WorldWideScience

Sample records for glucose dependent insulin

  1. Insulin resistance in type 1 (insulin-dependent) diabetes: dissimilarities for glucose and intermediary metabolites

    NARCIS (Netherlands)

    Nijs, H. G.; Radder, J. K.; Poorthuis, B. J.; Krans, H. M.

    1990-01-01

    To study insulin action on intermediary metabolism in relation to glucose disposal in Type 1 (insulin-dependent) diabetes, 29 patients and 15 control subjects underwent sequential euglycemic clamps (insulin infusion rates 0.5, 1.0, 2.0 and 5.0 mU.kg-1.min-1 in 2 hour periods). Dose-response curves

  2. Effect of chloroquine on insulin and glucose homoeostasis in normal subjects and patients with non-insulin-dependent diabetes mellitus.

    OpenAIRE

    Smith, G D; Amos, T A; Mahler, R; Peters, T J

    1987-01-01

    Plasma glucose, insulin, and C peptide concentrations were determined after an oral glucose load in normal subjects and in a group of patients with non-insulin-dependent diabetes mellitus before and during a short course of treatment with chloroquine. In the control group there was a small but significant reduction in fasting blood glucose concentration but overall glucose tolerance and hormone concentrations were unaffected. In contrast, the patients with non-insulin-dependent diabetes melli...

  3. Effect of chloroquine on insulin and glucose homoeostasis in normal subjects and patients with non-insulin-dependent diabetes mellitus.

    Science.gov (United States)

    Smith, G D; Amos, T A; Mahler, R; Peters, T J

    1987-01-01

    Plasma glucose, insulin, and C peptide concentrations were determined after an oral glucose load in normal subjects and in a group of patients with non-insulin-dependent diabetes mellitus before and during a short course of treatment with chloroquine. In the control group there was a small but significant reduction in fasting blood glucose concentration but overall glucose tolerance and hormone concentrations were unaffected. In contrast, the patients with non-insulin-dependent diabetes mellitus showed a significant improvement in their glucose tolerance, which paralleled the severity of their diabetes. This response seems to reflect decreased degradation of insulin rather than increased pancreatic output. These observations suggest that treatment with chloroquine or suitable analogues may be a new approach to the management of diabetes. PMID:3103729

  4. Insulin-dependent glucose metabolism in dairy cows with variable fat mobilization around calving.

    Science.gov (United States)

    Weber, C; Schäff, C T; Kautzsch, U; Börner, S; Erdmann, S; Görs, S; Röntgen, M; Sauerwein, H; Bruckmaier, R M; Metges, C C; Kuhla, B; Hammon, H M

    2016-08-01

    clamps, pp nonesterified fatty acid concentrations did not reach the ap levels. The study demonstrated a minor influence of different degrees of body fat mobilization on insulin metabolism in cows during the transition period. The distinct decrease in the glucose-dependent release of insulin pp is the most striking finding that explains the impaired insulin action after calving, but does not explain differences in body fat mobilization between HLFC and LLFC cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects.

    Science.gov (United States)

    Thorburn, A; Litchfield, A; Fabris, S; Proietto, J

    1995-05-01

    A transient rise in hepatic glucose production (HGP) after an oral glucosa load has been reported in some insulin-resistant states such as in obese fa/fa Zucker rats. The aim of this study was to determine whether this rise in HGP also occurs in subjects with established non-insulin-dependent diabetes mellitus (NIDDM). Glucose kinetics were measured basally and during a double-label oral glucose tolerance test (OGTT) in 12 NIDDM subjects and 12 non-diabetic 'control' subjects. Twenty minutes after the glucose load, HGP had increased 73% above basal in the NIDDM subjects (7.29 +/- 0.52 to 12.58 +/- 1.86 mumol/kg/min, P < 0.02). A transient rise in glucagon (12 pg/ml above basal, P < 0.004) occurred at a similar time. In contrast, the control subjects showed no rise in HGP or plasma glucagon. HGP began to suppress 40-50 min after the OGTT in both the NIDDM and control subjects. A 27% increase in the rate of gut-derived glucose absorption was also observed in the NIDDM group, which could be the result of increased gut glucose absorption or decreased first pass extraction of glucose by the liver. Therefore, in agreement with data in animal models of NIDDM, a transient rise in HGP partly contributes to the hyperglycemia observed after an oral glucose load in NIDDM subjects.

  6. Effects of exercise training on glucose control, lipid metabolism, and insulin sensitivity in hypertriglyceridemia and non-insulin dependent diabetes mellitus.

    Science.gov (United States)

    Lampman, R M; Schteingart, D E

    1991-06-01

    Exercise training has potential benefits for patients with hyperlipidemia and/or non-insulin dependent diabetes mellitus. In nondiabetic, nonobese subjects with hypertriglyceridemia, exercise training alone increased insulin sensitivity, improved glucose tolerance, and lowered serum triglyceride and cholesterol levels. These improvements did not occur when exercise training alone was given to similar patients with impaired glucose tolerance. In severely obese (X = 125 kg) subjects without diabetes melitus, a 600 calorie diet alone decreased glucose and insulin concentrations and improved glucose tolerance but did not increase insulin sensitivity. The addition of exercise training improved insulin sensitivity. Obese, non-insulin dependent diabetes mellitus subjects on sulfonylurea therapy alone increased insulin levels but failed to improve insulin sensitivity or glucose levels. In contrast, the addition of exercise training to this medication resulted in improved insulin sensitivity and lowered glucose levels. We conclude that exercise training has major effects on lowering triglyceride levels in hyperlipidemic subjects and can potentiate the effect of diet or drug therapy on glucose metabolism in patients with non-insulin dependent diabetes mellitus.

  7. Intermittent Hypoxia Disrupts Glucose Homeostasis in Liver Cells in an Insulin-Dependent and Independent Manner

    Directory of Open Access Journals (Sweden)

    Chen Juan Gu

    2018-05-01

    Full Text Available Background/Aims: Obstructive sleep apnea is associated with diabetes and insulin resistance, but the underlying mechanisms remain unclear. The purpose of the current study was to determine the molecular effects of intermittent hypoxia (IH on hepatic insulin signaling and glucose homeostasis, and whether c-Jun NH2-terminal-kinase (JNK contributed to metabolic responses to IH in liver cells. Methods: The human HepG2 cells and rat FAO cells were exposed to 10, 30, 120, 240 or 360 cycles of IH (1% O2 for 60 s followed by 21% O2 for 60s, 7.5 cycles per hour or normoxia as a control. In a subgroup, we exposed cells to 360 cycles of IH with the JNK inhibitor SP600125. After IH exposure, cell glycogen content and glucose output were measured using colorimetric assay kits. Canonical insulin signaling and gluconeogenic genes were measured by western blot and quantitative polymerase chain reaction. Results: IH decreased insulin-stimulated protein kinase B (AKT/glycogen synthase kinase-3β (GSK-3β phosphorylation in a time-dependent manner, while inhibiting forkhead box protein O1 (FOXO1 expression and phosphoenolpyruvate carboxykinase (PEPCK transcription independent of insulin signaling. JNK inhibitor SP600125 partially restored AKT/ GSK-3β phosphorylation and glycogen synthesis, but did not affect other IH-induced glucose metabolic changes. Conclusion: IH in vitro impaired insulin signal transduction in liver cells as assessed by inhibited AKT/GSK-3β phosphorylation via JNK activation. IH inhibited FOXO1 and gluconeogenesis in an insulin-independent manner.

  8. Assessment of insulin action in insulin-dependent diabetes mellitus using [6(14)C]glucose, [3(3)H]glucose, and [2(3)H]glucose. Differences in the apparent pattern of insulin resistance depending on the isotope used

    International Nuclear Information System (INIS)

    Bell, P.M.; Firth, R.G.; Rizza, R.A.

    1986-01-01

    To determine whether [2(3)H], [3(3)H], and [6(14)C]glucose provide an equivalent assessment of glucose turnover in insulin-dependent diabetes mellitus (IDDM) and nondiabetic man, glucose utilization rates were measured using a simultaneous infusion of these isotopes before and during hyperinsulinemic euglycemic clamps. In the nondiabetic subjects, glucose turnover rates determined with [6(14)C]glucose during insulin infusion were lower (P less than 0.02) than those determined with [2(3)H]glucose and higher (P less than 0.01) than those determined with [3(3)H]glucose. In IDDM, glucose turnover rates measured with [6(14)C]glucose during insulin infusion were lower (P less than 0.05) than those determined with [2(3)H]glucose, but were not different from those determined with [3(3)H]glucose. All three isotopes indicated the presence of insulin resistance. However, using [3(3)H]glucose led to the erroneous conclusion that glucose utilization was not significantly decreased at high insulin concentrations in the diabetic patients. [6(14)C] and [3(3)H]glucose but not [2(3)H]glucose indicated impairment in insulin-induced suppression of glucose production. These results indicate that tritiated isotopes do not necessarily equally reflect the pattern of glucose metabolism in diabetic and nondiabetic man

  9. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion.

    Science.gov (United States)

    Zheng, Hongzhi; Fu, Jingqi; Xue, Peng; Zhao, Rui; Dong, Jian; Liu, Dianxin; Yamamoto, Masayuki; Tong, Qingchun; Teng, Weiping; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E; Pi, Jingbo

    2015-04-01

    The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release and decreased glucose-stimulated insulin secretion (GSIS). Nrf1(b)-KO mice exhibited severe fasting hyperinsulinemia, reduced GSIS, and glucose intolerance. Silencing of Nrf1 in MIN6 cells resulted in oxidative stress and altered glucose metabolism, with increases in both glucose uptake and aerobic glycolysis, which is associated with the elevated basal insulin release and reduced glucose responsiveness. The elevated glycolysis and reduced glucose responsiveness due to Nrf1 silencing likely result from altered expression of glucose metabolic enzymes, with induction of high-affinity hexokinase 1 and suppression of low-affinity glucokinase. Our study demonstrated a novel role of Nrf1 in regulating glucose metabolism and insulin secretion in β-cells and characterized Nrf1 as a key transcription factor that regulates the coupling of glycolysis and mitochondrial metabolism and GSIS. Nrf1 plays critical roles in regulating glucose metabolism, mitochondrial function, and insulin secretion, suggesting that Nrf1 may be a novel target to improve the function of insulin-secreting β-cells.

  10. Correction of Diabetic Hyperglycemia and Amelioration of Metabolic Anomalies by Minicircle DNA Mediated Glucose-Dependent Hepatic Insulin Production.

    Directory of Open Access Journals (Sweden)

    Tausif Alam

    Full Text Available Type 1 diabetes mellitus (T1DM is caused by immune destruction of insulin-producing pancreatic β-cells. Commonly used insulin injection therapy does not provide a dynamic blood glucose control to prevent long-term systemic T1DM-associated damages. Donor shortage and the limited long-term success of islet transplants have stimulated the development of novel therapies for T1DM. Gene therapy-based glucose-regulated hepatic insulin production is a promising strategy to treat T1DM. We have developed gene constructs which cause glucose-concentration-dependent human insulin production in liver cells. A novel set of human insulin expression constructs containing a combination of elements to improve gene transcription, mRNA processing, and translation efficiency were generated as minicircle DNA preparations that lack bacterial and viral DNA. Hepatocytes transduced with the new constructs, ex vivo, produced large amounts of glucose-inducible human insulin. In vivo, insulin minicircle DNA (TA1m treated streptozotocin (STZ-diabetic rats demonstrated euglycemia when fasted or fed, ad libitum. Weight loss due to uncontrolled hyperglycemia was reversed in insulin gene treated diabetic rats to normal rate of weight gain, lasting ∼1 month. Intraperitoneal glucose tolerance test (IPGT demonstrated in vivo glucose-responsive changes in insulin levels to correct hyperglycemia within 45 minutes. A single TA1m treatment raised serum albumin levels in diabetic rats to normal and significantly reduced hypertriglyceridemia and hypercholesterolemia. Elevated serum levels of aspartate transaminase, alanine aminotransferase, and alkaline phosphatase were restored to normal or greatly reduced in treated rats, indicating normalization of liver function. Non-viral insulin minicircle DNA-based TA1m mediated glucose-dependent insulin production in liver may represent a safe and promising approach to treat T1DM.

  11. The glucose-dependent insulinotropic polypeptide and glucose-stimulated insulin response to exercise training and diet in obesity

    DEFF Research Database (Denmark)

    Kelly, Karen R; Brooks, Latina M; Solomon, Thomas

    2009-01-01

    the incretin effect of GIP. The purpose of this study was to assess the effects of a 12-wk exercise training intervention (5 days/wk, 60 min/day, 75% Vo(2 max)) combined with a eucaloric (EX, n = 10) or hypocaloric (EX-HYPO, pre: 1,945 +/- 190, post: 1,269 +/- 70, kcal/day; n = 9) diet on the GIP response......Aging and obesity are characterized by decreased beta-cell sensitivity and defects in the potentiation of nutrient-stimulated insulin secretion by GIP. Exercise and diet are known to improve glucose metabolism and the pancreatic insulin response to glucose, and this effect may be mediated through...... to ingested glucose, 2) GIP may mediate the attenuated glucose-stimulated insulin response after exercise/diet interventions, and 3) the increased PYY(3-36) response represents an improved capacity to regulate satiety and potentially body weight in older, obese, insulin-resistant adults....

  12. The glucose-dependent insulinotropic polypeptide and glucose-stimulated insulin response to exercise training and diet in obesity.

    Science.gov (United States)

    Kelly, Karen R; Brooks, Latina M; Solomon, Thomas P J; Kashyap, Sangeeta R; O'Leary, Valerie B; Kirwan, John P

    2009-06-01

    Aging and obesity are characterized by decreased beta-cell sensitivity and defects in the potentiation of nutrient-stimulated insulin secretion by GIP. Exercise and diet are known to improve glucose metabolism and the pancreatic insulin response to glucose, and this effect may be mediated through the incretin effect of GIP. The purpose of this study was to assess the effects of a 12-wk exercise training intervention (5 days/wk, 60 min/day, 75% Vo(2 max)) combined with a eucaloric (EX, n = 10) or hypocaloric (EX-HYPO, pre: 1,945 +/- 190, post: 1,269 +/- 70, kcal/day; n = 9) diet on the GIP response to glucose in older (66.8 +/- 1.5 yr), obese (34.4 +/- 1.7 kg/m(2)) adults with impaired glucose tolerance. In addition to GIP, plasma PYY(3-36), insulin, and glucose responses were measured during a 3-h, 75-g oral glucose tolerance test. Both interventions led to a significant improvement in Vo(2 max) (P HYPO (-8.3 +/- 1.1 vs. -2.8 +/- 0.5, P = 0.002). The glucose-stimulated insulin response was reduced after EX-HYPO (P = 0.02), as was the glucose-stimulated GIP response (P caloric restriction and exercise reduces the GIP response to ingested glucose, 2) GIP may mediate the attenuated glucose-stimulated insulin response after exercise/diet interventions, and 3) the increased PYY(3-36) response represents an improved capacity to regulate satiety and potentially body weight in older, obese, insulin-resistant adults.

  13. Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes

    International Nuclear Information System (INIS)

    Walton, Felecia S.; Harmon, Anne W.; Paul, David S.; Drobna, Zuzana; Patel, Yashomati M.; Styblo, Miroslav

    2004-01-01

    Chronic exposures to inorganic arsenic (iAs) have been associated with increased incidence of noninsulin (type-2)-dependent diabetes mellitus. Although mechanisms by which iAs induces diabetes have not been identified, the clinical symptoms of the disease indicate that iAs or its metabolites interfere with insulin-stimulated signal transduction pathway or with critical steps in glucose metabolism. We have examined effects of iAs and methylated arsenicals that contain trivalent or pentavalent arsenic on glucose uptake by 3T3-L1 adipocytes. Treatment with inorganic and methylated pentavalent arsenicals (up to 1 mM) had little or no effect on either basal or insulin-stimulated glucose uptake. In contrast, trivalent arsenicals, arsenite (iAs III ), methylarsine oxide (MAs III O), and iododimethylarsine (DMAs III O) inhibited insulin-stimulated glucose uptake in a concentration-dependent manner. Subtoxic concentrations of iAs III (20 μM), MAs III O (1 μM), or DMAs III I (2 μM) decreased insulin-stimulated glucose uptake by 35-45%. Basal glucose uptake was significantly inhibited only by cytotoxic concentrations of iAs III or MAs III O. Examination of the components of the insulin-stimulated signal transduction pathway showed that all trivalent arsenicals suppressed expression and possibly phosphorylation of protein kinase B (PKB/Akt). The concentration of an insulin-responsive glucose transporter (GLUT4) was significantly lower in the membrane region of 3T3-L1 adipocytes treated with trivalent arsenicals as compared with untreated cells. These results suggest that trivalent arsenicals inhibit insulin-stimulated glucose uptake by interfering with the PKB/Akt-dependent mobilization of GLUT4 transporters in adipocytes. This mechanism may be, in part, responsible for the development of type-2 diabetes in individuals chronically exposed to iAs

  14. The changes in levels of C-P and insulin in glucose tolerance test in rats with experimental non-insulin dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Liu Xinqiu; Lei Ming

    2001-01-01

    The changes in levels of C-P and insulin were investigated in the GT test in rats with non-insulin dependent diabetes mellitus. In order to establish a model of non-insulin dependent diabetes mellitus (NIDDM), the authors injected rats with small dose streptozocoi (i.v.). Two weeks after the injection, the rats developed impaired glucose tolerance (IGT). Then, they were fed with high energy diet for eight weeks to form NIDDM. The results showed that the highest peak time of C-P and insulin in NIDDM was remarkably later than that in normal subjects, the highest peak time was in two hours (P < 0.05). The data suggest that level of C-P could accurately respond to level of insulin, and this experimental non-insulin dependent diabetes mellitus model is ideal

  15. The glucose-dependent insulinotropic polypeptide and glucose-stimulated insulin response to exercise training and diet in obesity

    OpenAIRE

    Kelly, Karen R.; Brooks, Latina M.; Solomon, Thomas P. J.; Kashyap, Sangeeta R.; O'Leary, Valerie B.; Kirwan, John P.

    2009-01-01

    Aging and obesity are characterized by decreased β-cell sensitivity and defects in the potentiation of nutrient-stimulated insulin secretion by GIP. Exercise and diet are known to improve glucose metabolism and the pancreatic insulin response to glucose, and this effect may be mediated through the incretin effect of GIP. The purpose of this study was to assess the effects of a 12-wk exercise training intervention (5 days/wk, 60 min/day, 75% V̇o2 max) combined with a eucaloric (EX, n = 10) or ...

  16. Effects of different doses of glucose and insulin on morphine state-dependent memory of passive avoidance in mice.

    Science.gov (United States)

    Jafari, M R; Zarrindast, M R; Djahanguiri, B

    2004-10-01

    Behavioral effects of morphine, including its effect on memory, have been demonstrated to be influenced by glucose pretreatment. The measurement of step-down latency in passive avoidance has been used to study memory in laboratory animals. The pre-training injection of 5 mg/kg morphine impaired memory, which was restored when 24 h later the same dose of the drug was administered. To investigate the effects of glucose and insulin alone or in combination with morphine, on pre-test day, on memory recall in mice. The effects of different doses of glucose (50, 100, and 200 mg/kg, IP) and insulin (5, 10, and 20 IU/kg, IP) alone or in combination with morphine, have been studied in mice. The blood glucose level and locomotor activity of the animals were also measured. Although the administration of glucose alone showed no effect on morphine-induced memory impairment, its co-administration with morphine resulted in a significant and dose-dependent memory enhancement compared with the effects of morphine administration alone. Like glucose, the administration of different doses of insulin alone produced no change in the memory, but when the drug was co-administered with morphine, it significantly reduced morphine-induced memory retrieval. The effect of insulin was the opposite of glucose. None of the animals subjected to insulin treatment showed convulsions. Glucose is suggested to increase, on the test day, the morphine-induced memory enhancement by three different mechanisms: cholinergic or opioidergic modulations, or regulation of the ATP-dependent potassium channels.

  17. D-[U-11C]glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects

    International Nuclear Information System (INIS)

    Gutniak, M.; Blomqvist, G.; Widen, L.; Stone-Elander, S.; Hamberger, B.; Grill, V.

    1990-01-01

    We used D-[U-11C]glucose to evaluate transport and metabolism of glucose in the brain in eight nondiabetic and six insulin-dependent diabetes mellitus (IDDM) subjects. IDDM subjects were treated by continuous subcutaneous insulin infusion. Blood glucose was regulated by a Biostator-controlled glucose infusion during a constant insulin infusion. D-[U-11C]-glucose was injected for positron emission tomography studies during normoglycemia as well as during moderate hypoglycemia [arterial plasma glucose 2.74 +/- 0.14 in nondiabetic and 2.80 +/- 0.26 mmol/l (means +/- SE) in IDDM subjects]. Levels of free insulin were constant and similar in both groups. The tracer data were analyzed using a three-compartment model with a fixed correction for 11CO2 egression. During normoglycemia the influx rate constant (k1) and blood-brain glucose flux did not differ between the two groups. During hypoglycemia k1 increased significantly and similarly in both groups (from 0.061 +/- 0.007 to 0.090 +/- 0.006 in nondiabetic and from 0.061 +/- 0.006 to 0.093 +/- 0.013 ml.g-1.min-1 in IDDM subjects). During normoglycemia the tracer-calculated metabolism of glucose was higher in the whole brain in the nondiabetic than in the diabetic subjects (22.0 +/- 1.9 vs. 15.6 +/- 1.1 mumol.100 g-1.min-1, P less than 0.01). During hypoglycemia tracer-calculated metabolism was decreased by 40% in nondiabetic subjects and by 28% in diabetic subjects. The results indicate that uptake of glucose is normal, but some aspect of glucose metabolism is abnormal in a group of well-controlled IDDM subjects

  18. Enhancement of glomerular filtration rate and renal plasma flow by oral glucose load in well controlled insulin-dependent diabetics

    DEFF Research Database (Denmark)

    Sandahl Christiansen, J; Christensen, C K; Hermansen, K

    1986-01-01

    Glomerular filtration rate (GFR) and renal plasma flow (RPF) were measured in 27 patients with uncomplicated insulin-dependent diabetes (IDDM) before and after an oral glucose load of 1.1 g glucose/kg body wt. In the 18 patients showing near-normoglycaemia (blood glucose less than or equal to 8....... No changes in blood pressure or urinary albumin excretion rates took place in either group. The reduction in plasma protein and in plasma growth hormone concentration were similar in the two groups. No change was seen in plasma arginine vasopressin concentration. There was no difference in the qualitative...

  19. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    Science.gov (United States)

    Kristensen, Jonas Møller; Treebak, Jonas T.; Schjerling, Peter; Goodyear, Laurie

    2014-01-01

    Metformin-induced activation of the 5′-AMP-activated protein kinase (AMPK) has been associated with enhanced glucose uptake in skeletal muscle, but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent on AMPK signaling. Oral doses of metformin or saline treatment were given to muscle-specific kinase dead (KD) AMPKα2 mice and wild-type (WT) littermates either once or chronically for 2 wk. Soleus and extensor digitorum longus muscles were used for measurements of glucose transport and Western blot analyses. Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (∼45%, P metformin treatment. Insulin signaling at the level of Akt and TBC1D4 protein expression as well as Akt Thr308/Ser473 and TBC1D4 Thr642/Ser711 phosphorylation were not changed by metformin treatment. Also, protein expressions of Rab4, GLUT4, and hexokinase II were unaltered after treatment. The acute metformin treatment did not affect glucose uptake in muscle of either of the genotypes. In conclusion, we provide novel evidence for a role of AMPK in potentiating the effect of insulin on glucose uptake in soleus muscle in response to chronic metformin treatment. PMID:24644243

  20. Sup(13)C NMR studies of glucose disposal in normal and non-insulin-dependent diabetic humans

    International Nuclear Information System (INIS)

    Shulman, G.I.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    To examine the extent to which the defect in insulin action in subjects with non-insulin-dependent diabetes mellitus (NIDDM) can be accounted for by impairment of muscle glycogen synthesis, we performed combined hyperglycemic-hyperinsulinemic clamp studies with [ 13 C]glucose in five subjects with NIDDM and in six age- and weight-matched healthy subjects. The rate of incorporation of intravenously infused [1- 13 C]glucose into muscle glycogen was measured directly in the gastrocnemius muscle by means of a nuclear magnetic resonance (NMR) spectrometer with a 15.5 min time resolution and a 13 C surface coil. The steady-state plasma concentrations of insulin and glucose were similar in both study groups. The mean (±SE) rate of glycogen synthesis, as determined by 13 C NMR, was 78±28 and 183±39 μmol-glucosyl units (kg muscle tissue (wet mass)) -1 min -1 in the diabetic and normal subjects, respectively. The mean glucose uptake was markedly reduced in the diabetic as compared with the normal subjects. The mean rate of non-oxidative glucose metabolism was 22±4 μmol kg -1 min -1 in the diabetic subjects and 42±4 μmol kg -1 min -1 in the normal subjects. When these rates are extrapolated to apply to the whole body, the synthesis of muscle glycogen would account for most of the total-body glucose uptake and all of the non-oxidative glucose metabolism in both normal and diabetic subjects. We conclude that muscle glycogen synthesis is the principal pathway of glucose disposal in both normal and diabetic subjects and that defects in muscle glycogen synthesis have a dominant role in the insulin resistance that occurs in persons with NIDDM. (author)

  1. Fasting and feeding variations of insulin requirements and insulin binding to erythrocytes at different times of the day in insulin dependent diabetics--assessed under the condition of glucose-controlled insulin infusion.

    Science.gov (United States)

    Hung, C T; Beyer, J; Schulz, G

    1986-07-01

    Nine insulin-dependent diabetic patients were examined for insulin requirement, counterregulatory hormones, and receptor binding during their connection to glucose-controlled insulin infusion system. They were of 103% ideal body weight. A diet of 45% carbohydrate, 20% protein and 35% fat was divided into three meals and three snacks averaging the daily calorie intake of 1859 kcal. Following an equilibrating phase of 14 hours after the connection to the glucose-controlled insulin infusion system the blood samples were taken at 0800, 1200 and 1800. The insulin infusion rate increased at 0300 in the early morning from 0.128 mU/kg/min to 0.221 mU/kg/min (P less than 0.02). The postprandial insulin infusion rate jumped from 0.7 U/h (0700-0800) to 7.5 U/h (0800-0900). The calorie related and carbohydrate related insulin demands after breakfast were also highest and declined after lunch respectively (1.16 uU/kg/min kj vs. 0.61 uU/kg/min kj, P less than 0.05 and 236 mU/g CHO vs. 129 mU/g CHO and 143 mU/g CHO). Of the counterregulatory hormones the cortisol showed a significant diurnal rhythm to insulin demands. The insulin tracer binding was higher at 0800 before breakfast than that at 1200 before lunch (P less than 0.05). The increased binding could be better attributed to receptor concentration change than to affinity change. The cause of insulin relative insensitivity in the morning could be due to altered liver response to the cortisol peak in type 1 diabetics. The preserved variation of insulin binding in our patients might be referred to feeding.

  2. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory.

    Science.gov (United States)

    Pearson-Leary, Jiah; McNay, Ewan C

    2016-11-23

    The insulin-regulated glucose transporter-4 (GluT4) is critical for insulin- and contractile-mediated glucose uptake in skeletal muscle. GluT4 is also expressed in some hippocampal neurons, but its functional role in the brain is unclear. Several established molecular modulators of memory processing regulate hippocampal GluT4 trafficking and hippocampal memory formation is limited by both glucose metabolism and insulin signaling. Therefore, we hypothesized that hippocampal GluT4 might be involved in memory processes. Here, we show that, in male rats, hippocampal GluT4 translocates to the plasma membrane after memory training and that acute, selective intrahippocampal inhibition of GluT4-mediated glucose transport impaired memory acquisition, but not memory retrieval. Other studies have shown that prolonged systemic GluT4 blockade causes insulin resistance. Unexpectedly, we found that prolonged hippocampal blockade of glucose transport through GluT4-upregulated markers of hippocampal insulin signaling prevented task-associated depletion of hippocampal glucose and enhanced both working and short-term memory while also impairing long-term memory. These effects were accompanied by increased expression of hippocampal AMPA GluR1 subunits and the neuronal GluT3, but decreased expression of hippocampal brain-derived neurotrophic factor, consistent with impaired ability to form long-term memories. Our findings are the first to show the cognitive impact of brain GluT4 modulation. They identify GluT4 as a key regulator of hippocampal memory processing and also suggest differential regulation of GluT4 in the hippocampus from that in peripheral tissues. The role of insulin-regulated glucose transporter-4 (GluT4) in the brain is unclear. In the current study, we demonstrate that GluT4 is a critical component of hippocampal memory processes. Memory training increased hippocampal GluT4 translocation and memory acquisition was impaired by GluT4 blockade. Unexpectedly, whereas long

  3. Two weeks of metformin treatment induces AMPK dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Treebak, Jonas Thue; Schjerling, Peter

    2014-01-01

    signaling. Methods: Oral doses of metformin or saline treatment were given muscle-specific kinase α2 dead AMPK mice (KD) and wild type (WT) littermates either once or chronically for 2 weeks. Soleus and Extensor Digitorum Longus (EDL) muscles were used for measurements of glucose transport and Western blot......Background: Metformin-induced activation of AMPK has been associated with enhanced glucose uptake in skeletal muscle but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent upon AMPK...... analyzes. Results: Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (45%, P...

  4. Effect of intravenous glucose infusion on renal function in normal man and in insulin-dependent diabetics

    DEFF Research Database (Denmark)

    Frandsen, M; Parving, H H; Christiansen, JS

    1981-01-01

    The effect of intravenous glucose infusion on glomerular filtration rate and renal plasma flow (constant infusion technique using 125I-iothalamate and 131I-hippuran) and on urinary excretion of albumin and beta-2-microglobulin were studied in ten normal subjects and seven metabolically well......-controlled insulin-dependent diabetics. Following glucose infusion in normal subjects (n = 10) blood glucose increased from 4.7 +/- 0.1 to 10.9 +/- 0.4 mmol/l (SEM) (p less than or equal to 0.01). Glomerular filtration rate increased from 116 +/- 2 to 123 +/- 3 ml/mi x 1.73 m2 (p less than or equal to 0.01), while...... no change in renal plasma flow was seen - 552 +/- 11 versus 553 +/- 18 ml/min x 1.73 m2. Volume expansion with intravenous saline infusion in six of the normal subjects induced no changes in blood glucose or kidney function. In seven strictly controlled insulin-dependent diabetics, blood glucose values were...

  5. Tumor necrosis factor-alpha inhibits insulin's stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans

    DEFF Research Database (Denmark)

    Rask-Madsen, Christian; Domínguez, Helena; Ihlemann, Nikolaj

    2003-01-01

    BACKGROUND: Inflammatory mechanisms could be involved in the pathogenesis of both insulin resistance and atherosclerosis. Therefore, we aimed at examining whether the proinflammatory cytokine tumor necrosis factor (TNF)-alpha inhibits insulin-stimulated glucose uptake and insulin....../or TNF-alpha were coinfused. During infusion of insulin alone for 20 minutes, forearm glucose uptake increased by 220+/-44%. This increase was completely inhibited during coinfusion of TNF-alpha (started 10 min before insulin) with a more pronounced inhibition of glucose extraction than of blood flow....... Furthermore, TNF-alpha inhibited the ACh forearm blood flow response (Palpha...

  6. Enhancement of glomerular filtration rate and renal plasma flow by oral glucose load in well controlled insulin-dependent diabetics

    DEFF Research Database (Denmark)

    Sandahl Christiansen, J; Christensen, C K; Hermansen, K

    1986-01-01

    Glomerular filtration rate (GFR) and renal plasma flow (RPF) were measured in 27 patients with uncomplicated insulin-dependent diabetes (IDDM) before and after an oral glucose load of 1.1 g glucose/kg body wt. In the 18 patients showing near-normoglycaemia (blood glucose less than or equal to 8...... mmol/l) before the glucose challenge the increase in blood glucose from 4.2 +/- 1.7 to 15.2 +/- 2.3 mmol/l was accompanied by an enhancement of GFR from 128 +/- 15 to 132 +/- 14 ml/min X 1.73 m2 (2p = 0.030) and of RPF from 534 +/- 116 to 562 +/- 105 ml/min X 1.73 m2 (2p = 0.023). By contrast oral...... glucose load to the nine patients with hyperglycaemia (greater than 8 mmol/l) during baseline conditions raising blood glucose from 11.9 +/- 2.0 to 19.6 +/- 1.5 mmol/l was accompanied by a reduction in GFR from 149 +/- 15 to 139 +/- 9 ml/min X 1.73 m2 (2p less than 0.001) while RPF was unchanged...

  7. Glucose-dependent Insulinotropic Polypeptide

    DEFF Research Database (Denmark)

    Christensen, Mikkel B; Calanna, Salvatore; Holst, Jens Juul

    2014-01-01

    CONTEXT: Patients with type 2 diabetes mellitus (T2DM) have clinically relevant disturbances in the effects of the hormone glucose-dependent insulinotropic polypeptide (GIP). OBJECTIVE: We aimed to evaluate the importance of the prevailing plasma glucose levels for the effect of GIP on responses......: During fasting glycemia (plasma glucose ∼8 mmol/L), GIP elicited significant increments in both insulin and glucagon levels, resulting in neutral effects on plasma glucose. During insulin-induced hypoglycemia (plasma glucose ∼3 mmol/L), GIP elicited a minor early-phase insulin response and increased...... glucagon levels during the initial 30 minutes, resulting in less glucose needed to be infused to maintain the clamp (29 ± 8 vs 49 ± 12 mg × kg(-1), P glucose ∼12 mmol/L), GIP augmented insulin secretion throughout the clamp, with slightly less glucagon...

  8. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    Science.gov (United States)

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  9. Chapter 10: Glucose control: insulin therapy*

    African Journals Online (AJOL)

    Insulin and its analogues lower blood glucose by stimulating peripheral glucose uptake, especially by skeletal muscle and fat, and by inhibiting hepatic glucose production. Insulin inhibits ... control on 2 or 3 oral glucose lowering drugs.

  10. Thyroid hormone stimulated glucose uptake in human mononuclear blood cells from normal persons and from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L

    1989-01-01

    Thyroxine and T3 induced oxygen consumption and glucose uptake were studied in vitro in mononuclear blood cells isolated from patients with non-insulin-dependent diabetes mellitus (NIDDM) and from non-diabetic control persons. Cellular oxygen consumption and glucose uptake were promptly increased...

  11. Glucose-dependent insulinotropic polypeptide

    DEFF Research Database (Denmark)

    Christensen, Mikkel Bring

    2016-01-01

    was to investigate how the blood glucose level affects the glucagon and insulin responses to GIP in healthy subjects (Study 1) and patients with Type 2 diabetes (Study 2), and more specifically to investigate the effects of GIP and GLP-1 at low blood glucose in patients with Type 1 diabetes without endogenous...... as his own control. Interventions were intravenous administration of hormones GIP, GLP-1 and placebo (saline) during different blood glucose levels maintained (clamped) at a certain level. The end-points were plasma concentrations of glucagon and insulin as well as the amount of glucose used to clamp...... the blood glucose levels. In Study 3, we also used stable glucose isotopes to estimate the endogenous glucose production and assessed symptoms and cognitive function during hypoglycaemia. The results from the three studies indicate that GIP has effects on insulin and glucagon responses highly dependent upon...

  12. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    International Nuclear Information System (INIS)

    Naidoo, C.

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, 125 I-insulin binding to the solubilized erythrocyte membrane receptor and 125 I-insulin binding to fibroblasts in culture

  13. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, C

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, /sup 125/I-insulin binding to the solubilized erythrocyte membrane receptor and /sup 125/I-insulin binding to fibroblasts in culture.

  14. Circulating Docosahexaenoic Acid Associates with Insulin-Dependent Skeletal Muscle and Whole Body Glucose Uptake in Older Women Born from Normal Weight Mothers

    Directory of Open Access Journals (Sweden)

    Robert M. Badeau

    2017-02-01

    Full Text Available Background: Obesity among pregnant women is common, and their offspring are predisposed to obesity, insulin resistance, and diabetes. The circulating metabolites that are related to insulin resistance and are associated with this decreased tissue-specific uptake are unknown. Here, we assessed metabolite profiles in elderly women who were either female offspring from obese mothers (OOM or offspring of lean mothers (OLM. Metabolic changes were tested for associations with metrics for insulin resistance. Methods: Thirty-seven elderly women were separated into elderly offspring from obese mothers (OOM; n = 17 and elderly offspring from lean/normal weight mothers (OLM; n = 20 groups. We measured plasma metabolites using proton nuclear magnetic resonance (1H-NMR and insulin-dependent tissue-specific glucose uptake in skeletal muscle was assessed. Associations were made between metabolites and glucose uptake. Results: Compared to the OLM group, we found that the docosahexaenoic acid percentage of the total long-chain n-3 fatty acids (DHA/FA was significantly lower in OOM (p = 0.015. DHA/FA associated significantly with skeletal muscle glucose uptake (GU (p = 0.031 and the metabolizable glucose value derived from hyperinsulinemic-euglycemic clamp technique (M-value in the OLM group only (p = 0.050. Conclusions: DHA/FA is associated with insulin-dependent skeletal muscle glucose uptake and this association is significantly weakened in the offspring of obese mothers.

  15. Effects of 1 and 3 g cinnamon on gastric emptying, satiety, and postprandial blood glucose, insulin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1, and ghrelin concentrations in healthy subjects

    DEFF Research Database (Denmark)

    Hlebowicz, Joanna; Hlebowicz, Anna; Lindstedt, Sandra

    2009-01-01

    glucose, plasma concentrations of insulin and incretin hormones [glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1)], the ghrelin response, and satiety in healthy subjects. DESIGN: GER was measured by using real-time ultrasonography after ingestion of rice pudding...... with and without 1 or 3 g cinnamon. Fifteen healthy subjects were assessed in a crossover trial. RESULTS: The addition of 1 or 3 g cinnamon had no significant effect on GER, satiety, glucose, GIP, or the ghrelin response. The insulin response at 60 min and the area under the curve (AUC) at 120 min were...... cinnamon (P = 0.0082 and P = 0.0138, respectively, after Bonferroni correction). CONCLUSIONS: Ingestion of 3 g cinnamon reduced postprandial serum insulin and increased GLP-1 concentrations without significantly affecting blood glucose, GIP, the ghrelin concentration, satiety, or GER in healthy subjects...

  16. Bavachin from Psoralea corylifolia Improves Insulin-Dependent Glucose Uptake through Insulin Signaling and AMPK Activation in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Hyejin Lee

    2016-04-01

    Full Text Available The fruit of Psoralea corylifolia L. (Fabaceae (PC, known as “Bo-Gol-Zhee” in Korea has been used as traditional medicine. Ethanol and aqueous extracts of PC have an anti-hyperglycemic effect by increasing plasma insulin levels and decreasing blood glucose and total plasma cholesterol levels in type 2 diabetic rats. In this study, we purified six compounds from PC and investigated their anti-diabetic effect. Among the purified compounds, bavachin most potently accumulated lipids during adipocyte differentiation. Intracellular lipid accumulation was measured by Oil Red-O (ORO cell staining to investigate the effect of compounds on adipogenesis. Consistently, bavachin activated gene expression of adipogenic transcriptional factors, proliferator-activated receptorγ (PPARγ and CCAAT/enhancer binding protein-α (C/EBPα. Bavachin also increased adiponectin expression and secretion in adipocytes. Moreover, bavachin increased insulin-induced glucose uptake by differentiated adipocytes and myoblasts. In differentiated adipocytes, we found that bavachin enhanced glucose uptake via glucose transporter 4 (GLUT4 translocation by activating the Akt and 5′AMP-activated protein kinase (AMPK pathway in the presence or absence of insulin. These results suggest that bavachin from Psoralea corylifolia might have therapeutic potential for type 2 diabetes by activating insulin signaling pathways.

  17. Glucose triggers protein kinase A-dependent insulin secretion in mouse pancreatic islets through activation of the K+ATP channel-dependent pathway

    DEFF Research Database (Denmark)

    Thams, Peter; Anwar, Mohammad R; Capito, Kirsten

    2005-01-01

    pancreatic islets was determined by radioimmunoassay. RESULTS: In islets cultured at 5.5 mmol/l glucose, and then perifused in physiological Krebs-Ringer medium, the PKA inhibitors, H89 (10 micromol/l) and PKI 6-22 amide (30 micromol/l) did not inhibit glucose (16.7 mmol/l)-induced insulin secretion...

  18. [Effect of autogenic training on glucose regulation and lipid status in non-insulin dependent diabetics].

    Science.gov (United States)

    Kostić, N; Secen, S

    2000-01-01

    The objective of this study was to examine the benefits of autogenic training in patients with type 2 diabetes and 40 diabetics treated with oral antidiabetic agents were assigned to receive autogenic training. Treatment effects on GHb levels, glycemia, lipids and lipid peroxidases were evaluated after 12 weeks. Subjects demonstrated significant improvements of GHb level (8.94 +/- 2.21% vs. 7.9 +/- 2.395) (p autogenic training (1.21 +/- 0.11 vs. 1.36 +/- 1.42) (p training (6.63 +/- 1.66 mmol/l vs. 6.10 +/- 1.12 mmol/l) (p Autogenic training in selected patients, especially those who are most responsive to stress would provide benefits for glucosE control and lipid metabolism that are not always achieved by conventional treatment.

  19. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents

    International Nuclear Information System (INIS)

    Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya; Hirose, Takahisa; Kawamori, Ryuzo; Fujitani, Yoshio; Watada, Hirotaka

    2009-01-01

    Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4 daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.

  20. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Hirose, Takahisa [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University School of Medicine, Tokyo (Japan); Kawamori, Ryuzo [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University School of Medicine, Tokyo (Japan); Center for Beta Cell Biology and Regeneration, Juntendo University School of Medicine, Tokyo (Japan); Sportology Center, Juntendo University School of Medicine, Tokyo (Japan); Fujitani, Yoshio, E-mail: fujitani@juntendo.ac.jp [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University School of Medicine, Tokyo (Japan); Watada, Hirotaka, E-mail: hwatada@juntendo.ac.jp [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Sportology Center, Juntendo University School of Medicine, Tokyo (Japan)

    2009-12-18

    Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4 daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.

  1. Glucose-dependent insulinotropic polypeptide (GIP) is associated with lower LDL but unhealthy fat distribution, independent of insulin

    DEFF Research Database (Denmark)

    Møller, Cathrine Laustrup; Vistisen, Dorte; Færch, Kristine

    2016-01-01

    was measured by fasting plasma lipids and obesity including abdominal fat distribution assessed by ultrasonography. GIP and insulin were measured during an oral glucose tolerance test (0, 30 and 120 minutes). Linear regression analysis was used to study the associations between GIP, plasma lipids and obesity...... was associated with 0.13 cm less (0.01;0.25) subcutaneous fat but with more visceral abdominal fat (0.45 cm (0.12;0.78)) and higher waist-hip ratio (0.011 (0.004;0.019)). CONCLUSIONS: Contrary to what was previously thought, GIP may be associated with improved LDL clearance but with an unhealthy fat distribution...

  2. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    Science.gov (United States)

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Glucose homeostasis in rainbow trout fed a high-carbohydrate diet: metformin and insulin interact in a tissue-dependent manner.

    Science.gov (United States)

    Polakof, S; Moon, T W; Aguirre, P; Skiba-Cassy, S; Panserat, S

    2011-01-01

    Carnivorous fish species such as the rainbow trout (Oncorhynchus mykiss) are considered to be "glucose intolerant" because of the prolonged hyperglycemia experienced after intake of a carbohydrate-enriched meal. In the present study, we use this species to study glucose homeostasis in fish chronically infused with the hypoglycemic agents, insulin, and metformin, and fed with a high proportion of carbohydrates (30%). We analyzed liver, skeletal muscle, and white adipose tissue (WAT), which are insulin- and metformin-specific targets at both the biochemical and molecular levels. Trout infused with the combination of insulin and metformin can effectively utilize dietary glucose at the liver, resulting in lowered glycemia, increased insulin sensitivity, and glucose storage capacity, combined with reduced glucose output. However, in both WAT and skeletal muscle, we observed decreased insulin sensitivity with the combined insulin + metformin treatment, resulting in the absence of changes at the metabolic level in the skeletal muscle and an increased potential for glucose uptake and storage in the WAT. Thus, the poor utilization by rainbow trout of a diet with a high proportion of carbohydrate can at least be partially improved by a combined treatment with insulin and metformin, and the glucose intolerance observed in this species could be, in part, due to some of the downstream components of the insulin and metformin signaling pathways. However, the predominant effects of metformin treatment on the action of insulin in these three tissues thought to be involved in glucose homeostasis remain exclusive in this species.

  4. The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Knop, F K; Krarup, T

    2003-01-01

    diabetic patients. We studied (six in each group): 1) patients with diabetes mellitus secondary to chronic pancreatitis; 2) lean type 2 diabetic patients (body mass index ... incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is seen in these patients. The aim of the present investigation was to evaluate plasma insulin and C-peptide responses to GLP-1 and GIP in five groups of diabetic patients with etiology and phenotype distinct from the obese type 2...

  5. Programming of glucose-insulin homoeostasis

    DEFF Research Database (Denmark)

    Kongsted, Anna Hauntoft; Tygesen, M. P.; Husted, Sanne Vinter

    2014-01-01

    AIM: Exposure to adverse intra-uterine conditions can predispose for metabolic disorders later in life. By using a sheep model, we studied (i) how programming of glucose-insulin homoeostasis during late gestation is manifested later in life depending on the early post-natal dietary exposure and (ii......) whether dietary alteration in obese individuals can prevent adverse outcomes of early life programming. METHODS: During late gestation, twin-pregnant sheep were fed 100% (NORM) or 50% (LOW) of energy and protein requirements. After birth, offspring were exposed to a moderate (CONV) or high...

  6. Long-term effects of fluoxetine on glycemic control in obese patients with non-insulin-dependent diabetes mellitus or glucose intolerance

    DEFF Research Database (Denmark)

    Breum, Leif; Bjerre, U; Bak, J F

    1995-01-01

    differences (mean +/- SD: F, 10.1 +/- 10.0 kg; P, 9.4 +/- 11.5 kg). Fifteen patients from the F group and 14 from the P group completed the 12-month study without weight loss differences. Glycemic regulation improved along with the weight loss, but with a larger decline in plasma C-peptide and fasting glucose......Fluoxetine (F) is a specific serotonin-reuptake inhibitor that has been shown to promote weight loss and improve glycemic control in obese diabetic patients. To study its long-term metabolic effect, 40 obese patients with non-insulin -dependent diabetes mellitus (NIDDM) or impaired glucose...... tolerance (IGT) were included in a 12-month, randomized, placebo controlled study. Patients were assigned to receive either 60 mg F or placebo (P) daily in conjunction with a 5.0-MJ/d diet (> 50% carbohydrate). Both groups showed a significant weight loss, with a nadir after 6 months without group...

  7. The fluctuation of blood glucose, insulin and glucagon concentrations before and after insulin therapy in type 1 diabetes

    Science.gov (United States)

    Arif, Idam; Nasir, Zulfa

    2015-09-01

    A dynamical-systems model of plasma glucose, insulin and glucagon concentrations has been developed to investigate the effects of insulin therapy on blood glucose, insulin and glucagon regulations in type 1 diabetic patients. Simulation results show that the normal regulation of blood glucose concentration depends on insulin and glucagon concentrations. On type 1 diabetic case, the role of insulin on regulating blood glucose is not optimal because of the destruction of β cells in pancreas. These β cells destructions cause hyperglycemic episode affecting the whole body metabolism. To get over this, type 1 diabetic patients need insulin therapy to control the blood glucose level. This research has been done by using rapid acting insulin (lispro), long-acting insulin (glargine) and the combination between them to know the effects of insulin therapy on blood glucose, insulin and glucagon concentrations. Simulation results show that these different types of insulin have different effects on blood glucose concentration. Insulin therapy using lispro shows better blood glucose control after consumption of meals. Glargin gives better blood glucose control between meals and during sleep. Combination between lispro and glargine shows better glycemic control for whole day blood glucose level.

  8. Coffee Consumption Attenuates Insulin Resistance and Glucose ...

    African Journals Online (AJOL)

    olayemitoyin

    Alzheimer's disease (CBS 2012), dementia (Health news 2012) and ... the effects of coffee on insulin resistance and glucose tolerance as ..... mortality among patients with type 2 diabetes. ... transporter family: Structure, function and tissue-.

  9. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors.

    Directory of Open Access Journals (Sweden)

    Paola Llanos

    Full Text Available Glucose-stimulated insulin secretion (GSIS from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]. Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC, which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.

  10. Interaction between exogenous insulin, endogenous insulin, and glucose in type 2 diabetes patients.

    Science.gov (United States)

    Janukonyté, Jurgita; Parkner, Tina; Bruun, Niels Henrik; Lauritzen, Torsten; Christiansen, Jens Sandahl; Laursen, Torben

    2015-05-01

    Little is known about the influence of exogenous insulin and actual glucose levels on the release of endogenous insulin in insulin-treated type 2 diabetes mellitus (T2DM) patients. This study investigated the interaction among serum endogenous insulin (s-EI), serum exogenous insulin aspart (s-IAsp), and blood glucose levels in an experimental short-term crossover design. Eight T2DM patients (63.52 years old; range, 49-69 years; mean body mass index, 28.8±3.8 kg/m(2)) were randomized to treatment with individual fixed doses of insulin aspart (0.5-1.5 IU/h) as a continuous subcutaneous insulin infusion (CSII) during a 10-h period on two occasions with different duration of hyperglycemia: (1) transient hyperglycemia for 2 h (visit TH) and (2) continuous hyperglycemia for 12 h (visit CH). During steady state the variances of plasma glucose (p-glucose), s-IAsp, and s-EI were equal within visit TH and within visit CH, but variances were significantly higher during visit CH compared with visit TH. The s-IAsp reached lower levels at visit CH compared with visit TH (test for slope=1, P=0.005). The s-EI depended on p-glucose in a nonlinear fashion during the first 100 min of both visits when s-IAsp was undetectable (adjusted R(2)=0.9). A complex but statistically significant interaction among s-IAsp, s-EI, p-glucose, and patients was observed during measurable s-IAsp levels (adjusted R(2)=0.70). Endogenous and exogenous insulin showed higher variation during continuous hyperglycemia. Significantly lower levels of exogenous insulin were observed following CSII during continuous hyperglycemia compared with transient hyperglycemia. Endogenous insulin levels could in a complex way be explained by an individual interaction among p-glucose and serum exogenous insulin, if present.

  11. The Glucose-Insulin Control System

    DEFF Research Database (Denmark)

    Hallgreen, Christine Erikstrup; Korsgaard, Thomas Vagn; Hansen, RenéNormann N.

    2008-01-01

    This chapter reviews the glucose-insulin control system. First, classic control theory is described briefly and compared with biological control. The following analysis of the control system falls into two parts: a glucose-sensing part and a glucose-controlling part. The complex metabolic pathways...... are divided into smaller pieces and analyzed via several small biosimulation models that describe events in beta cells, liver, muscle and adipose tissue etc. In the glucose-sensing part, the beta cell are shown to have some characteristics of a classic PID controller, but with nonlinear properties...... control, the analysis shows that the system has many more facets than just keeping the glucose concentration within narrow limits. After glucose enters the cell and is phosphorylated to glucose-6-phosphate, the handling of glucose-6-phosphate is critical for glucose regulation. Also, this handling...

  12. The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Knop, F K; Krarup, T

    2003-01-01

    [maturity-onset diabetes of the young (MODY)3]; and 5) newly diagnosed type 1 diabetic patients. All participants underwent three hyperglycemic clamps (2 h, 15 mM) with continuous infusion of saline, 1 pmol GLP-1 (7-36)amide/kg body weight.min or 4 pmol GIP pmol/kg body weight.min. The early-phase (0-20 min......The effect of the insulinotropic incretin hormone, glucagon-like peptide-1 (GLP-1), is preserved in typical middle-aged, obese, insulin-resistant type 2 diabetic patients, whereas a defective amplification of the so-called late-phase plasma insulin response (20-120 min) to glucose by the other...... incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is seen in these patients. The aim of the present investigation was to evaluate plasma insulin and C-peptide responses to GLP-1 and GIP in five groups of diabetic patients with etiology and phenotype distinct from the obese type 2...

  13. The interaction of insulin, glucose, and insulin-glucose mixtures with a phospholipid monolayer.

    Science.gov (United States)

    Shigenobu, Hayato; McNamee, Cathy E

    2012-12-15

    We determined how glucose or insulin interacts with a phospholipid monolayer at the air/water interface and explained these mechanisms from a physico-chemical point of view. The 1,2-dipalmitoyl-2-sn-glycero-3-phosphatidylcholine (DPPC) monolayer at an air/water interface acted as a model membrane, which allowed the effect of the molecular packing density in the monolayer on the interactions to be determined. The interaction of glucose, insulin, and a mixture of glucose and insulin to the DPPC monolayer were investigated via surface pressure-area per molecule Langmuir isotherms and fluorescence microscopy. Glucose adsorbed to the underside of the DPPC monolayer, while insulin was able to penetrate through the monolayer when the phospholipid molecules were not densely packed. The presence of a mixture of insulin and glucose affected the molecular packing in the DPPC monolayer differently than the pure insulin or glucose solutions, and the glucose-insulin mixture was seen to be able to penetrate through the monolayer. These results indicated that glucose and insulin interact with one another, giving a material that may then transported through a pore in the monolayer or through the spaces between the molecules of the monolayer. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    Science.gov (United States)

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  15. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons.

    Science.gov (United States)

    Blanco, Cynthia L; McGill-Vargas, Lisa L; Gastaldelli, Amalia; Seidner, Steven R; McCurnin, Donald C; Leland, Michelle M; Anzueto, Diana G; Johnson, Marney C; Liang, Hanyu; DeFronzo, Ralph A; Musi, Nicolas

    2015-03-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors.

  16. Geniposide regulates glucose-stimulated insulin secretion possibly through controlling glucose metabolism in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Jianhui Liu

    Full Text Available Glucose-stimulated insulin secretion (GSIS is essential to the control of metabolic fuel homeostasis. The impairment of GSIS is a key element of β-cell failure and one of causes of type 2 diabetes mellitus (T2DM. Although the KATP channel-dependent mechanism of GSIS has been broadly accepted for several decades, it does not fully describe the effects of glucose on insulin secretion. Emerging evidence has suggested that other mechanisms are involved. The present study demonstrated that geniposide enhanced GSIS in response to the stimulation of low or moderately high concentrations of glucose, and promoted glucose uptake and intracellular ATP levels in INS-1 cells. However, in the presence of a high concentration of glucose, geniposide exerted a contrary role on both GSIS and glucose uptake and metabolism. Furthermore, geniposide improved the impairment of GSIS in INS-1 cells challenged with a high concentration of glucose. Further experiments showed that geniposide modulated pyruvate carboxylase expression and the production of intermediates of glucose metabolism. The data collectively suggest that geniposide has potential to prevent or improve the impairment of insulin secretion in β-cells challenged with high concentrations of glucose, likely through pyruvate carboxylase mediated glucose metabolism in β-cells.

  17. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability

    NARCIS (Netherlands)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W.; Pfluger, Paul T.; Fernandez, Ana M.; Luquet, Serge; Woods, Stephen C.; Torres-Alemán, Ignacio; Kahn, C. Ronald; Götz, Magdalena; Horvath, Tamas L.; Tschöp, Matthias H.

    2016-01-01

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and

  18. Integrated model of insulin and glucose kinetics describing both hepatic glucose and pancreatic insulin regulation

    DEFF Research Database (Denmark)

    Erlandsen, Mogens; Martinussen, Christoffer; Gravholt, Claus Højbjerg

    2018-01-01

    AbstractBackground and objectives Modeling of glucose kinetics has to a large extent been based on models with plasma insulin as a known forcing function. Furthermore, population-based statistical methods for parameter estimation in these models have mainly addressed random inter-individual varia......AbstractBackground and objectives Modeling of glucose kinetics has to a large extent been based on models with plasma insulin as a known forcing function. Furthermore, population-based statistical methods for parameter estimation in these models have mainly addressed random inter......-individual variations and not intra-individual variations in the parameters. Here we present an integrated whole-body model of glucose and insulin kinetics which extends the well-known two-compartment glucose minimal model. The population-based estimation technique allow for quantification of both random inter......- and intra-individual variation in selected parameters using simultaneous data series on glucose and insulin. Methods We extend the two-compartment glucose model into a whole-body model for both glucose and insulin using a simple model for the pancreas compartment which includes feedback of glucose on both...

  19. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice

    NARCIS (Netherlands)

    Coomans, Claudia P.; Biermasz, Nienke R.; Geerling, Janine J.; Guigas, Bruno; Rensen, Patrick C. N.; Havekes, Louis M.; Romijn, Johannes A.

    2011-01-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated

  20. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice

    NARCIS (Netherlands)

    Coomans, C.P.; Biermasz, N.R.; Geerling, J.J.; Guigas, B.; Rensen, P.C.N.; Havekes, L.M.; Romijn, J.A.

    2011-01-01

    OBJECTIVE - Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated

  1. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Lao, Ye; Maximov, Anton

    2008-01-01

    and insulin release. Here, we show that synaptotagmin-7 is required for the maintenance of systemic glucose tolerance and glucose-stimulated insulin secretion. Mutant mice have normal insulin sensitivity, insulin production, islet architecture and ultrastructural organization, and metabolic and calcium...... secretion in pancreatic beta-cells. Of these other synaptotagmins, synaptotagmin-7 is one of the most abundant and is present in pancreatic beta-cells. To determine whether synaptotagmin-7 regulates Ca(2+)-dependent insulin secretion, we analyzed synaptotagmin-7 null mutant mice for glucose tolerance...... responses but exhibit impaired glucose-induced insulin secretion, indicating a calcium-sensing defect during insulin-containing secretory granule exocytosis. Taken together, our findings show that synaptotagmin-7 functions as a positive regulator of insulin secretion and may serve as a calcium sensor...

  2. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Højberg, P V; Vilsbøll, T; Rabøl, R

    2008-01-01

    of near-normalisation of the blood glucose level could improve insulin responses to GIP and GLP-1 in patients with type 2 diabetes. METHODS: Eight obese patients with type 2 diabetes with poor glycaemic control (HbA(1c) 8.6 +/- 1.3%), were investigated before and after 4 weeks of near......-normalisation of blood glucose (mean blood glucose 7.4 +/- 1.2 mmol/l) using insulin treatment. Before and after insulin treatment the participants underwent three hyperglycaemic clamps (15 mmol/l) with infusion of GLP-1, GIP or saline. Insulin responses were evaluated as the incremental area under the plasma C......-peptide curve. RESULTS: Before and after near-normalisation of blood glucose, the C-peptide responses did not differ during the early phase of insulin secretion (0-10 min). The late phase C-peptide response (10-120 min) increased during GIP infusion from 33.0 +/- 8.5 to 103.9 +/- 24.2 (nmol/l) x (110 min)(-1...

  3. Preliminary report: BGLIIA-BGLIIB haplotype of growth hormone cluster is associated with glucose intolerance in non-insulin-dependent diabetes mellitus and with growth hormone deficit in growth retardation.

    Science.gov (United States)

    Bottini, E; Lucarelli, P; Amante, A; Saccucci, P; Gloria-Bottini, F

    2002-01-01

    We studied 101 growth-retarded children from the population of Ancona (Italy). Plasma growth hormone (GH) levels at the end of insulin and clonidine tests were considered for classification of children into 3 categories according to severity of GH deficit: total deficit of GH (TD), partial deficit (PD, and familiar short stature (FSS; no deficit of GH). The BGLIIA*2/BGLIIB*1 haplotype of GH cluster that was previously found to be negatively associated with severe glucose intolerance in non-insulin-dependent diabetes mellitus (NIDDM) is negatively associated with GH deficit in growth-retarded children. The hypothesis that intrauterine growth retardation and glucose intolerance in adult life could be phenotypes of the same underlying genotype has been recently put forward. The present observation suggests that genes influencing both growth and glucose tolerance are encoded in the GH cluster. Copyright 2002 by W.B. Saunders Company

  4. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    Science.gov (United States)

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B.

  5. Plasma Ascorbic Acid in Insulin and Non-insulin Dependent Diabetes

    African Journals Online (AJOL)

    Blood glucose, plasma ascorbic acid and haemoglobin levels were estimated in insulin dependent diabetics, non-insulin dependent diabetics and controls matched for number, sex and age. Significantly higher levels of these parameters were found in control group than in the other two groups. Statistically differences were ...

  6. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-01-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono- 125 I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis

  7. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.......The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing...

  8. Molecular aspects of glucose homeostasis in skeletal muscle--A focus on the molecular mechanisms of insulin resistance.

    Science.gov (United States)

    Carnagarin, Revathy; Dharmarajan, Arun M; Dass, Crispin R

    2015-12-05

    Among all the varied actions of insulin, regulation of glucose homeostasis is the most critical and intensively studied. With the availability of glucose from nutrient metabolism, insulin action in muscle results in increased glucose disposal via uptake from the circulation and storage of excess, thereby maintaining euglycemia. This major action of insulin is executed by redistribution of the glucose transporter protein, GLUT4 from intracellular storage sites to the plasma membrane and storage of glucose in the form of glycogen which also involves modulation of actin dynamics that govern trafficking of all the signal proteins of insulin signal transduction. The cellular mechanisms responsible for these trafficking events and the defects associated with insulin resistance are largely enigmatic, and this review provides a consolidated overview of the various molecular mechanisms involved in insulin-dependent glucose homeostasis in skeletal muscle, as insulin resistance at this major peripheral site impacts whole body glucose homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul S

    2016-01-01

    transporter protein 4 (GLUT4) to the plasma membrane which leads to facilitated diffusion of glucose into the cell. Understanding the precise signaling events guiding insulin-stimulated glucose uptake is pivotal, because impairment in these signaling events leads to development of insulin resistance and type...... 2 diabetes. This review summarizes current understanding of insulin signaling pathways mediating glucose uptake in healthy and insulin-resistant skeletal muscle....

  10. Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes

    International Nuclear Information System (INIS)

    Carter-Su, C.; Okamoto, K.

    1987-01-01

    The ability of glucocorticoids to modify the effect of insulin on glucose (L-1- 3 H(N)]glucose and D-[ 14 C-U]glucose) transport was investigated in both intact isolated rat adipocytes and in membranes isolated from hormone-treated adipocytes. In intact adipocytes, dexamethasone, a potent synthetic glucocorticoid, inhibited insulin-stimulated 3-O-methylglucose transport at all concentrations of insulin tested. Insulin sensitivity, as well as the maximal response to insulin, was decreased by dexamethasone in the absence of a change in 125 I insulin binding. The inhibition was observed regardless of which hormone acted first, was blocked by actinomycin D, and resulted from a decrease in V/sub max/ rather than an increase in K/sub t/ of transport. In plasma membranes isolated from insulin-treated adipocytes, glucose transport activity and the amount of glucose transporter covalently labeled with [ 3 H]cytochalasin B were increased in parallel in a dose-dependent fashion. The amount of labeled transporter in a low-density microsomal fraction (LDMF) was decreased in a reciprocal fashion. In contrast, addition of dexamethasone to insulin-stimulated cells caused decreases in both transport activity and amount of labeled transporter in the plasma membranes. This was accompanied by a small increase in the amount of [ 3 H]cytochalasin B incorporated into the glucose transporter in the LDMF. These results are consistent with both insulin and glucocorticoids altering the distribution of glucose transporters between the plasma membrane and LDMF, in opposite directions

  11. Resistant starch intake at breakfast affects postprandial responses in type 2 diabetics and enhances the glucose-dependent insulinotropic polypeptide--insulin relationship following a second meal.

    Science.gov (United States)

    MacNeil, Stacey; Rebry, Rachel M; Tetlow, Ian J; Emes, Michael J; McKeown, Bruce; Graham, Terry E

    2013-12-01

    Resistant starch (RS) consumption can modulate postprandial metabolic responses, but its effects on carbohydrate (CHO) handling in type 2 diabetics (T2D) are unclear. It was hypothesized that a bagel high in RS would improve glucose and insulin homeostasis following the 1st meal, regardless of the amount of available CHO, and that in association with incretins, the effects would carry over to a 2nd meal. Using a randomized crossover design, 12 T2D ingested four different bagel treatments (their 1st meal) determined by available CHO and the weight or amount of bagel consumed: treatment A, without RS (50 g of available CHO); treatment B, with RS (same total CHO as in A); treatment C, with RS (same available CHO as in A); and treatment D, with the same RS as in B and available CHO as in A and C. A standard 2nd meal was ingested 3 h later. Following the first meal, B elicited a lower glucose incremental area under the curve (iAUC) than C (P portion of the available CHO, while ingesting more RS influenced the GIP-insulin axis following the 2nd meal.

  12. A comparison between the minimal model and the glucose clamp in the assessment of insulin sensitivity across the spectrum of glucose tolerance. Insulin Resistance Atherosclerosis Study.

    Science.gov (United States)

    Saad, M F; Anderson, R L; Laws, A; Watanabe, R M; Kades, W W; Chen, Y D; Sands, R E; Pei, D; Savage, P J; Bergman, R N

    1994-09-01

    An insulin-modified frequently sampled intravenous glucose tolerance test (FSIGTT) with minimal model analysis was compared with the glucose clamp in 11 subjects with normal glucose tolerance (NGT), 20 with impaired glucose tolerance (IGT), and 24 with non-insulin-dependent diabetes mellitus (NIDDM). The insulin sensitivity index (SI) was calculated from FSIGTT using 22- and 12-sample protocols (SI(22) and SI(12), respectively). Insulin sensitivity from the clamp was expressed as SI(clamp) and SIP(clamp). Minimal model parameters were similar when calculated with SI(22) and SI(12). SI could not be distinguished from 0 in approximately 50% of diabetic patients with either protocol. SI(22) correlated significantly with SI(clamp) in the whole group (r = 0.62), and in the NGT (r = 0.53), IGT (r = 0.48), and NIDDM (r = 0.41) groups (P SIP(clamp) were expressed in the same units, SI(22) was 66 +/- 5% (mean +/- SE) and 50 +/- 8% lower than SI(clamp) and SIP(clamp), respectively. Thus, minimal model analysis of the insulin-modified FSIGTT provides estimates of insulin sensitivity that correlate significantly with those from the glucose clamp. The correlation was weaker, however, in NIDDM. The insulin-modified FSIGTT can be used as a simple test for assessment of insulin sensitivity in population studies involving nondiabetic subjects. Additional studies are needed before using this test routinely in patients with NIDDM.

  13. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    Science.gov (United States)

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 continuous glucose monitoring system ( CGMS), IFG was detected in 4 cases, the maximum serum blood glucose (BG : 2h or more after meal) was >7.8 and 11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of 2.6 and QUICKI values obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  14. P21-activated kinase 2 (PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells.

    Science.gov (United States)

    Varshney, Pallavi; Dey, Chinmoy Sankar

    2016-07-05

    P21-activated kinases (PAKs) are recently reported as important players of insulin signaling and glucose homeostasis in tissues like muscle, pancreas and liver. However, their role in neuronal insulin signaling is still unknown. Present study reports the involvement of PAK2 in neuronal insulin signaling, glucose uptake and insulin resistance. Irrespective of insulin sensitivity, insulin stimulation decreased PAK2 activity. PAK2 downregulation displayed marked enhancement of GLUT4 translocation with increase in glucose uptake whereas PAK2 over-expression showed its reduction. Treatment with Akti-1/2 and wortmannin suggested that Akt and PI3K are mediators of insulin effect on PAK2 and glucose uptake. Rac1 inhibition demonstrated decreased PAK2 activity while inhibition of PP2A resulted in increased PAK2 activity, with corresponding changes in glucose uptake. Taken together, present study demonstrates an inhibitory role of insulin signaling (via PI3K-Akt) and PP2A on PAK2 activity and establishes PAK2 as a Rac1-dependent negative regulator of neuronal glucose uptake and insulin sensitivity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Mathematical Modelling of Glucose-Dependent Insulinotropic Polypeptide and Glucagon-like Peptide-1 following Ingestion of Glucose

    DEFF Research Database (Denmark)

    Røge, Rikke M; Bagger, Jonatan I; Alskär, Oskar

    2017-01-01

    The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), play an important role in glucose homeostasis by potentiating glucose-induced insulin secretion. Furthermore, GLP-1 has been reported to play a role in glucose homeostasis by inhibiting ...

  16. Significance of insulin for glucose metabolism in skeletal muscle during contractions

    DEFF Research Database (Denmark)

    Hespel, P; Vergauwen, Lieven; Vandenberghe, K

    1996-01-01

    is essentially effected via increased blood flow, significantly contributes to stimulate glucose uptake. Again, however, increased glucose delivery appears to be a more potent stimulus of muscle glucose uptake as the circulating insulin level is increased. Furthermore, contractions and elevated flow prove...... is effected primarily via mechanisms exerted within the muscle cell related to the contractile activity per se. Yet contractions become a more potent stimulus of muscle glucose uptake as the plasma insulin level is increased. In addition, enhanced glucose delivery to muscle, which during exercise...... to be additive stimuli of muscle glucose uptake at any plasma insulin level. In conclusion, the extent to which muscle glucose uptake is stimulated during exercise depends on various factors, including 1) the intensity of the contractile activity, 2) the magnitude of the exercise-associated increase in muscle...

  17. Dynamic Metabolomics Reveals that Insulin Primes the Adipocyte for Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    James R. Krycer

    2017-12-01

    Full Text Available Insulin triggers an extensive signaling cascade to coordinate adipocyte glucose metabolism. It is considered that the major role of insulin is to provide anabolic substrates by activating GLUT4-dependent glucose uptake. However, insulin stimulates phosphorylation of many metabolic proteins. To examine the implications of this on glucose metabolism, we performed dynamic tracer metabolomics in cultured adipocytes treated with insulin. Temporal analysis of metabolite concentrations and tracer labeling revealed rapid and distinct changes in glucose metabolism, favoring specific glycolytic branch points and pyruvate anaplerosis. Integrating dynamic metabolomics and phosphoproteomics data revealed that insulin-dependent phosphorylation of anabolic enzymes occurred prior to substrate accumulation. Indeed, glycogen synthesis was activated independently of glucose supply. We refer to this phenomenon as metabolic priming, whereby insulin signaling creates a demand-driven system to “pull” glucose into specific anabolic pathways. This complements the supply-driven regulation of anabolism by substrate accumulation and highlights an additional role for insulin action in adipocyte glucose metabolism.

  18. Effects of High Fat Diet and Physical Exercise on Glucose Tolelance and Insulin Sensitivity in Rats

    OpenAIRE

    福田,哲也

    1987-01-01

    To investigate the interrelationships between the westernized diet and physical exercise as they affect the development of non-insulin-dependent diabetes mellitus (NIDDM), adiposity, glucose tolerance and insulin response to an intraperitoneal glucose load (1.5g/kg bw) and insulin sensitivity to exogenous insulin (0.2U/kg bw) were studied in spontaneously exercised and sedentary rats fed either a high fat diet (40% fat, modern western type) or a low fat diet (10% fat, traditional Japanese typ...

  19. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Nicolai J. Wewer Albrechtsen

    2017-11-01

    Full Text Available Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among which proglucagon 1-61 (PG 1-61 appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in vivo. We conclude that glucagon variants, such as PG 1-61, may contribute to glucose regulation by stimulating hepatic glucose production and insulin secretion.

  20. Interaction between exogenous insulin, endogenous insulin, and glucose in type 2 diabetes patients

    DEFF Research Database (Denmark)

    Janukonyté, Jurgita; Parkner, Tina; Bruun, Niels Henrik

    2015-01-01

    insulin aspart (s-IAsp), and blood glucose levels in an experimental short-term crossover design. STUDY DESIGN AND METHODS: Eight T2DM patients (63.52 years old; range, 49-69 years; mean body mass index, 28.8±3.8 kg/m2) were randomized to treatment with individual fixed doses of insulin aspart (0.5-1.5 IU......-IAsp, and s-EI were equal within visit TH and within visit CH, but variances were significantly higher during visit CH compared with visit TH. The s-IAsp reached lower levels at visit CH compared with visit TH (test for slope=1, P=0.005). The s-EI depended on p-glucose in a nonlinear fashion during the first...

  1. Glucose tolerance, insulin release, and insulin binding to monocytes in kidney transplant recipients

    International Nuclear Information System (INIS)

    Briggs, W.A.; Wielechowski, K.S.; Mahajan, S.K.; Migdal, S.D.; McDonald, F.D.

    1982-01-01

    In order to evaluate glucose tolerance following renal transplantation, intravenous glucose tolerance tests (IVGTT), with evaluation of hormonal responses to the intravenous glucose load and percent specific 125 I-insulin binding to peripheral blood monocytes, were studied in eight clinically stable kidney transplant recipients. For comparison purposes, identical studies were done in eight control subjects and seven clinically stable hemodialysis patients. One transplant recipient was glucose intolerant, with fasting hyperglycemia, elevated HbA1C, and abnormal glucose decay constant. Impaired pancreatic insulin release appeared to be the major factor accounting for his glucose intolerance. The seven glucose-tolerant transplant recipients had significantly increased insulin release during IVGTT compared to control subjects, and significant correlations were found among insulin release, glucose decay constant, and fasting blood sugar in those patients. Insulin binding to monocytes was significantly greater in transplant recipients than control subjects due to an increase in insulin binding capacity per cell. A significant correlation was found between percent specific 125 I-insulin binding and steroid dose, expressed as mg/kg body weight/day, in those patients. Thus, chronic steroid administration does not cause glucose intolerance in transplant recipients who manifest steroid-associated increases in pancreatic insulin release and cellular insulin binding capacity

  2. Scoparia dulcis (SDF7) endowed with glucose uptake properties on L6 myotubes compared insulin.

    Science.gov (United States)

    Beh, Joo Ee; Latip, Jalifah; Abdullah, Mohd Puad; Ismail, Amin; Hamid, Muhajir

    2010-05-04

    Insulin stimulates glucose uptake and promotes the translocation of glucose transporter 4 (Glut 4) to the plasma membrane on L6 myotubes. The aim of this study is to investigate affect of Scoparia dulcis Linn water extracts on glucose uptake activity and the Glut 4 translocation components (i.e., IRS-1, PI 3-kinase, PKB/Akt2, PKC and TC 10) in L6 myotubes compared to insulin. Extract from TLC fraction-7 (SDF7) was used in this study. The L6 myotubes were treated by various concentrations of SDF7 (1 to 50 microg/ml) and insulin (1 to 100 nM). The glucose uptake activities of L6 myotubes were evaluated using 2-Deoxy-D-glucose uptake assay in with or without fatty acid-induced medium. The Glut 4 translocation components in SDF7-treated L6 myotubes were detected using immunoblotting and quantified by densitometry compared to insulin. Plasma membrane lawn assay and glycogen colorimetry assay were carried out in SDF7- and insulin-treated L6 myotubes in this study. Here, our data clearly shows that SDF7 possesses glucose uptake properties on L6 myotubes that are dose-dependent, time-dependent and plasma membrane Glut 4 expression-dependent. SDF7 successfully stimulates glucose uptake activity as potent as insulin at a maximum concentration of 50 microg/ml at 480 min on L6 myotubes. Furthermore, SDF7 stimulates increased Glut 4 expression and translocation to plasma membranes at equivalent times. Even in the insulin resistance stage (free fatty acids-induced), SDF7-treated L6 myotubes were found to be more capable at glucose transport than insulin treatment. Thus, we suggested that Scoparia dulcis has the potential to be categorized as a hypoglycemic medicinal plant based on its good glucose transport properties. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    DEFF Research Database (Denmark)

    Wewer Albrechtsen, Nicolai J.; Kuhre, Rune E.; Hornburg, Daniel

    2017-01-01

    that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in......Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia) contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among...... which proglucagon 1-61 (PG 1-61) appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated...

  4. Dissociation of in vitro sensitivities of glucose transport and antilipolysis to insulin in NIDDM

    International Nuclear Information System (INIS)

    Yki-Jaervinen, H.; Kubo, K.; Zawadzki, J.; Lillioja, S.; Young, A.; Abbott, W.; Foley, J.E.

    1987-01-01

    It is unclear from previous studies whether qualitative or only quantitative differences exist in insulin action in adipocytes obtained from obese subjects with non-insulin-dependent diabetes mellitus (NIDDM) when compared with equally obese nondiabetic subjects. In addition, the role of changes in insulin binding as a cause of insulin resistance in NIDDM is still controversial. The authors compared the sensitivities of [ 14 C]-glucose transport and antilipolysis to insulin and measured [ 125 I]-insulin binding in abdominal adipocytes obtained from 45 obese nondiabetic, obese diabetic, and 15 nonobese female southwestern American Indians. Compared with the nonobese group, the sensitivities of glucose transport antilipolysis were reduced in both the obese nondiabetic and obese diabetic groups. Compared with the obese nondiabetic subjects, the ED 50 for stimulation of glucose transport was higher in the obese patients with NIDDM. In contrast, the ED 50 S for antilipolysis were similar in obese diabetic patients and obese nondiabetic subjects. No differences was found in insulin binding in patients with NIDDM when compared with the equally obese nondiabetic subjects. These data indicate 1) the mechanism of insulin resistance differs in NIDDM and obesity, and 2) the selective loss of insulin sensitivity in NIDDM precludes changes in insulin binding as a cause of insulin resistance in this disorder

  5. Effects of Insulin on Brain Glucose Metabolism in Impaired Glucose Tolerance

    Science.gov (United States)

    Hirvonen, Jussi; Virtanen, Kirsi A.; Nummenmaa, Lauri; Hannukainen, Jarna C.; Honka, Miikka-Juhani; Bucci, Marco; Nesterov, Sergey V.; Parkkola, Riitta; Rinne, Juha; Iozzo, Patricia; Nuutila, Pirjo

    2011-01-01

    OBJECTIVE Insulin stimulates brain glucose metabolism, but this effect of insulin is already maximal at fasting concentrations in healthy subjects. It is not known whether insulin is able to stimulate glucose metabolism above fasting concentrations in patients with impaired glucose tolerance. RESEARCH DESIGN AND METHODS We studied the effects of insulin on brain glucose metabolism and cerebral blood flow in 13 patients with impaired glucose tolerance and nine healthy subjects using positron emission tomography (PET). All subjects underwent PET with both [18F]fluorodeoxyglucose (for brain glucose metabolism) and [15O]H2O (for cerebral blood flow) in two separate conditions (in the fasting state and during a euglycemic-hyperinsulinemic clamp). Arterial blood samples were acquired during the PET scans to allow fully quantitative modeling. RESULTS The hyperinsulinemic clamp increased brain glucose metabolism only in patients with impaired glucose tolerance (whole brain: +18%, P = 0.001) but not in healthy subjects (whole brain: +3.9%, P = 0.373). The hyperinsulinemic clamp did not alter cerebral blood flow in either group. CONCLUSIONS We found that insulin stimulates brain glucose metabolism at physiological postprandial levels in patients with impaired glucose tolerance but not in healthy subjects. These results suggest that insulin stimulation of brain glucose metabolism is maximal at fasting concentrations in healthy subjects but not in patients with impaired glucose tolerance. PMID:21270256

  6. The Various Forms of Insulin Secretion Response to the Intravenous and Oral Administration of Glucose in Non-Insulin-Dependent Diabetes Mellitus; Les Differentes Modalites de Reponse Insulino-Secretrice Lors de Charges Veineuse et Orale en Glucose dans le Diabete Sucre Non Insulino-Dependant

    Energy Technology Data Exchange (ETDEWEB)

    Mirouze, J.; Orsetti, A.; Lapinski, H. [Clinique des Maladies Metaboliques et Endocriniennes, Hopital St-Eloi, Montpellier (France)

    1970-02-15

    On the basis of 68 observations on advanced diabetes mellitus (20 cases), latent diabetes with obesity (12 cases), chemical diabetes with subjective symptoms (26 cases) and 10 observations of obesity without diabetes, the authors have analysed the various forms of insulin secretion response to the intravenous and oral administration of glucose. The response appeared to be totally withdrawn in advanced diabetes mellitus although the patients were still capable of responding to stimulation with glucagon. In the two other forms of diabetes described, the response to stimulation by intravenous administration was less marked than in normal subjects. With oral administration, on the other hand, the response was greater, although the insulin secreted in this case appeared ineffective in cases of obesity but effective in conditions without obesity due to the hypoglycaemic effect. (author) [French] A l'aide de 68 observations de diabete sucre evolue (20 cas), latent avec obesite (12 cas), chimique avec malaises (26 cas) et de 10 observations d'obesite sans diabete, les auteurs analysent les differentes modalites de riposte insulino- secretrice lors des charges en glucose, veineuse et orale. La riposte s'avere totalement effondree dans le diabete evolue, mais susceptible de repondre encore a la stimulation par le glucagon. Dans les deux autres formes de diabete decrites, la stimulation par charge veineuse est reduite par rapport au sujet normal alors qu'elle est majoree apres charge orale mais l'insuline ainsi secretee parait inefficace dans l'obesite et efficace puisque hypoglycemiante lors de malaises sans obesite. (author)

  7. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men.

    Science.gov (United States)

    Xiao, Changting; Dash, Satya; Stahel, Priska; Lewis, Gary F

    2018-03-14

    The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m 2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP. © 2018 John Wiley & Sons Ltd.

  8. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Lung Cancer.

    Science.gov (United States)

    Argirion, Ilona; Weinstein, Stephanie J; Männistö, Satu; Albanes, Demetrius; Mondul, Alison M

    2017-10-01

    Background: Although insulin may increase the risk of some cancers, few studies have examined fasting serum insulin and lung cancer risk. Methods: We examined serum insulin, glucose, and indices of insulin resistance [insulin:glucose molar ratio and homeostasis model assessment of insulin resistance (HOMA-IR)] and lung cancer risk using a case-cohort study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study of Finnish men. A total of 196 cases and 395 subcohort members were included. Insulin and glucose were measured in fasting serum collected 5 to 12 years before diagnosis. Cox proportional hazards models were utilized to estimate the relative risk of lung cancer. Results: The average time between blood collection and lung cancer was 9.6 years. Fasting serum insulin levels were 8.7% higher in subcohort members than cases. After multivariable adjustment, men in the fourth quartile of insulin had a significantly higher risk of lung cancer than those in the first quartile [HR = 2.10; 95% confidence interval (CI), 1.12-3.94]. A similar relationship was seen with HOMA-IR (HR = 1.83; 95% CI, 0.99-3.38). Risk was not strongly associated with glucose or the insulin:glucose molar ratio ( P trend = 0.55 and P trend = 0.27, respectively). Conclusions: Higher fasting serum insulin concentrations, as well as the presence of insulin resistance, appear to be associated with an elevated risk of lung cancer development. Impact: Although insulin is hypothesized to increase risk of some cancers, insulin and lung cancer remain understudied. Higher insulin levels and insulin resistance were associated with increased lung cancer risk. Although smoking cessation is the best method of lung cancer prevention, other lifestyle changes that affect insulin concentrations and sensitivity may reduce lung cancer risk. Cancer Epidemiol Biomarkers Prev; 26(10); 1519-24. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    Science.gov (United States)

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  10. Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4.

    Science.gov (United States)

    Pearson-Leary, J; Jahagirdar, V; Sage, J; McNay, E C

    2018-02-15

    The insulin-regulated glucose transporter, GluT4, is a key molecule in peripheral insulin signaling. Although GluT4 is abundantly expressed in neurons of specific brain regions such as the hippocampus, the functional role of neuronal GluT4 is unclear. Here, we used pharmacological inhibition of GluT4-mediated glucose uptake to determine whether GluT4 mediates insulin-mediated glucose uptake in the hippocampus. Consistent with previous reports, we found that glucose utilization increased in the dorsal hippocampus of male rats during spontaneous alternation (SA), a hippocampally-mediated spatial working memory task. We previously showed that insulin signaling within the hippocampus is required for processing this task, and that administration of exogenous insulin enhances performance. At baseline levels of hippocampal insulin, inhibition of GluT4-mediated glucose uptake did not affect SA performance. However, inhibition of an upstream regulator of GluT4, Akt, did impair SA performance. Conversely, when a memory-enhancing dose of insulin was delivered to the hippocampus prior to SA-testing, inhibition of GluT4-mediated glucose transport prevented cognitive enhancement. These data suggest that baseline hippocampal cognitive processing does not require functional hippocampal GluT4, but that cognitive enhancement by supra-baseline insulin does. Consistent with these findings, we found that in neuronal cell culture, insulin increases glucose utilization in a GluT4-dependent manner. Collectively, these data demonstrate a key role for GluT4 in transducing the procognitive effects of elevated hippocampal insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Insulin resistance in human subjects having impaired glucose regulation

    International Nuclear Information System (INIS)

    Khan, S.H.; Khan, F.A.; Ijaz, A.

    2007-01-01

    To determine insulin resistance in human subjects having impaired glucose regulation (IGR) by Homeostasis Model Assessment for Insulin Resistance (HOMA-IR). A total of 100 subjects with impaired glucose regulation were selected for evaluation of metabolic syndrome as per the criteria of National Cholesterol Education Program, Adult Treatment Panel III (NCEP, ATP III), along with 47 healthy age and gender-matched controls. Physical examination to determine blood pressure and waist circumference was carried out and so was sampling for plasma glucose, serum triglycerides, HDL-cholesterol and insulin. Insulin resistance was calculated by the HOMA-IR. Finally, subjects with and without metabolic syndrome were compared with controls (n=47), using one-way ANOVA for studying insulin resistance between groups, with Tukey's post-hoc comparison. The frequency of finding metabolic syndrome in cases of IGR remained 47%. The insulin resistance demonstrated stepwise worsening from control population (mean=1.54, 95 % CI: 1.77 - 2.37) to subjects suffering from only IGR (mean=2.07, 95 % CI: 1.77- 2.37) to metabolic syndrome (mean=2.67, 95 %, CI: 2.34 - 3.00) (p < 0.001). Patients with impaired glucose regulation may have significant insulin resistance. It is, thus, recommended that a vigorous search be made to measure insulin resistance in all cases diagnosed to have impaired glucose regulation. (author)

  12. Modelling of glucose-insulin-glucagon pharmacodynamics in man

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Møller, Jan Kloppenborg; Haidar, A.

    The purpose is to build a simulation model of the glucoregulatory system in man. We estimate individual human parameters of a physiological glucose-insulin-glucagon model. We report posterior probability distributions and correlations of model parameters....

  13. Effects of turtle oil on insulin sensitivity and glucose metabolism in insulin resistant cell model

    International Nuclear Information System (INIS)

    Bai Jing; Tian Yaping; Guo Duo

    2007-01-01

    To evaluate the effects of turtle oil on insulin sensitivity and glucose metabolism in an insulin-resistant (IR) cell model which was established by the way of high concentration of insulin induction with HepG 2 cell in vitro culture. The IR cells were treated by turtle oil, the glucose consumption and 3 H-D-glucose incorporation rate in IR cells were detected by the way of glucose oxidase and 3 H-D-glucose incorporation assay respectively. The state of cell proliferation was tested by MTT method. The results showed that the incorporation rate of 3 H-D-glucose in IR cells was significantly lower than that in the control cells(P 3 H-D-glucose incorporation rate in either IR cells or control cells was increased with the increase of insulin concentration. Moreover, the 3 H-D-glucose incorporation rate of IR cells increased slower than that of control cells. The MTT assay showed that turtle oil can promote the proliferation of IR cell and control cell. The glucose uptake and glucose consumption in IR cell which treated with turtle oil was significantly increase than that in the control cells (P<0.05). Turtle oil can improve the insulin sensitivity and glucose metabolism in the IR cell model. (authors)

  14. Blueberries’ Impact on Insulin Resistance and Glucose Intolerance

    Directory of Open Access Journals (Sweden)

    April J. Stull

    2016-11-01

    Full Text Available Blueberries are a rich source of polyphenols, which include anthocyanin bioactive compounds. Epidemiological evidence indicates that incorporating blueberries into the diet may lower the risk of developing type 2 diabetes (T2DM. These findings are supported by pre-clinical and clinical studies that have shown improvements in insulin resistance (i.e., increased insulin sensitivity after obese and insulin-resistant rodents or humans consumed blueberries. Insulin resistance was assessed by homeostatic model assessment-estimated insulin resistance (HOMA-IR, insulin tolerance tests, and hyperinsulinemic-euglycemic clamps. Additionally, the improvements in glucose tolerance after blueberry consumption were assessed by glucose tolerance tests. However, firm conclusions regarding the anti-diabetic effect of blueberries cannot be drawn due to the small number of existing clinical studies. Although the current evidence is promising, more long-term, randomized, and placebo-controlled trials are needed to establish the role of blueberries in preventing or delaying T2DM.

  15. Development of glucose-responsive 'smart' insulin systems.

    Science.gov (United States)

    Rege, Nischay K; Phillips, Nelson F B; Weiss, Michael A

    2017-08-01

    The complexity of modern insulin-based therapy for type I and type II diabetes mellitus and the risks associated with excursions in blood-glucose concentration (hyperglycemia and hypoglycemia) have motivated the development of 'smart insulin' technologies (glucose-responsive insulin, GRI). Such analogs or delivery systems are entities that provide insulin activity proportional to the glycemic state of the patient without external monitoring by the patient or healthcare provider. The present review describes the relevant historical background to modern GRI technologies and highlights three distinct approaches: coupling of continuous glucose monitoring (CGM) to deliver devices (algorithm-based 'closed-loop' systems), glucose-responsive polymer encapsulation of insulin, and molecular modification of insulin itself. Recent advances in GRI research utilizing each of the three approaches are illustrated; these include newly developed algorithms for CGM-based insulin delivery systems, glucose-sensitive modifications of existing clinical analogs, newly developed hypoxia-sensitive polymer matrices, and polymer-encapsulated, stem-cell-derived pancreatic β cells. Although GRI technologies have yet to be perfected, the recent advances across several scientific disciplines that are described in this review have provided a path towards their clinical implementation.

  16. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation

    OpenAIRE

    Frank, N.; Hermida, P.; Sanchez?Londo?o, A.; Singh, R.; Gradil, C.M.; Uricchio, C.K.

    2017-01-01

    Background Octreotide is a somatostatin analog that suppresses insulin secretion. Hypothesis We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Animals Twelve horses, N = 5, ID = 7. Methods Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1....

  17. Restraint stress impairs glucose homeostasis through altered insulin ...

    African Journals Online (AJOL)

    The study investigated the potential alteration in the level of insulin and adiponectin, as well as the expression of insulin receptors (INSR) and glucose transporter 4 GLUT-4 in chronic restraint stress rats. Sprague-Dawley rats were randomly divided into two groups: the control group and stress group in which the rats were ...

  18. DEFECTS IN INSULIN-SECRETION IN NIDDM - B-CELL GLUCOSE INSENSITIVITY OR GLUCOSE TOXICITY

    NARCIS (Netherlands)

    VANHAEFTEN, TW

    In NIDDM, first-phase insulin release to glucose is (almost) absent. However, in contrast to older studies which suggested that in NIDDM the B-cell is ''blind'' for glucose, recent evidence indicates that the B-cell is not insensitive for glucose as far as second phase release is concerned. This

  19. A simple method for measuring glucose utilization of insulin-sensitive tissues by using the brain as a reference

    International Nuclear Information System (INIS)

    Namba, Hiroki; Nakagawa, Keiichi; Iyo, Masaomi; Fukushi, Kiyoshi; Irie, Toshiaki

    1994-01-01

    A simple method, without measurement of the plasma input function, to obtain semiquantitative values of glucose utilization in tissues other than the brain with radioactive deoxyglucose is reported. The brain, in which glucose utilization is essentially insensitive to plasma glucose and insulin concentrations, was used as an internal reference. The effects of graded doses of oral glucose loading (0.5, 1 and 2 mg/g body weight) on insulin-sensitive tissues (heart, muscle and fat tissue) were studied in the rat. By using the brain-reference method, dose-dependent increases in glucose utilization were clearly shown in all the insulin-sensitive tissues examined. The method seems to be of value for measurement of glucose utilization using radioactive deoxyglucose and positron emission tomography in the heart or other insulin-sensitive tissues, especially during glucose loading. (orig.)

  20. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    Science.gov (United States)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Hansen, B F; Ursø, Birgitte

    1996-01-01

    The role of phosphatidylinositol (PI) 3-kinase for insulin- and contraction-stimulated muscle glucose transport was investigated in rat skeletal muscle perfused with a cell-free perfusate. The insulin receptor substrate-1-associated PI 3-kinase activity was increased sixfold upon insulin...... stimulation but was unaffected by contractions. In addition, the insulin-stimulated PI 3-kinase activity and muscle glucose uptake and transport in individual muscles were dose-dependently inhibited by wortmannin with one-half maximal inhibition values of approximately 10 nM and total inhibition at 1 micro......M. This concentration of wortmannin also decreased the contraction-stimulated glucose transport and uptake by approximately 30-70% without confounding effects on contractility or on muscle ATP and phosphocreatine concentrations. At higher concentrations (3 and 10 microM), wortmannin completely blocked the contraction...

  2. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion.

    Science.gov (United States)

    Houtz, Jessica; Borden, Philip; Ceasrine, Alexis; Minichiello, Liliana; Kuruvilla, Rejji

    2016-11-07

    Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Inhaled insulin for controlling blood glucose in patients with diabetes

    Directory of Open Access Journals (Sweden)

    Bernard L Silverman

    2008-01-01

    Full Text Available Bernard L Silverman1, Christopher J Barnes2, Barbara N Campaigne3, Douglas B Muchmore31Alkermes, Inc, Cambridge, MA, USA; 2i3 Statprobe, Ann Arbor, MI; 3Eli Lilly and Company, Indianapolis, IN, USAAbstract: Diabetes mellitus is a significant worldwide health problem, with the incidence of type 2 diabetes increasing at alarming rates. Insulin resistance and dysregulated blood glucose control are established risk factors for microvascular complications and cardiovascular disease. Despite the recognition of diabetes as a major health issue and the availability of a growing number of medications designed to counteract its detrimental effects, real and perceived barriers remain that prevent patients from achieving optimal blood glucose control. The development and utilization of inhaled insulin as a novel insulin delivery system may positively influence patient treatment adherence and optimal glycemic control, potentially leading to a reduction in cardiovascular complications in patients with diabetes.Keywords: diabetes, inhaled insulin, cardiovascular disease, blood glucose

  4. Model of the Glucose-Insulin-Glucagon Dynamics after Subcutaneous Administration of a Glucagon Rescue Bolus in Healthy Humans

    OpenAIRE

    Wendt, Sabrina Lyngbye; Møller, Jan Kloppenborg; Haidar, Ahmad; Bysted, Britta V.; Knudsen, Carsten B.; Madsen, Henrik; Jørgensen, John Bagterp

    2016-01-01

    In healthy individuals, insulin and glucagon work in a complex fashion to maintain blood glucose levels within a narrow range. This regulation is distorted in patients with diabetes. The hepatic glucose response due to an elevated glucagon level depends on the current insulin concentration and thus endogenous glucose production (EGP) can not be modelled without knowledge of the concentration of both hormones in plasma. Furthermore, literature suggests an upper limit to EGP irrespective of glu...

  5. Alteration of postprandial glucose and insulin concentrations with meal frequency and composition.

    Science.gov (United States)

    Kanaley, Jill A; Heden, Timothy D; Liu, Ying; Fairchild, Timothy J

    2014-11-14

    A frequent eating pattern may alter glycaemic control and augment postprandial insulin concentrations in some individuals due to the truncation of the previous postprandial period by a subsequent meal. The present study examined glucose, insulin, C-peptide and glucose-dependent insulinotropic peptide (GIP) responses in obese individuals when meals were ingested in a high-frequency pattern (every 2 h, 6M) or in a low-frequency pattern (every 4 h, 3M) over 12 h. It also examined these postprandial responses to high-frequency, high-protein meals (6MHP). In total, thirteen obese subjects completed three 12 h study days during which they consumed 6276 kJ (1500 kcal): (1) 3M - 15 % protein and 65 % carbohydrate; (2) 6M - 15 % protein and 65 % carbohydrate; (3) 6MHP - 45 % protein and 35 % carbohydrate. Blood samples were collected every 10 min and analysed for glucose, insulin, C-peptide and GIP. Insulin total AUC (tAUC) and peak insulin concentrations (Pmeal frequency or composition. In obese subjects, ingestion of meals in a low-frequency pattern does not alter glucose tAUC, but increases postprandial insulin responses. The substitution of carbohydrates with protein in a frequent meal pattern results in tighter glycaemic control and reduced postprandial insulin responses.

  6. GPR142 Controls Tryptophan-Induced Insulin and Incretin Hormone Secretion to Improve Glucose Metabolism.

    Directory of Open Access Journals (Sweden)

    Hua V Lin

    Full Text Available GPR142, a putative amino acid receptor, is expressed in pancreatic islets and the gastrointestinal tract, but the ligand affinity and physiological role of this receptor remain obscure. In this study, we show that in addition to L-Tryptophan, GPR142 signaling is also activated by L-Phenylalanine but not by other naturally occurring amino acids. Furthermore, we show that Tryptophan and a synthetic GPR142 agonist increase insulin and incretin hormones and improve glucose disposal in mice in a GPR142-dependent manner. In contrast, Phenylalanine improves in vivo glucose disposal independently of GPR142. Noteworthy, refeeding-induced elevations in insulin and glucose-dependent insulinotropic polypeptide are blunted in Gpr142 null mice. In conclusion, these findings demonstrate GPR142 is a Tryptophan receptor critically required for insulin and incretin hormone regulation and suggest GPR142 agonists may be effective therapies that leverage amino acid sensing pathways for the treatment of type 2 diabetes.

  7. Central insulin action in energy and glucose homeostasis.

    Science.gov (United States)

    Plum, Leona; Belgardt, Bengt F; Brüning, Jens C

    2006-07-01

    Insulin has pleiotropic biological effects in virtually all tissues. However, the relevance of insulin signaling in peripheral tissues has been studied far more extensively than its role in the brain. An evolving body of evidence indicates that in the brain, insulin is involved in multiple regulatory mechanisms including neuronal survival, learning, and memory, as well as in regulation of energy homeostasis and reproductive endocrinology. Here we review insulin's role as a central homeostatic signal with regard to energy and glucose homeostasis and discuss the mechanisms by which insulin communicates information about the body's energy status to the brain. Particular emphasis is placed on the controversial current debate about the similarities and differences between hypothalamic insulin and leptin signaling at the molecular level.

  8. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation.

    Science.gov (United States)

    Frank, N; Hermida, P; Sanchez-Londoño, A; Singh, R; Gradil, C M; Uricchio, C K

    2017-07-01

    Octreotide is a somatostatin analog that suppresses insulin secretion. We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Twelve horses, N = 5, ID = 7. Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1.0 μg/kg IV) was then administered, and blood was collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, 75, and 90 minute, and 2, 3, 4, 6, 8, 12, and 24 hour for measurement of glucose and insulin concentrations. Area under the curve (AUC) values were calculated. Mean AUC values for glucose and insulin did not differ between normal (n = 5) and ID (n = 7) groups after octreotide injection. Significant time (P glucose and insulin concentrations. A group × time interaction (P = .091) was detected for insulin concentrations after administration of octreotide, but the group (P = .33) effect was not significant. Octreotide suppresses insulin secretion, resulting in hyperglycemia, and then concentrations increase above baseline as glycemic control is restored. Our hypothesis that octreotide causes insulin concentrations to decrease in horses was supported, but differences between N and ID groups did not reach statistical significance when blood glucose and insulin responses were compared. The utility of an octreotide response test remains to be determined. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  9. Model of the Glucose-Insulin-Glucagon Dynamics after Subcutaneous Administration of a Glucagon Rescue Bolus in Healthy Humans

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Møller, Jan Kloppenborg; Haidar, Ahmad

    In healthy individuals, insulin and glucagon work in a complex fashion to maintain blood glucose levels within a narrow range. This regulation is distorted in patients with diabetes. The hepatic glucose response due to an elevated glucagon level depends on the current insulin concentration and thus...... endogenous glucose production (EGP) can not be modelled without knowledge of the concentration of both hormones in plasma. Furthermore, literature suggests an upper limit to EGP irrespective of glucagon levels. We build a simulation model of the glucose-insulin-glucagon dynamics in man including saturation...... effect of EGP. Ten healthy subjects received a 1 mg subcutaneous (SC) glucagon bolus (GlucaGen®). Plasma samples were collected until 300 minutes post dose and analyzed for glucagon, insulin, and glucose concentrations. All observations were used to fit a physiological model of the glucose...

  10. Characterization of the intravenous glucose tolerance test and the combined glucose-insulin test in donkeys.

    Science.gov (United States)

    Mendoza, F J; Aguilera-Aguilera, R; Gonzalez-De Cara, C A; Toribio, R E; Estepa, J C; Perez-Ecija, A

    2015-12-01

    Glucose-insulin dynamic challenges such as the intravenous glucose tolerance test (IVGTT) and combined glucose-insulin test (CGIT) have not been described in donkeys. The objectives of this study were (1) to characterize the IVGTT and CGIT in healthy adult donkeys, and (2) to establish normal glucose-insulin proxies. Sixteen donkeys were used and body morphometric variables obtained each. For the IVGTT, glucose (300 mg/kg) was given IV. For the CGIT, glucose (150 mg/kg) followed by recombinant insulin (0.1 IU/kg) were administered IV. Blood samples for glucose and insulin determinations were collected over 300 min. In the IVGTT the positive phase lasted 160.9 ± 13.3 min, glucose concentration peaked at 323.1 ± 9.2 mg/dL and declined at a rate of 1.28 ± 0.15 mg/dL/min. The glucose area under the curve (AUC) was 21.4 ± 1.9 × 10(3) mg/dL/min and the insulin AUC was 7.2 ± 0.9 × 10(3) µIU/mL/min. The positive phase of the CGIT curve lasted 44 ± 3 min, with a glucose clearance rate of 2.01 ± 0.18 mg/dL/min. The negative phase lasted 255.9 ± 3 min, decreasing glucose concentration at rate of -0.63 ± 0.06 mg/dL/min, and reaching a nadir (33.1 ± 3.6 mg/dL) at 118.3 ± 6.3 min. The glucose and insulin AUC values were 15.2 ± 0.9 × 10(3) mg/dL/min and 13.2 ± 0.9 × 10(3) µIU/mL/min. This is the first study characterizing CGIT and IVGTT, and glucose-insulin proxies in healthy adult donkeys. Distinct glucose dynamics, when compared with horses, support the use of species-specific protocols to assess endocrine function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Mathematical model of glucose-insulin homeostasis in healthy rats.

    Science.gov (United States)

    Lombarte, Mercedes; Lupo, Maela; Campetelli, German; Basualdo, Marta; Rigalli, Alfredo

    2013-10-01

    According to the World Health Organization there are over 220 million people in the world with diabetes and 3.4 million people died in 2004 as a consequence of this pathology. Development of an artificial pancreas would allow to restore control of blood glucose by coupling an infusion pump to a continuous glucose sensor in the blood. The design of such a device requires the development and application of mathematical models which represent the gluco-regulatory system. Models developed by other research groups describe very well the gluco-regulatory system but have a large number of mathematical equations and require complex methodologies for the estimation of its parameters. In this work we propose a mathematical model to study the homeostasis of glucose and insulin in healthy rats. The proposed model consists of three differential equations and 8 parameters that describe the variation of: blood glucose concentration, blood insulin concentration and amount of glucose in the intestine. All parameters were obtained by setting functions to the values of glucose and insulin in blood obtained after oral glucose administration. In vivo and in silico validations were performed. Additionally, a qualitative analysis has been done to verify the aforementioned model. We have shown that this model has a single, biologically consistent equilibrium point. This model is a first step in the development of a mathematical model for the type I diabetic rat. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Trajectories of BMI change impact glucose and insulin metabolism.

    Science.gov (United States)

    Walsh, E I; Shaw, J; Cherbuin, N

    2018-03-01

    The aim of this study was to examine, in a community setting, whether trajectory of weight change over twelve years is associated with glucose and insulin metabolism at twelve years. Participants were 532 community-living middle-aged and elderly adults from the Personality and Total Health (PATH) Through Life study. They spanned the full weight range (underweight/normal/overweight/obese). Latent class analysis and multivariate generalised linear models were used to investigate the association of Body Mass Index (BMI, kg/m 2 ) trajectory over twelve years with plasma insulin (μlU/ml), plasma glucose (mmol/L), and HOMA2 insulin resistance and beta cell function at follow-up. All models were adjusted for age, gender, hypertension, pre-clinical diabetes status (normal fasting glucose or impaired fasting glucose) and physical activity. Four weight trajectories were extracted; constant normal (mean baseline BMI = 25; follow-up BMI = 25), constant high (mean baseline BMI = 36; follow-up BMI = 37), increase (mean baseline BMI = 26; follow-up BMI = 32) and decrease (mean baseline BMI = 34; follow-up BMI = 28). At any given current BMI, individuals in the constant high and increase trajectories had significantly higher plasma insulin, greater insulin resistance, and higher beta cell function than those in the constant normal trajectory. Individuals in the decrease trajectory did not differ from the constant normal trajectory. Current BMI significantly interacted with preceding BMI trajectory in its association with plasma insulin, insulin resistance, and beta cell function. The trajectory of preceding weight has an independent effect on blood glucose metabolism beyond body weight measured at any given point in time. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier

  13. Action of Phytochemicals on Insulin Signaling Pathways Accelerating Glucose Transporter (GLUT4 Protein Translocation

    Directory of Open Access Journals (Sweden)

    Abu Sadat Md Sayem

    2018-01-01

    Full Text Available Diabetes is associated with obesity, generally accompanied by a chronic state of oxidative stress and redox imbalances which are implicated in the progression of micro- and macro-complications like heart disease, stroke, dementia, cancer, kidney failure and blindness. All these complications rise primarily due to consistent high blood glucose levels. Insulin and glucagon help to maintain the homeostasis of glucose and lipids through signaling cascades. Pancreatic hormones stimulate translocation of the glucose transporter isoform 4 (GLUT4 from an intracellular location to the cell surface and facilitate the rapid insulin-dependent storage of glucose in muscle and fat cells. Malfunction in glucose uptake mechanisms, primarily contribute to insulin resistance in type 2 diabetes. Plant secondary metabolites, commonly known as phytochemicals, are reported to have great benefits in the management of type 2 diabetes. The role of phytochemicals and their action on insulin signaling pathways through stimulation of GLUT4 translocation is crucial to understand the pathogenesis of this disease in the management process. This review will summarize the effects of phytochemicals and their action on insulin signaling pathways accelerating GLUT4 translocation based on the current literature.

  14. Bayesian model discrimination for glucose-insulin homeostasis

    DEFF Research Database (Denmark)

    Andersen, Kim Emil; Brooks, Stephen P.; Højbjerre, Malene

    In this paper we analyse a set of experimental data on a number of healthy and diabetic patients and discuss a variety of models for describing the physiological processes involved in glucose absorption and insulin secretion within the human body. We adopt a Bayesian approach which facilitates...... as parameter uncertainty. Markov chain Monte Carlo methods are used, combining Metropolis Hastings, reversible jump and simulated tempering updates to provide rapidly mixing chains so as to provide robust inference. We demonstrate the methodology for both healthy and type II diabetic populations concluding...... that whilst both populations are well modelled by a common insulin model, their glucose dynamics differ considerably....

  15. Peripheral Blood Transcriptomic Signatures of Fasting Glucose and Insulin Concentrations

    Science.gov (United States)

    Chen, Brian H.; Hivert, Marie-France; Peters, Marjolein J.; Pilling, Luke C.; Hogan, John D.; Pham, Lisa M.; Harries, Lorna W.; Fox, Caroline S.; Bandinelli, Stefania; Dehghan, Abbas; Hernandez, Dena G.; Hofman, Albert; Hong, Jaeyoung; Joehanes, Roby; Johnson, Andrew D.; Munson, Peter J.; Rybin, Denis V.; Singleton, Andrew B.; Uitterlinden, André G.; Ying, Saixia; Melzer, David; Levy, Daniel; van Meurs, Joyce B.J.; Ferrucci, Luigi; Florez, Jose C.; Dupuis, Josée

    2016-01-01

    Genome-wide association studies (GWAS) have successfully identified genetic loci associated with glycemic traits. However, characterizing the functional significance of these loci has proven challenging. We sought to gain insights into the regulation of fasting insulin and fasting glucose through the use of gene expression microarray data from peripheral blood samples of participants without diabetes in the Framingham Heart Study (FHS) (n = 5,056), the Rotterdam Study (RS) (n = 723), and the InCHIANTI Study (Invecchiare in Chianti) (n = 595). Using a false discovery rate q fasting glucose and 433 transcripts associated with fasting insulin levels after adjusting for age, sex, technical covariates, and complete blood cell counts. Among the findings, circulating IGF2BP2 transcript levels were positively associated with fasting insulin in both the FHS and RS. Using 1000 Genomes–imputed genotype data, we identified 47,587 cis-expression quantitative trait loci (eQTL) and 6,695 trans-eQTL associated with the 433 significant insulin-associated transcripts. Of note, we identified a trans-eQTL (rs592423), where the A allele was associated with higher IGF2BP2 levels and with fasting insulin in an independent genetic meta-analysis comprised of 50,823 individuals. We conclude that integration of genomic and transcriptomic data implicate circulating IGF2BP2 mRNA levels associated with glucose and insulin homeostasis. PMID:27625022

  16. Insulin secretion and incretin hormones after oral glucose in non-obese subjects with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Rask, E; Olsson, T; Söderberg, S

    2004-01-01

    of glucose, insulin, C-peptide, GLP-1, and GIP. Insulin secretion (TIS) and insulin sensitivity (OGIS) were assessed using models describing the relationship between glucose, insulin and C-peptide data. These models allowed estimation also of the hepatic extraction of insulin. The age (54.2 +/- 9.7 [mean......Subjects with impaired glucose tolerance (IGT) are usually overweight and exhibit insulin resistance with a defective compensation of insulin secretion. In this study, we sought to establish the interrelation between insulin secretion and insulin sensitivity after oral glucose in non-obese subjects...... over the whole 180-minute period was higher in IGT (26.2 +/- 2.4 v 20.0 +/- 2.0 nmol/L; P =.035). Hepatic insulin extraction correlated linearly with OGIS (r = 0.71; P

  17. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens J

    2003-01-01

    We examined the simultaneous effects of a 24-h low-grade Intralipid infusion on peripheral glucose disposal, intracellular glucose partitioning and insulin secretion rates in twenty young men, by 2-step hyperinsulinemic euglycemic clamp [low insulin clamp (LI), 10 mU/m(2) x min; high insulin clamp...... Intralipid infusion. At LI, glucose oxidation decreased by 10%, whereas glucose disposal, glycolytic flux, glucose storage, and glucose production were not significantly altered. At HI, glucose disposal, and glucose oxidation decreased by 12% and 24%, respectively, during Intralipid infusion. Glycolytic flux......, glucose storage, and glucose production were unchanged. Insulin secretion rates increased in response to Intralipid infusion, but disposition indices (DI = insulin action.insulin secretion) were unchanged. In conclusion, a 24-h low-grade Intralipid infusion caused insulin resistance in the oxidative (but...

  18. Coffee Consumption Attenuates Insulin Resistance and Glucose ...

    African Journals Online (AJOL)

    olayemitoyin

    Intolerance in Rats fed on High-Sucrose Diet. Morakinyo AO*, Adekunbi DA, ... In addition, lipid indices such as TG and LDL as well as the .... blood glucose monitoring system (Accu-Chek. Glucometer ..... parasympathetic nerves. Diabetologia.

  19. Using Glucose Tolerance Tests to Model Insulin Secretion and Clearance

    Directory of Open Access Journals (Sweden)

    Anthony Shannon

    2005-04-01

    Full Text Available The purpose of the studies described in this paper is to develop theoretically and to validate experimentally mathematical compartment models which can be used to predict plasma insulin levels in patients with diabetes mellitus (DM. In the case of Type 2 Diabetes Mellitus (T2DM, the C-peptide levels in the plasma were measured as part of routine glucose tolerance tests in order to estimate the prehepatic insulin secretion rates. In the case of Type 1 Diabetes Mellitus (T1DM, a radioactive labelled insulin was used to measure the absorption rate of insulin after a subcutaneous injection of insulin. Both models gave close fits between theoretical estimates and experimental data, and, unlike other models, it is not necessary to seed these models with initial estimates.

  20. Exogenous thyroxine improves glucose intolerance in insulin-resistant rats.

    Science.gov (United States)

    Vazquez-Anaya, Guillermo; Martinez, Bridget; Soñanez-Organis, José G; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2017-03-01

    Both hypothyroidism and hyperthyroidism are associated with glucose intolerance, calling into question the contribution of thyroid hormones (TH) on glucose regulation. TH analogues and derivatives may be effective treatment options for glucose intolerance and insulin resistance (IR), but their potential glucoregulatory effects during conditions of impaired metabolism are not well described. To assess the effects of thyroxine (T 4 ) on glucose intolerance in a model of insulin resistance, an oral glucose tolerance test (oGTT) was performed on three groups of rats (n = 8): (1) lean, Long Evans Tokushima Otsuka (LETO), (2) obese, Otsuka Long Evans Tokushima Fatty (OLETF) and (3) OLETF + T 4 (8.0 µg/100 g BM/day × 5 weeks). T 4 attenuated glucose intolerance by 15% and decreased IR index (IRI) by 34% in T 4 -treated OLETF compared to untreated OLETF despite a 31% decrease in muscle Glut4 mRNA expression. T 4 increased the mRNA expressions of muscle monocarboxylate transporter 10 (Mct10), deiodinase type 2 (Di2), sirtuin 1 (Sirt1) and uncoupling protein 2 (Ucp2) by 1.8-, 2.2-, 2.7- and 1.4-fold, respectively, compared to OLETF. Activation of AMP-activated protein kinase (AMPK) and insulin receptor were not significantly altered suggesting that the improvements in glucose intolerance and IR were independent of enhanced insulin-mediated signaling. The results suggest that T 4 treatment increased the influx of T 4 in skeletal muscle and, with an increase of DI2, increased the availability of the biologically active T 3 to upregulate key factors such SIRT1 and UCP2 involved in cellular metabolism and glucose homeostasis. © 2017 Society for Endocrinology.

  1. Insulin-sensitive phospholipid signaling systems and glucose transport. Update II.

    Science.gov (United States)

    Farese, R V

    2001-04-01

    Insulin provokes rapid changes in phospholipid metabolism and thereby generates biologically active lipids that serve as intracellular signaling factors that regulate glucose transport and glycogen synthesis. These changes include: (i) activation of phosphatidylinositol 3-kinase (PI3K) and production of PIP3; (ii) PIP3-dependent activation of atypical protein kinase Cs (PKCs); (iii) PIP3-dependent activation of PKB; (iv) PI3K-dependent activation of phospholipase D and hydrolysis of phosphatidylcholine with subsequent increases in phosphatidic acid (PA) and diacylglycerol (DAG); (v) PI3K-independent activation of glycerol-3-phosphate acylytansferase and increases in de novo synthesis of PA and DAG; and (vi) activation of DAG-sensitive PKCs. Recent findings suggest that atypical PKCs and PKB serve as important positive regulators of insulin-stimulated glucose metabolism, whereas mechanisms that result in the activation of DAG-sensitive PKCs serve mainly as negative regulators of insulin signaling through PI3K. Atypical PKCs and PKB are rapidly activated by insulin in adipocytes, liver, skeletal muscles, and other cell types by a mechanism requiring PI3K and its downstream effector, 3-phosphoinositide-dependent protein kinase-1 (PDK-1), which, in conjunction with PIP3, phosphorylates critical threonine residues in the activation loops of atypical PKCs and PKB. PIP3 also promotes increases in autophosphorylation and allosteric activation of atypical PKCs. Atypical PKCs and perhaps PKB appear to be required for insulin-induced translocation of the GLUT 4 glucose transporter to the plasma membrane and subsequent glucose transport. PKB also appears to be the major regulator of glycogen synthase. Together, atypical PKCs and PKB serve as a potent, integrated PI3K/PDK-1-directed signaling system that is used by insulin to regulate glucose metabolism.

  2. Predictors of mortality in insulin dependent diabetes

    DEFF Research Database (Denmark)

    Rossing, P; Hougaard, P; Borch-Johnsen, K

    1996-01-01

    OBJECTIVE: To evaluate the prognostic significance of microalbuminuria and overt diabetic nephropathy and other putative risk factors for cardiovascular and all cause mortality in insulin dependent diabetes. DESIGN: Ten year observational follow up study. SETTING: Outpatient diabetic clinic...... in a tertiary referral centre. SUBJECTS: All 939 adults with insulin dependent diabetes (duration of diabetes five years or more) attending the clinic in 1984; 593 had normal urinary albumin excretion ( or = 300 mg...... and other potentially modifiable risk factors such as hypertension, smoking, poor glycaemic control, and social class predict increased mortality in insulin dependent diabetes. Microalbuminuria by itself confers only a small increase in mortality. The prognosis of patients with overt diabetic nephropathy...

  3. Glucose-stimulated insulin response in pregnant sheep following acute suppression of plasma non-esterified fatty acid concentrations

    Directory of Open Access Journals (Sweden)

    Sriskandarajah Nadarajah

    2004-09-01

    of pregnancy and possibly NEFA metabolism, may act to maintain a reduced insulin output, thereby sparing glucose for non-insulin dependent placental uptake and ultimately, fetal requirements.

  4. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle.

    Science.gov (United States)

    Witczak, Carol A; Jessen, Niels; Warro, Daniel M; Toyoda, Taro; Fujii, Nobuharu; Anderson, Mark E; Hirshman, Michael F; Goodyear, Laurie J

    2010-06-01

    Studies using chemical inhibitors have suggested that the Ca(2+)-sensitive serine/threonine kinase Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of both insulin- and contraction-stimulated glucose uptake in skeletal muscle. However, due to nonspecificity of these inhibitors, the specific role that CaMKII may play in the regulation of glucose uptake is not known. We sought to determine whether specific inhibition of CaMKII impairs insulin- and/or contraction-induced glucose uptake in mouse skeletal muscle. Expression vectors containing green fluorescent protein conjugated to a CaMKII inhibitory (KKALHRQEAVDCL) or control (KKALHAQERVDCL) peptide were transfected into tibialis anterior muscles by in vivo electroporation. After 1 wk, muscles were assessed for peptide expression, CaMK activity, insulin- and contraction-induced 2-[(3)H]deoxyglucose uptake, glycogen concentrations, and changes in intracellular signaling proteins. Expression of the CaMKII inhibitory peptide decreased muscle CaMK activity approximately 35% compared with control peptide. Insulin-induced glucose uptake was not changed in muscles expressing the inhibitory peptide. In contrast, expression of the inhibitory peptide significantly decreased contraction-induced muscle glucose uptake (approximately 30%). Contraction-induced decreases in muscle glycogen were not altered by the inhibitory peptide. The CaMKII inhibitory peptide did not alter expression of the glucose transporter GLUT4 and did not impair contraction-induced increases in the phosphorylation of AMP-activated protein kinase (Thr(172)) or TBC1D1/TBC1D4 on phospho-Akt substrate sites. These results demonstrate that CaMKII does not regulate insulin-stimulated glucose uptake in skeletal muscle. However, CaMKII plays a critical role in the regulation of contraction-induced glucose uptake in mouse skeletal muscle.

  5. Refractory hyperglycaemia induced by glucose-insulin-potassium infusion in acute myocardial infarction

    NARCIS (Netherlands)

    Svilaas, Tone; van der Horst, I.C.C.; Nijsten, M.W.N.; Zijlstra, F.

    2006-01-01

    Background. Recent randomised clinical trials have not confirmed the beneficial effects of glucose-insulin-potassium (GIK) infusion observed in experimental models of myocardial ischaemia and infarction. Methods. We investigated glucose levels and insulin dose in 107 patients treated with

  6. Control of the intracellular redox state by glucose participates in the insulin secretion mechanism.

    Directory of Open Access Journals (Sweden)

    Eduardo Rebelato

    Full Text Available BACKGROUND: Production of reactive oxygen species (ROS due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS. In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out. METHODOLOGY/PRINCIPAL FINDINGS: Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP. Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism. CONCLUSIONS: The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.

  7. Mathematical modeling of the glucose-insulin system

    DEFF Research Database (Denmark)

    Palumbo, Pasquale; Ditlevsen, Susanne; Bertuzzi, Alessandro

    2013-01-01

    of pancreatic insulin production, with a oarser/finer level of detail ranging over cellular and subcellular scales, to short-term organ/tissue models accounting for the intra-venous and the oral glucose tolerance tests as well as for the euglycemic hyperinsulinemic clamp, to total-body, long-term diabetes...

  8. Glucose-dependent insulinotropic polypeptide

    DEFF Research Database (Denmark)

    Christensen, Mikkel; Vedtofte, Louise; Holst, Jens Juul

    2011-01-01

    of GIP were administered intravenously (randomized and double blinded) during 90 min of insulin-induced hypoglycemia, euglycemia, or hyperglycemia. RESULTS During hypoglycemia, GIP infusion caused greater glucagon responses during the first 30 min compared with saline (76 ± 17 vs. 28 ± 16 pmol/L per 30...... min, P hyperglycemia, comparable suppression of plasma glucagon (-461 ± 81 vs. -371 ± 50 pmol/L per 90 min......, P = 0.26) was observed with GIP and saline infusions. In addition, during hyperglycemia, GIP more than doubled the insulin secretion rate (P hyperglycemia while strongly potentiating insulin secretion...

  9. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet–Induced Insulin Resistance

    Science.gov (United States)

    Wu, Mengrui; Kim, Teayoun; Jariwala, Ravi H.; Garvey, W. John; Luo, Nanlan; Kang, Minsung; Ma, Elizabeth; Tian, Ling; Steverson, Dennis; Yang, Qinglin; Fu, Yuchang

    2016-01-01

    In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced insulin resistance and impaired glucose oxidation and defects in insulin signal transduction compared with wild-type (WT) mice, indicating that glucose-induced insulin resistance was dependent on TRIB3. In response to a high-fat diet, TRIB3 MOE mice exhibited greater weight gain and worse insulin resistance in vivo compared with WT mice, coupled with decreased AKT phosphorylation, increased inflammation and oxidative stress, and upregulation of lipid metabolic genes coupled with downregulation of glucose metabolic genes in skeletal muscle. These effects were prevented in the TRIB3 MKO mice relative to WT mice. In conclusion, TRIB3 has a pathophysiological role in diabetes and a physiological role in metabolism. Glucose-induced insulin resistance and insulin resistance due to diet-induced obesity both depend on muscle TRIB3. Under physiological conditions, muscle TRIB3 also influences energy expenditure and substrate metabolism, indicating that the decrease and increase in muscle TRIB3 under fasting and nutrient excess, respectively, are critical for metabolic homeostasis. PMID:27207527

  10. Rational Design of Glucose-Responsive Insulin Using Pharmacokinetic Modeling.

    Science.gov (United States)

    Bakh, Naveed A; Bisker, Gili; Lee, Michael A; Gong, Xun; Strano, Michael S

    2017-11-01

    A glucose responsive insulin (GRI) is a therapeutic that modulates its potency, concentration, or dosing of insulin in relation to a patient's dynamic glucose concentration, thereby approximating aspects of a normally functioning pancreas. Current GRI design lacks a theoretical basis on which to base fundamental design parameters such as glucose reactivity, dissociation constant or potency, and in vivo efficacy. In this work, an approach to mathematically model the relevant parameter space for effective GRIs is induced, and design rules for linking GRI performance to therapeutic benefit are developed. Well-developed pharmacokinetic models of human glucose and insulin metabolism coupled to a kinetic model representation of a freely circulating GRI are used to determine the desired kinetic parameters and dosing for optimal glycemic control. The model examines a subcutaneous dose of GRI with kinetic parameters in an optimal range that results in successful glycemic control within prescribed constraints over a 24 h period. Additionally, it is demonstrated that the modeling approach can find GRI parameters that enable stable glucose levels that persist through a skipped meal. The results provide a framework for exploring the parameter space of GRIs, potentially without extensive, iterative in vivo animal testing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Insulin sensitivity and secretion in Arab Americans with glucose intolerance.

    Science.gov (United States)

    Salinitri, Francine D; Pinelli, Nicole R; Martin, Emily T; Jaber, Linda A

    2013-12-01

    This study examined the pathophysiological abnormalities in Arab Americans with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT). Homeostasis model assessment of insulin resistance (HOMA-IR), homeostasis model assessment of insulin secretion (HOMA-%β), and the Matsuda Insulin Sensitivity Index composite (ISIcomposite) were calculated from the fasting and stimulated glucose and insulin concentrations measured during the oral glucose tolerance test in a population-based, representative, cross-sectional sample of randomly selected Arab Americans. In total, 497 individuals (42±14 years old; 40% males; body mass index [BMI], 29±6 kg/m(2)) were studied. Multivariate linear regression models were performed to compare HOMA-IR, HOMA-%β, and ISIcomposite among individuals with normal glucose tolerance (NGT) (n=191) versus isolated IFG (n=136), isolated IGT (n=22), combined IFG/IGT (n=43), and diabetes (n=105). Compared with individuals with NGT (2.9±1.6), HOMA-IR progressively increased in individuals with isolated IFG (4.8±2.7, Psex and BMI, these associations remained unchanged. Whole-body insulin sensitivity as measured by ISIcomposite was significantly lower in individuals with isolated IFG (3.9±2.3, Psex, and BMI, isolated IFG (146.6±80.2) was also significantly associated with a decline in HOMA-%β relative to NGT (P=0.005). This study suggests that differences in the underlying metabolic defects leading to diabetes in Arab Americans with IFG and/or IGT exist and may require different strategies for the prevention of diabetes.

  12. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.

    Science.gov (United States)

    Patterson, Jessica N; Cousteils, Katelyn; Lou, Jennifer W; Manning Fox, Jocelyn E; MacDonald, Patrick E; Joseph, Jamie W

    2014-05-09

    It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in β-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that β-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 β-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-β-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion.

  13. Identification of four amino acid substitutions in hexokinase II and studies of relationships to NIDDM, glucose effectiveness, and insulin sensitivity

    DEFF Research Database (Denmark)

    Echwald, Søren Morgenthaler; Bjørbaek, C; Hansen, Torben

    1995-01-01

    not predict any change in amino acid composition of the protein. One homozygous and nine heterozygous carriers of the codon 142 mutation were found among the NIDDM patients. The mutations at codons 148, 497, and 844 were each found in one diabetic subject and only on one allele. There were no carriers......Human hexokinase (HK) II, a glucose phosphorylating enzyme in muscle tissue, plays a central role in glucose metabolism. Since reduced insulin-stimulated glucose uptake and reduced glucose-6-phosphate content in muscle have been demonstrated in pre-non-insulin-dependent diabetes mellitus (pre...

  14. Prediction of clamp-derived insulin sensitivity from the oral glucose insulin sensitivity index

    DEFF Research Database (Denmark)

    Tura, Andrea; Chemello, Gaetano; Szendroedi, Julia

    2018-01-01

    that underwent both a clamp and an OGTT or meal test, thereby allowing calculation of both the M value and OGIS. The population was divided into a training and a validation cohort (n = 359 and n = 154, respectively). After a stepwise selection approach, the best model for M value prediction was applied......AIMS/HYPOTHESIS: The euglycaemic-hyperinsulinaemic clamp is the gold-standard method for measuring insulin sensitivity, but is less suitable for large clinical trials. Thus, several indices have been developed for evaluating insulin sensitivity from the oral glucose tolerance test (OGTT). However......, most of them yield values different from those obtained by the clamp method. The aim of this study was to develop a new index to predict clamp-derived insulin sensitivity (M value) from the OGTT-derived oral glucose insulin sensitivity index (OGIS). METHODS: We analysed datasets of people...

  15. Synaptotagmin-7 phosphorylation mediates GLP-1-dependent potentiation of insulin secretion from β-cells

    DEFF Research Database (Denmark)

    Wu, Bingbing; Wei, Shunhui; Petersen, Natalia

    2015-01-01

    Glucose stimulates insulin secretion from β-cells by increasing intracellular Ca(2+). Ca(2+) then binds to synaptotagmin-7 as a major Ca(2+) sensor for exocytosis, triggering secretory granule fusion and insulin secretion. In type-2 diabetes, insulin secretion is impaired; this impairment...... is ameliorated by glucagon-like peptide-1 (GLP-1) or by GLP-1 receptor agonists, which improve glucose homeostasis. However, the mechanism by which GLP-1 receptor agonists boost insulin secretion remains unclear. Here, we report that GLP-1 stimulates protein kinase A (PKA)-dependent phosphorylation...... of synaptotagmin-7 at serine-103, which enhances glucose- and Ca(2+)-stimulated insulin secretion and accounts for the improvement of glucose homeostasis by GLP-1. A phospho-mimetic synaptotagmin-7 mutant enhances Ca(2+)-triggered exocytosis, whereas a phospho-inactive synaptotagmin-7 mutant disrupts GLP-1...

  16. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    Science.gov (United States)

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  17. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes.

    Science.gov (United States)

    Zhang, Chongben; Fennel, Emily M J; Douillet, Christelle; Stýblo, Miroslav

    2017-12-01

    Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs 3+ ) or its methylated metabolite, methylarsonite (MAs 3+ ). The results show that 4-h exposures to iAs 3+ and MAs 3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs 3+ and MAs 3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs 3+ and MAs 3+ . This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.

  18. New-onset insulin-dependent diabetes due to nivolumab

    Directory of Open Access Journals (Sweden)

    Ali A Zaied

    2018-04-01

    Full Text Available Nivolumab, a monoclonal antibody against programmed cell death-1 receptor, is increasingly used in advanced cancers. While nivolumab use enhances cancer therapy, it is associated with increased immune-related adverse events. We describe an elderly man who presented in ketoacidosis after receiving nivolumab for metastatic renal cell carcinoma. On presentation, he was hyperpneic and laboratory analyses showed hyperglycemia and anion-gapped metabolic acidosis consistent with diabetic ketoacidosis. No other precipitating factors, besides nivolumab, were identified. Pre-nivolumab blood glucose levels were normal. The patient responded to treatment with intravenous fluids, insulin and electrolyte replacement. He was diagnosed with insulin-dependent autoimmune diabetes mellitus secondary to nivolumab. Although nivolumab was stopped, he continued to require multiple insulin injection therapy till his last follow-up 7 months after presentation. Clinicians need to be alerted to the development of diabetes mellitus and diabetic ketoacidosis in patients receiving nivolumab.

  19. Effects of a fibre-enriched milk drink on insulin and glucose levels in healthy subjects

    Directory of Open Access Journals (Sweden)

    Pilvi Taru K

    2009-10-01

    Full Text Available Abstract Background The glycaemic response to foods is dependent on the quality and content of carbohydrates. Carbohydrates in the form of dietary fibre have favourable effects on insulin and glucose metabolism and may help to control energy intake. Dairy products have a relatively low carbohydrate content, and most of the carbohydrate is in the form of lactose which causes gastrointestinal symptoms in part of the population. In order to avoid these symptoms, dairy products can be replaced with lactose-free dairy products which are on the market in many parts of the world. However, the effects of lactose-free products on insulin and glucose metabolism have not been studied. Methods In the present study, we investigated the effects of 1 a lactose-free milk drink, 2 a novel fibre-enriched, fat- and lactose-free milk drink and 3 normal fat-free milk on serum glucose and insulin levels and satiety using a randomized block design. Following an overnight fast, 26 healthy volunteers ingested 200 ml of one of these drinks on three non-consecutive days. Insulin and glucose levels and subjective satiety ratings were measured before the ingestion of the milk product and 20, 40, 60, 120 and 180 minutes after ingestion. The responses were calculated as the area under the curve subtracted by the baseline value (AUC minus baseline. Results The insulin response was significantly lower for the fibre-enriched milk drink than it was for the other milk products (AUC, P = 0.007. There were no differences in the response for glucose or in the AUC for the subjective satiety ratings between the studied milk products. Conclusion The present results suggest that this novel milk drink could have positive effects on insulin response.

  20. Effects of oral glucose load on endothelial function and on insulin and glucose fluctuations in healthy individuals

    DEFF Research Database (Denmark)

    Major-Pedersen, A; Ihlemann, N; Hermann, T S

    2008-01-01

    to better understand and cope with the postprandial state in insulin resistant individuals. METHODS: We assessed post-oral glucose load endothelial function (flow mediated dilation), plasma insulin, and blood glucose in 9 healthy subjects. RESULTS: The largest increases in delta FMD values (fasting FMD......BACKGROUND/AIMS: Postprandial hyperglycemia, an independent risk factor for cardiovascular disease, is accompanied by endothelial dysfunction. We studied the effect of oral glucose load on insulin and glucose fluctuations, and on postprandial endothelial function in healthy individuals in order...... value subtracted from postprandial FMD value) occurred at 3 hours after both glucose or placebo load, respectively: 4.80 +/- 1.41 (P = .009) and 2.34 +/- 1.47 (P = .15). Glucose and insulin concentrations achieved maximum peaks at one hour post-glucose load. CONCLUSION: Oral glucose load does not induce...

  1. Mitochondrial GTP Regulates Glucose-Induced Insulin Secretion

    OpenAIRE

    Kibbey, Richard G.; Pongratz, Rebecca L.; Romanelli, Anthony J.; Wollheim, Claes B.; Cline, Gary W.; Shulman, Gerald I.

    2007-01-01

    Substrate-level mitochondrial GTP (mtGTP) and ATP (mtATP) synthesis occurs by nucleotide-specific isoforms of the tricarboxylic acid (TCA) cycle enzyme succinyl CoA synthetase (SCS). Unlike mtATP, each molecule of glucose metabolized produces approximately one mtGTP in pancreatic β-cells independent of coupling with oxidative phosphorylation making mtGTP a potentially important fuel signal. siRNA suppression of the GTP-producing pathway (ΔSCS-GTP) reduced glucose-stimulated insulin secretion ...

  2. Proximity to Delivery Alters Insulin Sensitivity and Glucose Metabolism in Pregnant Mice.

    Science.gov (United States)

    Musial, Barbara; Fernandez-Twinn, Denise S; Vaughan, Owen R; Ozanne, Susan E; Voshol, Peter; Sferruzzi-Perri, Amanda N; Fowden, Abigail L

    2016-04-01

    In late pregnancy, maternal insulin resistance occurs to support fetal growth, but little is known about insulin-glucose dynamics close to delivery. This study measured insulin sensitivity in mice in late pregnancy at day 16 (D16) and near term at D19. Nonpregnant (NP) and pregnant mice were assessed for metabolite and hormone concentrations, body composition by DEXA, tissue insulin signaling protein abundance by Western blotting, glucose tolerance and utilization, and insulin sensitivity using acute insulin administration and hyperinsulinemic-euglycemic clamps with [(3)H]glucose infusion. Whole-body insulin resistance occurred in D16 pregnant dams in association with basal hyperinsulinemia, insulin-resistant endogenous glucose production, and downregulation of several proteins in hepatic and skeletal muscle insulin signaling pathways relative to NP and D19 values. Insulin resistance was less pronounced at D19, with restoration of NP insulin concentrations, improved hepatic insulin sensitivity, and increased abundance of hepatic insulin signaling proteins. At D16, insulin resistance at whole-body, tissue, and molecular levels will favor fetal glucose acquisition, while improved D19 hepatic insulin sensitivity will conserve glucose for maternal use in anticipation of lactation. Tissue sensitivity to insulin, therefore, alters differentially with proximity to delivery in pregnant mice, with implications for human and other species. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. A novel role for myosin II in insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Steimle, Paul A.; Kent Fulcher, F.; Patel, Yashomati M.

    2005-01-01

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles from an intracellular pool to the plasma membrane. The studies presented here show that inhibition of myosin II activity impairs GLUT4-mediated glucose uptake but not GLUT4 translocation to the plasma membrane. We also show that adipocytes express both myosin IIA and IIB isoforms, and that myosin IIA is recruited to the plasma membrane upon insulin stimulation. Taken together, the data presented here represent the first demonstration that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. Based on our findings, we hypothesize that myosin II is activated upon insulin stimulation and recruited to the cell cortex to facilitate GLUT4 fusion with the plasma membrane. The identification of myosin II as a key component of GLUT4-mediated glucose uptake represents an important advance in our understanding of the mechanisms regulating glucose homeostasis

  4. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling

    OpenAIRE

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V.

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a ...

  5. Role of myotonic dystrophy protein kinase (DMPK in glucose homeostasis and muscle insulin action.

    Directory of Open Access Journals (Sweden)

    Esther Llagostera

    2007-11-01

    Full Text Available Myotonic dystrophy 1 (DM1 is caused by a CTG expansion in the 3'-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk-/- mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk-/- mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk-/- mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.

  6. Impaired Glucose Metabolism Despite Decreased Insulin Resistance After Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Manfred Hecking

    2012-06-01

    Full Text Available The pathophysiology underlying new-onset diabetes after transplantation (NODAT is unresolved. We obtained demographics and laboratory data from all 1064 renal transplant recipients followed at our outpatient clinic in 2009/2010, randomly assigned 307 patients without previously diagnosed diabetes to a routine 2-hour oral glucose tolerance test (OGTT, and compared the metabolic results to a large, unrelated cross-sectional cohort of non-transplanted subjects. Among renal transplant recipients, 11% had a history of NODAT, and 12% had type 1 and type 2 diabetes. 42% of all OGTTs were abnormal (9% diabetic, predominantly in older patients who received tacrolimus. Compared to non-transplanted subjects, basal glucose was lower and HbA1c higher in renal transplant patients. Compared to non-transplanted subjects, insulin secretion was inferior, and insulin sensitivity improved at ≥6 months, as well as 3 months post-transplantation:(The Figure shows linear spline interpolation; all p for overall difference between non-Tx and Tx patients <0.02, using likelihood ratio testing. Our results indicate that impaired insulin secretion is the predominant problem after renal transplantation, suggesting benefit for therapeutic regimens that preserve beta cell function after renal transplantation. The mechanism of increased insulin sensitivity might be pathophysiologically similar to pancreatogenic diabetes.fx1

  7. Does overnight normalization of plasma glucose by insulin infusion affect assessment of glucose metabolism in Type 2 diabetes?

    DEFF Research Database (Denmark)

    Staehr, P; Højlund, Kurt; Hother-Nielsen, O

    2003-01-01

    AIMS: In order to perform euglycaemic clamp studies in Type 2 diabetic patients, plasma glucose must be reduced to normal levels. This can be done either (i) acutely during the clamp study using high-dose insulin infusion, or (ii) slowly overnight preceding the clamp study using a low-dose insulin...... infusion. We assessed whether the choice of either of these methods to obtain euglycaemia biases subsequent assessment of glucose metabolism and insulin action. METHODS: We studied seven obese Type 2 diabetic patients twice: once with (+ ON) and once without (- ON) prior overnight insulin infusion. Glucose...... turnover rates were quantified by adjusted primed-constant 3-3H-glucose infusions, and insulin action was assessed in 4-h euglycaemic, hyperinsulinaemic (40 mU m-2 min-1) clamp studies using labelled glucose infusates (Hot-GINF). RESULTS: Basal plasma glucose levels (mean +/- sd) were 5.5 +/- 0.5 and 10...

  8. Insulin production rate in normal man as an estimate for calibration of continuous intravenous insulin infusion in insulin-dependent diabetic patients.

    Science.gov (United States)

    Waldhäusl, W K; Bratusch-Marrain, P R; Francesconi, M; Nowotny, P; Kiss, A

    1982-01-01

    This study examines the feasibility of deriving the 24-h insulin requirement of insulin-dependent diabetic patients who were devoid of any endogenous insulin release (IDD) from the insulin-production rate (IPR) of healthy man (basal, 17 mU/min; stimulated 1.35 U/12.5 g glucose). To this end, continuous intravenous insulin infusion (CIVII) was initiated at a precalculated rate of 41.2 +/- 4.6 (SD) U/24 h in IDD (N - 12). Blood glucose profiles were compared with those obtained during intermittent subcutaneous (s.c.) insulin therapy (IIT) and those of healthy controls (N = 7). Regular insulin (Hoechst CS) was infused with an adapted Mill Hill Infuser at a basal infusion rate of 1.6 U/h (6:00 a.m. to 8:00 p.m.), and of 0.8 U/h from 8:00 p.m. to 6:00 a.m. Preprandial insulin (3.2-6.4 U) was added for breakfast, lunch, and dinner. Daily individual food intake totaled 7688 +/- 784 kJ (1836 +/- 187 kcal)/24 h including 184 +/- 37 g of glucose. Proper control of blood glucose (BG) (mean BG 105 +/- 10 mg/dl; mean amplitude of glycemic excursions 54 +/- 18 mg/dl; and 1 h postprandial BG levels not exceeding 160 mg/dl) and of plasma concentrations of beta-hydroxybutyrate and lactate was maintained by 41.4 +/- 4.4 U insulin/24 h. Although BG values only approximated the upper normal range as seen in healthy controls, they were well within the range reported by others during CIVII. Therefore, we conclude that in adult IDD completely devoid of endogenous insulin (1) the IPR of normal man can be used during CIVII as an estimate for the patient's minimal insulin requirement per 24 h, and (2) this approach allows for a blood glucose profile close to the upper range of a normal control group. Thus, deriving a patient's daily insulin dose from the insulin production rate of healthy man may add an additional experimental protocol which aids in making general calculations of a necessary insulin dose instead of using trial and error or a closed-loop insulin infusion system.

  9. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    Science.gov (United States)

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central

  10. Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study

    DEFF Research Database (Denmark)

    Laakso, M; Zilinskaite, J; Hansen, T

    2008-01-01

    AIMS/HYPOTHESIS: We examined the phenotype of individuals with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) with regard to insulin release and insulin resistance. METHODS: Non-diabetic offspring (n=874; mean age 40+/-10.4 years; BMI 26.6+/-4.9 kg/m(2)) of type 2 diabetic...

  11. A randomized clinical trial comparing the effect of basal insulin and inhaled mealtime insulin on glucose variability and oxidative stress

    NARCIS (Netherlands)

    Siegelaar, S. E.; Kulik, W.; van Lenthe, H.; Mukherjee, R.; Hoekstra, J. B. L.; DeVries, J. H.

    2009-01-01

    To assess the effect of three times daily mealtime inhaled insulin therapy compared with once daily basal insulin glargine therapy on 72-h glucose profiles, glucose variability and oxidative stress in type 2 diabetes patients. In an inpatient crossover study, 40 subjects with type 2 diabetes were

  12. Insulin secretion and glucose uptake by isolated islets of the hamster. Effect of insulin, proinsulin and C-peptide

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, J C; McLaughlin, W J; Walsh, M F.J.; Foa, P P [Sinai Hospital of Detroit, Mich. (USA). Dept. of Research

    1976-01-01

    Isolated pancreatic islets of normal hamsters were perfused either in a closed or in a open system. When the buffer was recirculated and the endogenous insulin was allowed to accumulate, the islets secreted significantly less insulin than when the system was open and the endogenous insulin was washed away. The addition of monocomponent insulin or of proinsulin to the perfusion buffer significantly decreased insulin secretion. The inhibitory action of proinsulin was significantly greater than that of monocomponent insulin. C peptide had no effect. When pancreatic islets were incubated in a fixed volume of stationary buffer containing unlabeled glucose (1.0 mg or 3.0 mg/ml) and glucose-U-/sup 14/C (1.0 ..mu..C/ml), the amount of insulin secreted and the /sup 14/CO/sub 2/ produced by each islet decreased progressively as the number of islets in the sample increased. Under these conditions, the concentration of insulin required to inhibit insulin secretion increased with the concentration of glucose in the medium. Proinsulin did not alter the incorporation of leucine-4.5-/sup 3/H into total extractable insulin (insulin + proinsulin). Thus, insulin and proinsulin appear to inhibit insulin release, but not insulin synthesis.

  13. Determining pancreatic β-cell compensation for changing insulin sensitivity using an oral glucose tolerance test

    DEFF Research Database (Denmark)

    Solomon, Thomas; Malin, Steven K; Karstoft, Kristian

    2014-01-01

    Plasma glucose, insulin, and C-peptide responses during an OGTT are informative for both research and clinical practice in type 2 diabetes. The aim of this study was to use such information to determine insulin sensitivity and insulin secretion so as to calculate an oral glucose disposition index...

  14. Insulin resistance and glucose levels in subjects with subclinical hypothyroidism

    International Nuclear Information System (INIS)

    Kahn, S.H.; Fazal, N.; Yasir, M.; Asif, N.; Rafi, T.

    2017-01-01

    To compare insulin resistance and glycemic indicators among subjects with euthyroidism and subclinical hypothyroidism. Study Design: Comparative cross-sectional study. Place and Duration of Study: Department of Pathology and Medicine, PNS Hafeez, Islamabad, in collaboration with the Department of Chemical Pathology and Endocrinology at the Armed Forces Institute of Pathology (AFIP), Rawalpindi, from December 2015 to September 2016. Methodology: Subjects referred for executive screening of apparently healthy population (without any known history of diabetes, hypertension, heart disease or other chronic ailments), were included. Subjects were grouped as euthyroidism and subclinical hypothyroidism. Results: Median (IQR) insulin resistance indices including fasting insulin and Homeostasis Model Assessment for Insulin Resistance in subjects with group-1 (n=176, 87%, Thyroid Stimulating Hormone: 0.5 - 3.5 mIU/L) and group-2 (n=26, 13%, Thyroid Stimulating Hormone: 3.51 - 15 mIU/L) were 7.6 (6.70) vs. 11.4 (13.72, p=0.040) and 1.77 (1.79) vs. 2.8 (3.07, p=0.071). The median differences for fasting plasma glucose were 5.0 (1.0) in group-1 vs. 5.0 (1.47) for Group-2 [p=0.618], and glycated hemoglobin was 5.60 (1.1) vs. 5.60 (1.7, p=0.824). Homeostasis Model Assessment for beta sensitivity index in paradox showed slightly higher values for group-2 [median (IQR) 86.67 (92.94)] than group-1 [111.6 (189.64, p= 0.040)]. Conclusion: Measures of insulin resistance including Homeostasis Model Assessment for Insulin Resistance and fasting insulin levels were significantly different between subjects with euthyroidism and having subclinical hypothyroidism. (author)

  15. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Science.gov (United States)

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  16. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Directory of Open Access Journals (Sweden)

    Ha-Na Na

    Full Text Available Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR, and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1. In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  17. Lupanine Improves Glucose Homeostasis by Influencing KATP Channels and Insulin Gene Expression

    Directory of Open Access Journals (Sweden)

    Mats Wiedemann

    2015-10-01

    Full Text Available The glucose-lowering effects of lupin seeds involve the combined action of several components. The present study investigates the influence of one of the main quinolizidine alkaloids, lupanine, on pancreatic beta cells and in an animal model of type-2 diabetes mellitus. In vitro studies were performed with insulin-secreting INS-1E cells or islets of C57BL/6 mice. In the in vivo experiments, hyperglycemia was induced in rats by injecting streptozotocin (65 mg/kg body weight. In the presence of 15 mmol/L glucose, insulin secretion was significantly elevated by 0.5 mmol/L lupanine, whereas the alkaloid did not stimulate insulin release with lower glucose concentrations. In islets treated with l-arginine, the potentiating effect of lupanine already occurred at 8 mmol/L glucose. Lupanine increased the expression of the Ins-1 gene. The potentiating effect on secretion was correlated to membrane depolarization and an increase in the frequency of Ca2+ action potentials. Determination of the current through ATP-dependent K+ channels (KATP channels revealed that lupanine directly inhibited the channel. The effect was dose-dependent but, even with a high lupanine concentration of 1 mmol/L or after a prolonged exposure time (12 h, the KATP channel block was incomplete. Oral administration of lupanine did not induce hypoglycemia. By contrast, lupanine improved glycemic control in response to an oral glucose tolerance test in streptozotocin-diabetic rats. In summary, lupanine acts as a positive modulator of insulin release obviously without a risk for hypoglycemic episodes.

  18. Simulation and qualitative analysis of glucose variability, mean glucose, and hypoglycemia after subcutaneous insulin therapy for stress hyperglycemia.

    Science.gov (United States)

    Strilka, Richard J; Stull, Mamie C; Clemens, Michael S; McCaver, Stewart C; Armen, Scott B

    2016-01-27

    The critically ill can have persistent dysglycemia during the "subacute" recovery phase of their illness because of altered gene expression; it is also not uncommon for these patients to receive continuous enteral nutrition during this time. The optimal short-acting subcutaneous insulin therapy that should be used in this clinical scenario, however, is unknown. Our aim was to conduct a qualitative numerical study of the glucose-insulin dynamics within this patient population to answer the above question. This analysis may help clinicians design a relevant clinical trial. Eight virtual patients with stress hyperglycemia were simulated by means of a mathematical model. Each virtual patient had a different combination of insulin resistance and insulin deficiency that defined their unique stress hyperglycemia state; the rate of gluconeogenesis was also doubled. The patients received 25 injections of subcutaneous regular or Lispro insulin (0-6 U) with 3 rates of continuous nutrition. The main outcome measurements were the change in mean glucose concentration, the change in glucose variability, and hypoglycemic episodes. These end points were interpreted by how the ultradian oscillations of glucose concentration were affected by each insulin preparation. Subcutaneous regular insulin lowered both mean glucose concentrations and glucose variability in a linear fashion. No hypoglycemic episodes were noted. Although subcutaneous Lispro insulin lowered mean glucose concentrations, glucose variability increased in a nonlinear fashion. In patients with high insulin resistance and nutrition at goal, "rebound hyperglycemia" was noted after the insulin analog was rapidly metabolized. When the nutritional source was removed, hypoglycemia tended to occur at higher Lispro insulin doses. Finally, patients with severe insulin resistance seemed the most sensitive to insulin concentration changes. Subcutaneous regular insulin consistently lowered mean glucose concentrations and glucose

  19. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans

    International Nuclear Information System (INIS)

    Baron, A.D.; Brechtel, G.; Wallace, P.; Edelman, S.V.

    1988-01-01

    In vivo glucose uptake can occur via two mechanisms, namely, insulin-mediated glucose uptake (IMGU) and non-insulin-mediated glucose uptake (NIMGU). Although the principal tissue sites for IMGU are skeletal muscle, the tissue sites for NIMGU at a given serum glucose concentration are not known. To examine this issue, rates of whole body glucose uptake (Rd) were measured at basal and during glucose clamp studies performed at euglycemia (approximately 90 mg/dl) and hyperglycemia (approximately 220 mg/dl) in six lean healthy men. Studies were performed during hyperinsulinemia (approximately 70 microU/ml) and during somatostatin-induced insulinopenia to measure IMGU and NIMGU, respectively. During each study, leg glucose balance (arteriovenous catheter technique) was also measured. With this approach, rates of whole body skeletal muscle IMGU and NIMGU can be estimated, and the difference between overall Rd and skeletal muscle glucose uptake represents non-skeletal muscle Rd. The results indicate that approximately 20% of basal Rd is into skeletal muscle. During insulinopenia approximately 86% of body NIMGU occurs in non-skeletal muscle tissues at euglycemia. When hyperglycemia was created, whole body NIMGU increased from 128 +/- 6 to 213 +/- 18 mg/min (P less than 0.01); NIMGU into non-skeletal muscle tissues was 134 +/- 11 and 111 +/- 6 mg/min at hyperglycemia and euglycemia, respectively, P = NS. Therefore, virtually all the hyperglycemia induced increment in NIMGU occurred in skeletal muscle. During hyperinsulinemia, IMGU in skeletal muscle represented 75 and 95% of body Rd, at euglycemia and hyperglycemia, respectively

  20. Blood glucose lowering effect of ophiopogonis tuber extract and mechanism of anti-insulin-resistance

    Directory of Open Access Journals (Sweden)

    Meng NING

    2013-01-01

    Full Text Available Objective  To study the hypoglycemic effect and insulin sensitization mechanism of ophiopogonis tuber extracts on the 3T3-L1-induced adipocytes, and also in rats with reproduction of type 2 diabetes mellitus (T2DM. Methods  3T3-L1 cells were induced and differentiated into adipocytes. After the intervention with ophiopogonpolysaccharide (OPSR and ophiopogonin (OPG, glucose consuming rate was detected for screening the extracts which may have effective hypoglycemic effects. The insulin resistance (IR adipocyte model was established by dexamethasone induction, and then it was treated with OPSR. The protein expression levels of leptin, adiponectin and resistin were detected by Western blotting. The T2DM rat model was reproduced and then treated with OPSR for 4 weeks. Body weight (BW, triglyeride (TG, fasting blood glucose (FBG and fasting insulin (FINs of the rats were measured respectively. Results  OPSR in dosage of 0.5-50mg/L promoted glucose consumption of adipocytes in a dose-dependent manner, the glucose consumption ratios were 32.27%, 75.14% and 90.47% respectively. OPG of 50mg/L showed very weak activity with glucose consumption ratio of only 8.49%. OPSR could significantly promote the protein expression of leptin and adiponectin, and showed an inhibitory effect on the protein expression of resistin (P<0.05. After treatment with OPSR for 4 weeks, the BW of rats increased obviously, while TG, FBG and HOMA-IR decreased significantly (P<0.05 or P<0.01. Conclusions  OPSR may promote glucose transport and utilization of adipocytes, decrease the level of FBG and TG, and improve the condition of IR in T2DM rats. The mechanism of blood glucose lowering effect may be attributed to secretion of adipokines, such as leptin, adiponectin and resistin by IR adipocytes.

  1. Efficacy of 2-hour post glucose insulin levels in predicting insulin resistance in polycystic ovarian syndrome with infertility

    Directory of Open Access Journals (Sweden)

    Pikee Saxena

    2011-01-01

    Full Text Available Background : Insulin resistance (IR is central to the pathogenesis of polycystic ovarian syndrome (PCOS, but tests for determining IR are elaborate, tedious and expensive. Aims : To evaluate if "2-hour post-glucose insulin level" is an effective indicator of IR and can aid in diagnosing IR in infertile PCOS women. Settings and Design : Observational study at infertility clinic of a tertiary care center. Materials and Methods : 50 infertile women with PCOS and 20 females with tubal/male factor infertility were evaluated for the presence of IR, as defined by the fasting/2-hour post-glucose insulin levels cutoffs of >25/>41 μU/mL, respectively. The clinical, metabolic and endocrinologic profile was determined in both the groups. Statistical Analysis : Statistical analysis was performed using SPSS (Chicago, IL, USA. Results : Body mass index, post load glucose, insulin, glucose/insulin ratio, area under curve (AUC of glucose and insulin and insulinogenic index were significantly lower in the controls as compared to the PCOS group. "2-hour post-glucose insulin levels" were elevated in 88% of PCOS individuals but were normal in all females not suffering from PCOS. These levels significantly correlated with AUC of glucose and insulin, and insulinogenic index and inversely correlated with 2-hour glucose to insulin ratio (r=0.827, 0.749 and −0.732, respectively. Conclusions : "2-hour post-glucose insulin levels" appears to be a good indicator of IR. It can be a useful tool, especially in low resource setting where a single sample can confirm the diagnosis, thus reducing cost and repeat visits.

  2. Microbial Regulation of Glucose Metabolism and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Silke Crommen

    2017-12-01

    Full Text Available Type 2 diabetes is a combined disease, resulting from a hyperglycemia and peripheral and hepatic insulin resistance. Recent data suggest that the gut microbiota is involved in diabetes development, altering metabolic processes including glucose and fatty acid metabolism. Thus, type 2 diabetes patients show a microbial dysbiosis, with reduced butyrate-producing bacteria and elevated potential pathogens compared to metabolically healthy individuals. Furthermore, probiotics are a known tool to modulate the microbiota, having a therapeutic potential. Current literature will be discussed to elucidate the complex interaction of gut microbiota, intestinal permeability and inflammation leading to peripheral and hepatic insulin resistance. Therefore, this review aims to generate a deeper understanding of the underlying mechanism of potential microbial strains, which can be used as probiotics.

  3. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    Directory of Open Access Journals (Sweden)

    Natalia Gustavsson

    Full Text Available BACKGROUND: Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. CONCLUSIONS: Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  4. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    Science.gov (United States)

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K; Südhof, Thomas C; Han, Weiping

    2010-11-09

    Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  5. Decreased insulin clearance in individuals with elevated 1-h post-load plasma glucose levels.

    Directory of Open Access Journals (Sweden)

    Maria Adelaide Marini

    Full Text Available Reduced insulin clearance has been shown to predict the development of type 2 diabetes. Recently, it has been suggested that plasma glucose concentrations ≥ 8.6 mmol/l (155 mg/dl at 1 h during an oral glucose tolerance test (OGTT can identify individuals at high risk for type 2 diabetes among those who have normal glucose tolerance (NGT 1 h-high. The aim of this study was to examine whether NGT 1 h-high have a decrease in insulin clearance, as compared with NGT individuals with 1-h post-load glucose <8.6 mmol/l (l (155 mg/dl, NGT 1 h-low. To this end, 438 non-diabetic White individuals were subjected to OGTT and euglycemic-hyperinsulinemic clamp to evaluate insulin clearance and insulin sensitivity. As compared with NGT 1 h-low individuals, NGT 1 h-high had significantly higher 1-h and 2-h post-load plasma glucose and 2-h insulin levels as well as higher fasting glucose and insulin levels. NGT 1 h-high exhibited also a significant decrease in both insulin sensitivity (P<0.0001 and insulin clearance (P = 0.006 after adjusting for age, gender, adiposity measures, and insulin sensitivity. The differences in insulin clearance remained significant after adjustment for fasting glucose (P = 0.02 in addition to gender, age, and BMI. In univariate analyses adjusted for gender and age, insulin clearance was inversely correlated with body weight, body mass index, waist, fat mass, 1-h and 2-h post-load glucose levels, fasting, 1-h and 2-h post-load insulin levels, and insulin-stimulated glucose disposal. In conclusion, our data show that NGT 1 h-high have a reduction in insulin clearance as compared with NGT 1 h-low individuals; this suggests that impaired insulin clearance may contribute to sustained fasting and post-meal hyperinsulinemia.

  6. Central insulin and leptin-mediated autonomic control of glucose homeostasis

    OpenAIRE

    Marino, Joseph S.; Xu, Yong; Hill, Jennifer W.

    2011-01-01

    Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular...

  7. PROXIMITY TO DELIVERY ALTERS INSULIN SENSITIVITY AND GLUCOSE METABOLISM IN PREGNANT MICE

    OpenAIRE

    Musial, Barbara; Fernandez-Twinn, Denise S.; Vaughan, Owen R.; Ozanne, Susan E.; Voshol, Peter; Sferruzzi-Perri, Amanda N.; Fowden, Abigail L.

    2016-01-01

    In late pregnancy, maternal insulin resistance occurs to support fetal growth but little is known about insulin-glucose dynamics close to delivery. This study measured insulin sensitivity in mice in late pregnancy, day (D) 16, and near term, D19, (term 20.5D). Non-pregnant (NP) and pregnant mice were assessed for metabolite and hormone concentrations, body composition by dual energy X-ray absorptiometry, tissue insulin signalling protein abundance by Western blotting, glucose tolerance and ut...

  8. The triglyceride-glucose index, an insulin resistance marker in newborns?

    Science.gov (United States)

    Gesteiro, Eva; Bastida, Sara; Barrios, Laura; Sánchez-Muniz, Francisco J

    2018-04-01

    The study aims to assess the utility of the triglyceride-glucose index (TyG) as a marker of insulin resistance (IR) in neonates. TyG and the homeostatic model assessment (HOMA-IR) values were compared in 196 singleton, term normoweight and without distress newborns. A Decision Tree procedure (CHAID) was used to classify cases into groups or predict values of a dependent (Ln HOMA-IR) variable. Three nodes were drawn for TyG: ≤ 6.7, > 6.7-7.8 and > 7.8 (p glucose challenge test (p = 0.138) classifications nor by the TyG node* glucose challenge test and TyG node*gender interactions (p = 0.456 and p = 0.209, respectively). Glucose, HOMA-IR, and the triglyceride/HDL cholesterol ratio increased progressively from node 1 to 3 for TyG while QUICKI decreased. In conclusion, TyG appears to be a suitable tool for identifying IR at birth, justifying the further insulin determination in those neonates. TyG ≥ 7.8 is recommended as cut-off point in neonates. The need for a follow-up study to confirm the TyG as early IR marker is desirable. • HOMA-IR and the triglyceride-glucose index (TyG) show a high correlation. • The TyG has been used as an insulin resistance marker in adults. • This is the first study where TyG has been assessed in neonates. • TyG appears to be a suitable and cheap tool for identifying insulin resistance at birth.

  9. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens Juul

    2003-01-01

    not in the nonoxidative) glucose metabolism in young healthy men. Moreover, insulin hypersecretion perfectly countered the free-fatty acid-induced insulin resistance. Future studies are needed to determine the role of a prolonged moderate lipid load in subjects at increased risk of developing diabetes.......We examined the simultaneous effects of a 24-h low-grade Intralipid infusion on peripheral glucose disposal, intracellular glucose partitioning and insulin secretion rates in twenty young men, by 2-step hyperinsulinemic euglycemic clamp [low insulin clamp (LI), 10 mU/m(2) x min; high insulin clamp...

  10. Adipose tissue insulin receptor and glucose transporter 4 expression, and blood glucose and insulin responses during glucose tolerance tests in transition Holstein cows with different body condition.

    Science.gov (United States)

    Jaakson, H; Karis, P; Ling, K; Ilves-Luht, A; Samarütel, J; Henno, M; Jõudu, I; Waldmann, A; Reimann, E; Pärn, P; Bruckmaier, R M; Gross, J J; Kaart, T; Kass, M; Ots, M

    2018-01-01

    Glucose uptake in tissues is mediated by insulin receptor (INSR) and glucose transporter 4 (GLUT4). The aim of this study was to examine the effect of body condition during the dry period on adipose tissue mRNA and protein expression of INSR and GLUT4, and on the dynamics of glucose and insulin following the i.v. glucose tolerance test in Holstein cows 21 d before (d -21) and after (d 21) calving. Cows were grouped as body condition score (BCS) ≤3.0 (thin, T; n = 14), BCS = 3.25 to 3.5 (optimal, O; n = 14), and BCS ≥3.75 (overconditioned, OC; n = 14). Blood was analyzed for glucose, insulin, fatty acids, and β-hydroxybutyrate concentrations. Adipose tissue was analyzed for INSR and GLUT4 mRNA and protein concentrations. During the glucose tolerance test 0.15 g/kg of body weight glucose was infused; blood was collected at -5, 5, 10, 20, 30, 40, 50, and 60 min, and analyzed for glucose and insulin. On d -21 the area under the curve (AUC) of glucose was smallest in group T (1,512 ± 33.9 mg/dL × min) and largest in group OC (1,783 ± 33.9 mg/dL × min), and different between all groups. Basal insulin on d -21 was lowest in group T (13.9 ± 2.32 µU/mL), which was different from group OC (24.9 ± 2.32 µU/mL. On d -21 the smallest AUC 5-60 of insulin in group T (5,308 ± 1,214 µU/mL × min) differed from the largest AUC in group OC (10,867 ± 1,215 µU/mL × min). Time to reach basal concentration of insulin in group OC (113 ± 14.1 min) was longer compared with group T (45 ± 14.1). The INSR mRNA abundance on d 21 was higher compared with d -21 in groups T (d -21: 3.3 ± 0.44; d 21: 5.9 ± 0.44) and O (d -21: 3.7 ± 0.45; d 21: 4.7 ± 0.45). The extent of INSR protein expression on d -21 was highest in group T (7.3 ± 0.74 ng/mL), differing from group O (4.6 ± 0.73 ng/mL), which had the lowest expression. The amount of GLUT4 protein on d -21 was lowest in group OC (1.2 ± 0.14 ng/mL), different from group O (1.8 ± 0.14 ng/mL), which had the highest amount

  11. Is reducing variability of blood glucose the real but hidden target of intensive insulin therapy?

    Science.gov (United States)

    Egi, Moritoki; Bellomo, Rinaldo; Reade, Michael C

    2009-01-01

    Since the first report that intensive insulin therapy reduced mortality in selected surgical critically ill patients, lowering of blood glucose levels has been recommended as a means of improving patient outcomes. In this initial Leuven trial, blood glucose control by protocol using insulin was applied to 98.7% of patients in the intensive group but to only 39.2% (P dimension of glucose management, a possible mechanism by which an intensive insulin protocol exerts its putative beneficial effects, and an important goal of glucose management in the intensive care unit. Clinicians need to be aware of this controversy when considering the application of intensive insulin therapy and interpreting future trials.

  12. Effects of Oral Glucose Load on Endothelial Function and on Insulin and Glucose Fluctuations in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    A. Major-Pedersen

    2008-01-01

    Full Text Available Background/aims. Postprandial hyperglycemia, an independent risk factor for cardiovascular disease, is accompanied by endothelial dysfunction. We studied the effect of oral glucose load on insulin and glucose fluctuations, and on postprandial endothelial function in healthy individuals in order to better understand and cope with the postprandial state in insulin resistant individuals. Methods. We assessed post-oral glucose load endothelial function (flow mediated dilation, plasma insulin, and blood glucose in 9 healthy subjects. Results. The largest increases in delta FMD values (fasting FMD value subtracted from postprandial FMD value occurred at 3 hours after both glucose or placebo load, respectively: 4.80±1.41 (P = .009 and 2.34±1.47 (P = .15. Glucose and insulin concentrations achieved maximum peaks at one hour post-glucose load. Conclusion. Oral glucose load does not induce endothelial dysfunction in healthy individuals with mean insulin and glucose values of 5.6 mmol/L and 27.2 mmol/L, respectively, 2 hours after glucose load.

  13. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    Directory of Open Access Journals (Sweden)

    Kyle S. McCommis

    2016-08-01

    Full Text Available Objective: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. Methods: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-producing cells. Results: In both species, MPC deficiency results in elevated blood sugar concentrations and glucose intolerance accompanied by impaired glucose-stimulated insulin secretion. In mouse islets, β-cell MPC-deficiency resulted in decreased respiration with glucose, ATP-sensitive potassium (KATP channel hyperactivity, and impaired insulin release. Moreover, treatment of pancreas-specific MPC knockout mice with glibenclamide, a sulfonylurea KATP channel inhibitor, improved defects in islet insulin secretion and abnormalities in glucose homeostasis in vivo. Finally, using a recently-developed biosensor for MPC activity, we show that the MPC is rapidly stimulated by glucose treatment in INS-1 insulinoma cells suggesting that glucose sensing is coupled to mitochondrial pyruvate carrier activity. Conclusions: Altogether, these studies suggest that the MPC plays an important and ancestral role in insulin-secreting cells in mediating glucose sensing, regulating insulin secretion, and controlling systemic glycemia. Keywords: Stimulus-coupled secretion, Insulin, β-Cell, Diabetes, Pyruvate, Mitochondria, Drosophila

  14. Effects of Bisphenol A on glucose homeostasis and brain insulin signaling pathways in male mice.

    Science.gov (United States)

    Fang, Fangfang; Chen, Donglong; Yu, Pan; Qian, Wenyi; Zhou, Jing; Liu, Jingli; Gao, Rong; Wang, Jun; Xiao, Hang

    2015-02-01

    The potential effects of Bisphenol A (BPA) on peripheral insulin resistance have recently gained more attention, however, its functions on brain insulin resistance are still unknown. The aim of the present study was to investigate the effects of BPA on insulin signaling and glucose transport in mouse brain. The male mice were administrated of 100 μg/kg/day BPA or vehicle for 15 days then challenged with glucose and insulin tolerance tests. The insulin levels were detected with radioimmunoassay (RIA), and the insulin signaling pathways were investigated by Western blot. Our results revealed that BPA significantly increased peripheral plasma insulin levels, and decreased the insulin signals including phosphorylated insulin receptor (p-IR), phosphorylated insulin receptor substrate 1 (p-IRS1), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular regulated protein kinases (p-ERK1/2) in the brain, though insulin expression in both hippocampus and profrontal cortex was increased. In parallel, BPA exposure might contribute to glucose transport disturbance in the brain since the expression of glucose transporters were markedly decreased. In conclusion, BPA exposure perturbs the insulin signaling and glucose transport in the brain, therefore, it might be a risk factor for brain insulin resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Estimation of glucose rate of appearance from cgs and subcutaneous insulin delivery in type 1 diabetes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-08-31

    Method and System for providing estimates of Glucose Rate of Appearance from the intestine (GRA) using continuous glucose sensor measurements (CGS) taken from the subcutaneous of a diabetes patient and the amount of insulin administered to the patient.

  16. Estimation of glucose rate of appearance from cgs and subcutaneous insulin delivery in type 1 diabetes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Al-Matouq, Ali Ahmed

    2017-01-01

    Method and System for providing estimates of Glucose Rate of Appearance from the intestine (GRA) using continuous glucose sensor measurements (CGS) taken from the subcutaneous of a diabetes patient and the amount of insulin administered

  17. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★

    Science.gov (United States)

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano

    2013-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902

  18. Insulin monotherapy compared with the addition of oral glucose-lowering agents to insulin for people with type 2 diabetes already on insulin therapy and inadequate glycaemic control

    NARCIS (Netherlands)

    Vos, Rimke C; van Avendonk, Mariëlle JP; Jansen, Hanneke; Goudswaard, Alexander N; van den Donk, Maureen; Gorter, Kees; Kerssen, Anneloes; Rutten, Guy EHM

    2016-01-01

    BACKGROUND: It is unclear whether people with type 2 diabetes mellitus on insulin monotherapy who do not achieve adequate glycaemic control should continue insulin as monotherapy or can benefit from adding oral glucose-lowering agents to the insulin therapy. OBJECTIVES: To assess the effects of

  19. A Study on the Glucose and Immunoreactive Insulin Response during Oral Glucose Tolerance Test in Patients with Chronic Liver Diseases

    International Nuclear Information System (INIS)

    Choe, Kang Won; Lee, Hong Kyu; Koh, Chang Soon; Lee, Mu Ho

    1973-01-01

    The blood glucose and plasma immunoreactive insulin (IRI) levels were measured during aral glucose tolerance test in 7 healthy subjects and 6 patients with chronic liver diseases. The glucose tolerance was impaired in 5 of the 6 patients and normal in I. Plasma IRI responses were markedly increased and delayed in all patients, suggesting endogenous insulin resistance. Patients with more glucose intolerance showed less increase in plasma IRI than the group with less intolerance. lt is suggested that some insulin antagonists may decrease the peripheral insulin sensitivity and stimulate compensatory hyperactivity of pancreatic islets. If the compensatory hyperactivity is inadequate due to gemetic predisposition to diabetes mellitus or exhaustion of β-cells of pancreatic islets, the glucose intolerance and overt diabetes mellitus may ensue.

  20. A Study on the Glucose and Immunoreactive Insulin Response during Oral Glucose Tolerance Test in Patients with Chronic Liver Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Kang Won; Lee, Hong Kyu; Koh, Chang Soon; Lee, Mu Ho [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1973-03-15

    The blood glucose and plasma immunoreactive insulin (IRI) levels were measured during aral glucose tolerance test in 7 healthy subjects and 6 patients with chronic liver diseases. The glucose tolerance was impaired in 5 of the 6 patients and normal in I. Plasma IRI responses were markedly increased and delayed in all patients, suggesting endogenous insulin resistance. Patients with more glucose intolerance showed less increase in plasma IRI than the group with less intolerance. lt is suggested that some insulin antagonists may decrease the peripheral insulin sensitivity and stimulate compensatory hyperactivity of pancreatic islets. If the compensatory hyperactivity is inadequate due to gemetic predisposition to diabetes mellitus or exhaustion of beta-cells of pancreatic islets, the glucose intolerance and overt diabetes mellitus may ensue.

  1. Hypothalamic and Striatal Insulin Action Suppresses Endogenous Glucose Production and May Stimulate Glucose Uptake During Hyperinsulinemia in Lean but Not in Overweight Men.

    Science.gov (United States)

    Heni, Martin; Wagner, Robert; Kullmann, Stephanie; Gancheva, Sofiya; Roden, Michael; Peter, Andreas; Stefan, Norbert; Preissl, Hubert; Häring, Hans-Ulrich; Fritsche, Andreas

    2017-07-01

    Intranasal spray application facilitates insulin delivery to the human brain. Although brain insulin modulates peripheral metabolism, the mechanisms involved remain elusive. Twenty-one men underwent two hyperinsulinemic-euglycemic clamps with d-[6,6- 2 H 2 ]glucose infusion to measure endogenous glucose production and glucose disappearance. On two separate days, participants received intranasal insulin or placebo. Insulin spillover into circulation after intranasal insulin application was mimicked by an intravenous insulin bolus on placebo day. On a different day, brain insulin sensitivity was assessed by functional MRI. Glucose infusion rates (GIRs) had to be increased more after nasal insulin than after placebo to maintain euglycemia in lean but not in overweight people. The increase in GIRs was associated with regional brain insulin action in hypothalamus and striatum. Suppression of endogenous glucose production by circulating insulin was more pronounced after administration of nasal insulin than after placebo. Furthermore, glucose uptake into tissue tended to be higher after nasal insulin application. No such effects were detected in overweight participants. By increasing insulin-mediated suppression of endogenous glucose production and stimulating peripheral glucose uptake, brain insulin may improve glucose metabolism during systemic hyperinsulinemia. Obese people appear to lack these mechanisms. Therefore, brain insulin resistance in obesity may have unfavorable consequences for whole-body glucose homeostasis. © 2017 by the American Diabetes Association.

  2. Conjoint regulation of glucagon concentrations via plasma insulin and glucose in dairy cows.

    Science.gov (United States)

    Zarrin, M; Wellnitz, O; Bruckmaier, R M

    2015-04-01

    Insulin and glucagon are glucoregulatory hormones that contribute to glucose homeostasis. Plasma insulin is elevated during normoglycemia or hyperglycemia and acts as a suppressor of glucagon secretion. We have investigated if and how insulin and glucose contribute to the regulation of glucagon secretion through long term (48 h) elevated insulin concentrations during simultaneous hypoglycemia or euglycemia in mid-lactating dairy cows. Nineteen Holstein dairy cows were randomly assigned to 3 treatment groups: an intravenous insulin infusion (HypoG, n = 5) to decrease plasma glucose concentrations (2.5 mmol/L), a hyperinsulinemic-euglycemic clamp to study effects of insulin at simultaneously normal glucose concentrations (EuG, n = 6) and a 0.9% saline infusion (NaCl, n = 8). Plasma glucose was measured at 5-min intervals, and insulin and glucose infusion rates were adjusted accordingly. Area under the curve of hourly glucose, insulin, and glucagon concentrations on day 2 of infusion was evaluated by analysis of variance with treatments as fixed effect. Insulin infusion caused an increase of plasma insulin area under the curve (AUC)/h in HypoG (41.9 ± 8.1 mU/L) and EuG (57.8 ± 7.8 mU/L) compared with NaCl (13.9 ± 1.1 mU/L; P insulin infusion induces elevated glucagon concentrations during hypoglycemia, although the same insulin infusion reduces glucagon concentrations at simultaneously normal glucose concentrations. Thus, insulin does not generally have an inhibitory effect on glucagon concentrations. If simultaneously glucose is low and insulin is high, glucagon is upregulated to increase glucose availability. Therefore, insulin and glucose are conjoint regulatory factors of glucagon concentrations in dairy cows, and the plasma glucose status is the key factor to decide if its concentrations are increased or decreased. This regulatory effect can be important for the maintenance of glucose homeostasis if insulin secretion is upregulated by other factors than high

  3. Combining insulins for optimal blood glucose control in type 1 and 2 diabetes: focus on insulin glulisine

    Directory of Open Access Journals (Sweden)

    Heather Ulrich

    2007-07-01

    Full Text Available Heather Ulrich1,4, Benjamin Snyder1,Satish K Garg1,2,31Barbara Davis Center for Childhood Diabetes; 2Department of Medicine; 3Pediatrics; 4Department of Clinical Pharmacy, School of Pharmacy, University of Colorado at Denver and Health Sciences Center, Denver, CO, USAAbstract: Normalization of blood glucose is essential for the prevention of diabetes mellitus (DM-related microvascular and macrovascular complications. Despite substantial literature to support the benefits of glucose lowering and clear treatment targets, glycemic control remains suboptimal for most people with DM in the United States. Pharmacokinetic limitations of conventional insulins have been a barrier to achieving treatment targets secondary to adverse effects such as hypoglycemia and weight gain. Recombinant DNA technology has allowed modification of the insulin molecule to produce insulin analogues that overcome these pharmacokinetic limitations. With time action profiles that more closely mimic physiologic insulin secretion, rapid acting insulin analogues (RAAs reduce post-prandial glucose excursions and hypoglycemia when compared to regular human insulin (RHI. Insulin glulisine (Apidra® is a rapid-acting insulin analogue created by substituting lysine for asparagine at position B3 and glutamic acid for lysine at position B29 on the B chain of human insulin. The quick absorption of insulin glulisine more closely reproduces physiologic first-phase insulin secretion and its rapid acting profile is maintained across patient subtypes. Clinical trials have demonstrated comparable or greater efficacy of insulin glulisine versus insulin lispro or RHI, respectively. Efficacy is maintained even when insulin glulisine is administered post-meal. In addition, glulisine appears to have a more rapid time action profile compared with insulin lispro across various body mass indexes (BMIs. The safety and tolerability profile of insulin glulisine is also comparable to that of insulin

  4. Inhibition of cholinergic potentiation of insulin secretion from pancreatic islets by chronic elevation of glucose and fatty acids: Protection by casein kinase 2 inhibitor

    Directory of Open Access Journals (Sweden)

    Nicolai M. Doliba

    2017-10-01

    Conclusions: These results show that chronic FA treatment decreases acetylcholine potentiation of insulin secretion and that this effect is strictly glucose dependent and might involve CK2 phosphorylation of β-cell M3 muscarinic receptors.

  5. Inorganic phosphorus decrease after intravenous glucose tolerance test is associated with insulin resistance in dairy cows

    OpenAIRE

    Cincović, Marko R.; Djoković, Radojica; Belić, Branislavav; Potkonjak, Aleksandar; Toholj, Bojan; Stojanac, Nenad; Stevančević, Ognjen; Starič, Jože

    2017-01-01

    Inorganic phosphorus (Pi) concentration in blood decreases during an intravenous glucose tolerance test (IVGTT) due to the increase in the level of insulin and glucose. The objective of the present study was to determine the relationship between the intensity of Pi decrease with a dynamic change of insulin and glucose during IVGTT (AUC - total area under curve, AUC increment - area under curve from start of IVGTT to time of maximal response and glucose CR-clearance rate), as well as RQUICKI (...

  6. Rosiglitazone treatment of patients with extreme insulin resistance and diabetes mellitus due to insulin receptor mutations has no effects on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Pedersen, O

    2001-01-01

    Rosiglitazone, a thiazolidinedione (TZD), increases insulin sensitivity by reducing levels of plasma NEFA, triglycerides (TG), glucose and serum insulin. Rosiglitazone treatment decreases insulin resistance in type 2 diabetic patients, but no data exist concerning rosiglitazone treatment...

  7. Mitochondrial GTP Regulates Glucose-Induced Insulin Secretion

    Science.gov (United States)

    Kibbey, Richard G.; Pongratz, Rebecca L.; Romanelli, Anthony J.; Wollheim, Claes B.; Cline, Gary W.; Shulman, Gerald I.

    2007-01-01

    Summary Substrate-level mitochondrial GTP (mtGTP) and ATP (mtATP) synthesis occurs by nucleotide-specific isoforms of the tricarboxylic acid (TCA) cycle enzyme succinyl CoA synthetase (SCS). Unlike mtATP, each molecule of glucose metabolized produces approximately one mtGTP in pancreatic β-cells independent of coupling with oxidative phosphorylation making mtGTP a potentially important fuel signal. siRNA suppression of the GTP-producing pathway (ΔSCS-GTP) reduced glucose-stimulated insulin secretion (GSIS) by 50%, whereas suppression of the parallel ATP-producing isoform (ΔSCS-ATP) increased GSIS by two-fold in INS-1 832/13 cells and cultured rat islets. Insulin secretion correlated with increases in cytosolic calcium but not with changes in NAD(P)H or the ATP/ADP ratio. These data suggest an important role for mtGTP in mediating GSIS in β-cells by modulation of mitochondrial metabolism possibly via influencing mitochondrial calcium. Furthermore, by virtue of its tight coupling to TCA oxidation rates, mtGTP production may serve as an important molecular signal of TCA cycle activity. PMID:17403370

  8. Glucose-responsive insulin by molecular and physical design

    Science.gov (United States)

    Bakh, Naveed A.; Cortinas, Abel B.; Weiss, Michael A.; Langer, Robert S.; Anderson, Daniel G.; Gu, Zhen; Dutta, Sanjoy; Strano, Michael S.

    2017-10-01

    The concept of a glucose-responsive insulin (GRI) has been a recent objective of diabetes technology. The idea behind the GRI is to create a therapeutic that modulates its potency, concentration or dosing relative to a patient's dynamic glucose concentration, thereby approximating aspects of a normally functioning pancreas. From the perspective of the medicinal chemist, the GRI is also important as a generalized model of a potentially new generation of therapeutics that adjust potency in response to a critical therapeutic marker. The aim of this Perspective is to highlight emerging concepts, including mathematical modelling and the molecular engineering of insulin itself and its potency, towards a viable GRI. We briefly outline some of the most important recent progress toward this goal and also provide a forward-looking viewpoint, which asks if there are new approaches that could spur innovation in this area as well as to encourage synthetic chemists and chemical engineers to address the challenges and promises offered by this therapeutic approach.

  9. A novel insulin resistance index to monitor changes in insulin sensitivity and glucose tolerance: the ACT NOW study.

    Science.gov (United States)

    Tripathy, Devjit; Cobb, Jeff E; Gall, Walter; Adam, Klaus-Peter; George, Tabitha; Schwenke, Dawn C; Banerji, MaryAnn; Bray, George A; Buchanan, Thomas A; Clement, Stephen C; Henry, Robert R; Kitabchi, Abbas E; Mudaliar, Sunder; Ratner, Robert E; Stentz, Frankie B; Reaven, Peter D; Musi, Nicolas; Ferrannini, Ele; DeFronzo, Ralph A

    2015-05-01

    The objective was to test the clinical utility of Quantose M(Q) to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose M(Q) is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal. Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.4 years. At baseline and study end, fasting plasma metabolites required for determination of Quantose, glycated hemoglobin, and oral glucose tolerance test with frequent plasma insulin and glucose measurements to calculate the Matsuda index of insulin sensitivity were obtained. Pioglitazone treatment lowered IGT conversion to diabetes (hazard ratio = 0.25; 95% confidence interval = 0.13-0.50; P < .0001). Although glycated hemoglobin did not track with insulin sensitivity, Quantose M(Q) increased in pioglitazone-treated subjects (by 1.45 [3.45] mg·min(-1)·kgwbm(-1)) (median [interquartile range]) (P < .001 vs placebo), as did the Matsuda index (by 3.05 [4.77] units; P < .0001). Quantose M(Q) correlated with the Matsuda index at baseline and change in the Matsuda index from baseline (rho, 0.85 and 0.79, respectively; P < .0001) and was progressively higher across closeout glucose tolerance status (diabetes, IGT, normal glucose tolerance). In logistic models including only anthropometric and fasting measurements, Quantose M(Q) outperformed both Matsuda and fasting insulin in predicting incident diabetes. In IGT subjects, Quantose M(Q) parallels changes in insulin sensitivity and glucose tolerance with pioglitazone therapy. Due to its strong correlation with improved insulin sensitivity and its ease of use, Quantose M(Q) may serve as a useful clinical test to identify and monitor therapy in insulin-resistant patients.

  10. Insulin dynamics and biochemical markers for predicting impaired glucose tolerance in obese Thai youth.

    Science.gov (United States)

    Tirabanchasak, Sirapassorn; Siripunthana, Sukumarn; Supornsilchai, Vichit; Wacharasindhu, Suttipong; Sahakitrungruang, Taninee

    2015-09-01

    Subjects with impaired glucose tolerance (IGT) are at risk for type 2 diabetes mellitus (T2DM) and cardiovascular disease. The predictors of IGT in obese youth are not well described. We studied 115 obese Thai children who underwent an oral glucose tolerance test (OGTT). Plasma glucose and insulin levels were calculated for assessment of β-cell function. Hemoglobin A1c (HbA1c), lipid profile, and clinical parameters were also used to determine predictors of IGT. We found that three patients had T2DM and 30 subjects had IGT. IGT patients had significantly higher fasting glucose (FG), 1-h postload glucose, 2-h postload insulin, and lower whole-body insulin sensitivity indices than in normal glucose tolerance subjects whereas other indices were comparable. By ROC curve analyses, 1-h postload glucose was the best predictor of IGT, but FG or HbA1c represented a poor diagnostic tool for prediabetes screening. Subjects with 1-h OGTT glucose > 155 mg/dL had significantly lower high-density lipoprotein levels, lower insulin sensitivity, and more insulin resistance than those with 1-h postload glucose of ≤ 155 mg/dL. Abnormal glucose tolerance is highly prevalent in obese Thai youth. Several fasting indices and HbA1c fail to predict IGT. An 1-h OGTT glucose of > 155 mg/dL appears to be more associated with adverse insulin dynamics and metabolic profile than 2-h postload glucose.

  11. Triglycerides and glucose index: a useful indicator of insulin resistance.

    Science.gov (United States)

    Unger, Gisela; Benozzi, Silvia Fabiana; Perruzza, Fernando; Pennacchiotti, Graciela Laura

    2014-12-01

    Insulin resistance assessment requires sophisticated methodology of difficult application. Therefore, different estimators for this condition have been suggested. The aim of this study was to evaluate the triglycerides and glucose (TyG) index as a marker of insulin resistance and to compare it to the triglycerides/HDL cholesterol ratio (TG/HDL-C), in subjects with and without metabolic syndrome (MS). An observational, cross-sectional study was conducted on 525 adults of a population from Bahia Blanca, Argentina, who were divided into two groups: with MS (n=89) and without MS (n=436). The discriminating capacities for MS of the TyG index, calculated as Ln (TG [mg/dL] x glucose [mg/dL]/2), and the TG/HDL-C ratio were evaluated. Pre-test probability for MS was 30%. The mean value of the TyG index was higher in the group with MS as compared to the group without MS and its correlation with the TG/HDL-C ratio was good. The cut-off values for MS in the overall population were 8.8 for the TyG index (sensitivity=79%, specificity=86%), and 2.4 for the TG/HDL-C ratio (sensitivity=88%, specificity=72%). The positive likelihood ratios and post-test probabilities for these parameters were 5.8 vs 3.1 and 72% vs 58% respectively. The cut-off point for the TyG index was 8.8 in men and 8.7 in women; the respective values for TG/C-HDL were 3.1 in men and 2.2 in women. The TyG index was a good discriminant of MS. Its simple calculation warrants its further study as an alternative marker of insulin resistance. Copyright © 2014 SEEN. Published by Elsevier Espana. All rights reserved.

  12. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...

  13. Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Larsen, F S

    1993-01-01

    In patients with non-insulin-dependent diabetes mellitus (NIDDM) and matched control subjects we examined the interrelationships between in vivo nonoxidative glucose metabolism and glucose oxidation and the muscle activities, as well as the immunoreactive protein and mRNA levels of the rate-limit...

  14. Glucose uptake and pulsatile insulin infusion: euglycaemic clamp and [3-3H]glucose studies in healthy subjects

    International Nuclear Information System (INIS)

    Schmitz, O.; Arnfred, J.; Hother Nielsen, O.; Beck-Nielsen, H.; Oerskov, H.

    1986-01-01

    To test the hypothesis that insulin has a greater effect on glucose metabolism when given as pulsatile than as continuous infusion, a 354-min euglycaemic clamp study was carried out in 8 healthy subjects. At random order soluble insulin was given intravenously either at a constant rate of 0.45mU/kg · min or in identical amounts in pulses of 1 1 / 2 to 2 1 / 4 min followed by intervals of 10 1 / 2 to 9 3 / 4 min. Average serum insulin levels were similar during the two infusion protocols, but pulsatile administration induced oscillations ranging between 15 and 62 μU/ml. Glucose uptake expressed as metabolic clearance rate (MCR) for glucose was significantly increased during pulsatile insulin delivery as compared with continuous administration (270-294 min: 8.7±0.7 vs 6.8±0.9 ml/kg · min, P 3 H]glucose infusion technique was suppressed to insignificant values. Finally, the effect of insulin on endogenous insulin secretion and lipolysis as assessed by changes in serum C-peptide and serum FFA was uninfluenced by the infusion mode. In conclusion, insulin infusion resulting in physiological serum insulin levels enhances glucose uptake in peripheral tissues in healthy subjects to a higher degree when given in a pulsed pattern mimicking that of the normal endocrine pancreas than when given as a continuous infusion. (author)

  15. Bariatric surgery in morbidly obese insulin resistant humans normalises insulin signalling but not insulin-stimulated glucose disposal.

    Directory of Open Access Journals (Sweden)

    Mimi Z Chen

    Full Text Available Weight-loss after bariatric surgery improves insulin sensitivity, but the underlying molecular mechanism is not clear. To ascertain the effect of bariatric surgery on insulin signalling, we examined glucose disposal and Akt activation in morbidly obese volunteers before and after Roux-en-Y gastric bypass surgery (RYGB, and compared this to lean volunteers.The hyperinsulinaemic euglycaemic clamp, at five infusion rates, was used to determine glucose disposal rates (GDR in eight morbidly obese (body mass index, BMI=47.3 ± 2.2 kg/m(2 patients, before and after RYGB, and in eight lean volunteers (BMI=20.7 ± 0.7 kg/m2. Biopsies of brachioradialis muscle, taken at fasting and insulin concentrations that induced half-maximal (GDR50 and maximal (GDR100 GDR in each subject, were used to examine the phosphorylation of Akt-Thr308, Akt-473, and pras40, in vivo biomarkers for Akt activity.Pre-operatively, insulin-stimulated GDR was lower in the obese compared to the lean individuals (P<0.001. Weight-loss of 29.9 ± 4 kg after surgery significantly improved GDR50 (P=0.004 but not GDR100 (P=0.3. These subjects still remained significantly more insulin resistant than the lean individuals (p<0.001. Weight loss increased insulin-stimulated skeletal muscle Akt-Thr308 and Akt-Ser473 phosphorylation, P=0.02 and P=0.03 respectively (MANCOVA, and Akt activity towards the substrate PRAS40 (P=0.003, MANCOVA, and in contrast to GDR, were fully normalised after the surgery (obese vs lean, P=0.6, P=0.35, P=0.46, respectively.Our data show that although Akt activity substantially improved after surgery, it did not lead to a full restoration of insulin-stimulated glucose disposal. This suggests that a major defect downstream of, or parallel to, Akt signalling remains after significant weight-loss.

  16. Effect of Artemisia dracunculus Administration on Glycemic Control, Insulin Sensitivity, and Insulin Secretion in Patients with Impaired Glucose Tolerance.

    Science.gov (United States)

    Méndez-Del Villar, Miriam; Puebla-Pérez, Ana M; Sánchez-Peña, María J; González-Ortiz, Luis J; Martínez-Abundis, Esperanza; González-Ortiz, Manuel

    2016-05-01

    To evaluate the effect of Artemisia dracunculus on glycemic control, insulin sensitivity, and insulin secretion in patients with impaired glucose tolerance (IGT). A randomized, double blind, placebo-controlled clinical trial was performed in 24 patients with diagnosis of IGT. Before and after the intervention, glucose and insulin levels were measured every 30 min for 2 h after a 75-g dextrose load, along with glycated hemoglobin A1c (A1C) and lipid profile. Twelve patients received A. dracunculus (1000 mg) before breakfast and dinner for 90 days; the remaining 12 patients received placebo. Area under the curve (AUC) of glucose and insulin, total insulin secretion, first phase of insulin secretion, and insulin sensitivity were calculated. Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests were used for statistical analyses. The institutional ethics committee approved the protocol. After A. dracunculus administration, there were significant decreases in systolic blood pressure (SBP; 120.0 ± 11.3 vs. 113.0 ± 11.2 mmHg, P AUC of insulin (56,136.0 ± 27,426.0 vs. 44,472.0 ± 23,370.0 pmol/L, P AUC of insulin, and total insulin secretion with a significant increase in HDL-C levels.

  17. Microalbuminuria in insulin-dependent diabetes

    DEFF Research Database (Denmark)

    Niazy, S; Feldt-Rasmussen, B; Deckert, T

    1987-01-01

    Urinary albumin excretion in a representative sample of 679 patients with Type I (insulin-dependent) diabetes, 18 to 50 years of age, was investigated. Patients on antihypertensive therapy were excluded. Urinary albumin excretion was examined in one 24 hour urine sample using an ELISA technique....... Twenty-three per cent of the patients had microalbuminuria, i.e., 30-300 mg albumin/24 h. The prevalence of microalbuminuria was independent of sex, age, insulin dose and diabetes duration. In the majority of those cases in which microalbuminuria was found during the first 10 years of diabetes......, the concentrations were in the lower range, i.e., 30-50 mg/24 h. The prevalence of incipient nephropathy (urinary albumin excretion in a single urine sample of 51-300 mg/24 h) increased with diabetes duration. In patients with incipient nephropathy hemoglobin A1c tended to be, and blood pressure was, elevated...

  18. Is Insulin Action in the Brain Relevant in Regulating Blood Glucose in Humans?

    Science.gov (United States)

    Dash, Satya; Xiao, Changting; Morgantini, Cecilia; Koulajian, Khajag; Lewis, Gary F

    2015-07-01

    In addition to its direct action on the liver to lower hepatic glucose production, insulin action in the central nervous system (CNS) also lowers hepatic glucose production in rodents after 4 hours. Although CNS insulin action (CNSIA) modulates hepatic glycogen synthesis in dogs, it has no net effect on hepatic glucose output over a 4-hour period. The role of CNSIA in regulating plasma glucose has recently been examined in humans and is the focus of this review. Intransal insulin (INI) administration increases CNS insulin concentration. Hence, INI can address whether CNSIA regulates plasma glucose concentration in humans. We and three other groups have sought to answer this question, with differing conclusions. Here we will review the critical aspects of each study, including its design, which may explain these discordant conclusions. The early glucose-lowering effect of INI is likely due to spillover of insulin into the systemic circulation. In the presence of simultaneous portal and CNS hyperinsulinemia, portal insulin action is dominant. INI administration does lower plasma glucose independent of peripheral insulin concentration (between ∼3 and 6 h after administration), suggesting that CNSIA may play a role in glucose homeostasis in the late postprandial period when its action is likely greatest and portal insulin concentration is at baseline. The potential physiological role and purpose of this pathway are discussed in this review. Because the effects of INI are attenuated in patients with type 2 diabetes and obesity, this is unlikely to be of therapeutic utility.

  19. Glucose clearance in aged trained skeletal muscle during maximal insulin with superimposed exercise

    DEFF Research Database (Denmark)

    Dela, Flemming; Mikines, K J; Larsen, J J

    1999-01-01

    Insulin and muscle contractions are major stimuli for glucose uptake in skeletal muscle and have in young healthy people been shown to be additive. We studied the effect of superimposed exercise during a maximal insulin stimulus on glucose uptake and clearance in trained (T) (1-legged bicycle tra...

  20. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Xuemei Shi

    2017-11-01

    Conclusions: We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity.

  1. Effects of Everyday Life Events on Glucose, Insulin, and Glucagon Dynamics in Continuous Subcutaneous Insulin Infusion–Treated Type 1 Diabetes: Collection of Clinical Data for Glucose Modeling

    DEFF Research Database (Denmark)

    Schmidt, Signe; Finan, Daniel Aaron; Duun-Henriksen, Anne Katrine

    2012-01-01

    metabolism, we designed and conducted a clinical study.Methods: Patients with insulin pump–treated T1D were recruited to perform everyday life events on two separate days. During the study, patients wore their insulin pumps and, in addition, a continuous glucose monitor and an activity monitor to estimate...

  2. Partial ablation of adult Drosophila insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resistance.

    Science.gov (United States)

    Haselton, Aaron; Sharmin, Effat; Schrader, Janel; Sah, Megha; Poon, Peter; Fridell, Yih-Woei C

    2010-08-01

    In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic beta cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.

  3. Glucagon-insulin interaction on fat cell metabolism using c14 glucose

    International Nuclear Information System (INIS)

    Zewail, M.A.; Nielsen, J.H.

    1984-01-01

    Glucagon is known to stimulate the lipolysis in isolated fat cells from young rats, but not in fat cells from old heavy rate (Manganiello 1972). Insulin is known to counteract the lipolytic effect and to stimulate the synthesis of fatty acids from glucose. However, little is known about the interaction between the two hormones on the glucose metabolism. Experiments based on the use of various inhibitors of lipolysis have however, clearly shown that glucagon can also stimulate the entry and overall oxidation of glucose by mechanism which is distinct from its lipolysis stimulating mechanism (M. Blecher et al. 1969). Fat cells from old heavy rats are known to be less responsive to both the lipogenic action of insulin and the lipolytic action of glucagon than fat cells from young lean rats (E.G. Hansen, Nielsen and Gliemann, 1974). The aim of the present study was to see how glucagon affects glucose metabolism in fat cells, and whether this effect was dependent on the lipolytic action of glucagon

  4. Effect of glibenclamide on insulin release at moderate and high blood glucose levels in normal man

    NARCIS (Netherlands)

    Ligtenberg, JJM; Venker, CE; Sluiter, WJ; VanHaeften, TW

    Insulin release occurs in two phases; sulphonylurea derivatives may have different potencies in stimulating first-and second-phase insulin release. We studied the effect of glibenclamide on insulin secretion at submaximally and maximally stimulating blood glucose levels with a primed hyperglycaemic

  5. Coexistence of insulin resistance and increased glucose tolerance in pregnant rats: a physiological mechanism for glucose maintenance.

    Science.gov (United States)

    Carrara, Marcia Aparecida; Batista, Márcia Regina; Saruhashi, Tiago Ribeiro; Felisberto, Antonio Machado; Guilhermetti, Marcio; Bazotte, Roberto Barbosa

    2012-06-06

    The contribution of insulin resistance (IR) and glucose tolerance to the maintenance of blood glucose levels in non diabetic pregnant Wistar rats (PWR) was investigated. PWR were submitted to conventional insulin tolerance test (ITT) and glucose tolerance test (GTT) using blood sample collected 0, 10 and 60 min after intraperitoneal insulin (1 U/kg) or oral (gavage) glucose (1g/kg) administration. Moreover, ITT, GTT and the kinetics of glucose concentration changes in the fed and fasted states were evaluated with a real-time continuous glucose monitoring system (RT-CGMS) technique. Furthermore, the contribution of the liver glucose production was investigated. Conventional ITT and GTT at 0, 7, 14 and 20 days of pregnancy revealed increased IR and glucose tolerance after 20 days of pregnancy. Thus, this period of pregnancy was used to investigate the kinetics of glucose changes with the RT-CGMS technique. PWR (day 20) exhibited a lower (pinsulin sensitivity and/or glucose tolerance during late pregnancy. In contrast to the general view that IR is a pathological process associated with gestational diabetes, a certain degree of IR may represent an important physiological mechanism for blood glucose maintenance during fasting. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Detection of transketolase in bone marrow-derived insulin-producing cells: benfotiamine enhances insulin synthesis and glucose metabolism.

    Science.gov (United States)

    Oh, Seh-Hoon; Witek, Rafal P; Bae, Si-Hyun; Darwiche, Houda; Jung, Youngmi; Pi, Liya; Brown, Alicia; Petersen, Bryon E

    2009-01-01

    Adult bone marrow (BM)-derived insulin-producing cells (IPCs) are capable of regulating blood glucose levels in chemically induced hyperglycemic mice. Using cell transplantation therapy, fully functional BM-derived IPCs help to mediate treatment of diabetes mellitus. Here, we demonstrate the detection of the pentose phosphate pathway enzyme, transketolase (TK), in BM-derived IPCs cultured under high-glucose conditions. Benfotiamine, a known activator of TK, was not shown to affect the proliferation of insulinoma cell line, INS-1; however, when INS-1 cells were cultured with oxythiamine, an inhibitor of TK, cell proliferation was suppressed. Treatment with benfotiamine activated glucose metabolism in INS-1 cells in high-glucose culture conditions, and appeared to maximize the BM-derived IPCs ability to synthesize insulin. Benfotiamine was not shown to induce the glucose receptor Glut-2, however it was shown to activate glucokinase, the enzyme responsible for conversion of glucose to glucose-6-phosphate. Furthermore, benfotiamine-treated groups showed upregulation of the downstream glycolytic enzyme, glyceraldehyde phosphate dehydrogenase (GAPDH). However, in cells where the pentose phosphate pathway was blocked by oxythiamine treatment, there was a clear downregulation of Glut-2, glucokinase, insulin, and GAPDH. When benfotiamine was used to treat mice transplanted with BM-derived IPCs transplanted, their glucose level was brought to a normal range. The glucose challenge of normal mice treated with benfotiamine lead to rapidly normalized blood glucose levels. These results indicate that benfotiamine activates glucose metabolism and insulin synthesis to prevent glucose toxicity caused by high concentrations of blood glucose in diabetes mellitus.

  7. Detection of Transketolase in Bone Marrow—Derived Insulin-Producing Cells: Benfotiamine Enhances Insulin Synthesis and Glucose Metabolism

    Science.gov (United States)

    Witek, Rafal P.; Bae, Si-Hyun; Darwiche, Houda; Jung, Youngmi; Pi, Liya; Brown, Alicia; Petersen, Bryon E.

    2009-01-01

    Adult bone marrow (BM)-derived insulin-producing cells (IPCs) are capable of regulating blood glucose levels in chemically induced hyperglycemic mice. Using cell transplantation therapy, fully functional BM-derived IPCs help to mediate treatment of diabetes mellitus. Here, we demonstrate the detection of the pentose phosphate pathway enzyme, transketolase (TK), in BM-derived IPCs cultured under high-glucose conditions. Benfotiamine, a known activator of TK, was not shown to affect the proliferation of insulinoma cell line, INS-1; however, when INS-1 cells were cultured with oxythiamine, an inhibitor of TK, cell proliferation was suppressed. Treatment with benfotiamine activated glucose metabolism in INS-1 cells in high-glucose culture conditions, and appeared to maximize the BM-derived IPCs ability to synthesize insulin. Benfotiamine was not shown to induce the glucose receptor Glut-2, however it was shown to activate glucokinase, the enzyme responsible for conversion of glucose to glucose-6-phosphate. Furthermore, benfotiamine-treated groups showed upregulation of the downstream glycolytic enzyme, glyceraldehyde phosphate dehydrogenase (GAPDH). However, in cells where the pentose phosphate pathway was blocked by oxythiamine treatment, there was a clear downregulation of Glut-2, glucokinase, insulin, and GAPDH. When benfotiamine was used to treat mice transplanted with BM-derived IPCs transplanted, their glucose level was brought to a normal range. The glucose challenge of normal mice treated with benfotiamine lead to rapidly normalized blood glucose levels. These results indicate that benfotiamine activates glucose metabolism and insulin synthesis to prevent glucose toxicity caused by high concentrations of blood glucose in diabetes mellitus. PMID:18393672

  8. Effect of diet on insulin binding and glucose transport in rat sarcolemmal vesicles

    International Nuclear Information System (INIS)

    Grimditch, G.K.; Barnard, R.J.; Sternlicht, E.; Whitson, R.H.; Kaplan, S.A.

    1987-01-01

    The purpose of this study was to compare the effects of a high-fat, high-sucrose diet (HFS) and a low-fat, high-complex carbohydrate diet (LFC) on glucose tolerance, insulin binding, and glucose transport in rat skeletal muscle. During the intravenous glucose tolerance test, peak glucose values at 5 min were significantly higher in the HFS group; 0-, 20-, and 60-min values were similar. Insulin values were significantly higher in the HFS group at all time points (except 60 min), indicating whole-body insulin resistance. Skeletal muscle was responsible, in part, for this insulin resistance, because specific D-glucose transport in isolated sarcolemmal (SL) vesicles under basal conditions was similar between LFC and HFS rats, despite the higher plasma insulin levels. Scatchard analyses of insulin binding curves to sarcolemmal vesicles revealed that the K/sub a/ of the high-affinity binding sites was significantly reduced by the HFS diet; no other binding changes were noted. Specific D-glucose transport in SL vesicles after maximum insulin stimulation (1 U/kg) was significantly depressed in the HFS group, indicating that HFS feeding also caused a postbinding defect. These results indicate that the insulin resistance in skeletal muscle associated with a HFS diet is due to both a decrease in the K/sub a/ of the high-affinity insulin receptors and a postbinding defect

  9. Effect of High Fat and High Sugar Diet on Glucose Tolerance, Insulin Response to Glucose Load and Insulin Sensitivity in Rats

    OpenAIRE

    岡﨑, 悟

    1987-01-01

    To investigate the precipitating effects of the westernized diet on diabetes mellitus, glucose tolerance and insulin response to oral glucose load (1.5g/kg body weight) and insulin sensitivity to exogenous insulin (0.2U/kg) were studied in rats fed an experimental diet for 8 weeks. Four experimental diets were used : low fat-no sugar diet (energy ratio of 10% fat, 70% starch, a model of the traditional Japanese diet), high fat-high sugar diet (40% fat, 20% starch, 20% sugar, a model of the we...

  10. Stimulation of the endogenous incretin glucose-dependent insulinotropic peptide by enteral dextrose improves glucose homeostasis and inflammation in murine endotoxemia.

    Science.gov (United States)

    Shah, Faraaz Ali; Singamsetty, Srikanth; Guo, Lanping; Chuan, Byron W; McDonald, Sherie; Cooper, Bryce A; O'Donnell, Brett J; Stefanovski, Darko; Wice, Burton; Zhang, Yingze; O'Donnell, Christopher P; McVerry, Bryan J

    2018-03-01

    Loss of glucose homeostasis during sepsis is associated with increased organ dysfunction and higher mortality. Novel therapeutic strategies to promote euglycemia in sepsis are needed. We have previously shown that early low-level intravenous (IV) dextrose suppresses pancreatic insulin secretion and induces insulin resistance in septic mice, resulting in profound hyperglycemia and worsened systemic inflammation. In this study, we hypothesized that administration of low-level dextrose via the enteral route would stimulate intestinal incretin hormone production, potentiate insulin secretion in a glucose-dependent manner, and thereby improve glycemic control in the acute phase of sepsis. We administered IV or enteral dextrose to 10-week-old male C57BL/6J mice exposed to bacterial endotoxin and measured incretin hormone release, glucose disposal, and proinflammatory cytokine production. Compared with IV administration, enteral dextrose increased circulating levels of the incretin hormone glucose-dependent insulinotropic peptide (GIP) associated with increased insulin release and insulin sensitivity, improved mean arterial pressure, and decreased proinflammatory cytokines in endotoxemic mice. Exogenous GIP rescued glucose metabolism, improved blood pressure, and increased insulin release in endotoxemic mice receiving IV dextrose, whereas pharmacologic inhibition of GIP signaling abrogated the beneficial effects of enteral dextrose. Thus, stimulation of endogenous GIP secretion by early enteral dextrose maintains glucose homeostasis and attenuates the systemic inflammatory response in endotoxemic mice and may provide a therapeutic target for improving glycemic control and clinical outcomes in patients with sepsis. Published by Elsevier Inc.

  11. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    OpenAIRE

    McCommis, Kyle S.; Hodges, Wesley T.; Bricker, Daniel K.; Wisidagama, Dona R.; Compan, Vincent; Remedi, Maria S.; Thummel, Carl S.; Finck, Brian N.

    2016-01-01

    Objective: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC) is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. Methods: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-prod...

  12. The regulatory system for diabetes mellitus: Modeling rates of glucose infusions and insulin injections

    Science.gov (United States)

    Yang, Jin; Tang, Sanyi; Cheke, Robert A.

    2016-08-01

    Novel mathematical models with open and closed-loop control for type 1 or type 2 diabetes mellitus were developed to improve understanding of the glucose-insulin regulatory system. A hybrid impulsive glucose-insulin model with different frequencies of glucose infusions and insulin injections was analyzed, and the existence and uniqueness of the positive periodic solution for type 1 diabetes, which is globally asymptotically stable, was studied analytically. Moreover, permanence of the system for type 2 diabetes was demonstrated which showed that the glucose concentration level is uniformly bounded above and below. To investigate how to prevent hyperinsulinemia and hyperglycemia being caused by this system, we developed a model involving periodic intakes of glucose with insulin injections applied only when the blood glucose level reached a given critical glucose threshold. In addition, our numerical analysis revealed that the period, the frequency and the dose of glucose infusions and insulin injections are crucial for insulin therapies, and the results provide clinical strategies for insulin-administration practices.

  13. Clinical assessment of blood glucose homeostasis in horses: comparison of a continuous glucose monitoring system with a combined intravenous glucose and insulin test protocol.

    Science.gov (United States)

    Johnson, P J; Wiedmeyer, C E; LaCarrubba, A; Messer, N T; Dingfelder, H A; Cogswell, A M; Amorim, J R R; Ganjam, V K

    2011-01-01

    The combined glucose-insulin test (CGIT) is helpful for evaluating insulin sensitivity. A continuous glucose monitoring system (CGMS) reports changes in interstitial glucose concentrations as they occur in the blood. Use of the CGMS minimizes animal contact and may be useful when performing a CGIT. Results obtained using a CGMS are useful for the evaluation of glucose responses during the evaluation of insulin sensitivity in equids. Seven mature, obese ponies. Ponies were equipped with CGMS for determination of interstitial glucose concentrations. Glucose (150 mg/kg, i.v.) and insulin (0.1 U/kg, i.v.) were administered and blood glucose concentrations determined at (minutes after time zero) 1, 5, 15, 25, 35, 45, 60, 75, 90, 105, and 120 with a hand-held glucometer. Blood chemistry results were compared with simultaneously obtained results using CGMS. Concordance coefficients determined for comparison of blood glucose concentrations determined by a hand-held glucometer and those determined by CGMS after the zero time point were 0.623, 0.764, 0.834, 0.854, and 0.818 (for delays of 0, 5, 10, 15, and 20 minutes, respectively). Interstitial glucose concentrations obtained by the CGMS compared favorably to blood glucose concentrations. CGMS may be useful for assessment of glucose dynamics in the CGIT. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  14. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians

    DEFF Research Database (Denmark)

    Ek, J; Andersen, G; Urhammer, S A

    2001-01-01

    We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non-insulin-dependent) dia......-insulin-dependent) diabetes mellitus among Scandinavian Caucasians....

  15. Closed-loop controlled noninvasive ultrasonic glucose sensing and insulin delivery

    Science.gov (United States)

    Park, Eun-Joo; Werner, Jacob; Jaiswal, Devina; Smith, Nadine Barrie

    2010-03-01

    To prevent complications in diabetes, the proper management of blood glucose levels is essential. Previously, ultrasonic transdermal methods using a light-weight cymbal transducer array has been studied for noninvasive methods of insulin delivery for Type-1 diabetes and glucose level monitoring. In this study, the ultrasound systems of insulin delivery and glucose sensing have been combined by a feedback controller. This study was designed to show the feasibility of the feedback controlled ultrasound system for the noninvasive glucose control. For perspective human application, in vivo experiments were performed on large animals that have a similar size to humans. Four in vivo experiments were performed using about 200 lbs pigs. The cymbal array of 3×3 pattern has been used for insulin delivery at 30 kHz with the spatial-peak temporal-peak intensity (Isptp) of 100 mW/cm2. For glucose sensing, a 2×2 array was operated at 20 kHz with Isptp = 100 mW/cm2. Based on the glucose level determined by biosensors after the ultrasound exposure, the ultrasound system for the insulin delivery was automatically operated. The glucose level of 115 mg/dl was set as a reference value for operating the insulin delivery system. For comparison, the glucose levels of blood samples collected from the ear vein were measured by a commercial glucose meter. Using the ultrasound system operated by the close-loop, feed-back controller, the glucose levels of four pigs were determined every 20 minutes and continuously controlled for 120 minutes. In comparison to the commercial glucose meter, the glucose levels determined by the biosensor were slightly higher. The results of in vivo experiments indicate the feasibility of the feedback controlled ultrasound system using the cymbal array for noninvasive glucose sensing and insulin delivery. Further studies on the extension of the glucose control will be continued for the effective method of glucose control.

  16. Acute effect of meal glycemic index and glycemic load on blood glucose and insulin responses in humans

    Directory of Open Access Journals (Sweden)

    Díaz Erik

    2006-09-01

    Full Text Available Abstract Objective Foods with contrasting glycemic index when incorporated into a meal, are able to differentially modify glycemia and insulinemia. However, little is known about whether this is dependent on the size of the meal. The purposes of this study were: i to determine if the differential impact on blood glucose and insulin responses induced by contrasting GI foods is similar when provided in meals of different sizes, and; ii to determine the relationship between the total meal glycemic load and the observed serum glucose and insulin responses. Methods Twelve obese women (BMI 33.7 ± 2.4 kg/m2 were recruited. Subjects received 4 different meals in random order. Two meals had a low glycemic index (40–43% and two had a high-glycemic index (86–91%. Both meal types were given as two meal sizes with energy supply corresponding to 23% and 49% of predicted basal metabolic rate. Thus, meals with three different glycemic loads (95, 45–48 and 22 g were administered. Blood samples were taken before and after each meal to determine glucose, free-fatty acids, insulin and glucagon concentrations over a 5-h period. Results An almost 2-fold higher serum glucose and insulin incremental area under the curve (AUC over 2 h for the high- versus low-glycemic index same sized meals was observed (p Conclusion This study showed that foods of contrasting glycemic index induced a proportionally comparable difference in serum insulin response when provided in both small and large meals. The same was true for the serum glucose response but only in large meals. Glycemic load was useful in predicting the acute impact on blood glucose and insulin responses within the context of mixed meals.

  17. The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake.

    Science.gov (United States)

    Carpéné, Christian; Grès, Sandra; Rascalou, Simon

    2013-06-01

    The antidepressant phenelzine is a monoamine oxidase inhibitor known to inhibit various other enzymes, among them semicarbazide-sensitive amine oxidase (currently named primary amine oxidase: SSAO/PrAO), absent from neurones but abundant in adipocytes. It has been reported that phenelzine inhibits adipocyte differentiation of cultured preadipocytes. To further explore the involved mechanisms, our aim was to study in vitro the acute effects of phenelzine on de novo lipogenesis in mature fat cells. Therefore, glucose uptake and incorporation into lipid were measured in mouse adipocytes in response to phenelzine, other hydrazine-based SSAO/PrAO-inhibitors, and reference agents. None of the inhibitors was able to impair the sevenfold activation of 2-deoxyglucose uptake induced by insulin. Phenelzine did not hamper the effect of lower doses of insulin. However, insulin-stimulated glucose incorporation into lipids was dose-dependently inhibited by phenelzine and pentamidine, but not by semicarbazide or BTT2052. In contrast, all these SSAO/PrAO inhibitors abolished the transport and lipogenesis stimulation induced by benzylamine. These data indicate that phenelzine does not inhibit glucose transport, the first step of lipogenesis, but inhibits at 100 μM the intracellular triacylglycerol assembly, consistently with its long-term anti-adipogenic effect and such rapid action was not found with all the hydrazine derivatives tested. Therefore, the alterations of body weight control consecutive to the use of this antidepressant drug might be not only related to central effects on food intake/energy expenditure, but could also depend on its direct action in adipocytes. Nonetheless, phenelzine antilipogenic action is not merely dependent on SSAO/PrAO inhibition.

  18. Radioimmunoassay of Plasma Insulin during Oral Glucose Tolerance Test in Thyrotoxicosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hong Kyu; Koh, Chang Soon; Lee, Mun Ho [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1971-03-15

    Blood glucose and immunoreactive insulin (IRI) were measured during oral glucose tolerance test in 15 thyrotoxic patients and 8 normal controls, to study the glucose metabolism in thyrotoxicosis. Following were the results;1) In thyrotoxicosis, there is noticed late rise and late fall of plasma IRI during oral glucose tolerance test, like as phenomenon of mild diabetes mellitus. 2) When the thyrotoxic patients were divided into normal and abnormal responsive groups after the level of blood glucose by Wilkerson Criteria, no significant difference in plasma IRI levels were noticed between two groups. 3) This result may be interpreted as relative deficiency of insulin secretion from panaceas and suggest genetically related defects.

  19. Nocturnal electroencephalogram registrations in type 1 (insulin-dependent) diabetic patients with hypoglycaemia

    DEFF Research Database (Denmark)

    Bendtson, I; Gade, J; Rosenfalck, A M

    1991-01-01

    Eight Type 1 (insulin-dependent) diabetic patients with no diabetic complications were studied overnight for two consecutive and one subsequent night with continuous monitoring of electroencephalogram and serial hormone measurements. The aims were: 1) to evaluate the influence of spontaneous...... and insulin-induced hypoglycaemia on nocturnal electroencephalogram sleep-patterns and, 2) to evaluate counter-regulatory hormone responses. Spontaneous hypoglycaemia occurred on six nights (38%) with blood glucose concentrations less than 3.0 mmol/l and on four nights less than 2.0 mmol/l. All the patients...... experienced insulin-induced hypoglycaemia with a blood glucose nadir of 1.6 (range 1.4-1.9) mmol/l. The electroencephalogram was analysed by a new method developed for this purpose in contrast to the traditional definition of delta-, theta-, alpha- and beta-activity. The blood glucose concentration could...

  20. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    International Nuclear Information System (INIS)

    Dalgaard, Louise T.

    2012-01-01

    Highlights: ► UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. ► UCP2 mRNA up-regulation by glucose is dependent on glucokinase. ► Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. ► This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/− islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2−/− and GK+/− islets compared with GK+/− islets and UCP2 deficiency improved glucose tolerance of GK+/− mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/− mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  1. Proportional Insulin Infusion in Closed-Loop Control of Blood Glucose

    NARCIS (Netherlands)

    Grasman, Johan; Callender, Hannah L.; Mensink, Marco; Pietropaolo, Massimo

    2017-01-01

    A differential equation model is formulated that describes the dynamics of glucose concentration in blood circulation. The model accounts for the intake of food, expenditure of calories and the control of glucose levels by insulin and glucagon. These and other hormones affect the blood glucose level

  2. Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action

    DEFF Research Database (Denmark)

    Faerch, K; Vaag, A; Holst, Jens Juul

    2008-01-01

    .892) compared with NGT. Hepatic insulin sensitivity was normal in i-IFG and i-IGT individuals (p > or = 0.179). Individuals with i-IGT had peripheral insulin resistance (p = 0.003 vs NGT), and consequently the disposition index (DI; insulin secretion x insulin sensitivity) during IVGTT (DI(IVGTT))) was reduced......AIMS/HYPOTHESIS: The impact of strategies for prevention of type 2 diabetes in isolated impaired fasting glycaemia (i-IFG) vs isolated impaired glucose tolerance (i-IGT) may differ depending on the underlying pathophysiology. We examined insulin secretion during OGTTs and IVGTTs, hepatic...

  3. [Primary study on characteristics of insulin secretion rate, metabolic clearance rate and sensitivity in non-insulin-dependent diabetic subjects from multiplex diabetic pedigrees].

    Science.gov (United States)

    Ran, J; Cheng, H; Li, F

    2000-01-01

    To investigate the characteristics of insulin secretion rate (ISR), metabolic clearance rate (MCR-I) and sensitivity and to explore their relationship with obesity in non-insulin-dependent diabetic subjects from multiplex diabetic pedigrees (MDP). Fifteen subjects with normal glucose tolerance and 11 non-insulin-dependent diabetic patients from MDP were included in the study. Frequently sampled intravenous glucose tolerance test (FSIVGTT) was performed. Glucose, insulin (INS) and connecting-peptide (C-P) concentrations were measured. A computer procedure devised by our laboratory was used to calculate the value of ISR at each time point, then MCR-I was acquired. Insulin sensitivity index (SI) was calculated according to minimal model technique about glucose in FSIVGTT. The ISR curve in control group was biphasic, while in non-insulin. In non-insulin-dependent diabetic group, areas under the curves of C-P (AUCC) and ISR level (AUCS) measured during 0 approximately 16 min were 7.9 nmol.min(-1).L(-1) +/- 2.8 nmol.min(-1).L(-1), and 6.1 nmol +/- 2.2 nmol, respectively, which were significantly lower than those in control group 17.7 nmol.min(-1).L(-1) +/- 4.92 nmol.min(-1).L(-1) and 12.3 nmol +/- 3.9 nmol (P < 0.01). The two parameters were slightly higher than those in control group 155 nmol.min(-1).L(-1) +/- 44 nmol.min(-1).L(-1) vs 101 nmol.min(-1).L(-1) +/- 30 nmol.min(-1).L(-1) and 76 nmol +/- 26 nmol vs 54 nmol +/- 20.0 nmol (P < 0.05)measured during 16 approximately 180 min. There was no significant difference, between the two groups about the amount of insulin secretion during 3 hours (82 nmol +/- 28nmol vs 68 nmol +/- 21 nmol, P = 0.2). In control group, there were significant positive correlation, between AUCS, waist-hip ratio (WHR), and body surface area, (BSA) and significant negative correlation between MCR-I, SI and WHR, BSA (P < 0.01), and also between MCR-I and SI. In non-insulin-dependent diabetic group, AUCS were significantly correlated with body mass

  4. Central insulin and leptin-mediated autonomic control of glucose homeostasis.

    Science.gov (United States)

    Marino, Joseph S; Xu, Yong; Hill, Jennifer W

    2011-07-01

    Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Salivary alterations in insulin-dependent diabetes mellitus.

    Science.gov (United States)

    Belazi, M A; Galli-Tsinopoulou, A; Drakoulakos, D; Fleva, A; Papanayiotou, P H

    1998-03-01

    To examine the flow rate and composition of unstimulated whole saliva and of serum in children with newly diagnosed insulin-dependent diabetes mellitus (IDDM) and to compare these with values for a group of healthy controls. Cross-sectional. Diabetic Department of a University Hospital in Thessaloniki, Greece. The test group was made up of 10 recently diagnosed child patients with IDDM, aged 4-15 years and free of other systemic disease. Ten healthy children aged 5-17 years served as controls. Children were clinically examined before unstimulated saliva was collected over a 5 minute period and blood samples taken. Saliva and serum measurements included glucose, total proteins, albumin and immunoglobulins (IgA, IgG). No significant difference was seen in salivary flow rate between the two groups. Significantly greater concentrations of glucose were seen in saliva and serum in children with IDDM. Neither total protein nor albumin differed significantly between the two groups. Salivary IgA concentration was higher in the test group as was serum IgG. Findings in this sample suggest that changes in salivary composition may, together with estimated glucose levels, play a helpful diagnostic role in the early stages of IDDM in some children.

  6. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    International Nuclear Information System (INIS)

    Piwkowska, Agnieszka; Rogacka, Dorota; Angielski, Stefan; Jankowski, Maciej

    2012-01-01

    Highlights: ► H 2 O 2 activates the insulin signaling pathway and glucose uptake in podocytes. ► H 2 O 2 induces time-dependent changes in AMPK phosphorylation. ► H 2 O 2 enhances insulin signaling pathways via AMPK activation. ► H 2 O 2 stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H 2 O 2 ) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H 2 O 2 -induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H 2 O 2 (100 μM) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min (Δ 183%, P 2 O 2 >. Furthermore, H 2 O 2 inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; Δ −32%, P 2 O 2 on IR phosphorylation by about 40% (from 2.07 ± 0.28 to 1.28 ± 0.12, P 2 O 2 increased glucose uptake in podocytes (from 0.88 ± 0.04 to 1.29 ± 0.12 nmol/min/mg protein, P 2 O 2 activated the insulin signaling pathway and glucose uptake via AMPK in cultured rat podocytes. This signaling may play a potential role in the prevention of insulin resistance under conditions associated with oxidative stress.

  7. Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Brian T. O’Neill

    2015-05-01

    Full Text Available Insulin and insulin-like growth factor 1 (IGF-1 are major regulators of muscle protein and glucose homeostasis. To determine how these pathways interact, we generated mice with muscle-specific knockout of IGF-1 receptor (IGF1R and insulin receptor (IR. These MIGIRKO mice showed >60% decrease in muscle mass. Despite a complete lack of insulin/IGF-1 signaling in muscle, MIGIRKO mice displayed normal glucose and insulin tolerance. Indeed, MIGIRKO mice showed fasting hypoglycemia and increased basal glucose uptake. This was secondary to decreased TBC1D1 resulting in increased Glut4 and Glut1 membrane localization. Interestingly, overexpression of a dominant-negative IGF1R in muscle induced glucose intolerance in MIGIRKO animals. Thus, loss of insulin/IGF-1 signaling impairs muscle growth, but not whole-body glucose tolerance due to increased membrane localization of glucose transporters. Nonetheless, presence of a dominant-negative receptor, even in the absence of functional IR/IGF1R, induces glucose intolerance, indicating that interactions between these receptors and other proteins in muscle can impair glucose homeostasis.

  8. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects

    Science.gov (United States)

    Onishi, Airin; Fujiwara, Yoshinori; Ishiwata, Kiichi; Ishii, Kenji

    2017-01-01

    Background Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG) in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD)-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images. Methods Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years) underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR) was calculated. Results Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05), and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4–5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002), and no correlation with plasma insulin levels (r = 0.156, p = 0.12) or HOMA-IR (r = 0.096, p = 0.24). Conclusion This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images. PMID:28715453

  9. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects.

    Directory of Open Access Journals (Sweden)

    Kenji Ishibashi

    Full Text Available Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images.Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR was calculated.Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05, and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4-5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002, and no correlation with plasma insulin levels (r = 0.156, p = 0.12 or HOMA-IR (r = 0.096, p = 0.24.This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images.

  10. Rapid changes in plasma androgens during insulin withdrawal in male type 1 (insulin-dependent) diabetics

    DEFF Research Database (Denmark)

    Madsbad, S; Gluud, C; Bennett, Patrick

    1986-01-01

    Plasma concentrations of testosterone, androstenedione and dihydrotestosterone were measured in 15 Type 1 (insulin-dependent) diabetics with (n = 8) and without (n = 7) B-cell function during 12 h of insulin withdrawal and compared with those of 8 normal subjects. Before insulin withdrawal no sig...

  11. FLUOXETINE INCREASES INSULIN ACTION IN OBESE NONDIABETIC AND IN OBESE NON-INSULIN-DEPENDENT DIABETIC INDIVIDUALS

    NARCIS (Netherlands)

    Potter van Loon, B. J.; Radder, J. K.; Froelich, M.; Krans, H. M.; Zwinderman, A. H.; Meinders, A. E.

    1992-01-01

    Insulin resistance contributes to the metabolic defects in non-insulin-dependent diabetes mellitus (NIDDM). Anorectic agents have been shown to improve insulin action in NIDDM, irrespective of weight reduction. The serotonin-reuptake inhibiting agent fluoxetine has recently been recognized as an

  12. Fluoxetine increases insulin action in obese type II (non-insulin dependent) diabetic patients

    NARCIS (Netherlands)

    Potter van Loon, B. J.; Radder, J. K.; Froelich, M.; Krans, H. Michiel J.; Zwinderman, A. H.; Meinders, A. E.

    1992-01-01

    Insulin resistance contributes to the metabolic defects in non-insulin dependent diabetes mellitus (NIDDM). Anorectic agents have been shown to improve insulin action in NIDDM, irrespective of weight reduction. In a double-blind placebo-controlled cross-over study, we examined hepatic and peripheral

  13. Glucose-Responsive Implantable Polymeric Microdevices for "Smart" Insulin Therapy of Diabetes

    Science.gov (United States)

    Chu, Michael Kok Loon

    Diabetes mellitus is a chronic illness manifested by improper blood glucose management, affecting over 350 million worldwide. As a result, all type 1 patients and roughly 20% of type 2 patients require exogenous insulin therapy to survive. Typically, daily multiple injections are taken to maintain normal glucose levels in response glucose spikes from meals. However, patient compliance and dosing accuracy can fluctuate with variation in meals, exercise, glucose metabolism or stress, leading to poor clinical outcomes. A 'smart', closed-loop insulin delivery system providing on-demand release kinetics responding to circulating glucose levels would be a boon for diabetes patients, replacing constant self monitoring and insulin. This thesis focuses on the development of a novel, 'smart' insulin microdevice that can provide on-demand insulin release in response to blood glucose levels. In the early stage, the feasibility of integrating a composite membrane with pH-responsive nanoparticles embedded in ethylcellulose membrane to provide pH-responsive in vitro release was examined and confirmed using a model drug, vitamin B12. In the second microdevice, glucose oxidase for generating pH signals from glucose oxidation, catalase and manganese dioxide nanoparticles, as peroxide scavengers, were used in a bioinorganic, albumin-based membrane cross-linked with a polydimethylsiloxane (PDMS) grid-microdevice system. This prototype device demonstrated insulin release in response to glucose levels in vitro and regulating plasma glucose in type 1 diabetic rats when implanted intraperitoneally. Advancement allowing for subcutaneous implantation and improved biocompatibility was achieved with surface modification of PDMS microdevices grafted with activated 20 kDa polyethylene glycol (PEG) chains, dramatically reducing immune response and local inflammation. When implanted subcutaneously in diabetic rats, glucose-responsive insulin delivery microdevices showed short and long

  14. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens Juul

    2003-01-01

    (HI), 40 mU/m(2) x min], 3-(3)H-glucose, indirect calorimetry, and iv glucose tolerance test. Free fatty acid concentrations were similar during basal steady state but 3.7- to 13-fold higher during clamps. P-glucagon increased and the insulin/glucagon ratio decreased at both LI and HI during...... not in the nonoxidative) glucose metabolism in young healthy men. Moreover, insulin hypersecretion perfectly countered the free-fatty acid-induced insulin resistance. Future studies are needed to determine the role of a prolonged moderate lipid load in subjects at increased risk of developing diabetes....

  15. Decrease of glucose-induced insulin secretion of rat pancreatic islets after irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Heinzmann, D; Nadrowitz, R; Besch, W; Schmidt, W; Hahn, H J [Zentralinstitut fuer Diabetes, Karlsburg (German Democratic Republic); Ernst-Moritz-Arndt-Universitaet, Greifswald (German Democratic Republic). Radiologische Klinik)

    1983-01-01

    In vitro irradiation of rat pancreatic islets up to a dose of 2.5 Gy did neither alter glucose- nor isobutylmethyl xanthine (IBMX)-induced insulin secretion. Insulin as well as glucagon content of irradiated islets corresponded to that of the control tissue. So it was in islets irradiated with 25 Gy which were characterized by a decreased insulin secretion in the presence of glucose and IBMX, respectively. There was no indication of an enhanced hormone output in the radiation medium and it is to be suggested that higher radiation doses affect the insulin release of pancreatic islets in vitro. This must be taken into consideration for radioimmunosuppression experiments.

  16. Prevalence of impaired glucose tolerance and insulin resistance among obese children and adolescents

    Directory of Open Access Journals (Sweden)

    Robabeh Ghergherechi

    2010-07-01

    Full Text Available Robabeh Ghergherechi1, Ali Tabrizi21Department of Pediatrics Endocrinology, Tabriz University of Medical Sciences, Tabriz, Iran; 2Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, IranPurpose: Obesity is one of the most important nutritional disorders in the world which has an obvious relationship with the incidence of metabolic diseases. Obesity prevalence has increased among children and adolescents during recent decades, leading to a rise in Type 2 diabetes mellitus (DM II prevalence in these two age brackets. Hence, the aim of this study was to assess impaired glucose tolerance and insulin resistance, and gather metabolic findings in obese children and adolescents.Methods and materials: We studied 110 obese children and adolescents (body mass index > 95th percentile for age and gender 4–18 years of age referred to the endocrine clinic of the Children’s Hospital at Tabriz University in a descriptive cross-sectional study. ­Fasting glucose, insulin, and lipid profile in all subjects were determined. Oral glucose tolerance test after eating 75 g/kg glucose was performed. Homeostatic model assessment was used to ­estimate insulin resistance.Results: Impaired glucose tolerance and insulin resistance prevalence in 68 obese adolescents was 14.7% and 31.8%, respectively. Impaired glucose tolerance and insulin resistance was not seen in 23.8% of 42 obese children. No case of DM II was seen. There was a significant statistical difference in glucose (P = 0.003 and insulin (P < 0.001 level at minute 120 in individuals with impaired glucose tolerance compared to obese children and adolescents without impaired glucose tolerance. Rate of insulin resistance in patients with impaired glucose tolerance was greater and had a significant statistical difference (P = 0.03.Conclusion: Obesity has a close relationship with increased risk of impaired glucose tolerance and insulin resistance in children and adolescents. Oral glucose

  17. Impaired insulin-stimulated nonoxidative glucose metabolism in glucose-tolerant women with previous gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P; Vestergaard, H; Kühl, Carl Erik

    1996-01-01

    Our purpose was to investigate insulin sensitivity and insulin secretion in women with previous gestational diabetes.......Our purpose was to investigate insulin sensitivity and insulin secretion in women with previous gestational diabetes....

  18. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity.

    Science.gov (United States)

    Shi, Xuemei; Chacko, Shaji; Li, Feng; Li, Depei; Burrin, Douglas; Chan, Lawrence; Guan, Xinfu

    2017-11-01

    Glucagon-like peptides are co-released from enteroendocrine L cells in the gut and preproglucagon (PPG) neurons in the brainstem. PPG-derived GLP-1/2 are probably key neuroendocrine signals for the control of energy balance and glucose homeostasis. The objective of this study was to determine whether activation of PPG neurons per se modulates glucose homeostasis and insulin sensitivity in vivo. We generated glucagon (Gcg) promoter-driven Cre transgenic mice and injected excitatory hM3Dq-mCherry AAV into their brainstem NTS. We characterized the metabolic impact of PPG neuron activation on glucose homeostasis and insulin sensitivity using stable isotopic tracers coupled with hyperinsulinemic euglycemic clamp. We showed that after ip injection of clozapine N-oxide, Gcg-Cre lean mice transduced with hM3Dq in the brainstem NTS downregulated basal endogenous glucose production and enhanced glucose tolerance following ip glucose tolerance test. Moreover, acute activation of PPG neurons NTS enhanced whole-body insulin sensitivity as indicated by increased glucose infusion rate as well as augmented insulin-suppression of endogenous glucose production and gluconeogenesis. In contrast, insulin-stimulation of glucose disposal was not altered significantly. We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  19. Effect of HCV on fasting glucose, fasting insulin and peripheral insulin resistance in first 5 years of infection.

    Science.gov (United States)

    Ahmed, Naeema; Rashid, Amir; Naveed, Abdul Khaliq; Bashir, Qudsia

    2016-02-01

    To assess the effects of hepatitis C virus infection in the first 5 years on fasting glucose, fasting insulin and peripheral insulin resistance. The case-control study was conducted at the Army Medical College, Rawalpindi, from December 2011 to November 2012, and comprised subjects recruited from a government hospital in Rawalpindi. The subjects included known cases of hepatitis C virus infection for at least 5 years, and normal healthy controls. Fasting blood samples of all the subjects were collected and analysed for serum fasting insulin and serum fasting glucose levels. Homeostatic model assessment-Insulin resistance was calculated SPSS 11 was used for statistical analysis. Of the 30 subjects, 20(66.6%) were cases, while 10(33.3%) were controls. Serum fasting glucose mean level in cases was 89.55±9.53 compared to 84.40±9.80 in the controls (p=0.188). The mean serum fasting insulin in controls was 7.52±3.23 and 6.79±3.30 in cases (p=0.567). Homeostatic model assessment-Insulin resistance level in controls was 1.60±0.76 and In the cases it was 1.49±0.74 (p=0.695). Peripheral insulin resistance and development of type 2 diabetes as a complication of hepatitis C virus infection was not likely at least within the first five years of infection.

  20. Intake of Lactobacillus reuteri Improves Incretin and Insulin Secretion in Glucose-Tolerant Humans

    DEFF Research Database (Denmark)

    Simon, Marie-Christine; Strassburger, Klaus; Nowotny, Bettina

    2015-01-01

    production. Muscle and hepatic lipid contents were assessed by (1)H-magnetic resonance spectroscopy, and immune status, cytokines, and endotoxin were measured with specific assays. RESULTS: In glucose-tolerant volunteers, daily administration of L. reuteri SD5865 increased glucose-stimulated GLP-1 and GLP-2....... reuteri SD5865 or placebo over 4 weeks. Oral glucose tolerance and isoglycemic glucose infusion tests were used to assess incretin effect and GLP-1 and GLP-2 secretion, and euglycemic-hyperinsulinemic clamps with [6,6-(2)H2]glucose were used to measure peripheral insulin sensitivity and endogenous glucose...... cytokines. CONCLUSIONS: Enrichment of gut microbiota with L. reuteri increases insulin secretion, possibly due to augmented incretin release, but does not directly affect insulin sensitivity or body fat distribution. This suggests that oral ingestion of one specific strain may serve as a novel therapeutic...

  1. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial.

    Science.gov (United States)

    Heianza, Yoriko; Sun, Dianjianyi; Li, Xiang; DiDonato, Joseph A; Bray, George A; Sacks, Frank M; Qi, Lu

    2018-06-02

    Alterations in gut microbiota have been linked to host insulin resistance, diabetes and impaired amino acid metabolism. We investigated whether changes in gut microbiota-dependent metabolite of trimethylamine N-oxide (TMAO) and its nutrient precursors (choline and L-carnitine) were associated with improvements in glucose metabolism and diabetes-related amino acids in a weight-loss diet intervention. We included 504 overweight and obese adults who were randomly assigned to one of four energy-reduced diets varying in macronutrient intake. The 6-month changes (Δ) in TMAO, choline and L-carnitine levels after the intervention were calculated. Greater decreases in choline and L-carnitine were significantly (p<0.05) associated with greater improvements in fasting insulin concentrations and homeostasis model assessment of insulin resistance (HOMA-IR) at 6 months. The reduction of choline was significantly related to 2-year improvements in glucose and insulin resistance. We found significant linkages between dietary fat intake and ΔTMAO for changes in fasting glucose, insulin and HOMA-IR (p interaction <0.05); a greater increase in TMAO was related to lesser improvements in the outcomes among participants who consumed a high-fat diet. In addition, ΔL-carnitine and Δcholine were significantly related to changes in amino acids (including branched-chain and aromatic amino acids). Interestingly, the associations of ΔTMAO, Δcholine and ΔL-carnitine with diabetes-related traits were independent of the changes in amino acids. Our findings underscore the importance of changes in TMAO, choline and L-carnitine in improving insulin sensitivity during a weight-loss intervention for obese patients. Dietary fat intake may modify the associations of TMAO with insulin sensitivity and glucose metabolism. NCT00072995. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless

  2. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise

    Science.gov (United States)

    2015-01-01

    Enhanced skeletal muscle and whole body insulin sensitivity can persist for up to 24–48 h after one exercise session. This review focuses on potential mechanisms for greater postexercise and insulin-stimulated glucose uptake (ISGU) by muscle in individuals with normal or reduced insulin sensitivity. A model is proposed for the processes underlying this improvement; i.e., triggers initiate events that activate subsequent memory elements, which store information that is relayed to mediators, which translate memory into action by controlling an end effector that directly executes increased insulin-stimulated glucose transport. Several candidates are potential triggers or memory elements, but none have been conclusively verified. Regarding potential mediators in both normal and insulin-resistant individuals, elevated postexercise ISGU with a physiological insulin dose coincides with greater Akt substrate of 160 kDa (AS160) phosphorylation without improved proximal insulin signaling at steps from insulin receptor binding to Akt activity. Causality remains to be established between greater AS160 phosphorylation and improved ISGU. The end effector for normal individuals is increased GLUT4 translocation, but this remains untested for insulin-resistant individuals postexercise. Following exercise, insulin-resistant individuals can attain ISGU values similar to nonexercising healthy controls, but after a comparable exercise protocol performed by both groups, ISGU for the insulin-resistant group has been consistently reported to be below postexercise values for the healthy group. Further research is required to fully understand the mechanisms underlying the improved postexercise ISGU in individuals with normal or subnormal insulin sensitivity and to explain the disparity between these groups after similar exercise. PMID:26487009

  3. Insulin sensitivity of hepatic glucose and lipid metabolism in animal models of hepatic steatosis

    OpenAIRE

    Grefhorst, Aldo

    2006-01-01

    De lever is betrokken bij de regulatie van zowel het koolhydraat als het vet metabolisme. De lever slaat glucose op als glycogeen, scheidt glucose uit, kan glucose maken uit bijvoorbeeld melkzuur en aminozuren (‘gluconeogenese’), zet glucose om in vet (‘de novo lipogenese’), verbrandt vetzuren in de beta-oxidatie (levert energie voor de gluconeogenese) en scheidt triglycerides uit in de circulatie in ‘very low density lipoprotein’ (VLDL) deeltjes. Insuline remt de glucoseproductie door de lev...

  4. Insulin response to oral glucose in healthy, lean young women and patients with polycystic ovary syndrome.

    Science.gov (United States)

    Kulshreshtha, Bindu; Ganie, Mohammed Ashraf; Praveen, Edavan Pulikkanath; Gupta, Nandita; Lal Khurana, Madan; Seith, Ashu; Dwivedi, Sadanand N; Kumar, Guresh; Ammini, Ariachery C

    2008-11-01

    Insulin resistance and consequent hyperinsulinemia are common among patients with polycystic ovary syndrome (PCOS). Ethnicity and dietary habits affect insulin levels. There is little published information from India on insulin levels in PCOS patients. Thus the present study aimed to determine the insulin response to oral glucose in women with PCOS and healthy women. In a case-control study design, women with PCOS and lean healthy women without a family history of diabetes mellitus underwent oral glucose tolerance testing. Samples were collected at 0, 1 and 2 h after glucose ingestion. Two hundred and eighty-five women with PCOS and 27 lean healthy young women were enrolled into the study. The mean age of controls was 22.8 +/- 4.5 years (range 15-32 years) and their mean body mass index (BMI) was 19.7 +/- 2.6 kg/m(2). Mean blood glucose at 0, 1 and 2 h was 88.2 +/- 7.2, 115.5 +/- 25.5 and 91.8 +/- 20.5 mg/dl, respectively. Corresponding plasma insulin levels were 5.8 +/- 1.1, 32.7 +/- 26.5 and 14.6 +/- 9.6 mIU/l. Peak insulin levels were seen at 1 h and these came down to less than 40% of the peak value by 2 h. Glucose/insulin ratio at 0, 1 and 2 h was 15.6 +/- 3.1, 7.0 +/- 3.1 and 11.4 +/- 7.0. Homeostasis model assessment of insulin resistance (HOMA-IR) was 1.2 +/- 0.2. The age of the PCOS women ranged from 15 to 40 years (mean 23.4 +/- 6.2 years) and their BMI ranged from 16.4 to 50.4 kg/m(2) (mean 27.7 +/- 6.3 kg/m(2)). One hundred and seventy-six (62%) PCOS patients had normal glucose tolerance (NGT), 39 (14%) had impaired fasting glucose (IFG), 49 (17%) had impaired glucose tolerance (IGT) and 21 (7%) had type 2 diabetes mellitus (T2DM). Insulin response was higher in women with PCOS. Peak insulin was observed at 1 h. The difference between 1-h and 2-h post-glucose insulin decreased with worsening glucose tolerance. Both plasma insulin and BMI showed a rising trend from NGT to IFG to IGT. There was no further increase in either insulin or BMI from IGT to T2DM

  5. Cold exposure potentiates the effect of insulin on in vivo glucose uptake

    International Nuclear Information System (INIS)

    Vallerand, A.L.; Perusse, F.; Bukowiecki, L.J.

    1987-01-01

    The effects of cold exposure and insulin injection on the rates of net 2-[ 3 H]deoxyglucose uptake (K i ) in peripheral tissues were investigated in warm-acclimated rats. Cold exposure and insulin treatment independently increased K i values in skeletal muscles, heart, white adipose tissue, and brown adipose tissue. The effects of cold exposure were particularly evident in brown adipose tissue where the K i increased >100 times. When the two treatments were combined, it was found that cold exposure synergistically enhanced the maximal insulin responses for glucose uptake in brown adipose tissue, all white adipose tissue depots, and skeletal muscles investigated. The results indicate that cold exposure induces an insulin-like effect on K i that does not appear to be specifically associated with shivering thermogenesis in skeletal muscles, because that effect was observed in all insulin-sensitive tissues. The data also demonstrate that cold exposure significantly potentiates the maximal insulin responses for glucose uptake in the same tissues. This potentialization may result from (1) an enhanced responsiveness of peripheral tissues to insulin, possibly occurring at metabolic steps lying beyond the insulin receptor and (2) an increased tissue blood flow augmenting glucose and insulin availability and thereby amplifying glucose uptake

  6. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    Science.gov (United States)

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. High passage MIN6 cells have impaired insulin secretion with impaired glucose and lipid oxidation.

    Directory of Open Access Journals (Sweden)

    Kim Cheng

    Full Text Available Type 2 diabetes is a metabolic disorder characterized by the inability of beta-cells to secrete enough insulin to maintain glucose homeostasis. MIN6 cells secrete insulin in response to glucose and other secretagogues, but high passage (HP MIN6 cells lose their ability to secrete insulin in response to glucose. We hypothesized that metabolism of glucose and lipids were defective in HP MIN6 cells causing impaired glucose stimulated insulin secretion (GSIS. HP MIN6 cells had no first phase and impaired second phase GSIS indicative of global functional impairment. This was coupled with a markedly reduced ATP content at basal and glucose stimulated states. Glucose uptake and oxidation were higher at basal glucose but ATP content failed to increase with glucose. HP MIN6 cells had decreased basal lipid oxidation. This was accompanied by reduced expressions of Glut1, Gck, Pfk, Srebp1c, Ucp2, Sirt3, Nampt. MIN6 cells represent an important model of beta cells which, as passage numbers increased lost first phase but retained partial second phase GSIS, similar to patients early in type 2 diabetes onset. We believe a number of gene expression changes occurred to produce this defect, with emphasis on Sirt3 and Nampt, two genes that have been implicated in maintenance of glucose homeostasis.

  8. Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes

    DEFF Research Database (Denmark)

    Fehse, Frauke; Trautmann, Michael; Holst, Jens Juul

    2005-01-01

    CONTEXT: First-phase insulin secretion (within 10 min after a sudden rise in plasma glucose) is reduced in type 2 diabetes mellitus (DM2). The incretin mimetic exenatide has glucoregulatory activities in DM2, including glucose-dependent enhancement of insulin secretion. OBJECTIVE: The objective...... of the study was to determine whether exenatide can restore a more normal pattern of insulin secretion in subjects with DM2. DESIGN: Fasted subjects received iv insulin infusion to reach plasma glucose 4.4-5.6 mmol/liter. Subjects received iv exenatide (DM2) or saline (DM2 and healthy volunteers), followed...... by iv glucose challenge. PATIENTS: Thirteen evaluable DM2 subjects were included in the study: 11 males, two females; age, 56 +/- 7 yr; body mass index, 31.7 +/- 2.4 kg/m2; hemoglobin A1c, 6.6 +/- 0.7% (mean +/- sd) treated with diet/exercise (n = 1), metformin (n = 10), or acarbose (n = 2). Controls...

  9. [Insulin resistance--a physiopathological condition with numerous sequelae: non-insulin-dependent diabetes mellitus (NIDDM), android obesity, essential hypertension, dyslipidemia and atherosclerosis].

    Science.gov (United States)

    Pedersen, O

    1992-05-11

    Recent research has demonstrated that reduced insulin-stimulated glucose metabolism in skeletal muscle (insulin resistance) and hyperinsulinism are common features in widespread diseases such as essential hypertension, android obesity, non-insulin dependent diabetes mellitus, dyslipidemia (in the form of raised serum triglyceride and reduced serum high-density lipoprotein (HDL) cholesterol) and arteriosclerosis. Simultaneously, investigations in a comprehensive group of healthy middle-aged men have revealed insulin resistance in one fourth. On the basis of these observations, a working hypothesis is suggested which postulates that genetic abnormalities in one or more of the candidate genes in the modes of action of insulin occur in a great proportion of the population. These may result in insulin resistance (primary genetic insulin resistance). Primary insulin resistance may be potentiated by a series of circumstances such as ageing, high-fat diet, lack of physical activity, hormonal and metabolic abnormalities or drugs (secondary insulin resistance). As a consequence of the reduced effect of insulin on muscle tissue, compensatory hyperinsulinism develops. Depending on the remaining vulnerability of the individual the hyperinsulinism is presumed to result in development of one or more phenotypes. For example if the beta-cells of the pancreas are unable to secrete sufficient insulin to compensate the insulin resistance on account of genetic defects, glucose intolerance will develop. In a similar manner, hyperinsulinism in insulin-resistant individuals who are predisposed to essential hypertension is presumed to reveal genetic defects in the blood pressure regulating mechanisms and thus contribute to development of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    Science.gov (United States)

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Insulin-resistant glucose metabolism in patients with microvascular angina--syndrome X

    DEFF Research Database (Denmark)

    Vestergaard, H; Skøtt, P; Steffensen, R

    1995-01-01

    Studies in patients with microvascular angina (MA) or the cardiologic syndrome X have shown a hyperinsulinemic response to an oral glucose challenge, suggesting insulin resistance and a role for increased serum insulin in coronary microvascular dysfunction. The aim of the present study was to exa......Studies in patients with microvascular angina (MA) or the cardiologic syndrome X have shown a hyperinsulinemic response to an oral glucose challenge, suggesting insulin resistance and a role for increased serum insulin in coronary microvascular dysfunction. The aim of the present study...... was to examine whether patients with MA are insulin-resistant. Nine patients with MA and seven control subjects were studied. All were sedentary and glucose-tolerant. Coronary arteriography was normal in all participants, and exercise-induced coronary ischemia was demonstrated in all MA patients. A euglycemic...... metabolism (8.4 +/- 0.9 v 12.5 +/- 1.3 mg.kg FFM-1.min-1, P

  12. Hypoglycemia in type 2 diabetes patients treated with insulin: the advantages of continuous glucose monitoring

    Directory of Open Access Journals (Sweden)

    Vadim Valer'evich Klimontov

    2014-03-01

    Full Text Available Aims.  To determine the incidence and risk factors for hypoglycemia in elderly insulin-treated type 2 diabetes mellitus (T2DM patients by means of continuous glucose monitoring (CGM. Materials and Methods.  We observed seventy-six hospitalized patients with T2DM, aged 65 to 79 years. Treatment with basal insulin (n=36, premixed insulin (n=12 or basal-bolus insulin regimen (n=28 was followed by metformin (n=44, glimepiride (n=14 and dipeptidyl peptidase-4 inhibitors (n=14. 2-days CGM with retrospective data analysis was performed in all patients. During CGM, three fasting and three 2-h postprandial finger-prick glucose values were obtained daily with portable glucose meter. Results.  Hypoglycemia (identified as blood glucose

  13. Glucose Control: non-insulin therapies* 9.1: Drug Summary ...

    African Journals Online (AJOL)

    Glucose Control: non-insulin therapies in 2017 SEMDSA Guideline for the Management of Type 2 Diabetes. Guideline ... Weight neutral or causes modest weight loss (-1.2kg). No weight ..... Older patients with multiple comorbidities. • Patients ...

  14. Effect of test meals of varying dietary fiber content on plasma insulin and glucose response.

    Science.gov (United States)

    Potter, J G; Coffman, K P; Reid, R L; Krall, J M; Albrink, M J

    1981-03-01

    To assess the effect of dietary fiber on glucose tolerance four different meals of varying fiber content but identical protein fat and carbohydrate content were fed to eight healthy men aged 22 to 45. Each meal provided 75 g of carbohydrate as liquid glucose formula, as brown rice, pinto beans, or All Bran. The mean plasma glucose and insulin responses were highest following the formula, and least for All Bran and pinto beans. Rice produced nearly as great a rise in insulin and glucose as did the formula. The rank of each meal by content of neutral detergent fiber was nearly the inverse of the rank by magnitude of the insulin response evoked, fiber content being greatest in All Bran (18 g) and pinto beans (16.2 g), low in rice (2.8 g) and absent from the formula. It was concluded that dietary fiber dampened the insulin response to a high carbohydrate meal.

  15. Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism

    Science.gov (United States)

    van der Zijl, Nynke J.; Moors, Chantalle C.M.; Goossens, Gijs H.; Hermans, Marc M.H.; Blaak, Ellen E.; Diamant, Michaela

    2011-01-01

    OBJECTIVE Recently, the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research Trial demonstrated that treatment with the angiotensin receptor blocker (ARB) valsartan for 5 years resulted in a relative reduction of 14% in the incidence of type 2 diabetes in subjects with impaired glucose metabolism (IGM). We investigated whether improvements in β-cell function and/or insulin sensitivity underlie these preventive effects of the ARB valsartan in the onset of type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized controlled, double-blind, two-center study, the effects of 26 weeks of valsartan (320 mg daily; n = 40) or placebo (n = 39) on β-cell function and insulin sensitivity were assessed in subjects with impaired fasting glucose and/or impaired glucose tolerance, using a combined hyperinsulinemic-euglycemic and hyperglycemic clamp with subsequent arginine stimulation and a 2-h 75-g oral glucose tolerance test (OGTT). Treatment effects were analyzed using ANCOVA, adjusting for center, glucometabolic status, and sex. RESULTS Valsartan increased first-phase (P = 0.028) and second-phase (P = 0.002) glucose-stimulated insulin secretion compared with placebo, whereas the enhanced arginine-stimulated insulin secretion was comparable between groups (P = 0.25). In addition, valsartan increased the OGTT-derived insulinogenic index (representing first-phase insulin secretion after an oral glucose load; P = 0.027). Clamp-derived insulin sensitivity was significantly increased with valsartan compared with placebo (P = 0.049). Valsartan treatment significantly decreased systolic and diastolic blood pressure compared with placebo (P valsartan treatment increased glucose-stimulated insulin release and insulin sensitivity in normotensive subjects with IGM. These findings may partly explain the beneficial effects of valsartan in the reduced incidence of type 2 diabetes. PMID:21330640

  16. Glucose and insulin induce Ca2+ signaling in nesfatin-1 neurons in the hypothalamic paraventricular nucleus.

    Science.gov (United States)

    Gantulga, Darambazar; Maejima, Yuko; Nakata, Masanori; Yada, Toshihiko

    2012-04-20

    Nucleobindin-2 derived nesfatin-1 in the hypothalamic paraventricular nucleus (PVN) plays a role in inhibition of feeding. The neural pathways downstream of PVN nesfatin-1 have been extensively investigated. However, regulation of the PVN nesfatin-1 neurons remains unclear. Since starvation decreases and refeeding stimulates nesfatin-1 expression specifically in the PVN, this study aimed to clarify direct effects of meal-evoked metabolic factors, glucose and insulin, on PVN nesfatin-1 neurons. High glucose (10mM) and insulin (10(-13)M) increased cytosolic calcium concentration ([Ca(2+)](i)) in 55 of 331 (16.6%) and 32 of 249 (12.9%) PVN neurons, respectively. Post [Ca(2+)](i) measurement immunocytochemistry identified that 58.2% of glucose-responsive and 62.5% of insulin-responsive neurons were immunoreactive to nesfatin-1. Furthermore, a fraction of the glucose-responsive nesfatin-1 neurons also responded to insulin, and vice versa. Some of the neurons that responded to neither glucose nor insulin were recruited to [Ca(2+)](i) increases by glucose and insulin in combination. Our data demonstrate that glucose and insulin directly interact with and increase [Ca(2+)](i) in nesfatin-1 neurons in the PVN, and that the nesfatin-1 neuron is the primary target for them in the PVN. The results suggest that high glucose- and insulin-induced activation of PVN nesfatin-1 neurons serves as a mechanism through which meal ingestion stimulates nesfatin-1 neurons in the PVN and thereby produces satiety. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Effect of cholecalciferol and levo carnitine on plasma glucose, plasma insulin and insulin resistance in type 2 diabetic rats

    International Nuclear Information System (INIS)

    Anwar, M. K.; Hussain, M. M.; Khan, M. A.; Ahmad, T.

    2013-01-01

    Objective: To compare the effects of combined and individual supplementation of cholecalciferol and levo carnitine on plasma glucose, plasma insulin and insulin resistance in type 2 diabetic rats. Methods: The randomised controlled trial was conducted at the Department of Physiology, Army Medical College, Rawalpindi, between October 2010 and April 2011. It comprised 80 healthy Sprague Dawley rats who were divided into four groups (n = 20 each). Rats were fed high-fat diet for 2 weeks followed by an intraperitoneal injection of streptozocin to induce type 2 diabetes mellitus. Group I served as diabetic control; group II was given cholecalciferol; group III; levo carnitine; and group IV was administered cholecalciferol and levo carnitine together. After 6 days of supplementation, terminal intracardiac blood extraction was done and samples were analysed for fasting plasma glucose and plasma insulin. Insulin resistance was calculated by homeostatic model assessment for insulin resistance. SPSS 17.0 was used for statistical analysis. Results: Fasting plasma glucose levels were significantly decreased (p <0.001) in the combined supplementation group compared to the diabetic control and individual supplementation groups. Combined supplementation showed a significant increase in fasting plasma insulin levels when compared with diabetic control and levo carnitine groups (p <0.001), and the effect of combined supplementation on ameliorating insulin resistance was significantly better (p <0.001) as compared to the individual supplementation of cholecalciferol and levo carnitine. Conclusions: The combined supplementation of cholecalciferol and levo carnitine for 6 days markedly improved the glycaemic control, insulin secretion and insulin resistance in type 2 diabetic rats on high-fat diet. A prolonged supplementation by both the compounds along with caloric restriction may yield a more promising outcome. (author)

  18. Insulin binding and glucose transport in adipocytes of acarbose-treated Zucker lean and obese rats.

    Science.gov (United States)

    Vasselli, J R; Flory, T; Fried, S K

    1987-01-01

    The intestinal glucosidase inhibitor acarbose was administered as a dietary admix (30 mg/100 g chow diet) to male Zucker obese and lean rats. After 15 weeks, epidiymal fat pads were removed and adipocytes isolated by collagenase digestion. Equilibrium binding of A-14 tyrosine 125I-insulin, and transport of U-14C-glucose was determined was adipocytes incubated for 50 min at 37 degrees C in 0-16000 pM insulin. Insulin binding/cell was enhanced two-fold in lean (P less than 0.01) and obese (n.s.) drug groups. In drug-treated leans, increased sensitivity of glucose transport to submaximally stimulating concentrations of insulin was observed (P less than 0.02). For both genotypes, acarbose mildly decreased insulin levels and body weight gain, although adipocyte size was unaffected. Results indicate that enhanced insulin binding accompanies metabolic improvements induced by acarbose in lean Zucker rats.

  19. Blueberries? Impact on Insulin Resistance and Glucose Intolerance

    OpenAIRE

    Stull, April J.

    2016-01-01

    Blueberries are a rich source of polyphenols, which include anthocyanin bioactive compounds. Epidemiological evidence indicates that incorporating blueberries into the diet may lower the risk of developing type 2 diabetes (T2DM). These findings are supported by pre-clinical and clinical studies that have shown improvements in insulin resistance (i.e., increased insulin sensitivity) after obese and insulin-resistant rodents or humans consumed blueberries. Insulin resistance was assessed by hom...

  20. Plasma insulin levels are increased by sertraline in rats under oral glucose overload

    Directory of Open Access Journals (Sweden)

    Gomez R.

    2001-01-01

    Full Text Available Recognition and control of depression symptoms are important to increase patient compliance with treatment and to improve the quality of life of diabetic patients. Clinical studies indicate that selective serotonin reuptake inhibitors (SSRI are better antidepressants for diabetic patients than other drugs. However, preclinical trials have demonstrated that not all SSRI reduce plasma glucose levels. In fact, fluoxetine increases and sertraline decreases glycemia in diabetic and non-diabetic rats. In the present study we evaluated plasma insulin levels during fasting and after glucose overload after treatment with sertraline. Adult male Wistar rats were fasted and treated with saline or 30 mg/kg sertraline and submitted or not to glucose overload (N = 10. Blood was collected and plasma insulin was measured. The mean insulin levels were: fasting group: 25.9 ± 3.86, sertraline + fasting group: 31.10 ± 2.48, overload group: 34.1 ± 3.40, and overload + sertraline group: 43.73 ± 5.14 µU/ml. Insulinemia was significantly increased in the overload + sertraline group. There were no differences between the other groups. No difference in glucose/insulin ratios could be detected between groups. The overload + sertraline group was the only one in which a significant number of individuals exceeded the upper confidence limit of insulin levels. This study demonstrates that sertraline increases glucose-stimulated insulin secretion without any change in peripheral insulin sensitivity.

  1. Correlation between the Plasma Insulin and Glucose Concentration in Normal Korean Adults

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Kyu; Sung, Ho Kyung; Kim, Jin Eui [Radiological Research Institute, Seoul (Korea, Republic of)

    1971-09-15

    The correlation between the plasma insulin, and glucose concentration was studied in healthy Korean adults consisting of 20 males and 22 females of 16 to 38 years of age. The blood samples of above subjects were obtained through cubital vein at arbitrary times during their usual working hours. Plasma insulin was assayed by means of double antibody system of radioimmunoassay technics, and blood glucose was determined by means of Van Slyke-Folch method. Results were as follows : 1. There were no differences in the blood sugar levels in relation to the plasma insulin concentration either by sex or age. 2. In the case, when the plasma insulin concentration was within 50 mmuU/ml, the correlation between the insulin, and glucose concentration existed, the ratio of which was expressed as; Plasma glucose concentration (mg/dl)=91.9 + 0.08 X Insulin concentration r=0.62. 3. Insulinogenic index was 12.4%, which was somewhat higher than other reports. 4. It is suggested that the correlation between plasma insulin and glucose concentration could be determined at arbitrary times instead of fasting times.

  2. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain.

    Science.gov (United States)

    Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L; Kanekiyo, Takahisa; Bu, Guojun

    2015-04-08

    Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy. Copyright © 2015 the authors 0270-6474/15/355851-09$15.00/0.

  3. Rapid changes in plasma androgens during insulin withdrawal in male type 1 (insulin-dependent) diabetics

    DEFF Research Database (Denmark)

    Madsbad, S; Gluud, C; Bennett, Patrick

    1986-01-01

    Plasma concentrations of testosterone, androstenedione and dihydrotestosterone were measured in 15 Type 1 (insulin-dependent) diabetics with (n = 8) and without (n = 7) B-cell function during 12 h of insulin withdrawal and compared with those of 8 normal subjects. Before insulin withdrawal......, testosterone and dihydrotestosterone concentrations were lower in the diabetics after 4 h of insulin withdrawal and remained so throughout the study. The concentrations of androstenedione were not significantly different between diabetics and normal subjects except after 4 h of insulin withdrawal. Despite...

  4. Expression of glycogen synthase and phosphofructokinase in muscle from type 1 (insulin-dependent) diabetic patients before and after intensive insulin treatment

    DEFF Research Database (Denmark)

    Vestergaard, H; Andersen, P H; Lund, S

    1994-01-01

    The aim of the present study was to determine whether short-term appropriate insulinization of Type 1 (insulin-dependent) diabetic patients in long-term poor glycaemic control (HbA1C > 9.5%) was associated with an adaptive regulation of the activity and gene expression of key proteins in muscle...... glycogen storage and glycolysis: glycogen synthase and phosphofructokinase, respectively. In nine diabetic patients biopsies of quadriceps muscle were taken before and 24-h after intensified insulin therapy and compared to findings in eight control subjects. Subcutaneous injections of rapid acting insulin...... were given at 3-h intervals to improve glycaemic control in diabetic patients (fasting plasma glucose decreased from 20.8 +/- 0.8 to 8.7 +/- 0.8 mmol/l whereas fasting serum insulin increased from 59 +/- 8 to 173 +/- 3 pmol/l). Before intensified insulin therapy, analysis of muscle biopsies from...

  5. Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects.

    Science.gov (United States)

    Wickenberg, Jennie; Ingemansson, Sandra Lindstedt; Hlebowicz, Joanna

    2010-10-12

    Previous animal studies have shown that Curcuma (C.) longa lowers plasma glucose. C. longa may thus be a promising ingredient in functional foods aimed at preventing type 2 diabetes. The purpose of the study is to study the effect of C. longa on postprandial plasma glucose, insulin levels and glycemic index (GI) in healthy subjects. Fourteen healthy subjects were assessed in a crossover trial. A standard 75 g oral glucose tolerance test (OGTT) was administered together with capsules containing a placebo or C. longa. Finger-prick capillary and venous blood samples were collected before, and 15, 30, 45, 60, 90, and 120 min after the start of the OGTT to measure the glucose and insulin levels, respectively. The ingestion of 6 g C. longa had no significant effect on the glucose response. The change in insulin was significantly higher 30 min (P = 0.03) and 60 min (P = 0.041) after the OGTT including C. longa. The insulin AUCs were also significantly higher after the ingestion of C. longa, 15 (P = 0.048), 30 (P = 0.035), 90 (P = 0.03), and 120 (P = 0.02) minutes after the OGTT. The ingestion of 6 g C. longa increased postprandial serum insulin levels, but did not seem to affect plasma glucose levels or GI, in healthy subjects. The results indicate that C. longa may have an effect on insulin secretion.

  6. Effects of Curcuma longa (turmeric on postprandial plasma glucose and insulin in healthy subjects

    Directory of Open Access Journals (Sweden)

    Ingemansson Sandra

    2010-10-01

    Full Text Available Abstract Background Previous animal studies have shown that Curcuma (C. longa lowers plasma glucose. C. longa may thus be a promising ingredient in functional foods aimed at preventing type 2 diabetes. The purpose of the study is to study the effect of C. longa on postprandial plasma glucose, insulin levels and glycemic index (GI in healthy subjects. Methods Fourteen healthy subjects were assessed in a crossover trial. A standard 75 g oral glucose tolerance test (OGTT was administered together with capsules containing a placebo or C. longa. Finger-prick capillary and venous blood samples were collected before, and 15, 30, 45, 60, 90, and 120 min after the start of the OGTT to measure the glucose and insulin levels, respectively. Results The ingestion of 6 g C. longa had no significant effect on the glucose response. The change in insulin was significantly higher 30 min (P = 0.03 and 60 min (P = 0.041 after the OGTT including C. longa. The insulin AUCs were also significantly higher after the ingestion of C. longa, 15 (P = 0.048, 30 (P = 0.035, 90 (P = 0.03, and 120 (P = 0.02 minutes after the OGTT. Conclusions The ingestion of 6 g C. longa increased postprandial serum insulin levels, but did not seem to affect plasma glucose levels or GI, in healthy subjects. The results indicate that C. longa may have an effect on insulin secretion. Trial registration number NCT01029327

  7. MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity.

    Science.gov (United States)

    Vaitheesvaran, B; LeRoith, D; Kurland, I J

    2010-10-01

    Recent work has shown that there can be significant differences when glucose disposal is assessed for high-fat induced insulin resistance by static clamp methods vs dynamic assessment during a stable isotope i.p. glucose tolerance test. MKR mice, though lean, have severe insulin resistance and decreased muscle fatty acid oxidation. Our goal was to assess dynamic vs static glucose disposal in MKR mice, and to correlate glucose disposal and muscle-adipose-liver flux interactions with metabolic flexibility (indirect calorimetry) and muscle characteristics. Stable isotope flux phenotyping was performed using [6,6-(2)H(2)]glucose, [U-(13)C(6)]glucose and [2-(13)C]glycerol. Muscle triacylglycerol (TAG) and diacylglycerol (DAG) content was assessed by thin layer chromatography, and histological determination of fibre type and cytochrome c activity performed. Metabolic flexibility was assessed by indirect calorimetry. Indirect calorimetry showed that MKR mice used more glucose than FVB/N mice during fasting (respiratory exchange ratio [RER] 0.88 vs 0.77, respectively). Compared with FVB/N mice, MKR mice had faster dynamic glucose disposal, despite increased whole-muscle DAG and TAG, and similar hepatic glucose production with higher fasting insulin and unchanged basal glucose. Fed MKR muscle had more glycogen, and increased levels of GLUT1 and GLUT4 than FVB/N muscle. Histology indicated that MKR soleus had mildly decreased cytochrome c activity overall and more type II (glycolytic) fibres compared with that in FVB/N mice. MKR muscle adapts to using glucose, with more type II fibres present in red muscle. Fasting RER is elevated and glucose disposal during an i.p. glucose tolerance test is accelerated despite increased muscle DAG and TAG. Metabolic inflexibility may result from the compensatory use of fuel that can be best utilised for energy requirements; static vs dynamic glucose disposal assessments may measure complementary aspects of metabolic flexibility and insulin

  8. Insulin resistance for glucose metabolism in disused soleus muscle of mice

    Science.gov (United States)

    Seider, M. J.; Nicholson, W. F.; Booth, F. W.

    1981-01-01

    Results of this study on mice provide the first direct evidence of insulin resistance for glucose metabolism in skeletal muscle that has undergone a previous period of reduced muscle usage. This lack of responsiveness to insulin developed in one day and in the presence of hypoinsulinemia. Future studies will utilize the model of hindlimb immobilization to determine the causes of these changes.

  9. Biological activity of alligator, avian, and mammalian insulin in juvenile alligators: plasma glucose and amino acids.

    Science.gov (United States)

    Lance, V A; Elsey, R M; Coulson, R A

    1993-02-01

    The biological activity of alligator, turkey, and bovine insulin on plasma glucose and plasma amino acids was tested in fasted juvenile alligators. Preliminary experiments showed that the stress associated with taking the initial blood sample resulted in a hyperglycemic response lasting more than 24 hr. Despite repeated bleedings no additional hyperglycemic events occurred, and blood glucose declined slowly over the next 7 days. Under these conditions the smallest dose of insulin eliciting a hypoglycemic response was 40 micrograms/kg body wt. A dose of 400 micrograms/kg body wt of either alligator or bovine insulin caused a pronounced hypoglycemia by 12 hr postinjection. Maximum decline in plasma glucose occurred at 24 to 36 hr with a slow return to control levels by 120 hr. There were no significant differences in the hypoglycemic responses to any of the three insulins tested. The decline in plasma amino acids was much more rapid than the decline in plasma glucose in response to insulin. Even at the 40 micrograms/kg body wt dose a significant difference from saline-injected control was seen at 2 hr postinjection. Maximum decline in plasma amino acids occurred at 8 to 12 hr with a return to baseline by 36 hr. These results show that the relatively conservative changes in the sequence of alligator insulin (three amino acid substitutions in the B-chain compared with that of chicken) have little effect on biological activity and that alligator insulin receptors do not appear to discriminate among the three insulins.

  10. Continuous glucose monitoring-enabled insulin-pump therapy in diabetic pregnancy

    DEFF Research Database (Denmark)

    Secher, Anna L; Schmidt, Signe; Nørgaard, Kirsten

    2010-01-01

    We describe the feasibility of continuous glucose monitoring (CGM)-enabled insulin-pump therapy during pregnancy in a woman with type 1 diabetes, who was treated with CGM-enabled insulin-pump therapy in her third pregnancy. During her first pregnancy, the woman was treated with multiple daily inj...

  11. Detection of Transketolase in Bone Marrow—Derived Insulin-Producing Cells: Benfotiamine Enhances Insulin Synthesis and Glucose Metabolism

    OpenAIRE

    Oh, Seh-Hoon; Witek, Rafal P.; Bae, Si-Hyun; Darwiche, Houda; Jung, Youngmi; Pi, Liya; Brown, Alicia; Petersen, Bryon E.

    2009-01-01

    Adult bone marrow (BM)-derived insulin-producing cells (IPCs) are capable of regulating blood glucose levels in chemically induced hyperglycemic mice. Using cell transplantation therapy, fully functional BM-derived IPCs help to mediate treatment of diabetes mellitus. Here, we demonstrate the detection of the pentose phosphate pathway enzyme, transketolase (TK), in BM-derived IPCs cultured under high-glucose conditions. Benfotiamine, a known activator of TK, was not shown to affect the prolife...

  12. Variation in 125I-Insulin absorption and blood glucose concentration

    International Nuclear Information System (INIS)

    Lauritzen, T.; Faber, O.K.; Binder, C.

    1979-01-01

    The absorption of monocomponent porcine 125 I-insulin Monotard and Isophane was studied in six insulin dependent diabetic patients over a period of 12 days. The absorption of insulin was measured as the disappearance of radioactivity from sites of injection. The daily 125 I-insulin doses ranged from 20 to 48 IU between patients. The insulin absorbed varied considerably within and between patients. The range of individual daily absorbed insulin varied from 19 to 104 per cent of the 125 I-insulin dose. A significant correlation (p [de

  13. Glucose-responsive insulin delivery for type 1 diabetes: The artificial pancreas story.

    Science.gov (United States)

    Bally, Lia; Thabit, Hood; Hovorka, Roman

    2018-06-15

    Insulin replacement therapy is integral to the management of type 1 diabetes, which is characterised by absolute insulin deficiency. Optimal glycaemic control, as assessed by glycated haemoglobin, and avoidance of hyper- and hypoglycaemic excursions have been shown to prevent diabetes-related complications. Insulin pump use has increased considerably over the past decade with beneficial effects on glycaemic control, quality of life and treatment satisfaction. The advent and progress of ambulatory glucose sensor technology has enabled continuous glucose monitoring based on real-time glucose levels to be integrated with insulin therapy. Low glucose and predictive low glucose suspend systems are currently used in clinical practice to mitigate against hypoglycaemia, and provide the first step towards feedback glucose control. The more advanced technology approach, an artificial pancreas or a closed-loop system, gradually increases and decreases insulin delivery in a glucose-responsive fashion to mitigate against hyper- and hypoglycaemia. Randomised outpatient clinical trials over the past 5 years have demonstrated the feasibility, safety and efficacy of the approach, and the recent FDA approval of the first single hormone closed-loop system establishes a new standard of care for people with type 1 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Maria L. Mizgier

    2017-01-01

    Full Text Available Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines. We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS. In conditioned media from human myotubes incubated with/without insulin (100 nmol/L for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets (p<0.05. Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets.

  15. Nonparametric Identification of Glucose-Insulin Process in IDDM Patient with Multi-meal Disturbance

    Science.gov (United States)

    Bhattacharjee, A.; Sutradhar, A.

    2012-12-01

    Modern close loop control for blood glucose level in a diabetic patient necessarily uses an explicit model of the process. A fixed parameter full order or reduced order model does not characterize the inter-patient and intra-patient parameter variability. This paper deals with a frequency domain nonparametric identification of the nonlinear glucose-insulin process in an insulin dependent diabetes mellitus patient that captures the process dynamics in presence of uncertainties and parameter variations. An online frequency domain kernel estimation method has been proposed that uses the input-output data from the 19th order first principle model of the patient in intravenous route. Volterra equations up to second order kernels with extended input vector for a Hammerstein model are solved online by adaptive recursive least square (ARLS) algorithm. The frequency domain kernels are estimated using the harmonic excitation input data sequence from the virtual patient model. A short filter memory length of M = 2 was found sufficient to yield acceptable accuracy with lesser computation time. The nonparametric models are useful for closed loop control, where the frequency domain kernels can be directly used as the transfer function. The validation results show good fit both in frequency and time domain responses with nominal patient as well as with parameter variations.

  16. The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation.

    Science.gov (United States)

    Santos, J M; Benite-Ribeiro, S A; Queiroz, G; Duarte, J A

    2014-12-01

    Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3-kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin-activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho-aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho-aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Solutes transport characteristics in peritoneal dialysis: variations in glucose and insulin serum levels.

    Science.gov (United States)

    da Silva, Dirceu R; Figueiredo, Ana E; Antonello, Ivan C; Poli de Figueiredo, Carlos E; d'Avila, Domingos O

    2008-01-01

    Differences in small solutes transport rate (SSTR) during peritoneal dialysis (PD) may affect water and solutes removal. Patients with high SSTR must rely on shorter dwell times and increased dialysate glucose concentrations to keep fluid balance. Glucose absorption during peritoneal dialysis (PD), besides affecting glucose and insulin metabolism, may induce weight gain. The study aimed at examining acute glucose and insulin serum level changes and other potential relationships in PD patients with diverse SSTR. This cross-sectional study used a modified peritoneal equilibration test (PET) that enrolled 34 prevalent PD patients. Zero, 15, 30, 60, 120, 180, and 240-minute glucose and insulin serum levels were measured. Insulin resistance index was assessed by the homeostasis model assessment (HOMA-IR) formula. SSTR categories were classified by quartiles of the four-hour dialysate/serum creatinine ratio (D(4)/P(Cr)). Demographic and clinical variables were evaluated, and the body mass index (BMI) was estimated. Correlations among variables of interest and categories of SSTR were explored. Glucose serum levels were significantly different at 15, 30, and 60 minutes between high and low SSTR categories (p = 0.014, 0.009, and 0.022). Increased BMI (25.5 +/- 5.1) and insulin resistance [HOMA-IR = 2.60 (1.40-4.23)] were evidenced overall. Very strong to moderate correlations between insulin levels along the PET and HOMA-IR (r = 0.973, 0.834, 0.766, 0.728, 0.843, 0.857, 0.882) and BMI (r = 0.562, 0.459, 0.417, 0.370, 0.508, 0.514, 0.483) were disclosed. CONCLUSIONS; Early glucose serum levels were associated with SSTR during a PET. Overweight or obesity and insulin resistance were prevalent. An association between insulin serum levels and BMI was demonstrated.

  18. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion.

    Science.gov (United States)

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J S; Gray, Joshua P

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7mM) to stimulatory (8-16mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H(2)O(2)), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H(2)O(2) inhibit insulin secretion. Menadione, which produces H(2)O(2) via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H(2)O(2) production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1-10μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H(2)O(2) formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H(2)O(2) and menadione on insulin secretion. Published by Elsevier Inc.

  19. Glucose transport and milk secretion during manipulated plasma insulin and glucose concentrations and during LPS-induced mastitis in dairy cows.

    Science.gov (United States)

    Gross, J J; van Dorland, H A; Wellnitz, O; Bruckmaier, R M

    2015-08-01

    In dairy cows, glucose is essential as energy source and substrate for milk constituents. The objective of this study was to investigate effects of long-term manipulated glucose and insulin concentrations in combination with a LPS-induced mastitis on mRNA abundance of glucose transporters and factors involved in milk composition. Focusing on direct effects of insulin and glucose without influence of periparturient endocrine adaptations, 18 dairy cows (28 ± 6 weeks of lactation) were randomly assigned to one of three infusion treatments for 56 h (six animals each). Treatments included a hyperinsulinemic hypoglycaemic clamp (HypoG), a hyperinsulinemic euglycaemic clamp (EuG) and a control group (NaCl). After 48 h of infusions, an intramammary challenge with LPS from E. coli was performed and infusions continued for additional 8 h. Mammary gland biopsies were taken before, at 48 (before LPS challenge) and at 56 h (after LPS challenge) of infusion, and mRNA abundance of genes involved in mammary gland metabolism was measured by RT-qPCR. During the 48 h of infusions, mRNA abundance of glucose transporters GLUT1, 3, 4, 8, 12, SGLT1, 2) was not affected in HypoG, while they were downregulated in EuG. The mRNA abundance of alpha-lactalbumin, insulin-induced gene 1, κ-casein and acetyl-CoA carboxylase was downregulated in HypoG, but not affected in EuG. Contrary during the intramammary LPS challenge, most of the glucose transporters were downregulated in NaCl and HypoG, but not in EuG. The mRNA abundance of glucose transporters in the mammary gland seems not to be affected by a shortage of glucose, while enzymes and milk constituents directly depending on glucose as a substrate are immediately downregulated. During LPS-induced mastitis in combination with hypoglycaemia, mammary gland metabolism was more aligned to save glucose for the immune system compared to a situation without limited glucose availability during EuG. Journal of Animal Physiology and Animal

  20. Insulin-stimulated conversion of D-[5-3H] glucose to 3HOH in the perifused isolated rat adipocyte

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Peavy, D.E.; Frechette, P.; Solomon, S.S.

    1986-01-01

    Characteristics of basal and insulin-stimulated glucose utilization by perifused adipocytes have been investigated by measuring the formation of 3 HOH from D-(5- 3 H) glucose. At a glucose concentration of 0.55 mmol/L, basal glucose utilization ranged from 0.5 to 1.0 nmol/min/10(6) cells. Perifused adipocytes showed a maximal response to insulin of a threefold to fourfold increase in the conversion of (5- 3 H) glucose to 3 HOH with a half-maximal response at an insulin concentration of 20 microU/mL. The response to insulin was blocked by phlorizin and cytochalasin B, competitive inhibitors of glucose transport, consistent with an effect of insulin on glucose transport. Insulin increased the Vmax for glucose metabolism but had no effect on the apparent affinity for glucose utilization. The characteristics of glucose utilization and the stimulation of glucose metabolism by insulin in the perifused adipocyte are therefore similar to characteristics previously observed with incubated adipocytes. Because insulin can readily be removed from the system, perifused adipocytes are especially suited for studying the termination of insulin action. The termination of insulin-stimulated glucose metabolism occurred at the same rate in the presence of tracer (1 nmol/L) (5- 3 H)-glucose alone as when 0.55 mmol/L glucose or 2 mmol/L pyruvate were added to the perifusion buffer. The halftime for this process in both cases was approximately 40 minutes. These data suggest that the presence of metabolizable substrate is not required for the termination of the insulin response, but the time course suggests that termination requires more than simply insulin-receptor dissociation

  1. The influence of GLP-1 on glucose-stimulated insulin secretion

    DEFF Research Database (Denmark)

    Kjems, Lise L; Holst, Jens Juul; Vølund, Aage

    2003-01-01

    . However, the dose-response relationship between GLP-1 and basal and glucose-stimulated prehepatic insulin secretion rate (ISR) is currently not known. Seven patients with type 2 diabetes and seven matched nondiabetic control subjects were studied. ISR was determined during a graded glucose infusion of 2...

  2. Static output feedback ℋ ∞ control for a fractional-order glucose-insulin system

    KAUST Repository

    N’ Doye, Ibrahima; Voos, Holger; Darouach, Mohamed; Schneider, Jochen G.

    2015-01-01

    disturbance. Numerical simulations are carried out to illustrate our proposed results and show that the nonlinear fractional-order glucose-insulin systems are, at least, as stable as their integer-order counterpart in the presence of exogenous glucose infusion

  3. Zinc Status Affects Glucose Homeostasis and Insulin Secretion in Patients with Thalassemia

    Directory of Open Access Journals (Sweden)

    Ellen B. Fung

    2015-06-01

    Full Text Available Up to 20% of adult patients with Thalassemia major (Thal live with diabetes, while 30% may be zinc deficient. The objective of this study was to explore the relationship between zinc status, impaired glucose tolerance and insulin sensitivity in Thal patients. Charts from thirty subjects (16 male, 27.8 ± 9.1 years with Thal were reviewed. Patients with low serum zinc had significantly lower fasting insulin, insulinogenic and oral disposition indexes (all p < 0.05 and elevated glucose response curve, following a standard 75 g oral load of glucose compared to those with normal serum zinc after controlling for baseline (group × time interaction p = 0.048. Longitudinal data in five patients with a decline in serum zinc over a two year follow up period (−19.0 ± 9.6 μg/dL, showed consistent increases in fasting glucose (3.6 ± 3.2 mg/dL and insulin to glucose ratios at 120 min post glucose dose (p = 0.05. Taken together, these data suggest that the frequently present zinc deficiency in Thal patients is associated with decreased insulin secretion and reduced glucose disposal. Future zinc trials will require modeling of oral glucose tolerance test data and not simply measurement of static indices in order to understand the complexities of pancreatic function in the Thal patient.

  4. Expression of insulin receptor spliced variants and their functional correlates in muscle from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Hansen, Torben; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Due to alternative splicing of exon 11 of the receptor gene, the human insulin receptor exists in two forms, that have distinct tissue-specific expression and are functionally different. Needle biopsies obtained from vastus lateralis muscle from 20 patients with noninsulin-dependent diabetes...... kinase activity were examined in wheat germ agglutinin-purified insulin receptors isolated from muscle biopsies. Moreover, insulin-stimulated glucose disposal was studied by means of the euglycemic hyperinsulinemic clamp technique. No difference in the relative expression of spliced variants......, and tyrosine kinase activity toward the exogenous substrate poly(Glu-Tyr(4:1)). Furthermore, no significant relationship was demonstrated between the glucose disposal rate and the relative expression of insulin receptor splice variants. In conclusion, in skeletal muscle from both normal control subjects...

  5. Dual Regulation of Gluconeogenesis by Insulin and Glucose in the Proximal Tubules of the Kidney.

    Science.gov (United States)

    Sasaki, Motohiro; Sasako, Takayoshi; Kubota, Naoto; Sakurai, Yoshitaka; Takamoto, Iseki; Kubota, Tetsuya; Inagi, Reiko; Seki, George; Goto, Moritaka; Ueki, Kohjiro; Nangaku, Masaomi; Jomori, Takahito; Kadowaki, Takashi

    2017-09-01

    Growing attention has been focused on the roles of the proximal tubules (PTs) of the kidney in glucose metabolism, including the mechanism of regulation of gluconeogenesis. In this study, we found that PT-specific insulin receptor substrate 1/2 double-knockout mice, established by using the newly generated sodium-glucose cotransporter 2 (SGLT2)-Cre transgenic mice, exhibited impaired insulin signaling and upregulated gluconeogenic gene expression and renal gluconeogenesis, resulting in systemic insulin resistance. In contrast, in streptozotocin-treated mice, although insulin action was impaired in the PTs, the gluconeogenic gene expression was unexpectedly downregulated in the renal cortex, which was restored by administration of an SGLT1/2 inhibitor. In the HK-2 cells, the gluconeogenic gene expression was suppressed by insulin, accompanied by phosphorylation and inactivation of forkhead box transcription factor 1 (FoxO1). In contrast, glucose deacetylated peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), a coactivator of FoxO1, via sirtuin 1, suppressing the gluconeogenic gene expression, which was reversed by inhibition of glucose reabsorption. These data suggest that both insulin signaling and glucose reabsorption suppress the gluconeogenic gene expression by inactivation of FoxO1 and PGC1α, respectively, providing insight into novel mechanisms underlying the regulation of gluconeogenesis in the PTs. © 2017 by the American Diabetes Association.

  6. Effect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue

    DEFF Research Database (Denmark)

    Stallknecht, B; Larsen, J J; Mikines, K J

    2000-01-01

    Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men...... (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration......-time: T, 44 +/- 9 min (n = 7); S, 102 +/- 23 min (n = 5); P training enhances insulin sensitivity of glucose uptake in subcutaneous adipose tissue and in skeletal muscle. Furthermore, interstitial glycerol data suggest that training also increases insulin sensitivity of lipolysis...

  7. Mechanical stress regulates insulin sensitivity through integrin-dependent control of insulin receptor localization.

    Science.gov (United States)

    Kim, Jung; Bilder, David; Neufeld, Thomas P

    2018-01-15

    Insulin resistance, the failure to activate insulin signaling in the presence of ligand, leads to metabolic diseases, including type 2 diabetes. Physical activity and mechanical stress have been shown to protect against insulin resistance, but the molecular mechanisms remain unclear. Here, we address this relationship in the Drosophila larval fat body, an insulin-sensitive organ analogous to vertebrate adipose tissue and livers. We found that insulin signaling in Drosophila fat body cells is abolished in the absence of physical activity and mechanical stress even when excess insulin is present. Physical movement is required for insulin sensitivity in both intact larvae and fat bodies cultured ex vivo. Interestingly, the insulin receptor and other downstream components are recruited to the plasma membrane in response to mechanical stress, and this membrane localization is rapidly lost upon disruption of larval or tissue movement. Sensing of mechanical stimuli is mediated in part by integrins, whose activation is necessary and sufficient for mechanical stress-dependent insulin signaling. Insulin resistance develops naturally during the transition from the active larval stage to the immotile pupal stage, suggesting that regulation of insulin sensitivity by mechanical stress may help coordinate developmental programming with metabolism. © 2018 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Ten-year weight gain is associated with elevated fasting insulin levels and precedes glucose elevation.

    Science.gov (United States)

    Pennings, Nicholas; Jaber, Johnny; Ahiawodzi, Peter

    2018-05-01

    Numerous studies have examined the relationship between endogenous insulin and weight change with mixed results. This study examined the relationship between fasting insulin levels, insulin resistance (IR), and 10-year weight change by glycaemic stage. Using data from the US National Health and Nutrition Examination Survey 2011-2014, 3840 participants were divided into 6 groups based on fasting glucose and fasting insulin levels. Fasting insulin concentrations were dichotomized into <25th percentile (normal) and ≥25th percentile (elevated). Ten-year weight change associated with fasting insulin was assessed by glycaemic stage. Average weight change over a 10-year period was higher in individuals with elevated insulin levels compared to the first quartile (1.40 lbs. vs 11.12 lbs, P < .0001). Across all groups, a 1 μU increase in fasting insulin levels resulted in a 0.52-pound increase in weight (P < .0001). Similarly, an increase in HOMA-IR was associated with increase in weight (1.32 lbs per IR unit, P < .0001). Marginal increases in weight were most pronounced in the normal insulin groups compared to elevated insulin groups and diminished as glycaemic stage progressed. Elevated fasting insulin level was positively associated with weight gain. The impact of fasting insulin and IR on weight gain preceded hyperglycaemia and diminished as glycaemic stage progressed. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Antidiabetic activity of Kalanchoe pinnata in streptozotocin-induced diabetic rats by glucose independent insulin secretagogue action.

    Science.gov (United States)

    Patil, Swapnil B; Dongare, Vandana R; Kulkarni, Chaitanya R; Joglekar, Madhav M; Arvindekar, Akalpita U

    2013-11-01

    Kalanchoe pinnata Lam. (Crassulaceae) is used as a traditional medicine worldwide to treat several ailments, including diabetes. However, the mechanism for the antihyperglycemic action is unknown. The present study evaluates the antihyperglycemic and insulin secretagogue potential of Kalanchoe pinnata and assessment of the probable mechanism of action. Steam distillate of Kalanchoe pinnata leaves was subjected to solvent fractionation and antidiabetic activity was detected in dichloromethane (DCM) fraction. In the in vivo studies, rats were treated with 5 and 10 mg/kg body weight of DCM fraction for 45 days orally. Lipid profile and other biochemical parameters were estimated. The probable mechanism for insulin secretagogue action was evaluated through studies using diazoxide and nifedipine. The bioactive component from DCM fraction was studied using HPTLC, GCMS and IR. Fasting blood glucose values were reduced to 116 mg/dl from 228 mg/dl on treatment with 10 mg/kg body weight of DCM fraction, while glycated hemoglobin improved to 8.4% compared with 12.9% in diabetic controls. The insulin level and lipid profile values were close to normal values. In vitro studies demonstrated a dose-dependent insulin secretagogue action. Insulin secretion was 3.29-fold higher at 10 µg/ml as compared to the positive control. The insulin secretagogue activity was glucose independent and K(+)-ATP channel dependent. The bioactive component of the DCM fraction was identified to be a phenyl alkyl ether derivative. The DCM fraction of Kalanchoe pinnata demonstrates excellent insulin secretagogue action and can be useful in treatment of diabetes mellitus.

  10. A novel insulin receptor-binding protein from Momordica charantia enhances glucose uptake and glucose clearance in vitro and in vivo through triggering insulin receptor signaling pathway.

    Science.gov (United States)

    Lo, Hsin-Yi; Ho, Tin-Yun; Li, Chia-Cheng; Chen, Jaw-Chyun; Liu, Jau-Jin; Hsiang, Chien-Yun

    2014-09-10

    Diabetes, a common metabolic disorder, is characterized by hyperglycemia. Insulin is the principal mediator of glucose homeostasis. In a previous study, we identified a trypsin inhibitor, named Momordica charantia insulin receptor (IR)-binding protein (mcIRBP) in this study, that might interact with IR. The physical and functional interactions between mcIRBP and IR were clearly analyzed in the present study. Photo-cross-linking coupled with mass spectrometry showed that three regions (17-21, 34-40, and 59-66 residues) located on mcIRBP physically interacted with leucine-rich repeat domain and cysteine-rich region of IR. IR-binding assay showed that the binding behavior of mcIRBP and insulin displayed a cooperative manner. After binding to IR, mcIRBP activated the kinase activity of IR by (5.87 ± 0.45)-fold, increased the amount of phospho-IR protein by (1.31 ± 0.03)-fold, affected phosphoinositide-3-kinase/Akt pathways, and consequently stimulated the uptake of glucose in 3T3-L1 cells by (1.36 ± 0.12)-fold. Intraperitoneal injection of 2.5 nmol/kg mcIRBP significantly decreased the blood glucose levels by 20.9 ± 3.2% and 10.8 ± 3.6% in normal and diabetic mice, respectively. Microarray analysis showed that mcIRBP affected genes involved in insulin signaling transduction pathway in mice. In conclusion, our findings suggest that mcIRBP is a novel IRBP that binds to sites different from the insulin-binding sites on IR and stimulates both the glucose uptake in cells and the glucose clearance in mice.

  11. A role for polyamines in glucose-stimulated insulin-gene expression.

    Science.gov (United States)

    Welsh, N

    1990-01-01

    The aim of the present study was to evaluate the possible role for polyamines in the glucose regulation of the metabolism of insulin mRNA of pancreatic islet cells. For this purpose islets were prepared from adult mice and cultured for 2 days in culture medium RPMI 1640 containing 3.3 mM- or 16.7 mM-glucose with or without the addition of the inhibitors of polyamine biosynthesis difluoromethylornithine (DFMO) and ethylglyoxal bis(guanylhydrazone) (EGBG). Culture at the high glucose concentration increased the islet contents of both insulin mRNA and polyamines. The synthesis of total RNA, total islet polyamines and polyamines associated with islet nuclei was also increased. When the combination of DFMO and EGBG was added in the presence of 16.7 mM-glucose, low contents of insulin mRNA, spermine and spermidine were observed. Total islet polyamine synthesis was also depressed by DFMO + EGBG, unlike islet biosynthesis of polyamines associated with nuclei, which was not equally decreased by the polyamine-synthesis inhibitors. Total RNA synthesis and turnover was not affected by DFMO + EGBG. Finally, actinomycin D attenuated the glucose-induced enhancement of insulin mRNA, and cycloheximide counteracted the insulin-mRNA attenuation induced by inhibition of polyamine synthesis. It is concluded that the glucose-induced increase in insulin mRNA is paralleled by increased contents and rates of polyamine biosynthesis and that an attenuation of the increase in polyamines prevents the increase in insulin mRNA. In addition, the results are compatible with the view that polyamines exert their effects on insulin mRNA mainly by increasing the stability of this messenger. PMID:2241922

  12. Variability of insulin-stimulated myocardial glucose uptake in healthy elderly subjects

    DEFF Research Database (Denmark)

    Kofoed, Klaus F; Hove, Jens D; Freiberg, Jacob

    2002-01-01

    The aim of this study was to assess regional and global variability of insulin-stimulated myocardial glucose uptake in healthy elderly subjects and to evaluate potentially responsible factors. Twenty men with a mean age of 64 years, no history of cardiovascular disease, and normal blood pressure...... rest and hyperaemic blood flow during dipyridamole infusion were measured with nitrogen-13 ammonia and positron emission tomography in 16 left ventricular myocardial segments. Intra-individual and inter-individual variability of insulin-stimulated myocardial glucose uptake [relative dispersion...... = (standard deviation/mean)] was 13% and 29% respectively. Although inter-individual variability of glucose uptake and blood flow at rest was of the same magnitude, no correlation was found between these measures. Regional and global insulin-stimulated myocardial glucose uptake correlated linearly with whole...

  13. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation.

    Science.gov (United States)

    Reno, Candace M; Puente, Erwin C; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J; Routh, Vanessa H; Kahn, Barbara B; Fisher, Simon J

    2017-03-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. © 2017 by the American Diabetes Association.

  14. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling.

    Science.gov (United States)

    Softic, Samir; Gupta, Manoj K; Wang, Guo-Xiao; Fujisaka, Shiho; O'Neill, Brian T; Rao, Tata Nageswara; Willoughby, Jennifer; Harbison, Carole; Fitzgerald, Kevin; Ilkayeva, Olga; Newgard, Christopher B; Cohen, David E; Kahn, C Ronald

    2017-11-01

    Overconsumption of high-fat diet (HFD) and sugar-sweetened beverages are risk factors for developing obesity, insulin resistance, and fatty liver disease. Here we have dissected mechanisms underlying this association using mice fed either chow or HFD with or without fructose- or glucose-supplemented water. In chow-fed mice, there was no major physiological difference between fructose and glucose supplementation. On the other hand, mice on HFD supplemented with fructose developed more pronounced obesity, glucose intolerance, and hepatomegaly as compared to glucose-supplemented HFD mice, despite similar caloric intake. Fructose and glucose supplementation also had distinct effects on expression of the lipogenic transcription factors ChREBP and SREBP1c. While both sugars increased ChREBP-β, fructose supplementation uniquely increased SREBP1c and downstream fatty acid synthesis genes, resulting in reduced liver insulin signaling. In contrast, glucose enhanced total ChREBP expression and triglyceride synthesis but was associated with improved hepatic insulin signaling. Metabolomic and RNA sequence analysis confirmed dichotomous effects of fructose and glucose supplementation on liver metabolism in spite of inducing similar hepatic lipid accumulation. Ketohexokinase, the first enzyme of fructose metabolism, was increased in fructose-fed mice and in obese humans with steatohepatitis. Knockdown of ketohexokinase in liver improved hepatic steatosis and glucose tolerance in fructose-supplemented mice. Thus, fructose is a component of dietary sugar that is distinctively associated with poor metabolic outcomes, whereas increased glucose intake may be protective.

  15. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation

    Science.gov (United States)

    Reno, Candace M.; Puente, Erwin C.; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J.; Routh, Vanessa H.; Kahn, Barbara B.

    2017-01-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. PMID:27797912

  16. Chronic phase shifts of the photoperiod throughout pregnancy programs glucose intolerance and insulin resistance in the rat.

    Directory of Open Access Journals (Sweden)

    Tamara J Varcoe

    Full Text Available Shift work during pregnancy is associated with an increased risk for preterm birth and low birth weight. However, the impact upon the long term health of the children is currently unknown. In this study, we used an animal model to determine the consequences of maternal shift work exposure on the health of the adult offspring. Pregnant rats were exposed to chronic phase shifts (CPS in their photoperiod every 3-4 days throughout gestation and the first week after birth. Adult offspring were assessed for a range of metabolic, endocrine, circadian and neurobehavioural parameters. At 3 months of age, male pups exposed to the CPS schedule in utero had increased adiposity (+29% and hyperleptinaemia (+99% at 0700h. By 12 months of age, both male and female rats displayed hyperleptinaemia (+26% and +41% respectively and hyperinsulinaemia (+110% and +83% respectively. 12 month old female CPS rats displayed poor glucose tolerance (+18% and increased insulin secretion (+29% in response to an intraperitoneal glucose tolerance test. In CPS males the glucose response was unaltered, but the insulin response was reduced by 35%. The glucose response to an insulin tolerance test was decreased by 21% in CPS females but unaltered in males. Disruption of circadian rhythmicity during gestation resulted in gender dependent metabolic consequences for the adult offspring. These results highlight the need for a thorough analysis of shift work exposure in utero on the health of the adult offspring in humans.

  17. Blood Glucose, Insulin and Inorganic Phosphorus in Healthy and Ketotic Dairy Cows after Intravenous Infusion of Glucose Solution

    Directory of Open Access Journals (Sweden)

    Radojica Djoković

    2009-01-01

    Full Text Available The aim of the present study was to determine the degree of blood glucose utilization by peripheral tissue on the basis of changes in blood concentrations of glucose, insulin and inorganic phosphorus in healthy (n = 10 and ketotic cows (n = 10 after intravenous infusion of glucose solution. Blood samples were taken in both groups of examined cows at the following time intervals: just before (time 0 and 30, 60, 120, 180 and 240 min after intravenous infusion of a total of 500 ml of 50% of glucose solution. Glucose and insulin blood serum values in both groups of cows increased significantly within 30 and 60 min of the experiment (p p p < 0.05 in the blood value of inorganic phosphorus in ketotic cows compared to the healthy ones. This is linked with the active entry of glucose into the glucolytic pathway of peripheral tissues. It can thus be concluded that there is a higher degree of blood glucose utilization by peripheral tissues in ketotic cows.

  18. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    Science.gov (United States)

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.

  19. Direct effects of glucose, insulin, GLP-1, and GIP on bulbospinal neurons in the rostral ventrolateral medulla in neonatal wistar rats.

    Science.gov (United States)

    Oshima, Naoki; Onimaru, Hiroshi; Matsubara, Hidehito; Uchida, Takahiro; Watanabe, Atsushi; Imakiire, Toshihiko; Nishida, Yasuhiro; Kumagai, Hiroo

    2017-03-06

    Although patients with diabetes mellitus (DM) often exhibit hypertension, the mechanisms responsible for this correlation are not well known. We hypothesized that the bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are affected by the levels of glucose, insulin, or incretins (glucagon like peptide-1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) in patients with DM. To investigate whether RVLM neurons are activated by glucose, insulin, GLP-1, or GIP, we examined changes in the membrane potentials of bulbospinal RVLM neurons using whole-cell patch-clamp technique during superfusion with various levels of glucose or these hormones in neonatal Wistar rats. A brainstem-spinal cord preparation was used for the experiments. A low level of glucose stimulated bulbospinal RVLM neurons. During insulin superfusion, almost all the RVLM neurons were depolarized, while during GLP-1 or GIP superfusion, almost all the RVLM neurons were hyperpolarized. Next, histological examinations were performed to examine transporters for glucose and receptors for insulin, GLP-1, and GIP on RVLM neurons. Low-level glucose-depolarized RVLM neurons exhibited the presence of glucose transporter 3 (GLUT3). Meanwhile, insulin-depolarized, GLP-1-hyperpolarized, and GIP-hyperpolarized RVLM neurons showed each of the respective specific receptor. These results indicate that a low level of glucose stimulates bulbospinal RVLM neurons via specific transporters on these neurons, inducing hypertension. Furthermore, an increase in insulin or a reduction in incretins may also activate the sympathetic nervous system and induce hypertension by activating RVLM neurons via their own receptors. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Glycated albumin suppresses glucose-induced insulin secretion by impairing glucose metabolism in rat pancreatic β-cells

    Directory of Open Access Journals (Sweden)

    Muto Takashi

    2011-04-01

    Full Text Available Abstract Background Glycated albumin (GA is an Amadori product used as a marker of hyperglycemia. In this study, we investigated the effect of GA on insulin secretion from pancreatic β cells. Methods Islets were collected from male Wistar rats by collagenase digestion. Insulin secretion in the presence of non-glycated human albumin (HA and GA was measured under three different glucose concentrations, 3 mM (G3, 7 mM (G7, and 15 mM (G15, with various stimulators. Insulin secretion was measured with antagonists of inducible nitric oxide synthetase (iNOS, and the expression of iNOS-mRNA was investigated by real-time PCR. Results Insulin secretion in the presence of HA and GA was 20.9 ± 3.9 and 21.6 ± 5.5 μU/3 islets/h for G3 (P = 0.920, and 154 ± 9.3 and 126.1 ± 7.3 μU/3 islets/h (P = 0.046, for G15, respectively. High extracellular potassium and 10 mM tolbutamide abrogated the inhibition of insulin secretion by GA. Glyceraldehyde, dihydroxyacetone, methylpyruvate, GLP-1, and forskolin, an activator of adenylate cyclase, did not abrogate the inhibition. Real-time PCR showed that GA did not induce iNOS-mRNA expression. Furthermore, an inhibitor of nitric oxide synthetase, aminoguanidine, and NG-nitro-L-arginine methyl ester did not abrogate the inhibition of insulin secretion. Conclusion GA suppresses glucose-induced insulin secretion from rat pancreatic β-cells through impairment of intracellular glucose metabolism.

  1. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Heart, Emma [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Palo, Meridith; Womack, Trayce [Department of Science, United States Coast Guard Academy, New London, CT, 06320 (United States); Smith, Peter J.S. [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Institute for Life Sciences, University of Southampton (United Kingdom); Gray, Joshua P., E-mail: Joshua.p.gray@uscga.edu [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Department of Science, United States Coast Guard Academy, New London, CT, 06320 (United States)

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H{sub 2}O{sub 2}), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H{sub 2}O{sub 2} inhibit insulin secretion. Menadione, which produces H{sub 2}O{sub 2} via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H{sub 2}O{sub 2} production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H{sub 2}O{sub 2} formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H{sub 2}O{sub 2} and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H{sub 2}O{sub 2} production is proportional to applied glucose levels. ► Quinone-mediated redox cycling

  2. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    International Nuclear Information System (INIS)

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J.S.; Gray, Joshua P.

    2012-01-01

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H 2 O 2 ), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H 2 O 2 inhibit insulin secretion. Menadione, which produces H 2 O 2 via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H 2 O 2 production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H 2 O 2 formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H 2 O 2 and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H 2 O 2 production is proportional to applied glucose levels. ► Quinone-mediated redox cycling is dependent on glycolysis

  3. Glucose but not insulin or insulin resistance is associated with memory performance in middle-aged non-diabetic women: a cross sectional study.

    Science.gov (United States)

    Backeström, Anna; Eriksson, Sture; Nilsson, Lars-Göran; Olsson, Tommy; Rolandsson, Olov

    2015-01-01

    Elevated concentrations of plasma glucose appear to play a role in memory impairment, and it has been suggested that insulin might also have a negative effect on cognitive function. Our aim was to study whether glucose, insulin or insulin resistance are associated with episodic or semantic memory in a non-diabetic and non-demented population. We linked and matched two population-based data sets identifying 291 participants (127 men and 164 women, mean age of 50.7 ± 8.0 years). Episodic and semantic memory functions were tested, and fasting plasma insulin, fasting plasma glucose, and 2-hour glucose were analysed along with other potential influencing factors on memory function. Since men and women display different results on memory functions they were analysed separately. Insulin resistance was calculated using the HOMA-IR method. A higher fasting plasma glucose concentration was associated with lower episodic memory in women (r = -0.08, 95% CI -0.14; -0.01), but not in men. Plasma insulin levels and insulin resistance were not associated with episodic or semantic memory in women or in men after adjustments for age, fasting glucose, 2-hour glucose, BMI, education, smoking, cardiovascular disease, hypertension, cholesterol, and physical activity. This indicates that fasting glucose but not insulin, might have impact on episodic memory in middle-aged women.

  4. Glucose-lowering effect and glycaemic variability of insulin glargine, insulin detemir and insulin lispro protamine in people with type 1 diabetes.

    Science.gov (United States)

    Derosa, G; Franzetti, I; Querci, F; Romano, D; D'Angelo, A; Maffioli, P

    2015-06-01

    To compare, using a continuous glucose monitoring (CGM) system, the effect on glycaemic variability of insulin glargine, detemir and lispro protamine. A total of 49 white people with type 1 diabetes, not well controlled by three times daily insulin lispro, taken for at least 2 months before study and on a stable dose, were enrolled. The study participants were randomized to add insulin glargine, detemir or lispro protamine, once daily, in the evening. We used a CGM system, the iPro Digital Recorder (Medtronic MiniMed, Northridge, CA, USA) for 1 week. Glycaemic control was assessed according to mean blood glucose values, the area under the glucose curve above 3.9 mmol/l (AUC(>3.9)) or above 10.0 mmol/l (AUC(>10.0)), and the percentage of time spent with glucose values >3.9 or >10.0 mmol/l. Intraday glycaemic variability was assessed using standard deviation (s.d.) values, the mean amplitude of glycaemic excursions and continuous overlapping of net glycaemic action. Day-to-day glycaemic variability was assessed using the mean of daily differences. The s.d. was found to be significantly lower with insulin lispro protamine and glargine compared with insulin detemir. AUC(>3.9) was higher and AUC(>10.0) was lower with insulin lispro protamine and glargine compared with detemir. The mean amplitude of glycaemic excursions and continuous overlapping net glycaemic action values were lower with insulin lispro protamine and glargine compared with detemir. In addition, the mean of daily differences was significantly lower with insulin lispro protamine and glargine compared with detemir. Fewer hypoglycaemic events were recorded during the night-time with insulin lispro protamine compared with glargine and detemir. The results suggest that insulin lispro protamine and glargine are more effective than detemir in reducing glycaemic variability and improving glycaemic control in people with type 1 diabetes. Insulin lispro protamine seems to lead to fewer hypoglycaemic

  5. Salivary factors in children and adolescents with insulin-dependent diabetes mellitus.

    Science.gov (United States)

    Karjalainen, K M; Knuuttila, M L; Käär, M L

    1996-01-01

    To determine whether hyperglycemia in IDDM (insulin-dependent diabetes mellitus) could interfere with salivary secretion rates, salivary glucose levels, and salivary microbial counts, we studied salivary factors in two groups of children and adolescents with IDDM. One study group included 14 children with newly diagnosed IDDM )mean age 11 years, SD +/- 2.4 years). Samples of saliva were collected on admission to hospital and after 2 weeks on insulin treatment. The other study group were 50 IDDM children (mean age 14.4 years, SD +/- 1.7 years, mean duration of diabetes 6.2 years, SD +/- 1.4 years) visiting the outpatient diabetic clinic. Samples of saliva were collected during two visits, approximately 3 months apart. In the newly diagnosed IDDM cases, mean salivary glucose level decreased from 54.1 +/- 31.7 mg/l to 35.2 +/- 29.5 mg/l (P = 0.096) after beginning insulin treatment. During hyperglycemia, salivary glucose levels correlated with mean blood glucose levels for the day concerned (r = 0.65, P salivary glucose levels. Stimulated saliva secretion increased significantly from 5.4 +/- 3.3 ml/5 min to 7.3 +/- 2.6 ml/5 min (P salivary flow rates and salivary glucose levels were not significantly related to the glycosylated hemoglobin (HbA1) values. Salivary glucose levels and salivary secretion rates were inversely correlated (P salivary secretion and high salivary glucose levels. As a consequence, salivary lactobacilli and yeast counts tended to increase.

  6. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...... with NIDDM and 3 of the controls were heterozygous at codon 972 for a polymorphism in which glycine was substituted with arginine. Moreover, at codon 513, 6 patients with NIDDM and 2 controls had a heterozygous polymorphism with a transition from alanine to proline. None of the polymorphism carriers had both...

  7. TCPTP Regulates Insulin Signalling in AgRP Neurons to Coordinate Glucose Metabolism with Feeding.

    Science.gov (United States)

    Dodd, Garron T; Lee-Young, Robert S; Brüning, Jens C; Tiganis, Tony

    2018-04-30

    Insulin regulates glucose metabolism by eliciting effects on peripheral tissues as well as the brain. Insulin receptor (IR) signalling inhibits AgRP-expressing neurons in the hypothalamus to contribute to the suppression of hepatic glucose production (HGP) by insulin, whereas AgRP neuronal activation attenuates brown adipose tissue (BAT) glucose uptake. The tyrosine phosphatase TCPTP suppresses IR signalling in AgRP neurons. Hypothalamic TCPTP is induced by fasting and degraded after feeding. Here we assessed the influence of TCPTP in AgRP neurons in the control of glucose metabolism. TCPTP deletion in AgRP neurons ( Agrp -Cre; Ptpn2 fl/fl ) enhanced insulin sensitivity as assessed by the increased glucose infusion rates and reduced HGP during hyperinsulinemic-euglycemic clamps, accompanied by increased [ 14 C]-2-deoxy-D-glucose uptake in BAT and browned white adipose tissue. TCPTP deficiency in AgRP neurons promoted the intracerebroventricular insulin-induced repression of hepatic gluconeogenesis in otherwise unresponsive food-restricted mice yet had no effect in fed/satiated mice where hypothalamic TCPTP levels are reduced. The improvement in glucose homeostasis in Agrp -Cre; Ptpn2 fl/fl mice was corrected by IR heterozygosity ( Agrp -Cre; Ptpn2 fl/fl ; Insr fl/+ ), causally linking the effects on glucose metabolism with the IR signalling in AgRP neurons. Our findings demonstrate that TCPTP controls IR signalling in AgRP neurons to coordinate HGP and brown/beige adipocyte glucose uptake in response to feeding/fasting. © 2018 by the American Diabetes Association.

  8. Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects.

    Science.gov (United States)

    Frid, Anders H; Nilsson, Mikael; Holst, Jens Juul; Björck, Inger M E

    2005-07-01

    Whey proteins have insulinotropic effects and reduce the postprandial glycemia in healthy subjects. The mechanism is not known, but insulinogenic amino acids and the incretin hormones seem to be involved. The aim was to evaluate whether supplementation of meals with a high glycemic index (GI) with whey proteins may increase insulin secretion and improve blood glucose control in type 2 diabetic subjects. Fourteen diet-treated subjects with type 2 diabetes were served a high-GI breakfast (white bread) and subsequent high-GI lunch (mashed potatoes with meatballs). The breakfast and lunch meals were supplemented with whey on one day; whey was exchanged for lean ham and lactose on another day. Venous blood samples were drawn before and during 4 h after breakfast and 3 h after lunch for the measurement of blood glucose, serum insulin, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide 1 (GLP-1). The insulin responses were higher after both breakfast (31%) and lunch (57%) when whey was included in the meal than when whey was not included. After lunch, the blood glucose response was significantly reduced [-21%; 120 min area under the curve (AUC)] after whey ingestion. Postprandial GIP responses were higher after whey ingestion, whereas no differences were found in GLP-1 between the reference and test meals. It can be concluded that the addition of whey to meals with rapidly digested and absorbed carbohydrates stimulates insulin release and reduces postprandial blood glucose excursion after a lunch meal consisting of mashed potatoes and meatballs in type 2 diabetic subjects.

  9. Influence of ripeness of banana on the blood glucose and insulin response in type 2 diabetic subjects.

    Science.gov (United States)

    Hermansen, K; Rasmussen, O; Gregersen, S; Larsen, S

    1992-10-01

    Banana is a popular and tasty fruit which often is restricted in the diet prescribed for diabetic patients owing to the high content of free sugars. However, in under-ripe bananas starch constitutes 80-90% of the carbohydrate content, which as the banana ripens changes into free sugars. To study the effect of ripening on the postprandial blood glucose and insulin responses to banana, 10 type 2 (non-insulin-dependent) diabetic subjects consumed three meals, consisting of 120 g under-ripe banana, 120 g over-ripe banana or 40 g white bread on separate days. The mean postprandial blood glucose response area to white bread (181 +/- 45 mmol l-1 x 240 min) was significantly higher compared with under-ripe banana (62 +/- 17 mmol l-1 x 240 min: p alfa-amylase in humans.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Insulin Resistance Negatively Influences the Muscle-Dependent IGF-1-Bone Mass Relationship in Premenarcheal Girls.

    Science.gov (United States)

    Kindler, J M; Pollock, N K; Laing, E M; Jenkins, N T; Oshri, A; Isales, C; Hamrick, M; Lewis, R D

    2016-01-01

    IGF-1 promotes bone growth directly and indirectly through its effects on skeletal muscle. Insulin and IGF-1 share a common cellular signaling process; thus, insulin resistance may influence the IGF-1-muscle-bone relationship. We sought to determine the effect of insulin resistance on the muscle-dependent relationship between IGF-1 and bone mass in premenarcheal girls. This was a cross-sectional study conducted at a university research center involving 147 girls ages 9 to 11 years. Glucose, insulin, and IGF-1 were measured from fasting blood samples. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from glucose and insulin. Fat-free soft tissue (FFST) mass and bone mineral content (BMC) were measured by dual-energy x-ray absorptiometry. Our primary outcome was BMC/height. In our path model, IGF-1 predicted FFST mass (b = 0.018; P = .001), which in turn predicted BMC/height (b = 0.960; P IGF-1 predicted BMC/height (b = 0.001; P = .002), but not after accounting for the mediator of this relationship, FFST mass. The HOMA-IR by IGF-1 interaction negatively predicted FFST mass (b = -0.044; P = .034). HOMA-IR had a significant and negative effect on the muscle-dependent relationship between IGF-1 and BMC/height (b = -0.151; P = .047). Lean body mass is an important intermediary factor in the IGF-1-bone relationship. For this reason, bone development may be compromised indirectly via suboptimal IGF-1-dependent muscle development in insulin-resistant children.

  11. Insulin Sensitivity and Glucose Homeostasis Can Be Influenced by Metabolic Acid Load

    Directory of Open Access Journals (Sweden)

    Lucio Della Guardia

    2018-05-01

    Full Text Available Recent epidemiological findings suggest that high levels of dietary acid load can affect insulin sensitivity and glucose metabolism. Consumption of high protein diets results in the over-production of metabolic acids which has been associated with the development of chronic metabolic disturbances. Mild metabolic acidosis has been shown to impair peripheral insulin action and several epidemiological findings suggest that metabolic acid load markers are associated with insulin resistance and impaired glycemic control through an interference intracellular insulin signaling pathways and translocation. In addition, higher incidence of diabetes, insulin resistance, or impaired glucose control have been found in subjects with elevated metabolic acid load markers. Hence, lowering dietary acid load may be relevant for improving glucose homeostasis and prevention of type 2 diabetes development on a long-term basis. However, limitations related to patient acid load estimation, nutritional determinants, and metabolic status considerably flaws available findings, and the lack of solid data on the background physiopathology contributes to the questionability of results. Furthermore, evidence from interventional studies is very limited and the trials carried out report no beneficial results following alkali supplementation. Available literature suggests that poor acid load control may contribute to impaired insulin sensitivity and glucose homeostasis, but it is not sufficiently supportive to fully elucidate the issue and additional well-designed studies are clearly needed.

  12. Differentiation of the insulin-sensitive glucose transporter in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Frost, S.C.; Baly, D.L.; Cushman, S.W.; Lane, M.D.; Simpson, I.A.

    1986-01-01

    3T3-L1 fibroblasts differentiate in culture to resemble adipocytes both morphologically and biochemically. Insulin-sensitive glucose transport, as measured by 2-deoxy-[1- 14 C]- glucose uptake in the undifferentiated cell is small (2X). In contrast, the rate of glucose transport in fully differentiated cells is elevated 15-fold over basal in the presence of insulin. To determine if this is due to an increase in the number of transporters/cell or accessibility to the transporters, the number of transporters was measured in subcellular fractions over differentiation using a 3 H-cytochalasin B binding assay. The increase in the rate of insulin-sensitive glucose transport directly parallels an increase in the number of transporters which reside in an insulin-responsive intracellular compartment. This observation was confirmed by identifying the transporters by immunoblotting using an antibody generated against the human erythrocyte transporter. The molecular weight of this transporter increases over differentiation from a single band of 40kDa to a heterogeneous triplet of 40, 44 and 48kDa. These data suggest that the transporter undergoes differential processing and that the functional, insulin-responsive transporter may be different from the insulin-insensitive (basal) transporter

  13. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    Science.gov (United States)

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  14. The Unscented Kalman Filter estimates the plasma insulin from glucose measurement.

    Science.gov (United States)

    Eberle, Claudia; Ament, Christoph

    2011-01-01

    Understanding the simultaneous interaction within the glucose and insulin homeostasis in real-time is very important for clinical treatment as well as for research issues. Until now only plasma glucose concentrations can be measured in real-time. To support a secure, effective and rapid treatment e.g. of diabetes a real-time estimation of plasma insulin would be of great value. A novel approach using an Unscented Kalman Filter that provides an estimate of the current plasma insulin concentration is presented, which operates on the measurement of the plasma glucose and Bergman's Minimal Model of the glucose insulin homeostasis. We can prove that process observability is obtained in this case. Hence, a successful estimator design is possible. Since the process is nonlinear we have to consider estimates that are not normally distributed. The symmetric Unscented Kalman Filter (UKF) will perform best compared to other estimator approaches as the Extended Kalman Filter (EKF), the simplex Unscented Kalman Filter (UKF), and the Particle Filter (PF). The symmetric UKF algorithm is applied to the plasma insulin estimation. It shows better results compared to the direct (open loop) estimation that uses a model of the insulin subsystem. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs

    Science.gov (United States)

    Ramnanan, Christopher J.; Saraswathi, Viswanathan; Smith, Marta S.; Donahue, E. Patrick; Farmer, Ben; Farmer, Tiffany D.; Neal, Doss; Williams, Philip E.; Lautz, Margaret; Mari, Andrea; Cherrington, Alan D.; Edgerton, Dale S.

    2011-01-01

    In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP. PMID:21865644

  16. Insulin-coated gold nanoparticles as a new concept for personalized and adjustable glucose regulation

    Science.gov (United States)

    Shilo, Malka; Berenstein, Peter; Dreifuss, Tamar; Nash, Yuval; Goldsmith, Guy; Kazimirsky, Gila; Motiei, Menachem; Frenkel, Dan; Brodie, Chaya; Popovtzer, Rachela

    2015-12-01

    Diabetes mellitus is a chronic metabolic disease, characterized by high blood glucose levels, affecting millions of people around the world. Currently, the main treatment for diabetes requires multiple daily injections of insulin and self-monitoring of blood glucose levels, which markedly affect patients' quality of life. In this study we present a novel strategy for controlled and prolonged glucose regulation, based on the administration of insulin-coated gold nanoparticles (INS-GNPs). We show that both intravenous and subcutaneous injection of INS-GNPs into a mouse model of type 1 diabetes decreases blood glucose levels for periods over 3 times longer than free insulin. We further showed that conjugation of insulin to GNPs prevented its rapid degradation by the insulin-degrading-enzyme, and thus allows controlled and adjustable bio-activity. Moreover, we assessed different sizes and concentrations of INS-GNPs, and found that both parameters have a critical effect in vivo, enabling specific adjustment of blood glucose levels. These findings have the potential to improve patient compliance in diabetes mellitus.

  17. Fabrication of Glucose-Sensitive Layer-by-Layer Films for Potential Controlled Insulin Release Applications

    Directory of Open Access Journals (Sweden)

    Talusan Timothy Jemuel E.

    2015-01-01

    Full Text Available Self-regulated drug delivery systems (DDS are potential alternative to the conventional method of introducing insulin to the body due to their controlled drug release mechanism. In this study, Layer-by-Layer technique was utlized to manufacture drug loaded, pH responsive thin films. Insulin was alternated with pH-sensitive, [2-(dimethyl amino ethyl aminoacrylate] (PDMAEMA and topped of with polymer/glucose oxidase (GOD layers. Similarly, films using a different polymer, namely Poly(Acrylic Acid (PAA were also fabricated. Exposure of the films to glucose solutions resulted to the production of gluconic acid causing a polymer conformation change due to protonation, thus releasing the embedded insulin. The insulin release was monitored by subjecting the dipping glucose solutions to Bradford Assay. Films exhibited a reversal in drug release profile in the presence of glucose as compared to without glucose. PAA films were also found out to release more insulin compared to that of the PDMAEMA films.The difference in the profile of the two films were due to different polymer-GOD interactions, since both films exhibited almost identical profiles when embedded with Poly(sodium 4-styrenesulfonate (PSS instead of GOD.

  18. Racl Signaling Is Required for Insulin-Stimulated Glucose Uptake and Is Dysregulated in Insulin-Resistant Murine and Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Sylow, L.; Jensen, T. E.; Kleinert, M.

    2013-01-01

    The actin cytoskeleton-regulating GTPase Racl is required for insulin-stimulated GLUT4 translocation in cultured muscle cells. However, involvement of Racl and its downstream signaling in glucose transport in insulin-sensitive and insulin-resistant mature skeletal muscle has not previously been i...

  19. Light Control of Insulin Release and Blood Glucose Using an Injectable Photoactivated Depot.

    Science.gov (United States)

    Sarode, Bhagyesh R; Kover, Karen; Tong, Pei Y; Zhang, Chaoying; Friedman, Simon H

    2016-11-07

    In this work we demonstrate that blood glucose can be controlled remotely through light stimulated release of insulin from an injected cutaneous depot. Human insulin was tethered to an insoluble but injectable polymer via a linker, which was based on the light cleavable di-methoxy nitrophenyl ethyl (DMNPE) group. This material was injected into the skin of streptozotocin-treated diabetic rats. We observed insulin being released into the bloodstream after a 2 min trans-cutaneous irradiation of this site by a compact LED light source. Control animals treated with the same material, but in which light was blocked from the site, showed no release of insulin into the bloodstream. We also demonstrate that additional pulses of light from the light source result in additional pulses of insulin being absorbed into circulation. A significant reduction in blood glucose was then observed. Together, these results demonstrate the feasibility of using light to allow for the continuously variable control of insulin release. This in turn has the potential to allow for the tight control of blood glucose without the invasiveness of insulin pumps and cannulas.

  20. Maternal insulin sensitivity is associated with oral glucose-induced changes in fetal brain activity.

    Science.gov (United States)

    Linder, Katarzyna; Schleger, Franziska; Ketterer, Caroline; Fritsche, Louise; Kiefer-Schmidt, Isabelle; Hennige, Anita; Häring, Hans-Ulrich; Preissl, Hubert; Fritsche, Andreas

    2014-06-01

    Fetal programming plays an important role in the pathogenesis of type 2 diabetes. The aim of the present study was to investigate whether maternal metabolic changes during OGTT influence fetal brain activity. Thirteen healthy pregnant women underwent an OGTT (75 g). Insulin sensitivity was determined by glucose and insulin measurements at 0, 60 and 120 min. At each time point, fetal auditory evoked fields were recorded with a fetal magnetoencephalographic device and response latencies were determined. Maternal insulin increased from a fasting level of 67 ± 25 pmol/l (mean ± SD) to 918 ± 492 pmol/l 60 min after glucose ingestion and glucose levels increased from 4.4 ± 0.3 to 7.4 ± 1.1 mmol/l. Over the same time period, fetal response latencies decreased from 297 ± 99 to 235 ± 84 ms (p = 0.01) and then remained stable until 120 min (235 ± 84 vs 251 ± 91 ms, p = 0.39). There was a negative correlation between maternal insulin sensitivity and fetal response latencies 60 min after glucose ingestion (r = 0.68, p = 0.02). After a median split of the group based on maternal insulin sensitivity, fetuses of insulin-resistant mothers showed a slower response to auditory stimuli (283 ± 79 ms) than those of insulin-sensitive mothers (178 ± 46 ms, p = 0.03). Lower maternal insulin sensitivity is associated with slower fetal brain responses. These findings provide the first evidence of a direct effect of maternal metabolism on fetal brain activity and suggest that central insulin resistance may be programmed during fetal development.

  1. Assessment of insulin resistance and impaired glucose tolerance in lean women with polycystic ovary syndrome.

    Science.gov (United States)

    Stovall, Dale William; Bailey, Amelia Purser; Pastore, Lisa M

    2011-01-01

    To analyze insulin resistance (IR) and determine the need for a 2-hour oral glucose tolerance test (OGTT) for the identification of IR and impaired glucose tolerance (IGT) in lean nondiabetic women with polycystic ovary syndrome (PCOS). This was a cross-sectional analysis of treatment-naive women with PCOS who enrolled in a university-based clinical trial. Nondiabetic women with PCOS based on the Eunice Kennedy Shriven National Institute of Child Health and Human Development (NICHD) definition, aged 18-43 years and weighing ≤113 kg, were evaluated. Glucose and insulin levels were assessed at times 0, 30, 60, 90, and 120 minutes after a 75-g glucose load. Lean was defined as body mass index (BMI) women was studied. The prevalence of IR was 0% among lean women vs. 21% among nonlean subjects based on fasting insulin I(0) and 40%-68% based on two different homeostatic model assessment (HOMA) cutoff points (p women with IR had a BMI ≥ 28. Controlling for age and race, BMI explained over 57% of the variation in insulin fasting (I(o)), glucose fasting/Io (G(o)/I(o)), the qualitative insulin sensitivity check index (QUICKI), and HOMA and was a highly significant predictor of these outcomes (p lean PCOS women had IGT based on a 2-hour OGTT, and no lean subjects had IGT based on their fasting blood glucose. Diabetes mellitus, IGT, and IR are far less common in young lean women with PCOS compared with obese women with PCOS. These data imply that it is unnecessary to routinely perform either IR testing or 2-hour OGTT in lean women with PCOS; however, greater subject accumulation is needed to determine if OGTT is necessary in lean women with PCOS. BMI is highly predictive of both insulin and glucose levels in women with PCOS.

  2. Weight loss after bariatric surgery reverses insulin-induced increases in brain glucose metabolism of the morbidly obese.

    Science.gov (United States)

    Tuulari, Jetro J; Karlsson, Henry K; Hirvonen, Jussi; Hannukainen, Jarna C; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo

    2013-08-01

    Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not different between groups. However, the hyperinsulinemic clamp increased brain glucose metabolism in a widespread manner in the obese but not control subjects, and brain glucose metabolism was significantly higher during clamp in obese than in control subjects. After follow-up, 6 months postoperatively, the increase in glucose metabolism was no longer observed, and this attenuation was coupled with improved peripheral insulin sensitivity after weight loss. We conclude that obesity is associated with increased insulin-stimulated glucose metabolism in the brain and that this abnormality can be reversed by bariatric surgery.

  3. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    Science.gov (United States)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  4. Mathematical model of the glucose-insulin regulatory system: From the bursting electrical activity in pancreatic β-cells to the glucose dynamics in the whole body

    Science.gov (United States)

    Han, Kyungreem; Kang, Hyuk; Choi, M. Y.; Kim, Jinwoong; Lee, Myung-Shik

    2012-10-01

    A theoretical approach to the glucose-insulin regulatory system is presented. By means of integrated mathematical modeling and extensive numerical simulations, we probe the cell-level dynamics of the membrane potential, intracellular Ca2+ concentration, and insulin secretion in pancreatic β-cells, together with the whole-body level glucose-insulin dynamics in the liver, brain, muscle, and adipose tissues. In particular, the three oscillatory modes of insulin secretion are reproduced successfully. Such comprehensive mathematical modeling may provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination.

  5. Sulfonylurea therapy improves glucose disposal without changing skeletal muscle GLUT4 levels in noninsulin-dependent diabetes mellitus subjects

    DEFF Research Database (Denmark)

    Vestergaard, H; Weinreb, J E; Rosen, A S

    1995-01-01

    alteration in GLUT4 levels expressed either per microgram membrane protein or per DNA. In summary, the improvement in glycemic control and glucose disposal in NIDDM subjects receiving gliclazide therapy cannot be explained by increased expression of GLUT4 in muscle. Thus, therapeutic effects on insulin......A major pathological feature of noninsulin-dependent diabetes (NIDDM) is defective insulin-stimulated glucose transport in skeletal muscle. When NIDDM subjects are assessed as a group, GLUT4 gene expression in skeletal muscle varies widely and is not different from that in controls. Thus......, longitudinal studies are needed to assess whether changes in GLUT4 expression in muscle of NIDDM subjects could be responsible for changes in glucose disposal. The question is timely because recent studies in transgenic mice show that increasing GLUT4 expression can increase insulin-stimulated glucose uptake...

  6. Superior Glycemic Control with a Glucose-Responsive Insulin Analog: Hepatic and Nonhepatic Impacts.

    Science.gov (United States)

    Moore, Mary Courtney; Kelley, David E; Camacho, Raul C; Zafian, Peter; Ye, Tian; Lin, Songnian; Kaarsholm, Niels C; Nargund, Ravi; Kelly, Terri M; Van Heek, Margaret; Previs, Stephen F; Moyes, Christopher; Smith, Marta S; Farmer, Ben; Williams, Phil; Cherrington, Alan D

    2018-03-14

    We evaluated the hepatic and nonhepatic responses to glucose-responsive insulin (GRI). Eight dogs received GRI or regular human insulin (HI) in random order. A primed, continuous intravenous infusion of [3- 3 H]glucose began at -120 min. Basal sampling (-30 to 0 min) was followed by 2 study periods (150 min each), P1 and P2. At 0 min, somatostatin and GRI (36±3 pmol/kg/min) or HI (1.8 pmol/kg/min) were infused IV; basal glucagon was replaced intraportally. Glucose was infused intravenously to clamp plasma glucose at 80 mg/dL (P1) and 240 mg/dL (P2). Whole body insulin clearance (WBIC) and insulin concentrations were not different in P1 vs P2 with HI, but WBIC was 23% higher and arterial insulin 16% lower in P1 vs P2 with GRI. Net hepatic glucose output was similar between treatments in P1. In P2, both treatments induced net hepatic glucose uptake (2.1±0.5 [HI] vs 3.3±0.4 [GRI] mg/kg/min). Nonhepatic glucose uptake (nonHGU, mg/kg/min) in P1 and P2, respectively, differed between treatments (2.6±0.3 and 7.4±0.6 with HI; 2.0±0.2 and 8.1±0.8 with GRI). Thus, glycemia impacted GRI but not HI clearance, with resultant differential effects on HGU and nonHGU. GRI holds promise for decreasing hypoglycemia risk while enhancing glucose uptake under hyperglycemic conditions. © 2018 by the American Diabetes Association.

  7. Peripheral blood transcriptomic signatures of fasting glucose and insulin concentrations

    NARCIS (Netherlands)

    B.H. Chen (Brian); M.-F. Hivert (Marie-France); M.J. Peters (Marjolein); L.C. Pilling (Luke); Hogan, J.D. (John D.); Pham, L.M. (Lisa M.); L.W. Harries (Lorna); C.S. Fox (Caroline); S. Bandinelli (Stefania); A. Dehghan (Abbas); D.G. Hernandez (Dena); A. Hofman (Albert); J. Hong (Jaeyoung); R. Joehanes (Roby); A.D. Johnson (Andrew); P.J. Munson (Peter); D. Rybin (Denis); A. Singleton (Andrew); A.G. Uitterlinden (André); S.-X. Ying (Sai-Xia); D. Melzer (David); D. Levy (Daniel); J.B.J. van Meurs (Joyce); L. Ferrucci (Luigi); J.C. Florez (Jose); J. Dupuis (Josée); J.B. Meigs (James); Kolaczyk, E.D. (Eric D.)

    2016-01-01

    textabstractGenome-wide association studies (GWAS) have successfully identified genetic loci associated with glycemic traits. However, characterizing the functional significance of these loci has proven challenging. We sought to gain insights into the regulation of fasting insulin and fasting

  8. Glucose turnover during insulin-induced hypoglycemia in liver-denervated rats

    DEFF Research Database (Denmark)

    Mikines, K J; Sonne, B; Richter, Erik

    1985-01-01

    The role of hepatic autonomic nerves in glucose production during hypoglycemia was studied. Selective, surgical denervation of the liver was performed in rats, which reduced hepatic norepinephrine concentrations by 96%. Hypoglycemia was induced by 250 mU of insulin intra-arterially in anesthetized...... as well as in chronically catheterized, awake rats. Half of the anesthetized denervated or sham-operated rats had previously been adrenodemedullated. Glucose turnover was measured by primed, constant intravenous infusion of [3-3H]glucose. Before as well as during hypoglycemia the arterial glucose...

  9. Metabolic studies in unaffected co-twins of non-insulin-dependent diabetics.

    OpenAIRE

    Barnett, A H; Spiliopoulos, A J; Pyke, D A; Stubbs, W A; Burrin, J; Alberti, K G

    1981-01-01

    Forty-eight out of 53 non-insulin-dependent diabetic identical twin pairs were concordant for diabetes. In the five discordant pairs the diabetic twin had only recently been diagnosed. Oral glucose tolerance tests were carried out on the unaffected twins of the five pairs and on matched controls. Fasting concentrations of blood glucose (5.5 +/- 0.6 v 3.7 +/- 0.3 mmol/l; 99.1 +/- 10.8 v 66.6 +/- 5.4 mg/100 ml), haemoglobin A1 (mean 9.1%, range 8.8-9.2% v mean 7.9%, range 7.4-8.4%), lactate, al...

  10. Evaluation of fasting state-/oral glucose tolerance test-derived measures of insulin release for the detection of genetically impaired β-cell function.

    Directory of Open Access Journals (Sweden)

    Silke A Herzberg-Schäfer

    Full Text Available BACKGROUND: To date, fasting state- and different oral glucose tolerance test (OGTT-derived measures are used to estimate insulin release with reasonable effort in large human cohorts required, e.g., for genetic studies. Here, we evaluated twelve common (or recently introduced fasting state-/OGTT-derived indices for their suitability to detect genetically determined β-cell dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: A cohort of 1364 White European individuals at increased risk for type 2 diabetes was characterized by OGTT with glucose, insulin, and C-peptide measurements and genotyped for single nucleotide polymorphisms (SNPs known to affect glucose- and incretin-stimulated insulin secretion. One fasting state- and eleven OGTT-derived indices were calculated and statistically evaluated. After adjustment for confounding variables, all tested SNPs were significantly associated with at least two insulin secretion measures (p≤0.05. The indices were ranked according to their associations' statistical power, and the ranks an index obtained for its associations with all the tested SNPs (or a subset were summed up resulting in a final ranking. This approach revealed area under the curve (AUC(Insulin(0-30/AUC(Glucose(0-30 as the best-ranked index to detect SNP-dependent differences in insulin release. Moreover, AUC(Insulin(0-30/AUC(Glucose(0-30, corrected insulin response (CIR, AUC(C-Peptide(0-30/AUC(Glucose(0-30, AUC(C-Peptide(0-120/AUC(Glucose(0-120, two different formulas for the incremental insulin response from 0-30 min, i.e., the insulinogenic indices (IGI(2 and IGI(1, and insulin 30 min were significantly higher-ranked than homeostasis model assessment of β-cell function (HOMA-B; p<0.05. AUC(C-Peptide(0-120/AUC(Glucose(0-120 was best-ranked for the detection of SNPs involved in incretin-stimulated insulin secretion. In all analyses, HOMA-β displayed the highest rank sums and, thus, scored last. CONCLUSIONS/SIGNIFICANCE: With AUC(Insulin(0

  11. Transgenic rescue of adipocyte glucose-dependent insulinotropic polypeptide receptor expression restores high fat diet-induced body weight gain

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Pedersen, Jens; Bassi, Maria Rosaria

    2011-01-01

    that was similar between the groups. In contrast, glucose-dependent insulinotropic polypeptide-mediated insulin secretion does not seem to be important for regulation of body weight after high fat feeding. The study supports a role of the adipocyte GIPr in nutrient-dependent regulation of body weight and lean mass...

  12. Higher glucose, insulin and insulin resistance (HOMA-IR) in childhood predict adverse cardiovascular risk in early adulthood: the Pune Children's Study.

    Science.gov (United States)

    Yajnik, Chittaranjan S; Katre, Prachi A; Joshi, Suyog M; Kumaran, Kalyanaraman; Bhat, Dattatray S; Lubree, Himangi G; Memane, Nilam; Kinare, Arun S; Pandit, Anand N; Bhave, Sheila A; Bavdekar, Ashish; Fall, Caroline H D

    2015-07-01

    The Pune Children's Study aimed to test whether glucose and insulin measurements in childhood predict cardiovascular risk factors in young adulthood. We followed up 357 participants (75% follow-up) at 21 years of age who had undergone detailed measurements at 8 years of age (glucose, insulin, HOMA-IR and other indices). Oral glucose tolerance, anthropometry, plasma lipids, BP, carotid intima-media thickness (IMT) and arterial pulse wave velocity (PWV) were measured at 21 years. Higher fasting glucose, insulin and HOMA-IR at 8 years predicted higher glucose, insulin, HOMA-IR, BP, lipids and IMT at 21 years. A 1 SD change in 8 year variables was associated with a 0.10-0.27 SD change at 21 years independently of obesity/adiposity at 8 years of age. A greater rise in glucose-insulin variables between 8 and 21 years was associated with higher cardiovascular risk factors, including PWV. Participants whose HOMA-IR measurement remained in the highest quartile (n = 31) had a more adverse cardiovascular risk profile compared with those whose HOMA-IR measurement remained in the lowest quartile (n = 28). Prepubertal glucose-insulin metabolism is associated with adult cardiovascular risk and markers of atherosclerosis. Our results support interventions to improve glucose-insulin metabolism in childhood to reduce cardiovascular risk in later life.

  13. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    Science.gov (United States)

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  14. Exercise effects on fitness, lipids, glucose tolerance and insulin levels in young adults.

    Science.gov (United States)

    Israel, R G; Davidson, P C; Albrink, M J; Krall, J M

    1981-07-01

    The effect of 3 different physical training programs on cardiorespiratory (cr) fitness, fasting plasma lipids, glucose and insulin levels, and scapular skinfold thickness was assessed in 64 healthy college men. Training sessions were held 4 times a week for 5 weeks. The cr fitness improved significantly and skinfold thickness decreased following the aerobic, the pulse workout (interval training), and the anaerobic training compared to the control group. Skinfold thickness, plasma insulin, and triglyceride concentrations were significantly intercorrelated before and after training. The exercise programs had no significant effect on plasma cholesterol, triglycerides, phospholipids, glucose tolerance, or insulin levels. Change in adipose mass was thus dissociated from change in plasma insulin and triglyceride concentrations. It was concluded that in young men plasma triglycerides, the lipid component mostly readily reduced by exercise, were too low to be reduced further by a physical training program.

  15. Decrease of glucose-induced insulin secretion of pancreatic rat islets after irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Heinzmann, D; Nadrowitz, R; Besch, W; Schmidt, W; Hahn, H J

    1983-01-01

    Irradiation of pancreatic rat islets up to a dose of 2.5 Gy did neither alter glucose-nor IBMX-induced insulin secretion studied in vitro. The insulin as well as glucagon content of irradiated islets were similar as in the control tissue. This was also true in islets irradiated with 25 Gy which were characterized by a decreased insulin secretion in the presence of glucose and IBMX, respectively. Since we did not find indications of an enhanced hormone output in the radiation medium, we want to suggest that higher irradiation doses affect insulin release of pancreatic islets in vitro. This observation has to be taken into account for application of radioimmunosuppression for transplantation.

  16. Effects of an oral insulin nanoparticle administration on hepatic glucose metabolism assessed by 13C and 2H isotopomer analysis

    NARCIS (Netherlands)

    Reis, C.P.; Neufeld, R.; Veiga, F.; Figueiredo, I.V.; Jones, J.; Soares, A.F.; Nunes, P.M.; Damg\\'e, C.; Carvalho, R.A.

    2012-01-01

    The purpose of this study was to evaluate hepatic glucose metabolism of diabetic induced rats after a daily oral load of insulin nanoparticles over 2 weeks. After the 2-week treatment, an oral glucose tolerance test was performed with [U-��C] glucose and �H2O. Plasma glucose �H and ��C enrichments

  17. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  18. Exponential increase in postprandial blood-glucose exposure with increasing carbohydrate loads using a linear carbohydrate-to-insulin ratio.

    Science.gov (United States)

    Marran, K J; Davey, B; Lang, A; Segal, D G

    2013-04-10

    Postprandial glucose excursions contribute significantly to average blood glucose, glycaemic variability and cardiovascular risk. Carbohydrate counting is a method of insulin dosing that balances carbohydrate load to insulin dose using a fixed ratio. Many patients and current insulin pumps calculate insulin delivery for meals based on a linear carbohydrate-to-insulin relationship. It is our hypothesis that a non-linear relationship exists between the amounts of carbohydrate consumed and the insulin required to cover it. To document blood glucose exposure in response to increasing carbohydrate loads on fixed carbohydrate-to-insulin ratios. Five type 1 diabetic subjects receiving insulin pump therapy with good control were recruited. Morning basal rates and carbohydrate- to-insulin ratios were optimised. A Medtronic glucose sensor was used for 5 days to collect data for area-under-the-curve (AUC) analysis, during which standardised meals of increasing carbohydrate loads were consumed. Increasing carbohydrate loads using a fixed carbohydrate-to-insulin ratio resulted in increasing glucose AUC. The relationship was found to be exponential rather than linear. Late postprandial hypoglycaemia followed carbohydrate loads of >60 g and this was often followed by rebound hyperglycaemia that lasted >6 hours. A non-linear relationship exists between carbohydrates consumed and the insulin required to cover them. This has implications for control of postprandial blood sugars, especially when consuming large carbohydrate loads. Further studies are required to look at the optimal ratios, duration and type of insulin boluses required to cover increasing carbohydrate loads.

  19. Changes in blood glucose and insulin responses to intravenous glucose tolerance tests and blood biochemical values in adult female Japanese black bears (Ursus thibetanus japonicus).

    Science.gov (United States)

    Kamine, Akari; Shimozuru, Michito; Shibata, Haruki; Tsubota, Toshio

    2012-02-01

    The metabolic mechanisms to circannual changes in body mass of bears have yet to be elucidated. We hypothesized that the Japanese black bear (Ursus thibetanus japonicus) has a metabolic mechanism that efficiently converts carbohydrates into body fat by altering insulin sensitivity during the hyperphagic stage before hibernation. To test this hypothesis, we investigated the changes in blood biochemical values and glucose and insulin responses to intravenous glucose tolerance tests (IVGTT) during the active season (August, early and late November). Four, adult, female bears (5-17 years old) were anesthetized with 6 mg/kg TZ (tiletamine HCl and zolazepam HCl) in combination with 0.1 mg/kg acepromazine maleate. The bears were injected intravenously with glucose (0.5 g/kg of body mass), and blood samples were obtained before, at, and intermittently after glucose injection. The basal triglycerides concentration decreased significantly with increase in body mass from August to November. Basal levels of plasma glucose and serum insulin concentrations were not significantly different among groups. The results of IVGTT demonstrated the increased peripheral insulin sensitivity and glucose tolerance in early November. In contrast, peripheral insulin resistance was indicated by the exaggerated insulin response in late November. Our findings suggest that bears shift their glucose and lipid metabolism from the stage of normal activity to the hyperphagic stage in which they show lipogenic-predominant metabolism and accelerate glucose uptake by increasing the peripheral insulin sensitivity.

  20. Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I.

    Science.gov (United States)

    Fernandez, Ana M; Hernandez-Garzón, Edwin; Perez-Domper, Paloma; Perez-Alvarez, Alberto; Mederos, Sara; Matsui, Takashi; Santi, Andrea; Trueba-Saiz, Angel; García-Guerra, Lucía; Pose-Utrilla, Julia; Fielitz, Jens; Olson, Eric N; Fernandez de la Rosa, Ruben; Garcia Garcia, Luis; Pozo, Miguel Angel; Iglesias, Teresa; Araque, Alfonso; Soya, Hideaki; Perea, Gertrudis; Martin, Eduardo D; Torres Aleman, Ignacio

    2017-01-01

    Brain activity requires a flux of glucose to active regions to sustain increased metabolic demands. Insulin, the main regulator of glucose handling in the body, has been traditionally considered not to intervene in this process. However, we now report that insulin modulates brain glucose metabolism by acting on astrocytes in concert with IGF-I. The cooperation of insulin and IGF-I is needed to recover neuronal activity after hypoglycemia. Analysis of underlying mechanisms show that the combined action of IGF-I and insulin synergistically stimulates a mitogen-activated protein kinase/protein kinase D pathway resulting in translocation of GLUT1 to the cell membrane through multiple protein-protein interactions involving the scaffolding protein GAIP-interacting protein C terminus and the GTPase RAC1. Our observations identify insulin-like peptides as physiological modulators of brain glucose handling, providing further support to consider the brain as a target organ in diabetes. © 2017 by the American Diabetes Association.

  1. Comparison of subcutaneous soluble human insulin and insulin analogues (AspB9, GluB27; AspB10; AspB28) on meal-related plasma glucose excursions in type I diabetic subjects.

    Science.gov (United States)

    Kang, S; Creagh, F M; Peters, J R; Brange, J; Vølund, A; Owens, D R

    1991-07-01

    To compare postprandial glucose excursions and plasma free insulin-analogue levels after subcutaneous injection of three novel human insulin analogues (AspB10; AspB9, GluB27; and AspB28) with those after injection of soluble human insulin (Actrapid HM U-100). Six male subjects with insulin-dependent diabetes, at least 1 wk apart and after an overnight fast and basal insulin infusion, received 72 nmol (approximately 12 U) s.c. of soluble human insulin 30 min before, or 72 nmol of each of the three analogues immediately before, a standard 500-kcal meal. Mean basal glucoses were similar on the 4 study days. Compared to human insulin (6.3 +/- 0.8 mM), mean +/- SE peak incremental glucose rises were similar after analogues AspB10 (5.4 +/- 0.8 mM) and AspB9, GluB27 (5.4 +/- 0.7 mM) and significantly lower after analogue AspB28 (3.6 +/- 1.2 mM, P less than 0.02). Relative to soluble human insulin (100% +/- SE21), incremental areas under the glucose curve between 0 and 240 min were 79% +/- 34 (AspB10, NS), 70% +/- 29 (AspB9, GluB27, NS), and 43% +/- 23 (AspB28, P less than 0.02). Basal plasma free insulin levels were similar on the 4 study days. Plasma free insulin-analogue levels rose rapidly to peak 30 min after injection at 308 +/- 44 pM (AspB10); 1231 +/- 190 pM (AspB9, GluB27) and 414 +/- 42 pM (AspB28) and were significantly higher than corresponding (i.e., 30 min postmeal) plasma free insulin levels of 157 +/- 15 pM (P less than 0.02 in each case). Plasma profiles of the insulin analogues were more physiological than that of human insulin after subcutaneous injection. All three analogues given immediately before the meal are at least as effective as soluble human insulin given 30 min earlier. These analogues are promising potential candidates for short-acting insulins of the future.

  2. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians

    Science.gov (United States)

    Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. We investigated the associations of meat intake and the intera...

  3. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: A meta-analysis of 50,345 Caucasians

    NARCIS (Netherlands)

    A.M. Fretts (Amanda M.); J.L. Follis (Jack ); J.A. Nettleton (Jennifer ); R.N. Lemaitre (Rozenn ); J.S. Ngwa; M.K. Wojczynski (Mary ); I.-P. Kalafati (Ioanna-Panagiota); T.V. Varga (Tibor V.); A.C. Frazier-Wood (Alexis C.); D.K. Houston (Denise); J. Lahti (Jari); U. Ericson (Ulrika); E.H. van den Hooven (Edith); V. Mikkilä (Vera); J.C. Kiefte-de Jong (Jessica); D. Mozaffarian (Dariush); K.M. Rice (Kenneth); F. Renström (Frida); K.E. North (Kari); N.M. McKeown (Nicola ); M.F. Feitosa (Mary Furlan); S. Kanoni (Stavroula); C.E. Smith (Caren); M. Garcia (Melissa); A.-M. Tiainen (Anna-Maija); E. Sonestedt (Emily); A. Manichaikul (Ani); F.J.A. van Rooij (Frank); M. Dimitriou (Maria); O. Raitakari (Olli); J.S. Pankow (James); L. Djoussé (Luc); M.A. Province (Mike); F.B. Hu (Frank); C.-Q. Lai (Chao-Qiang); M.F. Keller (Margaux); M.-M. Perälä (Mia-Maria); J.I. Rotter (Jerome I.); A. Hofman (Albert); M.J. Graff (Maud J.L.); M. Kähönen (Mika); K. Mukamal (Kenneth); I. Johansson (Ingegerd); J.M. Ordovas (Jose); Y. Liu (YongMei); S. Männistö (Satu); A.G. Uitterlinden (André); P. Deloukas (Panagiotis); I. Seppälä (Ilkka); B.M. Psaty (Bruce); L.A. Cupples (Adrienne); I.B. Borecki (Ingrid); P.W. Franks (Paul W.); D.K. Arnett (Donna); M.A. Nalls (Michael); K. Hagen (Knut); M. Orho-Melander (Marju); O.H. Franco (Oscar); T. Lehtimäki (Terho); G.V. Dedoussis (George); J.B. Meigs (James); D.S. Siscovick (David)

    2015-01-01

    textabstractBackground: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the

  4. The Acute Impact of Ingestion of Sourdough and Whole-Grain Breads on Blood Glucose, Insulin, and Incretins in Overweight and Obese Men

    Directory of Open Access Journals (Sweden)

    Anita Mofidi

    2012-01-01

    Full Text Available Consumption of whole-grain and sourdough breads is associated with improved glucose homeostasis. We examined the impact of commercial breads on biomarkers of glucose homeostasis in subjects at risk for glucose intolerance. In a randomized, crossover study, overweight or obese males ingested 11-grain, sprouted-grain, 12-grain, sourdough, or white bread on different occasions, matched for available carbohydrate (50 g in part 1 (n=12 and bread mass (107 g in part 2 (n=11, and blood glucose, insulin and glucose-dependent insulinotropic polypeptide (GIP and glucagon-like peptide-1 (GLP-1 were determined for 3 h. In part 1, glucose response for sprouted-grain was lower than 11-grain, sourdough, and white breads. Insulin area under the curve (AUC for sourdough and white was lower than 11-grain and sprouted-grain breads. GLP-1 response to sourdough was lower than all breads. In part 2, glucose and insulin AUC for sourdough was greater than 11-grain, sprouted-grain, and 12-grain breads. Sprouted-grain bread improved glycemia by lowering glucose response and increasing GLP-1 response. In overweight and obese men, the glycemic response to sprouted grain bread was reduced in both parts 1 and 2 while the other whole-grain test breads did not improve metabolic responses in the acute postprandial state.

  5. Effects of different levels of coconut fiber on blood glucose, serum insulin and minerals in rats.

    Science.gov (United States)

    Sindurani, J A; Rajamohan, T

    2000-01-01

    The effect of neutral detergent fiber (NDF) from coconut kernel (Cocos nucifera L) in rats fed 5%, 15% and 30% level on the concentration of blood glucose, serum insulin and excretion of minerals was studied. Increase in the intake of fiber resulted in significant decrease in the level of blood glucose and serum insulin. Faecal excretion of Cu, Cr, Mn, Mg, Zn and Ca was found to increase in rats fed different levels of coconut fiber when compared to fiber free group. The result of the present investigation suggest that inclusion of coconut fiber in the diet results in significant hypoglycemic action.

  6. Gestational Protein Restriction Impairs Insulin-Regulated Glucose Transport Mechanisms in Gastrocnemius Muscles of Adult Male Offspring

    Science.gov (United States)

    Blesson, Chellakkan S.; Sathishkumar, Kunju; Chinnathambi, Vijayakumar

    2014-01-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet–exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet–fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor

  7. Dihydrotestosterone deteriorates cardiac insulin signaling and glucose transport in the rat model of polycystic ovary syndrome.

    Science.gov (United States)

    Tepavčević, Snežana; Vojnović Milutinović, Danijela; Macut, Djuro; Žakula, Zorica; Nikolić, Marina; Božić-Antić, Ivana; Romić, Snježana; Bjekić-Macut, Jelica; Matić, Gordana; Korićanac, Goran

    2014-05-01

    It is supposed that women with polycystic ovary syndrome (PCOS) are prone to develop cardiovascular disease as a consequence of multiple risk factors that are mostly related to the state of insulin resistance and consequent hyperinsulinemia. In the present study, we evaluated insulin signaling and glucose transporters (GLUT) in cardiac cells of dihydrotestosterone (DHT) treated female rats as an animal model of PCOS. Expression of proteins involved in cardiac insulin signaling pathways and glucose transporters, as well as their phosphorylation or intracellular localization were studied by Western blot analysis in DHT-treated and control rats. Treatment with DHT resulted in increased body mass, absolute mass of the heart, elevated plasma insulin concentration, dyslipidemia and insulin resistance. At the molecular level, DHT treatment did not change protein expression of cardiac insulin receptor and insulin receptor substrate 1, while phosphorylation of the substrate at serine 307 was increased. Unexpectedly, although expression of downstream Akt kinase and its phosphorylation at threonine 308 were not altered, phosphorylation of Akt at serine 473 was increased in the heart of DHT-treated rats. In contrast, expression and phosphorylation of extracellular signal regulated kinases 1/2 were decreased. Plasma membrane contents of GLUT1 and GLUT4 were decreased, as well as the expression of GLUT4 in cardiac cells at the end of androgen treatment. The obtained results provide evidence for alterations in expression and especially in functional characteristics of insulin signaling molecules and glucose transporters in the heart of DHT-treated rats with PCOS, indicating impaired cardiac insulin action. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Adipocytokines and insulin resistance across various degrees of glucose tolerance in pregnancy.

    Science.gov (United States)

    Skvarca, A; Tomazic, M; Krhin, B; Blagus, R; Janez, A

    2012-01-01

    Gestational diabetes mellitus is characterized by progressive insulin resistance. Adipocytokines are thought to be associated with insulin resistance. This cross-sectional study evaluated the associations between serum concentrations of several adipocytokines and insulin resistance at different stages of glucose tolerance in pregnancy, using the homeostasis model assessment of insulin resistance (HOMA-IR) as a reference. According to oral glucose tolerance test results, 74 pregnant women were divided into three groups: normal glucose tolerance (n = 25); intermediate glucose tolerance (n = 19); gestational diabetes mellitus (n = 30). Adiponectin, leptin, resistin, visfatin and retinol-binding protein 4 (RBP4) concentrations were measured using enzyme-linked immuno sorbent assays. Groups were comparable regarding age, week of gestation and body mass index before gestation. There were statistically significant between-group differences in HOMA-IR, but no significant differences regarding serum adipocytokine concentrations. Adipo nectin, leptin, resistin, visfatin and RBP4 were not associated with the degree of glucose tolerance in pregnancy. Concentrations of these adipocytokines are not sufficiently sensitive to replace HOMA- IR in pregnancy.

  9. Does green tea affect postprandial glucose, insulin and satiety in healthy subjects: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Lindstedt Sandra

    2010-11-01

    Full Text Available Abstract Background Results of epidemiological studies have suggested that consumption of green tea could lower the risk of type 2 diabetes. Intervention studies show that green tea may decrease blood glucose levels, and also increase satiety. This study was conducted to examine the postprandial effects of green tea on glucose levels, glycemic index, insulin levels and satiety in healthy individuals after the consumption of a meal including green tea. Methods The study was conducted on 14 healthy volunteers, with a crossover design. Participants were randomized to either 300 ml of green tea or water. This was consumed together with a breakfast consisting of white bread and sliced turkey. Blood samples were drawn at 0, 15, 30, 45, 60, 90, and 120 minutes. Participants completed several different satiety score scales at the same times. Results Plasma glucose levels were higher 120 min after ingestion of the meal with green tea than after the ingestion of the meal with water. No significant differences were found in serum insulin levels, or the area under the curve for glucose or insulin. Subjects reported significantly higher satiety, having a less strong desire to eat their favorite food and finding it less pleasant to eat another mouthful of the same food after drinking green tea compared to water. Conclusions Green tea showed no glucose or insulin-lowering effect. However, increased satiety and fullness were reported by the participants after the consumption of green tea. Trial registration number NCT01086189

  10. Analysis of results of oral glucose tolerance test (OGTT) and insulin releasing test in hepatogenic diabetics

    International Nuclear Information System (INIS)

    He Haoming; Fu Qiang; Tian Xiaoping; Su Cainu

    2001-01-01

    Objective: To explore the clinical values of OGTT and insulin releasing test in hepatogenic diabetics. Method: OGTT was performed by enzymes method and insulin releasing test by RIA in 30 patients with hepatogenic diabetes, 31 cases with II diabetes and 35 controls. Results: During OGTT, blood glucose levels at various time were about the same in hepatogenic diabetics and II diabetics (P < 0.05), except at 180 min (P < 0.01). Basal hyperinsulinemia was present is hepatogenic diabetics. Conclusion: OGTT and insulin releasing test had a definite clinical value in the differential diagnosis of hepatogenic diabetics

  11. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    DEFF Research Database (Denmark)

    Frödin, M; Sekine, N; Roche, E

    1995-01-01

    The signaling pathways whereby glucose and hormonal secretagogues regulate insulin-secretory function, gene transcription, and proliferation of pancreatic beta-cells are not well defined. We show that in the glucose-responsive beta-cell line INS-1, major secretagogue-stimulated signaling pathways...... converge to activate 44-kDa mitogen-activated protein (MAP) kinase. Thus, glucose-induced insulin secretion was found to be associated with a small stimulatory effect on 44-kDa MAP kinase, which was synergistically enhanced by increased levels of intracellular cAMP and by the hormonal secretagogues......-1. Phorbol ester, an activator of protein kinase C, stimulated 44-kDa MAP kinase by both Ca(2+)-dependent and -independent pathways. Nerve growth factor, independently of changes in cytosolic Ca2+, efficiently stimulated 44-kDa MAP kinase without causing insulin release, indicating that activation...

  12. Glucose enhancement of memory depends on initial thirst.

    Science.gov (United States)

    Scholey, Andrew B; Sünram-Lea, Sandra I; Greer, Joanna; Elliott, Jade; Kennedy, David O

    2009-12-01

    This double-blind, placebo-controlled study examined the influence of appetitive state on glucose enhancement of memory. Participants rated their mood, hunger and thirst, then consumed a 25 g glucose drink or a matched placebo 20 min prior to a verbal memory task. There was a double dissociation when the effects of thirst ratings and drink on subsequent memory performance were considered. Those who were initially less thirsty recalled significantly more words following glucose than placebo; those who were more thirsty recalled significantly fewer words after glucose than placebo. Glucose enhancement of memory may therefore critically depend on participants' initial thirst.

  13. Peri and Postparturient Concentrations of Lipid Lipoprotein Insulin and Glucose in Normal Dairy Cows

    OpenAIRE

    BAŞOĞLU, Abdullah; SEVİNÇ, Mutlu; OK, Mahmut

    1998-01-01

    In order to provide uniqe insight into the metabolic disturbences seen after calving cholesterol, triglycerid, high density lipoprotein, low density lipoprotein, very low density lipoprotein, glucose and insulin levels in serum were studied before calving (group I), in aerly (group II) and late (group III) lactation in 24 normal cows. Serum lipoproteins were separeted into various density classes by repeated ultracentrifugation. The results indicate that there was a rise in glucose, trygl...

  14. The effect of hydroxychloroquine on glucose control and insulin resistance in the prediabetes condition

    OpenAIRE

    Sheikhbahaie, Fahimeh; Amini, Masoud; Gharipour, Mojgan; Aminoroaya, Ashraf; Taheri, Nader

    2016-01-01

    Background: Hydroxychloroquine can improve most underlying coronary risk factors; however, there are a few studies on the effects of hydroxychloroquine on blood glucose and insulin resistance. The current study aimed to assess the effects of hydroxychloroquine on blood glucose control status as well as on level of lipid profile and inflammatory biomarkers in prediabetic patients. Materials and Methods: In a randomized, double-blinded, controlled trial, 39 consecutive patients who were suff...

  15. Subcellular localization, mobility, and kinetic activity of glucokinase in glucose-responsive insulin-secreting cells.

    Science.gov (United States)

    Stubbs, M; Aiston, S; Agius, L

    2000-12-01

    We investigated the subcellular localization, mobility, and activity of glucokinase in MIN6 cells, a glucose-responsive insulin-secreting beta-cell line. Glucokinase is present in the cytoplasm and a vesicular/granule compartment that is partially colocalized with insulin granules. The granular staining of glucokinase is preserved after permeabilization of the cells with digitonin. There was no evidence for changes in distribution of glucokinase between the cytoplasm and the granule compartment during incubation of the cells with glucose. The rate of release of glucokinase and of phosphoglucoisomerase from digitonin-permeabilized cells was slower when cells were incubated at an elevated glucose concentration (S0.5 approximately 15 mmol/l). This effect of glucose was counteracted by competitive inhibitors of glucokinase (5-thioglucose and mannoheptulose) but was unaffected by fructose analogs and may be due to changes in cell shape or conformation of the cytoskeleton that are secondary to glucose metabolism. Based on the similar release of glucokinase and phosphoglucoisomerase, we found no evidence for specific binding of cytoplasmic digitonin-extractable glucokinase. The affinity of beta-cells for glucose is slightly lower than that in cell extracts and, unlike that in hepatocytes, is unaffected by fructose, tagatose, or a high-K+ medium, which is consistent with the lack of change in glucokinase distribution or release. We conclude that glucokinase is present in two locations, cytoplasm and the granular compartment, and that it does not translocate between them. This conclusion is consistent with the lack of adaptive changes in the glucose phosphorylation affinity. The glucokinase activity associated with the insulin granules may have a role in either direct or indirect coupling between glucose phosphorylation and insulin secretion.

  16. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity

    OpenAIRE

    Xuemei Shi; Shaji Chacko; Feng Li; Depei Li; Douglas Burrin; Lawrence Chan; Xinfu Guan

    2017-01-01

    Objective: Glucagon-like peptides are co-released from enteroendocrine L cells in the gut and preproglucagon (PPG) neurons in the brainstem. PPG-derived GLP-1/2 are probably key neuroendocrine signals for the control of energy balance and glucose homeostasis. The objective of this study was to determine whether activation of PPG neurons per se modulates glucose homeostasis and insulin sensitivity in vivo. Methods: We generated glucagon (Gcg) promoter-driven Cre transgenic mice and injected...

  17. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge

    DEFF Research Database (Denmark)

    Saxena, Richa; Hivert, Marie-France; Langenberg, Claudia

    2010-01-01

    Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620)......Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6...

  18. A Molecular and Whole Body Insight of the Mechanisms Surrounding Glucose Disposal and Insulin Resistance with Hypoxic Treatment in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    R. W. A. Mackenzie

    2016-01-01

    Full Text Available Although the mechanisms are largely unidentified, the chronic or intermittent hypoxic patterns occurring with respiratory diseases, such as chronic pulmonary disease or obstructive sleep apnea (OSA and obesity, are commonly associated with glucose intolerance. Indeed, hypoxia has been widely implicated in the development of insulin resistance either via the direct action on insulin receptor substrate (IRS and protein kinase B (PKB/Akt or indirectly through adipose tissue expansion and systemic inflammation. Yet hypoxia is also known to encourage glucose transport using insulin-dependent mechanisms, largely reliant on the metabolic master switch, 5′ AMP-activated protein kinase (AMPK. In addition, hypoxic exposure has been shown to improve glucose control in type 2 diabetics. The literature surrounding hypoxia-induced changes to glycemic control appears to be confusing and conflicting. How is it that the same stress can seemingly cause insulin resistance while increasing glucose uptake? There is little doubt that acute hypoxia increases glucose metabolism in skeletal muscle and does so using the same pathway as muscle contraction. The purpose of this review paper is to provide an insight into the mechanisms underpinning the observed effects and to open up discussions around the conflicting data surrounding hypoxia and glucose control.

  19. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy

    DEFF Research Database (Denmark)

    Battelino, T; Conget, I; Olsen, B

    2012-01-01

    The aim of this multicentre, randomised, controlled crossover study was to determine the efficacy of adding continuous glucose monitoring (CGM) to insulin pump therapy (CSII) in type 1 diabetes.......The aim of this multicentre, randomised, controlled crossover study was to determine the efficacy of adding continuous glucose monitoring (CGM) to insulin pump therapy (CSII) in type 1 diabetes....

  20. Perspectives of patients with non-insulin-treated type 2 diabetes on self-monitoring of blood glucose: A qualitative study.

    Science.gov (United States)

    Chen, Chen-Mei; Hung, Li-Chen; Chen, Yang-Lin; Yeh, Mei Chang

    2018-04-01

    To explore experiences of self-monitoring of blood glucose among patients with non-insulin-treated type 2 diabetes. Self-monitoring of blood glucose is essential to diabetes care and facilitates glycaemic control. Patients' perspectives of self-monitoring of blood glucose have seldom been discussed in the literature, and engagement in self-monitoring of blood glucose is consistently low. The descriptive phenomenological method was used. Purposive sampling was conducted to recruit participants from the endocrinology departments of medical institutions in Taiwan based on the following criteria: (i) having a medical diagnosis of type 2 diabetes, (ii) not being treated with insulin, (iii) having engaged in self-monitoring of blood glucose at least once within the preceding 6 months, (iv) being at least 20 years old and (v) not having any major mental or cognitive disorders. Data were collected in outpatient consultation rooms, the participants' homes and other settings where the participants felt secure and comfortable. In-depth interviews were conducted to collect data from 16 patients with diabetes. The participants perceived that lifestyle affected blood glucose levels and did not know how to handle high or low blood glucose levels. Their willingness to continue self-monitoring of blood glucose depended on whether healthcare professionals checked or discussed their blood glucose levels with them. The patients' knowledge regarding blood glucose variation and healthcare professionals' attitudes affected the patients' self-monitoring of blood glucose behaviours. The empirical findings illustrated self-monitoring of blood glucose experiences and recommended that healthcare professionals' closely attend to patients' requirements and responses to diabetes and incorporate the self-monitoring of blood glucose into therapy plans. Healthcare professionals should reinforce patients' knowledge on appropriate responses to high and low blood glucose levels, intervene

  1. Postprandial Glucose and Insulin Responses to Grain Products in ...

    African Journals Online (AJOL)

    Prof. Ogunji

    diabetes was low in women who consumed more cereal and vegetable fiber. Under normal ... Body Mass Index (BMI) was calculated, and obesity was defined as a ... much they could eat and be satisfied. There was no .... advantageous with respect to the insulin resistance syndrome since from this study the low glycaemic.

  2. Autocrine effect of Zn²⁺ on the glucose-stimulated insulin secretion.

    Science.gov (United States)

    Slepchenko, Kira G; Daniels, Nigel A; Guo, Aili; Li, Yang V

    2015-09-01

    It is well known that zinc (Zn(2+)) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (β)-cells, and that changes in Zn(2+) levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn(2+) and insulin with similar kinetics. However, we do not know whether Zn(2+) regulates insulin availability and secretion. Here we investigated the effect of Zn(2+) on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn(2+) alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn(2+) from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn(2+) on GSIS. The inhibitory action of Zn(2+) was mostly mediated through the activities of KATP/Ca(2+) channels. Furthermore, during brief paired-pulse glucose-stimulated Zn(2+) secretion (GSZS), Zn(2+) secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn(2+) after the first pulse. Such an inhibition on Zn(2+) secretion following the second pulse was completely reversed by Zn(2+) chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn(2+) release inhibits subsequent Zn(2+) secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn(2+) secreted from β-cells, and the co-secreted Zn(2+) may act as an autocrine inhibitory modulator.

  3. The impact of transsphenoidal surgery on glucose homeostasis and insulin resistance in acromegaly.

    Science.gov (United States)

    Stelmachowska-Banaś, Maria; Zieliński, Grzegorz; Zdunowski, Piotr; Podgórski, Jan; Zgliczyński, Wocjiech

    2011-01-01

    Impaired glucose tolerance and overt diabetes mellitus are frequently associated with acro-megaly. The aim of this study was to find out whether these alterations could be reversed after transsphenoidal surgery. Two hundred and thirty-nine acromegalic patients were studied before and 6-12 months after transsphenoidal surgery. Diagnosis of active acromegaly was established on the basis of widely recognized criteria. In each patient, glucose and insulin concentrations were assessed during the 75 γ oral glucose tolerance test (OGTT). To estimate insulin resistance, we used homeostasis model assessment (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI). At the moment of diagnosis, diabetes mellitus was present in 25% of the acromegalic patients. After surgery, the pre-valence of diabetes mellitus normalized to the level present in the general Polish population. We found a statistically significant reduction after surgery in plasma glucose levels both fasting (89.45 ± 13.92 mg/dL vs. 99.12 ± 17.33 mg/dL, p surgery compared to the moment of diagnosis (15.44 ± 8.80 mIU/mL vs. 23.40 ± 10.24 mIU/mL, p transsphenoidal surgery, there was a significant reduction in HOMA-IR (3.08 vs. 6.76, p surgery in fasting glucose and insulin levels between patients with controlled and in-adequately controlled disease. We conclude that in acromegalic patients glucose homeostasis alterations and insulin sensitivity can be normalized after transsphenoidal surgery, even if strict biochemical cure criteria are not fulfilled.

  4. Effect of glycogen synthase overexpression on insulin-stimulated muscle glucose uptake and storage.

    Science.gov (United States)

    Fogt, Donovan L; Pan, Shujia; Lee, Sukho; Ding, Zhenping; Scrimgeour, Angus; Lawrence, John C; Ivy, John L

    2004-03-01

    Insulin-stimulated muscle glucose uptake is inversely associated with the muscle glycogen concentration. To investigate whether this association is a cause and effect relationship, we compared insulin-stimulated muscle glucose uptake in noncontracted and postcontracted muscle of GSL3-transgenic and wild-type mice. GSL3-transgenic mice overexpress a constitutively active form of glycogen synthase, which results in an abundant storage of muscle glycogen. Muscle contraction was elicited by in situ electrical stimulation of the sciatic nerve. Right gastrocnemii from GSL3-transgenic and wild-type mice were subjected to 30 min of electrical stimulation followed by hindlimb perfusion of both hindlimbs. Thirty minutes of contraction significantly reduced muscle glycogen concentration in wild-type (49%) and transgenic (27%) mice, although transgenic mice retained 168.8 +/- 20.5 micromol/g glycogen compared with 17.7 +/- 2.6 micromol/g glycogen for wild-type mice. Muscle of transgenic and wild-type mice demonstrated similar pre- (3.6 +/- 0.3 and 3.9 +/- 0.6 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) and postcontraction (7.9 +/- 0.4 and 7.0 +/- 0.4 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) insulin-stimulated glucose uptakes. However, the [14C]glucose incorporated into glycogen was greater in noncontracted (151%) and postcontracted (157%) transgenic muscle vs. muscle of corresponding wild-type mice. These results indicate that glycogen synthase activity is not rate limiting for insulin-stimulated glucose uptake in skeletal muscle and that the inverse relationship between muscle glycogen and insulin-stimulated glucose uptake is an association, not a cause and effect relationship.

  5. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats.

    Science.gov (United States)

    Park, Sunmin; Kim, Da Sol; Kang, Suna

    2016-01-01

    Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin

  6. Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B

    DEFF Research Database (Denmark)

    Hribal, M L; Presta, I; Procopio, T

    2011-01-01

    The aim of this study was to investigate the association of the rs10811661 polymorphism near the CDKN2B/CDKN2A genes with glucose tolerance, insulin sensitivity and insulin release in three samples of white people with European ancestry.......The aim of this study was to investigate the association of the rs10811661 polymorphism near the CDKN2B/CDKN2A genes with glucose tolerance, insulin sensitivity and insulin release in three samples of white people with European ancestry....

  7. Effects of dietary carbohydrate sources on plasma glucose, insulin and IGF-I levels in multiparous sows

    NARCIS (Netherlands)

    Wientjes, J.G.M.; Soede, N.M.; Aarsse, F.; Laurenssen, B.F.A.; Koopmanschap, R.E.; Brand, van den H.; Kemp, B.

    2012-01-01

    Effects of different carbohydrate sources on plasma glucose, insulin and insulin-like growth factor-I (IGF-I) levels were compared to subsequently be able to study effects of insulin-stimulating diets on follicle development in sows. The following feed components were tested in 12 sows during six

  8. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge

    NARCIS (Netherlands)

    R. Saxena (Richa); M.-F. Hivert (Marie-France); C. Langenberg (Claudia); T. Tanaka (Toshiko); J.S. Pankow (James); P. Vollenweider (Peter); V. Lyssenko (Valeriya); N. Bouatia-Naji (Nabila); J. Dupuis (Josée); A.U. Jackson (Anne); W.H.L. Kao (Wen); M. Li (Man); N.L. Glazer (Nicole); A.K. Manning (Alisa); J. Anluan (Jian); H.M. Stringham (Heather); I. Prokopenko (Inga); T. Johnson (Toby); N. Grarup (Niels); T.W. Boesgaard (Trine); C. Lecoeur (Cécile); P. Shrader (Peter); J.R. O´Connell; E. Ingelsson (Erik); D.J. Couper (David); K. Rice (Kenneth); K. Song (Kijoung); C.H. Andreasen (Camilla); C. Dina (Christian); A. Köttgen (Anna); O.L. Bacquer (Olivier); F. Pattou (François); J. Taneera (Jalal); V. Steinthorsdottir (Valgerdur); D. Rybin (Denis); K.G. Ardlie (Kristin); M.J. Sampson (Michael); L. Qi (Lu); M.V. Hoek; M.N. Weedon (Michael); Y.S. Aulchenko (Yurii); B.F. Voight (Benjamin); H. Grallert (Harald); B. Balkau (Beverley); R.N. Bergman (Richard); S.J. Bielinski (Suzette); A. Bonnefond (Amélie); L.L. Bonnycastle (Lori); K. Borch-Johnsen; Y. Böttcher (Yvonne); E. Brunner (Eric); T.A. Buchanan (Thomas); S. Bumpstead (Suzannah); C. Cavalcanti-Proença (Christine); G. Charpentier (Guillaume); Y.D.I. Chen (Yii-Der Ida); P.S. Chines (Peter); F.S. Collins (Francis); M. Cornelis (Marilyn); G. Crawford (Gabe); J. Delplanque (Jerome); A.S.F. Doney (Alex); J.M. Egan (Josephine); M.R. Erdos (Michael); M. Firmann (Mathieu); N.G. Forouhi (Nita); C.S. Fox (Caroline); M. Goodarzi (Mark); J. Graessler (Jürgen); A. Hingorani (Aroon); B. Isomaa (Bo); T. Jørgensen (Torben); M. Kivimaki (Mika); P. Kovacs (Peter); K. Krohn (Knut); M. Kumari (Meena); T. Lauritzen (Torsten); C. Lévy-Marchal (Claire); V. Mayor (Vladimir); J.B. McAteer (Jarred); D. Meyre (David); B.D. Mitchell (Braxton); K.L. Mohlke (Karen); M.A. Morken (Mario); N. Narisu (Narisu); C.N.A. Palmer (Colin); R. Pakyz (Ruth); L. Pascoe (Laura); F. Payne (Felicity); D. Pearson (Daniel); W. Rathmann (Wolfgang); A. Sandbaek (Annelli); A.A. Sayer; L.J. Scott (Laura); S.J. Sharp (Stephen); E.J.G. Sijbrands (Eric); A. Singleton (Andrew); D.S. Siscovick (David); N.L. Smith (Nicholas); T. Sparsø (Thomas); A.J. Swift (Amy); H. Syddall (Holly); G. Thorleifsson (Gudmar); A. Tönjes (Anke); T. Tuomi (Tiinamaija); J. Tuomilehto (Jaakko); T.T. Valle (Timo); G. Waeber (Gérard); A. Walley (Andrew); D. Waterworth (Dawn); E. Zeggini (Eleftheria); J.H. Zhao (Jing Hua); G. Consortium (Giant); T. Illig (Thomas); H.E. Wichmann (Erich); J.F. Wilson (James); C.M. van Duijn (Cornelia); F.B. Hu (Frank); A.D. Morris (Andrew); T.M. Frayling (Timothy); A.T. Hattersley (Andrew); U. Thorsteinsdottir (Unnur); J-A. Zwart (John-Anker); P. Nilsson (Peter); A.C. Syvänen; A.R. Shuldiner (Alan); M. Walker (Mark); S.R. Bornstein (Stefan); P. Schwarz (Peter); G.H. Williams (Gordon); D.M. Nathan (David); J. Kuusisto (Johanna); M. Laakso (Markku); C. Cooper (Charles); M. Marmot (Michael); L. Ferrucci (Luigi); V. Mooser (Vincent); M. Stumvoll (Michael); R.J.F. Loos (Ruth); D. Altshuler (David); B.M. Psaty (Bruce); J.I. Rotter (Jerome); E.A. Boerwinkle (Eric); T. Hansen (Torben); O. Pedersen (Oluf); J.C. Florez (Jose); M.I. McCarthy (Mark); M. Boehnke (Michael); I.E. Barroso (Inês); R. Sladek (Rob); P. Froguel (Philippe); J.B. Meigs (James); L. Groop (Leif); N.J. Wareham (Nick); R.M. Watanabe (Richard)

    2010-01-01

    textabstractGlucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n =

  9. Short-term effect of red wine (consumed during meals) on insulin requirement and glucose tolerance in diabetic patients.

    Science.gov (United States)

    Gin, H; Morlat, P; Ragnaud, J M; Aubertin, J

    1992-04-01

    To determine the effect of wine on insulin requirement or glucose tolerance. Five men with insulin-treated diabetes and 10 men with non-insulin-treated diabetes ate the same lunch with the same volume of either water or red wine (2 glasses). Insulin requirement was determined with an artificial pancreas (Biostator). Glucose tolerance was evaluated from the postprandial glycemic level. There was no significant difference in insulin requirement determined with an artificial pancreas in the insulin-treated patients after the two meals (31.5 +/- 4.21 U with water and 31.8 +/- 4.3 U with wine). Glucose tolerance in the non-insulin-treated patients was lower after the meal with wine. Moderate prandial wine consumption has no adverse effect on the glycemic control of diabetic patients. Thus, it appears unnecessary to proscribe the consumption of red wine in moderation with meals to diabetic patients. Wine contains tannins and phytates that can explain its action.

  10. No relationship between cerebral blood flow velocity and cerebrovascular reserve capacity and contemporaneously measured glucose and insulin concentrations in diabetes mellitus

    NARCIS (Netherlands)

    Fülesdi, B.; Limburg, M.; Bereczki, D.; Molnár, C.; Michels, R. P.; Leányvári, Z.; Csiba, L.

    1999-01-01

    Blood glucose and insulin concentrations have been reported to influence cerebral hemodynamics. We studied the relationship between actual blood glucose and insulin concentrations and resting cerebral blood flow velocity in the middle cerebral artery and cerebrovascular reserve capacity after

  11. Insulin elevates leptin secretion and mRNA levels via cyclic AMP in 3T3-L1 adipocytes deprived of glucose

    Directory of Open Access Journals (Sweden)

    Tomomi Tsubai

    2016-11-01

    Conclusion: Insulin alone stimulates leptin secretion and elevates leptin mRNA levels via cAMP under the lack of glucose metabolism, while glucose is a significant and ambivalent effector on the insulin effects of leptin.

  12. Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport

    International Nuclear Information System (INIS)

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Daniele; Fagret, Daniel; Ghezzi, Catherine; Halimi, Serge; Demongeot, Jacques

    2007-01-01

    Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state that has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats using 125 I-6-deoxy-6-iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic-normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood was assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p < 0.01; muscle, p < 0.05; heart, p < 0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p < 0.001; muscle, p < 0.001; heart, p < 0.01) whereas no significant changes were observed in fructose-fed rats. This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging. (orig.)

  13. Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport

    Science.gov (United States)

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Danièle; Halimi, Serge; Demongeot, Jacques; Fagret, Daniel; Ghezzi, Catherine

    2007-01-01

    Purpose Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state and it has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats with 125I-6-Deoxy-6-Iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Methods Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood were assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Results Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady-state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p<0.01; muscle, p<0.05; heart, p<0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p<0.001; muscle, p<0.001; heart, p<0.01) and whereas no significant changes were observed in fructose-fed rats. Conclusion This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging. PMID:17171359

  14. Assessment of insulin resistance in fructose-fed rats with {sup 125}I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Daniele; Fagret, Daniel; Ghezzi, Catherine [INSERM, E340, 38000 Grenoble, (France); Univ Grenoble, 38000 Grenoble, (France); Halimi, Serge [CHRU Grenoble, Hopital Michallon, Service de Diabetologie, 38000 Grenoble, (France); Demongeot, Jacques [Univ Grenoble, 38000 Grenoble, (France); CNRS, UMR 5525, 38000 Grenoble, (France)

    2007-05-15

    Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state that has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats using {sup 125}I-6-deoxy-6-iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic-normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood was assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p < 0.01; muscle, p < 0.05; heart, p < 0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p < 0.001; muscle, p < 0.001; heart, p < 0.01) whereas no significant changes were observed in fructose-fed rats. This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging. (orig.)

  15. Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients

    DEFF Research Database (Denmark)

    Vestergaard, H; Bjørbaek, C; Hansen, T

    1995-01-01

    -phosphate concentrations in muscle have been found in non-insulin-dependent diabetes mellitus (NIDDM) patients when examined during a hyperglycemic hyperinsulinemic clamp. These findings [correction of finding] are consistent with a defect in glucose transport and/or phosphorylation. In the present study...

  16. Effect of Iranian Honey bee (Apis Mellifera Venom on Blood Glucose and Insulin in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Seyyedeh Mahbubeh Mousavi

    2012-12-01

    Full Text Available Background: Diabetes is an important disease. This disease is a metabolic disorder characterized by hyperglycemia resulting from perturbation in insulin secretion, insulin action or both. Honey bee venom contains a wide range of polypeptide agents. The principle components of bee venom are mellitin and phospholipase A2. These components increase insulin secretion from the β-cells of pancreas. This study was conducted to show the hypoglycemic effect of honey bee venom on alloxan induced diabetic male rats.Methods: Eighteen adult male rats weighting 200±20 g were placed into 3 randomly groups: control, alloxan monohy­drate-induced diabetic rat and treated group that received honey bee venom daily before their nutrition for four months. Forty eight hours after the last injection, blood was collected from their heart, serum was dissented and blood glucose, insulin, triglyceride and total cholesterol were determined.Results: Glucose serum, triglyceride and total cholesterol level in treated group in comparison with diabetic group was significantly decreased (P< 0.01. On the other hand, using bee venom causes increase in insulin serum in com­parison with diabetic group (P< 0.05.Conclusion: Honeybee venom (apitoxin can be used as therapeutic option to lower blood glucose and lipids in dia­betic rats.

  17. Triglycerides/glucose index is a useful surrogate marker of insulin resistance among adolescents.

    Science.gov (United States)

    Kang, B; Yang, Y; Lee, E Y; Yang, H K; Kim, H-S; Lim, S-Y; Lee, J-H; Lee, S-S; Suh, B-K; Yoon, K-H

    2017-05-01

    Our aim was to investigate the association between the triglycerides/glucose index (TyG index) and the homeostasis model assessment-estimated insulin resistance (HOMA-IR) in the prediction of insulin resistance (IR) among adolescents. We conducted a cross-sectional study among 221 Korean adolescents (168 males and 53 females aged 9-13 years) from May to June 2014 in Chung-ju city. The TyG index was calculated as ln [triglycerides (mg dl -1 ) × fasting glucose (mg dl -1 )/2]. IR was defined using HOMA-IR >95th percentile for age and sex. In the IR group, weight, body mass index (BMI), waist circumference, body fat, fasting insulin, fasting plasma glucose, triglyceride levels and triglycerides/high-density lipoprotein cholesterol (TG/HDL-C) were significantly higher than that in the non-IR group. The TG index was significantly different between the IR group (n=22) and non-IR group (n=199), at 8.43±0.45 and 8.05±0.41, respectively (Pindex was well correlated with HOMA-IR (r=0.41; Pindex for diagnosis of insulin resistance was 8.18. The TyG index is a simple, cost-effective surrogate marker of insulin resistance among adolescents compared with HOMA-IR.

  18. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets

    Energy Technology Data Exchange (ETDEWEB)

    Douillet, Christelle [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Currier, Jenna [Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Saunders, Jesse [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Bodnar, Wanda M. [Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431 (United States); Matoušek, Tomáš [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic); Stýblo, Miroslav, E-mail: styblo@med.unc.edu [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States)

    2013-02-15

    Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs{sup III}) or its methylated trivalent metabolites, methylarsonite (MAs{sup III}) and dimethylarsinite (DMAs{sup III}), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs{sup III}, MAs{sup III} or DMAs{sup III} inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs{sup III} and DMAs{sup III} were more potent than iAs{sup III} as GSIS inhibitors with estimated IC{sub 50} ≤ 0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs{sup III}, MAs{sup III} or DMAs{sup III} could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes. - Highlights: ► Trivalent arsenicals inhibit glucose stimulated insulin secretion by pancreatic islets. ► MAs{sup III} and DMAs{sup III} are more potent inhibitors than arsenite with IC{sub 50} ∼ 0.1 μM. ► The arsenicals have little or no effects on insulin expression in pancreatic islets. ► The inhibition of

  19. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets

    International Nuclear Information System (INIS)

    Douillet, Christelle; Currier, Jenna; Saunders, Jesse; Bodnar, Wanda M.; Matoušek, Tomáš; Stýblo, Miroslav

    2013-01-01

    Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs III ) or its methylated trivalent metabolites, methylarsonite (MAs III ) and dimethylarsinite (DMAs III ), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs III , MAs III or DMAs III inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs III and DMAs III were more potent than iAs III as GSIS inhibitors with estimated IC 50 ≤ 0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs III , MAs III or DMAs III could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes. - Highlights: ► Trivalent arsenicals inhibit glucose stimulated insulin secretion by pancreatic islets. ► MAs III and DMAs III are more potent inhibitors than arsenite with IC 50 ∼ 0.1 μM. ► The arsenicals have little or no effects on insulin expression in pancreatic islets. ► The inhibition of insulin secretion by arsenite, MAs III or DMAs III is reversible. ► Thus

  20. Mitochondrial GTP Regulates Glucose-Stimulated Insulin Secretion

    OpenAIRE

    Kibbey, Richard G.; Pongratz, Rebecca L.; Romanelli, Anthony J.; Wollheim, Claes B.; Cline, Gary W.; Shulman, Gerald I.

    2007-01-01

    Nucleotide-specific isoforms of the tricarboxylic acid (TCA) cycle enzyme succinyl-CoA synthetase (SCS) catalyze substrate-level synthesis of mitochondrial GTP (mtGTP) and ATP (mtATP). While mtATP yield from glucose metabolism is coupled with oxidative phosphorylation and can vary, each molecule of glucose metabolized within pancreatic beta cells produces approximately one mtGTP, making mtGTP a potentially important fuel signal. In INS-1 832/13 cells and cultured rat islets, siRNA suppression...

  1. Optimizing insulin injection technique and its effect on blood glucose control

    Directory of Open Access Journals (Sweden)

    Giorgio Grassi, MD

    2014-12-01

    Conclusions: Targeted individualized training in IT, including the switch to a 4 mm needle, is associated with improved glucose control, greater satisfaction with therapy, better and simpler injection practices and possibly lower consumption of insulin after only a three month period.

  2. Caffeine's impairment of insulin-mediated glucose disposal cannot be solely attributed to adrenaline in humans

    DEFF Research Database (Denmark)

    Battram, D S; Graham, T E; Dela, F

    2007-01-01

    Caffeine (CAF) impedes insulin-mediated glucose disposal (IMGD) and increases plasma adrenaline concentrations ([ADR]; 0.6 nm). While the antagonism of ADR abolishes the CAF effect, infusion of ADR (0.75 nm) has no effect on IMGD. We have now examined CAF and ADR in concert to determine whether...

  3. Glucose metabolism in pigs expressing human genes under an insulin promoter.

    Science.gov (United States)

    Wijkstrom, Martin; Bottino, Rita; Iwase, Hayoto; Hara, Hidetaka; Ekser, Burcin; van der Windt, Dirk; Long, Cassandra; Toledo, Frederico G S; Phelps, Carol J; Trucco, Massimo; Cooper, David K C; Ayares, David

    2015-01-01

    Xenotransplantation of porcine islets can reverse diabetes in non-human primates. The remaining hurdles for clinical application include safe and effective T-cell-directed immunosuppression, but protection against the innate immune system and coagulation dysfunction may be more difficult to achieve. Islet-targeted genetic manipulation of islet-source pigs represents a powerful tool to protect against graft loss. However, whether these genetic alterations would impair islet function is unknown. On a background of α1,3-galactosyltransferase gene-knockout (GTKO)/human (h)CD46, additional genes (hCD39, human tissue factor pathway inhibitor, porcine CTLA4-Ig) were inserted in different combinations under an insulin promoter to promote expression in islets (confirmed by immunofluorescence). Seven pigs were tested for baseline and glucose/arginine-challenged levels of glucose, insulin, C-peptide, and glucagon. This preliminary study did not show definite evidence of β-cell deficiencies, even when three transgenes were expressed under the insulin promoter. Of seven animals, all were normoglycemic at fasting, and five of seven had normal glucose disposal rates after challenge. All animals exhibited insulin, C-peptide, and glucagon responses to both glucose and arginine challenge; however, significant interindividual variation was observed. Multiple islet-targeted transgenic expression was not associated with an overtly detrimental effect on islet function, suggesting that complex genetic constructs designed for islet protection warrants further testing in islet xenotransplantation models. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Sympathoadrenal influence on glucose, FFA, and insulin levels in exercising rats

    NARCIS (Netherlands)

    Scheurink, A.J.W.; Steffens, A.B.; Bouritius, H.; Dreteler, G.H.; Bruntink, R.; Remie, R.; Zaagsma, J.

    1989-01-01

    The effects of sympathoadrenal manipulations on the exercise-induced alterations in blood glucose, plasma free fatty acids (FFA), and insulin were investigated in intact and adrenodemedullated rats. Exercise consisted of strenuous swimming against a countercurrent for 15 min. Before, during, and

  5. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    Directory of Open Access Journals (Sweden)

    Nigel Beaton

    2015-11-01

    Conclusions: Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans.

  6. Interactions of obesity and glucose-stimulated insulin secretion in familial hypertriglyceridemia.

    Science.gov (United States)

    Maruhama, Y; Abe, R; Okuguchi, F; Oikawa, S; Ohneda, A; Goto, Y

    1978-06-01

    Plasma lipids and lipoproteins, glucose tolerance, plasma insulin response to glucose load, and liver function were examined in 81 relatives of 12 index cases with primary endogenous hypertriglyceridemia, hyperinsulinemia, and hepatic steatosis, as well as in 90 nonrelatives, including the spouses, as controls. Insulin hypersecretion (with or without glucose intolerance), endogenous hypertriglyceridemia, and abnormal liver function suggesting hepatic steatosis were shown to exist in the relatives mostly in combined fashion. Correlation analysis and stepwise multiple regression analysis revealed that the combined disorder developed on the basis of obesity. The incidence of diabetes mellitus was significantly high in the relatives (14.8 per cent) as compared with the normal Japanese population (3.5 per cent). Although the vertical transmission of the combined disorder was noted in almost all pedigrees, the frequency distribution analysis of insulin response, glucose tolerance, and plasma triglyceride showed the histograms of these variables similarly skewed to the right as compared with those of the controls, with no apparent bimodality. In view of the hitherto suggested role of insulin in triglyceride metabolism, it is concluded that hyperinsulinemia coupled with obesity seems to be the basic trait of this form of familial hypertriglyceridemia and hepatic steatosis, though the mode of transmission remains to be elucidated.

  7. Phase-locking regions in a forced model of slow insulin and glucose oscillations

    DEFF Research Database (Denmark)

    Sturis, Jeppe; Knudsen, Carsten; O'Meara, Niall M.

    1995-01-01

    We present a detailed numerical investigation of the phase-locking regions in a forced model of slow oscillations in human insulin secretion and blood glucose concentration. The bifurcation structures of period 2pi and 4pi tongues are mapped out and found to be qualitatively identical to those...

  8. Phase-locking regions in a forced model of slow insulin and glucose oscillations

    DEFF Research Database (Denmark)

    Sturis, J.; Knudsen, C.; O'Meara, N.M.

    1996-01-01

    We present a detailed numerical investigation of the phase-locking regions in a forced model of slow oscillations in human insulin secretion and blood glucose concentration. The bifurcation structures of period 2pi and 4pi tongues are mapped out and found to be qualitatively identical to those...

  9. Exercise Protects Against Defective Insulin Signaling and Insulin Resistance of Glucose Transport in Skeletal Muscle of Angiotensin II-Infused Rat

    Directory of Open Access Journals (Sweden)

    Juthamard Surapongchai

    2018-04-01

    Full Text Available Objectives: The present study investigated the impact of voluntary exercise on insulin-stimulated glucose transport and the protein expression and phosphorylation status of the signaling molecules known to be involved in the glucose transport process in the soleus muscle as well as other cardiometabolic risks in a rat model with insulin resistance syndrome induced by chronic angiotensin II (ANGII infusion.Materials and Methods: Male Sprague-Dawley rats were assigned to sedentary or voluntary wheel running (VWR groups. Following a 6-week period, rats in each group were subdivided and subcutaneously administered either normal saline or ANGII at 100 ng/kg/min for 14 days. Blood pressure, glucose tolerance, insulin-stimulated glucose transport and signaling proteins, including insulin receptor (IR, insulin receptor substrate 1 (IRS-1, Akt, Akt substrate of 160 kDa (AS160, AMPKα, c-Jun NH2-terminal kinase (JNK, p38 MAPK, angiotensin converting enzyme (ACE, ANGII type 1 receptor (AT1R, ACE2, Mas receptor (MasR and oxidative stress marker in the soleus muscle, were evaluated.Results: Exercise protected against the insulin resistance of glucose transport and defective insulin signaling molecules in the soleus muscle; this effect was associated with a significant increase in AMPK Thr172 (43% and decreases in oxidative stress marker (31% and insulin-induced p38 MAPK Thr180/Tyr182 (45% and SAPK/JNK Thr183/Tyr185 (25%, without significant changes in expression of AT1R, AT2R, ACE, ACE2, and MasR when compared to the sedentary rats given ANGII infusion. At the systemic level, VWR significantly decreased body weight, fat weight, and systolic blood pressure as well as improved serum lipid profiles.Conclusion: Voluntary exercise can alleviate insulin resistance of glucose transport and impaired insulin signaling molecules in the soleus muscle and improve whole-body insulin sensitivity in rats chronically administered with ANGII.

  10. Dissociation of the effects of epinephrine and insulin on glucose and protein metabolism

    International Nuclear Information System (INIS)

    Castellino, P.; Luzi, L.; Del Prato, S.; DeFronzo, R.A.

    1990-01-01

    The separate and combined effects of insulin and epinephrine on leucine metabolism were examined in healthy young volunteers. Subjects participated in four experimental protocols: (1) euglycemic insulin clamp (+80 microU/ml), (2) epinephrine infusion (50 ng.kg-1.min-1) plus somatostatin with basal replacement of insulin and glucagon, (3) combined epinephrine (50 ng.kg-1.min-1) plus insulin (+80 microU/ml) infusion, and (4) epinephrine and somatostatin as in study 2 plus basal amino acid replacement. Studies were performed with a prime-continuous infusion of [1-14C]leucine and indirect calorimetry. Our results indicate that (1) hyperinsulinemia causes a generalized decrease in plasma amino acid concentrations, including leucine; (2) the reduction in plasma leucine concentration is primarily due to an inhibition of endogenous leucine flux; nonoxidative leucine disposal decreases after insulin infusion; (3) epinephrine, without change in plasma insulin concentration, reduces plasma amino acid levels; (4) combined epinephrine-insulin infusion causes a greater decrease in plasma amino levels than observed with either hormone alone; this is because of a greater inhibition of endogenous leucine flux; and (5) when basal amino acid concentrations are maintained constant with a balanced amino acid infusion, epinephrine inhibits the endogenous leucine flux. In conclusion, the present results do not provide support for the concept that epinephrine is a catabolic hormone with respect to amino acid-protein metabolism. In contrast, epinephrine markedly inhibits insulin-mediated glucose metabolism

  11. LPS-Enhanced Glucose-Stimulated Insulin Secretion Is Normalized by Resveratrol

    DEFF Research Database (Denmark)

    Nøhr, Mark K; Dudele, Anete; Poulsen, Morten M

    2016-01-01

    we test the effect of LPS and the anti-inflammatory compound resveratrol on glucose homeostasis, insulin levels and inflammation. Mice were subcutaneously implanted with osmotic mini pumps infusing either low-dose LPS or saline for 28 days. Half of the mice were treated with resveratrol delivered...... through the diet. LPS caused increased inflammation of the liver and adipose tissue (epididymal and subcutaneous) together with enlarged spleens and increased number of leukocytes in the blood. Resveratrol specifically reduced the inflammatory status in epididymal fat (reduced expression of TNFa and Il1b......, whereas the increased macrophage infiltration was unaltered) without affecting the other tissues investigated. By LC-MS, we were able to quantitate resveratrol metabolites in epididymal but not subcutaneous adipose tissue. LPS induced insulin resistance as the glucose-stimulated insulin secretion during...

  12. Assessment of glucose, triglycerides and insulin resistance in ...

    African Journals Online (AJOL)

    Background: Malnutrition remains a significant but intriguing consequence of Human immunodeficiency virus (HIV) infection. Besides factors such as decreased food intake and malabsorption, Human immunodeficiency virus infection is typically associated with adverse metabolic events. Aim: We examine the glucose; ...

  13. Impact of taurine depletion on glucose control and insulin secretion in mice.

    Science.gov (United States)

    Ito, Takashi; Yoshikawa, Natsumi; Ito, Hiromi; Schaffer, Stephen W

    2015-09-01

    Taurine, an endogenous sulfur-containing amino acid, is found in millimolar concentrations in mammalian tissue, and its tissue content is altered by diet, disease and aging. The effectiveness of taurine administration against obesity and its related diseases, including type 2 diabetes, has been well documented. However, the impact of taurine depletion on glucose metabolism and fat deposition has not been elucidated. In this study, we investigated the effect of taurine depletion (in the taurine transporter (TauT) knockout mouse model) on blood glucose control and high fat diet-induced obesity. TauT-knockout (TauTKO) mice exhibited lower body weight and abdominal fat mass when maintained on normal chow than wild-type (WT) mice. Blood glucose disposal after an intraperitoneal glucose injection was faster in TauTKO mice than in WT mice despite lower serum insulin levels. Islet beta-cells (insulin positive area) were also decreased in TauTKO mice compared to WT mice. Meanwhile, overnutrition by high fat (60% fat)-diet could lead to obesity in TauTKO mice despite lower body weight under normal chow diet condition, indicating nutrition in normal diet is not enough for TauTKO mice to maintain body weight comparable to WT mice. In conclusion, taurine depletion causes enhanced glucose disposal despite lowering insulin levels and lower body weight, implying deterioration in tissue energy metabolism. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  14. Mitochondrial Pyruvate Carrier 2 Hypomorphism in Mice Leads to Defects in Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Patrick A. Vigueira

    2014-06-01

    Full Text Available Carrier-facilitated pyruvate transport across the inner mitochondrial membrane plays an essential role in anabolic and catabolic intermediary metabolism. Mitochondrial pyruvate carrier 2 (Mpc2 is believed to be a component of the complex that facilitates mitochondrial pyruvate import. Complete MPC2 deficiency resulted in embryonic lethality in mice. However, a second mouse line expressing an N-terminal truncated MPC2 protein (Mpc2Δ16 was viable but exhibited a reduced capacity for mitochondrial pyruvate oxidation. Metabolic studies demonstrated exaggerated blood lactate concentrations after pyruvate, glucose, or insulin challenge in Mpc2Δ16 mice. Additionally, compared with wild-type controls, Mpc2Δ16 mice exhibited normal insulin sensitivity but elevated blood glucose after bolus pyruvate or glucose injection. This was attributable to reduced glucose-stimulated insulin secretion and was corrected by sulfonylurea KATP channel inhibitor administration. Collectively, these data are consistent with a role for MPC2 in mitochondrial pyruvate import and suggest that Mpc2 deficiency results in defective pancreatic β cell glucose sensing.

  15. Ambient Air Pollutants Have Adverse Effects on Insulin and Glucose Homeostasis in Mexican Americans

    Science.gov (United States)

    Chen, Zhanghua; Salam, Muhammad T.; Toledo-Corral, Claudia; Watanabe, Richard M.; Xiang, Anny H.; Buchanan, Thomas A.; Habre, Rima; Bastain, Theresa M.; Lurmann, Fred; Wilson, John P.; Trigo, Enrique

    2016-01-01

    OBJECTIVE Recent studies suggest that air pollution plays a role in type 2 diabetes (T2D) incidence and mortality. The underlying physiological mechanisms have yet to be established. We hypothesized that air pollution adversely affects insulin sensitivity and secretion and serum lipid levels. RESEARCH DESIGN AND METHODS Participants were selected from BetaGene (n = 1,023), a study of insulin resistance and pancreatic β-cell function in Mexican Americans. All participants underwent DXA and oral and intravenous glucose tolerance tests and completed dietary and physical activity questionnaires. Ambient air pollutant concentrations (NO2, O3, and PM2.5) for short- and long-term periods were assigned by spatial interpolation (maximum interpolation radius of 50 km) of data from air quality monitors. Traffic-related air pollution from freeways (TRAP) was estimated using the dispersion model as NOx. Variance component models were used to analyze individual and multiple air pollutant associations with metabolic traits. RESULTS Short-term (up to 58 days cumulative lagged averages) exposure to PM2.5 was associated with lower insulin sensitivity and HDL-to-LDL cholesterol ratio and higher fasting glucose and insulin, HOMA-IR, total cholesterol, and LDL cholesterol (LDL-C) (all P ≤ 0.036). Annual average PM2.5 was associated with higher fasting glucose, HOMA-IR, and LDL-C (P ≤ 0.043). The effects of short-term PM2.5 exposure on insulin sensitivity were largest among obese participants. No statistically significant associations were found between TRAP and metabolic outcomes. CONCLUSIONS Exposure to ambient air pollutants adversely affects glucose tolerance, insulin sensitivity, and blood lipid concentrations. Our findings suggest that ambient air pollutants may contribute to the pathophysiology in the development of T2D and related sequelae. PMID:26868440

  16. Beneficial role of vitamin K supplementation on insulin sensitivity, glucose metabolism, and the reduced risk of type 2 diabetes: A review.

    Science.gov (United States)

    Manna, Prasenjit; Kalita, Jatin

    2016-01-01

    Micronutrients are gaining acceptance as an important nutritional therapy for the prevention and/or management of diabetes and its associated health risks. Although a very small quantity of micronutrients are required for specific functions in our bodies, moderate deficiencies can lead to serious health issues. Impaired insulin sensitivity and glucose intolerance play a major role in the development of diabetic pathophysiology. Vitamin K is well known for its function in blood coagulation. Moreover, several human studies reported the beneficial role of vitamin K supplementation in improving insulin sensitivity and glucose tolerance, preventing insulin resistance, and reducing the risk of type 2 diabetes (T2 D). Both animal and human studies have suggested that vitamin K-dependent protein (osteocalcin [OC]), regulation of adipokine levels, antiinflammatory properties, and lipid-lowering effects may mediate the beneficial function of vitamin K in insulin sensitivity and glucose tolerance. This review for the first time provides an overview of the currently available preclinical and clinical evidences on the effect of vitamin K supplementation in the management of insulin sensitivity and glucose tolerance. The outcome of this review will increase understanding for the development of a novel adjuvant therapy to achieve better control of glycemia and improve the lives of diabetic patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Insulin Induces an Increase in Cytosolic Glucose Levels in 3T3-L1 Cells with Inhibited Glycogen Synthase Activation

    Directory of Open Access Journals (Sweden)

    Helena H. Chowdhury

    2014-10-01

    Full Text Available Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway.

  18. Valine pyrrolidide preserves intact glucose-dependent insulinotropic peptide and improves abnormal glucose tolerance in minipigs with reduced beta-cell mass

    DEFF Research Database (Denmark)

    Larsen, Marianne Olholm; Rolin, Bidda; Ribel, Ulla

    2003-01-01

    levels of intact GLP-1 but increased levels of intact GIP (from 4543 +/- 1880 to 9208 +/- 3267 pM x min; P glucose tolerance (area under the curve [AUC] for glucose reduced from 1904 +/- 480 to 1582 +/- 353 mM x min; P =.05). VP did not increase insulin levels during the oral......The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are important in blood glucose regulation. However, both incretin hormones are rapidly degraded by the enzyme dipeptidyl peptidase IV (DPPIV). The concept of DPPIV inhibition as a treatment...... glucose tolerance test (OGTT) but increased the insulinogenic index in normal animals (from 83 +/- 42 to 192 +/- 108; P

  19. Effect of feeding glucose, fructose, and inulin on blood glucose and insulin concentrations in normal ponies and those predisposed to laminitis.

    Science.gov (United States)

    Borer, K E; Bailey, S R; Menzies-Gow, N J; Harris, P A; Elliott, J

    2012-09-01

    Identification of ponies (Equus caballus) at increased risk of pasture-associated laminitis would aid in the prevention of the disease. Insulin resistance has been associated with laminitis and could be used to identify susceptible individuals. Insulin resistance may be diagnosed by feeding supplementary water-soluble carbohydrate (WSC) and measuring blood glucose and insulin concentrations. The aim of this study was to assess the glycemic and insulinemic responses of 7 normal (NP) and 5 previously laminitic (PLP), mixed breed, native UK ponies fed glucose, fructose, and inulin [1 g/(kg·d) for 3 d] or no supplementary WSC (control) in spring and fall after a 7-d adaptation to a pasture or hay diet. Blood samples were taken for 12 h after feeding on each day, and baseline and peak concentrations and area under the curve (AUC) for glucose and insulin were recorded. Linear mixed models were used for statistical analysis. Differences between PLP and NP groups were most marked after glucose feeding with differences in peak glucose (P = 0.02) and peak insulin (P = 0.016) concentrations. Season and diet adaptation also affected results. Peak concentrations of glucose and insulin occurred 2 to 4 h after WSC feeding. Peak insulin concentration was greater and more variable in fall, particularly in PLP adapted to fall pasture. Baseline glucose and insulin concentrations varied between individuals and with season and diet adaptation but were not greater in PLP than NP. Insulin AUC was greater in PLP than NP after feeding both glucose and fructose (P = 0.017), but there were no differences between PLP and NP in glucose AUC. Glycemic and insulinemic changes were less (P ≤ 0.05) after feeding fructose than glucose, although differences between PLP and NP were still evident. Minimal changes in glucose and insulin concentrations occurred after inulin feeding. Measurement of peak insulin 2 h after feeding of a single dose of glucose (1 g/kg) may be a simple and practical way to

  20. Impact of PTBP1 rs11085226 on glucose-stimulated insulin release in adult Danes

    DEFF Research Database (Denmark)

    Hansen, Tue Haldor; Vestergaard, Henrik; Jørgensen, Torben

    2015-01-01

    ,641 glucose tolerant controls, respectively. Quantitative trait analyses were performed in up to 13,605 individuals subjected to an OGTT or blood samples obtained after an overnight fast, as well as in 596 individuals subjected to an IVGTT. Results: Analyses of fasting and OGTT-derived quantitative traits did.......024; P=0.01) assuming a dominant model of inheritance, but failed to replicate a previously reported association with area under the curve (AUC) for insulin. Case control analysis did not show an association of the PTBP1 rs11085226 variant with type 2 diabetes. Conclusions: Despite failure to replicate......Background: The variant rs11085226 (G) within the gene encoding polypyrimidine tract binding protein 1 (PTBP1) was reported to associate with reduced insulin release determined by an oral glucose tolerance test (OGTT) as well as an intravenous glucose tolerance test (IVGTT). The aim of the present...

  1. Sodium retention and insulin treatment in insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Nørgaard, K; Feldt-Rasmussen, B

    1994-01-01

    subcutaneously, contributes to the increased ENa. Three studies were performed. Study 1 was a cross-sectional study comprising 28 type 1 diabetic men (aged 18-35 years) with short-duration diabetes (diabetic complications, and 22 control subjects. Study 2 was a prospective study of 17...... subcutaneous insulin infusion for improvement of glycaemic control or to remain on conventional insulin treatment. In study 1, ENa was higher in short-duration type 1 diabetic men than in controls (3003 +/- 325 vs 2849 +/- 207 mEq/1.73 m2, P ...The hypothesis that total body exchangeable sodium (ENa) is elevated in type 1 (insulin-dependent) diabetic patients with short-duration diabetes and no signs of microangiopathy was tested. Also tested was whether peripheral hyperinsulinaemia, in terms of the amounts of insulin injected...

  2. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians12

    Science.gov (United States)

    Fretts, Amanda M; Follis, Jack L; Nettleton, Jennifer A; Lemaitre, Rozenn N; Ngwa, Julius S; Wojczynski, Mary K; Kalafati, Ioanna Panagiota; Varga, Tibor V; Frazier-Wood, Alexis C; Houston, Denise K; Lahti, Jari; Ericson, Ulrika; van den Hooven, Edith H; Mikkilä, Vera; Kiefte-de Jong, Jessica C; Mozaffarian, Dariush; Rice, Kenneth; Renström, Frida; North, Kari E; McKeown, Nicola M; Feitosa, Mary F; Kanoni, Stavroula; Smith, Caren E; Garcia, Melissa E; Tiainen, Anna-Maija; Sonestedt, Emily; Manichaikul, Ani; van Rooij, Frank JA; Dimitriou, Maria; Raitakari, Olli; Pankow, James S; Djoussé, Luc; Province, Michael A; Hu, Frank B; Lai, Chao-Qiang; Keller, Margaux F; Perälä, Mia-Maria; Rotter, Jerome I; Hofman, Albert; Graff, Misa; Kähönen, Mika; Mukamal, Kenneth; Johansson, Ingegerd; Ordovas, Jose M; Liu, Yongmei; Männistö, Satu; Uitterlinden, André G; Deloukas, Panos; Seppälä, Ilkka; Psaty, Bruce M; Cupples, L Adrienne; Borecki, Ingrid B; Franks, Paul W; Arnett, Donna K; Nalls, Mike A; Eriksson, Johan G; Orho-Melander, Marju; Franco, Oscar H; Lehtimäki, Terho; Dedoussis, George V; Meigs, James B; Siscovick, David S

    2015-01-01

    Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus. Design: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined 1) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations. Results: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049–ln-pmol/L (95% CI: 0.035, 0.063–ln-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic

  3. Interrelations between glucose-induced insulin response, metabolic indicators, and time of first ovulation in high-yielding dairy cows.

    Science.gov (United States)

    Bossaert, P; Leroy, J L M R; De Vliegher, S; Opsomer, G

    2008-09-01

    High-yielding dairy cows are more susceptible to metabolic and reproductive disorders than low-yielding cows. Insulin plays a pivotal role in the development of both problems. In the present study, we aimed to assess the glucose-induced insulin responses of dairy cows at different time points relative to calving and to relate this to the metabolic status and the time of first ovulation. Twenty-three healthy, multiparous Holstein-Friesian cows with a high genetic merit for milk yield were studied from 14 d prepartum to 42 d postpartum. Intravenous glucose tolerance tests were performed on -14, 14, and 42 d relative to calving to evaluate the plasma insulin and glucose responses to a glucose load, as estimated by the peak concentration, the area under the curve (AUC), and the clearance rates of insulin and glucose. Blood samples were obtained at 3-d intervals and analyzed for glucose, insulin, and nonesterified fatty acids (NEFA). The time of first ovulation was defined by transrectal ultrasonography and plasma progesterone analysis. Glucose-induced insulin AUC and peak concentration decreased and glucose clearance increased during lactation compared with the dry period. Plasma NEFA concentrations were negatively related to insulin AUC and peak concentrations. Fourteen cows ovulated within 42 d postpartum, and the remaining 9 cows suffered from delayed resumption of ovarian function. Survival analysis demonstrated that cows with lower NEFA concentrations during the dry period tended to have earlier resumption of ovarian activity. In conclusion, our data suggest a decreased plasma insulin response to glucose postpartum in high-yielding dairy cows, possibly contributing to metabolic stress during the early postpartum period. It is hypothesized that NEFA impair glucose-induced insulin secretion in dairy cows. Additionally, our results suggest the importance of lipolysis during the transition period as a risk factor for delayed ovulation.

  4. Genetic and nongenetic determinants of skeletal muscle glucose transporter 4 messenger ribonucleic acid levels and insulin action in twins

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Poulsen, Pernille; Ling, Charlotte

    2006-01-01

    -stimulated expressions of GLUT4 were independently and significantly related to whole-body in vivo insulin action, nonoxidative glucose metabolism, and glucose oxidation. CONCLUSION: We show that skeletal muscle GLUT4 gene expression in twins is significantly and independently related to glucose metabolism...

  5. Interaction Between the Central and Peripheral Effects of Insulin in Controlling Hepatic Glucose Metabolism in the Conscious Dog

    Science.gov (United States)

    Ramnanan, Christopher J.; Kraft, Guillaume; Smith, Marta S.; Farmer, Ben; Neal, Doss; Williams, Phillip E.; Lautz, Margaret; Farmer, Tiffany; Donahue, E. Patrick; Cherrington, Alan D.; Edgerton, Dale S.

    2013-01-01

    The importance of hypothalamic insulin action to the regulation of hepatic glucose metabolism in the presence of a normal liver/brain insulin ratio (3:1) is unknown. Thus, we assessed the role of central insulin action in the response of the liver to normal physiologic hyperinsulinemia over 4 h. Using a pancreatic clamp, hepatic portal vein insulin delivery was increased three- or eightfold in the conscious dog. Insulin action was studied in the presence or absence of intracerebroventricularly mediated blockade of hypothalamic insulin action. Euglycemia was maintained, and glucagon was clamped at basal. Both the molecular and metabolic aspects of insulin action were assessed. Blockade of hypothalamic insulin signaling did not alter the insulin-mediated suppression of hepatic gluconeogenic gene transcription but blunted the induction of glucokinase gene transcription and completely blocked the inhibition of glycogen synthase kinase-3β gene transcription. Thus, central and peripheral insulin action combined to control some, but not other, hepatic enzyme programs. Nevertheless, inhibition of hypothalamic insulin action did not alter the effects of the hormone on hepatic glucose flux (production or uptake). These data indicate that brain insulin action is not a determinant of the rapid (<4 h) inhibition of hepatic glucose metabolism caused by normal physiologic hyperinsulinemia in this large animal model. PMID:23011594

  6. Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Treebak, Jonas Thue; Fentz, Joachim

    2015-01-01

    Acute exercise increases glucose uptake in skeletal muscle by an insulin-independent mechanism. In the period after exercise insulin sensitivity to increase glucose uptake is enhanced. The molecular mechanisms underpinning this phenomenon are poorly understood, but appear to involve an increased ...

  7. Effect of superfused insulin on cerebral cortical glucose utilization in awake goats

    International Nuclear Information System (INIS)

    Pelligrino, D.A.; Miletich, D.J.; Albrecht, R.F.

    1987-01-01

    The effect on cortical cerebral glucose utilization (CMR glu ) of intracerebral insulin administration in awake goats was studied. The insulin was superfused in a mock cerebrospinal fluid (CSF) employing chronically implanted cranial windows. Two windows were implanted bilaterally: one window over an equivalent portion of each parietal cortex. With one window used to deliver insulin/CSF and the other used to simultaneously deliver CSF alone (control), changes in CMR glu were assessed using a modification of a sequential 2-[ 3 H]- then 2[ 14 C]deoxy-D-glucose (2DG) technique originally described by Altenau and Agranoff. Initial experiments employing 125 I-insulin demonstrated that the superfusion procedure increased insulin levels only in the outer 1 mm of cortical tissue exposed to insulin containing perfusate. Additional preliminary evaluations, using conditions known to alter CMR glu , generally established that present methods were adequate to induce and detect CMR glu changes. However, it was also shown experimentally and using a mathematical model that 2-[ 3 H]DG test/control tissue ratios could be influenced by subsequent changes in CMR glu and the dephosphorylation rate. Thus 3 H ratios could not be used to establish preexperimental test/control CMR glu relationships as the originally devised model assumed but could be employed to indicate changes in dephosphorylation. The mathematical model allowed for improved estimates of CMR glu changes from 2[ 14 C]DG/2-[ 3 H]DG test over control tissue ratios. Even with these corrections, insulin was estimated to cause no more than an 8-15% increase in cortical CMR glu . A very limited role for insulin, at least in cerebral cortical metabolic regulation, is thus indicated

  8. Changes in erythrocyte insulin receptors in normal dogs and keeshond dogs with inheritable, early onset, insulin dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Klaassen, J.K.

    1986-01-01

    Validation of a procedure to evaluate insulin receptors on erythrocytes (RBC-IR) in dogs is described. The specific binding of ( 125 I)iodoinsulin to RBC-IR of normal dogs is significantly greater than binding in keeshonds with an inheritable form of early onset diabetes mellitus. This decreased binding was due to a significant decrease in RBC-IR affinity in the diabetic keeshonds. To determine the effect on RBC-IR, normal dogs were treated with either dexamethasone (0.1 mg/kg) or prednisone (0.3 mg/kg) for 10 days: concentrations of plasma cortisol, glucose, and insulin, plus binding characteristics of RBC-IR were determined. In the dexamethasone treated group, plasma glucose concentrations were elevated significantly by day 6 and continued through day 10. Insulin concentrations were elevated significantly by day 3 and remained elevated through day 10. In the prednisone treated group, glucose concentrations were elevated significantly by day 3, while insulin concentrations were elevated significantly by day 8. Maximum binding of RBC-IR was unaffected by prednisone and neither affinities nor receptor numbers were significantly different from day 1. No changes in plasma cortisol concentration were seen. Diabetic keeshonds on daily insulin treatment were removed from exogenous insulin therapy for 48 hours. Significant increases in glucose concentrations were observed, but no significant changes in cortisol, insulin, average receptor binding affinity, or RBC-IR number per cell occurred

  9. Effect of triiodothyronine and insulin on glucose metabolism in tissue explants and isolated adipocytes from lean and obese Zucker rats

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1985-01-01

    Glucose metabolism in adipocytes from 6 week old lean and obese Zucker rats were sensitive to direct and chronic treatment with insulin and triidothyronine (T 3 ). Insulin had a large stimulatory effect on glucose metabolism in acutely isolated adipocytes. This effect was greater in the lean than in the obese. Fatty acid, CO 2 , and glycerol-glyceride formation from radiolabeled glucose was elevated in the obese over the leans. Pretreatment of isolated adipocytes with pharmacological concentrations of T 3 for 30 minutes prior to the measurement of glucose metabolism had a greater effect on lean than obese adipocytes. The presence of insulin was required to observe the acute effects of T 3 . A 2-hour exposure to physiological levels of T 3 in the presence of insulin in both lean and obese adipocytes decreased lipogenesis. In the absence of insulin, a 2 hour pretreatment with physiological levels of T 3 in tissue from a euthyroid animal produced increased lipogenesis

  10. Glucose Deprivation Triggers Protein Kinase C-dependent β-Catenin Proteasomal Degradation*

    Science.gov (United States)

    Choi, Seung-Won; Song, Jun-Kyu; Yim, Ye-Seal; Yun, Ho-Geun; Chun, Kyung-Hee

    2015-01-01

    Autophagy is a conserved process that contributes to cell homeostasis. It is well known that induction mainly occurs in response to nutrient starvation, such as starvation of amino acids and insulin, and its mechanisms have been extensively characterized. However, the mechanisms behind cellular glucose deprivation-induced autophagy are as of now poorly understood. In the present study, we determined a mechanism by which glucose deprivation induced the PKC-dependent proteasomal degradation of β-catenin, leading to autophagy. Glucose deprivation was shown to cause a sub-G1 transition and enhancement of the LC3-II protein levels, whereas β-catenin protein underwent degradation in a proteasome-dependent manner. Moreover, the inhibition of GSK3β was unable to abolish the glucose deprivation-mediated β-catenin degradation or up-regulation of LC3-II protein levels, which suggested GSK3β-independent protein degradation. Intriguingly, the inhibition of PKCα using a pharmacological inhibitor and transfection of siRNA for PKCα was observed to effectively block glucose deprivation-induced β-catenin degradation as well as the increase in LC3-II levels and the accumulation of a sub-G1 population. Together, our results demonstrated a molecular mechanism by which glucose deprivation can induce the GSK3β-independent protein degradation of β-catenin, leading to autophagy. PMID:25691573

  11. Guava leaf extracts promote glucose metabolism in SHRSP.Z-Leprfa/Izm rats by improving insulin resistance in skeletal muscle.

    Science.gov (United States)

    Guo, Xiangyu; Yoshitomi, Hisae; Gao, Ming; Qin, Lingling; Duan, Ying; Sun, Wen; Xu, Tunhai; Xie, Peifeng; Zhou, Jingxin; Huang, Liansha; Liu, Tonghua

    2013-03-01

    Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) have been associated with insulin-resistance; however, the effective therapies in improving insulin sensitivity are limited. This study is aimed at investigating the effect of Guava Leaf (GL) extracts on glucose tolerance and insulin resistance in SHRSP.Z-Leprfa/Izm rats (SHRSP/ZF), a model of spontaneously metabolic syndrome. Male rats at 7 weeks of age were administered with vehicle water or treated by gavage with 2 g/kg GL extracts daily for six weeks, and their body weights, water and food consumption, glucose tolerance, and insulin resistance were measured. Compared with the controls, treatment with GL extracts did not modulate the amounts of water and food consumption, but significantly reduced the body weights at six weeks post treatment. Treatment with GL extracts did not alter the levels of fasting plasma glucose and insulin, but significantly reduced the levels of plasma glucose at 60 and 120 min post glucose challenge, also reduced the values of AUC and quantitative insulin sensitivity check index (QUICKI) at 42 days post treatment. Furthermore, treatment with GL extracts promoted IRS-1, AKT, PI3Kp85 expression, then IRS-1, AMKP, and AKT308, but not AKT473, phosphorylation, accompanied by increasing the ratios of membrane to total Glut 4 expression and adiponectin receptor 1 transcription in the skeletal muscles. These data indicated that GL extracts improved glucose metabolism and insulin sensitivity in the skeletal muscles of rats by modulating the insulin-related signaling.

  12. Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose, and Meal Intake: An Extended Kalman Filter Approach

    OpenAIRE

    Wang, Qian; Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan

    2014-01-01

    An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctu...

  13. Maltitol inhibits small intestinal glucose absorption and increases insulin mediated muscle glucose uptake ex vivo but not in normal and type 2 diabetic rats.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2017-02-01

    This study investigated the effects of maltitol on intestinal glucose absorption and muscle glucose uptake using ex vivo and in vivo experimental models. The ex vivo experiment was conducted in isolated jejunum and psoas muscle from normal rats. The in vivo study investigated the effects of a single bolus dose of maltitol on gastric emptying, intestinal glucose absorption and digesta transit in normal and type 2 diabetic rats. Maltitol inhibited glucose absorption in isolated rat jejunum and increased glucose uptake in isolated rat psoas muscle in the presence of insulin but not in the absence of insulin. In contrast, maltitol did not significantly (p > 0.05) alter small intestinal glucose absorption or blood glucose levels as well as gastric emptying and digesta transit in normal or type 2 diabetic rats. The results suggest that maltitol may not be a suitable dietary supplement for anti-diabetic food and food products to improve glycemic control.

  14. Longitudinal Changes in Insulin Resistance, Beta-Cell Function and Glucose Regulation Status in Prediabetes.

    Science.gov (United States)

    Kim, Chul-Hee; Kim, Hong-Kyu; Kim, Eun-Hee; Bae, Sung-Jin; Choe, Jaewon; Park, Joong-Yeol

    2018-01-01

    The changes in insulin resistance and insulin secretion and their association with changes in glucose regulation status in Asians with prediabetes remain uncertain. We included Korean adults (aged 20-79 years) with prediabetes who underwent routine medical check-ups at a mean interval of 5 years. Prediabetes was defined as fasting plasma glucose (FPG) 5.6-6.9mmol/l or HbA1c 5.7-6.4% (39-46mmol/mol). Insulin resistance (HOMA-IR) and beta-cell function (HOMA-%B) indices were assessed by homeostasis model assessment. Incident diabetes was defined as FPG ≥ 7.0mmol/l, HbA1c ≥ 6.5% (48mmol/mol), or initiation of antidiabetic medications. Among the 7,208 participants with prediabetes, 4,410 (61.2%) remained as prediabetes (control group), 2,123 (29.5%) reverted to normal glucose regulation (regressors), and 675 (9.4%) progressed to type 2 diabetes (progressors) after 5 years. Compared with the control group, the progressors had higher baseline HOMA-IR (2.48 ± 1.45 versus 2.06 ± 1.20, P prediabetes, longitudinal change in insulin resistance was the predominant factor in Koreans. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  15. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis.

    Science.gov (United States)

    Evans, Rebecca A; Frese, Michael; Romero, Julio; Cunningham, Judy H; Mills, Kerry E

    2017-08-01

    Background: Conflicting evidence exists on the effects of fructose consumption in people with type 1 and type 2 diabetes mellitus. No systematic review has addressed the effect of isoenergetic fructose replacement of glucose or sucrose on peak postprandial glucose, insulin, and triglyceride concentrations. Objective: The objective of this study was to review the evidence for postprandial glycemic and insulinemic responses after isoenergetic replacement of either glucose or sucrose in foods or beverages with fructose. Design: We searched the Cochrane Library, MEDLINE, EMBASE, the WHO International Clinical Trials Registry Platform Search Portal, and clinicaltrials.gov The date of the last search was 26 April 2016. We included randomized controlled trials measuring peak postprandial glycemia after isoenergetic replacement of glucose, sucrose, or both with fructose in healthy adults or children with or without diabetes. The main outcomes analyzed were peak postprandial blood glucose, insulin, and triglyceride concentrations. Results: Replacement of either glucose or sucrose by fructose resulted in significantly lowered peak postprandial blood glucose, particularly in people with prediabetes and type 1 and type 2 diabetes. Similar results were obtained for insulin. Peak postprandial blood triglyceride concentrations did not significantly increase. Conclusions: Strong evidence exists that substituting fructose for glucose or sucrose in food or beverages lowers peak postprandial blood glucose and insulin concentrations. Isoenergetic replacement does not result in a substantial increase in blood triglyceride concentrations. © 2017 American Society for Nutrition.

  16. Liver Proteome in Diabetes Type 1 Rat Model: Insulin-Dependent and -Independent Changes.

    Science.gov (United States)

    Braga, Camila Pereira; Boone, Cory H T; Grove, Ryan A; Adamcova, Dana; Fernandes, Ana Angélica Henrique; Adamec, Jiri; de Magalhães Padilha, Pedro

    2016-12-01

    Diabetes mellitus type 1 (DM1) is a major public health problem that continues to burden the healthcare systems worldwide, costing exponentially more as the epidemic grows. Innovative strategies and omics system diagnostics for earlier diagnosis or prognostication of DM1 are essential to prevent secondary complications and alleviate the associated economic burden. In a preclinical study design that involved streptozotocin (STZ)-induced DM1, insulin-treated STZ-induced DM1, and control rats, we characterized the insulin-dependent and -independent changes in protein profiles in liver samples. Digested proteins were subjected to LC-MS E for proteomic data. Progenesis QI data processing and analysis of variance were utilized for statistical analyses. We found 305 proteins with significantly altered abundance among the control, DM1, and insulin-treated DM1 groups (p < 0.05). These differentially regulated proteins were related to enzymes that function in key metabolic pathways and stress responses. For example, gluconeogenesis appeared to return to control levels in the DM1 group after insulin treatment, with the restoration of gluconeogenesis regulatory enzyme, FBP1. Insulin administration to DM1 rats also restored the blood glucose levels and enzymes of general stress and antioxidant response systems. These observations are crucial for insights on DM1 pathophysiology and new molecular targets for future clinical biomarkers, drug discovery, and development. Additionally, we underscore that proteomics offers much potential in preclinical biomarker discovery for diabetes as well as common complex diseases such as cancer, dementia, and infectious disorders.

  17. An acute rat in vivo screening model to predict compounds that alter blood glucose and/or insulin regulation.

    Science.gov (United States)

    Brott, David A; Diamond, Melody; Campbell, Pam; Zuvich, Andy; Cheatham, Letitia; Bentley, Patricia; Gorko, Mary Ann; Fikes, James; Saye, JoAnne

    2013-01-01

    Drug-induced glucose dysregulation and insulin resistance have been associated with weight gain and potential induction and/or exacerbation of diabetes mellitus in the clinic suggesting they may be safety biomarkers when developing antipsychotics. Glucose and insulin have also been suggested as potential efficacy biomarkers for some oncology compounds. The objective of this study was to qualify a medium throughput rat in vivo acute Intravenous Glucose Tolerance Test (IVGTT) for predicting compounds that will induce altered blood glucose and/or insulin levels. Acute and sub-chronic studies were performed to qualify an acute IVGTT model. Double cannulated male rats (Han-Wistar and Sprague-Dawley) were administered vehicle, olanzapine, aripiprazole or other compounds at t=-44min for acute studies and at time=-44min on the last day of dosing for sub-chronic studies, treated with dextrose (time=0min; i.v.) and blood collected using an automated Culex® system for glucose and insulin analysis (time=-45, -1, 2, 10, 15, 30, 45, 60, 75, 90, 120, 150 and 180min). Olanzapine significantly increased glucose and insulin area under the curve (AUC) values while aripiprazole AUC values were similar to control, in both acute and sub-chronic studies. All atypical antipsychotics evaluated were consistent with literature references of clinical weight gain. As efficacy biomarkers, insulin AUC but not glucose AUC values were increased with a compound known to have insulin growth factor-1 (IGF-1) activity, compared to control treatment. These studies qualified the medium throughput acute IVGTT model to more quickly screen compounds for 1) safety - the potential to elicit glucose dysregulation and/or insulin resistance and 2) efficacy - as a surrogate for compounds affecting the glucose and/or insulin regulatory pathways. These data demonstrate that the same in vivo rat model and assays can be used to predict both clinical safety and efficacy of compounds. © 2013.

  18. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsin-Fen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Chao, How-Ran [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu 912, Pingtung, Taiwan (China); Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China)

    2010-10-15

    Dioxin exposure has been positively associated with human type II diabetes. Because lipophilic dioxins accumulate mainly in adipose tissue, this study aimed to determine if dioxins induce metabolic dysfunction in fat cells. Using 3T3-L1 cells as an in vitro model, we analyzed the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model dioxin, on adipogenic differentiation, glucose uptake, and lipolysis. TCDD inhibited adipogenic differentiation, as determined by using oil droplet formation and adipogenic marker gene expression, including PPAR{gamma} (peroxisome proliferator-activated receptor {gamma}), C/EBP{alpha} (CCAAT/enhancer-binding protein {alpha}), and Glut4 (glucose transporter type 4). Effects of TCDD on glucose uptake were evaluated using fully differentiated 3T3-L1 adipocytes, revealing that TCDD significantly attenuated insulin-induced glucose uptake dose dependently. Inhibition of aryl hydrocarbon receptor (AhR) by {alpha}-naphthoflavone ({alpha}-NF), an AhR inhibitor, did not prevent the inhibitory effect of TCDD on glucose uptake, suggesting that TCDD attenuates insulin-induced glucose uptake in an AhR-independent manner. Effects of TCDD on lipolysis were determined using glycerol release assay. We found that TCDD had no marked effect on isoproterenol-induced glycerol release in fully differentiated 3T3-L1 adipocytes. These results provide in vitro evidence of TCDD's effects on fat cell metabolism, suggesting dioxin exposure in development of insulin resistance and type II diabetes.

  19. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Hsu, Hsin-Fen; Tsou, Tsui-Chun; Chao, How-Ran; Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching

    2010-01-01

    Dioxin exposure has been positively associated with human type II diabetes. Because lipophilic dioxins accumulate mainly in adipose tissue, this study aimed to determine if dioxins induce metabolic dysfunction in fat cells. Using 3T3-L1 cells as an in vitro model, we analyzed the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model dioxin, on adipogenic differentiation, glucose uptake, and lipolysis. TCDD inhibited adipogenic differentiation, as determined by using oil droplet formation and adipogenic marker gene expression, including PPARγ (peroxisome proliferator-activated receptor γ), C/EBPα (CCAAT/enhancer-binding protein α), and Glut4 (glucose transporter type 4). Effects of TCDD on glucose uptake were evaluated using fully differentiated 3T3-L1 adipocytes, revealing that TCDD significantly attenuated insulin-induced glucose uptake dose dependently. Inhibition of aryl hydrocarbon receptor (AhR) by α-naphthoflavone (α-NF), an AhR inhibitor, did not prevent the inhibitory effect of TCDD on glucose uptake, suggesting that TCDD attenuates insulin-induced glucose uptake in an AhR-independent manner. Effects of TCDD on lipolysis were determined using glycerol release assay. We found that TCDD had no marked effect on isoproterenol-induced glycerol release in fully differentiated 3T3-L1 adipocytes. These results provide in vitro evidence of TCDD's effects on fat cell metabolism, suggesting dioxin exposure in development of insulin resistance and type II diabetes.

  20. Effects of insulin and epinephrine on Na+-K+ and glucose transport in soleus muscle

    International Nuclear Information System (INIS)

    Clausen, T.; Flatman, J.A.

    1987-01-01

    To identify possible cause-effect relationships between changes in active Na + -K + transport, resting membrane potential, and glucose transport, the effects of insulin and epinephrine were compared in rat soleus muscle. Epinephrine, which produced twice as large a hyperpolarization as insulin, induced only a modest increase in 14 C-labeled sugar transport. Ouabain, at a concentration (10 -3 M) sufficient to block active Na + -K + transport and the hyperpolarization induced by the two hormones, did not interfere with sugar transport stimulation. After Na + loading in K + -free buffer, the return to K + -containing standard buffer caused marked stimulation of active 22 Na + - 42 K + transport, twice the hyperpolarization produced by insulin but no change in sugar transport. The insulin-induced activation of the 22 Na + - 42 K + pump leads to decreased intracellular 22 Na + concentration and hyperpolarization, but none of these events can account for the concomitant activation of the glucose transport system. The stimulating effect of insulin on active Na + -K + transport was not suppressed by amiloride, indicating that in intact skeletal muscle it is not elicited by a primary increase in Na + influx via the Na + /H + -exchange system

  1. Associations of Body Composition Measurements with Serum Lipid, Glucose and Insulin Profile: A Chinese Twin Study

    Science.gov (United States)

    Liao, Chunxiao; Gao, Wenjing; Cao, Weihua; Lv, Jun; Yu, Canqing; Wang, Shengfeng; Zhou, Bin; Pang, Zengchang; Cong, Liming; Wang, Hua; Wu, Xianping; Li, Liming

    2015-01-01

    Objectives To quantitate and compare the associations of various body composition measurements with serum metabolites and to what degree genetic or environmental factors affect obesity-metabolite relation. Methods Body mass index (BMI), waist circumference (WC), lean body mass (LBM), percent body fat (PBF), fasting serum high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglycerides (TG), total cholesterol (TC), glucose, insulin and lifestyle factors were assessed in 903 twins from Chinese National Twin Registry (CNTR). Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from fasting serum glucose and insulin. Linear regression models and bivariate structural equation models were used to examine the relation of various body composition measurements with serum metabolite levels and genetic/environmental influences on these associations, respectively. Results At individual level, adiposity measurements (BMI, WC and PBF) showed significant associations with serum metabolite concentrations in both sexes and the associations still existed in male twins when using within-MZ twin pair comparison analyses. Associations of BMI with TG, insulin and HOMA-IR were significantly stronger in male twins compared to female twins (BMI-by-sex interaction p = 0.043, 0.020 and 0.019, respectively). Comparison of various adiposity measurements with levels of serum metabolites revealed that WC explained the largest fraction of variance in serum LDL-C, TG, TC and glucose concentrations while BMI performed best in explaining variance in serum HDL-C, insulin and HOMA-IR levels. Of these phenotypic correlations, 64–81% were attributed to genetic factors, whereas 19–36% were attributed to unique environmental factors. Conclusions We observed different associations between adiposity and serum metabolite profile and demonstrated that WC and BMI explained the largest fraction of variance in serum lipid profile and insulin

  2. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    Science.gov (United States)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  3. Reactive oxygen species as a signal in glucose-stimulated insulin secretion.

    Science.gov (United States)

    Pi, Jingbo; Bai, Yushi; Zhang, Qiang; Wong, Victoria; Floering, Lisa M; Daniel, Kiefer; Reece, Jeffrey M; Deeney, Jude T; Andersen, Melvin E; Corkey, Barbara E; Collins, Sheila

    2007-07-01

    One of the unique features of beta-cells is their relatively low expression of many antioxidant enzymes. This could render beta-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-L-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for beta-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.

  4. Time-dependent changes in the contribution of gluconeogenic precursors and glucose to glycogenesis in isolated rate hepatocytes

    International Nuclear Information System (INIS)

    Marden, L.J.; Davidson, A.L.; Arion, W.J.

    1986-01-01

    Hepatocytes from 21-hr fasted rats were incubated for up to 60 min with 10 mM glucose and gluconeogeneic precursors: 4 mM lactate/0.4 mM pyruvate plus 5 mM alanine and 2 mM fructose or 10 mM glutamine. Tracer 3- 3 H,U- 14 C-glucose was added 15 min before terminating the incubations. In all cases, the 3 H and 14 C specific activities of the newly synthesized glycogen increased over time, relative to the specific activities of medium glucose. The percentage of new carbon in glycogen originating from glucose increased from less than 50% in the first 15 min to over 85% after 30 min. Relative to medium glucose, the ratio of 3 H: 14 C in glycogen was about 0.9 through-out the incubations, indicating direct incorporation of glucose into glycogen without significant prior transformation via the pentose pathway or recycling to triose phosphates. Insulin did not stimulate glucose incorporation into glycogen. 3-Mercaptopicolinate decreased the incorporation of precursor carbon into glycogen during incubations with glutamine but not during incubations with fructose and alanine. These data indicate time-dependent and reciprocal changes in rates of glucose-6-P synthesis from gluconeogenic precursors and glucose. Activation of glucokinase may underlie the increased contribution of glucose to glycogenesis. Thus, the relative importance of glucose and gluconeogenic precursors as substrates for glycogenesis directly reflects their respective contributions to the cellular pool of the glucose-6-P

  5. Effect of exercise training on in vivo insulin-stimulated glucose uptake in intra-abdominal adipose tissue in rats

    DEFF Research Database (Denmark)

    Enevoldsen, L H; Stallknecht, B; Fluckey, J D

    2000-01-01

    Intra-abdominal obesity may be crucial in the pathogenesis of the insulin-resistance syndrome, and training may alleviate this condition. We compared insulin-mediated glucose uptake in vivo in three intra-abdominal adipose tissues (ATs; retroperitoneal, parametrial, and mesenteric) and in subcuta......Intra-abdominal obesity may be crucial in the pathogenesis of the insulin-resistance syndrome, and training may alleviate this condition. We compared insulin-mediated glucose uptake in vivo in three intra-abdominal adipose tissues (ATs; retroperitoneal, parametrial, and mesenteric...

  6. Effects of Higher Dietary Protein and Fiber Intakes at Breakfast on Postprandial Glucose, Insulin, and 24-h Interstitial Glucose in Overweight Adults.

    Science.gov (United States)

    Amankwaah, Akua F; Sayer, R Drew; Wright, Amy J; Chen, Ningning; McCrory, Megan A; Campbell, Wayne W

    2017-04-02

    Dietary protein and fiber independently influence insulin-mediated glucose control. However, potential additive effects are not well-known. Men and women ( n = 20; age: 26 ± 5 years; body mass index: 26.1 ± 0.2 kg/m²; mean ± standard deviation) consumed normal protein and fiber (NPNF; NP = 12.5 g, NF = 2 g), normal protein and high fiber (NPHF; NP = 12.5 g, HF = 8 g), high protein and normal fiber (HPNF; HP = 25 g, NF = 2 g), or high protein and fiber (HPHF; HP = 25 g, HF = 8 g) breakfast treatments during four 2-week interventions in a randomized crossover fashion. On the last day of each intervention, meal tolerance tests were completed to assess postprandial (every 60 min for 240 min) serum glucose and insulin concentrations. Continuous glucose monitoring was used to measure 24-h interstitial glucose during five days of the second week of each intervention. Repeated-measures ANOVA was applied for data analyses. The HPHF treatment did not affect postprandial glucose and insulin responses or 24-h glucose total area under the curve (AUC). Higher fiber intake reduced 240-min insulin AUC. Doubling the amount of protein from 12.5 g to 25 g/meal and quadrupling fiber from 2 to 8 g/meal at breakfast was not an effective strategy for modulating insulin-mediated glucose responses in these young, overweight adults.

  7. Insulin-Like Growth Factor (IGF Binding Protein-2, Independently of IGF-1, Induces GLUT-4 Translocation and Glucose Uptake in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Biruhalem Assefa

    2017-01-01

    Full Text Available Insulin-like growth factor binding protein-2 (IGFBP-2 is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKCζ/λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKCζ/λ/GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism.

  8. Insulin-like peptide 5 is a microbially regulated peptide that promotes hepatic glucose production

    DEFF Research Database (Denmark)

    Lee, Ying Shiuan; De Vadder, Filipe; Tremaroli, Valentina

    2016-01-01

    expression in the brain was higher in CONV-R versus GF mice. We also observed that colonic Insl5 expression was suppressed by increasing the energy supply in GF mice by colonization or high-fat feeding. We did not observe any differences in food intake, gut transit or oral glucose tolerance between Insl5......-/- and wild-type mice. However, we showed impaired intraperitoneal glucose tolerance in Insl5-/- mice. We also observed improved insulin tolerance and reduced hepatic glucose production in Insl5-/- mice. CONCLUSIONS: We have shown that colonic Insl5 expression is regulated by the gut microbiota and energy...... availability. We propose that INSL5 is a hormone that could play a role in promoting hepatic glucose production during periods of energy deprivation....

  9. Glucose but not insulin or insulin resistance is associated with memory performance in middle-aged non-diabetic women : a cross sectional study

    OpenAIRE

    Backeström, Anna; Eriksson, Sture; Nilsson, Lars-Göran; Olsson, Tommy; Rolandsson, Olov

    2015-01-01

    Background: Elevated concentrations of plasma glucose appear to play a role in memory impairment, and it has been suggested that insulin might also have a negative effect on cognitive function. Our aim was to study whether glucose, insulin or insulin resistance are associated with episodic or semantic memory in a non-diabetic and non-demented population.  Methods: We linked and matched two population-based data sets identifying 291 participants (127 men and 164 women, mean age of 50.7 +/- 8.0...

  10. Effects of metformin hydrochloride on blood glucose and insulin responses to oral dextrose in horses.

    Science.gov (United States)

    Rendle, D I; Rutledge, F; Hughes, K J; Heller, J; Durham, A E

    2013-11-01

    Metformin is a potential therapeutic agent for the treatment of insulin resistance (IR). In laboratory animals, orally administered metformin reduces intestinal glucose absorption and may therefore affect insulinaemic responses to oral carbohydrate ingestion. To determine whether pretreatment with metformin reduces plasma glucose concentration and insulin responses following consumption of dextrose in horses. Therapeutic cross-over study. Seven healthy Standardbred and Thoroughbred geldings were subjected to an oral dextrose challenge test on 4 occasions: with and without metformin, before and after induction of IR with dexamethasone. Metformin was administered by nasogastric tube at 30 mg/kg bwt 1 h before administration of dextrose. Glucose and insulin concentrations in plasma/serum were measured at regular intervals during each test. Linear mixed models were specified for each predetermined outcome variable, and for each model the 'treatment' was included as a fixed effect with 4 categorical levels (none, metformin, dexamethasone and dexamethasone with metformin) and horse accounted for as a random effect. In healthy horses, the administration of metformin resulted in a statistically significant reduction in peak glucose concentration (P = 0.002), area under the glucose curve (Pdextrose administration (P = 0.011). Following the induction of IR, administration of metformin was associated with significant differences in peak glucose concentration (Pdextrose administration (P = 0.014). Metformin resulted in reduced glycaemic and insulinaemic responses both in healthy horses and in horses with experimentally induced IR. Metformin may benefit horses with naturally acquired IR by reducing glycaemic and insulinaemic responses to dietary nonstructural carbohydrates. Further investigations into the mechanisms of action of metformin in horses and controlled clinical trials are warranted. © 2013 EVJ Ltd.

  11. The rate of intestinal glucose absorption is correlated with plasma glucose-dependent insulinotropic polypeptide concentrations in healthy men

    DEFF Research Database (Denmark)

    Wachters-Hagedoorn, Renate E; Priebe, Marion G; Heimweg, Janneke A J

    2006-01-01

    and slowly available glucose. In a crossover study, glucose, insulin, GLP-1, and GIP concentrations were monitored for 6 h after consumption of glucose, uncooked cornstarch (UCCS) or corn pasta in 7 healthy men. All test meals were naturally labeled with 13C. Using a primed, continuous D-[6,6-2H2]glucose...... in the early postprandial phase (15-90 min) occurred after consumption of glucose. There was a strong positive within-subject correlation between RaEx and GIP concentrations (r = 0.73, P meals. Rapidly and slowly digestible carbohydrates differ considerably in their ability to stimulate...

  12. In Silico Assessment of Literature Insulin Bolus Calculation Methods Accounting for Glucose Rate of Change.

    Science.gov (United States)

    Cappon, Giacomo; Marturano, Francesca; Vettoretti, Martina; Facchinetti, Andrea; Sparacino, Giovanni

    2018-05-01

    The standard formula (SF) used in bolus calculators (BCs) determines meal insulin bolus using "static" measurement of blood glucose concentration (BG) obtained by self-monitoring of blood glucose (SMBG) fingerprick device. Some methods have been proposed to improve efficacy of SF using "dynamic" information provided by continuous glucose monitoring (CGM), and, in particular, glucose rate of change (ROC). This article compares, in silico and in an ideal framework limiting the exposition to possibly confounding factors (such as CGM noise), the performance of three popular techniques devised for such a scope, that is, the methods of Buckingham et al (BU), Scheiner (SC), and Pettus and Edelman (PE). Using the UVa/Padova Type 1 diabetes simulator we generated data of 100 virtual subjects in noise-free, single-meal scenarios having different preprandial BG and ROC values. Meal insulin bolus was computed using SF, BU, SC, and PE. Performance was assessed with the blood glucose risk index (BGRI) on the 9 hours after meal. On average, BU, SC, and PE improve BGRI compared to SF. When BG is rapidly decreasing, PE obtains the best performance. In the other ROC scenarios, none of the considered methods prevails in all the preprandial BG conditions tested. Our study showed that, at least in the considered ideal framework, none of the methods to correct SF according to ROC is globally better than the others. Critical analysis of the results also suggests that further investigations are needed to develop more effective formulas to account for ROC information in BCs.

  13. Overexpression of the ped/pea-15 Gene Causes Diabetes by Impairing Glucose-Stimulated Insulin Secretion in Addition to Insulin Action

    OpenAIRE

    Vigliotta, Giovanni; Miele, Claudia; Santopietro, Stefania; Portella, Giuseppe; Perfetti, Anna; Maitan, Maria Alessandra; Cassese, Angela; Oriente, Francesco; Trencia, Alessandra; Fiory, Francesca; Romano, Chiara; Tiveron, Cecilia; Tatangelo, Laura; Troncone, Giancarlo; Formisano, Pietro

    2004-01-01

    Overexpression of the ped/pea-15 gene is a common feature of type 2 diabetes. In the present work, we show that transgenic mice ubiquitously overexpressing ped/pea-15 exhibited mildly elevated random-fed blood glucose levels and decreased glucose tolerance. Treatment with a 60% fat diet led ped/pea-15 transgenic mice to develop diabetes. Consistent with insulin resistance in these mice, insulin administration reduced glucose levels by only 35% after 45 min, compared to 70% in control mice. In...

  14. Clinical significance of determination of serum leptin, insulin levels and blood sugar in pregnant women with glucose metabolism disturbances

    International Nuclear Information System (INIS)

    Yu Suqing; Li Yusheng; Wang Lin; Chu Kaiqiu

    2006-01-01

    Objective: To investigate the changes of serum leptin, insulin levels and blood sugar contents in pregnant women with gestational glucose metabolism disturbances. Methods: Fasting and 3h after oral 50g glucose serum levels of leptin were measured with RIA in 36 pregnant women with glucose metabolism disturbances (gestational diabetes mellitus or gestational impaired glucose tolerance) and 34 controls. Also, fasting serum insulin levels (with CLIA) and blood sugar contents 1h after oral 50 glucose (with glucose oxidase method) were determined in all these subjects. Results: 1. Serum levels of leptin in pregnant women with glucose metabolism disturbances were 14.9 ± 4.3 μg/L (vs controls 9.8 ± 1.7 μg/L, P<0.01). 2. The serum levels of insulin and 1 h post - 50g glucose blood sugar contents in pregnant women with glucose metabolism disturbances were 12.9±4.3mU/L and 11.0±1.4mmol/L respectively, which were both significantly positively correlated with the serum leptin levels (r=0.835, r=0.758 respectively) (vs levels in controls: 8.45±3.0mU/L and 7.84±1.3mmol/L). Conclusion: Elevation of fasting serum levels of leptin was demonstrated in pregnant women with glucose metabolism disturbances and the level of leptin was positively correlated with that of insulin and blood sugar. (authors)

  15. Valine Pyrrolidide Preserves Intact Glucose-Dependent Insulinotropic Peptide and Improves Abnormal Glucose Tolerance in Minipigs With Reduced β-Cell Mass

    OpenAIRE

    Larsen, Marianne Olholm; Rolin, Bidda; Ribel, Ulla; Wilken, Michael; Deacon, Carolyn F.; Svendsen, Ove; Gotfredsen, Carsten F.; Carr, Richard David

    2003-01-01

    The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are important in blood glucose regulation.However, both incretin hormones are rapidly degraded by the enzyme dipeptidyl peptidase IV (DPPIV). The concept of DPPIV inhibition as a treatment for type 2 diabetes was evaluated in a new large animal model of insulin-deficient diabetes and reduced β-cell mass, the nicotinamide (NIA) (67 mg/kg) and streptozotocin (STZ) (125 mg/kg)–treated min...

  16. Aerobic circuit exercise training: effect on adolescents with well-controlled insulin-dependent diabetes mellitus.

    Science.gov (United States)

    Mosher, P E; Nash, M S; Perry, A C; LaPerriere, A R; Goldberg, R B

    1998-06-01

    To test the safety and effects of exercise conditioning on cardiorespiratory fitness, body composition, muscle strength, glucose regulation, and lipid/cholesterol levels. Ten male adolescents with insulin-dependent diabetes mellitus (IDDM) and 10 adolescent nondiabetic (ND) subjects. Pretest, posttest intervention trial with control group. University-based human performance laboratory. Mixed endurance and calisthenic/strength activities performed at a rapid pace three times weekly for 12 weeks. Only one subject with IDDM experienced hypoglycemia after a single exercise session. Both subject groups improved their cardiorespiratory endurance (p diabetics.

  17. Akt and Rac1 signalling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance

    DEFF Research Database (Denmark)

    Sylow, Lykke; Kleinert, Maximilian; Pehmøller, Christian

    2014-01-01

    Skeletal muscle plays a major role in regulating whole body glucose metabolism. Akt and Rac1 are important regulators of insulin-stimulated glucose uptake in skeletal muscle. However the relative role of each pathway and how they interact is not understood. Here we delineate how Akt and Rac1...... pathways signal to increase glucose transport independently of each other and are simultaneously downregulated in insulin resistant muscle. Pharmacological inhibition of Rac1 and Akt signalling was used to determine the contribution of each pathway to insulin-stimulated glucose uptake in mouse muscles....... The actin filament-depolymerizing agent LatrunculinB was combined with pharmacological inhibition of Rac1 or Akt, to examine whether either pathway mediates its effect via the actin cytoskeleton. Akt and Rac1 signalling were investigated under each condition, as well as upon Akt2 knockout and in ob/ob mice...

  18. Sex-Related Differences in the Effects of the Mediterranean Diet on Glucose and Insulin Homeostasis

    Directory of Open Access Journals (Sweden)

    Alexandra Bédard

    2014-01-01

    Full Text Available Objective. To document sex differences in the impact of the Mediterranean diet (MedDiet on glucose/insulin homeostasis and to verify whether these sex-related effects were associated with changes in nonesterified fatty acids (NEFA. Methods. All foods were provided to 38 men and 32 premenopausal women (24–53 y during 4 weeks. Variables were measured during a 180 min OGTT before and after the MedDiet. Results. A sex-by-time interaction for plasma insulin iAUC was found (men: −17.8%, P=0.02; women: +9.4%, P=0.63; P for sex-by-time interaction = 0.005. A sex-by-time interaction was also observed for insulin sensitivity (Cederholm index, P=0.03, for which only men experienced improvements (men: +8.1%, P=0.047; women: −5.9%, P=0.94. No sex difference was observed for glucose and C-peptide responses. Trends toward a decrease in NEFA AUC (P=0.06 and an increase in NEFA suppression rate (P=0.06 were noted, with no sex difference. Changes in NEFA were not associated with change in insulin sensitivity. Conclusions. Results suggest that the more favorable changes in glucose/insulin homeostasis observed in men compared to women in response to the MedDiet are not explained by sex differences in NEFA response. This clinical trial is registered with clinicaltrials.gov NCT01293344.

  19. Sex-Related Differences in the Effects of the Mediterranean Diet on Glucose and Insulin Homeostasis

    Science.gov (United States)

    Bédard, Alexandra; Corneau, Louise; Lamarche, Benoît; Dodin, Sylvie; Lemieux, Simone

    2014-01-01

    Objective. To document sex differences in the impact of the Mediterranean diet (MedDiet) on glucose/insulin homeostasis and to verify whether these sex-related effects were associated with changes in nonesterified fatty acids (NEFA). Methods. All foods were provided to 38 men and 32 premenopausal women (24–53 y) during 4 weeks. Variables were measured during a 180 min OGTT before and after the MedDiet. Results. A sex-by-time interaction for plasma insulin iAUC was found (men: −17.8%, P = 0.02; women: +9.4%, P = 0.63; P for sex-by-time interaction = 0.005). A sex-by-time interaction was also observed for insulin sensitivity (Cederholm index, P = 0.03), for which only men experienced improvements (men: +8.1%, P = 0.047; women: −5.9%, P = 0.94). No sex difference was observed for glucose and C-peptide responses. Trends toward a decrease in NEFA AUC (P = 0.06) and an increase in NEFA suppression rate (P = 0.06) were noted, with no sex difference. Changes in NEFA were not associated with change in insulin sensitivity. Conclusions. Results suggest that the more favorable changes in glucose/insulin homeostasis observed in men compared to women in response to the MedDiet are not explained by sex differences in NEFA response. This clinical trial is registered with clinicaltrials.gov NCT01293344. PMID:25371817

  20. The effects of increasing doses of 2 preparations of long-acting insulin on short-term plasma profiles of glucose and insulin in lactating dairy cows.

    Science.gov (United States)

    Winkelman, L A; Overton, T R

    2012-12-01

    Two experiments were conducted to investigate effects of administering increasing doses of 2 different preparations of long-acting insulin on the 24-h profiles of plasma glucose and insulin concentrations in mid lactation dairy cows. The 2 separately analyzed experiments investigated the effects administering either Humulin N (H), a neutral protamine Hagedorn insulin, or insulin glargine (Lantus, L), an insulin analog, at doses of 0 (control), 0.1, 0.2, and 0.4 IU/kg of body weight in a randomized complete block design. Sixteen cows (237±11 d in milk for H; 213±10 d in milk for L; mean ± SD) were used for each insulin preparation, resulting in n=4 for each dose within insulin preparation. Cows were fitted with a single jugular catheter on the day before the study. On the day of the study, cows were given treatments by subcutaneous injection of either sterile water or the designated insulin type and dose. Blood samples were taken hourly from the jugular catheter. Subcutaneous injection of both H and L resulted in linear decreases in plasma glucose concentrations, increased area under the curve, and decreased nadir for plasma glucose following administration of the insulin preparations. Plasma insulin concentration linearly increased with increasing dose of H. Though elevated concentrations of insulin were measurable in cows treated with H, they were not measurable in cows treated with L. Attempts to measure overall insulin concentrations and metabolites of L by a commercially available ELISA and a commercially available RIA kit were not successful and did not retrieve values that we felt truly represented the amount of insulin activity exhibited during this treatment. Both long-acting insulin preparations elicited insulin-like activity in lactating dairy cows, as evidenced by reduced plasma glucose concentrations. Given these results, the potential exists to use both H and L to study the effects of insulin in mid lactation dairy cows without the confounding

  1. Superoxide generation is diminished during glucose-stimulated insulin secretion in INS-1E cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Hlavatá, Lydie; Špaček, Tomáš

    2008-01-01

    Roč. 275, Suppl.1 (2008), s. 310-310 ISSN 1742-464X. [FEBS Congress /33./ and IUBMB Conference /11./. 28.06.2008-03.07.2008, Athens] R&D Projects: GA MZd(CZ) NR7917; GA AV ČR(CZ) IAA500110701 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * superoxide production * glucose-stimulated insulin secretion * INS-1E cells Subject RIV: ED - Physiology

  2. [The optimal blood glucose target in critically ill patient: comparison of two intensive insulin therapy protocols].

    Science.gov (United States)

    Raurell Torredà, Marta; del Llano Serrano, César; Almirall Solsona, Dolors; Catalan Ibars, Rosa María; Nicolás Arfelis, José María

    2014-03-04

    Recent studies in critically ill patients receiving insulin intravenous therapy (IIT) have shown an increased incidence of severe hypoglycemia, while intermittent subcutaneous insulin «sliding scales» (conventional insulin therapy [CIT]) is associated with hyperglycemia. The objective of this study is to assess whether glycemic control range IIT can affect glucose levels and their variability and to compare it with CIT. Prospective comparative cohort study in intensive care unit, with 2 study periods: Period 1, IIT with glycemic target range 110-140 mg/dL, and Period 2, IIT of 140-180 mg/dL. In both periods CIT glycemic target was 110-180 mg/dL. We assessed severe hypoglycemia ( 216 mg/L) and the variability of blood glucose. We studied 221 patients with 12.825 blood glucose determinations. Twenty-six and 17% of patients required IIT for glycemic control in Period 1 and 2, respectively. Hypoglycemia was associated with a discontinuous nutritional intake, glycemic target 110-140 mg/dL and low body mass index (BMI) (P = .002). Hyperglycemia was exclusively associated with a history of diabetes mellitus (OR 2.6 [95% CI 1.6 to 4.5]). Glycemic variability was associated with a discontinuous nutritional intake, low BMI, CIT insulinization, diabetes mellitus, elderly and high APACHE II (P < .001). The use of IIT is useful to reduce the variability of blood glucose. Although the 140-180 mg/dL range would be more secure as to presenting greater variability and hyperglycemia, the 110-140 mg/dL range is most suitable. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  3. GPR142 Controls Tryptophan-Induced Insulin and Incretin Hormone Secretion to Improve Glucose Metabolism

    OpenAIRE

    Lin, Hua V.; Efanov, Alexander M.; Fang, Xiankang; Beavers, Lisa S.; Wang, Xuesong; Wang, Jingru; Gonzalez Valcarcel, Isabel C.; Ma, Tianwei

    2016-01-01

    GPR142, a putative amino acid receptor, is expressed in pancreatic islets and the gastrointestinal tract, but the ligand affinity and physiological role of this receptor remain obscure. In this study, we show that in addition to L-Tryptophan, GPR142 signaling is also activated by L-Phenylalanine but not by other naturally occurring amino acids. Furthermore, we show that Tryptophan and a synthetic GPR142 agonist increase insulin and incretin hormones and improve glucose disposal in mice in a G...

  4. Glucose-Responsive Insulin Delivery by Microneedle-Array Patches Loaded with Hypoxia-Sensitive Vesicles.

    Science.gov (United States)

    Yu, Jicheng; Zhang, Yuqi; Gu, Zhen

    2017-01-01

    In this chapter, we describe the preparation of glucose-responsive vesicles (GRVs) and the fabrication of GRV-loaded microneedle-array patches for insulin delivery. The GRVs were formed of hypoxia-sensitive hyaluronic acid (HS-HA), the synthesis of which is presented in detail. We also describe the procedure to evaluate the in vivo efficacy of this smart patch in a mouse model of chemically induced type 1 diabetes through transcutaneous administration.

  5. Glucose turnover and hormonal changes during insulin-induced hypoglycemia in trained humans

    DEFF Research Database (Denmark)

    Kjær, Michael; Mikines, K J; Christensen, N J

    1984-01-01

    Eight athletes (T), studied the third morning after the last exercise session, and seven sedentary males (C) (maximal O2 consumption 65 +/- 4 vs. 49 +/- 4 (SE) ml X kg-1 X min-1, for T and C men, respectively) had insulin infused until plasma glucose, at an insulin level of 1,600 pmol X l-1, was 1...... +/- 6 mU X l-1), and pancreatic polypeptide (361 +/- 84 vs. 180 +/- 29 pmol X l-1) reached higher levels (P less than 0.05) and glucagon (28 +/- 3 vs. 47 +/- 10 pmol X l-1) lower levels in T than in C subjects. Blood pressures changed earlier in athletes during insulin infusion, and early recovery...

  6. Effects of intravenous glucose infusion and nutritional balance on serum concentrations of nonesterified fatty acids, glucose, insulin, and progesterone in nonlactating dairy cows.

    Science.gov (United States)

    Vieira, F V R; Lopes, C N; Cappellozza, B I; Scarpa, A B; Cooke, R F; Vasconcelos, J L M

    2010-07-01

    with SAL cohorts at 0.5 and 3h following infusion, whereas NB cows assigned to GLUC had greater insulin concentrations compared with SAL cohorts at 0.5, 1, 2, and 3h. Progesterone concentrations were greater in PB cows assigned to GLUC at 2, 3, and 4h following infusion compared with SAL cohorts. In conclusion, the effects of glucose infusion on serum concentrations of insulin and progesterone in nonlactating dairy cows were dependent on cow nutritional status. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. A hardware acceleration based on high-level synthesis approach for glucose-insulin analysis

    Science.gov (United States)

    Daud, Nur Atikah Mohd; Mahmud, Farhanahani; Jabbar, Muhamad Hairol

    2017-01-01

    In this paper, the research is focusing on Type 1 Diabetes Mellitus (T1DM). Since this disease requires a full attention on the blood glucose concentration with the help of insulin injection, it is important to have a tool that able to predict that level when consume a certain amount of carbohydrate during meal time. Therefore, to make it realizable, a Hovorka model which is aiming towards T1DM is chosen in this research. A high-level language is chosen that is C++ to construct the mathematical model of the Hovorka model. Later, this constructed code is converted into intellectual property (IP) which is also known as a hardware accelerator by using of high-level synthesis (HLS) approach which able to improve in terms of design and performance for glucose-insulin analysis tool later as will be explained further in this paper. This is the first step in this research before implementing the design into system-on-chip (SoC) to achieve a high-performance system for the glucose-insulin analysis tool.

  8. NMR structure of the glucose-dependent insulinotropic polypeptide fragment, GIP(1-30)amide

    International Nuclear Information System (INIS)

    Alana, Inigo; Hewage, Chandralal M.; G. Malthouse, J. Paul; Parker, Jeremy C.; Gault, Victor A.; O'Harte, Finbarr P.M.

    2004-01-01

    Glucose-dependent insulinotropic polypeptide is an incretin hormone that stimulates insulin secretion and reduces postprandial glycaemic excursions. The glucose-dependent action of GIP on pancreatic β-cells has attracted attention towards its exploitation as a potential drug for type 2 diabetes. Use of NMR or X-ray crystallography is vital to determine the three-dimensional structure of the peptide. Therefore, to understand the basic structural requirements for the biological activity of GIP, the solution structure of the major biologically active fragment, GIP(1-30)amide, was investigated by proton NMR spectroscopy and molecular modelling. The structure is characterised by a full length α-helical conformation between residues F 6 and A 28 . This structural information could play an important role in the design of therapeutic agents based upon GIP receptor agonists

  9. Histidine augments the suppression of hepatic glucose production by central insulin action.

    Science.gov (United States)

    Kimura, Kumi; Nakamura, Yusuke; Inaba, Yuka; Matsumoto, Michihiro; Kido, Yoshiaki; Asahara, Shun-Ichiro; Matsuda, Tomokazu; Watanabe, Hiroshi; Maeda, Akifumi; Inagaki, Fuyuhiko; Mukai, Chisato; Takeda, Kiyoshi; Akira, Shizuo; Ota, Tsuguhito; Nakabayashi, Hajime; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2013-07-01

    Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA levels and augmented HGP suppression by insulin. This suppression of hepatic gluconeogenesis by histidine was abolished by hepatic STAT3 deficiency or hepatic Kupffer cell depletion. Inhibition of HGP by histidine was also blocked by ICV administration of a histamine H1 receptor antagonist. Therefore, histidine activates hepatic STAT3 and suppresses HGP via central histamine action. Hepatic STAT3 phosphorylation after histidine ICV administration was attenuated in histamine H1 receptor knockout (Hrh1KO) mice but not in neuron-specific insulin receptor knockout (NIRKO) mice. Conversely, hepatic STAT3 phosphorylation after insulin ICV administration was attenuated in NIRKO but not in Hrh1KO mice. These findings suggest that central histidine action is independent of central insulin action, while both have additive effects on HGP suppression. Our results indicate that central histidine/histamine-mediated suppression of HGP is a potential target for the treatment of type 2 diabetes.

  10. Advanced glycation end products impair glucose-induced insulin secretion from rat pancreatic β-cells.

    Science.gov (United States)

    Hachiya, Hiroyuki; Miura, Yoshikazu; Inoue, Ken-Ichi; Park, Kyung Hwa; Takeuchi, Masayoshi; Kubota, Keiichi

    2014-02-01

    Advanced glycation end products (AGEs) are derivative compounds generated from non-enzymatic glycosylation and oxidation. In comparison with glucose-derived AGEs (Glu-AGEs), glyceraldehyde-derived AGEs (Glycer-AGEs) have stronger toxicity to living systems. In this study, we compared the effects of Glu-AGE and Glycer-AGE on insulin secretion. Rat pancreatic islets were isolated by collagenase digestion and primary-cultured in the presence of 0.1 mg/ml bovine serum albumin (BSA) or 0.1 mg/ml Glu-AGE or Glycer-AGE-albumin. After 48 h of culture, we performed an insulin secretion test and identified the defects by a battery of rescue experiments [corrected]. Also, mRNA expression of genes associated with insulin secretion was measured. Insulin secretion induced by a high glucose concentration was 164.1 ± 6.0, 124.4 ± 4.4 (P < 0.05) and 119.8 ± 7.1 (P < 0.05) μU/3 islets/h in the presence of BSA, Glu-AGE, and Glycer-AGE, respectively. Inhibition of insulin secretion by Glu-AGE or Glycer-AGE was rescued by a high extracellular potassium concentration, tolbutamide and α-ketoisocaproic acid, but not by glyceraldehyde, dihydroxacetone, methylpyruvate, glucagon-like peptide-1 and acetylcholine. Glu-AGE or Glycer-AGE reduced the expression of the malate dehydrogenase (Mdh1/2) gene, which plays a critical role in the nicotinamide adenine dinucleotide (NADH) shuttle. Despite its reported cytotoxicity, the effects of Glycer-AGE on insulin secretion are similar to those of Glu-AGE. © 2013 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  11. Insulin and GH signaling in human skeletal muscle in vivo following exogenous GH exposure: impact of an oral glucose load.

    Directory of Open Access Journals (Sweden)

    Thomas Krusenstjerna-Hafstrøm

    2011-05-01

    Full Text Available GH induces acute insulin resistance in skeletal muscle in vivo, which in rodent models has been attributed to crosstalk between GH and insulin signaling pathways. Our objective was to characterize time course changes in signaling pathways for GH and insulin in human skeletal muscle in vivo following GH exposure in the presence and absence of an oral glucose load.Eight young men were studied in a single-blinded randomized crossover design on 3 occasions: 1 after an intravenous GH bolus 2 after an intravenous GH bolus plus an oral glucose load (OGTT, and 3 after intravenous saline plus OGTT. Muscle biopsies were taken at t = 0, 30, 60, and 120. Blood was sampled at frequent intervals for assessment of GH, insulin, glucose, and free fatty acids (FFA.GH increased AUC(glucose after an OGTT (p<0.05 without significant changes in serum insulin levels. GH induced phosphorylation of STAT5 independently of the OGTT. Conversely, the OGTT induced acute phosphorylation of the insulin signaling proteins Akt (ser(473 and thr(308, and AS160.The combination of OGTT and GH suppressed Akt activation, whereas the downstream expression of AS160 was amplified by GH. WE CONCLUDED THE FOLLOWING: 1 A physiological GH bolus activates STAT5 signaling pathways in skeletal muscle irrespective of ambient glucose and insulin levels 2 Insulin resistance induced by GH occurs without a distinct suppression of insulin signaling proteins 3 The accentuation of the glucose-stimulated activation of AS 160 by GH does however indicate a potential crosstalk between insulin and GH.ClinicalTrials.gov NCT00477997.

  12. Effects of fasting on insulin action and glucose kinetics in lean and obese men and women.

    Science.gov (United States)

    Bergman, Bryan C; Cornier, Marc-Andre; Horton, Tracy J; Bessesen, Daniel H

    2007-10-01

    The development of insulin resistance in the obese individual could impair the ability to appropriately adjust metabolism to perturbations in energy balance. We investigated a 12- vs. 48-h fast on hepatic glucose production (R(a)), peripheral glucose uptake (R(d)), and skeletal muscle insulin signaling in lean and obese subjects. Healthy lean [n = 14; age = 28.0 +/- 1.4 yr; body mass index (BMI) = 22.8 +/- 0.42] and nondiabetic obese (n = 11; age = 34.6 +/- 2.3 yr; BMI = 36.1 +/- 1.5) subjects were studied following a 12- and 48-h fast during 2 h of rest and a 3-h 40 mUxm(-2)xmin(-1) hyperinsulinemic-euglycemic clamp (HEC). Basal glucose R(a) decreased significantly from the 12- to 48-h fast (lean 1.96 +/- 0.23 to 1.63 +/- 0.15; obese 1.23 +/- 0.07 to 1.07 +/- 0.07 mgxkg(-1)xmin(-1); P = 0.004) and was equally suppressed during the HEC after both fasts. The increase in glucose R(d) during the HEC after the 12-h fast was significantly decreased in lean and obese subjects after the 48-h fast (lean 9.03 +/- 1.17 to 4.16 +/- 0.34, obese 6.10 +/- 0.77 to 3.56 +/- 0.30 mgxkg FFM(-1)xmin(-1); P lean than obese subjects. We conclude that 1) 48 h of fasting produces a marked decline in peripheral insulin action, while suppression of hepatic glucose production is maintained in lean and obese men and women; and 2) the magnitude of this decline is greater in lean vs. obese subjects.

  13. Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Frid, Anders H; Nilsson, Mikael; Holst, Jens Juul

    2005-01-01

    glycemic index (GI) with whey proteins may increase insulin secretion and improve blood glucose control in type 2 diabetic subjects. DESIGN: Fourteen diet-treated subjects with type 2 diabetes were served a high-GI breakfast (white bread) and subsequent high-GI lunch (mashed potatoes with meatballs...... insulin release and reduces postprandial blood glucose excursion after a lunch meal consisting of mashed potatoes and meatballs in type 2 diabetic subjects....

  14. Inhibition of central insulin-receptor signaling by S961 causes hyperglycemia and glucose intolerance in rats

    OpenAIRE

    Ajit Vikram; Gopabandhu Jena

    2011-01-01

    Genetic ablation studies confirmed the role of central insulin-receptor signaling (CIRS) in fuel metabolism. However, the need to examine the role of CIRS in glucose homeostasis under normal physiological condition is indispensable, as insulin affects the neuronal growth, differentiation and synaptic plasticity. Intracerebral administration of S961 induced hyperglycemia and glucose intolerance in normal rats, and provided direct evidence for the involvement of CIRS in the regulation of glucos...

  15. A tripeptide Diapin effectively lowers blood glucose levels in male type 2 diabetes mice by increasing blood levels of insulin and GLP-1.

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    Full Text Available The prevalence of type 2 diabetes (T2D is rapidly increasing worldwide. Effective therapies, such as insulin and Glucagon-like peptide-1 (GLP-1, require injections, which are costly and result in less patient compliance. Here, we report the identification of a tripeptide with significant potential to treat T2D. The peptide, referred to as Diapin, is comprised of three natural L-amino acids, GlyGlyLeu. Glucose tolerance tests showed that oral administration of Diapin effectively lowered blood glucose after oral glucose loading in both normal C57BL/6J mice and T2D mouse models, including KKay, db/db, ob/ob mice, and high fat diet-induced obesity/T2D mice. In addition, Diapin treatment significantly reduced casual blood glucose in KKay diabetic mice in a time-dependent manner without causing hypoglycemia. Furthermore, we found that plasma GLP-1 and insulin levels in diabetic models were significantly increased with Diapin treatment compared to that in the controls. In summary, our findings establish that a peptide with minimum of three amino acids can improve glucose homeostasis and Diapin shows promise as a novel pharmaceutical agent to treat patients with T2D through its dual effects on GLP-1 and insulin secretion.

  16. Increased glucose dependence in resting, iron-deficient rats

    International Nuclear Information System (INIS)

    Brooks, G.A.; Henderson, S.A.; Dallman, P.R.

    1987-01-01

    Rates of blood glucose and lactate turnover were assessed in resting iron-deficient and iron-sufficient (control) rats to test the hypothesis that dependence on glucose metabolism is increased in iron deficiency. Male Sprague-Dawley rats, 21 days old, were fed a diet containing either 6 mg iron/kg feed (iron-deficient group) or 50 mg iron/kg feed (iron-sufficient group) for 3-4 wk. The iron-deficient group became anemic, with hemoglobin levels of 6.4 ± 0.2 compared with 13.8 ± 0.3 g/dl for controls. Rats received a 90-min primed continuous infusion of D-[6- 3 H]glucose and sodium L-[U- 14 C]lactate via a jugular catheter. Serial samples were taken from a carotid catheter for concentration and specific activity determinations. Iron-deficient rats had significantly higher blood glucose and lactate concentrations than controls. The iron-deficient group had a significantly higher glucose turnover rate than the control group. Significantly more metabolite recycling in iron-deficient rats was indicated by greater incorporation of 14 C into blood glucose. Assuming a carbon crossover correction factor of 2, half of blood glucose arose from lactate in deficient animals. By comparison, only 25% of glucose arose from lactate in controls. Lack of a difference in lactate turnover rates between deficient rats and controls was attributed to 14 C recycling. The results indicate a greater dependence on glucose metabolism in iron-deficient rats

  17. Effect of glucose and insulin infusion on the myocardial extraction of a radioiodinated methyl-substituted fatty acid

    International Nuclear Information System (INIS)

    Bianco, J.A.; Elmaleh, D.R.; Leppo, J.A.; King, M.A.; Moring, A.; Livni, E.; Espinoza, E.; Alpert, J.S.; Strauss, H.W.; Massachusetts General Hospital, Boston

    1986-01-01

    We investigated the one-way. An extraction of 14-iodophenyl-tetradecanoic acid (BMTDA) in the canine heart under fasting conditions and during infusion of glucose plus insulin in eight an esthetized greyhound dogs. Myocardial extraction measurements were made with dual tracer approach, using Tc-99m albumin as reference tracer. Prior to, and during, infusion of 10% glucose and 25 units of regular insulin, heart rate, blood pressure, plasma glucose, insulin and free fatty acid levels were measured. Myocardial blood flow was determined using Sn-113 and Ru-103 radioactive microspheres. The mean extraction fraction of BMTDA was 0.38+-SEM 0.06 at baseline and increased to 0.44+-0.06 during hyperglycemia plus insulin (P<0.025). Plasma glucose and insulin were higher during the infusion (P<0.01) while plasma free fatty acids significantly declined (P<0.01). There were no changes in hemodynamics or myocardial blood flow during the infusion. We conclude that glucose and insulin infusion result in increased first-pass extraction fraction of radioiodinated BMTDA unaccompanied by changes in coronary flow or hemodynamics, implying an insulin-mediated augmented transport of BMTDA. (orig.)

  18. Relationships between the pituitary-adrenal hormones, insulin, and glucose in middle-aged men: moderating influence of psychosocial stress.

    Science.gov (United States)

    Keltikangas-Järvinen, L; Ravaja, N; Räikkönen, K; Hautanen, A; Adlercreutz, H

    1998-12-01

    We examined whether the relationships between the pituitary-adrenal hormones (corticotropin [ACTH) and cortisol), insulin, and glucose differ as a function of psychosocial stress defined in terms of vital exhaustion (VE) and depressive behavior (DB). The participants were 69 normotensive and 21 unmedicated borderline hypertensive (BH) middle-aged men whose work is stressful. Hormonal and metabolic variables were measured during an oral glucose tolerance test (OGTT), and the cortisol response to dexamethasone (DXM) suppression and intravenous ACTH stimulation was also measured. We found that the basal ACTH level during the OGTT was positively associated with the cortisol response to ACTH at 60 minutes, the fasting insulin level, and the insulin to glucose ratio among exhausted and high DB men, while the reverse was true for nonexhausted and low DB men. Also, a high cortisol response to ACTH, a low cortisol level during the OGTT, and a high ratio of these cortisol determinations (cortisol ratio) were associated with high fasting insulin and glucose levels, the summed insulin values, and the insulin to glucose ratio only among nonexhausted and low DB men; among exhausted and high DB men, these associations were less pronounced, absent, or in the opposite direction. The findings suggest that VE and DB have a moderating influence on the relationships among the hormonal and metabolic parameters studied. Psychosocial stress may affect the pituitary-adrenocortical system in complex ways, contributing thereby to insulin resistance, hyperinsulinemia, and coronary heart disease (CHD) risk.

  19. Glucose metabolism, islet architecture, and genetic homogeneity in imprinting of [Ca2+](i and insulin rhythms in mouse islets.

    Directory of Open Access Journals (Sweden)

    Craig S Nunemaker

    2009-12-01

    Full Text Available We reported previously that islets isolated from individual, outbred Swiss-Webster mice displayed oscillations in intracellular calcium ([Ca2+](i that varied little between islets of a single mouse but considerably between mice, a phenomenon we termed "islet imprinting." We have now confirmed and extended these findings in several respects. First, imprinting occurs in both inbred (C57BL/6J as well as outbred mouse strains (Swiss-Webster; CD1. Second, imprinting was observed in NAD(PH oscillations, indicating a metabolic component. Further, short-term exposure to a glucose-free solution, which transiently silenced [Ca2+](i oscillations, reset the oscillatory patterns to a higher frequency. This suggests a key role for glucose metabolism in maintaining imprinting, as transiently suppressing the oscillations with diazoxide, a K(ATP-channel opener that blocks [Ca2+](i influx downstream of glucose metabolism, did not change the imprinted patterns. Third, imprinting was not as readily observed at the level of single beta cells, as the [Ca2+](i oscillations of single cells isolated from imprinted islets exhibited highly variable, and typically slower [Ca2+](i oscillations. Lastly, to test whether the imprinted [Ca2+](i patterns were of functional significance, a novel microchip platform was used to monitor insulin release from multiple islets in real time. Insulin release patterns correlated closely with [Ca2+](i oscillations and showed significant mouse-to-mouse differences, indicating imprinting. These results indicate that islet imprinting is a general feature of islets and is likely to be of physiological significance. While islet imprinting did not depend on the genetic background of the mice, glucose metabolism and intact islet architecture may be important for the imprinting phenomenon.

  20. Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance

    International Nuclear Information System (INIS)

    Cheng, Chao; Nakamura, Akinobu; Minamimoto, Ryogo; Shinoda, Kazuaki; Tateishi, Ukihide; Terauchi, Yasuo; Inoue, Tomio; Goto, Atsuhi; Kadowaki, Takashi

    2011-01-01

    Insulin resistance (IR) is a physiological condition in which the body produces insulin but does not result in a sufficient biological effect. Insulin resistance is usually asymptomatic but is associated with health problems and is a factor in the metabolic syndrome. The aim of the present study is to clarify organ-specific insulin resistance in normal daily conditions using [ 18 F]-2-fluoro-2-deoxy-D-glucose ([ 18 F]-FDG). The biodistribution of [ 18 F]-FDG was examined in insulin receptor substrate-1 (IRS-1) knockout mice, an animal model of skeletal muscle insulin resistance, and C57BL/6J (wild-type) mice with and without insulin loading. Mice received 0.5 MBq of [ 18 F]-FDG injected into the tail vein, immediately followed by nothing (control cohorts) or an intraperitoneal injection of 1.5 mU/g body weight of human insulin as an insulin loading test. Blood glucose concentrations for all of the experimental animals were assessed at 0, 20, 40, and 60 min post-injection. The mice were subsequently killed, and tissue was collected for evaluation of [ 18 F]-FDG biodistribution. The radioactivity of each organ was measured using a gamma counter. In the absence of insulin, the blood glucose concentrations of wild-type mice (132±26 mg/dl) and IRS-1 knockout mice (134±18 mg/dl) were not significantly different. Blood glucose concentrations decreased following insulin administration, with lower concentrations in wild-type mice than in knockout mice at 20, 40, and 60 min. A statistically significant difference in [ 18 F]-FDG uptake between wild-type mice and IRS-1 knockout mice was confirmed in the heart, abdominal muscle, and femoral muscle. With insulin loading, [ 18 F]-FDG uptake in the heart, back muscle, and abdominal muscle was significantly increased compared to without insulin loading in both wild-type mice and knockout mice. Our results showed that IR significantly affected [ 18 F]-FDG uptake in the heart in normal daily conditions. IR was associated with

  1. Use of anesthesia dramatically alters the oral glucose tolerance and insulin secretion in C57Bl/6 mice

    DEFF Research Database (Denmark)

    Windeløv, Johanne A; Pedersen, Jens; Holst, Jens J

    2016-01-01

    Evaluation of the impact of anesthesia on oral glucose tolerance in mice. Anesthesia is often used when performing OGTT in mice to avoid the stress of gavage and blood sampling, although anesthesia may influence gastrointestinal motility, blood glucose, and plasma insulin dynamics. C57Bl/6 mice...... in the time frame -15 to +150 min. Plasma insulin concentration wa