron transfer rate constant (9.6 ± 0.4 s-1), low Michaelis-Menten constant (0.51 ± 0.04 mM), and low charge transfer resistance (7.3 Ω cm2) and high amount of immobilized GOx (54.6%), while regarding the EBC performance, high maximum power density (1.46 ± 0.07 mW cm-2) with superior long-term stability result are observed.

  9. High performance glucose/O2 compartment-less biofuel cell using DNA/CNTs as platform for immobilizing bilirubin oxidase as novel biocathode and integrated NH2-CNTs/dendrimer/glucose dehydrogenase/nile blue as bioanode

    International Nuclear Information System (INIS)

    Korani, Aazam; Salimi, Abdollah

    2015-01-01

    Highlights: • A biocathode based on immobilization of bilirubin oxidase onto MWCNTs/DNA is designed. • The performance of MWCNTs/DNA/BOD biocathode for O 2 reduction reaction is improved. • Compared to MWCNTs/BOD,at present biocathode current density to ORR increased 3 folds. • The onset potential for ORR is 0.57 V and its current density increased to 270 μA cm −2 . • A glucose/O 2 BFC with voltage of 0.66 V, J = 172 μAcm −2 and power of 45 μW cm −2 fabricated. - Abstract: Herein, deoxyribonucleic acid (DNA)/multi-walled carbon nanotube (MWCNTs) with enhanced negative charged density was used as a novel electrochemical platform for oriented immobilization of bilirubin oxidase. The proposed support improved the direct electron transfer kinetics of BOD and its catalytic activity toward oxygen reduction reaction (ORR). In comparison to BOD enzyme which immobilized directly onto MWCNTs the current density increased three folds and reached to 270 μA cm −2 at 0.405 V with an onset potential of 0.57 V (vs. Ag/AgCl). The ability of this modified electrode as a biocathode is investigated after assembling with bioanode. The bioanode prepared with covalent attachment of glucose dehydrogenase enzyme (GDH) and nile blue (NB) as an efficient mediator for coenzyme regeneration onto glassy carbon electrode modified with amino-carbon nanotubes(MWCNTs-NH 2 ) and carboxyl terminated polyamidoamin dendrimer (PAMAM-Den) as a multifunctional linker. Finally, the performance of one-compartment glucose/O 2 biofuel cell without separators is also investigated. The open circuit voltage of the cell and maximum current density are obtained 660 mV and 172 μA cm −2 , respectively, while the maximum power density of 45 μW cm −2 is achieved at 428 mV of the cell voltage in buffer solution saturated with O 2 and containing 50 mM of glucose. The stability of the constructed EBFC is investigated under continuous operation at maximum power. It is observed that the biofuel

  10. A preliminary investigation on the interaction between sol-gel immobilized glucose oxidase and freely diffusing glucose by means of two-photon microscopy

    Science.gov (United States)

    Delfino, I.; Portaccio, M.; De Rosa, M.; Lepore, M.

    2013-02-01

    To study immobilized protein interactions with dissolved substrates is a very important topic both from a fundamental and technological standpoint. In the present report we illustrate the preliminary results obtained on sol-gel immobilized glucose oxidase (GOD) using a standard de-scanned two-photon microscope based on a modified confocal scanhead with internal detectors and a Ti:sapphire laser as a source. Data acquisition conditions were preliminary defined using functionalized beads of different dimensions. Various sol-gel supports were then investigated by monitoring endogeneous fluorescence due to the flavoadenine (FAD) molecules, present in GOD. Linear absorption and fluorescence spectroscopy along with Fourier Transform Infrared microscopy were employed for a full-optical characterization of the samples. The results show that GOD immobilization processes can be successfully monitored in some cases and also the interaction with glucose could be studied by this approach. This assessment holds potentials to better understand the characteristic of immobilized enzymes biocatalysis and to develop new biosensing schemes.

  11. ENCAPSULATION OF HORSERADISH PEROXIDASE-GLUCOSE OXIDASE (HRP-GOx IN SILICA AQUAGEL SYNTHESIZED FROM RICE HULL ASH FOR ENZYMATIC REACTION OF GLUCOSE

    Directory of Open Access Journals (Sweden)

    Nuryono Nuryono

    2010-06-01

    Full Text Available In recent years, the sol-gel technique has attracted increasing interest as a unique approach to immobilize biomolecules for bioanalytical applications as well as biochemical and biophysical studies. In this research, encapsulation of Horseradish peroxidase-Glucose oxidase (HRP-GOx enzymes in silica aquagel from rice hull ash by sol-gel process has been carried out. In addition, the effect of several parameters (weight ratio of HRP to GOx, pH, temperature, sodium ion concentration on enzyme activity was studied, as well. Rice hull ash, which was produced by ashing at 700 °C, was extracted it's silika by NaOH solution 1 M at 100 °C for two hours to produce sodium silikate (Na2SiO3 solution. The Na2SiO3 solution with pH of 13 was added with a strong cation exchanger resin, to produce sol solution with the pH of 4. Encapsulation was emphasized by mixing sol solution and phosphate buffer pH 7 containing HRP-GOx solution at volume ratio of buffer to sol solution 1:5. The mixture was transferred into 96-microwell plate and was aged for 24 hours. Enzymatic reaction was carried out by adding chromogenic solution of phenol and 4-aminoantipyrine (4-AAP and b-D-glucose solution (as substrate into the microwell. Enzymatic activity was examined by measuring absorbance of product solution at 490 nm with ELISA reader. Result of enzymatic activity for encapsulated enzymes (SGE was compared to that for free enzymes (EB. Results showed that at the investigated condition, HRP-GOx enzymes gave high activity at weight ratio of HRP to GOx 10:1 and pH 7 for both SGE and EB. Encapsulation caused the enzymes activity decrease to 53.0±0.2 %. However, SGE was observed to be more stable on pH and temperature changes than EB. Study on the effect of sodium concentration showed that the increase of sodium concentration from 0.10 to 0.37 M decreased the enzymatic activity to 56±0.2%. Reusability test showed that the synthesized SGE was reusable with activity decrease of 60

  12. Sensitive Fluorescent Sensor for Recognition of HIV-1 dsDNA by Using Glucose Oxidase and Triplex DNA

    Directory of Open Access Journals (Sweden)

    Yubin Li

    2018-01-01

    Full Text Available A sensitive fluorescent sensor for sequence-specific recognition of double-stranded DNA (dsDNA was developed on the surface of silver-coated glass slide (SCGS. Oligonucleotide-1 (Oligo-1 was designed to assemble on the surface of SCGS and act as capture DNA, and oligonucleotide-2 (Oligo-2 was designed as signal DNA. Upon addition of target HIV-1 dsDNA (Oligo-3•Oligo-4, signal DNA could bind on the surface of silver-coated glass because of the formation of C•GoC in parallel triplex DNA structure. Biotin-labeled glucose oxidase (biotin-GOx could bind to signal DNA through the specific interaction of biotin-streptavidin, thereby GOx was attached to the surface of SCGS, which was dependent on the concentration of target HIV-1 dsDNA. GOx could catalyze the oxidation of glucose and yield H2O2, and the HPPA can be oxidized into a fluorescent product in the presence of HRP. Therefore, the concentration of target HIV-1 dsDNA could be estimated with fluorescence intensity. Under the optimum conditions, the fluorescence intensity was proportional to the concentration of target HIV-1 dsDNA over the range of 10 pM to 1000 pM, the detection limit was 3 pM. Moreover, the sensor had good sequence selectivity and practicability and might be applied for the diagnosis of HIV disease in the future.

  13. Electrochemical quartz crystal impedance study on immobilization of glucose oxidase in a polymer grown from dopamine oxidation at an Au electrode for glucose sensing

    International Nuclear Information System (INIS)

    Li Mingrui; Deng Chunyan; Xie Qingji; Yang Yang; Yao Shouzhuo

    2006-01-01

    Glucose oxidase (GOD) was codeposited into a polymer grown from oxidation of dopamine (DA) at an Au electrode in a neutral phosphate aqueous solution for the first time. The electrochemical quartz crystal impedance analysis (EQCIA) method was used to monitor the GOD-immobilization process. Effects of concentrations of phosphate buffer, DA and GOD were investigated, and the optimal concentrations were found to be 20.0mM phosphate buffer (pH 7.0), 30.0mM DA and 5.00mgml -1 GOD. A glucose biosensor was thus constructed, and effects of various experimental parameters on the sensor performance, including applied potential, solution pH and electroactive interferents, were examined. At an optimal potential of 0.6V versus the KCl-saturated calomel electrode (SCE), the current response of the biosensor in the selected phosphate buffer (pH 7.0) was linear with the concentration of glucose from 0.05 to 9mM, with a lower detection limit of 3μM (S/N=3), short response time (within 15s) and good anti-interferent ability. The Michaelis constant (K m app ) was estimated to be 9.6mM. The biosensor exhibited good storage stability, i.e. 96% of its initial response was retained after 7-day storage in the selected phosphate buffer at 4deg. C, and even after another 3 weeks the biosensor retained 86% of its initial response. In addition, the enzymatic specific activity and enzymatic relative activity of the GOD immobilized in the polymer from dopamine oxidation (PFDO) were estimated from the EQCIA method to be 1.43kUg -1 and 3.7%, respectively, which were larger than the relevant values obtained experimentally using poly(o-aminophenol) and poly(N-methylpyrrole) matrices, suggesting that the PFDO is a better matrix to immobilize GOD

  14. System Accuracy Evaluation of Four Systems for Self-Monitoring of Blood Glucose Following ISO 15197 Using a Glucose Oxidase and a Hexokinase-Based Comparison Method.

    Science.gov (United States)

    Link, Manuela; Schmid, Christina; Pleus, Stefan; Baumstark, Annette; Rittmeyer, Delia; Haug, Cornelia; Freckmann, Guido

    2015-04-14

    The standard ISO (International Organization for Standardization) 15197 is widely accepted for the accuracy evaluation of systems for self-monitoring of blood glucose (SMBG). Accuracy evaluation was performed for 4 SMBG systems (Accu-Chek Aviva, ContourXT, GlucoCheck XL, GlucoMen LX PLUS) with 3 test strip lots each. To investigate a possible impact of the comparison method on system accuracy data, 2 different established methods were used. The evaluation was performed in a standardized manner following test procedures described in ISO 15197:2003 (section 7.3). System accuracy was assessed by applying ISO 15197:2003 and in addition ISO 15197:2013 criteria (section 6.3.3). For each system, comparison measurements were performed with a glucose oxidase (YSI 2300 STAT Plus glucose analyzer) and a hexokinase (cobas c111) method. All 4 systems fulfilled the accuracy requirements of ISO 15197:2003 with the tested lots. More stringent accuracy criteria of ISO 15197:2013 were fulfilled by 3 systems (Accu-Chek Aviva, ContourXT, GlucoMen LX PLUS) when compared to the manufacturer's comparison method and by 2 systems (Accu-Chek Aviva, ContourXT) when compared to the alternative comparison method. All systems showed lot-to-lot variability to a certain degree; 2 systems (Accu-Chek Aviva, ContourXT), however, showed only minimal differences in relative bias between the 3 evaluated lots. In this study, all 4 systems complied with the evaluated test strip lots with accuracy criteria of ISO 15197:2003. Applying ISO 15197:2013 accuracy limits, differences in the accuracy of the tested systems were observed, also demonstrating that the applied comparison method/system and the lot-to-lot variability can have a decisive influence on accuracy data obtained for a SMBG system. © 2015 Diabetes Technology Society.

  15. Diffusion kinetics of the glucose/glucose oxidase system in swift heavy ion track-based biosensors

    Science.gov (United States)

    Fink, Dietmar; Vacik, Jiri; Hnatowicz, V.; Muñoz Hernandez, G.; Garcia Arrelano, H.; Alfonta, Lital; Kiv, Arik

    2017-05-01

    For understanding of the diffusion kinetics and their optimization in swift heavy ion track-based biosensors, recently a diffusion simulation was performed. This simulation aimed at yielding the degree of enrichment of the enzymatic reaction products in the highly confined space of the etched ion tracks. A bunch of curves was obtained for the description of such sensors that depend only on the ratio of the diffusion coefficient of the products to that of the analyte within the tracks. As hitherto none of these two diffusion coefficients is accurately known, the present work was undertaken. The results of this paper allow one to quantify the previous simulation and hence yield realistic predictions of glucose-based biosensors. At this occasion, also the influence of the etched track radius on the diffusion coefficients was measured and compared with earlier prediction.

  16. Diffusion kinetics of the glucose/glucose oxidase system in swift heavy ion track-based biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Dietmar, E-mail: fink@xanum.uam.mx [Nuclear Physics Institute, 25068 Řež (Czech Republic); Departamento de Fisica, Universidad Autónoma Metropolitana-Iztapalapa, PO Box 55-534, 09340 México, DF (Mexico); Vacik, Jiri; Hnatowicz, V. [Nuclear Physics Institute, 25068 Řež (Czech Republic); Muñoz Hernandez, G. [Departamento de Fisica, Universidad Autónoma Metropolitana-Iztapalapa, PO Box 55-534, 09340 México, DF (Mexico); Garcia Arrelano, H. [Departamento de Ciencias Ambientales, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Municipio de Lerma, Estado de México CP 52005 (Mexico); Alfonta, Lital [Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105 (Israel); Kiv, Arik [Department of Materials Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105 (Israel)

    2017-05-01

    Highlights: • Application of swift heavy ion tracks in biosensing. • Obtaining yet unknown diffusion coefficients of organic matter across etched ion tracks. • Obtaining diffusion coefficients of organics in etched ion tracks of biosensors. • Comparison with Renkin’s equation to predict the effective etched track diameter in the given experiments. - Abstract: For understanding of the diffusion kinetics and their optimization in swift heavy ion track-based biosensors, recently a diffusion simulation was performed. This simulation aimed at yielding the degree of enrichment of the enzymatic reaction products in the highly confined space of the etched ion tracks. A bunch of curves was obtained for the description of such sensors that depend only on the ratio of the diffusion coefficient of the products to that of the analyte within the tracks. As hitherto none of these two diffusion coefficients is accurately known, the present work was undertaken. The results of this paper allow one to quantify the previous simulation and hence yield realistic predictions of glucose-based biosensors. At this occasion, also the influence of the etched track radius on the diffusion coefficients was measured and compared with earlier prediction.

  17. Effects of Wheat Flour Dough’s Viscoelastic Level by Adding Glucose Oxidase on its Dynamic Shear Properties whatever the Strain Modes

    Directory of Open Access Journals (Sweden)

    Jean Didier Koffi Kouassi

    2014-05-01

    Full Text Available The objective of this work was to study the effects of wheat flour dough’s viscoelastic level by adding glucose oxidase (Gox on its rheological properties at dynamic shear strain mode to predict the final product quality. Dough does display a linear viscoelastic domain. Glucose oxidase (Gox was added to dough in order to enhance its viscoelasticity and to take into account the possible effects of this viscoelasticity on the results. Whatever the types of dough strain used G’ increased, tan δ decreased and led to less sticky dough. Wheat flour dough, an increase in G’ with extension may be associated to a strain-hardening phenomenon but the role of dough viscoelasticity is discussed.

  18. RXR agonists inhibit high glucose-induced upregulation of inflammation by suppressing activation of the NADPH oxidase-nuclear factor-κB pathway in human endothelial cells.

    Science.gov (United States)

    Ning, R B; Zhu, J; Chai, D J; Xu, C S; Xie, H; Lin, X Y; Zeng, J Z; Lin, J X

    2013-12-13

    An inflammatory response induced by high glucose is a cause of endothelial dysfunction in diabetes and is an important contributing link to atherosclerosis. Diabetes is an independent risk factor of atherosclerosis and activation of retinoid X receptor (RXR) has been shown to exert anti-atherogenic effects. In the present study, we examined the effects of the RXR ligands 9-cis-retinoic acid (9-cis-RA) and SR11237 on high glucose-induced inflammation in human umbilical endothelial vein endothelial cells (HUVECs) and explored the potential mechanism. Our results showed that the inflammation induced by high-glucose in HUVECs was mainly mediated by the activation of nuclear factor-B (NF- κB). High glucose-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were in comparison, significantly decreased by treatment with RXR. The effect of RXR agonists was mainly due to the inhibition of NF-κB activation. Using pharmacological inhibitors and siRNA, we confirmed that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was an upstream activator of NF-κB. Furthermore, RXR agonists significantly inhibited high glucose-induced activation of NADPH oxidase and significantly decreased the production of reactive oxygen species (ROS). To explore whether the rapid inhibitory effects of RXR agonists were in fact mediated by RXR, we examined the effect of RXR downregulation by RXR siRNA. Our results showed that RXR siRNA largely abrogated the effects of RXR agonists, suggesting the requirement of RXR expression. Therefore, we have shown that RXR is involved in the regulation of NADPH oxidase- NF-κB signal pathway, as the RXR ligands antagonized the inflammatory response in HUVECs induced by high glucose.

  19. Synergistic effect of Aspergillus tubingensis CTM 507 glucose oxidase in presence of ascorbic acid and alpha amylase on dough properties, baking quality and shelf life of bread

    OpenAIRE

    Kriaa, Mouna; Ouhibi, Rabeb; Graba, Héla; Besbes, Souhail; Jardak, Mohamed; Kammoun, Radhouane

    2015-01-01

    The impact of Aspergillus tubingensis glucose oxidase (GOD) in combination with α-amylase and ascorbic acid on dough properties, qualities and shelf life of bread was investigated. Regression models of alveograph and texture parameters of dough and bread were adjusted. Indeed, the mixture of GOD (44 %) and ascorbic acid (56 %) on flour containing basal improver showed its potential as a corrective action to get better functional and rheological properties of dough and bread texture. Furthermo...

  20. Overexpressing key component genes of the secretion pathway for enhanced secretion of an Aspergillus niger glucose oxidase in Trichoderma reesei.

    Science.gov (United States)

    Wu, Yilan; Sun, Xianhua; Xue, Xianli; Luo, Huiying; Yao, Bin; Xie, Xiangming; Su, Xiaoyun

    2017-11-01

    Vast interest exists in developing T. reesei for production of heterologous proteins. Although rich genomic and transcriptomic information has been uncovered for the T. reesei secretion pathway, little is known about whether engineering its key components could enhance expression of a heterologous gene. In this study, snc1, a v-SNARE gene, was first selected for overexpression in T. reesei. In engineered T. reesei with additional copies of snc1, the Aspergillus niger glucose oxidase (AnGOD) was produced to a significantly higher level (2.2-fold of the parental strain). hac1 and bip1, two more component genes in the secretion pathway, were further tested for overexpression and found to be also beneficial for AnGOD secretion. The overexpression of one component gene more or less affected the expression of the other two genes, suggesting a complex regulating mechanism. Our study demonstrates the potential of engineering the secretion pathway for enhancing heterologous gene production in T. reesei. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Quantitative Collection and Enzymatic Activity of Glucose Oxidase Nanotubes Fabricated by Templated Layer-by-Layer Assembly.

    Science.gov (United States)

    Zhang, Shouwei; Demoustier-Champagne, Sophie; Jonas, Alain M

    2015-08-10

    We report on the fabrication of enzyme nanotubes in nanoporous polycarbonate membranes via the layer-by-layer (LbL) alternate assembly of polyethylenimine (PEI) and glucose oxidase (GOX), followed by dissolution of the sacrificial template in CH2Cl2, collection, and final dispersion in water. An adjuvant-assisted filtration methodology is exploited to extract quantitatively the nanotubes without loss of activity and morphology. Different water-soluble CH2Cl2-insoluble adjuvants are tested for maximal enzyme activity and nanotube stability; whereas NaCl disrupts the tubes by screening electrostatic interactions, the high osmotic pressure created by fructose also contributes to loosening the nanotubular structures. These issues are solved when using neutral, high molar mass dextran. The enzymatic activity of intact free nanotubes in water is then quantitatively compared to membrane-embedded nanotubes, showing that the liberated nanotubes have a higher catalytic activity in proportion to their larger exposed surface. Our study thus discloses a robust and general methodology for the fabrication and quantitative collection of enzymatic nanotubes and shows that LbL assembly provides access to efficient enzyme carriers for use as catalytic swarming agents.

  2. Microwave processing of honey negatively affects honey antibacterial activity by inactivation of bee-derived glucose oxidase and defensin-1.

    Science.gov (United States)

    Bucekova, Marcela; Juricova, Valeria; Monton, Enrique; Martinotti, Simona; Ranzato, Elia; Majtan, Juraj

    2018-02-01

    Microwave (MW) thermal heating has been proposed as an efficient method for honey liquefaction, while maintaining honey quality criteria. However, little is known about the effects of MW thermal heating on honey antibacterial activity. In this study, we aimed to determine the effects of MW heating on the antibacterial activity of raw rapeseed honeys against Pseudomonas aeruginosa and Staphylococcus aureus, with a particular focus on two major bee-derived antibacterial components, defensin-1 and hydrogen peroxide (H 2 O 2 ). Our results demonstrated that MW thermal heating completely abolished honey antibacterial activity whereas conventional thermal treatment at 45 and 55°C did not affect the antibacterial activity of honey samples. A significant decrease in both glucose oxidase activity and H 2 O 2 production as well as defensin-1 amount was observed in MW-treated samples. Given that defensin-1 and H 2 O 2 are regular antibacterial components of all honeys, MW heating may have similar negative effects on every type of crystallized/liquid honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biotransformation of Isolan dyes by Aspergillus niger ES-5 under Co-metabolic Conditions for Glucose Oxidase Production

    International Nuclear Information System (INIS)

    Gomaa, O.M.; Abd El Kareem, H.; Fathey, F.; Montaser, M.; Zaki, Sh.

    2008-01-01

    Aspergillus niger ES-5 isolated from Egyptian soil was chosen for its high decolorizing performance (90-98.8%) of 4 Isolan dyes (metal reactive azo group). The decolorisation profile was highly dependent on the presence or absence of co-substrates needed for glucose oxidase (GOD) production. The extracellular fluid (ECF), autoclaved mycelia and mycelia grown in dye solution with no supplements showed a sharp drop in decolorisation (0-7.3%) confirming the biological involvement of growth-linked enzymatic system. The metal content of Isolan dyes was analyzed by Energy Dispersive Xray Spectroscopy (EDS), Cr, Cu, Zn and S were found in cultures, and were below the detection limit after 72 hr incubation. A range of 8-50% decrease in decolorisation was obtained when gamma radiation (up to 8 KGy) was used in combination with fungal pellets. A. niger ES-5 showed over 80% decolorisation for a mixture of the 4 dyes, while decolorisation of real textile effluent showed 75%. All previous data suggest a metabolically mediated dye decolorisation mechanism for live A. niger ES- 5 and points to its potential use in dye decolorisation of real textile effluent

  4. Molecular dimensions of dried glucose oxidase on a Au(1 1 1) surface studied by dynamic mode scanning force microscopy

    International Nuclear Information System (INIS)

    Otsuka, Ichiro; Yaoita, Masashi; Nagashima, Seiichi; Higano, Michi

    2005-01-01

    We have investigated the molecular dimensions of a dried single glucose oxidase (GO) molecule adsorbed on a Au(1 1 1) surface with the UHV non-contact atomic force microscopy (NC-AFM) and tapping mode atomic force microcopy (TMAFM). The smallest air-dried GO particles in a TMAFM-measured size distribution are found to be 10-11 nm wide and 0.3-0.4 nm high. We find each collapsed ellipsoidal feature with a groove in a NC-AFM image, which measured 12 nm x 10 nm x 0.5 nm. The lateral dimensions (12 nm x 10 nm) of the observed feature is close to those of a GO monomer measured by scanning tunneling microscopy (STM) [Quijin et al., 12.2 nm x 8.9 nm as the size of one wing of an opening butterfly (dimer) appeared in a STM image] and by contact mode AFM [Quinto et al., 14 nm x 8 nm]. Our value of the vertical dimension (0.5 nm) is consistent with AFM results and molecular dynamics simulations that suggest a surface-induced complete unfolding, showing the average diameter of amino acid residues

  5. Immobilization of glucose oxidase using CoFe2O4/SiO2 nanoparticles as carrier

    Science.gov (United States)

    Wang, Hai; Huang, Jun; Wang, Chao; Li, Dapeng; Ding, Liyun; Han, Yun

    2011-04-01

    Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. Glucose oxidase (GOD) was immobilized on CoFe2O4/SiO2 NPs via cross-linking with glutaraldehyde (GA). The optimal immobilization condition was achieved with 1% (v/v) GA, cross-linking time of 3 h, solution pH of 7.0 and 0.4 mg GOD (in 3.0 mg carrier). The immobilized GOD showed maximal catalytic activity at pH 6.5 and 40 °C. After immobilization, the GOD exhibited improved thermal, storage and operation stability. The immobilized GOD still maintained 80% of its initial activity after the incubation at 50 °C for 25 min, whereas free enzyme had only 20% of initial activity after the same incubation. After kept at 4 °C for 28 days, the immobilized and free enzyme retained 87% and 40% of initial activity, respectively. The immobilized GOD maintained approximately 57% of initial activity after reused 7 times. The KM (Michaelis-Menten constant) values for immobilized GOD and free GOD were 14.6 mM and 27.1 mM, respectively.

  6. The heterogeneous electrochemical characteristics of mild steel in the presence of local glucose oxidase-A study by the wire beam electrode method

    International Nuclear Information System (INIS)

    Wang Wei; Lu Yonghong; Zou Yan; Zhang Xia; Wang Jia

    2010-01-01

    The influence of glucose oxidase (GOD) activity on the heterogeneous electrochemistry at artificial biofilm/mild steel interface was first characterized by the wire beam electrode (WBE) method. Potential/current distribution maps show that a cathodic zone can be formed at the GOD capsule site. The cathodic zone is gradually weakened due to the gluconic acid production in seawater. When GOD capsule is confined on rusted WBE surfaces, the formerly formed anodic zone is gradually changed into cathodic zone, in the presence of glucose. The novel device developed in our laboratory demonstrates powerful applications in heterogeneous electrochemistry measurements at the biofilm/mild steel interfaces.

  7. Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress.

    Science.gov (United States)

    Vanlerberghe, Greg C; Martyn, Greg D; Dahal, Keshav

    2016-07-01

    Photosynthesis and respiration are the hubs of energy metabolism in plants. Drought strongly perturbs photosynthesis as a result of both diffusive limitations resulting from stomatal closure, and in some cases biochemical limitations that are associated with a reduced abundance of key photosynthetic components. The effects of drought on respiration, particularly respiration in the light (RL ), are less understood. The plant mitochondrial electron transport chain includes a non-energy conserving terminal oxidase called alternative oxidase (AOX). Several studies have shown that drought increases AOX transcript, protein and maximum capacity. Here we review recent studies comparing wild-type (WT) tobacco to transgenic lines with altered AOX protein amount. Specifically during drought, RL was compromised in AOX knockdown plants and enhanced in AOX overexpression plants, compared with WT. Significantly, these differences in RL were accompanied by dramatic differences in photosynthetic performance. Knockdown of AOX increased the susceptibility of photosynthesis to drought-induced biochemical limitations, while overexpression of AOX delayed the development of such biochemical limitations, compared with WT. Overall, the results indicate that AOX is essential to maintaining RL during drought, and that this non-energy conserving respiration maintains photosynthesis during drought by promoting energy balance in the chloroplast. This review also outlines several areas for future research, including the possibility that enhancement of non-energy conserving respiratory electron sinks may be a useful biotechnological approach to increase plant performance during stress. © 2016 Scandinavian Plant Physiology Society.

  8. Electron-transfer mediator for a NAD-glucose dehydrogenase-based glucose sensor.

    Science.gov (United States)

    Kim, Dong-Min; Kim, Min-yeong; Reddy, Sanapalli S; Cho, Jaegeol; Cho, Chul-ho; Jung, Suntae; Shim, Yoon-Bo

    2013-12-03

    A new electron-transfer mediator, 5-[2,5-di (thiophen-2-yl)-1H-pyrrol-1-yl]-1,10-phenanthroline iron(III) chloride (FePhenTPy) oriented to the nicotinamide adenine dinucleotide-dependent-glucose dehydrogenase (NAD-GDH) system was synthesized through a Paal-Knorr condensation reaction. The structure of the mediator was confirmed by Fourier-transform infrared spectroscopy, proton and carbon nucler magnetic resonance spectroscopy, and mass spectroscopy, and its electron-transfer characteristic for a glucose sensor was investigated using voltammetry and impedance spectroscopy. A disposable amperometric glucose sensor with NAD-GDH was constructed with FePhenTPy as an electron-transfer mediator on a screen printed carbon electrode (SPCE) and its performance was evaluated, where the addition of reduces graphene oxide (RGO) to the mediator showed the enhanced sensor performance. The experimental parameters to affect the analytical performance and the stability of the proposed glucose sensor were optimized, and the sensor exhibited a dynamic range between 30 mg/dL and 600 mg/dL with the detection limit of 12.02 ± 0.6 mg/dL. In the real sample experiments, the interference effects by acetaminophen, ascorbic acid, dopamine, uric acid, caffeine, and other monosaccharides (fructose, lactose, mannose, and xylose) were completely avoided through coating the sensor surface with the Nafion film containing lead(IV) acetate. The reliability of proposed glucose sensor was evaluated by the determination of glucose in artificial blood and human whole blood samples.

  9. Capability of parasulfonato calix[6]arene, as an anion dopant, and organic solvents in enhancing the sensitivity and loading of glucose oxidase (GOx) on polypyrrole film in a biosensor: a comparative study.

    Science.gov (United States)

    Safarnavadeh, Vahideh; Zare, Karim; Fakhari, Ali Reza

    2013-11-15

    In this study, the effects of two solvents (acetonitrile and water) and an anion dopant (para sulfonato calix[6]arene ((C[6]S)(-6))), on the manufacturing and properties of a polypyrrole (Ppy)-based, glucose oxidase amperometric biosensor were studied. Pyrrole was polymerized using galvanostatic mode in two different solvents, and the effect of (C[6]S)(-6) was studied in aqueous solution. The morphology of the obtained polypyrrole films was studied by scanning electron microscopy (SEM). Glucose oxidase (GOx) was adsorbed on the Ppy films via cross-linking method. Then the amperometric responses of the Pt/Ppy/GOx electrodes were measured using the amperometric method at the potential of 0.7 V in steps of adding a glucose solution to a potassium phosphate buffer. We found that acetonitrile and (C[6]S)(-6) increase the sensitivity of the enzyme electrode up to 79.30 µA M(-1)cm(-2) in comparison with 31.60 μA M(-1)cm(-2) for the electrode synthesized in calixarene free aqueous solvent. Also (C[6]S)(-6) has the main role in preventing leaching the enzyme from the electrode. This fact increases loading of the enzyme and stability of the biosensor. So that the steady state current density of the aforementioned electrode increases linearly with increasing glucose concentration up to 190 mM. Whereas the linearity was observed up to 61 mM and 80 mM for the electrodes made using calixarene free acetonitrile and aqueous solutions, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference.

    Science.gov (United States)

    Hatada, Mika; Loew, Noya; Inose-Takahashi, Yuka; Okuda-Shimazaki, Junko; Tsugawa, Wakako; Mulchandani, Ashok; Sode, Koji

    2018-06-01

    Enzyme based electrochemical biosensors are divided into three generations according to their type of electron transfer from the cofactors of the enzymes to the electrodes. Although the 3rd generation sensors using direct electron transfer (DET) type enzymes are ideal, the number of enzyme types which possess DET ability is limited. In this study, we report of a glucose sensor using mediator-modified glucose dehydrogenase (GDH), that was fabricated by a new quick-and-easy method using the pre-functionalized amine reactive phenazine ethosulfate (arPES). Thus mediator-modified GDH obtained the ability to transfer electrons to bulky electron acceptors as well as electrodes. The concentration of glucose was successfully measured using electrodes with immobilized PES-modified GDH, without addition of external electron mediators. Therefore, continuous monitoring systems can be developed based on this "2.5th generation" electron transfer principle utilizing quasi-DET. Furthermore, we successfully modified two other diagnostically relevant enzymes, glucoside 3-dehydrogenase and lactate oxidase, with PES. Therefore, various kinds of diagnostic enzymes can achieve quasi-DET ability simply by modification with arPES, suggesting that continuous monitoring systems based on the 2.5th generation principle can be developed for various target molecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Headgroup effects of template monolayers on the adsorption behavior and conformation of glucose oxidase adsorbed at air/liquid interfaces.

    Science.gov (United States)

    Wang, Ke-Hsuan; Syu, Mei-Jywan; Chang, Chien-Hsiang; Lee, Yuh-Lang

    2011-06-21

    Stearic acid (SA) and octadecylamine (ODA) monolayers at the air/liquid interface were used as template layers to adsorb glucose oxidase (GOx) from aqueous solution. The effect of the template monolayers on the adsorption behavior of GOx was studied in terms of the variation of surface pressure, the evolution of surface morphology observed by BAM and AFM, and the conformation of adsorbed GOx. The results show that the presence of a template monolayer can enhance the adsorption rate of GOx; furthermore, ODA has a higher ability, compared to SA, to adsorb GOx, which is attributed to the electrostatic attractive interaction between ODA and GOx. For adsorption performed on a bare surface or on an SA monolayer, the surface pressure approaches an equilibrium value (ca. 8 mN/m) after 2 to 3 h of adsorption and remains nearly constant in the following adsorption process. For the adsorption on an ODA monolayer, the surface pressure will increase further 1 to 2 h after approaching the first equilibrium pressure, which is termed the second adsorption stage. The measurement of circular dichroism (CD) spectroscopy indicates that the Langmuir-Blodgett films of adsorbed GOx transferred at the first equilibrium state (π = 8 mN/m) have mainly a β-sheet conformation, which is independent of the type of template monolayers. However, the ODA/GOx LB film transferred at the second adsorption stage has mainly an α-helix conformation. It is concluded that the specific interaction between ODA and GOx not only leads to a higher adsorption rate and adsorbed amount of GOx but also induces a conformation change in adsorbed GOx from β-sheet to α-helix. The present results indicate that is possible to control the conformation of adsorbed protein by selecting the appropriate template monolayer. © 2011 American Chemical Society

  12. Astragaloside IV prevents damage to human mesangial cells through the inhibition of the NADPH oxidase/ROS/Akt/NF‑κB pathway under high glucose conditions.

    Science.gov (United States)

    Sun, Li; Li, Weiping; Li, Weizu; Xiong, Li; Li, Guiping; Ma, Rong

    2014-07-01

    Glomerular hypertrophy and hyperfiltration are the two major pathological characteristics of the early stages of diabetic nephropathy (DN), which are respectively related to mesangial cell (MC) proliferation and a decrease in calcium influx conducted by canonical transient receptor potential cation channel 6 (TRPC6). The marked increase in the production of reactive oxygen species (ROS) induced by hyperglycemia is the main sponsor of multiple pathological pathways in DN. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of ROS production in MCs. Astragaloside IV (AS‑IV) is an active ingredient of Radix Astragali which has a potent antioxidative effect. In this study, we aimed to investigate whether high glucose (HG)‑induced NADPH oxidase activation and ROS production contribute to MC proliferation and the downregulation of TRPC6 expression; we also wished to determine the effects of AS‑IV on MCs under HG conditions. Using a human glomerular mesangial cell line, we found that treatment with AS‑IV for 48 h markedly attenuated HG‑induced proliferation and the hypertrophy of MCs in a dose‑dependent manner. The intracellular ROS level was also markedly reduced following treatment with AS‑IV. In addition, the enhanced activity of NADPH oxidase and the expression level of NADPH oxidase 4 (Nox4) protein were decreased. Treatment with AS‑IV also inhibited the phosphorylation level of Akt and IκBα in the MCs. In addition, TRPC6 protein expression and the intracellular free calcium concentration were also markedly reduced following treatment with AS‑IV under HG conditions. These results suggest that AS‑IV inhibits HG‑induced mesangial cell proliferation and glomerular contractile dysfunction through the NADPH oxidase/ROS/Akt/nuclear factor‑κB (NF‑κB) pathway, providing a new perspective for the clinical treatment of DN.

  13. Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells.

    Science.gov (United States)

    Lee, Hak Joo; Lee, Doug Yoon; Mariappan, Meenalakshmi M; Feliers, Denis; Ghosh-Choudhury, Goutam; Abboud, Hanna E; Gorin, Yves; Kasinath, Balakuntalam S

    2017-04-07

    High-glucose increases NADPH oxidase 4 (NOX4) expression, reactive oxygen species generation, and matrix protein synthesis by inhibiting AMP-activated protein kinase (AMPK) in renal cells. Because hydrogen sulfide (H 2 S) inhibits high glucose-induced matrix protein increase by activating AMPK in renal cells, we examined whether H 2 S inhibits high glucose-induced expression of NOX4 and matrix protein and whether H 2 S and NO pathways are integrated. High glucose increased NOX4 expression and activity at 24 h in renal proximal tubular epithelial cells, which was inhibited by sodium hydrosulfide (NaHS), a source of H 2 S. High glucose decreased AMPK phosphorylation and activity, which was restored by NaHS. Compound C, an AMPK inhibitor, prevented NaHS inhibition of high glucose-induced NOX4 expression. NaHS inhibition of high glucose-induced NOX4 expression was abrogated by N (ω)-nitro-l-arginine methyl ester, an inhibitor of NOS. NaHS unexpectedly augmented the expression of inducible NOS (iNOS) but not endothelial NOS. iNOS siRNA and 1400W, a selective iNOS inhibitor, abolished the ameliorative effects of NaHS on high glucose-induced NOX4 expression, reactive oxygen species generation, and, matrix laminin expression. Thus, H 2 S recruits iNOS to generate NO to inhibit high glucose-induced NOX4 expression, oxidative stress, and matrix protein accumulation in renal epithelial cells; the two gasotransmitters H 2 S and NO and their interaction may serve as therapeutic targets in diabetic kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Genetic and phenotypic diversity of naturally isolated wild strains of Aspergillus niger with hyper glucose oxidase production

    Directory of Open Access Journals (Sweden)

    MAHMOUD EL-HARIRI

    2015-12-01

    Full Text Available Glucose oxidase (GOx is the basic stone for many of biological industry worldwide. The improvement of GOx production basically depends on selection of hyper producer strain of Aspergillus niger. Selective isolation and screening for natural hyper producer strains of A. niger and sequence analysis of the GOD gene, which is responsible for production of the enzyme, are very effective approaches to investigate the naturally modified strains of A. niger with hyper productive capacity of GOx enzyme. The aims of the current study were selective isolation of naturally hyper GOx producing strains of A. niger and evaluation of their GOx activities under optimized parameters in the laboratory. Five wild Egyptian isolates of A. niger were screened for GOx and catalase activity using two types of modified basal liquid media. The GOx activity was evaluated by high throughout liquid phase system. The isolates showed a variable activity for GOx production ranged from 0 to 28.7 U.ml-1. One isolate coded Strain 7 was negative GOx producer on Vogel's broth medium in comparison to other isolates, while its GOx activity on Cazpek Dox was considered as positive (7.28 U.ml-1. It was concluded that GOx production is affected by three controllable factors – the basal media components, time of incubation, and the strain with its adaption to the media components‎. Also, the catalase activity was tested and it was produced with a different degree of variability, which may be reflected on GOx stability. GOD genes of these wild variant of A. niger were cloned and sequenced to determine intraspecies diversity of GOD between the wild variants. The comparison of isolated wild variants to other reference hyper GOx producer strains of A. niger was performed to determine if the GOD sequence analysis of these strains can be distinguished based on their GOx activity. This is the first report for isolation and detection of naturally A. niger hyper GOx-producer strains with

  15. Fabrication of high performance bioanode based on fruitful association of dendrimer and carbon nanotube used for design O2/glucose membrane-less biofuel cell with improved bilirubine oxidase biocathode.

    Science.gov (United States)

    Korani, Aazam; Salimi, Abdollah

    2013-12-15

    In this study, the preparation of an integrated modified electrode based on the covalent attachment of glucose dehydrogenase (GDH) enzyme and safranin O to amine-derivative multiwalled carbon nanotubes (MWCNTs-NH2) modified glassy carbon (GC) electrode using G2.5-carboxylated PAMAM dendrimer (Den) as linking agent is reported. The obtained results indicated that the proposed system has effective bioelectrocatalytic activity toward glucose oxidation at 100 mV with onset potential of -130 mV (vs. Ag/AgCl). The performance of the prepared hybrid system of GC/MWCNTs-NH2/Den/GDH/Safranin as anode in a membraneless enzyme-based glucose/O2 biofuel cell is further evaluated. The biocathode in this system was composed of bilirubin oxidase (BOX) enzyme immobilized onto a bilirubin modified carbon nanotube GC electrode. Immobilized BOX onto CNTs/bilirubin not only show direct electron transfer but also it has excellent electrocatalytic activity toward oxygen reduction at a positive potential of 610 mV. The open circuit voltage of the cell was 590 mV. The maximum current density was 0.5 mA cm(-2), while maximum power density of 108 μW cm(-2) was achieved at voltage of 330 mV. The immobilized enzymes in anode and cathode are very stable and output power of the BFC is approximately constant after 12 h continues operation. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Independently recruited oxidases from the glucose-methanol-choline oxidoreductase family enabled chemical defences in leaf beetle larvae (subtribe Chrysomelina) to evolve

    Science.gov (United States)

    Rahfeld, Peter; Kirsch, Roy; Kugel, Susann; Wielsch, Natalie; Stock, Magdalena; Groth, Marco; Boland, Wilhelm; Burse, Antje

    2014-01-01

    Larvae of the leaf beetle subtribe Chrysomelina sensu stricto repel their enemies by displaying glandular secretions that contain defensive compounds. These repellents can be produced either de novo (iridoids) or by using plant-derived precursors (e.g. salicylaldehyde). The autonomous production of iridoids, as in Phaedon cochleariae, is the ancestral chrysomeline chemical defence and predates the evolution of salicylaldehyde-based defence. Both biosynthesis strategies include an oxidative step of an alcohol intermediate. In salicylaldehyde-producing species, this step is catalysed by salicyl alcohol oxidases (SAOs) of the glucose-methanol-choline (GMC) oxidoreductase superfamily, but the enzyme oxidizing the iridoid precursor is unknown. Here, we show by in vitro as well as in vivo experiments that P. cochleariae also uses an oxidase from the GMC superfamily for defensive purposes. However, our phylogenetic analysis of chrysomeline GMC oxidoreductases revealed that the oxidase of the iridoid pathway originated from a GMC clade different from that of the SAOs. Thus, the evolution of a host-independent chemical defence followed by a shift to a host-dependent chemical defence in chrysomeline beetles coincided with the utilization of genes from different GMC subfamilies. These findings illustrate the importance of the GMC multi-gene family for adaptive processes in plant–insect interactions. PMID:24943369

  17. Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations

    OpenAIRE

    Fraser, D. A.; Hessvik, N. P.; Nikolić, N.; Aas, V.; Hanssen, K. F.; Bøhn, S. K.; Thoresen, G. H.; Rustan, A. C.

    2011-01-01

    The aim of the present work was to study the effects of benfotiamine (S-benzoylthiamine O-monophosphate) on glucose and lipid metabolism and gene expression in differentiated human skeletal muscle cells (myotubes) incubated for 4 days under normal (5.5 mM glucose) and hyperglycemic (20 mM glucose) conditions. Myotubes established from lean, healthy volunteers were treated with benfotiamine for 4 days. Glucose and lipid metabolism were studied with labeled precursors. Gene expression was measu...

  18. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering, Qingdao, 266100 (China)], E-mail: wwei@ouc.edu.cn; Zhang Xia [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering, Qingdao, 266100 (China); Wang Jia [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering, Qingdao, 266100 (China); State Key Laboratory for Corrosion and Protection, Shenyang, 110016 (China)

    2009-09-30

    The wire beam electrode (WBE) method was first used to study the activity of local glucose oxidase (GOD) on stainless steel surface in seawater. Glucose oxidase was immobilized in calcium alginate gel capsules, which were embedded in a layer of artificial biofilm (calcium alginate gel) on the WBE surface. The potential/current distributions on the WBE surface were mapped using a newly developed device for the WBE method in our lab. The results demonstrated that the catalysis of H{sub 2}O{sub 2} formation by GOD can produce local noble potential peaks and cathodic current zones on the stainless steel surface. An interesting fluctuant current distribution around cathodic zones was observed the first time. The potential and current maps showed that the enzyme heterogeneity of the artificial biofilm caused a corresponding electrochemical heterogeneity at the biofilm/metal interface. The application of the WBE method to ennoblement study enables us to observe the heterogeneous electrochemistry at biofilm/stainless steel interface directly, providing us with a powerful tool to investigate other biofilm-related processes such as microbially influenced corrosion (MIC)

  19. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method

    International Nuclear Information System (INIS)

    Wang Wei; Zhang Xia; Wang Jia

    2009-01-01

    The wire beam electrode (WBE) method was first used to study the activity of local glucose oxidase (GOD) on stainless steel surface in seawater. Glucose oxidase was immobilized in calcium alginate gel capsules, which were embedded in a layer of artificial biofilm (calcium alginate gel) on the WBE surface. The potential/current distributions on the WBE surface were mapped using a newly developed device for the WBE method in our lab. The results demonstrated that the catalysis of H 2 O 2 formation by GOD can produce local noble potential peaks and cathodic current zones on the stainless steel surface. An interesting fluctuant current distribution around cathodic zones was observed the first time. The potential and current maps showed that the enzyme heterogeneity of the artificial biofilm caused a corresponding electrochemical heterogeneity at the biofilm/metal interface. The application of the WBE method to ennoblement study enables us to observe the heterogeneous electrochemistry at biofilm/stainless steel interface directly, providing us with a powerful tool to investigate other biofilm-related processes such as microbially influenced corrosion (MIC).

  20. Electrografting of thionine diazonium cation onto the graphene edges and decorating with Au nano-dendrites or glucose oxidase: Characterization and electrocatalytic applications.

    Science.gov (United States)

    Shervedani, Reza Karimi; Amini, Akbar; Sadeghi, Nima

    2016-03-15

    Thionine (Th) diazonium cation is covalently attached onto the glassy carbon (GC) electrode via graphene nanosheets (GNs) (GC-GNs-Th). The GC-GNs-Th electrode is subjected to further modifications to fabricate (i) glucose and (ii) nitrite sensors. Further modifications include: (i) direct immobilization of glucose oxidase (GOx) and (ii) electrodeposition of gold dendrite-like nanostructures (DGNs) on the GC-GNs-Th surface, constructing GC-GNs-Th-GOx and GC-GNs-Th-DGNs modified electrodes, respectively. The GC-GNs-Th-GOx biosensor exhibited a linear response range to glucose, from 0.5 to 6.0mM, with a limit of detection (LOD) of 9.6 μM and high sensitivity of 43.2 µAcm(-2)mM(-1). Also, the GC-GNs-Th-DGNs sensor showed a wide dynamic response range for NO2(-) ion with two linear parts, from 0.05 μM to 1.0 μM and 30.0 μM to 1.0mM, a sensitivity of 263.2 μAmM(-1) and a LOD of 0.01 μM. Applicability of the modified electrodes was successfully tested by determination of glucose in human blood serum and nitrite in water based on addition/recovery tests. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Surface modification of Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} nanocomposites for use in immobilization of glucose oxidase; Modificacao da superficie de nanocompositos de Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} visando seu uso para imobilizacao da glicose oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, I.L.T.; Santos, P.T.A.; Costa, A.C.F.M., E-mail: izabelleliz@hotmail.com, E-mail: patytaraujo@gmail.com, E-mail: ana.costa@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais; Cornejo, D.R., E-mail: daniel.r.cornejo@gmail.com [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica; Bicalho, S.M.C.M., E-mail: dbrandao@jhs.med.br [JHS Lab. Quimico, Sabara, MG (Brazil); Oliveira, L.S.C., E-mail: libiaconrado@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia Quimica

    2017-04-15

    The increase in the number of people with diabetes in recent years and the high cost-benefit ratio of the existing biosensor technology have increased the interest for the development of glucose detection biosensor based on immobilization of glucose-oxidase (GOD) mainly using magnetic nanoparticles. In this context, nanocomposites of Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} were prepared by combustion reaction and their surface was functionalized with 3-aminopropyltriethoxysilane via silanization reaction and with chitosan via functionalization to obtain a hybrid material that was evaluated as possible GOD immobilizer. The samples were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry, scanning electron microscopy, transmission electron microscopy, magnetic properties and in vitro cytotoxicity. The results revealed that it was possible to obtain the ferrimagnetic composite, the surface modification reduced the saturation magnetization, but maintained the ferrimagnetic characteristics, and all samples were considered non-toxic. For preliminary testing of the GOD immobilization it was revealed that the nanocomposite modified with silane and chitosan showed the better result, about 2.7 mg of immobilized GOD for 100 mg of nanocomposite, which makes this material a potential alternative to manufacture GOD biosensors. (author)

  2. A novel functionalisation process for glucose oxidase immobilisation in poly(methyl methacrylate) microchannels in a flow system for amperometric determinations.

    Science.gov (United States)

    Cerqueira, Marcos Rodrigues Facchini; Grasseschi, Daniel; Matos, Renato Camargo; Angnes, Lucio

    2014-08-01

    Different materials like glass, silicon and poly(methyl methacrylate) (PMMA) are being used to immobilise enzymes in microchannels. PMMA shows advantages such as its low price, biocompatibility and attractive mechanical and chemical properties. Despite this, the introduction of reactive functional groups on PMMA is still problematic, either because of the complex chemistry or extended reaction time involved. In this paper, a new methodology was developed to immobilise glucose oxidase (GOx) in PMMA microchannels, with the benefit of a rapid immobilisation process and a very simple route. The new procedure involves only two steps, based on the reaction of 5.0% (w/w) polyethyleneimine (PEI) with PMMA in a dimethyl sulphoxide medium, followed by the immobilisation of glucose oxidase using a solution containing 100U enzymes and 1.0% (v/v) glutaraldehyde. The reactors prepared in this way were evaluated by a flowing system with amperometric detection (+0.60V) based on the oxidation of the H2O2 produced by the reactor. The microreactor proposed here was able to work with high bioconversion and a frequency of 60 samples h(-1), with detection and quantification limits of 0.50 and 1.66µmol L(-1), respectively. Michaelis-Menten parameters (Vmax and KM) were calculated as 449±47.7nmol min(-1) and 7.79±0.98mmol. Statistical evaluations were done to validate the proposed methodology. The content of glucose in natural and commercial coconut water samples was evaluated using the developed method. Comparison with spectrophotometric measurements showed that both methodologies have a very good correlation (tcalculated, 0.05, 4=1.35

  3. Electrochemical characterization of adsorbed bilirubin oxidase on Vulcan XC 72R for the biocathode preparation in a glucose/O2 biofuel cell

    International Nuclear Information System (INIS)

    Habrioux, A.; Napporn, T.; Servat, K.; Tingry, S.; Kokoh, K.B.

    2010-01-01

    A new biocathode was built and tested. It consisted of bilirubin oxidase adsorbed on Vulcan XC 72 R and immobilized into a Nafion matrix. The possibility of direct electron transfer between bilirubin oxidase and Vulcan XC 72 R was also demonstrated. The kinetics on biocathode were enhanced by including 2,2'-azinobis-3-ethylbenzothiazoline-5-sulfonic acid in the catalytic film. A first order reaction rate was observed for oxygen concentrations lower than 22%. A complete kinetic investigation of the system was shown. A biofuel cell test performed with this biocathode and Au 70 Pt 30 nanoparticles as anode catalyst permitted to reach a power density of 170 μW cm -2 at a cell voltage of 0.6 V, which is superior to what can be obtained with the concentric design.

  4. Reagent-less amperometric glucose biosensor based on a graphite rod electrode layer-by-layer modified with 1,10-phenanthroline-5,6-dione and glucose oxidase.

    Science.gov (United States)

    Kausaite-Minkstimiene, Asta; Simanaityte, Ruta; Ramanaviciene, Almira; Glumbokaite, Laura; Ramanavicius, Arunas

    2017-08-15

    A reagent-less amperometric glucose biosensor operating in not-stirred sample solution was developed. A working electrode of the designed biosensor was based on a graphite rod (GR) electrode, which was modified with 1,10-phenanthroline-5,6-dione (PD) and glucose oxidase (GOx). The PD and the GOx were layer-by-layer adsorbed on the GR electrode surface with subsequent drying followed by chemical cross-linking of the adsorbed GOx with glutaraldehyde (GA). Optimal preparation conditions of the working electrode (GR/PD/GOx) were achieved with 12.6μg and 0.24mg loading amount of PD and GOx, respectively and 25min lasting cross-linking of the GOx with GA. A current response to glucose of the GR/PD/GOx electrode was measured at +200mV potential vs Ag/AgCl reference electrode. Maximum current response was registered when the pH of the buffer solution was 6.0. The registered current response to glucose was linear in the concentration range of 0.1-76mmolL -1 (R 2 =0.9985) and a detection limit was 0.025mmolL -1 . The GR/PD/GOx electrode demonstrated good reproducibility and repeatability with the relative standard deviation of 6.2% and 1.8% (at 4.0mmolL -1 of glucose), respectively, high anti-interference ability to uric and ascorbic acids. It was highly selective to glucose and demonstrated good accuracy in the analysis of human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Pulse Radiolysis Studies of Temperature Dependent Electron Transfers among Redox Centers in ba(3)-Cytochrome c Oxidase from Thermus thermophilus

    DEFF Research Database (Denmark)

    Farver, Ole; Wherland, Scot; Antholine, William E

    2010-01-01

    The functioning of cytochrome c oxidases involves orchestration of long-range electron transfer (ET) events among the four redox active metal centers. We report the temperature dependence of electron transfer from the Cu(A)(r) site to the low-spin heme-(a)b(o) site, i.e., Cu(A)(r) + heme-a(b)(o) ......The functioning of cytochrome c oxidases involves orchestration of long-range electron transfer (ET) events among the four redox active metal centers. We report the temperature dependence of electron transfer from the Cu(A)(r) site to the low-spin heme-(a)b(o) site, i.e., Cu(A)(r) + heme...... in cytochrome ba(3) had no effect on the rate of this reaction whereas the II-Met160Leu Cu(A)-mutation was slower by an amount corresponding to a decreased driving force of ∼0.06 eV. The structures support the presence of a common, electron-conducting "wire" between Cu(A) and heme-a(b). The transfer...

  6. Calcineurin Aβ regulates NADPH oxidase (Nox) expression and activity via nuclear factor of activated T cells (NFAT) in response to high glucose.

    Science.gov (United States)

    Williams, Clintoria R; Gooch, Jennifer L

    2014-02-21

    Hypertrophy is an adaptive response that enables organs to appropriately meet increased functional demands. Previously, we reported that calcineurin (Cn) is required for glomerular and whole kidney hypertrophy in diabetic rodents (Gooch, J. L., Barnes, J. L., Garcia, S., and Abboud, H. E. (2003). Calcineurin is activated in diabetes and is required for glomerular hypertrophy and ECM accumulation. Am. J. Physiol. Renal Physiol. 284, F144-F154; Reddy, R. N., Knotts, T. L., Roberts, B. R., Molkentin, J. D., Price, S. R., and Gooch, J. L. (2011). Calcineurin Aβ is required for hypertrophy but not matrix expansion in the diabetic kidney. J. Cell Mol. Med. 15, 414-422). Because studies have also implicated the reactive oxygen species-generating enzymes NADPH oxidases (Nox) in diabetic kidney responses, we tested the hypothesis that Nox and Cn cooperate in a common signaling pathway. First, we examined the role of the two main isoforms of Cn in hypertrophic signaling. Using primary kidney cells lacking a catalytic subunit of Cn (CnAα(-/-) or CnAβ(-/-)), we found that high glucose selectively activates CnAβ, whereas CnAα is constitutively active. Furthermore, CnAβ but not CnAα mediates hypertrophy. Next, we found that chronic reactive oxygen species generation in response to high glucose is attenuated in CnAβ(-/-) cells, suggesting that Cn is upstream of Nox. Consistent with this, loss of CnAβ reduces basal expression and blocks high glucose induction of Nox2 and Nox4. Inhibition of nuclear factor of activated T cells (NFAT), a CnAβ-regulated transcription factor, decreases Nox2 and Nox4 expression, whereas NFAT overexpression increases Nox2 and Nox4, indicating that the CnAβ/NFAT pathway modulates Nox. These data reveal that the CnAβ/NFAT pathway regulates Nox and plays an important role in high glucose-mediated hypertrophic responses in the kidney.

  7. A resettable and reprogrammable keypad lock based on electrochromic Prussian blue films and biocatalysis of immobilized glucose oxidase in a bipolar electrode system.

    Science.gov (United States)

    Yu, Xue; Liang, Jiying; Yang, Tiangang; Gong, Mengjie; Xi, Dongman; Liu, Hongyun

    2018-01-15

    Herein, a resettable and reprogrammable biomolecular keypad lock on the basis of a closed bipolar electrode (BPE) system was established. In this system, one ITO electrode with immobilized chitosan (CS) and glucose oxidase (GOD), designated as CS-GOD, acted as one pole of BPE in the sensing cell; another ITO with electrodeposited Prussian blue (PB) films as the other pole in the reporting cell. The addition of ascorbic acid (AA) in the sensing cell with driving voltage (V tot ) at +2.5V would make the PB films become Prussian white (PW) in the reporting cell, accompanied by the color change from blue to nearly transparent. On the other hand, with the help of oxygen, the addition of glucose in the sensing cell with V tot at -1.5V would induce PW back to PB. The change of color and the corresponding UV-vis absorbance at 700nm for the PB/PW films in the reporting cell could be reversibly switched by changing the solute in the sensing cell between AA and glucose and then switching V tot between +2.5 and -1.5V. Based on these, a keypad lock was developed with AA, glucose and V tot as 3 inputs, and the color change of the PB/PW films as the output. This keypad lock system combined enzymatic catalysis with bipolar electrochemistry, demonstrating some unique advantages such as good reprogrammability, easy resettability and visual readout by naked eye. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The caa(3) terminal oxidase of Bacillus stearothermophilus - Transient spectroscopy of electron transfer and ligand binding

    NARCIS (Netherlands)

    Giuffre, A; DItri, E; Giannini, S; Brunori, M; UbbinkKok, T; Konings, WN; Antonini, G

    1996-01-01

    The thermophilic bacterium Bacillus stearothermophilus possesses a caa(3)-type terminal oxidase, which was previously purified (De Vrij, W., Heyne, R. I. HL, and Konings, W. N. (1989) Ear. J. Biochem. 178, 763-770). We have carried out extensive kinetic experiments on the purified enzyme by

  9. Electron transfer reactivity of the Arabidopsis thaliana sulfhydryl oxidase AtErv1

    DEFF Research Database (Denmark)

    Farver, Ole; Vitu, Elvira; Wherland, Scot

    2009-01-01

    The redox reactivity of the three disulfide bridges and the flavin present in each protomer of the wild-type Arabidopsis thaliana mitochondrial sulfhydryl oxidase (AtErv1) homodimer has been investigated. Pulse radiolytically produced CO2- radical ions were found to reduce the disulfide bridges...

  10. A novel electrochemical immunosensor using β-cyclodextrins functionalized silver supported adamantine-modified glucose oxidase as labels for ultrasensitive detection of alpha-fetoprotein.

    Science.gov (United States)

    Gao, Jian; Ma, Hongmin; Lv, Xiaohui; Yan, Tao; Li, Na; Cao, Wei; Wei, Qin

    2015-09-17

    In this work, a novel sandwich-type electrochemical immunosensor based on host-guest interaction was fabricated for the detection of alpha-fetoprotein (AFP). Due to the large specific surface area of multiwalled carbon nanotubes and the unique supramolecular recognition ability of β-cyclodextrins, ferrocenecarboxylic acid (Fc) was incorporated into this sensor platform by host-guest interaction to generate an electrochemical signal. And β-cyclodextrins functionalized silver supported adamantine-modified glucose oxidase (GOD-CD-Ag), was used as a label to improve the analytical performance of the immunosensor by the dual amplification strategy. The obtained GOD-CD-Ag conjugates could convert glucose into gluconic acid with the formation of hydrogen peroxide (H2O2). And then silver nanoparticles could in situ catalyze the reduction of the generated H2O2, dramatically improving the oxidation reaction of Fc. The developed immunosensor shows a wide linear calibration range from 0.001 to 5.0 ng/mL with a low detection limit (0.2 pg/mL) for the detection of AFP. The method, with ideal reproducibility and selectivity, has a wide application prospect in clinical research. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Multi-input and -output logic circuits based on bioelectrocatalysis with horseradish peroxidase and glucose oxidase immobilized in multi-responsive copolymer films on electrodes.

    Science.gov (United States)

    Yu, Xue; Lian, Wenjing; Zhang, Jiannan; Liu, Hongyun

    2016-06-15

    Herein, poly(N-isopropylacrylamide-co-N,N'-dimethylaminoethylmethacrylate) copolymer films were polymerized on electrode surface with a simple one-step method, and the enzyme horseradish peroxidase (HRP) was embedded in the films simultaneously, which were designated as P(NiPAAm-co-DMEM)-HRP. The films exhibited a reversible structure change with the external stimuli, such as pH, CO2, temperature and SO4(2-), causing the cyclic voltammetric (CV) response of electroactive K3Fe(CN)6 at the film electrodes to display the corresponding multi-stimuli sensitive ON-OFF behavior. Based on the switchable CV property of the system and the electrochemical reduction of H2O2 catalyzed by HRP in the films and mediated by Fe(CN)6(3-) in solution, a 5-input/3-output logic gate was established. To further increase the complexity of the logic system, another enzyme glucose oxidase (GOD) was added into the films, designated as P(NiPAAm-co-DMEM)-HRP-GOD. In the presence of oxygen, the oxidation of glucose in the solution was catalyzed by GOD in the films, and the produced H2O2 in situ was recognized and electrocatalytically reduced by HRP and mediated by Fe(CN)6(3-). Based on the bienzyme films, a cascaded or concatenated 4-input/3-output logic gate system was proposed. The present work combined the multi-responsive interface with bioelectrocatalysis to construct cascaded logic circuits, which might open a new avenue to develop biocomputing elements with more sophisticated functions and design novel glucose biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on L-cysteine self-assembled gold electrode.

    Science.gov (United States)

    Patil, Bhushan; Kobayashi, Yoshiki; Fujikawa, Shigenori; Okajima, Takeyoshi; Mao, Lanqun; Ohsaka, Takeo

    2014-02-01

    A direct electrochemistry and intramolecular electron transfer of multicopper oxidases are of a great importance for the fabrication of these enzyme-based bioelectrochemical-devices. Ascorbate oxidase from Acremonium sp. (ASOM) has been successfully immobilized via a chemisorptive interaction on the l-cysteine self-assembled monolayer modified gold electrode (cys-SAM/AuE). Thermodynamics and kinetics of adsorption of ASOM on the cys-SAM/AuE were studied using cyclic voltammetry. A well-defined redox wave centered at 166±3mV (vs. Ag│AgCl│KCl(sat.)) was observed in 5.0mM phosphate buffer solution (pH7.0) at the fabricated ASOM electrode, abbreviated as ASOM/cys-SAM/AuE, confirming a direct electrochemistry, i.e., a direct electron transfer (DET) between ASOM and cys-SAM/AuE. The direct electrochemistry of ASOM was further confirmed by taking into account the chemical oxidation of ascorbic acid (AA) by O2 via an intramolecular electron transfer in the ASOM as well as the electrocatalytic oxidation of AA at the ASOM/cys-SAM/AuE. Thermodynamics and kinetics of the adsorption of ASOM on the cys-SAM/AuE have been elaborated along with its direct electron transfer at the modified electrodes on the basis of its intramolecular electron transfer and electrocatalytic activity towards ascorbic acid oxidation and O2 reduction. ASOM saturated surface area was obtained as 2.41×10(-11)molcm(-2) with the apparent adsorption coefficient of 1.63×10(6)Lmol(-1). The ASOM confined on the cys-SAM/AuE possesses its essential enzymatic function. © 2013.

  13. Fluorescence ELISA for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yi [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 (China); Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047 (China); Huang, Xiaolin [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 (China); Yu, Ruijin [College of Science, Northwest A& F University, Yangling, Shaanxi 712100 (China); Zhou, Yaofeng [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 (China); Xiong, Yonghua, E-mail: yhxiongchen@163.com [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 (China); Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047 (China)

    2016-09-14

    The present study described a novel fluorescence enzyme-linked immunosorbent assay (ELISA) used to detect ochratoxin A (OTA) by using the glucose oxidase (GOx)-mediated fluorescence quenching of mercaptopropionic acid-capped CdTe quantum dots (MPA-QDs), in which GOx was used as an alternative to horseradish peroxidase (HRP) for the oxidization of glucose into hydrogen peroxide (H{sub 2}O{sub 2}) and gluconic acid. The MPA-QDs were used as a fluorescent signal output, whose fluorescence variation was extremely sensitive to the presence of H{sub 2}O{sub 2} or hydrogen ions in the solution. Under the optimized conditions, the proposed fluorescence ELISA demonstrated a good linear detection of OTA in corn extract from 2.4 pg mL{sup −1} to 625 pg mL{sup −1} with a limit of detection of 2.2 pg mL{sup −1}, which was approximately 15-fold lower than that of conventional HRP-based ELISA. Our developed fluorescence immunoassay was also similar to HRP-based ELISA in terms of selectivity, accuracy, and reproducibility. In summary, this study was the first to use the GOx-mediated fluorescence quenching of QDs in immunoassay to detect OTA, offering a new possibility for the analysis of other mycotoxins and biomolecules. - Highlights: • A novel fluorescence ELISA was first developed for the detection of OTA by using GOx-mediated fluorescence quenching of QDs. • The pH- and H{sub 2}O{sub 2}-sensitive MPA-capped CdTe QDs were used as a fluorescent signal output to improve the detection sensitivity. • This novel method open up a different vision to detect other mycotoxins and biomolecules.

  14. Coupled enzyme reactions performed in heterogeneous reaction media: experiments and modeling for glucose oxidase and horseradish peroxidase in a PEG/citrate aqueous two-phase system.

    Science.gov (United States)

    Aumiller, William M; Davis, Bradley W; Hashemian, Negar; Maranas, Costas; Armaou, Antonios; Keating, Christine D

    2014-03-06

    The intracellular environment in which biological reactions occur is crowded with macromolecules and subdivided into microenvironments that differ in both physical properties and chemical composition. The work described here combines experimental and computational model systems to help understand the consequences of this heterogeneous reaction media on the outcome of coupled enzyme reactions. Our experimental model system for solution heterogeneity is a biphasic polyethylene glycol (PEG)/sodium citrate aqueous mixture that provides coexisting PEG-rich and citrate-rich phases. Reaction kinetics for the coupled enzyme reaction between glucose oxidase (GOX) and horseradish peroxidase (HRP) were measured in the PEG/citrate aqueous two-phase system (ATPS). Enzyme kinetics differed between the two phases, particularly for the HRP. Both enzymes, as well as the substrates glucose and H2O2, partitioned to the citrate-rich phase; however, the Amplex Red substrate necessary to complete the sequential reaction partitioned strongly to the PEG-rich phase. Reactions in ATPS were quantitatively described by a mathematical model that incorporated measured partitioning and kinetic parameters. The model was then extended to new reaction conditions, i.e., higher enzyme concentration. Both experimental and computational results suggest mass transfer across the interface is vital to maintain the observed rate of product formation, which may be a means of metabolic regulation in vivo. Although outcomes for a specific system will depend on the particulars of the enzyme reactions and the microenvironments, this work demonstrates how coupled enzymatic reactions in complex, heterogeneous media can be understood in terms of a mathematical model.

  15. Fluorescence ELISA for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs

    International Nuclear Information System (INIS)

    Liang, Yi; Huang, Xiaolin; Yu, Ruijin; Zhou, Yaofeng; Xiong, Yonghua

    2016-01-01

    The present study described a novel fluorescence enzyme-linked immunosorbent assay (ELISA) used to detect ochratoxin A (OTA) by using the glucose oxidase (GOx)-mediated fluorescence quenching of mercaptopropionic acid-capped CdTe quantum dots (MPA-QDs), in which GOx was used as an alternative to horseradish peroxidase (HRP) for the oxidization of glucose into hydrogen peroxide (H_2O_2) and gluconic acid. The MPA-QDs were used as a fluorescent signal output, whose fluorescence variation was extremely sensitive to the presence of H_2O_2 or hydrogen ions in the solution. Under the optimized conditions, the proposed fluorescence ELISA demonstrated a good linear detection of OTA in corn extract from 2.4 pg mL"−"1 to 625 pg mL"−"1 with a limit of detection of 2.2 pg mL"−"1, which was approximately 15-fold lower than that of conventional HRP-based ELISA. Our developed fluorescence immunoassay was also similar to HRP-based ELISA in terms of selectivity, accuracy, and reproducibility. In summary, this study was the first to use the GOx-mediated fluorescence quenching of QDs in immunoassay to detect OTA, offering a new possibility for the analysis of other mycotoxins and biomolecules. - Highlights: • A novel fluorescence ELISA was first developed for the detection of OTA by using GOx-mediated fluorescence quenching of QDs. • The pH- and H_2O_2-sensitive MPA-capped CdTe QDs were used as a fluorescent signal output to improve the detection sensitivity. • This novel method open up a different vision to detect other mycotoxins and biomolecules.

  16. Simple method for preparing glucose biosensor based on in-situ polypyrrole cross-linked chitosan/glucose oxidase/gold bionanocomposite film.

    Science.gov (United States)

    Şenel, Mehmet

    2015-03-01

    A film of chitosan-polypyrrole-gold nanoparticles was fabricated by in-situ chemical synthesis method and its application in glucose biosensor was investigated. The obtained biosensor exhibited a high and reproducible sensitivity of 0.58μA/mM, response time ~4s, linear dynamic range from 1 to 20mM, correlation coefficient of R(2)=0.9981, and limit of detection (LOD), based on S/N ratio (S/N=3) of 0.068mM. A value of 1.83mM for the apparent Michaelis-Menten constant was obtained. The resulting bio-nanocomposite provided a suitable environment for the enzyme to retain its bioactivity at considerably extreme conditions, and the decorated gold nanoparticles in the bio-nanocomposite offer good affinity to enzyme. Copyright © 2014. Published by Elsevier B.V.

  17. Synergistic effect of Aspergillus tubingensis CTM 507 glucose oxidase in presence of ascorbic acid and alpha amylase on dough properties, baking quality and shelf life of bread.

    Science.gov (United States)

    Kriaa, Mouna; Ouhibi, Rabeb; Graba, Héla; Besbes, Souhail; Jardak, Mohamed; Kammoun, Radhouane

    2016-02-01

    The impact of Aspergillus tubingensis glucose oxidase (GOD) in combination with α-amylase and ascorbic acid on dough properties, qualities and shelf life of bread was investigated. Regression models of alveograph and texture parameters of dough and bread were adjusted. Indeed, the mixture of GOD (44 %) and ascorbic acid (56 %) on flour containing basal improver showed its potential as a corrective action to get better functional and rheological properties of dough and bread texture. Furthermore, wheat flour containing basal additives and enriched with GOD (63.8 %), ascorbic acid (32 %) and α- amylase (4.2 %) led to high technological bread making parameters, to decrease the crumb firmness and chewiness and to improve elasticity, adhesion, cohesion and specific volume of bread. In addition to that, the optimized formulation addition significantly reduced water activity and therefore decreased bread susceptibility to microbial spoilage. These findings demonstrated that GOD could partially substitute not only ascorbic acid but also α-amylase. The generated models allowed to predict the behavior of wheat flour containing additives in the range of values tested and to define the additives formula that led to desired rheological and baking qualities of dough. This fact provides new perspectives to compensate flour quality deficiencies at the moment of selecting raw materials and technological parameters reducing the production costs and facilitating gluten free products development. Graphical abstractᅟ.

  18. Rheological Enhancement of Pork Myofibrillar Protein-Lipid Emulsion Composite Gels via Glucose Oxidase Oxidation/Transglutaminase Cross-Linking Pathway.

    Science.gov (United States)

    Wang, Xu; Xiong, Youling L; Sato, Hiroaki

    2017-09-27

    Porcine myofibrillar protein (MP) was modified with glucose oxidase (GluOx)-iron that produces hydroxyl radicals then subjected to microbial transglutaminase (TGase) cross-linking in 0.6 M NaCl at 4 °C. The resulting aggregation and gel formation of MP were examined. The GluOx-mediated oxidation promoted the formation of both soluble and insoluble protein aggregates via disulfide bonds and occlusions of hydrophobic groups. The subsequent TGase treatment converted protein aggregates into highly cross-linked polymers. MP-lipid emulsion composite gels formed with such polymers exhibited markedly enhanced gelling capacity: up to 4.4-fold increases in gel firmness and 3.5-fold increases in gel elasticity over nontreated protein. Microstructural examination showed small oil droplets dispersed in a densely packed gel matrix when MP was oxidatively modified, and the TGase treatment further contributed to such packing. The enzymatic GluOx oxidation/TGase treatment shows promise to improve the textural properties of emulsified meat products.

  19. Effects of high pressure homogenization on the activity, stability, kinetics and three-dimensional conformation of a glucose oxidase produced by Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Alline Artigiani Lima Tribst

    Full Text Available High pressure homogenization (HPH is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300% at pH 6.5 in all tested temperatures (15, 50 and 75°C. The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C also caused a reduction of activity. Interestingly, at lower temperatures (15°C the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.

  20. The mechanism of electron gating in proton pumping cytochrome c oxidase: the effect of pH and temperature on internal electron transfer.

    Science.gov (United States)

    Brzezinski, P; Malmström, B G

    1987-10-29

    Electron-transfer reactions following flash photolysis of the mixed-valence cytochrome oxidase-CO complex have been measured at 445, 598 and 830 nm between pH 5.2 and 9.0 in the temperature range of 0-25 degrees C. There is a rapid electron transfer from the cytochrome a3-CuB pair to CuA (time constant: 14200 s-1), which is followed by a slower electron transfer to cytochrome a. Both the rate and the amplitude of the rapid phase are independent of pH, and the rate in the direction from CuA to cytochrome a3-CuB is practically independent of temperature. The second phase depends strongly on pH due to the titration of an acid-base group with pKa = 7.6. The equilibrium at pH 7.4 corresponds to reduction potentials of 225 and 345 mV for cytochrome a and a3, respectively, from which it is concluded that the enzyme is in a different conformation compared to the fully oxidized form. The results have been used to suggest a series of reaction steps in a cycle of the oxidase as a proton pump. Application of the electron-transfer theory to the temperature-dependence data suggests a mechanism for electron gating in the pump. Reduction of both cytochrome a and CuA leads to a conformational change, which changes the structure of cytochrome a3-CuB in such a way that the reorganizational barrier for electron transfer is removed and the driving force is increased.

  1. Effect of rat whole-body irradiation on oxidase chain and glucose-6-phosphatase of liver microsome: influence of cysteamine

    International Nuclear Information System (INIS)

    Bernard, Pierre.

    1979-11-01

    Three enzymatic systems of the male rat liver endoplasmic reticulum were studied by biochemical methods. Two means of investigation were used: - whole-body irradiation of the animal, - administration of cysteamine. The results obtained are discussed, in view of the functioning of these enzymatic systems, from two viewpoints: - the study of enzymatic radiolesions in relation to the radiobiological effect on the animal, the organ and the sub-cellular organite, - the study of chemical radioprotection. After a 900 R whole-body gamma irradiation a severe drop was observed in the enzymatic activity of two essential elements of the microsome oxydase chain: NADPH cytochrome P450 reductase and ethylmorphine N-demethylation. Glucose 6 phosphatase is also impaired by irradiation. Here it seems that the microsomal protein fraction could be responsible for the change in the enzyme activity. The irradiation effect is therefore not specific to one enzyme. The changes in these enzymatic activities correspond to the different phases of the acute irradiation syndrome which also affects the weight of the experimental animal and of the organ studied. Cysteamine used under chemical radioprotection conditions was found to be especially useful as a means of investigation complementary to the study of enzymatic radiolesions. From the combined action of irradiation and of the radioprotector it was possible to obtain a partial idea of the mechanisms of these radiolesions [fr

  2. A pyrroloquinolinequinone-dependent glucose dehydrogenase (PQQ-GDH)-electrode with direct electron transfer based on polyaniline modified carbon nanotubes for biofuel cell application

    International Nuclear Information System (INIS)

    Schubart, Ivo W.; Göbel, Gero; Lisdat, Fred

    2012-01-01

    Graphical abstract: - Abstract: In this study we present a pyrroloquinolinequinone-dependent glucose dehydrogenase [(PQQ)-GDH] electrode with direct electron transfer between the enzyme and electrode. Soluble pyrroloquinolinequinone-dependent glucose dehydrogenase from Acinetobacter calcoaceticus is covalently bound to an electropolymerized polyaniline copolymer film on a multi-walled carbon nanotube (MWCNT)-modified gold electrode. The pulsed electropolymerization of 2-methoxyaniline-5-sulfonic acid (MASA) and m-aminobenzoic acid (ABA) is optimized with respect to the efficiency of the bioelectrocatalytic conversion of glucose. The glucose oxidation starts at −0.1 V vs. Ag/AgCl and current densities up to 500 μA/cm 2 at low potential of +0.1 V vs. Ag/AgCl can be achieved. The electrode shows a glucose sensitivity in the range from 0.1 mM to 5 mM at a potential of +0.1 V vs. Ag/Ag/Cl. The dynamic range is extended to 100 mM at +0.4 V vs. Ag/AgCl. The electron transfer mechanism is studied and buffer effects are investigated. The developed enzyme electrode is examined for bioenergetic application by assembling of a membrane-less biofuel cell. For the cathode a bilirubin oxidase (BOD) based MWCNT-modified gold electrode with direct electron transfer (DET) is used. The biofuel cell exhibits a cell potential of 680 ± 20 mV and a maximum power density of up to 65 μW/cm 2 at 350 mV vs. Ag/AgCl.

  3. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle

    International Nuclear Information System (INIS)

    Gu Zhiguo; Yang Shuping; Li Zaijun; Sun Xiulan; Wang Guangli; Fang Yinjun; Liu Junkang

    2011-01-01

    Graphical abstract: We first reported an ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since promising their electrocatalytic synergy towards glucose was achieved, the biosensor showed high sensitivity (5762.8 nA nM -1 cm -2 ), low detection limit (S/N = 3) (3 x 10 -12 M) and fast response time (0.045 s). - Abstract: The paper reported an ultrasensitive electrochemical biosensor for glucose which was based on CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since efficient electron transfer between glucose oxidase and the electrode was achieved, the biosensor showed high sensitivity (5762.8 nA nM -1 cm -2 ), low detection limit (S/N = 3) (3 x 10 -12 M), fast response time (0.045 s), wide calibration range (from 1 x 10 -11 M to 1 x 10 -8 M) and good long-term stability (26 weeks). The apparent Michaelis-Menten constant of the glucose oxidase on the medium, 5.24 x 10 -6 mM, indicates excellent bioelectrocatalytic activity of the immobilized enzyme towards glucose oxidation. Moreover, the effects of omitting graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle were also investigated. The result showed sensitivity of the biosensor is 7.67-fold better if graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle are used. This could be ascribed to improvement of the conductivity between graphene nanosheets due to introduction of gold nanoparticles, ultrafast charge transfer from CdTe-CdS core-shell quantum dot to graphene nanosheets and gold nanoparticle due to unique electrochemical properties of the CdTe-CdS core-shell quantum dot and good biocompatibility of gold nanoparticle for glucose oxidase. The biosensor is of best sensitivity in all glucose biosensors based on graphene nanomaterials up to

  4. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Gu Zhiguo; Yang Shuping [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Li Zaijun, E-mail: zaijunli@263.net [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Sun Xiulan [School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Wang Guangli [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Fang Yinjun [Zhejiang Zanyu Technology Co., Ltd., Hangzhou 310009 (China); Liu Junkang [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2011-10-30

    Graphical abstract: We first reported an ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since promising their electrocatalytic synergy towards glucose was achieved, the biosensor showed high sensitivity (5762.8 nA nM{sup -1} cm{sup -2}), low detection limit (S/N = 3) (3 x 10{sup -12} M) and fast response time (0.045 s). - Abstract: The paper reported an ultrasensitive electrochemical biosensor for glucose which was based on CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since efficient electron transfer between glucose oxidase and the electrode was achieved, the biosensor showed high sensitivity (5762.8 nA nM{sup -1} cm{sup -2}), low detection limit (S/N = 3) (3 x 10{sup -12} M), fast response time (0.045 s), wide calibration range (from 1 x 10{sup -11} M to 1 x 10{sup -8} M) and good long-term stability (26 weeks). The apparent Michaelis-Menten constant of the glucose oxidase on the medium, 5.24 x 10{sup -6} mM, indicates excellent bioelectrocatalytic activity of the immobilized enzyme towards glucose oxidation. Moreover, the effects of omitting graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle were also investigated. The result showed sensitivity of the biosensor is 7.67-fold better if graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle are used. This could be ascribed to improvement of the conductivity between graphene nanosheets due to introduction of gold nanoparticles, ultrafast charge transfer from CdTe-CdS core-shell quantum dot to graphene nanosheets and gold nanoparticle due to unique electrochemical properties of the CdTe-CdS core-shell quantum dot and good biocompatibility of gold nanoparticle for glucose oxidase. The biosensor is of best sensitivity in all glucose

  5. Studying neuroprotective effect of Atorvastatin as a small molecule drug on high glucose-induced neurotoxicity in undifferentiated PC12 cells: role of NADPH oxidase.

    Science.gov (United States)

    Rayegan, Samira; Dehpour, Ahmad Reza; Sharifi, Ali Mohammad

    2017-02-01

    Overproduction of reactive oxygen species (ROS) by NADPH oxidase (NOX) activation has been considered the essential mechanism induced by hyperglycemia in various tissues. However, there is no comprehensive study on the role of NOXs in high glucose (HG)-induced toxic effect in neural tissues. Recently, a therapeutic strategy in oxidative related pathologies has been introduced by blocking the undesirable actions of NOX enzymes by small molecules. The protective roles of Statins in ameliorating oxidative stress by NOX inhibition have been shown in some tissues except neural. We hypothesized then, that different NOXs may have role in HG-induced neural cell injury. Furthermore, we postulate that Atorvastatin as a small molecule may modulate this NOXs activity to protect neural cells. Undifferentiated PC12 cells were treated with HG (140 mM/24 h) in the presence and absence of Atorvastatin (1 μM/96 h). The cell viability was measured by MTT assay and the gene and protein expressions profile of NOX (1-4) were determined by RT-PCR and western blotting, respectively. Levels of ROS and malondialdehyde (MDA) were also evaluated. Gene and protein expression levels of NOX (1-4) and consequently ROS and MDA levels were elevated in HG-treated PC12 cells. Atorvastatin could significantly decrease HG-induced NOXs, ROS and MDA elevation and improve impaired cell viability. It can be concluded that HG could elevate NOXs activity, ROS and MDA levels in neural tissues and Atorvastatin as a small molecule NOX inhibitor drug may prevent and delay diabetic complications, particularly neuropathy.

  6. The mechanism by which oxygen and cytochrome c increase the rate of electron transfer from cytochrome a to cytochrome a3 of cytochrome c oxidase.

    Science.gov (United States)

    Bickar, D; Turrens, J F; Lehninger, A L

    1986-11-05

    When cytochrome c oxidase is isolated from mitochondria, the purified enzyme requires both cytochrome c and O2 to achieve its maximum rate of internal electron transfer from cytochrome a to cytochrome a3. When reductants other than cytochrome c are used, the rate of internal electron transfer is very slow. In this paper we offer an explanation for the slow reduction of cytochrome a3 when reductants other than cytochrome c are used and for the apparent allosteric effects of cytochrome c and O2. Our model is based on the conventional understanding of cytochrome oxidase mechanism (i.e. electron transfer from cytochrome a/CuA to cytochrome a3/CuB), but assumes a relatively rapid two-electron transfer between cytochrome a/CuA and cytochrome a3/CuB and a thermodynamic equilibrium in the "resting" enzyme (the enzyme as isolated) which favors reduced cytochrome a and oxidized cytochrome a3. Using the kinetic constants that are known for this reaction, we find that the activating effects of O2 and cytochrome c on the rate of electron transfer from cytochrome a to cytochrome a3 conform to the predictions of the model and so provide no evidence of any allosteric effects or control of cytochrome c oxidase by O2 or cytochrome c.

  7. Tapping mode AFM study on the surface dynamics of a single glucose oxidase molecule on a Au(1 1 1) surface in water with implication for a surface-induced unfolding pathway

    International Nuclear Information System (INIS)

    Otsuka, Ichiro; Yaoita, Masashi; Higano, Michi; Nagashima, Seiiichi; Kataoka, Ryoichi

    2004-01-01

    We have investigated a surface-induced unfolding dynamics of a single glucose oxidase (GO) molecule on Au(1 1 1) in air-saturated water, using tapping mode atomic force microscopy (TMAFM). We followed the unfolding process by measuring the maximum height of a well-isolated GO molecule on a terrace near a step-edge of the surface as a function of contact time. We find three linear portions with two intersections in a power-law fit to the selected values of the observed heights. The kinetic TMAFM result implies that there exist at least two distinct dynamic regimes in the unfolding

  8. Photo-excitation of electrons in cytochrome c oxidase as a theory of the mechanism of the increase of ATP production in mitochondria by laser therapy

    Science.gov (United States)

    Zielke, Andrzej

    2014-02-01

    The hypothesis explains the molecular basis for restoring mitochondrial function by laser therapy. It also explains how laser therapy reverses both excessive oxidation (lack of NADH/FADH2) and excessive reduction (lack of O2) states of cytochrome c oxidase complex. It is proposed that photons interact with heme molecules of cytochrome c oxidase. A molecule of heme contains a porphyrin ring and an atom of iron in the center. The iron atom (Fe) can switch oxidation states back and forth between ferrous (Fe2+) and ferric (Fe3+) by accepting or releasing an electron. The porphyrin ring is a complex aromatic molecule that has 26 pi electrons which are "delocalized", spinning in the carbon rings creating a resonating electromagnetic cloud. Photons with similar wavelengths are absorbed by the cloud increasing its energy. The energy is then passed on to the centrally located atom of iron existing in a reduced state (Fe2+). The electrons on the orbits of the iron atom accept this electromagnetic energy, and change orbitals to a higher energetic level. If the energy is sufficient, electrons leave the atom entirely. If this occurs, Fe2+ become oxidized to Fe3+ releasing electrons, thus restoring electron flow and the production of ATP. At the same time, electrons freed from complex IV may have sufficient energy to be picked by NAD+/FADH and re-enter the chain at the complex I or II amplifying the flow of electrons.

  9. Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte thellungiella: role of the plastid terminal oxidase as an alternative electron sink.

    Science.gov (United States)

    Stepien, Piotr; Johnson, Giles N

    2009-02-01

    The effects of short-term salt stress on gas exchange and the regulation of photosynthetic electron transport were examined in Arabidopsis (Arabidopsis thaliana) and its salt-tolerant close relative Thellungiella (Thellungiella halophila). Plants cultivated on soil were challenged for 2 weeks with NaCl. Arabidopsis showed a much higher sensitivity to salt than Thellungiella; while Arabidopsis plants were unable to survive exposure to greater than 150 mM salt, Thellugiella could tolerate concentrations as high as 500 mM with only minimal effects on gas exchange. Exposure of Arabidopsis to sublethal salt concentrations resulted in stomatal closure and inhibition of CO2 fixation. This lead to an inhibition of electron transport though photosystem II (PSII), an increase in cyclic electron flow involving only PSI, and increased nonphotochemical quenching of chlorophyll fluorescence. In contrast, in Thellungiella, although gas exchange was marginally inhibited by high salt and PSI was unaffected, there was a large increase in electron flow involving PSII. This additional electron transport activity is oxygen dependent and sensitive to the alternative oxidase inhibitor n-propyl gallate. PSII electron transport in Thellungiella showed a reduced sensitivity to 2'-iodo-6-isopropyl-3-methyl-2',4,4'-trinitrodiphenylether, an inhibitor of the cytochrome b6f complex. At the same time, we observed a substantial up-regulation of a protein reacting with antibodies raised against the plastid terminal oxidase. No such up-regulation was seen in Arabidopsis. We conclude that in salt-stressed Thellungiella, plastid terminal oxidase acts as an alternative electron sink, accounting for up to 30% of total PSII electron flow.

  10. Mediatorless electron transfer in glucose dehydrogenase/laccase system adsorbed on carbon nanotubes

    International Nuclear Information System (INIS)

    Ratautas, D.; Marcinkevičienė, L.; Meškys, R.; Kulys, J.

    2015-01-01

    Highlights: • Glucose dehydrogenase from Ewingella americana (GDH) demonstrated an effective mediatorless oxidation of glucose on single-walled carbon nanotubes (SWCNT). • Laccase from Trichaptum abietinum (LAC) exhibited mediatorless oxygen reduction when the enzyme was adsorbed on SWCNT. • Simultaneous adsorption of GDH and LAC on SWCNT formed an electron transfer chain in which glucose and lactose were oxidized by oxygen in mediatorless manner. - Abstract: A mediatorless electron transfer in the chain of glucose dehydrogenase (GDH) and laccase (LAC) catalysing the oxidation of glucose by molecular oxygen was studied. To demonstrate mediatorless processes, the GDH from Ewingella americana was adsorbed on single-walled carbon nanotubes (SWCNT). The effective mediatorless oxidation of glucose proceeded at 0.2–0.4 V vs. SCE. The electrode was most active at pH 6.1, and generated 0.8 mA cm −2 biocatalytic current in the presence of 50 mM glucose. The electrode showed a bell-shaped pH dependence with pK a values of 4.1 and 7.5. LAC from Trichaptum abietinum adsorbed on SWCNT exhibited mediatorless oxygen reduction at electrode potential less than 0.65 V. The electrode was most active at pH 3.0–4.0 and generated 1.1 mA cm −2 biocatalytic current in the presence of 0.254 mM oxygen, with an apparent pK a of 1.0 and 5.4. The electrodes prepared by simultaneous adsorption of GDH and LAC on SWCNT exhibited glucose oxidation at a potential higher than 0.25 V. The oxygen consumption in the chain was demonstrated using a Clark-type oxygen electrode. The dependence of oxygen consumption on glucose and lactose concentrations as well as activity of the system on pH were measured. A model of the pH dependence as well as mediatorless consecutive glucose oxidation with oxygen catalysed by LAC/GDH system is presented. This work provides a novel approach towards the synthesis of artificial multi enzyme systems by wiring oxidoreductases with SWCNT, and offers a better

  11. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    Science.gov (United States)

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO 2 ), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO 2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO 2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO 2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO 2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO 2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22 phox up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO 2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  12. Application of photocatalytic cadmium sulfide nanoparticles to detection of enzymatic activities of glucose oxidase and glutathione reductase using oxidation of 3,3′,5,5′-tetramethylbenzidine

    Energy Technology Data Exchange (ETDEWEB)

    Grinyte, Ruta; Garai-Ibabe, Gaizka; Saa, Laura; Pavlov, Valeri, E-mail: vpavlov@cicbiomagune.es

    2015-06-30

    Highlights: • The light-powered nanosensor fabricated by enzymatic reactions was reported. • The sensor use energy of photons for oxidation of chromogenic enzymatic substrates. • Enzymatic assays for glucose oxidase and glutathione reductase were developed. - Abstract: It was found out that semiconductor CdS nanoparticles (NPs) are able to catalyze photooxidation of the well known chromogenic enzymatic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) by oxygen. The photocatalytical oxidation of TMB does not require hydrogen peroxide and its rate is directly proportional to the quantity of CdS NPs produced in situ through the interaction of Cd{sup 2+} and S{sup 2−} ions in an aqueous medium. This phenomenon was applied to development of colorimetric sensitive assays for glucose oxidase and glutathione reductase based on enzymatic generation of CdS NPs acting as light-powered catalysts. Sensitivity of the developed chromogenic assays was of the same order of magnitude or even better than that of relevant fluorogenic assays. The present approach opens the possibility for the design of simple and sensitive colorimetric assays for a number of enzymes using inexpensive and available TMB as a universal chromogenic compound.

  13. Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate.

    Science.gov (United States)

    Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P; Pearton, Stephen J

    2010-01-01

    Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. HEMT structures, consisting of a 3-microm-thick undoped GaN buffer, 30-A-thick Al(0.3)Ga(0.7)N spacer, and 220-A-thick silicon-doped Al(0.3)Ga(0.7)N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc(2)O(3)), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. The Sc(2)O(3)-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of approximately 0.1 pH. A chloride ion detection limit of 10(-8) M was achieved with a HEMT sensor immobilized with the AgCl thin film. The drain-source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 microM. There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensing different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the

  14. Automated integration of continuous glucose monitor data in the electronic health record using consumer technology.

    Science.gov (United States)

    Kumar, Rajiv B; Goren, Nira D; Stark, David E; Wall, Dennis P; Longhurst, Christopher A

    2016-05-01

    The diabetes healthcare provider plays a key role in interpreting blood glucose trends, but few institutions have successfully integrated patient home glucose data in the electronic health record (EHR). Published implementations to date have required custom interfaces, which limit wide-scale replication. We piloted automated integration of continuous glucose monitor data in the EHR using widely available consumer technology for 10 pediatric patients with insulin-dependent diabetes. Establishment of a passive data communication bridge via a patient's/parent's smartphone enabled automated integration and analytics of patient device data within the EHR between scheduled clinic visits. It is feasible to utilize available consumer technology to assess and triage home diabetes device data within the EHR, and to engage patients/parents and improve healthcare provider workflow. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  15. Immobilization of oxidases and their analytical applications

    International Nuclear Information System (INIS)

    Yasinzai, M.

    2007-01-01

    Immobilized enzymes are replacing their soluble counter-parts in nearly every field of application. These enzyme modifications have evolved from a research curiosity into an entire branch of Biotechnology. An immobilization method for flavin containing oxidases and their use in flow injection system is described. An electrochemical detector for H/sub 2/O/sub 2/ is assembled which is used effectively for the determination of glucose using more common glucose oxidase and the simultaneous determination of sugars. The combination of oxidases with hydrolases have been used for the determination of maltose and starch. (author)

  16. A randomized, double-blind, crossover, placebo-controlled clinical trial to assess effects of the single ingestion of a tablet containing lactoferrin, lactoperoxidase, and glucose oxidase on oral malodor.

    Science.gov (United States)

    Nakano, Manabu; Shimizu, Eiju; Wakabayashi, Hiroyuki; Yamauchi, Koji; Abe, Fumiaki

    2016-03-22

    The main components of oral malodor have been identified as volatile sulfur compounds (VSCs) including hydrogen sulfide (H2S) and methyl mercaptan (CH3SH). VSCs also play an important role in the progression of periodontal disease. The aim of the present study was to assess the effects of the single ingestion of a tablet containing 20 mg of lactoferrin, 2.6 mg of lactoperoxidase, and 2.6 mg of glucose oxidase on VSCs in the mouth. Subjects with VSCs greater than the olfactory threshold in their mouth air ingested a test or placebo tablet in two crossover phases. The concentrations of VSCs were monitored at baseline and 10 and 30 min after ingestion of the tablets using portable gas chromatography. Thirty-nine subjects were included in the efficacy analysis based on a full analysis set (FAS). The concentrations of total VSCs and H2S at 10 min were significantly lower in the test group than in the placebo group (-0.246 log ng/10 ml [95 % CI -0.395 to -0.098], P = 0.002; -0.349 log ng/10 ml; 95 % CI -0.506 to -0.192; P oxidase has suppressive effects on oral malodor. This trial was registered with the University Hospital Medical Information Network Clinical Trial Registry (number: UMIN000015140 , date of registration: 16/09/2014).

  17. Estabilidad de la glucosa oxidasa en sistemas amorfos formados por los disacáridos sacarosa, maltosa y trehalosa Glucose oxidase stability in amorphous systems formed by saccharose, maltose and trehalose disaccharides

    Directory of Open Access Journals (Sweden)

    Hans L. D. Valenzuela

    2007-01-01

    Full Text Available Glucose-oxidase (GOD, suffers conformational change during freeze-drying. In order to determine the protection level granted by amorphous matrices (AM of saccharose, maltose, trehalose and their combinations, the thermal inactivation constants (K D of GOD trapped in these systems were determined. For its evaluation, GOD samples were balanced at different water activities and heated up to 30, 50 and 70 ºC. The best AM found for GOD stability was saccharose-trehalose (5/10% p/v. The K D values (K D.10-4 at a w = 0.0 were 3 at 30 ºC and 6 at 70 ºC. For non-protected GOD under the same conditions these values were 48 at 30 ºC and 257 at 70 ºC.

  18. Wiring of Glucose Oxidizing Flavin Adenine Dinucleotide-Dependent Enzymes by Methylene Blue-Modified Third Generation Poly(amidoamine) Dendrimers Attached to Spectroscopic Graphite Electrodes

    DEFF Research Database (Denmark)

    Castaing, Victor; Álvarez-Martos, Isabel; Ferapontova, Elena

    2016-01-01

    , characterized by the heterogeneous ET rate constant of 7.1 0.1 s1; they can be used for electronic wiring of glucose-oxidizing FAD-containing enzymes, such as hexose oxidase (HOX), and further bioelectrocatalysis of glucose oxidation, starting, at pH 7, from -100 mV vs. Ag/AgCl. Thus, dendrimer...

  19. Photoinduced discharge of electrons stored in a TiO2-MWCNT composite to an analyte: application to the fluorometric determination of hydrogen peroxide, glucose and aflatoxin B1.

    Science.gov (United States)

    Rhouati, Amina; Nasir, Muhammad; Marty, Jean-Louis; Hayat, Akhtar

    2017-12-06

    The authors describe an analytical detection scheme based on the use of multiwalled carbon nanotubes (MWCNTs) that accept and store electrons upon contact with photo-irradiated TiO 2 nanoparticles (TiO 2 -NPs). The Fermi level equilibration with photo-irradiated TiO 2 -NPs has a storage value of 0.35 mM of electrons per 120 mg·L -1 of MWCNTs. The stored electrons can be discharged on demand upon addition of electron acceptors to the TiO 2 -NP/MWCNT composite. These findings are applied to detect the quencher hydrogen peroxide. H 2 O 2 also is produced on enzymatic action of glucose oxidase on glucose, and this enables glucose also to be quantified by using the TiO 2 -NP/MWCNT fluorescent nanoprobe. The wide scope of the method also is demonstrated by an assay for aflatoxin B1 that is making use of an FAM-labeled aptamer where the FAM fluorophore on the aptamer quenches the emission of the nanoprobe. The following analytical linear ranges and limits of detection are found: H 2 O 2 : 0.1-100 μM and 15 nM; glucose: 5-200 μM and 0.5 μM; aflatoxin: 0.1-40 ng·mL -1 and 0.02 ng·mL -1 . The method was applied to the determination of glucose in human serum. Graphical abstract The assays demonstrated in (b) and (c) are based on the fluorescence quenching ability of MWCNTs-TiO 2 . In the presence of the target (analyte), the fluorescence is restored and the target concentration is determined from the percentage of fluorescence recovery.

  20. Entrapment of Enzymes and Carbon Nanotubes in Biologically Synthesized Silica: Glucose Oxidase-catalyzed Direct Electron Transfer, Preprint

    National Research Council Canada - National Science Library

    Invitski, Dmitri; Artyuskova, Kateryna; Rincon, Rosalba A; Atanassov, Plamen; Luckarift, Heather R; Johnson, Glenn R

    2007-01-01

    This work demonstrates a new approach for building bio-inorganic interfaces by integrating biomimetically-derived silica with single-walled carbon nanotubes to create a conductive matrix for immobilization of enzymes...

  1. A One-compartment direct glucose alkaline fuel cell with methyl viologen as electron mediator

    International Nuclear Information System (INIS)

    Liu, Xianhua; Hao, Miaoqing; Feng, Mengnan; Zhang, Lin; Zhao, Yong; Du, Xiwen; Wang, Guangyi

    2013-01-01

    Highlights: ► A glucose–air alkaline fuel cell without using noble metal catalysts has been developed. ► The rudimentary fuel cell generates a maximum power density of 0.62 mW m −2 . ► The high performance is attributed to the use of MV and nickel foam. ► Main oxidation products are small organic acids indicating deep oxidation of glucose. - Abstract: Glucose is abundant, renewable, non-toxic and convenient as a fuel for fuel cells, but current technologies are unavailable for us to directly oxidize it to obtain energy. Fuel cells using enzymes and micro-organisms as catalysts are limited by their extremely low power output and rather short durability. Fuel cells using precious metal catalyst are expensive for large-scale use. In this work, a one-compartment direct glucose alkaline fuel cell has been developed that use methyl viologen (MV) as electron mediator and nickel foam as the anode. The rudimentary fuel cell generates a maximum power density of 0.62 mW cm −2 , while the maximum current density is 5.03 mA cm −2 . Electro-catalytic activities of MV and the nickel foam in alkaline conditions were studied by cyclic voltammetry. It is indicated that the high performance of the fuel cell is attributed to the combined use of MV and nickel foam. 13 C-NMR and HPLC were used to analyze oxidation products of glucose. The result shows that the principal oxidation products are short-chain organic acids indicating deep oxidation of glucose is achieved

  2. Combined atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and quartz crystal microbalance (QCM) studies of glucose oxidase (GOx) immobilised onto self-assembled monolayer on the gold film

    International Nuclear Information System (INIS)

    Losic, D.; Shapter, J.; Gooding, J.; Erokin, P.; Short, K.

    1999-01-01

    In fabrication of biosensors, self-assembled monolayers (SAM) are an attractive method of immobilising enzymes at electrode surface since it allows precise control over the amount and spatial distribution of the immobilized enzyme. The covalent attachment of glucose oxidase (GOx) to a carboxylic terminated SAM chemisorbed onto gold films was achieved via carbodiimide activation of the carboxylic acids to a reactive intermediate susceptible to nucleophilic attack by amines on free lysine chains of the enzyme. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and quartz crystal microbalance (QCM) measurements were used for characterisation of GOx modified gold surfaces. Tapping mode AFM studies have revealed that GOx molecules form slightly disordered arrays of pentagonal or hexagonal clusters. Observed features of immobilised GOx are distributed as a submonolayer on the SAM surface which has allowed visualisation of native and unfolded enzyme structure. The presence of the SAM and enzyme on the gold surface was detected by XPS spectroscopy. Spectra show typical peaks for the C 1s, O 1s and N 1s regions. A kinetic study of the adsorption of GOx onto activated SAM using in-situ QCM allowed determination the amount of immobilised GOx on the layer and consequently the optimal immobilisation conditions. Performance parameters of the biosensor such as sensitivity to glucose concentration as a function of enzyme loading were evaluated amperometrically using the redox mediator p-benzoquinone

  3. Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states.

    Science.gov (United States)

    Siletsky, Sergey A; Belevich, Ilya; Belevich, Nikolai P; Soulimane, Tewfik; Wikström, Mårten

    2017-11-01

    Two electrogenic phases with characteristic times of ~14μs and ~290μs are resolved in the kinetics of membrane potential generation coupled to single-electron reduction of the oxidized "relaxed" O state of ba 3 oxidase from T. thermophilus (O→E transition). The rapid phase reflects electron redistribution between Cu A and heme b. The slow phase includes electron redistribution from both Cu A and heme b to heme a 3 , and electrogenic proton transfer coupled to reduction of heme a 3 . The distance of proton translocation corresponds to uptake of a proton from the inner water phase into the binuclear center where heme a 3 is reduced, but there is no proton pumping and no reduction of Cu B . Single-electron reduction of the oxidized "unrelaxed" state (O H →E H transition) is accompanied by electrogenic reduction of the heme b/heme a 3 pair by Cu A in a "fast" phase (~22μs) and transfer of protons in "middle" and "slow" electrogenic phases (~0.185ms and ~0.78ms) coupled to electron redistribution from the heme b/heme a 3 pair to the Cu B site. The "middle" and "slow" electrogenic phases seem to be associated with transfer of protons to the proton-loading site (PLS) of the proton pump, but when all injected electrons reach Cu B the electronic charge appears to be compensated by back-leakage of the protons from the PLS into the binuclear site. Thus proton pumping occurs only to the extent of ~0.1 H + /e - , probably due to the formed membrane potential in the experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mediator-free interaction of glucose oxidase, as model enzyme for immobilization, with Al-doped and undoped ZnO thin films laser-deposited on polycarbonate supports.

    Science.gov (United States)

    V T K P, Fidal; Inguva, Saikumar; Krishnamurthy, Satheesh; Marsili, Enrico; Mosnier, Jean-Paul; T S, Chandra

    2017-01-01

    Al doped and undoped ZnO thin films were deposited by pulsed-laser deposition on polycarbonate sheets. The films were characterized by optical transmission, Hall effect measurement, XRD and SEM. Optical transmission and surface reflectometry studies showed good transparency with thicknesses ∼100nm and surface roughness of 10nm. Hall effect measurements showed that the sheet carrier concentration was -1.44×10 15 cm -2 for AZO and -6×10 14 cm -2 for ZnO. The films were then modified by drop-casting glucose oxidase (GOx) without the use of any mediators. Higher protein concentration was observed on ZnO as compared to AZO with higher specific activity for ZnO (0.042Umg -1 ) compared to AZO (0.032Umg -1 ), and was in agreement with cyclic voltemmetry (CV). X-ray photoelectron spectroscopy (XPS) suggested that the protein was bound by dipole interactions between AZO lattice oxygen and the amino group of the enzyme. Chronoamperometry showed sensitivity of 5.5μAmM -1 cm -2 towards glucose for GOx/AZO and 2.2μAmM -1 cm -2 for GOx/ZnO. The limit of detection (LoD) was 167μM of glucose for GOx/AZO, as compared to 360μM for GOx/ZnO. The linearity was 0.28-28mM for GOx/AZO whereas it was 0.6-28mM for GOx/ZnO with a response time of 10s. Possibly due to higher enzyme loading, the decrease of impedance in presence of glucose was larger for GOx/ZnO as compared to GOx/AZO in electrochemical impedance spectroscopy (EIS). Analyses with clinical blood serum samples showed that the systems had good reproducibility and accuracy. The characteristics of novel ZnO and AZO thin films with GOx as a model enzyme, should prove useful for the future fabrication of inexpensive, highly sensitive, disposable electrochemical biosensors for high throughput diagnostics. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Isolation, purification and characterization of a novel glucose oxidase from Penicillium sp. CBS 120262 optimally active at neutral pH

    CSIR Research Space (South Africa)

    Simpson, C

    2007-02-01

    Full Text Available of glucose in diabetics [17]. Enhancement of the properties of GOX is still receiving attention [8], presumably due to the current and extensive applications base of this enzyme. This article describes the production, puriWcation and characterisation of a...Ver was modiWed from the manufacturer’s protocol to contain glycerol (20% v/v), CHAPS (2% w/v) and IPG buVer (0.4%). Samples (200 �l of 1 mg ml¡1 protein) were loaded onto the Immobi- line strips using the rehydration loading protocol [22]. The loaded...

  6. Exploring flavin-containing carbohydrate oxidases

    NARCIS (Netherlands)

    Ferrari, Alessandro Renato

    2017-01-01

    Oxidases are enzymes capable of removing one or more electrons from their substrate and transfer them to molecular oxygen, forming hydrogen peroxide. Due to their high regio- and enantioselectivity, their use is preferred over traditional organic chemistry methods. Among the oxidases, flavoprotein

  7. Fabrication and characterization of spiral interdigitated electrodes based biosensor for salivary glucose detection

    Science.gov (United States)

    Adelyn, P. Y. P.; Hashim, U.; Arshad, M. K. Md; Voon, C. H.; Liu, Wei-Wen; Kahar, S. M.; Huda, A. R. N.; Lee, H. Cheun

    2017-03-01

    This work introduces the non-invasive glucose monitoring technique by using the Complementary Metal Oxide Semiconductor (CMOS) technologically fabricated spiral Interdigitated Electrodes (IDE) based biosensor. Scanning Electron Microscopy (SEM) image explores the morphology of spiral IDE while Energy Dispersive X-Ray (EDX) determines the elements induced in spiral IDE. Oral saliva of two patients are collected and tested on the spiral IDE sensor with electrical characterization as glucose detection results. However, both patients exhibit their glucose level characteristics inconsistently. Therefore, this work could be extended and enhanced by adding Glutaraldehyde in between 3-Aminoproply)triethoxysilane (APTES) modified and glucose oxidase (GOD) enzyme immobilized layer with FTIR validation for bonding attachment.

  8. Electron transport phosphorylation in rumen butyrivibrios: unprecedented ATP yield for glucose fermentation to butyrate

    Directory of Open Access Journals (Sweden)

    Timothy eHackmann

    2015-06-01

    Full Text Available From a genomic analysis of rumen butyrivibrios (Butyrivibrio and Pseudobutyrivibrio spp., we have re-evaluated the contribution of electron transport phosphorylation to ATP formation in this group. This group is unique in that most (76% genomes were predicted to possess genes for both Ech and Rnf transmembrane ion pumps. These pumps act in concert with the NifJ and Bcd-Etf to form a electrochemical potential (ΔμH+ and ΔμNa+, which drives ATP synthesis by electron transport phosphorylation. Of the 62 total butyrivibrio genomes currently available from the Hungate 1000 project, all 62 were predicted to possess NifJ, which reduces oxidized ferredoxin (Fdox during pyruvate conversion to acetyl-CoA. All 62 possessed all subunits of Bcd-Etf, which reduces Fdox and oxidizes reduced NAD (NADred during crotonyl-CoA reduction. Additionally, 61 genomes possessed all subunits of the Rnf, which generates ΔμH+ or ΔμNa+ from oxidation of reduced Fd and reduction of oxidized NAD (NADox. Further, 47 genomes possessed all 6 subunits of the Ech, which generates ΔμH+ from oxidation of reduced Fd (Fdred. For glucose fermentation to butyrate and H2, the electrochemical potential established should drive synthesis of ~1.5 ATP by the F0F1-ATP synthase (possessed by all 62 genomes. The total yield is ~4.5 ATP/glucose after accounting for 3 ATP formed by classic substrate-level phosphorylation, and it is one the highest yields for any glucose fermentation. The yield was the same when unsaturated fatty acid bonds, not H+, served as the electron acceptor (as during biohydrogenation. Possession of both Ech and Rnf had been previously documented in only a few sulfate-reducers, was rare in other rumen prokaryotic genomes in our analysis, and may confer an energetic advantage to rumen butyrivibrios. This unique energy conservation system might enhance the butyrivibrios’ ability to overcome growth inhibition by unsaturated fatty acids, as postulated herein.

  9. Wireless connection of continuous glucose monitoring system to the electronic patient record

    Science.gov (United States)

    Murakami, Alexandre; Gutierrez, Marco A.; Lage, Silvia G.; Rebelo, Marina S.; Granja, Luiz A. R.; Ramires, Jose A. F.

    2005-04-01

    The control of blood sugar level (BSL) at near-normal levels has been documented to reduce both acute and chronic complications of diabetes mellitus. Recent studies suggested, the reduction of mortality in a surgical intensive care unit (ICU), when the BSL are maintained at normal levels. Despite of the benefits appointed by these and others clinical studies, the strict BSL control in critically ill patients suffers from some difficulties: a) medical staff need to measure and control the patient"s BSL using blood sample at least every hour. This is a complex and time consuming task; b) the inaccuracy of standard capillary glucose monitoring (fingerstick) in hypotensive patients and, if frequently used to sample arterial or venous blood, may lead to excess phlebotomy; c) there is no validated procedure for continuously monitoring of BSL levels. This study used the MiniMed CGMS in ill patients at ICU to send, in real-time, BSL values to a Web-Based Electronic Patient Record. The BSL values are parsed and delivered through a wireless network as an HL7 message. The HL7 messages with BSL values are collected, stored into the Electronic Patient Record and presented into a bed-side monitor at the ICU together with other relevant patient information.

  10. Direct electron transfer biosensor for hydrogen peroxide carrying nanocomplex composed of horseradish peroxidase and Au-nanoparticle – Characterization and application to bienzyme systems

    Directory of Open Access Journals (Sweden)

    Yusuke Okawa

    2015-09-01

    Full Text Available A reagentless electrochemical biosensor for hydrogen peroxide was fabricated. The sensor carries a monolayer of nanocomplex composed of horseradish peroxidase and Au-nanoparticle, and responds to hydrogen peroxide through the highly efficient direct electron transfer at a mild electrode potential without any soluble mediator. Formation of the nanocomplex was studied with visible spectroscopy and size exclusion chromatography. The sensor performance was analyzed based on a hydrodynamic electrochemical technique and enzyme kinetics. The sensor was applied to fabrication of sensors for glucose and uric acid through further modification of the nanocomplex-carrying electrode with the corresponding hydrogen peroxide-generating oxidases, glucose oxidase and urate oxidase, respectively.

  11. All-Plastic Electrochemical Transistor for Glucose Sensing Using a Ferrocene Mediator

    Directory of Open Access Journals (Sweden)

    George G. Malliaras

    2009-12-01

    Full Text Available We demonstrate a glucose sensor based on an organic electrochemical transistor (OECT in which the channel, source, drain, and gate electrodes are made from the conducting polymer poly(3,4-ethylenedioxythiophene doped with poly(styrene sulfonate (PEDOT:PSS. The OECT employs a ferrocene mediator to shuttle electrons between the enzyme glucose oxidase and a PEDOT:PSS gate electrode. The device can be fabricated using a one-layer patterning process and offers glucose detection down to the micromolar range, consistent with levels present in human saliva.

  12. Ultrasensitive nonenzymatic sensing of glucose on Ni(OH)2-coated nanoporous gold film with two pairs of electron mediators

    International Nuclear Information System (INIS)

    Guo, Man-man; Yin, Xiang-le; Zhou, Chao-hui; Xia, Yue; Huang, Wei; Li, Zelin

    2014-01-01

    Graphical abstract: - Highlights: • Ni(OH) 2 -coated nanoporous Au film was facilely prepared by electrochemical methods. • Incorporation of Ni(OH) 2 into/on nanoporous Au engendered mutual stabilization. • Ni(II)/Ni(III) and Au/Au(I) co-mediated electrocatalytic oxidation of glucose. • A 4 nm Ni(OH) 2 coating significantly improved electrocatalysis and sensing of NPGF. • The sensor was successfully applied to detect glucose in human blood serum. - Abstract: Fabrication of new advanced nonenzymatic electrochemical nano-sensors of glucose has recently attracted intensive attention. In this work, we designed a novel ultrasensitive nonenzymatic amperometric sensor for detection of glucose by incorporating two pairs of effective electron mediators, Ni(II)/Ni(III) and Au/Au(I), into a nanoporous structure, namely a nanoporous gold film (NPGF) coated with a thin layer of nickel hydroxide about 4 nm in thickness. The NPGF with high roughness was quickly prepared by anodic potential step, and the thin surface coating of Ni(OH) 2 was easily obtained by electrooxidizing the electrodeposited Ni coverlayer. The incorporation of thin Ni(OH) 2 coating into/on the NPGF led to mutual stabilization without changing the nanoporous structure. The Ni(OH) 2 /NPGF electrode fabricated totally by facile electrochemical methods at room temperature showed high electrocatalytic activity for the oxidation of glucose within a wide potential range (−0.5∼0.2 V) due to co-mediating of the two pairs of electron mediators including their coupling Ni(III) + Au = Ni(II) + Au(I). The electrode also demonstrated excellent performance in sensing glucose concentration with a wide linear range (2 μM∼7 mM), ultrasensitivity (3529 μA mM −1 cm −2 ), low detection limit (0.73 μM), good repeatability, and long-term stability (3 weeks), which was successfully applied to detect glucose in a human blood serum sample by standard addition method with satisfactory recovery. This work is

  13. Glucose oxidase immobilization onto carbon nanotube networking

    International Nuclear Information System (INIS)

    Karachevtsev, V.A.; Glamazda, A.Yu.; Zarudnev, E.S.; Karachevtsev, M.V.; Leontiev, V.S.; Linnik, A.S.; Plokhotnichenko, A.M.; Stepanian, S.G.; Lytvyn, O.S.

    2012-01-01

    The efficient immobilization of GOX onto a carbon nanotube network through the molecular interface formed by PSE is carried out. This conclusion is based on the analysis of AFM images of the network with the adsorbed enzyme, whose globules locate mainly along a nanotube. The band corresponding to the high-frequency component of the G mode in the RR spectrum of the nanotube with adsorbed PSE is downshifted by 0.7 cm -1 relative to this band in the spectrum of pristine nanotubes. The analysis of the intensities of bands assigned to the RBM of nanotubes with adsorbed PSE in comparison with the spectrum of pristine SWNTs revealed the intensity transformation, which can be explained by a change of the resonance condition with variation of the laser energy. Thus, we concluded that PSE molecules create nanohybrids with SWNTs, which ensures the further enzyme immobilization. As the RR spectrum of an SWNT:PSE:GOX film does not essentially differ from SWNT:PSE ones, this indicates that the molecular interface (PSE) isolates the enzyme from nanotubes strongly enough. Our studies on the conductive properties of a single walled carbon nanotube network sprayed onto a quartz substrate from a solution of nanotubes in dichlorobenzene demonstrated that the I(U) dependence has nonlinear character. Most likely, the nonlinearity is related to Schottky barriers, which originate on the contact between nanotubes and the gold electrode, as well as between nanotubes with different conductivities. The deposition of bioorganic compounds (PSE and GOX) on the carbon nanotube network is accompanied by a decrease of their conductivity. Most probably, such a decrease is caused by adsorbed PSE molecules, which induce the appearance of scattering centers for charge carriers on the nanotube surface. The following GOX adsorption has practically no effect on the conductivity of the nanotube network that evidences the reliable isolation of the nanotube surface from the enzyme by means of the molecular interface (PSE). While studying the properties of carbon nanotube networks, whose surface underwent the treatment with a solution, it is necessary to consider the gradual desorption of a solvent from the nanotube surface (especially, this concerns water).

  14. Poly(3,4-ethylenedioxythiophene)-based glucose biosensors

    NARCIS (Netherlands)

    Kros, A.; Hövell, W.F.M. van; Sommerdijk, N.A.J.M.; Nolte, R.J.M.

    2001-01-01

    Amperometric biosensors for the recognition of glucose oxidase (GOx) based on poly(3,4-ethylenedioxythiophene) (PEDOT) were fabricated for the first time. The resulting biosensor has potential applications for long-term glucose measurements.

  15. Glucose transport machinery reconstituted in cell models.

    Science.gov (United States)

    Hansen, Jesper S; Elbing, Karin; Thompson, James R; Malmstadt, Noah; Lindkvist-Petersson, Karin

    2015-02-11

    Here we demonstrate the production of a functioning cell model by formation of giant vesicles reconstituted with the GLUT1 glucose transporter and a glucose oxidase and hydrogen peroxidase linked fluorescent reporter internally. Hence, a simplified artificial cell is formed that is able to take up glucose and process it.

  16. VDAC electronics: 4. Novel electrical mechanism and thermodynamic estimations of glucose repression of yeast respiration.

    Science.gov (United States)

    Lemeshko, Victor V

    2017-11-01

    Inhibition of cell respiration by high concentrations of glucose (glucose repression), known as "Crabtree effect", has been demonstrated for various cancerous strains, highly proliferating cells and yeast lines. Although significant progress in understanding metabolic events associated with the glucose repression of cell respiration has been achieved, it is not yet clear whether the Crabtree effect is the result of a limited activity of the respiratory chain, or of some glucose-mediated regulation of mitochondrial metabolic state. In this work we propose an electrical mechanism of glucose repression of the yeast S. cerevisiae, resulting from generation of the mitochondrial outer membrane potential (OMP) coupled to the direct oxidation of cytosolic NADH in mitochondria. This yeast-type mechanism of OMP generation is different from the earlier proposed VDAC-hexokinase-mediated voltage generation of cancer-type, associated with the mitochondrial outer membrane. The model was developed assuming that VDAC is more permeable to NADH than to NAD + . Thermodynamic estimations of OMP, generated as a result of NADH(2-)/NAD + (1-) turnover through the outer membrane, demonstrated that the values of calculated negative OMP match the known range of VDAC voltage sensitivity, thus suggesting a possibility of OMP-dependent VDAC-mediated regulation of cell energy metabolism. According to the proposed mechanism, we suggest that the yeast-type Crabtree effect is the result of a fast VDAC-mediated electrical repression of mitochondria due to a decrease in the outer membrane permeability to charged metabolites and owing their redistribution between the mitochondrial intermembrane space and the cytosol, both controlled by metabolically-derived OMP. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Electro chemiluminescence Biosensor Based on Thioglycolic Acid-Capped Cd Se QDs for Sensing Glucose

    International Nuclear Information System (INIS)

    Jung, E. Y.; Ye, J. H.; Choi, S. H.; Jung, S. H.

    2016-01-01

    In order to detect low level glucose concentration, an electro chemiluminescence (ECL) biosensor based on TGA-capped Cd Se quantum dots (QDs) was fabricated by the immobilization of Cd Se QDs after modifying the surface of a glassy carbon electrode (GCE) with 4-amino thiophenol diazonium salts by the electrochemical method. For the detection of glucose concentration, glucose oxidase (GOD) was immobilized onto the fabricated Cd Se QDs-modified electrode. The fabricated ECL biosensor based on TGA-capped Cd Se QDs was characterized using a scanning electron microscope (SEM), UV-vis spectrophotometry, transmission electron microscopy (TEM), a fluorescence spectrometer (PL), and cyclic voltammetry (CV). The fabricated ECL biosensor based on TGA-capped Cd Se QDs is suitable for the detection of glucose concentrations in real human blood samples.

  18. Electrochemiluminescence Biosensor Based on Thioglycolic Acid-Capped CdSe QDs for Sensing Glucose

    Directory of Open Access Journals (Sweden)

    Eun-Young Jung

    2016-01-01

    Full Text Available In order to detect low level glucose concentration, an electrochemiluminescence (ECL biosensor based on TGA-capped CdSe quantum dots (QDs was fabricated by the immobilization of CdSe QDs after modifying the surface of a glassy carbon electrode (GCE with 4-aminothiophenol diazonium salts by the electrochemical method. For the detection of glucose concentration, glucose oxidase (GOD was immobilized onto the fabricated CdSe QDs-modified electrode. The fabricated ECL biosensor based on TGA-capped CdSe QDs was characterized using a scanning electron microscope (SEM, UV-vis spectrophotometry, transmission electron microscopy (TEM, a fluorescence spectrometer (PL, and cyclic voltammetry (CV. The fabricated ECL biosensor based on TGA-capped CdSe QDs is suitable for the detection of glucose concentrations in real human blood samples.

  19. Design of nanostructured-based glucose biosensors

    Science.gov (United States)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  20. ZnO nanowire-based glucose biosensors with different coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juneui [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lim, Sangwoo, E-mail: swlim@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Fabrication of ZnO nanowire-based glucose biosensors using different coupling agents. Black-Right-Pointing-Pointer Highest sensitivity for (3-aminopropyl)methyldiethoxysilane-treated biosensor. Black-Right-Pointing-Pointer Larger amount of glucose oxidase and lower electron transfer resistance for (3-aminopropyl)methyldiethoxysilane-treated biosensor. - Abstract: ZnO-nanowire-based glucose biosensors were fabricated by immobilizing glucose oxidase (GOx) onto a linker attached to ZnO nanowires. Different coupling agents were used, namely (3-aminopropyl)trimethoxysilane (APTMS), (3-aminopropyl)triethoxysilane (APTES), and (3-aminopropyl)methyldiethoxysilane (APS), to increase the affinity of GOx binding to ZnO nanowires. The amount of GOx immobilized on the ZnO nanowires, the performance, sensitivity, and Michaelis-Menten constant of each biosensor, and the electron transfer resistance through the biosensor were all measured in order to investigate the effect of the coupling agent on the ZnO nanowire-based biosensor. Among the different biosensors, the APS-treated biosensor had the highest sensitivity (17.72 {mu}A cm{sup -2} mM{sup -1}) and the lowest Michaelis-Menten constant (1.37 mM). Since APS-treated ZnO nanowires showed the largest number of C-N groups and the lowest electron transfer resistance through the biosensor, we concluded that these properties were the key factors in the performance of APS-treated glucose biosensors.

  1. ZnO nanowire-based glucose biosensors with different coupling agents

    International Nuclear Information System (INIS)

    Jung, Juneui; Lim, Sangwoo

    2013-01-01

    Highlights: ► Fabrication of ZnO nanowire-based glucose biosensors using different coupling agents. ► Highest sensitivity for (3-aminopropyl)methyldiethoxysilane-treated biosensor. ► Larger amount of glucose oxidase and lower electron transfer resistance for (3-aminopropyl)methyldiethoxysilane-treated biosensor. - Abstract: ZnO-nanowire-based glucose biosensors were fabricated by immobilizing glucose oxidase (GOx) onto a linker attached to ZnO nanowires. Different coupling agents were used, namely (3-aminopropyl)trimethoxysilane (APTMS), (3-aminopropyl)triethoxysilane (APTES), and (3-aminopropyl)methyldiethoxysilane (APS), to increase the affinity of GOx binding to ZnO nanowires. The amount of GOx immobilized on the ZnO nanowires, the performance, sensitivity, and Michaelis–Menten constant of each biosensor, and the electron transfer resistance through the biosensor were all measured in order to investigate the effect of the coupling agent on the ZnO nanowire-based biosensor. Among the different biosensors, the APS-treated biosensor had the highest sensitivity (17.72 μA cm −2 mM −1 ) and the lowest Michaelis–Menten constant (1.37 mM). Since APS-treated ZnO nanowires showed the largest number of C-N groups and the lowest electron transfer resistance through the biosensor, we concluded that these properties were the key factors in the performance of APS-treated glucose biosensors.

  2. Influence of different nanoparticles on electrochemical behavior of glucose biosensor

    Science.gov (United States)

    Nenkova, R. D.; Ivanov, Y. L.; Godjevargova, T. I.

    2017-02-01

    The influence of nanosized particles on the glucose oxidase loading and the performance of amperometric glucose bionsensors were studied. Four enzyme electrodes (Pt/PAN/GOD, Pt/PAN/NZ/GOD, Pt/PAN/NZ/MNP/GOD, Pt/PAN/NZ/MWNT/GOD) were prepared by cross-linking of glucose oxidase (GOD) on nanocomposite material. Nanocomposites were prepared by entrapping nanozeolite (NZ), multiwalled carbon nanotubes (MWNT) and magnetic nanoparticles (MNP) in polyacrylonitrile (PAN) film. Cyclic voltammetric kinetic studies have been carried out with the four biosensors and the surface concentration of the adsorbed electroactive species on the electrodes was estimated. The highest enzyme concentration on the electrode surface corresponded to the electrodes prepared by nanozeolite separate (Pt/PAN/NZ/GOD) and combined with multi-walled carbon nanotubes (Pt/PAN/NZ/MWNT/GOD). The sensitivity of these two biosensors was the highest and that is in accordance with the greater amount of the adsorbed electroactive species on the electrodes (0.373 mol.cm-2). This was indication that a good synergistic effect happened when MWNTs and NZ were combined and these greatly improve the electron transfer ability of the sensor interface. Amperometric measurement of the two glucose oxidase electrodes (Pt/PAN/NZ/GOD and Pt/PAN/NZ/MWNT/GOD) with best results was carried out. The linear concentration interval of the Pt/PAN/NZ/MWNT/GOD biosensor was up to 3 mM, the detection limit - 0.02 mM glucose and the storage stability - 81% of its initial current response after 30 days.

  3. Monoamine Oxidase Inhibitors (MAOIs)

    Science.gov (United States)

    ... health-medications/index.shtml. Accessed May 16, 2016. Hirsch M, et al. Monoamine oxidase inhibitors (MAOIs) for ... www.uptodate.com/home. Accessed May 16, 2016. Hirsch M, et al. Discontinuing antidepressant medications in adults. ...

  4. A novel glucose biosensor based on phosphonic acid-functionalized silica nanoparticles for sensitive detection of glucose in real samples

    International Nuclear Information System (INIS)

    Zhao, Wenbo; Fang, Yi; Zhu, Qinshu; Wang, Kuai; Liu, Min; Huang, Xiaohua; Shen, Jian

    2013-01-01

    An effective strategy for preparation amperometric biosensor by using the phosphonic acid-functionalized silica nanoparticles (PFSi NPs) as special modified materials is proposed. In such a strategy, glucose oxidase (GOD) was selected as model protein to fabricate glucose biosensor in the presence of phosphonic acid-functionalized silica nanoparticles (PFSi NPs). The PFSi NPs were first modified on the surface of glassy carbon (GC) electrode, then, GOD was adsorbed onto the PFSi NPs film by drop-coating. The PFSi NPs were characterized by transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR) spectra. The interaction of PFSi NPs with GOD was investigated by the circular dicroism spectroscopy (CD). The results showed PFSi NPs could essentially maintain the native conformation of GOD. The direct electron transfer of GOD on (PFSi NPs)/GCE electrode exhibited excellent electrocatalytic activity for the oxidation of glucose. The proposed biosensor modified with PFSi NPs displayed a fast amperometric response (5 s) to glucose, a good linear current–time relation over a wide range of glucose concentrations from 5.00 × 10 −4 to 1.87 × 10 −1 M, and a low detection limit of 2.44 × 10 −5 M (S/N = 3). Moreover, the biosensor can be used for assessment of the concentration of glucose in many real samples (relative error < 3%). The GOD biosensor modified with PFSi NPs will have essential meaning and practical application in future that attributed to the simple method of fabrication and good performance

  5. Hydrogel-based electrochemical sensor for non-invasive and continuous glucose monitoring

    Science.gov (United States)

    Park, Habeen; Lee, Ji-Young; Kim, Dong-Chul; Koh, Younggook; Cha, Junhoe

    2017-07-01

    Monitoring blood glucose level of diabetic patients is crucial in diabetes care from life threating complications. Selfmonitoring blood glucose (SMBG) that involves finger prick to draw blood samples into the measurement system is a widely-used method of routine measurement of blood glucose levels to date. SMBG includes, however, unavoidable pain problems resulting from the repetitive measurements. We hereby present a hydrogel-based electrochemical (H-EC) sensor to monitor the glucose level, non-invasively. Glucose oxidase (GOx) was immobilized in the disc-type hydroxyethyl methacrylate (HEMA) based hydrogel and kept intact in the hydrogel. Fast electron transfer mediated by Prussian blue (PB, hexacyanoferrate) generated efficient signal amplifications to facilitate the detection of the extracted glucose from the interstitial fluid. The linear response and the selectivity against glucose of the H-EC sensor were validated by chronoamperometry. For the practical use, the outcomes from the correlation of the extracted glucose concentration and the blood glucose value by on-body extraction, as well as the validation of the hydrogel-based electrochemical (H-EC) device, were applied to the on-body glucose monitoring.

  6. Electrochemical analysis of coordination sphere of ruthenium(II) as an electron transport mediator in glucose oxidase catalysis in aqueous solutions

    International Nuclear Information System (INIS)

    Kurova, V.S.; Ryabov, A.D.; Ershov, A.Yu.

    2001-01-01

    The redox-potentials of the cis-[Ru(LL) 2 XY] n+ complexes (LL=2,2' bipyridil, 1,10 phenanthrolin and 4,4'-dimethyl-2,2-bipyridil; X, Y = Cl - , Br - , CO 3 2- , No 2 - , SCN - , H 2 O and methylsulfoxide) in water solutions are measured through the cyclic voltamperometry method. The linear dependence of the ruthenium complexes(II) measured redox-potentials on the ligand sphere is established. It is shown, that these complexes manifest the properties of the reversible or quasi-reversible redox-systems, the formal redox-potential values whereof are within the 0.2-0.5 V interval [ru

  7. Enzyme-immobilized SiO2-Si electrode: Fast interfacial electron transfer with preserved enzymatic activity

    Science.gov (United States)

    Wang, Gang; Yau, Siu-Tung

    2005-12-01

    The enzyme, glucose oxidase (GOx), is immobilized using electrostatic interaction on the native oxide of heavily doped n-type silicon. Voltammetric measurement shows that the immobilized GOx gives rise to a very fast enzyme-silicon interfacial electron transfer rate constant of 7.9s-1. The measurement also suggests that the enzyme retains its native conformation when immobilized on the silicon surface. The preserved native conformation of GOx is further confirmed by testing the enzymatic activity of the immobilized GOx using glucose. The GOx-immobilized silicon is shown to behave as a glucose sensor that detects glucose with concentrations as low as 50μM.

  8. Amine functionalized TiO2-carbon nanotube composite: synthesis, characterization and application to glucose biosensing

    Science.gov (United States)

    Tasviri, Mahboubeh; Rafiee-Pour, Hossain-Ali; Ghourchian, Hedayatollah; Gholami, Mohammad Reza

    2011-12-01

    The synthesis of amine functionalized TiO2-coated multiwalled carbon nanotubes (NH2-TiO2-CNTs) using sol-gel method was investigated. The synthesized nanocomposite was characterized with XRD, FTIR spectroscopy, BET test and SEM imaging. The results demonstrated a unique nanostructure with no destruction of the CNTs' shape. In addition, the presence of amine groups on the composite surface was confirmed by FTIR. This nanocomposite was used for one-step immobilization of glucose oxidase (GOx) to sense glucose. The result of cyclic voltammetry showed a pair of well-defined and quasi-reversible peaks for direct electron transfer of GOx in the absence of glucose. Also, the result of electrochemical impedance spectroscopy indicated that GOx was successfully immobilized on the surface of NH2-TiO2-CNTs. Furthermore, good amperometric response showed that immobilized GOx on the NH2-TiO2-CNTs exhibits exceptional bioelectrocatalytic activity toward glucose oxidation.

  9. Diazonium Functionalisation of Carbon Nanotubes for Specific Orientation of Multicopper Oxidases: Controlling Electron Entry Points and Oxygen Diffusion to the Enzyme.

    Science.gov (United States)

    Lalaoui, Noémie; Holzinger, Michael; Le Goff, Alan; Cosnier, Serge

    2016-07-18

    We report the controlled orientation of bilirubin oxidases (BOD) from Myrothecium verrucaria on multiwalled carbon nanotubes (MWCNTs) functionalised by electrografting of 6-carboxynaphthalenediazonium and 4-(2-aminoethyl)benzenediazonium salts. On negatively charged naphthoate-modified MWCNTs, a high-potential (0.44 V vs. SCE) oxygen reduction electrocatalysis is observed, occurring via the T1 copper centre. On positively charged ammonium-modified MWCNTs, a low-potential (0.15 V) oxygen reduction electrocatalysis is observed, occurring through a partially oxidised state of the T2/T3 trinuclear copper cluster. Finally, chemically modified naphthoate MWCNTs exhibit high bioelectrocatalytic current densities of 3.9 mA cm(-2) under air at gas-diffusion electrode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A highly performing electrochemiluminescent biosensor for glucose based on a polyelectrolyte-chitosan modified electrode

    International Nuclear Information System (INIS)

    Dai Hong; Wu Xiaoping; Xu Huifeng; Wang Youmei; Chi Yuwu; Chen Guonan

    2009-01-01

    A highly performing ECL glucose biosensor was developed by immobilizing glucose oxidase (GOD) onto a membrane modified glassy carbon electrode, which was prepared by using poly(diallyldimethylammonium chloride) (PDDA) doped with chitosan. In order to obtain the optimal performance of the ECL biosensor, the composition of modified membranes and a series of measurement conditions were investigated. Under the optimal conditions, this ECL biosensor was able to detect glucose in the range of 0.5-4.0 x 10 4 nM with a detection limit of 0.1 nM (defined as the concentration that could be detected at the signal-to-noise ratio of 3). The relative standard deviation was 0.99% for 5 x 10 -8 mol/L glucose in repetitive measurements in the primary 12 potential cycles. This ECL biosensor offered the effectively improved stability of the electron transfer mediator and exhibited excellent properties for the ultrasensitive and selective determination of glucose with good reproducibility and stability. The present biosensor has also been used to determine the glucose concentrations in real serum samples. The recovery value for the assay of glucose ranged from 96.2 to 107% in the serum samples. The present biosensor displayed both specificity for glucose and retention of signal response even in a complex environment. Therefore, it provided an approach to the sensitive determination of glucose.

  11. Carbon Nanotube Modified Screen Printed Electrodes: Pyranose Oxidase Immobilization Platform for Amperometric Enzyme Sensors

    Directory of Open Access Journals (Sweden)

    Dilek ODACI DEMIRKOL

    2017-03-01

    Full Text Available Here, a novel enzymatic biosensor was developed using multiwalled carbon nanotube including screen printed electrodes (MWCNT-SPE. Pyranose oxidase (PyOx was immobilized on the electrode surface by way of gelatin membrane and then cross-linked using glutaraldehyde. Glucose was detected at -0.7 V (vs. Ag/AgCl by watching consumed oxygen in enzymatic reaction after addition substrate. After optimization of pH and enzyme loading, the linearity was found in the range of 0.1–1.0 mM of glucose. After that, the effect of MCNT on the current was tested. Also the enzymatic biosensor including glucose oxidase instead of pyranose oxidase was prepared and the biosensor response followed for glucose. Furthermore, this system was tested for glucose analysis in soft drinks.

  12. Synthesis and characterization of a novel electron conducting biocomposite as biofuel cell anode.

    Science.gov (United States)

    Perveen, Ruma; Inamuddin; Nasar, Abu; Beenish; Asiri, Abdullah M

    2018-01-01

    This study is based on the construction of an enzymatic bioanode adopting the exclusively reported layer-by-layer (LBL) assembly of Ppy-Ag-GO/ferritin (Frt)/glucose oxidase (GOx). The glassy carbon (GC) electrode was immobilised with the conducting polypyrrole (Ppy)-silver nanoparticles (Ag)-graphene oxide (GO) based biocomposite as electron transfer elevator, horse spleen ferritin (Frt) protein as electron transfer mediator and glucose oxidase (GOx) enzyme in layer by layer configuration. The fabricated bioanode exhibited good electrochemical performance with a maximum current response of 5.7mAcm -2 accompanied with biocompatibility and environmental stability because of the synergistic effect between outstanding properties of PPy, silver and GO, thereby, showing superior catalytic efficiency for the oxidation of glucose. Copyright © 2017. Published by Elsevier B.V.

  13. Accuracy of hemoglobin A1c imputation using fasting plasma glucose in diabetes research using electronic health records data

    Directory of Open Access Journals (Sweden)

    Stanley Xu

    2014-05-01

    Full Text Available In studies that use electronic health record data, imputation of important data elements such as Glycated hemoglobin (A1c has become common. However, few studies have systematically examined the validity of various imputation strategies for missing A1c values. We derived a complete dataset using an incident diabetes population that has no missing values in A1c, fasting and random plasma glucose (FPG and RPG, age, and gender. We then created missing A1c values under two assumptions: missing completely at random (MCAR and missing at random (MAR. We then imputed A1c values, compared the imputed values to the true A1c values, and used these data to assess the impact of A1c on initiation of antihyperglycemic therapy. Under MCAR, imputation of A1c based on FPG 1 estimated a continuous A1c within ± 1.88% of the true A1c 68.3% of the time; 2 estimated a categorical A1c within ± one category from the true A1c about 50% of the time. Including RPG in imputation slightly improved the precision but did not improve the accuracy. Under MAR, including gender and age in addition to FPG improved the accuracy of imputed continuous A1c but not categorical A1c. Moreover, imputation of up to 33% of missing A1c values did not change the accuracy and precision and did not alter the impact of A1c on initiation of antihyperglycemic therapy. When using A1c values as a predictor variable, a simple imputation algorithm based only on age, sex, and fasting plasma glucose gave acceptable results.

  14. Isolated sulfite oxidase deficiency.

    Science.gov (United States)

    Rupar, C A; Gillett, J; Gordon, B A; Ramsay, D A; Johnson, J L; Garrett, R M; Rajagopalan, K V; Jung, J H; Bacheyie, G S; Sellers, A R

    1996-12-01

    Isolated sulfite oxidase (SO) deficiency is an autosomal recessively inherited inborn error of sulfur metabolism. In this report of a ninth patient the clinical history, laboratory results, neuropathological findings and a mutation in the sulfite oxidase gene are described. The data from this patient and previously published patients with isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are summarized to characterize this rare disorder. The patient presented neonatally with intractable seizures and did not progress developmentally beyond the neonatal stage. Dislocated lenses were apparent at 2 months. There was increased urine excretion of sulfite and S-sulfocysteine and a decreased concentration of plasma cystine. A lactic acidemia was present for 6 months. Liver sulfite oxidase activity was not detectable but xanthine dehydrogenase activity was normal. The boy died of respiratory failure at 32 months. Neuropathological findings of cortical necrosis and extensive cavitating leukoencephalopathy were reminiscent of those seen in severe perinatal asphyxia suggesting an etiology of energy deficiency. A point mutation that resulted in a truncated protein missing the molybdenum-binding site has been identified.

  15. Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing

    International Nuclear Information System (INIS)

    Buk, Vuslat; Emregul, Emel; Emregul, Kaan Cebesoy

    2017-01-01

    A novel amperometric glucose biosensor based on alginate-CuO nano-biocomposite and glucose oxidase (GOD) film was developed and characterized. The properties of the alginate-CuO-GOD film were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric measurements were employed to characterize the analytical performance of the biosensor. Several parameters including amount of alginate, concentration of GOD and cross-linkers, amount of CuO nanoparticles, and effect of pH were studied and optimized. Under optimal conditions, the developed alginate-CuO-GOD biosensor was shown to have two linear ranges; from 0.04 mM to 3 mM (with a correlation coefficient of 0.9996 and the sensitivity of 30.443 μA mM −1 cm −2 ) and from 4 mM to 35 mM (with a correlation coefficient of 0.9994 and the sensitivity of 7.205 μA mM −1 cm −2 ). The overall detection limit was estimated to be 1.6 μM (signal-to-noise ratio of 3) and the K m value of 2.82 mM. The biosensor exhibited rather good performance with long-term stability (remainder of activity is 78% after 15 days) and significant specificity for glucose when compared to possible interfering molecules such as ascorbic acid, uric acid and acetaminophen. - Highlights: • An amperometric biosensor was constructed by using Alginate-CuO nano-biocomposite complexed with Glucose OxidaseGlucose Oxidase immobilized to the surface via cross-linking. • Alginate-CuO film was characterized by SEM and FTIR. • The biosensor exhibits excellent analytical performance to glucose with a wide linear range and high sensitivity.

  16. Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Buk, Vuslat [Ankara University, Department of Chemistry, Science Faculty, Tandoğan, Ankara 06100 (Turkey); Tyndall National Institute, University College Cork, Dyke Parade, Cork (Ireland); Emregul, Emel, E-mail: eemregul@yahoo.com [Ankara University, Department of Chemistry, Science Faculty, Tandoğan, Ankara 06100 (Turkey); Emregul, Kaan Cebesoy [Ankara University, Department of Chemistry, Science Faculty, Tandoğan, Ankara 06100 (Turkey)

    2017-05-01

    A novel amperometric glucose biosensor based on alginate-CuO nano-biocomposite and glucose oxidase (GOD) film was developed and characterized. The properties of the alginate-CuO-GOD film were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric measurements were employed to characterize the analytical performance of the biosensor. Several parameters including amount of alginate, concentration of GOD and cross-linkers, amount of CuO nanoparticles, and effect of pH were studied and optimized. Under optimal conditions, the developed alginate-CuO-GOD biosensor was shown to have two linear ranges; from 0.04 mM to 3 mM (with a correlation coefficient of 0.9996 and the sensitivity of 30.443 μA mM{sup −1} cm{sup −2}) and from 4 mM to 35 mM (with a correlation coefficient of 0.9994 and the sensitivity of 7.205 μA mM{sup −1} cm{sup −2}). The overall detection limit was estimated to be 1.6 μM (signal-to-noise ratio of 3) and the K{sub m} value of 2.82 mM. The biosensor exhibited rather good performance with long-term stability (remainder of activity is 78% after 15 days) and significant specificity for glucose when compared to possible interfering molecules such as ascorbic acid, uric acid and acetaminophen. - Highlights: • An amperometric biosensor was constructed by using Alginate-CuO nano-biocomposite complexed with Glucose OxidaseGlucose Oxidase immobilized to the surface via cross-linking. • Alginate-CuO film was characterized by SEM and FTIR. • The biosensor exhibits excellent analytical performance to glucose with a wide linear range and high sensitivity.

  17. Determination of Glucose Concentration in Yeast Culture Medium

    Science.gov (United States)

    Hara, Seiichi; Kishimoto, Tomokazu; Muraji, Masafumi; Tsujimoto, Hiroaki; Azuma, Masayuki; Ooshima, Hiroshi

    The present paper describes a sensor for measuring the glucose concentration of yeast culture medium. The sensor determines glucose concentration by measuring the yield of hydrogen peroxide produced by glucose oxidase, which is monitored as luminescence using photomultiplier. The present sensor is able to measure low glucose concentration in media in which yeast cells keep respiration state. We herein describe the system and the characteristics of the glucose sensor.

  18. A quantum chemical study of the mechanism for proton-coupled electron transfer leading to proton pumping in cytochrome c oxidase

    Science.gov (United States)

    Blomberg, Margareta R. A.; Siegbahn, Per E. M.

    2010-10-01

    The proton pumping mechanism in cytochrome c oxidase, the terminal enzyme in the respiratory chain, has been investigated using hybrid DFT with large chemical models. In previous studies, a gating mechanism was suggested based on electrostatic interpretations of kinetic experiments. The predictions from that analysis are tested here. The main result is that the suggestion of a positively charged transition state for proton transfer is confirmed, while some other suggestions for the gating are not supported. It is shown that a few critical relative energy values from the earlier studies are reproduced with quite high accuracy using the present model calculations. Examples are the forward barrier for proton transfer from the N-side of the membrane to the pump-loading site when the heme a cofactor is reduced, and the corresponding back leakage barrier when heme a is oxidised. An interesting new finding is an unexpected double-well potential for proton transfer from the N-side to the pump-loading site. In the intermediate between the two transition states found, the proton is bound to PropD on heme a. A possible purpose of this type of potential surface is suggested here. The accuracy of the present values are discussed in terms of their sensitivity to the choice of dielectric constant. Only one energy value, which is not critical for the present mechanism, varies significantly with this choice and is therefore less certain.

  19. Glucose Sensing Using Capacitive Biosensor Based on Polyvinylidene Fluoride Thin Film

    Directory of Open Access Journals (Sweden)

    Ambran Hartono

    2018-01-01

    Full Text Available A polyvinylidene fluoride (PVDF film-based capacitive biosensor was developed for glucose sensing. This device consists of a PVDF film sandwiched between two electrodes. A capacitive biosensor measures the dielectric properties of the dielectric layers at the interface between the electrolyte and the electrode. A glucose oxidase (GOx enzyme was immobilized onto the electrode to oxidize glucose. In practice, the biochemical reaction of glucose with the GOx enzyme generates free electron carriers. Consequently, the potential difference between the electrodes is increased, resulting in a measurable voltage output of the biosensor. The device was tested for various glucose concentrations in the range of 0.013 to 5.85 M, and various GOx enzyme concentrations between 4882.8 and 2.5 million units/L. We found that the sensor output increased with increasing glucose concentration up to 5.85 M. These results indicate that the PVDF film-based capacitive biosensors can be properly applied to glucose sensing and provide opportunities for the low-cost fabrication of glucose-based biosensors based on PVDF materials.

  20. Rechargeable membraneless glucose biobattery: Towards solid-state cathodes for implantable enzymatic devices

    Science.gov (United States)

    Yazdi, Alireza Ahmadian; Preite, Roberto; Milton, Ross D.; Hickey, David P.; Minteer, Shelley D.; Xu, Jie

    2017-03-01

    Enzymatic biobatteries can be implanted in living organisms to exploit the chemical energy stored in physiological fluids. Generally, commonly-used electron donors (such as sugars) are ubiquitous in physiological environments, while electron acceptors such as oxygen are limited due to many factors including solubility, temperature, and pressure. The wide range of solid-state cathodes, however, may replace the need for oxygen breathing electrodes and serve in enzymatic biobatteries for implantable devices. Here, we have fabricated a glucose biobattery suitable for in vivo applications employing a glucose oxidase (GOx) anode coupled to a solid-state Prussian Blue (PB) thin-film cathode. PB is a non-toxic material and its electrochemistry enables fast regeneration if used in a secondary cell. This novel biobattery can effectively operate in a membraneless architecture as PB can reduce the peroxide produced by some oxidase enzymes. The resulting biobattery delivers a maximum power and current density of 44 μW cm-2 and 0.9 mA cm-2 , respectively, which is ca. 37% and 180% higher than an equivalent enzymatic fuel cell equipped with a bilirubin oxidase cathode. Moreover, the biobattery demonstrated a stable performance over 20 cycles of charging and discharging periods with only ca. 3% loss of operating voltage.

  1. Isolation and purification of pyranose 2-oxidase from Phanerochaete chrysosporium and characterization of gene structure and regulation

    Science.gov (United States)

    Theodorus H. de Koker; Michael D. Mozuch; Daniel Cullen; Jill Gaskell; Philip J. Kersten

    2004-01-01

    Pyranose 2-oxidase (POX) was recovered from Phanerochaete chrysosporium BKM-F-1767 solid substrate culture using mild extraction conditions and was purified. 13C-nuclear magnetic resonance confirmed production of D- arabino -hexos-2-ulose (glucosone) from D-glucose with the oxidase. Peptide fingerprints generated by liquid chromatography-tandem mass spectrometry of...

  2. An enzymatic glucose biosensor based on a glassy carbon electrode modified with cylinder-shaped titanium dioxide nanorods

    International Nuclear Information System (INIS)

    Yang, Zhanjun; Xu, Youbao; Li, Juan; Jian, Zhiqin; Yu, Suhua; Zhang, Yongcai; Hu, Xiaoya; Dionysiou, Dionysios D.

    2015-01-01

    We describe a highly sensitive electrochemical enzymatic glucose biosensor. A glassy carbon electrode was modified with cylinder-shaped titanium dioxide nanorods (TiO 2 -NRs) for the immobilization of glucose oxidase. The modified nanorods and the enzyme biosensor were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The glucose oxidase on the TiO 2 -NRs displays a high activity and undergoes fast surface-controlled electron transfer. A pair of well-defined quasi-reversible redox peaks was observed at −0.394 and −0.450 V. The TiO 2 -NRs provide a good microenvironment to facilitate the direct electron transfer between enzyme and electrode surface. The biosensor has two linear response ranges, viz. from 2.0 to 52 μM, and 0.052 to 2.3 mM. The lower detection limit is 0.5 μM, and the sensitivity is 68.58 mA M −1 cm −2 . The glucose biosensor is selective, well reproducible, and stable. In our perception, the cylindrically shaped TiO 2 -NRs provide a promising support for the immobilization of proteins and pave the way to the development of high-performance biosensors. (author)

  3. Biphenyl Modulates the Expression and Function of Respiratory Oxidases in the Polychlorinated-Biphenyls Degrader Pseudomonas pseudoalcaligenes KF707

    Directory of Open Access Journals (Sweden)

    Federica Sandri

    2017-06-01

    Full Text Available Pseudomonas pseudoalcaligenes KF707 is a soil bacterium which is known for its capacity to aerobically degrade harmful organic compounds such as polychlorinated biphenyls (PCBs using biphenyl as co-metabolite. Here we provide the first genetic and functional analysis of the KF707 respiratory terminal oxidases in cells grown with two different carbon sources: glucose and biphenyl. We identified five terminal oxidases in KF707: two c(caa3 type oxidases (Caa3 and Ccaa3, two cbb3 type oxidases (Cbb31 and Cbb32, and one bd type cyanide-insensitive quinol oxidase (CIO. While the activity and expression of both Cbb31 and Cbb32 oxidases was prevalent in glucose grown cells as compared to the other oxidases, the activity and expression of the Caa3 oxidase increased considerably only when biphenyl was used as carbon source in contrast to the Cbb32 oxidase which was repressed. Further, the respiratory activity and expression of CIO was up-regulated in a Cbb31 deletion strain as compared to W.T. whereas the CIO up-regulation was not present in Cbb32 and C(caa3 deletion mutants. These results, together, reveal that both function and expression of cbb3 and caa3 type oxidases in KF707 are modulated by biphenyl which is the co-metabolite needed for the activation of the PCBs-degradation pathway.

  4. Utilizing distributional analytics and electronic records to assess timeliness of inpatient blood glucose monitoring in non-critical care wards

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2016-04-01

    Full Text Available Abstract Background Regular and timely monitoring of blood glucose (BG levels in hospitalized patients with diabetes mellitus is crucial to optimizing inpatient glycaemic control. However, methods to quantify timeliness as a measurement of quality of care are lacking. We propose an analytical approach that utilizes BG measurements from electronic records to assess adherence to an inpatient BG monitoring protocol in hospital wards. Methods We applied our proposed analytical approach to electronic records obtained from 24 non-critical care wards in November and December 2013 from a tertiary care hospital in Singapore. We applied distributional analytics to evaluate daily adherence to BG monitoring timings. A one-sample Kolmogorov-Smirnov (1S-KS test was performed to test daily BG timings against non-adherence represented by the uniform distribution. This test was performed among wards with high power, determined through simulation. The 1S-KS test was coupled with visualization via the cumulative distribution function (cdf plot and a two-sample Kolmogorov-Smirnov (2S-KS test, enabling comparison of the BG timing distributions between two consecutive days. We also applied mixture modelling to identify the key features in daily BG timings. Results We found that 11 out of the 24 wards had high power. Among these wards, 1S-KS test with cdf plots indicated adherence to BG monitoring protocols. Integrating both 1S-KS and 2S-KS information within a moving window consisting of two consecutive days did not suggest frequent potential change from or towards non-adherence to protocol. From mixture modelling among wards with high power, we consistently identified four components with high concentration of BG measurements taken before mealtimes and around bedtime. This agnostic analysis provided additional evidence that the wards were adherent to BG monitoring protocols. Conclusions We demonstrated the utility of our proposed analytical approach as a monitoring

  5. Monitoring of Glucose in Beer Brewing by a Carbon Nanotubes Based Nylon Nanofibrous Biosensor

    Directory of Open Access Journals (Sweden)

    Marco Mason

    2016-01-01

    Full Text Available This work presents the design, preparation, and characterization of a novel glucose electrochemical biosensor based on the immobilization of glucose oxidase (GOX into a nylon nanofibrous membrane (NFM prepared by electrospinning and functionalized with multiwalled carbon nanotubes (CNT. A disc of such GOX/CNT/NFM membrane (40 μm in thickness was used for coating the surface of a glassy carbon electrode. The resulting biosensor was characterized by cyclic voltammetry and chronoamperometry, with ferrocene methanol as mediator. The binding of GOX around the CNT/NFM greatly enhances the electron transfer, which results in a biosensor with a current five times higher than without CNT. The potential usefulness of the proposed biosensor was demonstrated with the analysis of glucose in commercial beverages and along the monitoring of the brewing process for making beer, from the mashing to the fermentation steps.

  6. Disposable glucose test strip for whole blood with integrated sensing/diffusion-limiting layer

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhencheng [Department of Biomedical Engineering, School of Info-Physics and Geomatics Engineering, Central South University, Changsha 410083 (China); Fang Cheng, E-mail: fangpingchuan@163.co [Department of Biomedical Engineering, School of Info-Physics and Geomatics Engineering, Central South University, Changsha 410083 (China); Wang Hongyan; He Jishan [Department of Biomedical Engineering, School of Info-Physics and Geomatics Engineering, Central South University, Changsha 410083 (China)

    2009-12-30

    A disposable glucose test strip with an integrated sensing/diffusion-limiting layer was developed. A formulation containing filler, glucose oxidase and electronic mediator was screen-printed over two carbon electrodes to form an integrated sensing/diffusion-limiting layer. On rehydration, the integrated layer does not break up, but swells to form a gelled and three-dimensional meshy reaction zone on the surface of the underlying conductive elements in which reactants and mediator move freely, but interfering species such as red blood cells containing oxygenated hemoglobin are excluded. On the same time, the integrated layer maintains a rate of permeation of the analyte through it with a variation of less than 10% at temperatures ranging from 15 deg. C to 42 deg. C. This biosensor is substantially insensitive to interferents and essentially independent to relevant temperature, which provides a more reliable reading of actual blood glucose value in human whole blood.

  7. Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhanjun, E-mail: zjyang@yzu.edu.cn; Cao, Yue; Li, Juan; Jian, Zhiqin; Zhang, Yongcai; Hu, Xiaoya

    2015-04-29

    Highlights: • An efficient PtNPs@NG nanocomposite was prepared for the immobilization of enzyme. • A novel electrochemical glucose biosensor was constructed based on this PtNPs@NG. • The proposed glucose biosensor showed high sensitivity and low detection limit. • The PtNPs@NG composite provided a promising platform for biosensing applications. - Abstract: In this work, we reported an efficient platinum nanoparticles functionalized nitrogen doped graphene (PtNPs@NG) nanocomposite for devising novel electrochemical glucose biosensor for the first time. The fabricated PtNPs@NG and biosensor were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, UV–vis spectroscopy, electrochemical impedance spectra and cyclic voltammetry, respectively. PtNPs@NG showed large surface area and excellent biocompatibility, and enhanced the direct electron transfer between enzyme molecules and electrode surface. The glucose oxidase (GOx) immobilized on PtNPs@NG nanocomposite retained its bioactivity, and exhibited a surface controlled, quasi-reversible and fast electron transfer process. The constructed glucose biosensor showed wide linear range from 0.005 to 1.1 mM with high sensitivity of 20.31 mA M{sup −1} cm{sup −2}. The detection limit was calculated to be 0.002 mM at signal-to-noise of 3, which showed 20-fold decrease in comparison with single NG-based electrochemical biosensor for glucose. The proposed glucose biosensor also demonstrated excellent selectivity, good reproducibility, acceptable stability, and could be successfully applied in the detection of glucose in serum samples at the applied potential of −0.33 V. This research provided a promising biosensing platform for the development of excellent electrochemical biosensors.

  8. Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing

    International Nuclear Information System (INIS)

    Yang, Zhanjun; Cao, Yue; Li, Juan; Jian, Zhiqin; Zhang, Yongcai; Hu, Xiaoya

    2015-01-01

    Highlights: • An efficient PtNPs@NG nanocomposite was prepared for the immobilization of enzyme. • A novel electrochemical glucose biosensor was constructed based on this PtNPs@NG. • The proposed glucose biosensor showed high sensitivity and low detection limit. • The PtNPs@NG composite provided a promising platform for biosensing applications. - Abstract: In this work, we reported an efficient platinum nanoparticles functionalized nitrogen doped graphene (PtNPs@NG) nanocomposite for devising novel electrochemical glucose biosensor for the first time. The fabricated PtNPs@NG and biosensor were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, UV–vis spectroscopy, electrochemical impedance spectra and cyclic voltammetry, respectively. PtNPs@NG showed large surface area and excellent biocompatibility, and enhanced the direct electron transfer between enzyme molecules and electrode surface. The glucose oxidase (GOx) immobilized on PtNPs@NG nanocomposite retained its bioactivity, and exhibited a surface controlled, quasi-reversible and fast electron transfer process. The constructed glucose biosensor showed wide linear range from 0.005 to 1.1 mM with high sensitivity of 20.31 mA M −1 cm −2 . The detection limit was calculated to be 0.002 mM at signal-to-noise of 3, which showed 20-fold decrease in comparison with single NG-based electrochemical biosensor for glucose. The proposed glucose biosensor also demonstrated excellent selectivity, good reproducibility, acceptable stability, and could be successfully applied in the detection of glucose in serum samples at the applied potential of −0.33 V. This research provided a promising biosensing platform for the development of excellent electrochemical biosensors

  9. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Mascagni, Daniela Branco Tavares [São Paulo State University - UNESP, Sorocaba, São Paulo (Brazil); Miyazaki, Celina Massumi [Federal University of São Carlos, UFSCar, Campus Sorocaba, SP (Brazil); Cruz, Nilson Cristino da [São Paulo State University - UNESP, Sorocaba, São Paulo (Brazil); Leite de Moraes, Marli [Federal University of São Paulo, Unifesp, Campus São José dos Campos, SP (Brazil); Riul, Antonio [University of Campinas - Unicamp, Campinas, São Paulo (Brazil); Ferreira, Marystela, E-mail: marystela@ufscar.br [Federal University of São Carlos, UFSCar, Campus Sorocaba, SP (Brazil)

    2016-11-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4 μmol·L{sup ‐1} and sensitivity of 2.47 μA·cm{sup −2}·mmol{sup −1}·L for glucose with the (GPDDA/GPSS){sub 1}/(GPDDA/GOx){sub 2} architecture, whose thickness was 19.80 ± 0.28 nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. - Highlights: • Direct electrochemistry of glucose oxidase at functionalized reduced graphene oxide. • Thickness (layer-by-layer) LbL film determined by Surface Plasmon Resonance (SPR). • Selective determination of glucose in the presence of several interferents. • Real sample test: commercial oral electrolyte solution and lactose-free milk.

  10. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection

    International Nuclear Information System (INIS)

    Mascagni, Daniela Branco Tavares; Miyazaki, Celina Massumi; Cruz, Nilson Cristino da; Leite de Moraes, Marli; Riul, Antonio; Ferreira, Marystela

    2016-01-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4 μmol·L ‐1 and sensitivity of 2.47 μA·cm −2 ·mmol −1 ·L for glucose with the (GPDDA/GPSS) 1 /(GPDDA/GOx) 2 architecture, whose thickness was 19.80 ± 0.28 nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. - Highlights: • Direct electrochemistry of glucose oxidase at functionalized reduced graphene oxide. • Thickness (layer-by-layer) LbL film determined by Surface Plasmon Resonance (SPR). • Selective determination of glucose in the presence of several interferents. • Real sample test: commercial oral electrolyte solution and lactose-free milk.

  11. Electrochemical Glucose Sensors—Developments Using Electrostatic Assembly and Carbon Nanotubes for Biosensor Construction

    Directory of Open Access Journals (Sweden)

    Mark R. Anderson

    2010-09-01

    Full Text Available In 1962, Clark and Lyons proposed incorporating the enzyme glucose oxidase in the construction of an electrochemical sensor for glucose in blood plasma. In their application, Clark and Lyons describe an electrode in which a membrane permeable to glucose traps a small volume of solution containing the enzyme adjacent to a pH electrode, and the presence of glucose is detected by the change in the electrode potential that occurs when glucose reacts with the enzyme in this volume of solution. Although described nearly 50 years ago, this seminal development provides the general structure for constructing electrochemical glucose sensors that is still used today. Despite the maturity of the field, new developments that explore solutions to the fundamental limitations of electrochemical glucose sensors continue to emerge. Here we discuss two developments of the last 15 years; confining the enzyme and a redox mediator to a very thin molecular films at electrode surfaces by electrostatic assembly, and the use of electrodes modified by carbon nanotubes (CNTs to leverage the electrocatalytic effect of the CNTs to reduce the oxidation overpotential of the electrode reaction or for the direct electron transport to the enzyme.

  12. Oxidase-based biocatalytic processes

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Woodley, John; Krühne, Ulrich

    interestingbiocatalystsbecause they use a mild oxidant (oxygen) as a substrateas opposed to their chemical counterparts which use strong oxidants such as permanganates. A class of oxidases calledmonoamine oxidases has been used as the central case study for the thesis. The rationale for choosing thissystemis that it has been...

  13. Low potential stable glucose detection at dendrimers modified polyaniline nanotubes

    Directory of Open Access Journals (Sweden)

    Alessandra Nogueira Santos

    2010-03-01

    Full Text Available The utilization of nanostructured materials for development of biosensors is a growing field in medical diagnostics. In this work a glucose biosensor based on bioactive polyglycerol (PGLD and chitosan dendrimers (CHD was developed. PGLD and CHD were bioconjugated with the enzyme glucose oxidase (GOx to obtain dendrimers with glucose sensing properties. Polyaniline nanotubes (PANINT´s were used as electron mediator due to their high ability to promote electron-transfer reactions involving GOx. The PGLD-GOx and CHD-GOx were entrapped in PANINT´s during template electrochemical polymerization of aniline. The prepared PGLD-GOx/PANINT´s and CHD-GOx/PANINT´s biosensors exhibit a strong and stable amperometric response to glucose even at a low potential of +100 mV. The based PGLD-GOx/PANINT´s and CHD-GOx/PANINT´s biosensors showed a good performance in glucose concentrations range in human blood. A comparison of the sensitivities to glucose showed that both biosensors have a linearity range between 0.02 and 10 mM, though PGLD-GOx/PANINT´s is more sensitive (10.41 vs. 7.04 nA.mM-1. The difference in the biosensor behavior and the high sensitivity of the PGLD-GOx/PANINT´s may be due to the specific organization of GOx layer at surface of the modifier macromolecule PGLD and their distribution in PANINT´s. The enzyme affinity for the substrate, K Mapp remains quite good after GOx immobilization on PGLD and CHD dendrimers and entrapment of the bioconjugates in PANINT´s.

  14. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials.

    Science.gov (United States)

    Zafar, Muhammad Nadeem; Wang, Xiaoju; Sygmund, Christoph; Ludwig, Roland; Leech, Dónal; Gorton, Lo

    2012-01-03

    A new extracellular flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase from Glomerella cingulata (GcGDH) was electrochemically studied as a recognition element in glucose biosensors. The redox enzyme was recombinantly produced in Pichia pastoris and homogeneously purified, and its glucose-oxidizing properties on spectrographic graphite electrodes were investigated. Six different Os polymers, the redox potentials of which ranged in a broad potential window between +15 and +489 mV versus the normal hydrogen electrode (NHE), were used to immobilize and "wire" GcGDH to the spectrographic graphite electrode's surface. The GcGDH/Os polymer modified electrodes were evaluated by chronoamperometry using flow injection analysis. The current response was investigated using a stepwisely increased applied potential. It was observed that the ratio of GcGDH/Os polymer and the overall loading of the enzyme electrode significantly affect the performance of the enzyme electrode for glucose oxidation. The best-suited Os polymer [Os(4,4'-dimethyl-2,2'-bipyridine)(2)(PVI)Cl](+) had a potential of +309 mV versus NHE, and the optimum GcGDH/Os polymer ratio was 1:2 yielding a maximum current density of 493 μA·cm(-2) at a 30 mM glucose concentration. © 2011 American Chemical Society

  15. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose

    International Nuclear Information System (INIS)

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei

    2013-01-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol–gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. - Highlights: ► ZnS nanoparticles were electrodeposited directly on ITO surface. ► The direct electron transfer of GOD immobilized on ZnS surface was obtained. ► The enzyme electrode was used to the determination of glucose in the presence of oxygen. ► The response of photoelectrochemical biosensor towards glucose was more sensitive

  16. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei, E-mail: djw@suda.edu.cn

    2013-05-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol–gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. - Highlights: ► ZnS nanoparticles were electrodeposited directly on ITO surface. ► The direct electron transfer of GOD immobilized on ZnS surface was obtained. ► The enzyme electrode was used to the determination of glucose in the presence of oxygen. ► The response of photoelectrochemical biosensor towards glucose was more sensitive.

  17. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Rakhi, R. B.

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  18. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Baby, Rakhi Raghavan; Nayuk, Pranati; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  19. A glucose-responsive pH-switchable bioelectrocatalytic sensor based on phenylboronic acid-diol specificity

    International Nuclear Information System (INIS)

    Gao, Peiyi; Wang, Zhihua; Yang, Lele; Ma, Tengfei; Yang, Ling; Guo, Qianqiong; Huang, Shasheng

    2015-01-01

    Graphical abstract: A pH-switchable bioelectrocatayltic sensor was developed, which exhibited an obvious anodic current in acidic conditions as “ON” state, yet a prohibited signal in alkaline conditions as “OFF” state. With the change of pH and/or the presence of glucose, our proposed biosensor produced the corresponding amplified signal, providing a better sensitivity. - Abstract: Aminophenylboronic acid moieties were covalently grafted onto mercaptobenzoic acid moieties, and glucose oxidase was then immobilized through boronic acid-diol specific recognition to form a pH-sensitive electrosensor switching between pH 5.8 and pH 8.0 base solution. Using potassium ferricyanide as electroactive probe, the response was intensified in acidic condition while hindered in alkaline condition. The sharp and stable contrast in current was performed alternately upon the change of pH like a “pH switch”. In the presence of glucose, the response to glucose was further amplified catalytically by glucose oxidase on “ON” state, while electron transfer was inhibited on “OFF” state. Furthermore, when our sensor was on “ON” state, it showed a good linearity ranging from 0 to 30 μmol L −1 of glucose, with a detection limit of 348 nmol L −1 (S/B = 3) and a dynamic range extending to 50 μmol L −1 . Glucose-responsive, pH-switchable and catalytically-amplified, our biosensor provided a new method for the detection of glucose in the form of pH switch in human serum sample, and was promising to more complicated environment

  20. Characterisation of recombinant pyranose oxidase from the cultivated mycorrhizal basidiomycete Lyophyllum shimeji (hon-shimeji

    Directory of Open Access Journals (Sweden)

    Yamabhai Montarop

    2010-07-01

    Full Text Available Abstract Background The flavin-dependent enzyme pyranose 2-oxidase (P2Ox has gained increased attention during the last years because of a number of attractive applications for this enzyme. P2Ox is a unique biocatalyst with high potential for biotransformations of carbohydrates and in synthetic carbohydrate chemistry. Recently, it was shown that P2Ox is useful as bioelement in biofuel cells, replacing glucose oxidase (GOx, which traditionally is used in these applications. P2Ox offers several advantages over GOx for this application, e.g., its much broader substrate specificity. Because of this renewed interest in P2Ox, knowledge on novel pyranose oxidases isolated from organisms other than white-rot fungi, which represent the traditional source of this enzyme, is of importance, as these novel enzymes might differ in their biochemical and physical properties. Results We isolated and over-expressed the p2ox gene encoding P2Ox from the ectomycorrhizal fungus Lyophyllum shimeji. The p2ox cDNA was inserted into the bacterial expression vector pET21a(+ and successfully expressed in E. coli Rosetta 2. We obtained active, flavinylated recombinant P2Ox in yields of approximately 130 mg per L of medium. The enzyme was purified by a two-step procedure based on anion exchange chromatography and preparative native PAGE, yielding an apparently homogenous enzyme preparation with a specific activity of 1.92 U/mg (using glucose and air oxygen as the substrates. Recombinant P2Ox from L. shimeji was characterized in some detail with respect to its physical and catalytic properties, and compared to the well-characterised enzymes from Phanerochaete chrysosporium and Trametes multicolor. Conclusion L. shimeji P2Ox shows properties that are comparable to those of P2Ox from white-rot fungal origin, and is in general characterised by lower Km and kcat values both for electron donor (sugar as well as electron acceptor (ferrocenium ion, 1,4-benzoquinone, 2

  1. Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density.

    Science.gov (United States)

    Filip, Jaroslav; Andicsová-Eckstein, Anita; Vikartovská, Alica; Tkac, Jan

    2017-03-15

    Previously we showed that an effective bilirubin oxidase (BOD)-based biocathode using graphene oxide (GO) could be prepared in 2 steps: 1. electrostatic adsorption of BOD on GO; 2. electrochemical reduction of the BOD-GO composite to form a BOD-ErGO (electrochemically reduced GO) film on the electrode. In order to identify an optimal charge density of GO for BOD-ErGO composite preparation, several GO fractions differing in an average flake size and ζ-potential were prepared using centrifugation and consequently employed for BOD-ErGO biocathode preparation. A simple way to express surface charge density of these particular GO nanosheets was developed. The values obtained were then correlated with biocatalytic and electrochemical parameters of the prepared biocathodes, i.e. electrocatalytically active BOD surface coverage (Γ), heterogeneous electron transfer rate (k S ) and a maximum biocatalytic current density. The highest bioelectrocatalytic current density of (597±25)μAcm -2 and the highest Γ of (23.6±0.9)pmolcm -2 were obtained on BOD-GO composite having the same moderate negative charge density, but the highest k S of (79.4±4.6)s -1 was observed on BOD-GO composite having different negative charge density. This study is a solid foundation for others to consider the influence of a charge density of GO on direct bioelectrochemistry/bioelectrocatalysis of other redox enzymes applicable for construction of biosensors, bioanodes, biocathodes or biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A sensitive glucose biosensor based on Ag@C core–shell matrix

    International Nuclear Information System (INIS)

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo; Long, Yumei; Li, Weifeng; Tu, Yifeng

    2015-01-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core–shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as − OH and − COOH. The as-prepared Ag@C core–shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05–2.5 mM, with a detection limit of 0.02 mM (S/N = 3). The apparent Michaelis–Menten constant (K M app ) of the biosensor is calculated to be 1.7 mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core–shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. - Highlights: • Enhanced direct electrochemistry of GOD was achieved at Ag@C modified electrode. • A novel glucose biosensor based on Ag@C core–shell structure was developed. • The designed GOD-Ag@C/Nafion/GCE biosensor showed favorable analysis properties. • The biosensor is easy to prepare and can be applied for real sample assay

  3. A sensitive glucose biosensor based on Ag@C core–shell matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Long, Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China); Li, Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Tu, Yifeng [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China)

    2015-04-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core–shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as − OH and − COOH. The as-prepared Ag@C core–shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05–2.5 mM, with a detection limit of 0.02 mM (S/N = 3). The apparent Michaelis–Menten constant (K{sub M}{sup app}) of the biosensor is calculated to be 1.7 mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core–shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. - Highlights: • Enhanced direct electrochemistry of GOD was achieved at Ag@C modified electrode. • A novel glucose biosensor based on Ag@C core–shell structure was developed. • The designed GOD-Ag@C/Nafion/GCE biosensor showed favorable analysis properties. • The biosensor is easy to prepare and can be applied for real sample assay.

  4. Interrelationship of growth hormone, glucose and lipid metabolism ...

    African Journals Online (AJOL)

    After an overnight fast (10-12 hours), blood was taken from the subjects into heparinised tubes, centrifuged at 5,000rpm for 5 minutes and the plasma separated. Fasting plasma glucose (FBS)was determined by glucose oxidase method,, total cholesterol ,LDL, HDL and, Triglyceride were determined by enzymatic methods.

  5. Oxidases as Breast Cancer Oncogens

    National Research Council Canada - National Science Library

    Yeldandi, Anjana

    2000-01-01

    ...) in a non-tumorigenic human mammary epithelial cell line to ascertain whether oxidase overexpressing cells undergo transformation when exposed to substrate xanthine for XOX and uric acid for UOX...

  6. NADPH Oxidases: Progress and Opportunities

    OpenAIRE

    San Martin, Alejandra; Griendling, Kathy K.

    2014-01-01

    From the initial discovery in 1999 that NADPH oxidases comprise a family of enzymes to our current focus on drug development to treat multiple pathologies related to this enzyme family, progress has been swift and impressive. We have expanded our understanding of the extent of the family, the basic enzymatic biochemistry, the multiple cellular functions controlled by NADPH oxidases, and their varied roles in physiology and diseases. We have developed numerous cell culture tools, animal models...

  7. Long-term activity of covalent grafted biocatalysts during intermittent use of a glucose/O2 biofuel cell

    International Nuclear Information System (INIS)

    Merle, G.; Habrioux, A.; Servat, K.; Rolland, M.; Innocent, C.; Kokoh, K.B.; Tingry, S.

    2009-01-01

    The operational stability of enzymes in a concentric glucose/O 2 biofuel cell has been significantly improved with the synthesis of grafted enzyme electrodes compared to entrapped enzyme electrodes. The concentric device combined glucose electro-oxidation by glucose oxidase at the anode and oxygen electro-reduction by bilirubin oxidase at the cathode. The entrapped enzyme electrodes were prepared from physical immobilization of the enzymes by a polypyrrole polymer onto the electrode surface. The grafted enzyme electrodes were synthesized by grafting the enzymes via alkyl spacer arms to a poly(aminopropylpyrrole) film onto the electrode surface. From spectrophotometric and electrochemical analyses, it was demonstrated that the spacer arms increased the operational stability and enzyme mobility that favoured electron transfer from their active sites to the electrode. The maximum power output of the assembled biofuel cell was 20 μW cm -2 , at 0.20 V with 10 mM glucose in phosphate buffer pH 7.4. The grafted enzyme electrodes presented an unprecedented operational stability as the maximum of power density of the BFC remains constant after intermittent use over a 45-day period. This was a remarkable improvement compared to electrodes with entrapped enzymes, which lost 74% of their initial power density after intermittent use over a 17-day period

  8. Wiring of Glucose Oxidizing Flavin Adenine Dinucleotide-Dependent Enzymes by Methylene Blue-Modified Third Generation Poly(amidoamine) Dendrimers Attached to Spectroscopic Graphite Electrodes

    International Nuclear Information System (INIS)

    Castaing, Victor; Álvarez-Martos, Isabel; Ferapontova, Elena E.

    2016-01-01

    Highlights: • Methylene blue(MB)-labelled 3 G dendrimers electronically wire flavoenzymes to graphite electrodes. • Dendrimer-templated organization of MB improves electron transfer efficiency. • Covalent attachment of dendrimers to graphite provides stability of binding superior to S-Au. • Sugar-oxidizing hexose oxidase can be wired with no loss of FAD and electrocatalytic activity. - Abstract: Electro-enzymatic biotransformation requires an efficient and robust electronic communication between the biomolecules and electrodes, often performed by the relevant electron transfer (ET) mediating systems. Of those, redox-labeled dendrimeric structures, biocompatible and bearing spatially ordered multiple redox centers, represent an advanced alternative to the existing approaches. Here we show that methylene blue (MB)-labeled G3 PAMAM dendrimers covalently attached to the high-surface area spectroscopic graphite (Gr) electrodes form stable and spatially resolved electronic wires, characterized by the heterogeneous ET rate constant of 7.1 ± 0.1 s"−"1; they can be used for electronic wiring of glucose-oxidizing FAD-containing enzymes, such as hexose oxidase (HOX), and further bioelectrocatalysis of glucose oxidation, starting, at pH 7, from -100 mV vs. Ag/AgCl. Thus, dendrimer-templated electronic wires, comprising MB molecules conjugated to the periphery of the PAMAM and anchored to the surface of cost-effective Gr electrodes represent an efficient and robust tool for protein wiring to electrodes for their perspective bioelectronic applications in biosensors and biofuel cells.

  9. Non-enzymatic detection of glucose in fruits using TiO2-Mn3O4 hybrid nano interface

    Science.gov (United States)

    Jayanth Babu, K.; Sasya, Madhurantakam; Nesakumar, Noel; Shankar, Prabakaran; Gumpu, Manju Bhargavi; Ramachandra, Bhat Lakshmishri; Kulandaisamy, Arockia Jayalatha; Rayappan, John Bosco Balaguru

    2017-08-01

    Consumption of fruits leads to increase in glucose level in blood for diabetic patients, which in turn leads to peripheral, vascular, ocular complications and cardiac diseases. In this context, a non-enzymatic hybrid glucose biosensor was fabricated for the first time to detect glucose by immobilizing titanium oxide-manganese oxide (TiO2-Mn3O4) nanocomposite and chitosan membrane on to the surface of Pt working electrode (Pt/TiO2-Mn3O4/chitosan). TiO2-Mn3O4 nanocomposite catalyzed the oxidation of glucose to gluconolactone in the absence of glucose oxidase enzyme with high electron transfer rate, good biocompatibility and large surface coverage. Electrochemical measurements revealed the excellent sensing response of the developed biosensor towards glucose with a high sensitivity of 7.073 µA mM-1, linearity of 0.01-0.1 mM, low detection limit of 0.01 µM, reproducibility of 1.5% and stability of 98.8%. The electrochemical parameters estimated from the anodic process were subjected to linear regression models for the detection of unknown concentration of glucose in different fruit samples.

  10. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film

    International Nuclear Information System (INIS)

    Wang Wenju; Wang Fang; Yao Yanli; Hu Shengshui; Shiu, Kwok-Keung

    2010-01-01

    The amperometric bienzyme glucose biosensor utilizing horseradish peroxidase (HRP) and glucose oxidase (GOx) immobilized in poly(toluidine blue O) (PTBO) film was constructed on multi-walled carbon nanotube (MWNT) modified glassy carbon electrode. The HRP layer could be used to analyze hydrogen peroxide with toluidine blue O (TBO) mediators, while the bienzyme system (HRP + GOx) could be utilized for glucose determination. Glucose underwent biocatalytic oxidation by GOx in the presence of oxygen to yield H 2 O 2 which was further reduced by HRP at the MWNT-modified electrode with TBO mediators. In the absence of oxygen, glucose oxidation proceeded with electron transfer between GOx and the electrode mediated by TBO moieties without H 2 O 2 production. The bienzyme electrode offered high sensitivity for amperometric determination of glucose at low potential, displaying Michaelis-Menten kinetics. The bienzyme glucose biosensor displayed linear response from 0.1 to 1.2 mM with a sensitivity of 113 mA M -1 cm -2 at an applied potential of -0.10 V in air-saturated electrolytes.

  11. Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Zhang, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • Graphene/nano-Au composite was synthesized by electrochemical co-reduction method in one step. • Glucose oxidase achieves direct electrochemistry on the graphene/nano-Au composite film. • The glucose biosensor shows a high sensitivity of 56.93 μA mM −1 cm −2 toward glucose. • Glucose was detected with a wide linear range and low detection limit. - Abstract: A simple, green and controllable approach was employed for electrochemical synthesize of the graphene/nano-Au composites. The process was that graphene oxide and HAuCl 4 was electrochemically co-reduced onto the glassy carbon electrode (GCE) by cyclic voltammetry in one step. The obtained graphene/nano-Au/GCE exhibited high electrocatalytic activity toward H 2 O 2 , which resulted in a remarkable decrease in the overpotential of H 2 O 2 electrochemical oxidation compared with bare GCE. Such electrocatalytic behavior of the graphene/nano-Au/GCE permitted effective low-potential amperometric biosensing of glucose via the incorporation of glucose oxidase (GOD) with graphene/nano-Au. An obvious advantage of this enzyme electrode (graphene/nano-Au/GOD/GCE) was that the graphene/nano-Au nanocomposites provided a favorable microenvironment for GOD and facilitated the electron transfer between the active center of GOD and electrode. The immobilized GOD showed a direct, reversible redox reaction. Furthermore, the graphene/nano-Au/GOD/GCE was used as a glucose biosensor, displaying a low detection limit of 17 μM (S/N = 3), a high sensitivity of 56.93 μA mM −1 cm −2 , acceptable reproducibility, very good stability, selectivity and anti-interference ability

  12. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  13. Production of a new D-amino acid oxidase from the fungus Fusarium oxysporum.

    Science.gov (United States)

    Gabler, M; Fischer, L

    1999-08-01

    The fungus Fusarium oxysporum produced a D-amino acid oxidase (EC 1. 4.3.3) in a medium containing glucose as the carbon and energy source and ammonium sulfate as the nitrogen source. The specific D-amino acid oxidase activity was increased up to 12.5-fold with various D-amino acids or their corresponding derivatives as inducers. The best inducers were D-alanine (2.7 microkat/g of dry biomass) and D-3-aminobutyric acid (2.6 microkat/g of dry biomass). The addition of zinc ions was necessary to permit the induction of peroxisomal D-amino acid oxidase. Bioreactor cultivations were performed on a 50-liter scale, yielding a volumetric D-amino acid oxidase activity of 17 microkat liter(-1) with D-alanine as an inducer. Under oxygen limitation, the volumetric activity was increased threefold to 54 microkat liter(-1) (3,240 U liter(-1)).

  14. High glucose impairs superoxide production from isolated blood neutrophils

    DEFF Research Database (Denmark)

    Perner, A; Nielsen, S E; Rask-Madsen, J

    2003-01-01

    Superoxide (O(2)(-)), a key antimicrobial agent in phagocytes, is produced by the activity of NADPH oxidase. High glucose concentrations may, however, impair the production of O(2)(-) through inhibition of glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the formation of NADPH. This study...... measured the acute effects of high glucose or the G6PD inhibitor dehydroepiandrosterone (DHEA) on the production of O(2)(-) from isolated human neutrophils....

  15. Detection of saliva-range glucose concentrations using organic thin-film transistors

    International Nuclear Information System (INIS)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J.

    2014-01-01

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  16. Detection of saliva-range glucose concentrations using organic thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J. [Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308 (Australia)

    2014-07-28

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  17. Use of glucose oxidase to improve refrigerated dough quality

    Science.gov (United States)

    Refrigerated dough encompasses a wide range of products including bread, rolls, pastries and pizza crust and is a very popular choice for consumers. Two of the largest problems that occur during refrigerated dough storage are dough syruping and loss of dough strength. The goal of this study was to e...

  18. Application of glucose oxidase for the production of metal ...

    African Journals Online (AJOL)

    Chem

    2013-11-27

    Nov 27, 2013 ... Sulphuric and oxalic acids method were employed for the production of gluconic acid. Derivatives of gluconic acid that is, calcium lactate gluconate, sodium gluconate .... the content was filtered to remove calcium oxalate.

  19. Lysyl oxidase in colorectal cancer

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine T

    2013-01-01

    Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested...... to act as a tumor suppressor in colorectal cancer. However, emerging evidence has rapidly implicated lysyl oxidase in promoting metastasis of solid tumors and in particular colorectal cancer at multiple stages, affecting tumor cell proliferation, invasion, and angiogenesis. This emerging research has...... advancements in the field of colorectal cancer....

  20. Thresholds of whole-blood β-hydroxybutyrate and glucose concentrations measured with an electronic hand-held device to identify ovine hyperketonemia.

    Science.gov (United States)

    Pichler, M; Damberger, A; Schwendenwein, I; Gasteiner, J; Drillich, M; Iwersen, M

    2014-03-01

    Metabolic disorders, especially hyperketonemia, are very common in dairy sheep. The whole-blood concentrations of β-hydroxybutyrate (BHBA) and glucose can be determined by commercially available electronic hand-held devices, which are used in human medicine and for the detection of ketosis in dairy cows. The aim of this study was to evaluate the suitability of the hand-held device Precision Xceed (PX; Abbott Diabetes Care Inc., Abbott Park, IL) to detect hyperketonemia in ewes. An additional objective of this study was to evaluate the agreement between samples obtained by minimal invasive venipuncture of an ear vein and measurements of whole-blood samples from the jugular vein (vena jugularis, v. jug.). Blood samples taken from the v. jug. were collected from 358 ewes on 4 different farms. These samples and a blood drop obtained from an ear vein were analyzed simultaneously on farm with the PX. For method comparison, the samples obtained from the v. jug. were also analyzed by standard methods, which served as the gold standard at the Central Laboratory of the University of Veterinary Medicine Vienna, Austria. The correlation coefficients between the serum BHBA concentration and the concentrations measured with the hand-held meter in the whole blood from an ear vein and the v. jug. were 0.94 and 0.96, respectively. The correlation coefficients of plasma and whole-blood glucose concentration were 0.68 for the v. jug. and 0.47 for the ear vein. The mean glucose concentration was significantly lower in animals classified as hyperketonemic (BHBA ≥ 1.6 mmol/L) compared with healthy ewes. Whole-blood concentrations of BHBA and glucose measured with the PX from v. jug. showed a constant negative bias of 0.15 mmol/L and 8.4 mg/dL, respectively. Hence, a receiver operating characteristic analysis was performed to determine thresholds for the PX to detect hyperketonemia in ewes. This resulted in thresholds for moderate ketosis of BHBA concentrations of 0.7 mmol/L in blood

  1. Putting together a plasma membrane NADH oxidase: a tale of three laboratories.

    Science.gov (United States)

    Löw, Hans; Crane, Frederick L; Morré, D James

    2012-11-01

    The observation that high cellular concentrations of NADH were associated with low adenylate cyclase activity led to a search for the mechanism of the effect. Since cyclase is in the plasma membrane, we considered the membrane might have a site for NADH action, and that NADH might be oxidized at that site. A test for NADH oxidase showed very low activity, which could be increased by adding growth factors. The plasma membrane oxidase was not inhibited by inhibitors of mitochondrial NADH oxidase such as cyanide, rotenone or antimycin. Stimulation of the plasma membrane oxidase by iso-proterenol or triiodothyronine was different from lack of stimulation in endoplasmic reticulum. After 25 years of research, three components of a trans membrane NADH oxidase have been discovered. Flavoprotein NADH coenzyme Q reductases (NADH cytochrome b reductase) on the inside, coenzyme Q in the middle, and a coenzyme Q oxidase on the outside as a terminal oxidase. The external oxidase segment is a copper protein with unique properties in timekeeping, protein disulfide isomerase and endogenous NADH oxidase activity, which affords a mechanism for control of cell growth by the overall NADH oxidase and the remarkable inhibition of oxidase activity and growth of cancer cells by a wide range of anti-tumor drugs. A second trans plasma membrane electron transport system has been found in voltage dependent anion channel (VDAC), which has NADH ferricyanide reductase activity. This activity must be considered in relation to ferricyanide stimulation of growth and increased VDAC antibodies in patients with autism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The synthesis of CuO nanoleaves, structural characterization, and their glucose sensing application

    International Nuclear Information System (INIS)

    Ibupoto, Z. H.; Khun, K.; Willander, M.; Lu, J.

    2013-01-01

    The present study describes the synthesis of well aligned and highly dense polyethylene glycol template assisted cupric oxide (CuO) nanoleaves on the gold coated glass substrate by hydrothermal growth method. The structural study based investigations of CuO nanoleaves were performed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), infrared reflection-absorption spectroscopy (IRAS), and high resolution transmission electron microscopy (HRTEM). The glucose sensor based on the glucose oxidase immobilized CuO nanoleaves electrode detected the wide range of glucose concentrations with good linearity and exhibited high sensitivity of 61.9 ± 2.0 mV/decade. The linear detection range was observed from 1.0 × 10 −5 to 2.0 × 10 −2 M with detection limit of 5.0 × 10 −6 M and a fast response time of less than 5 s was also observed. The glucose sensor electrode possesses good anti-interference ability, stability, repeatability, and reproducibility.

  3. The synthesis of CuO nanoleaves, structural characterization, and their glucose sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Ibupoto, Z. H.; Khun, K.; Willander, M. [Department of Science and Technology, Campus Norrkoeping, Linkoeping University, SE-60174 Norrkoeping (Sweden); Lu, J. [Department of Physics, Chemistry, and Biology (IFM), Linkoeping University, 58183 Linkoeping (Sweden)

    2013-03-11

    The present study describes the synthesis of well aligned and highly dense polyethylene glycol template assisted cupric oxide (CuO) nanoleaves on the gold coated glass substrate by hydrothermal growth method. The structural study based investigations of CuO nanoleaves were performed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), infrared reflection-absorption spectroscopy (IRAS), and high resolution transmission electron microscopy (HRTEM). The glucose sensor based on the glucose oxidase immobilized CuO nanoleaves electrode detected the wide range of glucose concentrations with good linearity and exhibited high sensitivity of 61.9 {+-} 2.0 mV/decade. The linear detection range was observed from 1.0 Multiplication-Sign 10{sup -5} to 2.0 Multiplication-Sign 10{sup -2} M with detection limit of 5.0 Multiplication-Sign 10{sup -6} M and a fast response time of less than 5 s was also observed. The glucose sensor electrode possesses good anti-interference ability, stability, repeatability, and reproducibility.

  4. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection.

    Science.gov (United States)

    Mascagni, Daniela Branco Tavares; Miyazaki, Celina Massumi; da Cruz, Nilson Cristino; de Moraes, Marli Leite; Riul, Antonio; Ferreira, Marystela

    2016-11-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4μmol·L(-1) and sensitivity of 2.47μA·cm(-2)·mmol(-1)·L for glucose with the (GPDDA/GPSS)1/(GPDDA/GOx)2 architecture, whose thickness was 19.80±0.28nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Synergy Effect of Nanocrystalline Cellulose for the Biosensing Detection of Glucose

    Directory of Open Access Journals (Sweden)

    Chakavak Esmaeili

    2015-09-01

    Full Text Available Integrating polypyrrole-cellulose nanocrystal-based composites with glucose oxidase (GOx as a new sensing regime was investigated. Polypyrrole-cellulose nanocrystal (PPy-CNC-based composite as a novel immobilization membrane with unique physicochemical properties was found to enhance biosensor performance. Field emission scanning electron microscopy (FESEM images showed that fibers were nanosized and porous, which is appropriate for accommodating enzymes and increasing electron transfer kinetics. The voltammetric results showed that the native structure and biocatalytic activity of GOx immobilized on the PPy-CNC nanocomposite remained and exhibited a high sensitivity (ca. 0.73 μA·mM−1, with a high dynamic response ranging from 1.0 to 20 mM glucose. The modified glucose biosensor exhibits a limit of detection (LOD of (50 ± 10 µM and also excludes interfering species, such as ascorbic acid, uric acid, and cholesterol, which makes this sensor suitable for glucose determination in real samples. This sensor displays an acceptable reproducibility and stability over time. The current response was maintained over 95% of the initial value after 17 days, and the current difference measurement obtained using different electrodes provided a relative standard deviation (RSD of 4.47%.

  6. Glucose Sensing Using Functionalized Amorphous In-Ga-Zn-O Field-Effect Transistors.

    Science.gov (United States)

    Du, Xiaosong; Li, Yajuan; Motley, Joshua R; Stickle, William F; Herman, Gregory S

    2016-03-01

    Recent advances in glucose sensing have focused on the integration of sensors into contact lenses to allow noninvasive continuous glucose monitoring. Current technologies focus primarily on enzyme-based electrochemical sensing which requires multiple nontransparent electrodes to be integrated. Herein, we leverage amorphous indium gallium zinc oxide (IGZO) field-effect transistors (FETs), which have found use in a wide range of display applications and can be made fully transparent. Bottom-gated IGZO-FETs can have significant changes in electrical characteristics when the back-channel is exposed to different environments. We have functionalized the back-channel of IGZO-FETs with aminosilane groups that are cross-linked to glucose oxidase and have demonstrated that these devices have high sensitivity to changes in glucose concentrations. Glucose sensing occurs through the decrease in pH during glucose oxidation, which modulates the positive charge of the aminosilane groups attached to the IGZO surface. The change in charge affects the number of acceptor-like surface states which can deplete electron density in the n-type IGZO semiconductor. Increasing glucose concentrations leads to an increase in acceptor states and a decrease in drain-source conductance due to a positive shift in the turn-on voltage. The functionalized IGZO-FET devices are effective in minimizing detection of interfering compounds including acetaminophen and ascorbic acid. These studies suggest that IGZO FETs can be effective for monitoring glucose concentrations in a variety of environments, including those where fully transparent sensing elements may be of interest.

  7. NiCoBP-doped carbon nanotube hybrid: A novel oxidase mimetic system for highly efficient electrochemical immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing; He, Yu; Liu, Bingqian; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-12-03

    Highlights: • We report a new oxidase mimetic system for highly efficient electrochemical immunoassay. • NiCoBP-doped carbon nanotube hybrids were used as the nanocatalysts. • NiCoBP-doped carbon nanotube hybrids were used as the mimic oxidase. - Abstract: NiCoBP-doped multi-walled carbon nanotube (NiCoBP–MWCNT) was first synthesized by using induced electroless-plating method and functionalized with the biomolecules for highly efficient electrochemical immunoassay of prostate-specific antigen (PSA, used as a model analyte). We discovered that the as-synthesized NiCoBP–MWCNT had the ability to catalyze the glucose oxidization with a stable and well-defined redox peak. The catalytic current increased with the increment of the immobilized NiCoBP–MWCNT on the electrode. Transmission electron microscope (TEM) and energy dispersive X-ray spectrometry (EDX) were employed to characterize the as-prepared NiCoBP–MWCNT. Using the NiCoBP–MWCNT-conjugated anti-PSA antibody as the signal-transduction tag, a new enzyme-free electrochemical immunoassay protocol could be designed for the detection of target PSA on the capture antibody-functionalized immunosensing interface. Experimental results revealed that the designed immunoassay system could exhibit good electrochemical responses toward target PSA, and allowed the detection of PSA at a concentration as low as 0.035 ng mL{sup −1}. More importantly, the NiCoBP-MWCNT-based oxidase mimetic system could be further extended for the monitoring of other low-abundance proteins or disease-related biomarkers by tuning the target antibody.

  8. Lysyl oxidase in cancer research

    DEFF Research Database (Denmark)

    Perryman, Lara; Erler, Janine Terra

    2014-01-01

    Metastasis is the main reason for cancer-associated deaths and therapies are desperately needed to target the progression of cancer. Lysyl oxidase (LOX) plays a pivotal role in cancer progression, including metastasis, and is therefore is an attractive therapeutic target. In this review we...

  9. Peroxisomal Polyamine Oxidase and NADPH-Oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Efthimios A. Andronis

    2014-04-01

    Full Text Available Homeostasis of reactive oxygen species (ROS in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd and spermine (Spm to putrescine (Put and Spd, respectively is catalyzed by two peroxisomal PA oxidases (AtPAO. However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI. Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2.-, but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX. On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2.-. These results suggest that the ratio of O2.-/H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2.- by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.

  10. Molecular Basis for Converting (2S-Methylsuccinyl-CoA Dehydrogenase into an Oxidase

    Directory of Open Access Journals (Sweden)

    Simon Burgener

    2017-12-01

    Full Text Available Although flavoenzymes have been studied in detail, the molecular basis of their dioxygen reactivity is only partially understood. The members of the flavin adenosine dinucleotide (FAD-dependent acyl-CoA dehydrogenase and acyl-CoA oxidase families catalyze similar reactions and share common structural features. However, both enzyme families feature opposing reaction specificities in respect to dioxygen. Dehydrogenases react with electron transfer flavoproteins as terminal electron acceptors and do not show a considerable reactivity with dioxygen, whereas dioxygen serves as a bona fide substrate for oxidases. We recently engineered (2S-methylsuccinyl-CoA dehydrogenase towards oxidase activity by rational mutagenesis. Here we characterized the (2S-methylsuccinyl-CoA dehydrogenase wild-type, as well as the engineered (2S-methylsuccinyl-CoA oxidase, in detail. Using stopped-flow UV-spectroscopy and liquid chromatography-mass spectrometry (LC-MS based assays, we explain the molecular base for dioxygen reactivity in the engineered oxidase and show that the increased oxidase function of the engineered enzyme comes at a decreased dehydrogenase activity. Our findings add to the common notion that an increased activity for a specific substrate is achieved at the expense of reaction promiscuity and provide guidelines for rational engineering efforts of acyl-CoA dehydrogenases and oxidases.

  11. Interference studies with two hospital-grade and two home-grade glucose meters.

    Science.gov (United States)

    Lyon, Martha E; Baskin, Leland B; Braakman, Sandy; Presti, Steven; Dubois, Jeffrey; Shirey, Terry

    2009-10-01

    Interference studies of four glucose meters (Nova Biomedical [Waltham, MA] StatStrip [hospital grade], Roche Diagnostics [Indianapolis, IN] Accu-Chek Aviva [home grade], Abbott Diabetes Care [Alameda, CA] Precision FreeStyle Freedom [home grade], and LifeScan [Milpitas, CA] SureStep Flexx [hospital grade]) were evaluated and compared to the clinical laboratory plasma hexokinase reference method (Roche Hitachi 912 chemistry analyzer). These meters were chosen to reflect the continuum of care from hospital to home grade meters commonly seen in North America. Within-run precision was determined using a freshly prepared whole blood sample spiked with concentrated glucose to give three glucose concentrations. Day-to-day precision was evaluated using aqueous control materials supplied by each vendor. Common interferences, including hematocrit, maltose, and ascorbate, were tested alone and in combination with one another on each of the four glucose testing devices at three blood glucose concentrations. Within-run precision for all glucose meters was glucose meters. Ascorbate caused differences (percentage change from a sample without added interfering substances) of >5% with pyrroloquinolinequinone (PQQ)-glucose dehydrogenase-based technologies (Aviva and Freestyle) and the glucose oxidase-based Flexx meter. Maltose strongly affected the PQQ-glucose dehydrogenase-based meter systems. When combinations of interferences (ascorbate, maltose, and hematocrit mixtures) were tested, the extent of the interference was up to 193% (Aviva), 179% (FreeStyle), 25.1% (Flexx), and 5.9% (StatStrip). The interference was most pronounced at low glucose (3.9-4.4 mmol/L). All evaluated glucose meter systems demonstrated varying degrees of interference by hematocrit, ascorbate, and maltose mixtures. PQQ-glucose dehydrogenase-based technologies showed greater susceptibility than glucose oxidase-based systems. However, the modified glucose oxidase-based amperometric method (Nova StatStrip) was

  12. NADPH Oxidase-Mediated ROS Production Determines Insulin's Action on the Retinal Microvasculature.

    Science.gov (United States)

    Kida, Teruyo; Oku, Hidehiro; Horie, Taeko; Matsuo, Junko; Kobayashi, Takatoshi; Fukumoto, Masanori; Ikeda, Tsunehiko

    2015-10-01

    To determine whether insulin induces nitric oxide (NO) formation in retinal microvessels and to examine the effects of high glucose on the formation of NO. Freshly isolated rat retinal microvessels were incubated in normal (5.5 mM) or high (20 mM) glucose with or without insulin (100 nM). The levels of insulin-induced NO and reactive oxygen species (ROS) in the retinal microvessels were determined semiquantitatively using fluorescent probes, 4,5-diaminofluorescein diacetate, and hydroethidine, respectively, and a laser scanning confocal microscope. The insulin-induced changes of NO in rat retinal endothelial cells and pericytes cultured at different glucose concentrations (5.5 and 25 mM) were determined using flow cytometry. Nitric oxide synthase (NOS) protein levels were determined by Western blot analysis; intracellular levels of ROS were determined using fluorescence-activated cell sorting (FACS) analysis of ethidium fluorescence; and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase RNA expression was quantified using real-time PCR. Exposure of microvessels to insulin under normal glucose conditions led to a significant increase in NO levels; however, this increase was significantly suppressed when the microvessels were incubated under high glucose conditions. Intracellular levels of ROS were significantly increased in both retinal microvessels and cultured microvascular cells under high glucose conditions. The expression of NOS and NADPH oxidase were significantly increased in endothelial cells and pericytes under high glucose conditions. The increased formation of NO by insulin and its suppression by high glucose conditions suggests that ROS production mediated by NADPH oxidase is important by insulin's effect on the retinal microvasculature.

  13. Laccases as palladium oxidases.

    Science.gov (United States)

    Mekmouche, Yasmina; Schneider, Ludovic; Rousselot-Pailley, Pierre; Faure, Bruno; Simaan, A Jalila; Bochot, Constance; Réglier, Marius; Tron, Thierry

    2015-02-01

    The first example of a coupled catalytic system involving an enzyme and a palladium(ii) catalyst competent for the aerobic oxidation of alcohol in mild conditions is described. In the absence of dioxygen, the fungal laccase LAC3 is reduced by a palladium(0) species as evidenced by the UV/VIS and ESR spectra of the enzyme. During the oxidation of veratryl alcohol performed in water, at room temperature and atmospheric pressure, LAC3 regenerates the palladium catalyst, is reduced and catalyzes the four-electron reduction of dioxygen into water with no loss of enzyme activity. The association of a laccase with a water-soluble palladium complex results in a 7-fold increase in the catalytic efficiency of the complex. This is the first step in the design of a family of renewable palladium catalysts for aerobic oxidation.

  14. Paper-based maskless enzymatic sensor for glucose determination combining ink and wire electrodes.

    Science.gov (United States)

    Amor-Gutiérrez, O; Costa Rama, E; Costa-García, A; Fernández-Abedul, M T

    2017-07-15

    In this work we have developed an amperometric enzymatic biosensor in a paper-based platform with a mixed electrode configuration: carbon ink for the working electrode (WE) and metal wires (from a low-cost standard electronic connection) for reference (RE) and auxiliary electrodes (AE). A hydrophobic wax-defined paper area was impregnated with diluted carbon ink. Three gold-plated pins of the standard connection are employed, one for connecting the WE and the other two acting as RE and AE. The standard connection works as a clip in order to support the paper in between. As a proof-of-concept, glucose sensing was evaluated. The enzyme cocktail (glucose oxidase, horseradish peroxidase and potassium ferrocyanide as mediator of the electron transfer) was adsorbed on the surface. After drying, glucose solution was added to the paper, on the opposite side of the carbon ink. It wets RE and AE, and flows by capillarity through the paper contacting the carbon WE surface. The reduction current of ferricyanide, product of the enzymatic reaction, is measured chronoamperometrically and correlates to the concentration of glucose. Different parameters related to the bioassay were optimized, adhering the piece of paper onto a conventional screen-printed carbon electrode (SPCE). In this way, the RE and the AE of the commercial card were employed for optimizing the paper-WE. After evaluating the assay system in the hybrid paper-SPCE cell, the three-electrode system consisting of paper-WE, wire-RE and wire-AE, was employed for glucose determination, achieving a linear range between 0.3 and 15mM with good analytical features and being able of quantifying glucose in real food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Glucose allostasis

    DEFF Research Database (Denmark)

    Stumvoll, Michael; Tataranni, P Antonio; Stefan, Norbert

    2003-01-01

    individuals with normal glucose tolerance, normoglycemia can always be maintained by compensatorily increasing AIR in response to decreasing M (and vice versa). This has been mathematically described by the hyperbolic relationship between AIR and M and referred to as glucose homeostasis, with glucose......In many organisms, normoglycemia is achieved by a tight coupling of nutrient-stimulated insulin secretion in the pancreatic beta-cell (acute insulin response [AIR]) and the metabolic action of insulin to stimulate glucose disposal (insulin action [M]). It is widely accepted that in healthy...... concentration assumed to remain constant along the hyperbola. Conceivably, glucose is one of the signals stimulating AIR in response to decreasing M. Hypothetically, as with any normally functioning feed-forward system, AIR should not fully compensate for worsening M, since this would remove the stimulus...

  16. An Enzymatic Glucose Sensor Composed of Carbon-Coated Nano Tin Sulfide

    Directory of Open Access Journals (Sweden)

    Ren-Jei Chung

    2017-02-01

    Full Text Available In this study, a biosensor, based on a glucose oxidase (GOx immobilized, carbon-coated tin sulfide (SnS assembled on a glass carbon electrode (GCE was developed, and its direct electrochemistry was investigated. The carbon coated SnS (C-SnS nanoparticle was prepared through a simple two-step process, using hydrothermal and chemical vapor deposition methods. The large reactive surface area and unique electrical potential of C-SnS could offer a favorable microenvironment for facilitating electron transfer between enzymes and the electrode surface. The structure and sensor ability of the proposed GOx/C-SnS electrode were characterized using scanning electron microscopy (SEM, X-ray diffraction (XRD, Raman spectroscopy, UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR, and cyclic voltammetry study (CV.

  17. BioRadioTransmitter: a self-powered wireless glucose-sensing system.

    Science.gov (United States)

    Hanashi, Takuya; Yamazaki, Tomohiko; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji

    2011-09-01

    Although an enzyme fuel cell can be utilized as a glucose sensor, the output power generated is too low to power a device such as a currently available transmitter and operating system, and an external power source is required for operating an enzyme-fuel-cell-based biosensing system. We proposed a novel biosensor that we named BioCapacitor, in which a capacitor serves as a transducer. In this study, we constructed a new BioCapacitor-based system with an added radio-transmitter circuit and a miniaturized enzyme fuel cell. A miniaturized direct-electron-transfer-type compartmentless enzyme fuel cell was constructed with flavin adenine dinucleotide-dependent glucose dehydrogenase complex-based anode and a bilirubin-oxidase-based cathode. For construction of a BioRadioTransmitter wireless sensing system, a capacitor, an ultra-low-voltage charge-pump-integrated circuit, and Hartley oscillator circuit were connected to the miniaturized enzyme fuel cell. A radio-receiver circuit, comprising two field-effect transistors and a coil as an antenna, was used to amplify the signal generated from the biofuel cells. Radio wave signals generated by the BioRadioTransmitter were received, amplified, and converted from alternate to direct current by the radio receiver. When the capacitor discharges in the presence of glucose, the BioRadioTransmitter generates a radio wave, which is monitored by a radio receiver connected wirelessly to the sensing device. Magnitude of the radio wave transmission frequency change observed at the radio receiver was correlated to glucose concentration in the fuel cells. We constructed a stand-alone, self-powered, wireless glucose-sensing system called a BioRadioTransmitter by using a radio transmitter in which the radio wave transmission frequency changes with the glucose concentration in the fuel cell. The BioRadioTransmitter is a significant advance toward construction of an implantable continuous glucose monitor. © 2011 Diabetes Technology Society.

  18. Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide and glucose

    International Nuclear Information System (INIS)

    Haghighi, Behzad; Khosravi, Mehdi; Barati, Ali

    2014-01-01

    Gallium hexacyanoferrate (GaHCFe) and graphite powder were homogeneously dispersed into n-dodecylpyridinium hexafluorophosphate and paraffin to fabricate GaHCFe modified carbon ionic liquid paste electrode (CILPE). Mixture experimental design was employed to optimize the fabrication of GaHCFe modified CILPE (GaHCFe-CILPE). A pair of well-defined redox peaks due to the redox reaction of GaHCFe through one-electron process was observed for the fabricated electrode. The fabricated GaHCFe-CILPE exhibited good electrocatalytic activity towards reduction and oxidation of H 2 O 2 . The observed sensitivities for the electrocatalytic oxidation and reduction of H 2 O 2 at the operating potentials of + 0.8 and − 0.2 V were about 13.8 and 18.3 mA M −1 , respectively. The detection limit (S/N = 3) for H 2 O 2 was about 1 μM. Additionally, glucose oxidase (GOx) was immobilized on GaHCFe-CILPE using two methodology, entrapment into Nafion matrix and cross-linking with glutaraldehyde and bovine serum albumin, in order to fabricate glucose biosensor. Linear dynamic rage, sensitivity and detection limit for glucose obtained by the biosensor fabricated using cross-linking methodology were 0.1–6 mM, 0.87 mA M −1 and 30 μM, respectively and better than those obtained (0.2–6 mM, 0.12 mA M −1 and 50 μM) for the biosensor fabricated using entrapment methodology. - Highlights: • Gallium hexacyanoferrate modified carbon ionic liquid paste electrode was fabricated. • Mixture experimental design was used to optimize electrode fabrication. • Response trace plot was used to show the effect of electrode materials on response. • The sensor exhibited electrocatalytic activity towards H 2 O 2 reduction and oxidation. • Glucose biosensor was fabricated by immobilization of glucose oxidase on sensor

  19. Effective Peroxidase-Like Activity of Co-Aminoclay [CoAC] and Its Application for Glucose Detection

    Directory of Open Access Journals (Sweden)

    Han Pill Song

    2018-02-01

    Full Text Available In this study, we describe a novel peroxidase-like activity of Co-aminoclay [CoAC] present at pH ~5.0 and its application to fluorescent biosensor for the determination of H2O2 and glucose. It is synthesized with aminoclays (ACs entrapping cationic metals such as Fe, Cu, Al, Co., Ce, Ni, Mn, and Zn to find enzyme mimicking ACs by sol–gel ambient conditions. Through the screening of catalytic activities by the typical colorimetric reaction employing 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic aciddiammonium salt (ABTS as a substrate with or without H2O2, Fe, Cu, and CoACs are found to exhibit peroxidase-like activity, as well as oxidase-like activity was observed from Ce and MnACs. Among them, CoAC shows exceptionally high peroxidase-like activity, presumably due to its ability to induce electron transfer between substrates and H2O2. CoAC is then used to catalyze the oxidation of Amplex® UltraRed (AUR into a fluorescent end product, which enables a sensitive fluorescent detection of H2O2. Moreover, a highly sensitive and selective glucose biosensing strategy is developed, based on enzyme cascade reaction between glucose oxidase (GOx and CoAC. Using this strategy, a highly linear fluorescence enhancement is verified when the concentration of glucose is increased in a wide range from 10 μM to 1 mM with a lower detection limit of 5 μM. The practical diagnostic capability of the assay system is also verified by its use to detect glucose in human blood serum. Based on these results, it is anticipated that CoAC can serve as potent peroxidase mimetics for the detection of clinically important target molecules.

  20. Synthesis of redox polymer nanobeads and nanocomposites for glucose biosensors.

    Science.gov (United States)

    Wang, Jen-Yuan; Chen, Lin-Chi; Ho, Kuo-Chuan

    2013-08-28

    Redox polymer nanobeads of branched polyethylenimine binding with ferrocene (BPEI-Fc) were synthesized using a simple chemical process. The functionality and morphology of the redox polymer nanobeads were investigated by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). This hydrophilic redox nanomaterial could be mixed with glucose oxidase (GOx) for drop-coating on a screen-printed carbon electrode (SPCE) for glucose sensing application. Electrochemical properties of the BPEI-Fc/GOx/SPCE prepared under different conditions were studied by cyclic voltammetry (CV). On the basis of these CV results, the synthetic condition of the BPEI-Fc/GOx/SPCE could be optimized. By incorporating conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the performance of a redox polymer nanobead–based enzyme electrode could be further improved. The influence of PEDOT:PSS on the nanocomposite enzyme electrode was discussed from the aspects of the apparent electron diffusion coefficient (D(app)) and the charge transfer resistance (R(ct)). The glucose-sensing sensitivity of the BPEI-Fc/PEDOT:PSS/GOx/SPCE is calculated to be 66 μA mM(–1) cm(–2), which is 2.5 times higher than that without PEDOT:PSS. The apparent Michaelis constant (K(M)(app)) of the BPEI-Fc/PEDOT:PSS/GOx/SPCE estimated by the Lineweaver–Burk plot is 2.4 mM, which is much lower than that of BPEI-Fc/GOx/SPCE (11.2 mM). This implies that the BPEI-Fc/PEDOT:PSS/GOx/SPCE can catalytically oxidize glucose in a more efficient way. The interference test was carried out by injection of glucose and three common interferences: ascorbic acid (AA), dopamine (DA), and uric acid (UA) at physiological levels. The interferences of DA (4.2%) and AA (7.8%) are acceptable and the current response to UA (1.6%) is negligible, compared to the current response to glucose.

  1. Development and surface characterization of a glucose biosensor based on a nanocolumnar ZnO film

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, A., E-mail: adriana.rodrigues@partner.kit.edu [Instituto de Física − UFRGS, P.O. Box 15051, 91501-970 Porto Alegre, RS (Brazil); Castegnaro, M.V. [Instituto de Física − UFRGS, P.O. Box 15051, 91501-970 Porto Alegre, RS (Brazil); Arguello, J.; Alves, M.C.M. [Instituto de Química − UFRGS, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Morais, J., E-mail: jonder@if.ufrgs.br [Instituto de Física − UFRGS, P.O. Box 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-04-30

    Highlights: • Glucose biosensor based on self-assembled nanocolumnar ZnO deposited on stainless steel. • XPS applied to investigate the GOx immobilization on the ZnO nanocolumns surface. • Observable chemical shifts on O1s and Zn2p corroborates enzime immobilization. - Abstract: Highly oriented nanostructured ZnO films were grown on the surface of stainless steel plates (ZnO/SS) by chemical bath deposition (CBD). The films consisted of vertically aligned ZnO nanocolumns, ∼1 μm long and ∼80 nm wide, as observed by SEM (scanning electron microscopy) and FIB (focused ion beam). XRD (X-ray diffraction) confirmed the c-axis preferred orientation of the ZnO columns, which were functionalized with the glucose oxidase (GOx) enzyme into a biosensor of glucose. The electrochemical response studied by CV (cyclic voltammetry) proved that the biosensor was capable of detecting glucose from 1.5 up to 16 mM concentration range. XPS (X-ray photoelectron spectroscopy) analysis, excited with synchrotron radiation, probed the atom specific chemical environment at the electrode’s surface and shed some light on the nature of the ZnO-GOx interaction.

  2. Poly(1-(2-carboxyethyl)pyrrole)/polypyrrole composite nanowires for glucose biosensor

    International Nuclear Information System (INIS)

    Jiang Hairong; Zhang Aifeng; Sun Yanan; Ru Xiaoning; Ge Dongtao; Shi Wei

    2012-01-01

    A novel glucose biosensor based on poly(1-(2-carboxyethyl)pyrrole) (PPyCOOH)/polypyrrole (PPy) composite nanowires was developed by immobilizing glucose oxidase (GOD) on the nanowires via covalent linkages. The PPyCOOH/PPy composite nanowires were fabricated by a facile two-step electrochemical synthesis route. First, PPy nanowires were synthesized in phosphate buffer solution using organic sulfonic acid, p-toluenesulfonate acid, as soft-template. Then, PPyCOOH/PPy composite nanowires were obtained by polymerizing 1-(2-carboxyethyl)pyrrole onto PPy nanowires via electrochemical method. Scanning electron microscopic, FT-IR spectra, X-ray photoelectron spectroscopy and cyclic voltammograms were used to characterize the structural and electrical behaviors of the composite nanowires. The PPyCOOH/PPy composite nanowires exhibited uniform diameter, high reactive site (-COOH), large specific surface, excellent electroactivity and good adhesion to electrode. The glucose biosensor was constructed by covalently coupling GOD to the composite nanowires. The biosensor response was rapid (5 s), highly sensitive (33.6 μA mM −1 cm −2 ) with a wide linear range (up to 10.0 mM) and low detection limit (0.63 μM); it also exhibited high stability and specificity to glucose. The attractive electrochemical and structural properties of PPyCOOH/PPy composite nanowires suggested potential application for electrocatalysis and biosensor.

  3. Graphene versus Multi-Walled Carbon Nanotubes for Electrochemical Glucose Biosensing

    Directory of Open Access Journals (Sweden)

    Edmond Lam

    2013-03-01

    Full Text Available : A simple procedure was developed for the fabrication of electrochemical glucose biosensors using glucose oxidase (GOx, with graphene or multi-walled carbon nanotubes (MWCNTs. Graphene and MWCNTs were dispersed in 0.25% 3-aminopropyltriethoxysilane (APTES and drop cast on 1% KOH-pre-treated glassy carbon electrodes (GCEs. The EDC (1-ethyl-(3-dimethylaminopropyl carbodiimide-activated GOx was then bound covalently on the graphene- or MWCNT-modified GCE. Both the graphene- and MWCNT-based biosensors detected the entire pathophysiological range of blood glucose in humans, 1.4–27.9 mM. However, the direct electron transfer (DET between GOx and the modified GCE’s surface was only observed for the MWCNT-based biosensor. The MWCNT-based glucose biosensor also provided over a four-fold higher current signal than its graphene counterpart. Several interfering substances, including drug metabolites, provoked negligible interference at pathological levels for both the MWCNT- and graphene-based biosensors. However, the former was more prone to interfering substances and drug metabolites at extremely pathological concentrations than its graphene counterpart.

  4. Graphene versus Multi-Walled