WorldWideScience

Sample records for glucocorticoid dexamethasone dex

  1. RGD(F/S/V-Dex: towards the development of novel, effective, and safe glucocorticoids

    Directory of Open Access Journals (Sweden)

    Jiang X

    2016-03-01

    Full Text Available Xueyun Jiang,1 Ming Zhao,1,2 Yuji Wang,1 Haimei Zhu,1 Shurui Zhao,1 Jianhui Wu,1 Yuanbo Song,3 Shiqi Peng1 1Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China; 2Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; 3Guangxi Pusen Biotechnology Co. Ltd., Nanning, Guangxi, People’s Republic of China Abstract: Dexamethasone (Dex is an effective glucocorticoid in treating inflammation and preventing rejection reaction. However, the side effects limit its clinical application. To improve its druggable profile, the conjugates of RGD-peptide-modified Dex were presented and their enhanced anti-inflammation activity, minimized osteoporotic action, and nanoscaled assembly were explored. (RGD stands for Arg-Gly-Asp. Standard single letter biochemical abbreviations for amino acids have been used throughout this paper. In respect of the rejection reaction, the survival time of the implanted myocardium of the mice treated with 1.43 µmol/kg/d of the conjugates for 15 consecutive days was significantly longer than that of the mice treated with 2.5 µmol/kg/d of Dex, and the conjugates, but not Dex, exhibited no toxic action. At a single dose of 14.3 µmol/kg (100 times minimal effective dose, 0.143 µmol/kg, the conjugates induced no liver, kidney, or systemic toxicity. At the dose of 1.43 µmol/kg, the conjugates, but not Dex, prolonged the bleeding time of the mice, and inhibited the thrombosis of the rats. In water and rat plasma, the conjugates formed nanoparticles of 14–250 and 101–166 nm in diameter, respectively. Since the nanoparticles of ~100 nm in size cannot be entrapped by macrophages in the circulation, RGDF-Dex would particularly be worthy

  2. Differential effect of glucocorticoids on tumour necrosis factor production in mice: up-regulation by early pretreatment with dexamethasone.

    Science.gov (United States)

    Fantuzzi, G; Demitri, M T; Ghezzi, P

    1994-04-01

    Glucocorticoids (GC) are well known inhibitors of tumour necrosis factor (TNF) production. We investigated the role of endogenous GC in the regulation of TNF production in mice treated with lipopolysaccharide (LPS) using a pretreatment with dexamethasone (DEX) to down-regulate the hypothalamus-pituitary-adrenal axis (HPA). Short-term DEX pretreatment (up to 12 h before LPS) inhibited TNF production, but earlier (24-48 h) pretreatments potentiated it. This up-regulating effect was not observed in adrenalectomized mice or when GC synthesis was inhibited with cyanoketone (CK). This effect could not be explained only by the suppression of LPS-induced corticosterone (CS) levels induced by DEX, since a 48-h pretreatment potentiated TNF production without affecting LPS-induced CS levels. On the other hand, mice chronically pretreated with DEX were still responsive to its inhibitory effect on TNF production, thus ruling out the possibility of a decreased responsiveness to GC.

  3. Dexamethasone (DEX induces Osmotic stress transcription factor 1 (Ostf1 through the Akt-GSK3β pathway in freshwater Japanese eel gill cell cultures

    Directory of Open Access Journals (Sweden)

    S. C. Chow

    2013-03-01

    Osmosensing and osmoregulatory processes undertaken in gills of euryhaline fish are coordinated by integrative actions of various signaling molecules/transcriptional factors. Considerable numbers of studies report the hyper- and hypo-osmoregulatory functions of fish gills, by illustrating the process of gill cell remodeling and the modulation of the expression of ion channels/transporters. Comparatively mechanistic information relayed from signal integration to transcriptional regulation in mediating gill cell functions has not yet been elucidated. In this study we demonstrate the functional links from cortisol stimulation, to Akt activation, to the expression of the transcriptional factor, Ostf1. Using the synthetic glucocorticoid receptor agonist, dexamethasone (DEX, Ostf1 expression is found to be activated via glucocorticoid receptor (GR and mediated by the Akt-GSK3β signaling pathway. Pharmacological experiments using kinase inhibitors reveal that the expression of Ostf1 is negatively regulated by Akt activation. The inhibition of PI3K or Akt activities, by the specific kinase inhibitors (wortmannin, LY294002 or SH6, stimulates Ostf1 expression, while a reduction of GSK3β activity by LiCl reduces Ostf1 expression. Collectively, our report for the first time indicates that DEX can induce Ostf1 via GR, with the involvement of the Akt-GSK3β signaling pathway in primary eel gill cell cultures. The data also suggest that Ostf1 may play different roles in gill cell survival during seawater acclimation.

  4. Glucocorticoid receptors on leukemic cells as evidenced by dexamethasone-induced cytolysis and /sup 3/H-dexamethasone binding

    Energy Technology Data Exchange (ETDEWEB)

    Thraenhardt, H; Haefer, R; Zintl, F

    1987-01-01

    The presence of glucocorticoid receptors on the leukemic cells of 33 patients affected with acute lymphatic leukemia (ALL) and 6 patients affected with acute myeloic leukemia (AML) was investigated by dexamethasone-induced cytolysis and (/sup 3/H)-dexamethasone binding. The tests undertaken proved that after 20 hours of incubation 9 of 26 non-T-non-B-ALL (c-ALL and unclassified ALL) and 2 of AML were lysed with dexamethasone; blood lymphocytes and bone marrow leukocytes of healthy donors, however, were not affected. Non-T-non-B-ALL and AML were able to bind essentially more (/sup 3/H)-dexamethasone than T-ALL. There existed no correlation between dexamethasone binding and dexamethasone-induced cytolysis.

  5. Competitive inhibition of [3H]dexamethasone binding to mammary glucocorticoid receptor by leupeptin

    International Nuclear Information System (INIS)

    Hsieh, L.C.C.; Su, C.; Markland, F.S. Jr.

    1987-01-01

    The inhibitory effect of leupeptin on [ 3 H]dexamethasone binding to the glucocorticoid receptor from lactating goat mammary cytosol has been studied. Leupeptin (10 mM) caused a significant (about 35%) inhibition of [ 3 H]dexamethasone binding to glucocorticoid receptor. Binding inhibition is further increased following filtration of unlabeled cytosolic receptor through a Bio-Gel A 0.5-m column. Binding inhibition was partially reversed by monothioglycerol at 10 mM concentration. A double reciprocal plot revealed that leupeptin appears to be a competitive inhibitor of [ 3 H]dexamethasone binding to the glucocorticoid receptor. Low salt sucrose density gradient centrifugation revealed that the leupeptin-treated sample formed a slightly larger (approximately 9 S) receptor complex (leupeptin-free complex sediments at 8 S)

  6. Dexamethasone-Induced Myeloid-Derived Suppressor Cells Prolong Allo Cardiac Graft Survival through iNOS- and Glucocorticoid Receptor-Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2018-02-01

    Full Text Available How to induce immune tolerance without long-term need for immunosuppressive drugs has always been a central problem in solid organ transplantation. Modulating immunoregulatory cells represents a potential target to resolve this problem. Myeloid-derived suppressor cells (MDSCs are novel key immunoregulatory cells in the context of tumor development or transplantation, and can be generated in vitro. However, none of current systems for in vitro differentiation of MDSCs have successfully achieved long-term immune tolerance. Herein, we combined dexamethasone (Dex, which is a classic immune regulatory drug in the clinic, with common MDSCs inducing cytokine granulocyte macrophage colony stimulating factor (GM-CSF to generate MDSCs in vitro. Addition of Dex into GM-CSF system specifically increased the number of CD11b+ Gr-1int/low MDSCs with an enhanced immunosuppressive function in vitro. Adoptive transfer of these MDSCs significantly prolonged heart allograft survival and also favored the expansion of regulatory T cells in vivo. Mechanistic studies showed that inducible nitric oxide sythase (iNOS signaling was required for MDSCs in the control of T-cell response and glucocorticoid receptor (GR signaling played a critical role in the recruitment of transferred MDSCs into allograft through upregulating CXCR2 expression on MDSCs. Blockade of GR signaling with its specific inhibitor or genetic deletion of iNOS reversed the protective effect of Dex-induced MDSCs on allograft rejection. Together, our results indicated that co-application of Dex and GM-CSF may be a new and important strategy for the induction of potent MDSCs to achieve immune tolerance in organ transplantation.

  7. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition

    NARCIS (Netherlands)

    S.W.J. Lamberts (Steven); E.F.C. van Rossum (Liesbeth)

    2004-01-01

    textabstractMost actions of glucocorticoids (GCs) are mediated by the glucocorticoid receptor (GR). The interindividual response to GCs varies considerably, as demonstrated by a variable suppressive response to 0.25-mg dexamethasone (DEX). Several polymorphisms in the gene coding

  8. Dexamethasone Enhances 1α,25-Dihydroxyvitamin D3 Effects by Increasing Vitamin D Receptor Transcription*

    Science.gov (United States)

    Hidalgo, Alejandro A.; Deeb, Kristin K.; Pike, J. Wesley; Johnson, Candace S.; Trump, Donald L.

    2011-01-01

    Calcitriol, the active form of vitamin D, in combination with the glucocorticoid dexamethasone (Dex) has been shown to increase the antitumor effects of calcitriol in squamous cell carcinoma. In this study we found that pretreatment with Dex potentiates calcitriol effects by inhibiting cell growth and increasing vitamin D receptor (VDR) and VDR-mediated transcription. Treatment with actinomycin D inhibits Vdr mRNA synthesis, indicating that Dex regulates VDR expression at transcriptional level. Real time PCR shows that treatment with Dex increases Vdr transcripts in a time- and a dose-dependent manner, indicating that Dex directly regulates expression of Vdr. RU486, an inhibitor of glucocorticoids, inhibits Dex-induced Vdr expression. In addition, the silencing of glucocorticoid receptor (GR) abolishes the induction of Vdr by Dex, indicating that Dex increases Vdr transcripts in a GR-dependent manner. A fragment located 5.2 kb upstream of Vdr transcription start site containing two putative glucocorticoid response elements (GREs) was evaluated using a luciferase-based reporter assay. Treatment with 100 nm Dex induces transcription of luciferase driven by the fragment. Deletion of the GRE distal to transcription start site was sufficient to abolish Dex induction of luciferase. Also, chromatin immunoprecipitation reveals recruitment of GR to distal GRE with Dex treatment. We conclude that Dex increases VDR and vitamin D effects by increasing Vdr de novo transcription in a GR-dependent manner. PMID:21868377

  9. Effects of Maternal Dexamethasone Exposure During Lactation on ...

    African Journals Online (AJOL)

    olayemitoyin

    examined the effects of lactational dexamethasone exposure on metabolic imbalance and oxidative stress marker in the liver ... control. Basal Fasting Blood Sugar (FBS) was also significantly (p<0.001) higher in the Dex ... Exposure to stress and glucocorticoids hormone ..... Energy expenditure and energy intake during.

  10. Preparation and Evaluation of Dexamethasone (DEX/Growth and Differentiation Factor-5 (GDF-5 Surface-Modified Titanium Using β-Cyclodextrin-Conjugated Heparin (CD-Hep for Enhanced Osteogenic Activity In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Dae Hyeok Yang

    2017-08-01

    Full Text Available The most ideal implant models in the dental and orthopedic fields to minimize the failure rate of implantation involve the improvement of osseointegration with host bone. Therefore, a focus of this study is the preparation of surface-modified titanium (Ti samples of disc and screw types using dexamethasone (DEX and/or growth and differentiation factor-5 (GDF-5, as well as the evaluation of their efficacies on bone formation in vitro and in vivo. X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM and contact angle measurement were used to evaluate the surface chemical composition, surface morphology and wettability, respectively. The results showed that implant surfaces were successfully modified with DEX and/or GDF-5, and had rough surfaces along with hydrophilicity. DEX, GDF-5 or DEX/GDF-5 on the surface-modified samples were rapidly released within one day and released for 28 days in a sustained manner. The proliferation and bone formation of MC3T3-E1 cells cultured on pristine and surface-modified implants in vitro were examined by cell counting kit-8 (CCK-8 assay, as well as the measurements of alkaline phosphatase (ALP activity and calcium deposition, respectively. MC3T3-E1 cells cultured on DEX/GDF-5–Ti showed noticeable ALP activity and calcium deposition in vitro. Active bone formation and strong osseointegration occurred at the interface between DEX/GDF-5–Ti and host bone, as evaluated by micro computed-tomography (micro CT analysis. Surface modification using DEX/GDF-5 could be a good method for advanced implants for orthopaedic and dental applications.

  11. Identification of cysteine-644 as the covalent site of attachment of dexamethasone 21-mesylate to murine glucocorticoid receptors in WEHI-7 cells

    International Nuclear Information System (INIS)

    Smith, L.I.; Bodwell, J.E.; Mendel, D.B.; Ciardelli, T.; North, W.G.; Munck, A.

    1988-01-01

    Dexamethasone 21-mesylate is a highly specific synthetic glucocorticoid derivative that binds covalently to glucocorticoid receptors via sulfhydryl groups. The authors have identified the amino acid that reacts with the dexamethasone 21-mesylate by using enzymatic digestion and microsequencing for radiolabel. Nonactivated glucocorticoid receptors obtained from labeling intact WEHI-7 mouse thymoma cells with [ 3 H]dexamethasone 21-mesylate were immunopurified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Trypsin digestion followed by reversed-phase high-performance liquid chromatography (reversed-phase HPLC) produced a single [ 3 H]dexamethasone 21-mesylate labeled peptide. Automated Edman degradation of this peptide revealed that the [ 3 H]dexamethasone 21-mesylate was located at position 5 from the amino terminus. Dual-isotope labeling studies with [ 3 H]dexamethasone 21-mesylate and [ 35 S]methionine demonstrated that this peptide contained methionine. Staphylococcus aureus V8 protease digestion of [ 3 H]dexamethasone 21-mesylate labeled steroid-binding subunits generated a different radiolabeled peptide containing label at position 7 from the amino terminus. On the basis of the published amino acid sequence of the murine glucocorticoid receptor, their data clearly identify cysteine-644 as the single residue in the steroid-binding domain that covalently binds dexamethasone 21-mesylate. They have confirmed this finding by demonstrating that a synthetic peptide representing the amino acid sequence 640-650 of the murine glucocorticoid receptor behaves in an identical manner on reversed-phase HPLC as the trypsin-generated peptide from intact cells

  12. Glucocorticoid Regulation of the Vitamin D Receptor

    Science.gov (United States)

    Hidalgo, Alejandro A.; Trump, Donald L.; Johnson, Candace S.

    2010-01-01

    Many studies indicate calcitriol has potent anti-tumor activity in different types of cancers. However, high levels of vitamin D can produce hypercalcemia in some patients. Glucocorticoids are used to ameliorate hypercalcemia and to enhance calcitriol anti-tumor activity. Calcitriol in combination with the glucocorticoid dexamethasone (Dex) increased vitamin D receptor (VDR) protein levels and ligand binding in squamous cell carcinoma VII (SCC). In this study we found that both calcitriol and Dex induce VDR- and glucocorticoid receptor (GR)-mediated transcription respectively, indicating both hormone receptors are active in SCC. Pre-treatment with Dex increases VDR-mediated transcription at the human CYP24A1 promoter. Whereas, pre-treatment with other steroid hormones, including dihydrotestosterone and R1881, has no effect on VDR-mediated transcription. Real-time PCR indicates treatment with Dex increases Vdr transcripts in a time-dependent manner, suggesting Dex may directly regulate expression of Vdr. Numerous putative glucocorticoid response elements (GREs) were found in the Vdr gene. Chromatin immunoprecipitation (ChIP) assay demonstrated GR binding at several putative GREs located within the mouse Vdr gene. However, none of the putative GREs studied increase GR-mediated transcription in luciferase reporter assays. In an attempt to identify the response element responsible for Vdr transcript regulation, future studies will continue to analyze newly identified GREs more distal from the Vdr gene promoter. PMID:20398752

  13. Antioxidant treatment alters peripheral vascular dysfunction induced by postnatal glucocorticoid therapy in rats.

    Directory of Open Access Journals (Sweden)

    Emilio A Herrera

    2010-02-01

    Full Text Available Postnatal glucocorticoid therapy in premature infants diminishes chronic lung disease, but it also increases the risk of hypertension in adulthood. Since glucocorticoid excess leads to overproduction of free radicals and endothelial dysfunction, this study tested the hypothesis that adverse effects on cardiovascular function of postnatal glucocorticoids are secondary to oxidative stress. Therefore, combined postnatal treatment of glucocorticoids with antioxidants may diminish unwanted effects.Male rat pups received a course of dexamethasone (Dex, or Dex with vitamins C and E (DexCE, on postnatal days 1-6 (P1-6. Controls received vehicle (Ctrl or vehicle with vitamins (CtrlCE. At P21, femoral vascular reactivity was determined via wire myography. Dex, but not DexCE or CtrlCE, increased mortality relative to Ctrl (81.3 versus 96.9 versus 90.6 versus 100% survival, respectively; P<0.05. Constrictor responses to phenylephrine (PE and thromboxane were enhanced in Dex relative to Ctrl (84.7+/-4.8 versus 67.5+/-5.7 and 132.7+/-4.9 versus 107.0+/-4.9% Kmax, respectively; P<0.05; effects that were diminished in DexCE (58.3+/-7.5 and 121.1+/-4.3% Kmax, respectively; P<0.05. Endothelium-dependent dilatation was depressed in Dex relative to Ctrl (115.3+/-11.9 versus 216.9+/-18.9, AUC; P<0.05; however, this effect was not restored in DexCE (68.3+/-8.3, AUC. Relative to Ctrl, CtrlCE alone diminished PE-induced constriction (43.4+/-3.7% Kmax and the endothelium-dependent dilatation (74.7+/-8.7 AUC; P<0.05.Treatment of newborn rats with dexamethasone has detrimental effects on survival and peripheral vasoconstrictor function. Coadministration of dexamethasone with antioxidant vitamins improves survival and partially restores vascular dysfunction. Antioxidant vitamins alone affect peripheral vascular function.

  14. Ginsenoside Rh1 Improves the Effect of Dexamethasone on Autoantibodies Production and Lymphoproliferation in MRL/lpr Mice

    Directory of Open Access Journals (Sweden)

    Yinglu Feng

    2015-01-01

    Full Text Available Ginsenoside Rh1 is able to upregulate glucocorticoid receptor (GR level, suggesting Rh1 may improve glucocorticoid efficacy in hormone-dependent diseases. Therefore, we investigated whether Rh1 could enhance the effect of dexamethasone (Dex in the treatment of MRL/lpr mice. MRL/lpr mice were treated with vehicle, Dex, Rh1, or Dex + Rh1 for 4 weeks. Dex significantly reduced the proteinuria and anti-dsDNA and anti-ANA autoantibodies. The levels of proteinuria and anti-dsDNA and anti-ANA autoantibodies were further decreased in Dex + Rh1 group. Dex, Rh1, or Dex + Rh1 did not alter the proportion of CD4+ splenic lymphocytes, whereas the proportion of CD8+ splenic lymphocytes was significantly increased in Dex and Dex + Rh1 groups. Dex + Rh1 significantly decreased the ratio of CD4+/CD8+ splenic lymphocytes compared with control. Con A-induced CD4+ splenic lymphocytes proliferation was increased in Dex-treated mice and was inhibited in Dex + Rh1-treated mice. Th1 cytokine IFN-γ mRNA was suppressed and Th2 cytokine IL-4 mRNA was increased by Dex. The effect of Dex on IFN-γ and IL-4 mRNA was enhanced by Rh1. In conclusion, our data suggest that Rh1 may enhance the effect of Dex in the treatment of MRL/lpr mice through regulating CD4+ T cells activation and Th1/Th2 balance.

  15. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression.

    Science.gov (United States)

    Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S

    2016-02-11

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  16. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    Directory of Open Access Journals (Sweden)

    Terry D. Hinds

    2016-02-01

    Full Text Available Unlike the glucocorticoid receptor α (GRα, GR β (GRβ has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx and muscle ring finger 1 (MuRF1 response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  17. Mechanisms of dexamethasone-induced disturbed sleep and fatigue in paediatric patients receiving treatment for ALL.

    Science.gov (United States)

    Vallance, Kelly; Liu, Wei; Mandrell, Belinda N; Panetta, John C; Gattuso, Jami S; Hockenberry, Marilyn; Zupanec, Sue; Yang, Lei; Yang, Jie; Hinds, Pamela S

    2010-07-01

    Dexamethasone contributes to high cure rates in paediatric acute lymphoblastic leukaemia (ALL) but significantly and adversely alters sleep and fatigue. Herein we explored three mechanisms (pharmacokinetics, serum albumin and pharmacogenetics) through which dexamethasone may cause debilitating fatigue and disrupted sleep. We enrolled 100 patients on a 10-d study: 5-d of no dexamethasone (OFF DEX) followed by 5-d of dexamethasone (ON DEX) during continuation chemotherapy. Sleep variables were collected with continuous actigraphy on days 1 through 5, both OFF DEX and ON DEX. On days 2 and 5 of each 5-d period, parents and patients 7 years of age and older completed a sleep diary and Fatigue Scale questionnaire. Blood was collected at 0 (pre-dexamethasone), 1, 2, 4 and 8 h after the first oral dexamethasone dose for pharmacokinetic analysis. Serum albumin concentration was retrospectively analysed in stored samples. Patient DNA was genotyped for 99 polymorphic loci in candidate genes associated with glucocorticoid metabolism. Dexamethasone clearance was significantly greater in younger patients than in older ones and in lower risk patients. In multiple regression models, risk group was significantly related to pharmacokinetic parameters. We found that polymorphisms in three genes (AHSG, IL6, POLDIP3) were significantly associated with sleep measures but not with fatigue. Risk group had the most significant relationship with disrupted sleep in patients while on dexamethasone. Serum albumin levels had neither a direct relationship with sleep or fatigue variables nor an indirect relationship through systemic exposure to dexamethasone. We identified candidate genes that may help explain the adverse events of disrupted sleep in paediatric patients receiving dexamethasone. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Myostatin Suppression of Akirin1 Mediates Glucocorticoid-Induced Satellite Cell Dysfunction

    Science.gov (United States)

    Dong, Yanjun; Pan, Jenny S.; Zhang, Liping

    2013-01-01

    Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production. PMID:23516508

  19. Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction.

    Directory of Open Access Journals (Sweden)

    Yanjun Dong

    Full Text Available Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production.

  20. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    International Nuclear Information System (INIS)

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-01-01

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX

  1. Distinct cytoplasmic domains of the growth hormone receptor are required for glucocorticoid- and phorbol ester-induced decreases in growth hormone (GH) binding. These domains are different from that reported for GH-induced receptor internalization

    DEFF Research Database (Denmark)

    King, A P; Tseng, M J; Logsdon, C D

    1996-01-01

    Glucocorticoids inhibit growth in children and antagonize the growth-promoting action of GH in peripheral tissues. Recently, they have been shown to decrease GH binding. In this study we examine the molecular mechanisms by which the glucocorticoid dexamethasone (DEX) and the phorbol ester phorbol...... of GH binding are also observed in a Chinese hamster ovary (CHO) cell line stably transfected with a rat liver GHR cDNA, further arguing that DEX and PMA act post-translationally on GHR. Using mutant GHRs stably expressed in CHO cells, amino acids 455-506 and tyrosines 333 and/or 338 of GHR were shown...... to be required for maximal DEX-induced inhibition of GH binding. DEX decreased GH binding to a GHR mutant F346A, which is reported to be deficient in ligand-induced internalization, suggesting that DEX decreases GH binding by a mechanism distinct from that of ligand-induced GHR internalization. PMA reduced GH...

  2. Dexamethasone stimulates expression of C-type Natriuretic Peptide in chondrocytes

    Directory of Open Access Journals (Sweden)

    Beier Frank

    2006-11-01

    Full Text Available Abstract Background Growth of endochondral bones is regulated through the activity of cartilaginous growth plates. Disruption of the physiological patterns of chondrocyte proliferation and differentiation – such as in endocrine disorders or in many different genetic diseases (e.g. chondrodysplasias – generally results in dwarfism and skeletal defects. For example, glucocorticoid administration in children inhibits endochondral bone growth, but the molecular targets of these hormones in chondrocytes remain largely unknown. In contrast, recent studies have shown that C-type Natriuretic Peptide (CNP is an important anabolic regulator of cartilage growth, and loss-of-function mutations in the human CNP receptor gene cause dwarfism. We asked whether glucocorticoids could exert their activities by interfering with the expression of CNP or its downstream signaling components. Methods Primary mouse chondrocytes in monolayer where incubated with the synthetic glucocorticoid Dexamethasone (DEX for 12 to 72 hours. Cell numbers were determined by counting, and real-time PCR was performed to examine regulation of genes in the CNP signaling pathway by DEX. Results We show that DEX does influence expression of key genes in the CNP pathway. Most importantly, DEX significantly increases RNA expression of the gene encoding CNP itself (Nppc. In addition, DEX stimulates expression of Prkg2 (encoding cGMP-dependent protein kinase II and Npr3 (natriuretic peptide decoy receptor genes. Conversely, DEX was found to down-regulate the expression of the gene encoding its receptor, Nr3c1 (glucocorticoid receptor, as well as the Npr2 gene (encoding the CNP receptor. Conclusion Our data suggest that the growth-suppressive activities of DEX are not due to blockade of CNP signaling. This study reveals a novel, unanticipated relationship between glucocorticoid and CNP signaling and provides the first evidence that CNP expression in chondrocytes is regulated by endocrine

  3. Relationship of glucocorticoid receptor expression in peripheral blood mononuclear cells and the cochlea of guinea pigs and effects of dexamethasone administration.

    Directory of Open Access Journals (Sweden)

    Ling Lu

    Full Text Available BACKGROUND: Glucocorticoids (GCs are widely used to treat sudden sensorineural hearing loss (SSNHL and significantly improve hearing. However, GC insensitivity has been observed in some patients of SSNHL. OBJECTIVE: To study the correlation between GR expression in peripheral blood mononuclear cells (PBMCs and in the cochlea of guinea pigs at mRNA and protein levels. METHODS: One group of guinea pigs received dexamethasone (10 mg/kg/day intraperitoneally for 7 consecutive days (dexamethasone group, and another group of guinea pigs received normal saline (control group. Real time PCR and Western blotting were used to detect the expression of GR mRNA and GR protein in PBMCs and the cochleae. RESULTS: The GR mRNA and GR protein were detected in both PBMCs and the cochlear tissue of guinea pigs. GR mRNA and GR protein levels in PBMCs were positively correlated with those in the cochlea. The expression of GR mRNA and GR protein was significantly increased in the dexamethasone group compared to the control group. CONCLUSIONS: Levels of GR mRNA and GR protein in the PBMCs were positively correlated with those in the cochlea of guinea pigs. Systemic dexamethasone treatment can significantly up-regulate GR expression in PBMCs and in the cochlea. Measurement of the GR level in PBMCs could be used as an indicator of GR level in the cochlea.

  4. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells1

    Science.gov (United States)

    Miller, Aaron L; Johnson, Betty H; Medh, Rheem D; Townsend, Courtney M; Thompson, E Brad

    2002-01-01

    Abstract Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone (Dex) and two polyamine inhibitors, difluoromethylornithine (DFMO) and methyl glyoxal bis guanylhydrazone (MGBG), on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity. PMID:11922393

  5. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells

    Directory of Open Access Journals (Sweden)

    Aaron L. Miller

    2002-01-01

    Full Text Available Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone. (20Dex and two polyamine inhibitors, difluoromethylornithine. (20DFMO and methyl glyoxal bis guanylhydrazone. (20MGBG, on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase. (20ODC, the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity.

  6. Melatonin protects chondrocytes from impairment induced by glucocorticoids via NAD+-dependent SIRT1.

    Science.gov (United States)

    Yang, Wei; Kang, Xiaomin; Qin, Na; Li, Feng; Jin, Xinxin; Ma, Zhengmin; Qian, Zhuang; Wu, Shufang

    2017-10-01

    Intra-articular injection of glucocorticoids is used to relieve pain and inflammation in osteoarthritis patients, which is occasionally accompanied with the serious side effects of glucocorticoids in collagen-producing tissue. Melatonin is the major hormone released from the pineal gland and its beneficial effects on cartilage has been suggested. In the present study, we investigated the protective role of melatonin on matrix degeneration in chondrocytes induced by dexamethasone (Dex). The chondrocytes isolated from mice knee joint were treated with Dex, melatonin, EX527 and siRNA targeted for SIRT6, respectively. Dex treatment induced the loss of the extracellular matrix, NAD + /NADH ratio and NADPH concentration in chondrocytes. Melatonin alone have no effect on the quantity of proteoglycans and collagen type IIa1, however, the pretreatment of melatonin reversed the negative effects induced by Dex. Meanwhile, the significant decrease in NAD + /NADH ratio and NADPH concentration in Dex group were up-regulated by pretreatment of melatonin. Furthermore, it was revealed that inhibition of SIRT1 blocked the protective effects of melatonin. The enhancement of NAD + -dependent SIRT1 activity contributes to the chondroprotecfive effects of melatonin, which has a great benefit to prevent dexamethasone-induced chondrocytes impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A mechanistic study on the effect of dexamethasone in moderating cell death in Chinese Hamster Ovary cell cultures.

    Science.gov (United States)

    Jing, Ying; Qian, Yueming; Ghandi, Mahmoud; He, Aiqing; Borys, Michael C; Pan, Shih-Hsie; Li, Zheng Jian

    2012-01-01

    Dexamethasone (DEX) was previously shown (Jing et al., Biotechnol Bioeng. 2010;107:488-496) to play a dual role in increasing sialylation of recombinant glycoproteins produced by Chinese Hamster Ovary (CHO) cells. DEX addition increased sialic acid levels of a recombinant fusion protein through increased expression of α2,3-sialyltransferase and β1,4-galactosyltransferase, but also decreased the sialidase-mediated, extracellular degradation of sialic acid through slowing cell death at the end of the culture period. This study examines the underlying mechanism for this cytoprotective action by studying the transcriptional response of the CHO cell genome upon DEX treatment using DNA microarrays and gene ontology term analysis. Many of those genes showing a significant transcriptional response were associated with the regulation of programmed cell death. The gene with the highest change in expression level, as validated by Quantitative PCR assays with TaqMan® probes and confirmed by Western Blot analysis, was the antiapoptotic gene Tsc22d3, also referred to as GILZ (glucocorticoid-induced leucine zipper). The pathway by which DEX suppressed cell death towards the end of the culture period was also confirmed by showing involvement of glucocorticoid receptors and GILZ through studies using the glucocorticoid antagonist mifepristone (RU-486). These findings advance the understanding of the mechanism by which DEX suppresses cell death in CHO cells and provide a rationale for the application of glucocorticoids in CHO cell culture processes. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  8. Dexamethasone impairs hypoxia-inducible factor-1 function

    International Nuclear Information System (INIS)

    Wagner, A.E.; Huck, G.; Stiehl, D.P.; Jelkmann, W.; Hellwig-Buergel, T.

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of α- and β-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1α levels in the cytosol of HepG2 cells, while nuclear HIF-1α levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in a reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients

  9. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    International Nuclear Information System (INIS)

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S.

    1990-01-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with [2-3H]glucose and HGP with [6-3H]glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). [2-3H]- minus [6-3H]glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP

  10. Protective Effects of Clenbuterol against Dexamethasone-Induced Masseter Muscle Atrophy and Myosin Heavy Chain Transition.

    Directory of Open Access Journals (Sweden)

    Daisuke Umeki

    Full Text Available Glucocorticoid has a direct catabolic effect on skeletal muscle, leading to muscle atrophy, but no effective pharmacotherapy is available. We reported that clenbuterol (CB induced masseter muscle hypertrophy and slow-to-fast myosin heavy chain (MHC isoform transition through direct muscle β2-adrenergic receptor stimulation. Thus, we hypothesized that CB would antagonize glucocorticoid (dexamethasone; DEX-induced muscle atrophy and fast-to-slow MHC isoform transition.We examined the effect of CB on DEX-induced masseter muscle atrophy by measuring masseter muscle weight, fiber diameter, cross-sectional area, and myosin heavy chain (MHC composition. To elucidate the mechanisms involved, we used immunoblotting to study the effects of CB on muscle hypertrophic signaling (insulin growth factor 1 (IGF1 expression, Akt/mammalian target of rapamycin (mTOR pathway, and calcineurin pathway and atrophic signaling (Akt/Forkhead box-O (FOXO pathway and myostatin expression in masseter muscle of rats treated with DEX and/or CB.Masseter muscle weight in the DEX-treated group was significantly lower than that in the Control group, as expected, but co-treatment with CB suppressed the DEX-induced masseter muscle atrophy, concomitantly with inhibition of fast-to-slow MHC isoforms transition. Activation of the Akt/mTOR pathway in masseter muscle of the DEX-treated group was significantly inhibited compared to that of the Control group, and CB suppressed this inhibition. DEX also suppressed expression of IGF1 (positive regulator of muscle growth, and CB attenuated this inhibition. Myostatin protein expression was unchanged. CB had no effect on activation of the Akt/FOXO pathway. These results indicate that CB antagonizes DEX-induced muscle atrophy and fast-to-slow MHC isoform transition via modulation of Akt/mTOR activity and IGF1 expression. CB might be a useful pharmacological agent for treatment of glucocorticoid-induced muscle atrophy.

  11. Effects of prenatal dexamethasone treatment on physical growth, pituitary-adrenal hormones, and performance of motor, motivational, and cognitive tasks in juvenile and adolescent common marmoset monkeys.

    Science.gov (United States)

    Hauser, Jonas; Knapman, Alana; Zürcher, Nicole R; Pilloud, Sonia; Maier, Claudia; Diaz-Heijtz, Rochellys; Forssberg, Hans; Dettling, Andrea; Feldon, Joram; Pryce, Christopher R

    2008-12-01

    Synthetic glucocorticoids such as dexamethasone (DEX) are commonly used to prevent respiratory distress syndrome in preterm infants, but there is emerging evidence of subsequent neurobehavioral abnormalities (e.g. problems with inattention/hyperactivity). In the present study, we exposed pregnant common marmosets (Callithrix jacchus, primates) to daily repeated DEX (5 mg/kg by mouth) during either early (d 42-48) or late (d 90-96) pregnancy (gestation period of 144 days). Relative to control, and with a longitudinal design, we investigated DEX effects in offspring in terms of physical growth, plasma ACTH and cortisol titers, social and maintenance behaviors, skilled motor reaching, motivation for palatable reward, and learning between infancy and adolescence. Early DEX resulted in reduced sociability in infants and increased motivation for palatable reward in adolescents. Late DEX resulted in a mild transient increase in knee-heel length in infants and enhanced reversal learning of stimulus-reward association in adolescents. There was no effect of either early or late DEX on basal plasma ACTH or cortisol titers. Both treatments resulted in impaired skilled motor reaching in juveniles, which attenuated in early DEX but persisted in late DEX across test sessions. The increased palatable-reward motivation and decreased social motivation observed in early DEX subjects provide experimental support for the clinical reports that prenatal glucocorticoid treatment impairs social development and predisposes to metabolic syndrome. These novel primate findings indicate that fetal glucocorticoid overexposure can lead to abnormal development of motor, affective, and cognitive behaviors. Importantly, the outcome is highly dependent upon the timing of glucocorticoid overexposure.

  12. Dexamethasone rapidly increases GABA release in the dorsal motor nucleus of the vagus via retrograde messenger-mediated enhancement of TRPV1 activity.

    Directory of Open Access Journals (Sweden)

    Andrei V Derbenev

    Full Text Available Glucocorticoids influence vagal parasympathetic output to the viscera via mechanisms that include modulation of neural circuitry in the dorsal vagal complex, a principal autonomic regulatory center. Glucocorticoids can modulate synaptic neurotransmitter release elsewhere in the brain by inducing release of retrograde signalling molecules. We tested the hypothesis that the glucocorticoid agonist dexamethasone (DEX modulates GABA release in the rat dorsal motor nucleus of the vagus (DMV. Whole-cell patch-clamp recordings revealed that DEX (1-10 µM rapidly (i.e. within three minutes increased the frequency of tetrodotoxin-resistant, miniature IPSCs (mIPSCs in 67% of DMV neurons recorded in acutely prepared slices. Glutamate-mediated mEPSCs were also enhanced by DEX (10 µM, and blockade of ionotropic glutamate receptors reduced the DEX effect on mIPSC frequency. Antagonists of type I or II corticosteroid receptors blocked the effect of DEX on mIPSCs. The effect was mimicked by application of the membrane-impermeant BSA-conjugated DEX, and intracellular blockade of G protein function with GDP βS in the recorded cell prevented the effect of DEX. The enhancement of GABA release was blocked by the TRPV1 antagonists, 5'-iodoresiniferatoxin or capsazepine, but was not altered by the cannabinoid type 1 receptor antagonist AM251. The DEX effect was prevented by blocking fatty acid amide hydrolysis or by inhibiting anandamide transport, implicating involvement of the endocannabinoid system in the response. These findings indicate that DEX induces an enhancement of GABA release in the DMV, which is mediated by activation of TRPV1 receptors on afferent terminals. The effect is likely induced by anandamide or other 'endovanilloid', suggesting activation of a local retrograde signal originating from DMV neurons to enhance synaptic inhibition locally in response to glucocorticoids.

  13. Glucocorticoids Enhance Muscle Proteolysis through a Myostatin-Dependent Pathway at the Early Stage.

    Science.gov (United States)

    Wang, Ruxia; Jiao, Hongchao; Zhao, Jingpeng; Wang, Xiaojuan; Lin, Hai

    2016-01-01

    Myostatin, a member of the TGF-β superfamily of secreted proteins, is expressed primarily in skeletal muscle. It negatively regulates muscle mass and is associated with glucocorticoid-induced muscle atrophy. However, it remains unclear whether myostatin is involved in glucocorticoid-induced muscle protein turnover. The aim of the present study was to investigate the role of myostatin in protein metabolism during dexamethasone (DEX) treatment. Protein synthesis rates and the expression of the genes for myostatin, ubiquitin-proteasome atrogin-1, MuRF1, FoxO1/3a and mTOR/p70S6K were determined. The results show that DEX decreased (Pmyostatin. DEX increased (P0.05). The phosphorylation levels of mTOR and p70S6K were decreased by DEX treatment (Pmyostatin (P 0.05). In conclusion, the present study suggests that the myostatin signalling pathway is associated with glucocorticoid-induced muscle protein catabolism at the beginning of exposure. Myostatin is not a main pathway associated with the suppression of muscle protein synthesis by glucocorticoids.

  14. Dexamethasone suppression test

    Science.gov (United States)

    DST; ACTH suppression test; Cortisol suppression test ... During this test, you will receive dexamethasone. This is a strong man-made (synthetic) glucocorticoid medicine. Afterward, your blood is drawn ...

  15. LXR agonist rescued the deficit in the proliferation of the cerebellar granule cells induced by dexamethasone

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Xuting; Zhong, Hongyu; Li, Fen; Cai, Yulong; Li, Xin; Wang, Lian; Fan, Xiaotang, E-mail: fanxiaotang2005@163.com

    2016-09-02

    Dexamethasone (DEX) exposure during early postnatal life produces permanent neuromotor and intellectual deficits and stunts cerebellar growth. The liver X receptor (LXR) plays important roles in CNS development. However, the effects of LXR on the DEX-mediated impairment of cerebellar development remain undetermined. Thus, mice were pretreated with LXR agonist TO901317 (TO) and were later exposed to DEX to evaluate its protective effects on DEX-mediated deficit during cerebellar development. The results showed that an acute exposure of DEX on postnatal day 7 resulted in a significant impairment in cerebellar development and decreased the proliferation of granule neuron precursors in the external granule layer of cerebellum. This effect was attenuated by pretreatment with TO. We further found that the decrease in the proliferation caused by DEX occurred via up-regulation of glucocorticoid receptor and p27kip1, which could be partially prevented by LXR agonist pretreatment. Overall, our results suggest that LXR agonist pretreatment could protect against DEX-induced deficits in cerebellar development in postnatal mice and may thus be perspective recruited to counteract such GC side effects.

  16. LXR agonist rescued the deficit in the proliferation of the cerebellar granule cells induced by dexamethasone

    International Nuclear Information System (INIS)

    Bian, Xuting; Zhong, Hongyu; Li, Fen; Cai, Yulong; Li, Xin; Wang, Lian; Fan, Xiaotang

    2016-01-01

    Dexamethasone (DEX) exposure during early postnatal life produces permanent neuromotor and intellectual deficits and stunts cerebellar growth. The liver X receptor (LXR) plays important roles in CNS development. However, the effects of LXR on the DEX-mediated impairment of cerebellar development remain undetermined. Thus, mice were pretreated with LXR agonist TO901317 (TO) and were later exposed to DEX to evaluate its protective effects on DEX-mediated deficit during cerebellar development. The results showed that an acute exposure of DEX on postnatal day 7 resulted in a significant impairment in cerebellar development and decreased the proliferation of granule neuron precursors in the external granule layer of cerebellum. This effect was attenuated by pretreatment with TO. We further found that the decrease in the proliferation caused by DEX occurred via up-regulation of glucocorticoid receptor and p27kip1, which could be partially prevented by LXR agonist pretreatment. Overall, our results suggest that LXR agonist pretreatment could protect against DEX-induced deficits in cerebellar development in postnatal mice and may thus be perspective recruited to counteract such GC side effects.

  17. The role of growth retardation in lasting effects of neonatal dexamethasone treatment on hippocampal synaptic function.

    Directory of Open Access Journals (Sweden)

    Yu-Chen Wang

    Full Text Available BACKGROUND: Dexamethasone (DEX, a synthetic glucocorticoid, is commonly used to prevent or lessen the morbidity of chronic lung disease in preterm infants. However, evidence is now increasing that this clinical practice negatively affects somatic growth and may result in long-lasting neurodevelopmental deficits. We therefore hypothesized that supporting normal somatic growth may overcome the lasting adverse effects of neonatal DEX treatment on hippocampal function. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we developed a rat model using a schedule of tapering doses of DEX similar to that used in premature infants and examined whether the lasting influence of neonatal DEX treatment on hippocampal synaptic plasticity and memory performance are correlated with the deficits in somatic growth. We confirmed that neonatal DEX treatment switched the direction of synaptic plasticity in hippocampal CA1 region, favoring low-frequency stimulation- and group I metabotropic glutamate receptor agonist (S-3,5,-dihydroxyphenylglycine-induced long-term depression (LTD, and opposing the induction of long-term potentiation (LTP by high-frequency stimulation in the adolescent period. The effects of DEX on LTP and LTD were correlated with an increase in the autophosphorylation of Ca(2+/calmodulin-dependent protein kinase II at threonine-286 and a decrease in the protein phosphatase 1 expression. Neonatal DEX treatment resulted in a disruption of memory retention subjected to object recognition task and passive avoidance learning. The adverse effects of neonatal DEX treatment on hippocampal synaptic plasticity and memory performance of the animals from litters culled to 4 pups were significantly less than those for the 8-pup litters. However, there was no significant difference in maternal care between groups. CONCLUSION/SIGNIFICANCE: Our results demonstrate that growth retardation plays a crucial role in DEX-induced long-lasting influence of

  18. Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring.

    Directory of Open Access Journals (Sweden)

    Lee O'Sullivan

    Full Text Available Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5 on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX exposed fetuses were growth restricted compared to saline treated controls (SAL at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ~3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.

  19. Microarray analyses of glucocorticoid and vitamin D3 target genes in differentiating cultured human podocytes.

    Directory of Open Access Journals (Sweden)

    Xiwen Cheng

    Full Text Available Glomerular podocytes are highly differentiated epithelial cells that are key components of the kidney filtration units. Podocyte damage or loss is the hallmark of nephritic diseases characterized by severe proteinuria. Recent studies implicate that hormones including glucocorticoids (ligand for glucocorticoid receptor and vitamin D3 (ligand for vitamin D receptor protect or promote repair of podocytes from injury. In order to elucidate the mechanisms underlying hormone-mediated podocyte-protecting activity from injury, we carried out microarray gene expression studies to identify the target genes and corresponding pathways in response to these hormones during podocyte differentiation. We used immortalized human cultured podocytes (HPCs as a model system and carried out in vitro differentiation assays followed by dexamethasone (Dex or vitamin D3 (VD3 treatment. Upon the induction of differentiation, multiple functional categories including cell cycle, organelle dynamics, mitochondrion, apoptosis and cytoskeleton organization were among the most significantly affected. Interestingly, while Dex and VD3 are capable of protecting podocytes from injury, they only share limited target genes and affected pathways. Compared to VD3 treatment, Dex had a broader and greater impact on gene expression profiles. In-depth analyses of Dex altered genes indicate that Dex crosstalks with a broad spectrum of signaling pathways, of which inflammatory responses, cell migration, angiogenesis, NF-κB and TGFβ pathways are predominantly altered. Together, our study provides new information and identifies several new avenues for future investigation of hormone signaling in podocytes.

  20. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages

    International Nuclear Information System (INIS)

    He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro; Nakakura, Takashi; Komachi, Mayumi; Murata, Naoya; Takano, Mutsumi; Tomura, Hideaki; Sato, Koichi; Okajima, Fumikazu

    2011-01-01

    Highlights: ► Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. ► GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-α production. ► The enhancement of the GC-induced actions was lost by TDAG8 deficiency. ► GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-α, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-α production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.

  1. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro; Nakakura, Takashi; Komachi, Mayumi; Murata, Naoya; Takano, Mutsumi; Tomura, Hideaki; Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Okajima, Fumikazu, E-mail: fokajima@showa.gunma-u.ac.jp [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. Black-Right-Pointing-Pointer GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-{alpha} production. Black-Right-Pointing-Pointer The enhancement of the GC-induced actions was lost by TDAG8 deficiency. Black-Right-Pointing-Pointer GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-{alpha}, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-{alpha} production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.

  2. DHEA supplementation to dexamethasone-treated rabbits alleviates oxidative stress in kidney-cortex and attenuates albuminuria.

    Science.gov (United States)

    Kiersztan, Anna; Trojan, Nina; Tempes, Aleksandra; Nalepa, Paweł; Sitek, Joanna; Winiarska, Katarzyna; Usarek, Michał

    2017-11-01

    Our recent study has shown that dehydroepiandrosterone (DHEA) administered to rabbits partially ameliorated several dexamethasone (dexP) effects on hepatic and renal gluconeogenesis, insulin resistance and plasma lipid disorders. In the current investigation, we present the data on DHEA protective action against dexP-induced oxidative stress and albuminuria in rabbits. Four groups of adult male rabbits were used in the in vivo experiment: (1) control, (2) dexP-treated, (3) DHEA-treated and (4) both dexP- and DHEA-treated. Administration of dexP resulted in accelerated generation of renal hydroxyl free radicals (HFR) and malondialdehyde (MDA), accompanied by diminished superoxide dismutase (SOD) and catalase activities and a dramatic rise in urinary albumin/creatinine ratio. Treatment with DHEA markedly reduced dexP-induced oxidative stress in kidney-cortex due to a decline in NADPH oxidase activity and enhancement of catalase activity. Moreover, DHEA effectively attenuated dexP-evoked albuminuria. Surprisingly, dexP-treated rabbits exhibited elevation of GSH/GSSG ratio, accompanied by a decrease in glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities as well as an increase in glucose-6-phosphate dehydrogenase (G6PDH) activity. Treatment with DHEA resulted in a decline in GSH/GSSG ratio and glutathione reductase (GR) activity, accompanied by an elevation of GPx activity. Interestingly, rabbits treated with both dexP and DHEA remained the control values of GSH/GSSG ratio. As the co-administration of DHEA with dexP resulted in (i) reduction of oxidative stress in kidney-cortex, (ii) attenuation of albuminuria and (iii) normalization of glutathione redox state, DHEA might limit several undesirable renal side effects during chronic GC treatment of patients suffering from allergies, asthma, rheumatoid arthritis and lupus. Moreover, its supplementation might be particularly beneficial for the therapy of patients with glucocorticoid-induced diabetes

  3. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shiguang [Department of Intensive Care Unit, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Mao, Li [Department of Endocrinology, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Ji, Feng, E-mail: huaiaifengjidr@163.com [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Shouguo; Xie, Yue; Fei, Haodong [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Xiao-dong, E-mail: xiaodongwangsz@163.com [The Center of Diagnosis and Treatment for Children' s Bone Diseases, The Children' s Hospital Affiliated to Soochow University, Suzhou (China)

    2016-03-18

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  4. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    International Nuclear Information System (INIS)

    Guo, Shiguang; Mao, Li; Ji, Feng; Wang, Shouguo; Xie, Yue; Fei, Haodong; Wang, Xiao-dong

    2016-01-01

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  5. Regulation of NAD(P)H:quininone oxidoreductase by glucocorticoids

    International Nuclear Information System (INIS)

    Pinaire, J.A.; Xiao, G.-H.; Falkner, K.C.; Prough, R.A.

    2004-01-01

    Previous studies in neonatal and adolescent rats as well as adrenalectomized rats have demonstrated that glucocorticoids regulate the expression of the rat NAD(P)H:quinone oxidoreductase gene (QOR). We used primary cultures of rat adult hepatocytes to document that added glucorticoids repress both the basal and 1,2-benzanthracene-induced expression of QOR mRNA by 65-70%. QOR enzyme activity and protein were concomitantly suppressed as well. The monotonic concentration response for repression of QOR gene products up to 100 μM DEX concentration demonstrated that the glucocorticoid receptor (GR) was most likely involved in this process. The lack of effect at higher concentration rules out a role for the Pregnane X receptor in this regulation by DEX. In addition, the anti-glucorticoid RU38486 blocked this negative regulation and the protein synthesis inhibitor cycloheximide had no effect on this repression process. Similar results of GR dependence were observed using a luciferase reporter construct containing the 5'-flanking region of the human QOR gene using HepG2 cells. Collectively, these results demonstrate that GR must directly participate in the negative regulation of QOR gene expression by dexamethasone and other glucocorticoids in vivo

  6. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    Directory of Open Access Journals (Sweden)

    Wei Ling Lim

    2016-08-01

    Full Text Available Maternal dexamethasone (DEX; a glucocorticoid receptor agonist exposure delays pubertal onset and alters reproductive behaviour in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP under the control of GnRH promoter. Pregnant females were administered with DEX (0.1mg/kg or vehicle (VEH, water daily during gestation day 13-20. Confocal imaging was used to examine the spine density of EGFP-GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP-GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0 males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the post synaptic marker molecule, post-synaptic density 95 was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood.

  7. Caffeic acid phenethyl ester protects against glucocorticoid-induced osteoporosis in vivo: Impact on oxidative stress and RANKL/OPG signals

    International Nuclear Information System (INIS)

    Tolba, Mai F.; El-Serafi, Ahmed T.; Omar, Hany A.

    2017-01-01

    Glucocorticoid-induced osteoporosis (GIO) is one of the most common causes of secondary osteoporosis. Given that glucocorticoids are considered as a main component of the treatment protocols for a variety of inflammation and immune-mediated diseases besides its use as adjuvant to several chemotherapeutic agents, it is crucial to find ways to overcome this critical adverse effect. Caffeic acid phenethyl ester (CAPE), which is a natural compound derived from honeybee propolis displayed promising antiosteoporotic effects against mechanical bone injury in various studies. The current work aimed at investigating the potential protective effect of CAPE against GIO in vivo with emphasis on the modulation of oxidative status and receptor activator of NF-kB ligand (RANKL)/osteoprotegrin (OPG) signaling. The results showed that CAPE opposed dexamethasone (DEX)-mediated alterations in bone histology and tartarate-resistant acid phosphatase (TRAP) activity. In addition, CAPE restored oxidative balance, Runt-related transcription factor 2 (RunX2) expression and reduced caspase-3 activity in femur tissues. Co-administration of CAPE with DEX normalized RANKL/OPG ratio and Akt activation indicating a reduction in DEX-osteoclastogenesis. In conclusion, concurrent treatment of CAPE with DEX exhibited promising effects in the protection against DEX-induced osteoporosis through opposing osteoclastogenesis and protecting osteoblasts. The potent antioxidant activity of CAPE is, at least in part, involved in its anti-apoptotic effects and modulation of RunX2 and RANKL/OPG signals. The use of CAPE-enriched propolis formulas is strongly recommended for patients on chronic glucocorticoid therapy to help in the attenuation of GIO. - Highlights: • Caffeic acid phenethyl ester (CAPE) counteracts DEX-induced osteoporosis. • CAPE hinders DEX-induced alterations in oxidation parameters as GSH, SOD and MDA. • CAPE opposes osteoclastogenesis via suppressing RANL/OPG ratio and Akt signals.

  8. Caffeic acid phenethyl ester protects against glucocorticoid-induced osteoporosis in vivo: Impact on oxidative stress and RANKL/OPG signals

    Energy Technology Data Exchange (ETDEWEB)

    Tolba, Mai F. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566 (Egypt); Chapman University, Irvine 92618, CA (United States); El-Serafi, Ahmed T. [Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272 (United Arab Emirates); Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia (Egypt); Omar, Hany A., E-mail: hanyomar@sharjah.ac.ae [Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272 (United Arab Emirates); Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt)

    2017-06-01

    Glucocorticoid-induced osteoporosis (GIO) is one of the most common causes of secondary osteoporosis. Given that glucocorticoids are considered as a main component of the treatment protocols for a variety of inflammation and immune-mediated diseases besides its use as adjuvant to several chemotherapeutic agents, it is crucial to find ways to overcome this critical adverse effect. Caffeic acid phenethyl ester (CAPE), which is a natural compound derived from honeybee propolis displayed promising antiosteoporotic effects against mechanical bone injury in various studies. The current work aimed at investigating the potential protective effect of CAPE against GIO in vivo with emphasis on the modulation of oxidative status and receptor activator of NF-kB ligand (RANKL)/osteoprotegrin (OPG) signaling. The results showed that CAPE opposed dexamethasone (DEX)-mediated alterations in bone histology and tartarate-resistant acid phosphatase (TRAP) activity. In addition, CAPE restored oxidative balance, Runt-related transcription factor 2 (RunX2) expression and reduced caspase-3 activity in femur tissues. Co-administration of CAPE with DEX normalized RANKL/OPG ratio and Akt activation indicating a reduction in DEX-osteoclastogenesis. In conclusion, concurrent treatment of CAPE with DEX exhibited promising effects in the protection against DEX-induced osteoporosis through opposing osteoclastogenesis and protecting osteoblasts. The potent antioxidant activity of CAPE is, at least in part, involved in its anti-apoptotic effects and modulation of RunX2 and RANKL/OPG signals. The use of CAPE-enriched propolis formulas is strongly recommended for patients on chronic glucocorticoid therapy to help in the attenuation of GIO. - Highlights: • Caffeic acid phenethyl ester (CAPE) counteracts DEX-induced osteoporosis. • CAPE hinders DEX-induced alterations in oxidation parameters as GSH, SOD and MDA. • CAPE opposes osteoclastogenesis via suppressing RANL/OPG ratio and Akt signals.

  9. Response to dexamethasone is glucose-sensitive in multiple myeloma cell lines

    Directory of Open Access Journals (Sweden)

    Turturro Francesco

    2011-09-01

    Full Text Available Abstract Background Hyperglycemia is among the major side effects of dexamethasone (DEX. Glucose or glucocorticoid (GC regulates the expression of thioredoxin-interacting protein (TXNIP that controls the production of reactive oxygen species (ROS through the modulation of thioredoxin (TRX activity. Methods Multiple myeloma (MM cells were grown in 5 or 20 mM/L glucose with or without 25 μM DEX. Semiquantitative reverse transcription-PCR (RT-PCR was used to assess TXNIP RNA expression in response to glucose and DEX. ROS were detected by 5-6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA. TRX activity was assayed by the insulin disulfide-reducing assay. Proliferation was evaluated using CellTiter96 reagent with 490-nm absorbtion and used to calculate the DEX IC50 in 20 mM/L glucose using the Chou's dose effect equation. Results TXNIP RNA level responded to glucose or DEX with the same order of magnitude ARH77 > NCIH929 > U266B1 in these cells. MC/CAR cells were resistant to the regulation. ROS level increased concurrently with reduced TRX activity. Surprisingly glucose increased TRX activity in MC/CAR cells keeping ROS level low. DEX and glucose were lacking the expected additive effect on TXNIP RNA regulation when used concurrently in sensitive cells. ROS level was significantly lower when DEX was used in conditions of hyperglycemia in ARH77/NCIH9292 cells but not in U266B1 cells. Dex-IC50 increased 10-fold when the dose response effect of DEX was evaluated with glucose in ARH && and MC/Car cells Conclusions Our study shows for the first time that glucose or DEX regulates important components of ROS production through TXNIP modulation or direct interference with TRX activity in MM cells. We show that glucose modulates the activity of DEX through ROS regualtion in MM cells. A better understanding of these pathways may help in improving the efficacy and reducing the toxicity of DEX, a drug still highly used in the treatment of

  10. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures.

    Directory of Open Access Journals (Sweden)

    Purificación Gómez-Abellán

    Full Text Available to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V and subcutaneous (S adipose tissue (AT in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX on positive and negative clock genes expression.VAT and SAT biopsies were obtained from morbid obese women (body mass index ≥ 40 kg/m(2 (n = 6. In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX and AT explants treated with DEX (2 hours were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR.CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements in the SAT (situation not present in VAT. A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues.24 h patterns in CLOCK and BMAL1 (positive clock elements and PER2 (negative element mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure.

  11. Detection of glucocorticoid receptor agonists in effluents from sewage treatment plants in Japan.

    Science.gov (United States)

    Suzuki, Go; Sato, Kentaro; Isobe, Tomohiko; Takigami, Hidetaka; Brouwer, Abraham; Nakayama, Kei

    2015-09-15

    Glucocorticoids (GCs) are widely used as anti-inflammatory drugs. Our previous study demonstrated that several GCs such as cortisol and dexamethasone (Dex) were frequently detected in effluents collected from Japanese sewage treatment plants (STPs) in 2012. In this study, we used the GC-Responsive Chemical-Activated LUciferase gene eXpression (GR-CALUX) assay to elucidate GC receptor (GR) agonistic activities of ten pure synthetic GCs and selected STP effluents in Japan for assessment of the risks associated with the presence of GR agonists. The tested GCs demonstrated dose-dependent agonistic effects in the GR-CALUX assay and their EC50 values were calculated for estimation of relative potencies (REPs) compared to Dex. The GR agonistic potency was in the rank of: clobetasol propionate > clobetasone butyrate > betamethasone 17-valerate > difluprednate > betamethasone 17,21-dipropionate > Dex > betamethasone > 6α-methylprednisolone > prednisolone > cortisol. The GR agonistic activity in STP effluents as measured in Dex-equivalent (Dex-EQ) activities ranged from effluents in Japan. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Glucocorticoids improve high-intensity exercise performance in humans

    DEFF Research Database (Denmark)

    Casuso, Rafael A; Melskens, Lars; Bruhn, Thomas

    2014-01-01

    It was investigated whether oral dexamethasone (DEX) administration improves exercise performance by reducing the initial rate of muscle fatigue development during dynamic exercise.......It was investigated whether oral dexamethasone (DEX) administration improves exercise performance by reducing the initial rate of muscle fatigue development during dynamic exercise....

  13. Protective effect of dexamethasone on 5-FU-induced oral mucositis in hamsters.

    Science.gov (United States)

    Ribeiro, Susana Barbosa; de Araújo, Aurigena Antunes; Araújo Júnior, Raimundo Fernandes de; Brito, Gerly Anne de Castro; Leitão, Renata Carvalho; Barbosa, Maisie Mitchele; Garcia, Vinicius Barreto; Medeiros, Aldo Cunha; Medeiros, Caroline Addison Carvalho Xavier de

    2017-01-01

    Oral mucositis (OM) is an important side effect of cancer treatment, characterized by ulcerative lesions in the mucosa of patients undergoing radiotherapy or chemotherapy, which has marked effects on patient quality of life and cancer therapy continuity. Considering that few protocols have demonstrated efficacy in preventing this side effect, the aim of this study was to examine the effect of dexamethasone (DEX) on OM induced by 5-fluorouracil (5-FU) in hamsters by studying signaling pathways. OM was induced in hamsters by 5-FU followed by mechanical trauma (MT) on day 4. On day 10, the animals were euthanized. The experimental groups included saline, MT, 5-FU, and DEX (0.25, 0.5, or 1 mg/kg). Macroscopic, histopathological, and immunohistochemical analyses as well as immunofluorescence experiments were performed on the oral mucosa of the animals. The oral mucosal samples were analyzed by enzyme-linked immunosorbent assays, and quantitative real-time polymerase chain reaction (qPCR). DEX (0.5 or 1 mg/kg) reduced inflammation and ulceration of the oral mucosa of hamsters. In addition, DEX (1 mg/kg) reduced the cytokine levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and macrophage migration inhibitory factor (MIF). DEX (1 mg/kg) also reduced the immunoexpression of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-2, transforming growth factor (TGF)-β, MIF, Smad 2/3, Smad 2/3 phosphorylated and NFκB p65 in the jugal mucosa. Finally, DEX (1 mg/kg) increased interleukin-1 receptor-associated kinase 3 (IRAK-M), glucocorticoid-induced leucine zipper (GILZ), and mitogen-activated protein kinase (MKP1) gene expression and reduced NFκB p65 and serine threonine kinase (AKt) gene expression, relative to the 5-FU group. Thus, DEX improved OM induced by 5-FU in hamsters.

  14. Protective effect of dexamethasone on 5-FU-induced oral mucositis in hamsters.

    Directory of Open Access Journals (Sweden)

    Susana Barbosa Ribeiro

    Full Text Available Oral mucositis (OM is an important side effect of cancer treatment, characterized by ulcerative lesions in the mucosa of patients undergoing radiotherapy or chemotherapy, which has marked effects on patient quality of life and cancer therapy continuity. Considering that few protocols have demonstrated efficacy in preventing this side effect, the aim of this study was to examine the effect of dexamethasone (DEX on OM induced by 5-fluorouracil (5-FU in hamsters by studying signaling pathways. OM was induced in hamsters by 5-FU followed by mechanical trauma (MT on day 4. On day 10, the animals were euthanized. The experimental groups included saline, MT, 5-FU, and DEX (0.25, 0.5, or 1 mg/kg. Macroscopic, histopathological, and immunohistochemical analyses as well as immunofluorescence experiments were performed on the oral mucosa of the animals. The oral mucosal samples were analyzed by enzyme-linked immunosorbent assays, and quantitative real-time polymerase chain reaction (qPCR. DEX (0.5 or 1 mg/kg reduced inflammation and ulceration of the oral mucosa of hamsters. In addition, DEX (1 mg/kg reduced the cytokine levels of tumor necrosis factor (TNF-α, interleukin (IL-1β, and macrophage migration inhibitory factor (MIF. DEX (1 mg/kg also reduced the immunoexpression of cyclooxygenase (COX-2, matrix metalloproteinase (MMP-2, transforming growth factor (TGF-β, MIF, Smad 2/3, Smad 2/3 phosphorylated and NFκB p65 in the jugal mucosa. Finally, DEX (1 mg/kg increased interleukin-1 receptor-associated kinase 3 (IRAK-M, glucocorticoid-induced leucine zipper (GILZ, and mitogen-activated protein kinase (MKP1 gene expression and reduced NFκB p65 and serine threonine kinase (AKt gene expression, relative to the 5-FU group. Thus, DEX improved OM induced by 5-FU in hamsters.

  15. ATM splicing variants as biomarkers for low dose dexamethasone treatment of A-T.

    Science.gov (United States)

    Menotta, Michele; Biagiotti, Sara; Spapperi, Chiara; Orazi, Sara; Rossi, Luigia; Chessa, Luciana; Leuzzi, Vincenzo; D'Agnano, Daniela; Soresina, Annarosa; Micheli, Roberto; Magnani, Mauro

    2017-07-05

    Ataxia Telangiectasia (AT) is a rare incurable genetic disease, caused by biallelic mutations in the Ataxia Telangiectasia-Mutated (ATM) gene. Treatment with glucocorticoid analogues has been shown to improve the neurological symptoms that characterize this syndrome. Nevertheless, the molecular mechanism underlying the glucocorticoid action in AT patients is not yet understood. Recently, we have demonstrated that Dexamethasone treatment may partly restore ATM activity in AT lymphoblastoid cells by a new ATM transcript, namely ATMdexa1. In the present study, the new ATMdexa1 transcript was also identified in vivo, specifically in the PMBCs of AT patients treated with intra-erythrocyte Dexamethasone (EryDex). In these patients it was also possible to isolate new "ATMdexa1 variants" originating from canonical and non-canonical splicing, each containing the coding sequence for the ATM kinase domain. The expression of the ATMdexa1 transcript family was directly related to treatment and higher expression levels of the transcript in patients' blood correlated with a positive response to Dexamethasone therapy. Neither untreated AT patients nor untreated healthy volunteers possessed detectable levels of the transcripts. ATMdexa1 transcript expression was found to be elevated 8 days after the drug infusion, while it decreased 21 days after treatment. For the first time, the expression of ATM splicing variants, similar to those previously observed in vitro, has been found in the PBMCs of patients treated with EryDex. These findings show a correlation between the expression of ATMdexa1 transcripts and the clinical response to low dose dexamethasone administration.

  16. Reversal of dexamethasone induced insulin resistance in 3T3L1 adipocytes by 3β-taraxerol of Mangifera indica.

    Science.gov (United States)

    Sangeetha, K N; Shilpa, K; Jyothi Kumari, P; Lakshmi, B S

    2013-02-15

    The present study investigates the efficacy of Mangifera indica ethyl acetate extract (MIEE) and its bioactive compound, 3β-taraxerol in the reversal of dexamethasone (DEX) induced insulin resistance in 3T3L1 adipocytes. MIEE and 3β-taraxerol were evaluated for their ability to restore impaired glucose uptake and, expression of molecular markers in the insulin signaling pathway induced by DEX in 3T3L1 adipocytes using 2-deoxy-D-[1-(3)H] glucose uptake assay and ELISA. An insulin resistant model has been developed using a glucocorticoid, DEX on 3T3L1 adipocytes. Insulin resistant condition was observed at 24h of DEX induction wherein a maximum degree of resistance of about 50% was measured based on inhibition of glucose uptake, which was confirmed using cytotoxicity analysis. The developed model of insulin resistance was studied in comparison to positive control rosiglitazone. DEX induced inhibition of glucose uptake and the expression of insulin signaling markers GLUT4 and PI3K were found to be restored by 3β-taraxerol and MIEE, thus delineating its mechanism of action in the reversal of insulin resistance. 3β-Taraxerol effectively restored DEX induced desensitization via restoration of PI3K and GLUT4 expression. To conclude, since 3β-taraxerol exhibits significant effect in reversing insulin resistance it can be further investigated as an insulin resistance reversal agent. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun-Yi; Zhang, Meng [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Hallis, Tina M.; DeRosier, Therese A. [Cell Systems Division, Invitrogen, Madison, WI (United States); Yue, Jian-Min; Ye, Yang [State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Mais, Dale E. [The National Center for Drug Screening, Shanghai (China); MPI Research, Mattawan, MI (United States); Wang, Ming-Wei, E-mail: wangmw@mail.shcnc.ac.cn [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China)

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  18. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    International Nuclear Information System (INIS)

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-01

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K i = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  19. Role of NeuroD1 on the negative regulation of Pomc expression by glucocorticoid.

    Directory of Open Access Journals (Sweden)

    Rehana Parvin

    Full Text Available The mechanism of the negative regulation of proopiomelanocortin gene (Pomc by glucocorticoids (Gcs is still unclear in many points. Here, we demonstrated the involvement of neurogenic differentiation factor 1 (NeuroD1 in the Gc-mediated negative regulation of Pomc. Murine pituitary adrenocorticotropic hormone (ACTH producing corticotroph tumor-derived AtT20 cells were treated with dexamethasone (DEX (1-100 nM and cultured for 24 hrs. Thereafter, Pomc mRNA expression was studied by quantitative real-time PCR and rat Pomc promoter (-703/+58 activity was examined by luciferase assay. Both Pomc mRNA expression and Pomc promoter activity were inhibited by DEX in a dose-dependent manner. Deletion and point mutant analyses of Pomc promoter suggested that the DEX-mediated transcriptional repression was mediated via E-box that exists at -376/-371 in the promoter. Since NeuroD1 is known to bind to and activate E-box of the Pomc promoter, we next examined the effect of DEX on NeuroD1 expression. Interestingly, DEX dose-dependently inhibited NeuroD1 mRNA expression, mouse NeuroD1 promoter (-2.2-kb activity, and NeuroD1 protein expression in AtT20 cells. In addition, we confirmed the inhibitory effect of DEX on the interaction of NeuroD1 and E-box on Pomc promoter by chromatin immunoprecipitation (ChIP assay. Finally, overexpression of mouse NeuroD1 could rescue the DEX-mediated inhibition of Pomc mRNA expression and Pomc promoter activity. Taken together, it is suggested that the suppression of NeuroD1 expression and the inhibition of NeuroD1/E-box interaction may play an important role in the Gc-mediated negative regulation of Pomc.

  20. Sulforaphane reverses glucocorticoid-induced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway

    Directory of Open Access Journals (Sweden)

    Lin H

    2014-07-01

    Full Text Available Hao Lin,1,* Bo Wei,1,* Guangsheng Li,1 Jinchang Zheng,1 Jiecong Sun,1 Jiaqi Chu,2 Rong Zeng,1 Yanru Niu21Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People’s Republic of China; 2Laboratory Institute of Minimally Invasive Orthopedic Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Apoptosis of osteoblasts triggered by high-dose glucocorticoids (GCs has been identified as a major cause of osteoporosis. However, the underlying molecular mechanisms accounting for this action remain elusive, which has impeded the prevention and cure of this side effect. Sulforaphane (SFP is a naturally occurring isothiocyanate that has huge health benefits for humans. In this study, by using osteoblastic MC3T3-E1 cells as a model, we demonstrate the protective effects of SFP against dexamethasone (Dex-induced apoptosis and elucidate the underlying molecular mechanisms. The results show that SFP could effectively inhibit the Dex-induced growth inhibition and release of lactate dehydrogenase in MC3T3-E1 cells. Treatment with Dex induced caspase-dependent apoptosis in MC3T3-E1 cells, as evidenced by an increase in the Sub-G1 phase, chromatin condensation, and deoxyribonucleic acid fragmentation, which were significantly suppressed by coincubation with SFP. Mitochondria-mediated apoptosis pathway contributed importantly to Dex-induced apoptosis, as revealed by the activation of caspase-3/-9 and subsequent cleavage of poly adenosine diphosphate ribose polymerase, which was also effectively blocked by SFP. Moreover, treatments of Dex strongly induced overproduction of reactive oxygen species and inhibited the expression of nuclear factor erythroid 2-related factor 2 (Nrf2 and the downstream effectors HO1 and NQO1. However, cotreatment with SFP effectively reversed this action of Dex. Furthermore, silencing of Nrf2 by

  1. Dexamethasone concentration gradients along scala tympani after application to the round window membrane.

    Science.gov (United States)

    Plontke, Stefan K; Biegner, Thorsten; Kammerer, Bernd; Delabar, Ursular; Salt, Alec N

    2008-04-01

    Local application of dexamethasone-21-dihydrogen-phosphate (Dex-P) to the round window (RW) membrane of guinea pigs produces a substantial basal-apical concentration gradient in scala tympani (ST) perilymph. In recent years, intratympanically applied glucocorticoids are increasingly being used for the treatment of inner ear disease. Although measurements of intracochlear concentrations after RW application exist, there is limited information on the distribution of these drugs in the inner ear fluids. It has been predicted from computer simulations that substantial concentration gradients will occur after RW application, with lower concentrations expected in apical turns. Concentration gradients of other substances along the cochlea have recently been confirmed using a sequential apical sampling method to obtain perilymph. Dexamethasone-21-dihydrogen-phosphate (10 mg/ml) was administered to the RW membrane of guinea pigs (n = 9) in vivo for 2 to 3 hours. Perilymph was then collected using a protocol in which 10 samples, each of approximately 1 mul, were taken sequentially from the cochlear apex into capillary tubes. Dexamethasone-21-dihydrogen-phosphate concentration of the samples was analyzed by high-performance liquid chromatography. Interpretation of sample data using a finite element model allowed the longitudinal gradients of Dex-P in ST to be quantified. The Dex-P content of the first sample in each experiment (dominated by perilymph from apical regions) was substantially lower than that of the third and fourth sample (dominated by basal turn perilymph). These findings qualitatively demonstrated the existence of a concentration gradient along ST. After detailed analysis of the measured sample concentrations using an established finite element computer model, the mean basal-apical concentration gradient was estimated to be 17,000. Both absolute concentrations of Dex-P in ST and the basal-apical gradients were found to vary substantially. The existence of

  2. Impact of vitamin D3 on cardiovascular responses to glucocorticoid excess.

    Science.gov (United States)

    Ahmed, Mona A

    2013-06-01

    Although the cardiovascular system is not a classical target for 1,25-dihydroxyvitamin D3, both cardiac myocytes and vascular smooth muscle cells respond to this hormone. The present study aimed to elucidate the effect of active vitamin D3 on cardiovascular functions in rats exposed to glucocorticoid excess. Adult male Wistar rats were allocated into three groups: control group, dexamethasone (Dex)-treated group receiving Dex (200 μg/kg) subcutaneously for 12 days, and vitamin D3-Dex-treated group receiving 1,25-(OH)2D3 (100 ng/kg) and Dex (200 μg/kg) subcutaneously for 12 days. Rats were subjected to measurement of systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressures and heart rate. Rate pressure product (RPP) was calculated. Rats' isolated hearts were perfused in Langendorff preparation and studied for basal activities (heart rate, peaked developed tension, time to peak tension, half relaxation time, and myocardial flow rate) and their responses to isoproterenol infusion. Blood samples were collected for determination of plasma level of nitrite, nitric oxide surrogate. Dex-treated group showed significant increase in SBP, DBP, MAP, and RPP, as well as cardiac hypertrophy and enhancement of basal cardiac performance evidenced by increased heart rate, rapid and increased contractility, and accelerated lusitropy, together with impaired contractile and myocardial flow rate responsiveness to beta-adrenergic activation and depressed inotropic and coronary vascular reserves. Such alterations were accompanied by low plasma nitrite. These changes were markedly improved by vitamin D3 treatment. In conclusion, vitamin D3 is an efficacious modulator of the deleterious cardiovascular responses induced by glucocorticoid excess, probably via accentuation of nitric oxide.

  3. Glucocorticoid-induced reversal of interleukin-1β-stimulated inflammatory gene expression in human oviductal cells.

    Directory of Open Access Journals (Sweden)

    Stéphanie Backman

    Full Text Available Studies indicate that high-grade serous ovarian carcinoma (HGSOC, the most common epithelial ovarian carcinoma histotype, originates from the fallopian tube epithelium (FTE. Risk factors for this cancer include reproductive parameters associated with lifetime ovulatory events. Ovulation is an acute inflammatory process during which the FTE is exposed to follicular fluid containing both pro- and anti-inflammatory molecules, such as interleukin-1 (IL1, tumor necrosis factor (TNF, and cortisol. Repeated exposure to inflammatory cytokines may contribute to transforming events in the FTE, with glucocorticoids exerting a protective effect. The global response of FTE cells to inflammatory cytokines or glucocorticoids has not been investigated. To examine the response of FTE cells and the ability of glucocorticoids to oppose this response, an immortalized human FTE cell line, OE-E6/E7, was treated with IL1β, dexamethasone (DEX, IL1β and DEX, or vehicle and genome-wide gene expression profiling was performed. IL1β altered the expression of 47 genes of which 17 were reversed by DEX. DEX treatment alone altered the expression of 590 genes, whereas combined DEX and IL1β treatment altered the expression of 784 genes. Network and pathway enrichment analysis indicated that many genes altered by DEX are involved in cytokine, chemokine, and cell cycle signaling, including NFκΒ target genes and interacting proteins. Quantitative real time RT-PCR studies validated the gene array data for IL8, IL23A, PI3 and TACC2 in OE-E6/E7 cells. Consistent with the array data, Western blot analysis showed increased levels of PTGS2 protein induced by IL1β that was blocked by DEX. A parallel experiment using primary cultured human FTE cells indicated similar effects on PTGS2, IL8, IL23A, PI3 and TACC2 transcripts. These findings support the hypothesis that pro-inflammatory signaling is induced in FTE cells by inflammatory mediators and raises the possibility that

  4. DHEA-induced modulation of renal gluconeogenesis, insulin sensitivity and plasma lipid profile in the control- and dexamethasone-treated rabbits. Metabolic studies.

    Science.gov (United States)

    Kiersztan, Anna; Nagalski, Andrzej; Nalepa, Paweł; Tempes, Aleksandra; Trojan, Nina; Usarek, Michał; Jagielski, Adam K

    2016-02-01

    In view of antidiabetic and antiglucocorticoid effects of dehydroepiandrosterone (DHEA) both in vitro and in vivo studies were undertaken: (i) to elucidate the mechanism of action of both dexamethasone phosphate (dexP) and DHEA on glucose synthesis in primary cultured rabbit kidney-cortex tubules and (ii) to investigate the influence of DHEA on glucose synthesis, insulin sensitivity and plasma lipid profile in the control- and dexP-treated rabbits. Data show, that in cultured kidney-cortex tubules dexP significantly stimulated gluconeogenesis by increasing flux through fructose-1,6-bisphosphatase (FBPase). DexP-induced effects were dependent only upon glucocorticoid receptor. DHEA decreased glucose synthesis via inhibition of glucose-6-phosphatase (G6Pase) and suppressed the dexP-induced stimulation of renal gluconeogenesis. Studies with the use of inhibitors of DHEA metabolism in cultured renal tubules showed for the first time that DHEA directly affects renal gluconeogenesis. However, in view of analysis of glucocorticoids and DHEA metabolites levels in urine, it seems likely, that testosterone may also contribute to DHEA-evoked effects. In dexP-treated rabbits, plasma glucose level was not altered despite increased renal and hepatic FBPase and G6Pase activities, while a significant elevation of both plasma insulin and HOMA-IR was accompanied by a decline of ISI index. It thus appears that increased insulin levels were required to maintain normoglycaemia and to compensate the insulin resistance. DHEA alone affected neither plasma glucose nor lipid levels, while it increased insulin sensitivity and diminished both renal and hepatic G6Pase activities. Surprisingly, DHEA co-administrated with dexP did not alter insulin sensitivity, while it partially suppressed the dexP-induced elevation of renal G6Pase activity and plasma cholesterol and triglyceride contents. As (i) gluconeogenic pathway in rabbit is similar to that in human, and (ii) DHEA counteracts several

  5. The anti-angiogenic effect of dexamethasone in a murine hepatocellular carcinoma model by augmentation of gluconeogenesis pathway in malignant cells.

    Science.gov (United States)

    Shang, Fei; Liu, Mingming; Li, Bingwei; Zhang, Xiaoyan; Sheng, Youming; Liu, Shuying; Han, Jianqun; Li, Hongwei; Xiu, Ruijuan

    2016-05-01

    Angiogenesis is a long-term complex process involving various protein factors in hepatocellular carcinoma (HCC). Dexamethasone (Dex), considered as a synthetic glucocorticoid drug in clinical therapy, has been reported to have the therapeutic efficacy against liver cancer by intervention of abnormal glycolysis. In this study, we investigated the anti-angiogenic effect of Dex in murine liver cancer and attempted to demonstrate the potential mechanism. The malignant cells H22 were treated with Dex. Western blotting was used to explore the expression of PEPCK and G6Pase which were the two key enzymes that regulated gluconeogenesis. The supernatants from cultured H22 treated by Dex were collected and co-cultured with HUVECs. In vitro, migration assay, transwell assay and tube formation assay were performed to assess for migration, proliferation and tube formation abilities of HUVECs, respectively. In situ murine hepatoma model with green fluorescent protein markers (HepG2-GFP) was constructed to determine angiogenesis after treatment by Dex. PEPCK and G6Pase were almost deficient in H22 compared with normal liver cells NCTC-1469 (P gluconeogenesis could be restored significantly (P gluconeogenesis pathway.

  6. Pancreatic alpha-cell dysfunction contributes to the disruption of glucose homeostasis and compensatory insulin hypersecretion in glucocorticoid-treated rats.

    Directory of Open Access Journals (Sweden)

    Alex Rafacho

    Full Text Available Glucocorticoid (GC-based therapies can cause insulin resistance (IR, glucose intolerance, hyperglycemia and, occasionally, overt diabetes. Understanding the mechanisms behind these metabolic disorders could improve the management of glucose homeostasis in patients undergoing GC treatment. For this purpose, adult rats were treated with a daily injection of dexamethasone (1 mg/kg b.w., i.p. (DEX or saline as a control for 5 consecutive days. The DEX rats developed IR, augmented glycemia, hyperinsulinemia and hyperglucagonemia. Treatment of the DEX rats with a glucagon receptor antagonist normalized their blood glucose level. The characteristic inhibitory effect of glucose on glucagon secretion was impaired in the islets of the DEX rats, while no direct effects were found on α-cells in islets that were incubated with DEX in vitro. A higher proportion of docked secretory granules was found in the DEX α-cells as well as a trend towards increased α-cell mass. Additionally, insulin secretion in the presence of glucagon was augmented in the islets of the DEX rats, which was most likely due to their higher glucagon receptor content. We also found that the enzyme 11βHSD-1, which participates in GC metabolism, contributed to the insulin hypersecretion in the DEX rats under basal glucose conditions. Altogether, we showed that GC treatment induces hyperglucagonemia, which contributes to an imbalance in glucose homeostasis and compensatory β-cell hypersecretion. This hyperglucagonemia may result from altered α-cell function and, likely, α-cell mass. Additionally, blockage of the glucagon receptor seems to be effective in preventing the elevation in blood glucose levels induced by GC administration.

  7. Cross-talk between oxysterols and glucocorticoids: differential regulation of secreted phopholipase A2 and impact on oligodendrocyte death.

    Directory of Open Access Journals (Sweden)

    Amalia Trousson

    Full Text Available BACKGROUND: Oxysterols are oxidized forms of cholesterol. They have been shown to be implicated in cholesterol turnover, inflammation and in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis. Glial cells are targets of oxysterols: they inhibit astrocyte proliferation after brain injury, and we have previously shown that 25-hydroxycholesterol (25OH provokes oligodendrocyte apoptosis and stimulates the expression of sPLA2 type IIA (sPLA2-IIA, which has a protective effect. METHODOLOGY/PRINCIPAL FINDINGS: As glucocorticoids are well-known for their anti-inflammatory effects, our aim was to understand their direct effects on oxysterol-induced responses in oligodendrocytes (sPLA2-IIA stimulation and apoptosis. We demonstrate that the synthetic glucocorticoid dexamethasone (Dex abolishes the stimulation of sPLA2-IIA by 25-hydroxycholesterol (25-OH. This inhibition is mediated by the glucocorticoid receptor (GR, which decreases the expression of the oxysterol receptor Pregnane X Receptor (PXR and interferes with oxysterol signaling by recruiting a common limiting coactivator PGC1alpha. Consistent with the finding that sPLA2-IIA can partially protect oligodendrocytes against oxysterol-triggered apoptosis, we demonstrate here that the inhibition of sPLA2-IIA by Dex accelerates the apoptotic phenomenon, leading to a shift towards necrosis. We have shown by atomic force microscopy and electron microscopy that 25-OH and Dex alters oligodendrocyte shape and disorganizes the cytoplasm. CONCLUSIONS/SIGNIFICANCE: Our results provide a new understanding of the cross-talk between oxysterol and glucocorticoid signaling pathways and their respective roles in apoptosis and oligodendrocyte functions.

  8. Early metabolic defects in dexamethasone-exposed and undernourished intrauterine growth restricted rats.

    Directory of Open Access Journals (Sweden)

    Emmanuel Somm

    Full Text Available Poor fetal growth, also known as intrauterine growth restriction (IUGR, is a worldwide health concern. IUGR is commonly associated with both an increased risk in perinatal mortality and a higher prevalence of developing chronic metabolic diseases later in life. Obesity, type 2 diabetes or metabolic syndrome could result from noxious "metabolic programming." In order to better understand early alterations involved in metabolic programming, we modeled IUGR rat pups through either prenatal exposure to synthetic glucocorticoid (dams infused with dexamethasone 100 µg/kg/day, DEX or prenatal undernutrition (dams feeding restricted to 30% of ad libitum intake, UN. Physiological (glucose and insulin tolerance, morphometric (automated tissue image analysis and transcriptomic (quantitative PCR approaches were combined during early life of these IUGR pups with a special focus on their endocrine pancreas and adipose tissue development. In the absence of catch-up growth before weaning, DEX and UN IUGR pups both presented basal hyperglycaemia, decreased glucose tolerance, and pancreatic islet atrophy. Other early metabolic defects were model-specific: DEX pups presented decreased insulin sensitivity whereas UN pups exhibited lowered glucose-induced insulin secretion and more marked alterations in gene expression of pancreatic islet and adipose tissue development regulators. In conclusion, these results show that before any catch-up growth, IUGR rats present early physiologic, morphologic and transcriptomic defects, which can be considered as initial mechanistic basis of metabolic programming.

  9. Macrophage migration inhibitory factor counter-regulates dexamethasone-induced annexin 1 expression and influences the release of eicosanoids in murine macrophages.

    Science.gov (United States)

    Sun, Yu; Wang, Yu; Li, Jia-Hui; Zhu, Shi-Hui; Tang, Hong-Tai; Xia, Zhao-Fan

    2013-10-01

    Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine and glucocorticoid (GC) counter-regulator, has emerged as an important modulator of inflammatory responses. However, the molecular mechanisms of MIF counter-regulation of GC still remain incomplete. In the present study, we investigated whether MIF mediated the counter-regulation of the anti-inflammatory effect of GC by affecting annexin 1 in RAW 264.7 macrophages. We found that stimulation of RAW 264.7 macrophages with lipopolysaccharide (LPS) resulted in down-regulation of annexin 1, while GC dexamethasone (Dex) or Dex plus LPS led to significant up-regulation of annexin 1 expression. RNA interference-mediated knockdown of intracellular MIF increased annexin 1 expression with or without incubation of Dex, whereas Dex-induced annexin 1 expression was counter-regulated by the exogenous application of recombinant MIF. Moreover, recombinant MIF counter-regulated, in a dose-dependent manner, inhibition of cytosolic phospholipase A2α (cPLA2α) activation and prostaglandin E2 (PGE2 ) and leukotriene B4 (LTB4 ) release by Dex in RAW 264.7 macrophages stimulated with LPS. Endogenous depletion of MIF enhanced the effects of Dex, reflected by further decease of cPLA2α expression and lower PGE2 and LTB4 release in RAW 264.7 macrophages. Based on these data, we suggest that MIF counter-regulates Dex-induced annexin 1 expression, further influencing the activation of cPLA2α and the release of eicosanoids. These findings will add new insights into the mechanisms of MIF counter-regulation of GC. © 2013 John Wiley & Sons Ltd.

  10. Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Mu Dezhi

    2010-11-01

    Full Text Available Abstract Background Glucocorticoid (GC resistance is frequently seen in acute lymphoblastic leukemia of T-cell lineage (T-ALL. In this study we investigate the potential and mechanism of using rapamycin to restore the sensitivity of GC-resistant T-ALL cells to dexamethasone (Dex treatment. Methods Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl- 2,5-diphenyltetrazolium bromide (MTT assay. Fluorescence-activated cell sorting (FACS analysis was used to analyze apoptosis and cell cycles. Western blot analysis was performed to test the expression of the downstream effector proteins of mammalian target of rapamycin (mTOR, the cell cycle regulatory proteins, and apoptosis associated proteins. Results 10 nM rapamycin markedly increased GC sensitivity in GC-resistant T-ALL cells and this effect was mediated, at least in part, by inhibition of mTOR signaling pathway. Cell cycle arrest was associated with modulation of G1-S phase regulators. Both rapamycin and Dex can induce up-regulation of cyclin-dependent kinase (CDK inhibitors of p21 and p27 and co-treatment of rapamycin with Dex resulted in a synergistic induction of their expressions. Rapamycin did not obviously affect the expression of cyclin A, whereas Dex induced cyclin A expression. Rapamycin prevented Dex-induced expression of cyclin A. Rapamycin had a stronger inhibition of cyclin D1 expression than Dex. Rapamycin enhanced GC-induced apoptosis and this was not achieved by modulation of glucocorticoid receptor (GR expression, but synergistically up-regulation of pro-apoptotic proteins like caspase-3, Bax, and Bim, and down-regulation of anti-apoptotic protein of Mcl-1. Conclusion Our data suggests that rapamycin can effectively reverse GC resistance in T-ALL and this effect is achieved by inducing cell cycles arrested at G0/G1 phase and activating the intrinsic apoptotic program. Therefore, combination of mTOR inhibitor rapamycin with GC containing protocol might be an attracting

  11. Eosinophil Resistance to Glucocorticoid-Induced Apoptosis is Mediated by the Transcription Factor NFIL3

    Science.gov (United States)

    Pazdrak, Konrad; Moon, Young; Straub, Christof; Stafford, Susan; Kurosky, Alexander

    2016-01-01

    The mainstay of asthma therapy, glucocorticoids (GCs) exert their therapeutic effects through the inhibition of inflammatory signaling and induction of eosinophil apoptosis. However, laboratory and clinical observations of GC-resistant asthma suggest that GCs' effects on eosinophil viability may depend on the state of eosinophil activation. In the present study we demonstrate that eosinophils stimulated with IL-5 show impaired prop-aptoptotic response to GCs. We sought to determine the contribution of GC-mediated transactivating (TA) and transrepressing (TR) pathways in modulation of activated eosinophils' response to GC by comparing their response to the selective GC receptor (GR) agonist Compound A (CpdA) devoid of TA activity to that upon treatment with Dexamethasone (Dex). IL-5-activated eosinophils showed contrasting responses to CpdA and Dex, as IL-5-treated eosinophils showed no increase in apoptosis compared to cells treated with Dex alone, while CpdA elicited an apoptotic response regardless of IL-5 stimulation. Proteomic analysis revealed that both Nuclear Factor IL-3 (NFIL3) and Map Kinase Phosphatase 1 (MKP1) were inducible by IL-5 and enhanced by Dex; however, CpdA had no effect on NFIL3 and MKP1 expression. We found that inhibiting NFIL3 with specific siRNA or by blocking the IL-5-inducible Pim-1 kinase abrogated the protective effect of IL-5 on Dex-induced apoptosis, indicating crosstalk between IL-5 anti-apoptotic pathways and GR-mediated TA signaling occurring via the NFIL3 molecule. Collectively, these results indicate that 1) GCs' TA pathway may support eosinophil viability in IL-5-stimulated cells through synergistic upregulation of NFIL3; and 2) functional inhibition of IL-5 signaling (anti-Pim1) or the use of selective GR agonists that don't upregulate NFIL3 may be effective strategies for the restoring pro-apoptotic effect of GCs on IL-5-activated eosinophils. PMID:26880402

  12. Glucocorticoid inhibition of leptin- and lipopolysaccharide-induced interleukin-6 production in obesity.

    Science.gov (United States)

    Huang, Chun-Jung; Acevedo, Edmund O; Mari, David C; Randazzo, Christopher; Shibata, Yoshimi

    2014-01-01

    Obesity is considered a chronic inflammatory condition that enhances the risk of numerous inflammatory diseases, including diabetes and cardiovascular disease. Glucocorticoids (GCs) and synthetic therapeutic GCs are anti-inflammatory agents, but the exact functions of GCs in obesity-related inflammation are unknown. Therefore, the objective of this study was to examine the inhibitory effect of an exogenous GC (dexamethasone, DEX) on leptin- and lipopolysaccharide (LPS)-induced IL-6 production by peripheral blood mononuclear cells (PBMCs) ex vivo in obese subjects compared to normal-weight subjects. Blood samples were drawn from 14 obese (BMI>30 kg/m(2)) and 14 normal-weight (BMIobese subjects showed greater leptin- and LPS-induced IL-6 production compared to normal-weight subjects. The suppressive effect of DEX on leptin- and LPS-induced IL-6 production (IC50) was not different between the two groups. However, the IC50 of DEX for LPS-induced was correlated with BMI, waist circumference, and hip circumference. These findings suggest that reduced GC sensitivity may be an important mechanism in the up-regulation of selected obese inflammation. Published by Elsevier Inc.

  13. Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats.

    Science.gov (United States)

    Nishida, Hikaru; Ikegami, Ayaka; Kaneko, Chiaki; Kakuma, Hitomi; Nishi, Hisano; Tanaka, Noriko; Aoyama, Michiko; Usami, Makoto; Okimura, Yasuhiko

    2015-01-01

    Branched-chain amino acids (BCAAs) and IGF-I, the secretion of which is stimulated by growth hormone (GH), prevent muscle atrophy. mTOR plays a pivotal role in the protective actions of BCAA and IGF-1. The pathway by which BCAA activates mTOR is different from that of IGF-1, which suggests that BCAA and GH work independently. We tried to examine whether BCAA exerts a protective effect against dexamethasone (Dex)-induced muscle atrophy independently of GH using GH-deficient spontaneous dwarf rats (SDRs). Unexpectedly, Dex did not induce muscle atrophy assessed by the measurement of cross-sectional area (CSA) of the muscle fibers and did not increase atrogin-1, MuRF1 and REDD1 expressions, which are activated during protein degradation. Glucocorticoid (GR) mRNA levels were higher in SDRs compared to GH-treated SDRs, indicating that the low expression of GR is not the reason of the defect of Dex's action in SDRs. BCAA did not stimulate the phosphorylation of p70S6K or 4E-BP1, which stimulate protein synthesis. BCAA did not decrease the mRNA level of atrogin-1 or MuRF1. These findings suggested that Dex failed to modulate muscle mass and that BCAA was unable to activate mTOR in SDRs because these phosphorylations of p70S6K and 4E-BP1 and the reductions of these mRNAs are regulated by mTOR. In contrast, after GH supplementation, these responses to Dex were normalized and muscle fiber CSA was decreased by Dex. BCAA prevented the Dex-induced decrease in CSA. BCAA increased the phosphorylation of p70S6K and decreased the Dex-induced elevations of atrogin-1 and Bnip3 mRNAs. However, the amount of mTORC1 components including mTOR was not decreased in the SDRs compared to the normal rats. These findings suggest that GH increases mTORC1 activity but not its content to recover the action of BCAA in SDRs and that GH is required for actions of Dex and BCAA in muscles.

  14. Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats.

    Directory of Open Access Journals (Sweden)

    Hikaru Nishida

    Full Text Available Branched-chain amino acids (BCAAs and IGF-I, the secretion of which is stimulated by growth hormone (GH, prevent muscle atrophy. mTOR plays a pivotal role in the protective actions of BCAA and IGF-1. The pathway by which BCAA activates mTOR is different from that of IGF-1, which suggests that BCAA and GH work independently. We tried to examine whether BCAA exerts a protective effect against dexamethasone (Dex-induced muscle atrophy independently of GH using GH-deficient spontaneous dwarf rats (SDRs. Unexpectedly, Dex did not induce muscle atrophy assessed by the measurement of cross-sectional area (CSA of the muscle fibers and did not increase atrogin-1, MuRF1 and REDD1 expressions, which are activated during protein degradation. Glucocorticoid (GR mRNA levels were higher in SDRs compared to GH-treated SDRs, indicating that the low expression of GR is not the reason of the defect of Dex's action in SDRs. BCAA did not stimulate the phosphorylation of p70S6K or 4E-BP1, which stimulate protein synthesis. BCAA did not decrease the mRNA level of atrogin-1 or MuRF1. These findings suggested that Dex failed to modulate muscle mass and that BCAA was unable to activate mTOR in SDRs because these phosphorylations of p70S6K and 4E-BP1 and the reductions of these mRNAs are regulated by mTOR. In contrast, after GH supplementation, these responses to Dex were normalized and muscle fiber CSA was decreased by Dex. BCAA prevented the Dex-induced decrease in CSA. BCAA increased the phosphorylation of p70S6K and decreased the Dex-induced elevations of atrogin-1 and Bnip3 mRNAs. However, the amount of mTORC1 components including mTOR was not decreased in the SDRs compared to the normal rats. These findings suggest that GH increases mTORC1 activity but not its content to recover the action of BCAA in SDRs and that GH is required for actions of Dex and BCAA in muscles.

  15. Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy.

    Science.gov (United States)

    Wang, Qin; Jiang, Hao; Li, Yan; Chen, Wenfei; Li, Hanmei; Peng, Ke; Zhang, Zhirong; Sun, Xun

    2017-04-01

    The transcription factor NF-kB plays a pivotal role in the pathogenesis of rheumatoid arthritis. Here we attempt to slow arthritis progression by co-delivering the glucocorticoid dexamethasone (Dex) and small-interfering RNA targeting NF-kB p65 using our previously developed polymeric hybrid micelle system. These micelles contain two similar amphiphilic copolymers: polycaprolactone-polyethylenimine (PCL-PEI) and polycaprolactone-polyethyleneglycol (PCL-PEG). The hybrid micelles loaded with Dex and siRNA effectively inhibited NF-kB signaling in murine macrophages more efficiently than micelles containing either Dex or siRNA on their own. In addition, the co-delivery system was able to switch macrophages from the M1 to M2 state. Injecting hybrid micelles containing Dex and siRNA into mice with collagen-induced arthritis led the therapeutic agents to accumulate in inflamed joints and reduce inflammation, without damaging renal or liver function. Thus, blocking NF-kB activation in inflammatory tissue using micelle-based co-delivery may provide a new approach for treating inflammatory disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Primary glucocorticoid resistance syndrome presenting as pseudo-precocious puberty and galactorrhea].

    Science.gov (United States)

    Xiang, Shu-lin; He, Li-ping; Ran, Xing-wu; Tian, Hao-ming; Li, Xiu-jun; Liang, Jin-zhong

    2008-09-01

    Primary glucocorticoid resistance syndrome (PGRS) is a rare condition characterized by hypercortisolism without Cushing's syndrome. This report describes a 7-year-old boy of PGRS with pseudo-precocious puberty and galactorrhea as the main manifestation. His height was 135 cm and body weight was 31 kg. Pigmentation could be seen in the skin, mammary areola and penis. He had hirsutism, low hair line, coarse voice, Tanner stage 3 pubic hair, penis in adult form, accelerated linear growth, and advanced bone age (13 yr.), but normal (for age) testes. Furthermore, he had mammoplasia and galactorrhea. There were no features of glucocorticoid (GC) excess. Hepatic function was impaired (ALT 1426 IU/L, AST 611 IU/L) with no definite causes. Serum cortisol concentration was 1294 nmol/L, 777 nmol/L, 199.3 nmol/L at 8:00, 16:00 and 24:00 respectively. Plasma adrenocorticotropic hormone (ACTH) was normal or a little higher (43.9-80 ng/L). Urinary-free cortisol (UFC) was normal (55.5-62.4 microg/24 h). Serum estradiol (E2), progesterone (P), testosterone (T), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were normal. Serum dehydroepiandrosterone sulfate (DHEAS, 60 microg/dL) and serum prolactin (PRL, 58.7-183.9 ng/mL) level were high, urinary dehydroepiandrosterone (DHEA) level was also elevated (0.96-3.2 mg/mL). Gonadotrophin hormone-releasing hormone (GnRH) stimulation test was negative. Serum cortisol responded normally to insulin-induced hypoglycemia. However, serum cortisol and plasma ACTH concentration was suppressed to more than 50% by 0.5 mg dexamethasone (DEX). The diagnosis of PGRS was made. TREATMENT AND FOLLOW-UP: The patient received a treatment of 0.75-1.0 mg/d DEX. Because of galactorrhea, bromocriptine was given by 1.25-3.75 mg/d. After 24 months follow-up, the pigmentation was relieved and galactorrhea disappeared. No advanced development of the external genitalia and breast was found. The acceleration of the bone age was also slowed down. But

  17. Circumvention of glucocorticoid resistance in childhood leukemia.

    Science.gov (United States)

    Haarman, E G; Kaspers, G J L; Pieters, R; Rottier, M M A; Veerman, A J P

    2008-09-01

    In this study, we determined if in vitro resistance to prednisolone and dexamethasone could be circumvented by cortivazol or methylprednisolone, or reversed by meta-iodobenzylguanidine in pediatric lymphoblastic and myeloid leukemia. As there were strong correlations between the LC50 values (drug concentration inducing 50% leukemic cell kill, LCK) of the different glucocorticoids and median prednisolone/methylprednisolone, prednisolone/dexamethasone and prednisolone/cortivazol LC50 ratios did not differ between the leukemia subtypes, we conclude that none of the glucocorticoids had preferential anti-leukemic activity. Meta-iodobenzylguanidine however, partially reversed glucocorticoid resistance in 19% of the lymphoblastic leukemia samples.

  18. Maternal Melatonin Therapy Rescues Prenatal Dexamethasone and Postnatal High-Fat Diet Induced Programmed Hypertension in Male Rat Offspring

    OpenAIRE

    Tain, You-Lin; Sheen, Jiunn-Ming; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Mao-Meng; Hsu, Chien-Ning; Lin, Yu-Ju; Kuo, Kuang-Che; Huang, Li-Tung

    2015-01-01

    Prenatal dexamethasone (DEX) exposure and high-fat (HF) intake are linked to hypertension. We examined whether maternal melatonin therapy prevents programmed hypertension synergistically induced by prenatal DEX plus postnatal HF in adult offspring. We also examined whether DEX and melatonin causes renal programming using next-generation RNA sequencing (NGS) technology. Pregnant Sprague-Dawley rats received intraperitoneal dexamethasone (0.1 mg/kg) or vehicle from gestational day 16 to 22. In ...

  19. Oxidative stress in the developing brain: effects of postnatal glucocorticoid therapy and antioxidants in the rat.

    Directory of Open Access Journals (Sweden)

    Emily J Camm

    Full Text Available In premature infants, glucocorticoids ameliorate chronic lung disease, but have adverse effects on long-term neurological function. Glucocorticoid excess promotes free radical overproduction. We hypothesised that the adverse effects of postnatal glucocorticoid therapy on the developing brain are secondary to oxidative stress and that antioxidant treatment would diminish unwanted effects. Male rat pups received a clinically-relevant tapering course of dexamethasone (DEX; 0.5, 0.3, and 0.1 mg x kg(-1 x day(-1, with or without antioxidant vitamins C and E (DEXCE; 200 mg x kg(-1 x day(-1 and 100 mg x kg(-1 x day(-1, respectively, on postnatal days 1-6 (P1-6. Controls received saline or saline with vitamins. At weaning, relative to controls, DEX decreased total brain volume (704.4±34.7 mm(3 vs. 564.0±20.0 mm(3, the soma volume of neurons in the CA1 (1172.6±30.4 µm(3 vs. 1002.4±11.8 µm(3 and in the dentate gyrus (525.9±27.2 µm(3 vs. 421.5±24.6 µm(3 of the hippocampus, and induced oxidative stress in the cortex (protein expression: heat shock protein 70 [Hsp70]: +68%; 4-hydroxynonenal [4-HNE]: +118% and nitrotyrosine [NT]: +20%. Dexamethasone in combination with vitamins resulted in improvements in total brain volume (637.5±43.1 mm(3, and soma volume of neurons in the CA1 (1157.5±42.4 µm(3 and the dentate gyrus (536.1±27.2 µm(3. Hsp70 protein expression was unaltered in the cortex (+9%, however, 4-HNE (+95% and NT (+24% protein expression remained upregulated. Treatment of neonates with vitamins alone induced oxidative stress in the cortex (Hsp70: +67%; 4-HNE: +73%; NT: +22% and in the hippocampus (NT: +35%. Combined glucocorticoid and antioxidant therapy in premature infants may be safer for the developing brain than glucocorticoids alone in the treatment of chronic lung disease. However, antioxidant therapy in healthy offspring is not recommended.

  20. Dexamethasone and azathioprine promote cytoskeletal changes and affect mesenchymal stem cell migratory behavior.

    Directory of Open Access Journals (Sweden)

    Natália Schneider

    Full Text Available Glucocorticoids and immunosuppressive drugs are commonly used to treat inflammatory disorders, such as inflammatory bowel disease (IBD, and despite a few improvements, the remission of IBD is still difficult to maintain. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs have emerged as regulators of the immune response, and their viability and activation of their migratory properties are essential for successful cell therapy. However, little is known about the effects of immunosuppressant drugs used in IBD treatment on MSC behavior. The aim of this study was to evaluate MSC viability, nuclear morphometry, cell polarity, F-actin and focal adhesion kinase (FAK distribution, and cell migratory properties in the presence of the immunosuppressive drugs azathioprine (AZA and dexamethasone (DEX. After an initial characterization, MSCs were treated with DEX (10 μM or AZA (1 μM for 24 hrs or 7 days. Neither drug had an effect on cell viability or nuclear morphometry. However, AZA treatment induced a more elongated cell shape, while DEX was associated with a more rounded cell shape (P < 0.05 with a higher presence of ventral actin stress fibers (P < 0.05 and a decrease in protrusion stability. After 7 days of treatment, AZA improved the cell spatial trajectory (ST and increased the migration speed (24.35%, P < 0.05, n = 4, while DEX impaired ST and migration speed after 24 hrs and 7 days of treatment (-28.69% and -25.37%, respectively; P < 0.05, n = 4. In conclusion, our data suggest that these immunosuppressive drugs each affect MSC morphology and migratory capacity differently, possibly impacting the success of cell therapy.

  1. Dexamethasone nanowafer as an effective therapy for dry eye disease.

    Science.gov (United States)

    Coursey, Terry G; Henriksson, Johanna Tukler; Marcano, Daniela C; Shin, Crystal S; Isenhart, Lucas C; Ahmed, Faheem; De Paiva, Cintia S; Pflugfelder, Stephen C; Acharya, Ghanashyam

    2015-09-10

    Dry eye disease is a major public health problem that affects millions of people worldwide. It is presently treated with artificial tear and anti-inflammatory eye drops that are generally administered several times a day and may have limited therapeutic efficacy. To improve convenience and efficacy, a dexamethasone (Dex) loaded nanowafer (Dex-NW) has been developed that can release the drug on the ocular surface for a longer duration of time than drops, during which it slowly dissolves. The Dex-NW was fabricated using carboxymethyl cellulose polymer and contains arrays of 500 nm square drug reservoirs filled with Dex. The in vivo efficacy of the Dex-NW was evaluated using an experimental mouse dry eye model. These studies demonstrated that once a day Dex-NW treatment on alternate days during a five-day treatment period was able to restore a healthy ocular surface and corneal barrier function with comparable efficacy to twice a day topically applied dexamethasone eye drop treatment. The Dex-NW was also very effective in down regulating expression of inflammatory cytokines (TNF-α, and IFN-γ), chemokines (CXCL-10 and CCL-5), and MMP-3, that are stimulated by dry eye. Despite less frequent dosing, the Dex-NW has comparable therapeutic efficacy to topically applied Dex eye drops in experimental mouse dry eye model, and these results provide a strong rationale for translation to human clinical trials for dry eye. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. HPA axis dysregulation, NR3C1 polymorphisms and glucocorticoid receptor isoforms imbalance in metabolic syndrome.

    Science.gov (United States)

    Martins, Clarissa Silva; Elias, Daniel; Colli, Leandro Machado; Couri, Carlos Eduardo; Souza, Manoel Carlos L A; Moreira, Ayrton C; Foss, Milton C; Elias, Lucila L K; de Castro, Margaret

    2017-03-01

    Metabolic syndrome (MetS) shares several similarities with hypercortisolism. To evaluate hypothalamic-pituitary-adrenal (HPA) axis sensitivity to dexamethasone (DEX), NR3C1 single nucleotide polymorphisms (SNPs), and expression of glucocorticoid receptor (GR) isoforms and cytokines in peripheral immune cells of MetS patients and controls. Prospective study with 40 MetS patients and 40 controls was conducted at the Ribeirão Preto Medical School University Hospital. Plasma and salivary cortisol were measured in basal conditions and after 0.25, 0.5, and 1 mg of DEX given at 2300 h. In addition, p.N363S (rs6195), p.ER22/23EK (rs6189-6190), and BclI (rs41423247) SNPs were evaluated by quantitative polymerase chain reaction allelic discrimination. Exons 3 to 9 and exon/intron boundaries of NR3C1 were sequenced. GR isoforms and cytokines (IL1B, IL2, IL4, IL6, IL8, IL10, IFNγ, TNFα) expression were assessed by quantitative polymerase chain reaction. Plasma and salivary cortisol (nmol/L) after 1-mg DEX were higher in MetS patients compared with controls (PF: 70.2 ± 17.3 vs 37.9 ± 2.6, P = .02, and SF: 4.9 ± 1.7 vs 2.2 ± 0.3, P molecular mechanism of glucocorticoid resistance in MetS. Thus, HPA axis dysregulation might contribute to MetS pathogenesis. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Inherently variable responses to glucocorticoid stress among endogenous retroviruses isolated from 23 mouse strains.

    Science.gov (United States)

    Hsu, Karen; Lee, Young-Kwan; Chew, Alex; Chiu, Sophia; Lim, Debora; Greenhalgh, David G; Cho, Kiho

    2017-10-01

    Active participation of endogenous retroviruses (ERVs) in disease processes has been exemplified by the finding that the HERV (human ERV)-W envelope protein is involved in the pathogenesis of multiple sclerosis, an autoimmune disease. We also demonstrated that injury-elicited stressors alter the expression of murine ERVs (MuERVs), both murine leukemia virus-type and mouse mammary tumor virus (MMTV)-type (MMTV-MuERV). In this study, to evaluate MMTV-MuERVs' responses to stress (e.g., injury, infection)-elicited systemic glucocorticoid (GC) levels, we examined the GC-stress response of 64 MMTV-MuERV promoters isolated from the genomes of 23 mouse strains. All 64 promoters responded to treatment with a synthetic GC, dexamethasone (DEX), at a wide range from a 0.6- to 85.7-fold increase in reporter activity compared to no treatment. An analysis of the 10 lowest and 10 highest DEX responders revealed specific promoter elements exclusively present in either the three lowest or the two highest responders. Each promoter had a unique profile of transcription regulatory elements and the glucocorticoid response element (GRE) was identified in all promoters with the number of GREs ranging from 2 to 7. The three lowest DEX responders were the only promoters with two GREs. The findings from this study suggest that certain MMTV-MuERVs are more responsive to stress-elicited systemic GC elevation compared to the others. The mouse strain-specific genomic MMTV-MuERV profiles and individual MMTV-MuERVs' differential responses to GC-stress might explain, at least in part, the variable inflammatory responses to injury and/or infection, often observed among different mouse strains. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3

    International Nuclear Information System (INIS)

    Tu, Yihui; Xue, Huaming; Francis, Wendy; Davies, Andrew P.; Pallister, Ian; Kanamarlapudi, Venkateswarlu; Xia, Zhidao

    2013-01-01

    Highlights: •Dex exerts dose-dependant inhibition of HACs viability and induction of apoptosis. •Dex-induced impairment of chondrocytes was attenuated by rhLF. •ERK and FASL/FAS signaling are involved in the effects of rhLF. •OA patients with glucocorticoid-induced cartilage damage may benefit from treatment with rhLF. -- Abstract: Dexamethasone (Dex) is commonly used for osteoarthritis (OA) with excellent anti-inflammatory and analgesic effect. However, Dex also has many side effects following repeated use over prolonged periods mainly through increasing apoptosis and inhibiting proliferation. Lactoferrin (LF) exerts significantly anabolic effect on many cells and little is known about its effect on OA chondrocytes. Therefore, the aim of this study is to investigate whether LF can inhibit Dex-induced OA chondrocytes apoptosis and explore its possible molecular mechanism involved in. MTT assay was used to determine the optimal concentration of Dex and recombinant human LF (rhLF) on chondrocytes at different time and dose points. Chondrocytes were then stimulated with Dex in the absence or presence of optimal concentration of rhLF. Cell proliferation and viability were evaluated using MTT and LIVE/DEAD assay, respectively. Cell apoptosis was evaluated by multi-parameter apoptosis assay kit using both confocal microscopy and flow cytometry, respectively. The expression of extracellular signal-regulated kinase (ERK), FAS, FASL, and Caspase-3 (CASP3) at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The optimal concentration of Dex (25 μg/ml) and rhLF (200 μg/ml) were chosen for the following experiments. rhLF significantly reversed the detrimental effect of Dex on chondrocytes proliferation, viability, and apoptosis. In addition, rhLF significantly prevented Dex-induced down-regulation of ERK and up-regulation of FAS, FASL, and CASP3. These findings demonstrated that rhLF acts as

  5. Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yihui [Department of Orthopaedics, Yangpu District Central Hospital Affiliated to Tongji University School of Medicine, 450 Tengyue Road, Shanghai (China); Xue, Huaming [Department of Orthopaedics, Yangpu District Central Hospital Affiliated to Tongji University School of Medicine, 450 Tengyue Road, Shanghai (China); Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Francis, Wendy [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Davies, Andrew P. [Department of Orthopaedics and Trauma, Moriston Hospital, Swansea (United Kingdom); Pallister, Ian; Kanamarlapudi, Venkateswarlu [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Xia, Zhidao, E-mail: zhidao.xia@gmail.com [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom)

    2013-11-08

    Highlights: •Dex exerts dose-dependant inhibition of HACs viability and induction of apoptosis. •Dex-induced impairment of chondrocytes was attenuated by rhLF. •ERK and FASL/FAS signaling are involved in the effects of rhLF. •OA patients with glucocorticoid-induced cartilage damage may benefit from treatment with rhLF. -- Abstract: Dexamethasone (Dex) is commonly used for osteoarthritis (OA) with excellent anti-inflammatory and analgesic effect. However, Dex also has many side effects following repeated use over prolonged periods mainly through increasing apoptosis and inhibiting proliferation. Lactoferrin (LF) exerts significantly anabolic effect on many cells and little is known about its effect on OA chondrocytes. Therefore, the aim of this study is to investigate whether LF can inhibit Dex-induced OA chondrocytes apoptosis and explore its possible molecular mechanism involved in. MTT assay was used to determine the optimal concentration of Dex and recombinant human LF (rhLF) on chondrocytes at different time and dose points. Chondrocytes were then stimulated with Dex in the absence or presence of optimal concentration of rhLF. Cell proliferation and viability were evaluated using MTT and LIVE/DEAD assay, respectively. Cell apoptosis was evaluated by multi-parameter apoptosis assay kit using both confocal microscopy and flow cytometry, respectively. The expression of extracellular signal-regulated kinase (ERK), FAS, FASL, and Caspase-3 (CASP3) at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The optimal concentration of Dex (25 μg/ml) and rhLF (200 μg/ml) were chosen for the following experiments. rhLF significantly reversed the detrimental effect of Dex on chondrocytes proliferation, viability, and apoptosis. In addition, rhLF significantly prevented Dex-induced down-regulation of ERK and up-regulation of FAS, FASL, and CASP3. These findings demonstrated that rhLF acts as

  6. Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development

    International Nuclear Information System (INIS)

    Cheng, Xin; Chen, Jian-long; Ma, Zheng-lai; Zhang, Zhao-long; Lv, Shun; Mai, Dong-mei; Liu, Jia-jia; Chuai, Manli; Lee, Kenneth Ka Ho; Wan, Chao; Yang, Xuesong

    2014-01-01

    Dexamethasone (Dex) has anti-inflammatory and immunomodulatory properties against many conditions. There is a potential teratogenic risk, however, for pregnant women receiving Dex treatment. It has been claimed that Dex exposure during pregnancy could affect osteogenesis in the developing embryo, which still remains highly controversial. In this study, we employed chick embryos to investigate the effects of Dex exposure on skeletal development using combined in vivo and in vitro approach. First, we demonstrated that Dex (10 −8 –10 −6 μmol/egg) exposure resulted in a shortening of the developing long bones of chick embryos, and it accelerated the deposition of calcium salts. Secondly, histological analysis of chick embryo phalanxes exhibited Dex exposure inhibited the proliferation of chondrocytes, increased apoptosis of chondrocytes and osteocytes, and led to atypical arranged hypertrophic chondrocytes. The expression of genes related to skeletogenesis was also analyzed by semi-quantitative RT-PCR. The expression of ALP, Col1a2 and Col2a1 was decreased in the Dex treated phalanxes. A detectable increase was observed in Runx-2 and Mmp-13 expression. We next examined how Dex affected the different stages of skeletogenesis in vitro. Utilizing limb bud mesenchyme micromass cultures, we determined that Dex exposure exerted no effect on apoptosis but impaired chondrogenic cell proliferation. Interestingly, low dose of Dex moderately prompted nodule formation as revealed by alcian blue staining, but higher doses of Dex significantly inhibited similar chondrogenic differentiation. Dex exposure did not induce apoptosis when the chondrogenic precursors were still at the mesenchymal stage, however, cell viability was suppressed when the mesenchyme differentiated into chondrocytes. Alizarin red staining revealed that the capacity to form mineralized bone nodules was correspondingly enhanced as Dex concentrations increased. The mRNA level of Sox-9 was slightly increased

  7. Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xin; Chen, Jian-long; Ma, Zheng-lai; Zhang, Zhao-long; Lv, Shun; Mai, Dong-mei; Liu, Jia-jia [Department of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Medicine, Jinan University, Guangzhou 510632 (China); Chuai, Manli [Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH (United Kingdom); Lee, Kenneth Ka Ho; Wan, Chao [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Yang, Xuesong, E-mail: yang_xuesong@126.com [Department of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Medicine, Jinan University, Guangzhou 510632 (China); Institute of Fetal-Preterm Labor Medicine, Jinan University, Guangzhou 510632 (China)

    2014-11-15

    Dexamethasone (Dex) has anti-inflammatory and immunomodulatory properties against many conditions. There is a potential teratogenic risk, however, for pregnant women receiving Dex treatment. It has been claimed that Dex exposure during pregnancy could affect osteogenesis in the developing embryo, which still remains highly controversial. In this study, we employed chick embryos to investigate the effects of Dex exposure on skeletal development using combined in vivo and in vitro approach. First, we demonstrated that Dex (10{sup −8}–10{sup −6} μmol/egg) exposure resulted in a shortening of the developing long bones of chick embryos, and it accelerated the deposition of calcium salts. Secondly, histological analysis of chick embryo phalanxes exhibited Dex exposure inhibited the proliferation of chondrocytes, increased apoptosis of chondrocytes and osteocytes, and led to atypical arranged hypertrophic chondrocytes. The expression of genes related to skeletogenesis was also analyzed by semi-quantitative RT-PCR. The expression of ALP, Col1a2 and Col2a1 was decreased in the Dex treated phalanxes. A detectable increase was observed in Runx-2 and Mmp-13 expression. We next examined how Dex affected the different stages of skeletogenesis in vitro. Utilizing limb bud mesenchyme micromass cultures, we determined that Dex exposure exerted no effect on apoptosis but impaired chondrogenic cell proliferation. Interestingly, low dose of Dex moderately prompted nodule formation as revealed by alcian blue staining, but higher doses of Dex significantly inhibited similar chondrogenic differentiation. Dex exposure did not induce apoptosis when the chondrogenic precursors were still at the mesenchymal stage, however, cell viability was suppressed when the mesenchyme differentiated into chondrocytes. Alizarin red staining revealed that the capacity to form mineralized bone nodules was correspondingly enhanced as Dex concentrations increased. The mRNA level of Sox-9 was slightly

  8. Effects of acute restraint-induced stress on glucocorticoid receptors and brain-derived neurotrophic factor after mild traumatic brain injury.

    Science.gov (United States)

    Griesbach, G S; Vincelli, J; Tio, D L; Hovda, D A

    2012-05-17

    We have previously reported that experimental mild traumatic brain injury results in increased sensitivity to stressful events during the first post-injury weeks, as determined by analyzing the hypothalamic-pituitary-adrenal (HPA) axis regulation following restraint-induced stress. This is the same time period when rehabilitative exercise has proven to be ineffective after a mild fluid-percussion injury (FPI). Here we evaluated effects of stress on neuroplasticity. Adult male rats underwent either an FPI or sham injury. Additional rats were only exposed to anesthesia. Rats were exposed to 30 min of restraint stress, followed by tail vein blood collection at post-injury days (PID) 1, 7, and 14. The response to dexamethasone (DEX) was also evaluated. Hippocampal tissue was collected 120 min after stress onset. Brain-derived neurotrophic factor (BDNF) along with glucocorticoid (GR) and mineralocorticoid (MR) receptors was determined by Western blot analysis. Results indicated injury-dependent changes in glucocorticoid and mineralocorticoid receptors that were influenced by the presence of dexamethasone. Control and FPI rats responded differentially to DEX in that GR increases after receiving the lower dose of DEX were longer lasting in the FPI group. A suppression of MR was found at PID 1 in vehicle-treated FPI and Sham groups. Decreases in the precursor form of BDNF were observed in different FPI groups at PIDs 7 and 14. These findings suggest that the increased sensitivity to stressful events during the first post-injury weeks, after a mild FPI, has an impact on hippocampal neuroplasticity. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Bulygina, Veta V; Lanshakov, Dmitry A; Babluk, Ekaterina V; Dygalo, Nikolay N

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  10. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Galina T Shishkina

    Full Text Available Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg, and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg. Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  11. Dexamethasone-induced haptoglobin release by calf liver parenchymal cells.

    Science.gov (United States)

    Higuchi, H; Katoh, N; Miyamoto, T; Uchida, E; Yuasa, A; Takahashi, K

    1994-08-01

    Parenchymal cells were isolated from the liver of male calves, and monolayer cultures formed were treated with glucocorticoids to examine whether haptoglobin, appearance of which is associated with hepatic lipidosis (fatty liver) in cattle, is induced by steroid hormones. Without addition of dexamethasone, only trace amounts of haptoglobin were detected in culture medium. With addition of dexamethasone (10(-12) to 10(-4) M), considerable amounts of haptoglobin were released into the medium. Maximal release was observed at concentrations of 10(-8) to 10(-6) M dexamethasone. Haptoglobin release was similarly induced by cortisol, although the effect was less potent than that of dexamethasone. Actinomycin D (a known protein synthesis inhibitor) dose-dependently reduced amounts of haptoglobin released in response to 10(-8) M dexamethasone. Dexamethasone also induced annexin I, which is known to be synthesized in response to glucocorticoids. Dexamethasone treatment resulted in reduced protein kinase C activity in the cell cytosol, which has been shown to be an early event in dexamethasone-treated cells. Other than glucocorticoids, estradiol induced haptoglobin release, whereas progesterone was less effective. The association of haptoglobin with hepatic lipidosis can be reasonably explained by the fact that haptoglobin production by the liver is induced by glucocorticoids and estradiol, and these steroid hormones are triggers for development of hepatic lipidosis in cattle.

  12. Effect of β-agonist on the dexamethasone-induced expression of aromatase by the human monocyte cells

    Directory of Open Access Journals (Sweden)

    Masatada Watanabe

    2017-02-01

    Full Text Available Emerging evidence suggests that sex steroids are important for human skin health. In particular, estrogen improves skin thickness, elasticity and moisture of older women. The major source of circulating estrogen is the ovary; however, local estrogen synthesis and secretion have important roles in, for example, bone metabolism and breast cancer development. We hypothesized that infiltrated peripheral monocytes are one of the sources of estrogen in skin tissues. We also hypothesized that, during atopic dermatitis under stress, a decline in the hypothalamus–pituitary–adrenal axis (HPA and facilitation of the (hypothalamus–sympathetic–adrenomedullary system (SAM attenuates estrogen secretion from monocytes. Based on this hypothesis, we tested aromatase expression in the human peripheral monocyte-derived cell line THP-1 in response to the synthetic glucocorticoid dexamethasone (Dex, the synthetic β-agonist isoproterenol (Iso and the β-antagonist propranolol (Pro. Dex mimics glucocorticoid secreted during excitation of the HPA, and Iso mimics catecholamine secreted during excitation of the SAM. We found that aromatase activity and the CYP19A1 gene transcript were both upregulated in THP-1 cells in the presence of Dex. Addition of Iso induced their downregulation and further addition of Pro rescued aromatase expression. These results may suggest that attenuation of estrogen secretion from peripheral monocytes could be a part of the pathology of stress-caused deterioration of atopic dermatitis. Further examination using an in vitro human skin model including THP-1 cells might be a valuable tool for investigating the therapeutic efficacy and mechanism of estrogen treatment for skin health.

  13. Induction of regulatory dendritic cells by dexamethasone and 1alpha,25-Dihydroxyvitamin D(3)

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Gad, Monika; Walter, Mark R

    2004-01-01

    D(3) the active form of Vitamin D(3) (D(3)) in combination with dexamethasone (Dex) has a synergistic effect on LPS-induced maturation of DC. Monocyte-derived DCs cultured with D(3) and Dex during LPS-induced maturation have a low stimulatory effect on allogeneic T cells comparable...

  14. Augmented β-Cell Function and Mass in Glucocorticoid-Treated Rodents Are Associated with Increased Islet Ir-β/AKT/mTOR and Decreased AMPK/ACC and AS160 Signaling

    Directory of Open Access Journals (Sweden)

    André O. P. Protzek

    2014-01-01

    Full Text Available Glucocorticoid (GC therapies may adversely cause insulin resistance (IR that lead to a compensatory hyperinsulinemia due to insulin hypersecretion. The increased β-cell function is associated with increased insulin signaling that has the protein kinase B (AKT substrate with 160 kDa (AS160 as an important downstream AKT effector. In muscle, both insulin and AMP-activated protein kinase (AMPK signaling phosphorylate and inactivate AS160, which favors the glucose transporter (GLUT-4 translocation to plasma membrane. Whether AS160 phosphorylation is modulated in islets from GC-treated subjects is unknown. For this, two animal models, Swiss mice and Wistar rats, were treated with dexamethasone (DEX (1 mg/kg body weight for 5 consecutive days. DEX treatment induced IR, hyperinsulinemia, and dyslipidemia in both species, but glucose intolerance and hyperglycemia only in rats. DEX treatment caused increased insulin secretion in response to glucose and augmented β-cell mass in both species that were associated with increased islet content and increased phosphorylation of the AS160 protein. Protein AKT phosphorylation, but not AMPK phosphorylation, was found significantly enhanced in islets from DEX-treated animals. We conclude that the augmented β-cell function developed in response to the GC-induced IR involves inhibition of the islet AS160 protein activity.

  15. Effects of melatonin on prenatal dexamethasone-induced epigenetic alterations in hippocampal morphology and reelin and glutamic acid decarboxylase 67 levels.

    Science.gov (United States)

    Lui, Chun-Chung; Hsu, Mei-Hsin; Kuo, Ho-Chang; Chen, Chih-Cheng; Sheen, Jiunn-Ming; Yu, Hong-Ren; Tiao, Mao-Meng; Tain, You-Lin; Chang, Kow-Aung; Huang, Li-Tung

    2015-01-01

    Prenatal glucocorticoid exposure causes brain damage in adult offspring; however, the underlying mechanisms remain unclear. Melatonin has been shown to have beneficial effects in compromised pregnancies. Pregnant Sprague-Dawley rats were administered vehicle (VEH) or dexamethasone between gestation days 14 and 21. The programming effects of prenatal dexamethasone exposure on the brain were assessed at postnatal days (PND) 7, 42, and ∼120. Melatonin was administered from PND21 to the rats exposed to dexamethasone, and the outcome was assessed at ∼PND120. In total, there were four groups: VEH, vehicle plus melatonin (VEHM), prenatal dexamethasone-exposure (DEX), and prenatal dexamethasone exposure plus melatonin (DEXM). Spatial memory, gross hippocampal morphology, and hippocampal biochemistry were examined. Spatial memory assessed by the Morris water maze showed no significant differences among the four groups. Brain magnetic resonance imaging showed that all rats with prenatal dexamethasone exposure (DEX + DEXM) exhibited increased T2-weighted signals in the hippocampus. There were no significant differences in the levels of mRNA expression of hippocampal reln, which encodes reelin, and GAD1, which encodes glutamic acid decarboxylase 67, at PND7. At both PND42 and ∼PND120, reln and GAD1 mRNA expression levels were decreased. At ∼PND120, melatonin restored the reduced levels of hippocampal reln and GAD1 mRNA expression in the DEXM group. In addition, melatonin restored the reln mRNA expression levels by (1) reducing DNA methyltransferase 1 (DNMT1) mRNA expression and (2) reducing the binding of DNMT1 and the methyl-CpG binding protein 2 (MeCP2) to the reln promoter. The present study showed that prenatal dexamethasone exposure induced gross alterations in hippocampal morphology and reduced the levels of hippocampal mRNA expression of reln and GAD1. Spatial memory was unimpaired. Thus, melatonin had a beneficial effect in restoring hippocampal reln m

  16. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity.

    Science.gov (United States)

    Gallina, Donika; Zelinka, Christopher Paul; Cebulla, Colleen M; Fischer, Andy J

    2015-11-01

    Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Glucocorticoids facilitate the retention of acquired immobility during forced swimming

    NARCIS (Netherlands)

    Veldhuis, H D; De Korte, C C; De Kloet, E R

    1985-01-01

    The adrenalectomy-induced decrease in the level of immobility during a 5 min retest period in the Porsolt swimming test could be reversed by glucocorticoids administered s.c. 15 min after the initial forced swimming exposure. The synthetic glucocorticoids dexamethasone and RU 28362 were active in

  18. Glucocorticoid actions on L6 muscle cells in culture

    International Nuclear Information System (INIS)

    Max, S.R.; Konagaya, M.; Konagaya, Y.

    1986-01-01

    Glucocorticoids exert striking catabolic effects on skeletal muscle. The mechanism of these effects remains poorly understood. They employed L6 muscle cells in culture to ascertain whether intracellular glucocorticoid receptors are involved. Studies in vitro permit exploration of glucocorticoid effects in the absence of other hormonal influences. L6 myoblasts were induced to form differentiated myotubes by growth in 1% serum. L6 myotubes were found to possess a high-affinity, limited capacity intracellular glucocorticoid receptor (apparent K/sub D/ = 5 x 10 -10 M; B/sub max/ = 711 pmols/g protein) with ligand specificity similar to that of glucocorticoid receptors from classical glucocorticoid target tissues. Further, [ 3 H] triamcinolone acetonide specific binding to L6 cell homogenates was blocked by a glucocorticoid antagonist, RU38486 (11β-(4-dimethyl-aminophenyl)-17β-hydroxy-17α-(prop-l-ynyl)-estra-4,9-dien-3-one). Dexamethasone (10 -5 M) caused a 10-fold increase in the activity of gluatmine synthetase in L6 myotubes; this increase was prevented by RU38486. Similarly, dexamethasone (10 -5 M) caused a 20% decrease in [ 12 C] leucine incorporation into protein. This effect also was blocked by RU38486. Thus, induction of glutamine synthetase and diminution of protein synthesis by dexamethasone require intracellular glucocorticoid receptors. L6 cells should prove particularly valuable for further studies of glucocorticoid actions on skeletal muscle

  19. Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone.

    Science.gov (United States)

    Xu, Menglin; Wang, Xiangdong

    2017-08-01

    Lung cancer is the leading cause of death from cancer. Mucins are glycoproteins with high molecular weight, responsible for cell growth, differentiation, and signaling, and were proposed to be correlated with gene heterogeneity of lung cancer. Here, we report aberrant expression of mucin genes and tumor necrosis factor receptors in lung adenocarcinoma tissues compared with normal tissues in GEO datasets. Mucin-1 (MUC1) gene was selected and considered as the target gene; furthermore, the expression pattern of adenocarcinomic cells (A549, H1650, or H1299 cells) was validated under the stimulation with tumor necrosis factor-alpha (TNFα) or dexamethasone (DEX), separately. MUC1 gene interference was done to A549 cells to show its role in sensitivity of lung cancer cells to TNFα and DEX. Results of our experiments indicate that MUC1 may regulate the influence of inflammatory mediators in effects of glucocorticoids (GCs), as a regulatory target to improve therapeutics. It shows the potential effect of MUC1 and GCs in lung adenocarcinoma (LADC), which may help in LADC treatment in the future.

  20. Fludarabine inhibits STAT1-mediated up-regulation of caspase-3 expression in dexamethasone-induced osteoblasts apoptosis and slows the progression of steroid-induced avascular necrosis of the femoral head in rats.

    Science.gov (United States)

    Feng, Zhenhua; Zheng, Wenhao; Tang, Qian; Cheng, Liang; Li, Hang; Ni, Wenfei; Pan, Xiaoyun

    2017-08-01

    Steroid-induced avascular necrosis of the femoral head (SANFH) is a major limitation of long-term or excessive clinical administration of glucocorticoids. Fludarabine, which is a compound used to treat various hematological malignancies, such as chronic lymphocytic leukemia, acts by down-regulating signal transducer and activator of transcription 1 (STAT1) by inhibiting STAT1 phosphorylation in both normal and cancer cells. This study assessed the effects of fludarabine in vitro (primary murine osteoblasts) and in vivo (rat SANFH model). In vitro, pretreatment with fludarabine significantly inhibited Dexamethasone (Dex)-induced apoptosis in osteoblasts, which was examined by TUNEL staining. Treatment with Dex caused a remarkable decrease in the expression of Bcl-2; an increase in cytochrome c release; activation of BAX, caspase-9, and caspase-3; and an obvious enhancement in STAT1 phosphorylation. However, treatment resulted in the up-regulation of caspase-3 expression. Enhanced P-STAT1 activity and up-regulation of caspase-3 expression were also observed in osteoblasts. In vivo, the subchondral trabeculae in fludarabine-treated rats exhibited less bone loss and a lower ratio of empty lacunae. Taken together, our results suggest that STAT1-mediated up-regulation of caspase-3 is involved in osteoblast apoptosis induced by Dex and indicates that fludarabine may serve as a potential agent for the treatment of SANFH.

  1. Dexamethasone-induced and estradiol-induced CREB activation and annexin 1 expression in CCRF-CEM lymphoblastic cells: evidence for the involvement of cAMP and p38 MAPK

    Directory of Open Access Journals (Sweden)

    M. Castro-caldas

    2003-01-01

    Full Text Available Aims: Annexin 1 (ANXA1, a member of the annexin family of calcium-binding and phospholipid-binding proteins, is a key mediator of the anti-inflammatory actions of steroid hormones. We have previously demonstrated that, in the human lymphoblastic CCRF-CEM cell line, both the synthetic glucocorticoid hormone, dexamethasone (Dex, and the estrogen hormone, 17β-estradiol (E2β, induce the synthesis of ANXA1, by a mechanism independent of the activation of their nuclear receptors. Recently, it was reported that the gene coding for ANXA1 contains a cAMP-responsive element (CRE. In this work, we investigated whether Dex and E2β were able to induce the activation of CRE binding proteins (CREB in the CCRF-CEM cells. Moreover, we studied the intracellular signalling pathways involved in CREB activation and ANXA1 synthesis in response to Dex and E2β; namely, the role of cAMP and the p38 mitogen-activated protein kinase (MAPK.

  2. Predicting the neurobehavioral side effects of dexamethasone in pediatric acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Warris, Lidewij T.; van den Akker, Erica L. T.; Aarsen, Femke K.; Bierings, Marc B.; van den Bos, Cor; Tissing, Wim J. E.; Sassen, Sebastiaan D. T.; Veening, Margreet A.; Zwaan, Christian M.; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    Although dexamethasone is an effective treatment for acute lymphoblastic leukemia (ALL), it can induce a variety of serious neurobehavioral side effects. We hypothesized that these side effects are influenced by glucocorticoid sensitivity at the tissue level. We therefore prospectively studied

  3. Pathophysiology of Glucocorticoid Signaling.

    Science.gov (United States)

    Vitellius, Géraldine; Trabado, Séverine; Bouligand, Jérôme; Delemer, Brigitte; Lombès, Marc

    2018-06-01

    Glucocorticoids (GC), such as cortisol or dexamethasone, control various physiological functions, notably those involved in development, metabolism, inflammatory processes and stress, and exert most of their effects upon binding to the glucocorticoid receptor (GR, encoded by NR3C1 gene). GC signaling follows several consecutive steps leading to target gene transactivation, including ligand binding, nuclear translocation of ligand-activated GR complexes, DNA binding, coactivator interaction and recruitment of functional transcriptional machinery. Any step may be impaired and may account for altered GC signaling. Partial or generalized glucocorticoid resistance syndrome may result in a reduced level of functional GR, a decreased hormone affinity and binding, a defect in nuclear GR translocation, a decrease or lack of DNA binding and/or post-transcriptional GR modifications. To date, 26 loss-of-function NR3C1 mutations have been reported in the context of hypertension, hirsutism, adrenal hyperplasia or metabolic disorders. These clinical signs are generally associated with biological features including hypercortisolism without negative regulatory feedback loop on the hypothalamic-pituitary-adrenal axis. Patients had often low plasma aldosterone and renin levels despite hypertension. Only one GR gain-of-function mutation has been described associating Cushing's syndrome phenotype with normal urinary-free cortisol. Some GR polymorphisms (ER22/23EK, GR-9β) have been linked to glucocorticoid resistance and a healthier metabolic profile whereas some others seemed to be associated with GC hypersensitivity (N363S, BclI), increasing cardiovascular risk (diabetes type 2, visceral obesity). This review focuses on the earlier findings on the pathophysiology of GR signaling and presents criteria facilitating identification of novel NR3C1 mutations in selected patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Co-administration of dexamethasone increases severity and accelerates onset day of neutropenia in bladder cancer patients on methotrexate, vinblastine, adriamycin and cisplatin chemotherapy: a retrospective cohort study.

    Science.gov (United States)

    Itai, Shingo; Suga, Yukio; Hara, Yusuke; Izumi, Kouji; Maeda, Yuji; Kitagawa, Yasuhide; Ishizaki, Junko; Shimada, Tsutomu; Mizokami, Atsushi; Sai, Yoshimichi

    2017-01-01

    Bladder cancer patients receiving methotrexate, vinblastine, adriamycin and cisplatin (MVAC) chemotherapy are co-administered with dexamethasone as an anti-emetic. We examined whether or not dexamethasone affects the severity and onset day of MVAC-induced severe neutropenia. This was a retrospective study of bladder cancer patients treated with MVAC chemotherapy with or without dexamethasone as an antiemetic at Kanazawa University Hospital during January 2005 - December 2009. Patients were categorized into three groups; no dexamethasone use (Dex (-)), dexamethasone on day 2 (Dex 1 day), and dexamethasone on days 2, 3 and 4 (Dex multiday). We evaluated the incidence of grade 3/4 neutropenia and the day of onset of first severe neutropenic episode during the first course of MVAC chemotherapy. Logistic regression was used to investigate whether co-administration of dexamethasone was a risk factor for severe neutropenia. Episodes of grade 3/4 neutropenia occurred in 3 out of 6 (50.0%), 11 out of 12 (91.7%) and 6 out of 6 (100%) patients in the Dex (-), Dex 1 day, and Dex multiday groups, respectively. The appearance day of first severe neutropenia in the Dex multiday group (13.2 ± 1.0) was significantly accelerated compared to the Dex (-) group (17.7 ± 2.1). Univariate logistic regression analysis revealed that dexamethasone is a risk factor for severe neutropenia (OR 17.0; 95%CI: 1.3-223.1). Co-administration of dexamethasone for anti-emesis brings forward the first appearance of neutropenia, and increases the severity of neutropenia, in bladder cancer patients receiving MVAC chemotherapy.

  5. Nanomedicines for inflammatory arthritis : head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes

    NARCIS (Netherlands)

    Quan, Lingdong; Zhang, Yijia; Crielaard, Bart J; Dusad, Anand; Lele, Subodh M; Rijcken, Cristianne J F; Metselaar, Josbert M; Kostková, Hana; Etrych, Tomáš; Ulbrich, Karel; Kiessling, Fabian; Mikuls, Ted R; Hennink, Wim E; Storm, Gert; Lammers, Twan; Wang, Dong

    2014-01-01

    As an emerging research direction, nanomedicine has been increasingly utilized to treat inflammatory diseases. In this head-to-head comparison study, four established nanomedicine formulations of dexamethasone, including liposomes (L-Dex), core-cross-linked micelles (M-Dex), slow releasing polymeric

  6. Targeting Dexamethasone to Macrophages in a Porcine Endotoxemic Model

    DEFF Research Database (Denmark)

    Granfeldt, Asger; Hvas, Christine Lodberg; Graversen, Jonas Heilskov

    2013-01-01

    -8 minutes. CONCLUSION: Targeted delivery of dexamethasone to macrophages using a humanized CD163 antibody as carrier exhibits anti-inflammatory effects comparable with 50 times higher concentrations of free dexamethasone and does not inhibit endogenous cortisol production. This antibody-drug complex showing......OBJECTIVES: Macrophages are important cells in immunity and the main producers of pro-inflammatory cytokines. The main objective was to evaluate if specific delivery of glucocorticoid to the macrophage receptor CD163 is superior to systemic glucocorticoid therapy in dampening the cytokine response...

  7. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Henriksen, Z; Sørensen, O H

    2004-01-01

    . Osteoblast phenotypes were induced by either dexamethasone (Dex) or bone morphogenetic protein-2 (BMP-2). Bone marrow was obtained from biopsies at the posterior iliac spine. Cells were isolated by gradient centrifugation and grown to confluence. Cells were treated with 1 nM 1,25-dihydroxyvitamin D (vitamin...... activity was increased by Dex, but not by BMP-2 treatment. P1NP production was decreased after Dex treatment, while BMP-2 had no effect on P1NP levels. Osteocalcin production was low in cultures not stimulated with vitamin D. Dex or BMP-2 treatment alone did not affect the basic osteocalcin levels......, but in combination with vitamin D, BMP-2 increased the osteocalcin production, while Dex treatment completely suppressed osteocalcin production. Further, PTH-induced cAMP production was greatly enhanced by Dex treatment, whereas BMP-2 did not affect cAMP production. Finally, in vitro mineralization was greatly...

  8. Asparaginase Potentiates Glucocorticoid-Induced Osteonecrosis in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    Full Text Available Osteonecrosis is a common dose-limiting toxicity of glucocorticoids. Data from clinical trials suggest that other medications can increase the risk of glucocorticoid-induced osteonecrosis. Here we utilized a mouse model to study the effect of asparaginase treatment on dexamethasone-induced osteonecrosis. Mice receiving asparaginase along with dexamethasone had a higher rate of osteonecrosis than those receiving only dexamethasone after 6 weeks of treatment (44% vs. 10%, P = 0.006. Similarly, epiphyseal arteriopathy, which we have shown to be an initiating event for osteonecrosis, was observed in 58% of mice receiving asparaginase and dexamethasone compared to 17% of mice receiving dexamethasone only (P = 0.007. As in the clinic, greater exposure to asparaginase was associated with greater plasma exposure to dexamethasone (P = 0.0001. This model also recapitulated other clinical risk factors for osteonecrosis, including age at start of treatment, and association with the systemic exposure to dexamethasone (P = 0.027 and asparaginase (P = 0.036. We conclude that asparaginase can potentiate the osteonecrotic effect of glucocorticoids.

  9. Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits

    Directory of Open Access Journals (Sweden)

    Linhua Zhang

    2009-09-01

    Full Text Available Linhua Zhang1, Yue Li2, Chao Zhang1, Yusheng Wang2, Cunxian Song11Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China; 2Department of Ophthalmology, Institute of Ophthalmology of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an, ChinaAbstract: The aim of the study was to investigate the tolerance and pharmacokinetics of dexamethasone (DEX-loaded poly(lactic acid–co-glycolic acid nanoparticles (DEX-NPs in rabbits after intravitreal injection. The DEX-NPs were prepared and characterized in terms of morphology, particle size and size distribution, encapsulation efficiency, and in vitro release. Ophthalmic investigations were performed, including fundus observation and photography, intraocular pressure measurement, and B-scan ocular ultrasonography. There were no abnormalities up to 50 days after administration of DEX-NPs in rabbits. The DEX concentrations in plasma and the ocular tissues such as the cornea, aqueous humor, lens, iris, vitreous humor, and chorioretina were determined by high-pressure liquid chromatography. The DEX-NPs maintained a sustained release of DEX for about 50 days in vitreous and provided relatively constant DEX levels for more than 30 days with a mean concentration of 3.85 mg/L-1. Based on the areas under the curve, the bioavailability of DEX in the experimental group was significantly higher than that in the control group injected with regular DEX. These results suggest that intravitreal injection of DEX-NPs lead to a sustained release of DEX with a high bioavailability, providing a basis for a novel approach to the treatment of posterior segment diseases.Keywords: dexamethasone, nanoparticles, intravitreal injection, pharmacokinetics

  10. The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multiple myeloma cells.

    Science.gov (United States)

    Tassone, Pierfrancesco; Galea, Eulalia; Forciniti, Samantha; Tagliaferri, Pierosandro; Venuta, Salvatore

    2002-10-01

    Interleukin-6 (IL-6) is the major growth and survival factor for multiple myeloma (MM), and has been shown to protect MM cells from apoptosis induced by a variety of agents. IL-6 receptor antagonists, which prevent the assembly of functional IL-6 receptor complexes, inhibit cell proliferation and induce apoptosis in MM cells. We have investigated whether the IL-6 receptor super-antagonist Sant7 might enhance the antiproliferative and apoptotic effects induced by the combination of dexamethasone (Dex) and zoledronic acid (Zln) on human MM cell lines and primary cells from MM patients. Here we show that each of these compounds individually induced detectable antiproliferative effects on MM cells. Sant7 significantly enhanced growth inhibition and apoptosis induced by Dex and Zln on both MM cell lines and primary MM cells. These results indicate that overcoming IL-6 mediated cell resistance by Sant7 potentiates the effect of glucocorticoides and bisphosphonates on MM cell growth and survival, providing a rationale for therapies including IL-6 antagonists in MM.

  11. Analgesic effects of dexamethasone in burn injury

    DEFF Research Database (Denmark)

    Werner, Mads U; Lassen, Birgit Vibeke; Kehlet, Henrik

    2002-01-01

    and secondary hyperalgesia. RESULTS: The burn injury induced significant increases in erythema (P burn did not differ between dexamethasone and placebo treatments (P >.6). There were no significant......BACKGROUND AND OBJECTIVES: Glucocorticoids are well-known adjuvant analgesics in certain chronic pain states. There is, however, a paucity of data on their analgesic efficacy in acute pain. Therefore, the aim of the study was to examine the analgesic effects of dexamethasone in a validated burn...... model of acute inflammatory pain in humans. METHODS: Twenty-two volunteers were investigated in a double-blind, randomized, placebo-controlled cross-over study. Intravenous dexamethasone 8 mg or placebo was administered on 2 separate study days. Two hours after drug administration, a first-degree burn...

  12. MMP-8 Is Critical for Dexamethasone Therapy in Alkali-Burned Corneas Under Dry Eye Conditions

    Science.gov (United States)

    BIAN, FANG; WANG, CHANGJUN; TUKLER-HENRIKSSON, JOHANNA; PFLUGFELDER, STEPHEN C.; CAMODECA, CATERINA; NUTI, ELISA; ROSSELLO, ARMANDO; LI, DE-QUAN; DE PAIVA, CINTIA S.

    2016-01-01

    Our previous studies have shown that Dexamethasone (Dex) reduced the expression of matrix-metalloproteinases (MMPs -1,-3,-9,-13), IL-1β and IL-6, while it significantly increased MMP-8 mRNA transcripts in a concomitant dry eye and corneal alkali burn murine model (CM). To investigate if MMP-8 induction is responsible for some of the protective effects of Dex in CM, MMP-8 knock out mice (MMP-8KO) were subjected to the CM for 2 or 5 days and topically treated either with 2 μl of 0.1% Dexamethasone (Dex), or saline QID. A separate group of C57BL/6 mice were topically treated with Dex or BSS and received either 100 nM CAM12 (MMP-8 inhibitor) or vehicle IP, QD. Here we demonstrate that topical Dex treated MMP-8KO mice subjected to CM showed reduced corneal clarity, increased expression of inflammatory mediators (IL-6, CXCL1, and MMP-1 mRNA) and increased neutrophil infiltration at 2D and 5D compared to Dex treated WT mice. C57BL/6 mice topically treated with Dex and CAM12 IP recapitulated findings seen with MMP-8KO mice. These results suggest that some of the anti-inflammatory effects of Dex are mediated through increased MMP-8 expression. PMID:26923552

  13. Dickkopf1 Up-Regulation Induced by a High Concentration of Dexamethasone Promotes Rat Tendon Stem Cells to Differentiate Into Adipocytes

    OpenAIRE

    Wan Chen; Hong Tang; Xiangzhou Liu; Mei Zhou; Jiqiang Zhang; Kanglai Tang

    2015-01-01

    Background/Aims: Dexamethasone (Dex)-induced spontaneous tendon rupture and decreased self-repair capability is very common in clinical practice. The metaplasia of adipose tissue in the ruptured tendon indicates that Dex may induce tendon stem cells (TSCs) to differentiate into adipocytes, but the mechanism remains unclear. In the present study, we used in vitro methods to investigate the effects of Dex on rat TSC differentiation and the molecular mechanisms underlying this process. Methods: ...

  14. β-Hydroxy-β-methylbutyrate (HMB) prevents dexamethasone-induced myotube atrophy.

    Science.gov (United States)

    Aversa, Zaira; Alamdari, Nima; Castillero, Estibaliz; Muscaritoli, Maurizio; Rossi Fanelli, Filippo; Hasselgren, Per-Olof

    2012-07-13

    High levels of glucocorticoids result in muscle wasting and weakness. β-hydroxy-β-methylbutyrate (HMB) attenuates the loss of muscle mass in various catabolic conditions but the influence of HMB on glucocorticoid-induced muscle atrophy is not known. We tested the hypothesis that HMB prevents dexamethasone-induced atrophy in cultured myotubes. Treatment of cultured L6 myotubes with dexamethasone resulted in increased protein degradation and expression of atrogin-1 and MuRF1, decreased protein synthesis and reduced myotube size. All of these effects of dexamethasone were attenuated by HMB. Additional experiments provided evidence that the inhibitory effects of HMB on dexamethasone-induced increase in protein degradation and decrease in protein synthesis were regulated by p38/MAPK- and PI3K/Akt-dependent cell signaling, respectively. The present results suggest that glucocorticoid-induced muscle wasting can be prevented by HMB. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Endocrinologic and psychological effects of short-term dexamethasone in anorexia nervosa.

    Science.gov (United States)

    Gordon, C M; Emans, S J; DuRant, R H; Mantzoros, C; Grace, E; Harper, G P; Majzoub, J A

    2000-09-01

    Patients with anorexia nervosa (AN) have hyperactivity of their hypothalamic-pituitary-adrenal (HPA) axis, sometimes accompanied by elevations of cortisol. We examined whether the normal effects of short-term dexamethasone treatment upon HPA axis suppression and appetite stimulation are observed in these patients. Five young women with AN and ten healthy female controls received one week of high-dose oral dexamethasone (2 mg/m2/d) preceded and followed by hormonal evaluation of sensitivity to glucocorticoids and psychological assessments. No differences in hormone levels of the HPA axis were observed between the two groups and control groups at baseline, after dexamethasone suppression, or following ACTH stimulation testing. However, fasting insulin levels were significantly lower in the AN group, both before and after dexamethasone therapy and their serum leptin levels were also significantly lower. The AN group had significantly lower scores on the Anorexia Nervosa Subtest and the Beck Depression Inventory after dexamethasone compared to controls. On daily analog scales, AN patients had higher anxiety scores while on dexamethasone. Normal sensitivity to glucocorticoids was observed in all parameters examined except for mild abnormalities in pancreatic beta-cell function. These data suggest that AN may represent a state of partial glucocorticoid resistance, as in other states of restricted food intake. Furthermore, these pilot data, including the effects of dexamethasone upon psychological outlook in AN, suggest that glucocorticoids are not an effective therapy for these patients.

  16. Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery.

    Science.gov (United States)

    Souza, Joel G; Dias, Karina; Silva, Silas A M; de Rezende, Lucas C D; Rocha, Eduardo M; Emery, Flavio S; Lopez, Renata F V

    2015-02-28

    Iontophoresis of nanocarriers in the eye has been proposed to sustain drug delivery and maintain therapeutic concentrations. Fourth generation polyamidoamine (PAMAM) dendrimers are semi-rigid nanoparticles with surface groups that are easily modified. These dendrimers are known to modulate tight junctions, increase paracellular transport of small molecules and be translocated across epithelial barriers, exhibiting high uptake by different cell lines. The first aim of this study was to investigate the effect of iontophoresis on PAMAM penetration and distribution into the cornea. The second aim was to evaluate, ex vivo and in vivo, the effect of these dendrimers in dexamethasone (Dex) transcorneal iontophoresis. Anionic (PAMAM G3.5) and cationic (PAMAM G4) dendrimers were labeled with fluorescein isothiocyanate (FITC), and their distribution in the cornea was investigated using confocal microscopy after ex vivo anodal and cathodal iontophoresis for various application times. The particle size distribution and zeta potential of the dendrimers in an isosmotic solution were determined using dynamic light scattering and Nanoparticle Tracking Analysis (NTA), where the movement of small particles and the formation of large aggregates, from 5 to 100 nm, could be observed. Transcorneal iontophoresis increased the intensity and depth of PAMAM-FITC fluorescence in the cornea, suggesting improved transport of the dendrimers across the epithelium toward the stroma. PAMAM complexes with Dex were characterized by (13)C-NMR, (1)H-NMR and DOSY. PAMAM G3.5 and PAMAM G4 increased the aqueous solubility of Dex by 10.3 and 3.9-fold, respectively; however, the particle size distribution and zeta potential remained unchanged. PAMAM G3.5 decreased the Dex diffusion coefficient 48-fold compared with PAMAM G4. The ex vivo studies showed that iontophoresis increased the amount of Dex that penetrated into the cornea by 2.9, 5.6 and 3.0-fold for Dex, Dex-PAMAM G4 and Dex-PAMAM G3

  17. Safety and tolerability of high doses of glucocorticoides

    Directory of Open Access Journals (Sweden)

    Rakić Branislava D.

    2016-01-01

    Full Text Available Introduction: Treatment of acute lymphoblastic leukemia includes the use of high doses of glucocorticoides (prednisone and dexamethasone, which significantly increase the success of therapy due to lymphocytolitic effect. The aim: The aim of the study was to determine tolerability of high doses of prednisone and dexamethasone in children with acute lymphoblastic leukemia and the structure and the intensity of adverse effects, occurred after application of these medicines. Subjects and methods: In a prospective study, we analyzed adverse effects of high doses of glucocorticoides in children suffering acute lymphoblastic leukemia treated in the Institute for Child and Youth Health Care of Vojvodina, since December 2010. until October 2014, were analyzed. This study included 18 patients, aged from 2 to 15 years. Results: Hyperglycemia appeared in 89% of patients treated with prednisone and in 61% of patients treated with dexamethasone. In order to control the high blood glucose level (above 10 mmol /L, in 11% of patients insulin was used. Hypertension appeared in 28% patients treated with prednisone and dexamethasone. Antihypertensives were needed for regulation in 17% patients. Hypopotassemia and hypocalcaemia were significantly more expressed after the use of prednisone in comparison to dexamethasone. In 11% of patients, the treatment with dexamethasone caused depressive behavior, followed by agitation. Conclusion: Adverse effects of dexamethasone and prednisone, administered in high doses in children with ALL were known, expected and reversible. Adverse reactions usually disappeared spontaneously or after short-term symptomatic therapy.

  18. The effect of dexamethasone on thyrocytes from patients with Graves' disease

    International Nuclear Information System (INIS)

    Zhao Yaping; Wang Jialin

    2002-01-01

    To investigate the effect of dexamethasone (DEX) on thyrocytes of patients with Graves' Disease (GD), thyrocytes from GD were cultured in the presence of 10 -6 -10 -2 mol/L DEX. the growth of thyrocyte was measured by MTT method. Apoptosis, Fas expression were detected by Tunnel method and S-P method respectively. The result showed that 1) DEX in 10 -6 -10 -2 mol/L could kill the thyrocytes directly in time dependently. 2) Apoptosis and fas expression of thyrocyte cultured with DEX were significantly increased. 3) The rate of apoptosis was positively correlated with Fas expressions level. This results suggest that DEX can regulate the functions of thyroid by killing thyrocytes directly and inducing thyroid apoptosis

  19. 76 FR 7219 - Determination That DECASPRAY (Dexamethasone) Topical Aerosol, 0.04%, and AEROSEB-DEX...

    Science.gov (United States)

    2011-02-09

    .... The 1984 amendments include what is now section 505(j)(7) of the Federal Food, Drug, and Cosmetic Act... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2005-P-0394... Effectiveness AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug...

  20. The DExH/D protein family database.

    Science.gov (United States)

    Jankowsky, E; Jankowsky, A

    2000-01-01

    DExH/D proteins are essential for all aspects of cellular RNA metabolism and processing, in the replication of many viruses and in DNA replication. DExH/D proteins are subject to current biological, biochemical and biophysical research which provides a continuous wealth of data. The DExH/D protein family database compiles this information and makes it available over the WWW (http://www.columbia.edu/ ej67/dbhome.htm ). The database can be fully searched by text based queries, facilitating fast access to specific information about this important class of enzymes.

  1. Neonatal dexamethasone accelerates spreading depression in the rat, and antioxidant vitamins counteract this effect.

    Science.gov (United States)

    Lopes-de-Morais, Andréia Albuquerque Cunha; Mendes-da-Silva, Rosângela Figueiredo; dos-Santos, Eryka Maria; Guedes, Rubem Carlos Araújo

    2014-12-03

    The use of dexamethasone (Dex) to treat chronic lung disease in preterm infants may produce adverse effects in the developing brain. Here, we evaluated the effects of neonatal Dex on the propagation of cortical spreading depression (CSD), and tested the action of vitamins C and E against the effect of Dex. Five groups of Wistar rats received, respectively: [1] no treatment (Naïve); [2] Vehicle (V); [3] tapering doses of Dex (Dex; 0.5mg/kg, 0.3mg/kg, and 0.1mg/kg) on postnatal day (PND) 1-3; [4] Dex plus 200mg/kg vitamin C and 100mg/kg vitamin E (DexCE); [5] only vitamins C and E (CE). Vehicle and vitamins were administered on PND 1-6. CSD was recorded after the pups reached maturity (PND 60-70). The Dex-treated group presented with higher CSD velocities (mean values ± SD, in mm/min: 4.14 ± 0.22, n=10) compared with the control groups (Naïve: 3.52 ± 0.13, n=8; V: 3.57 ± 0.18, n=10; CE: 3.51 ± 0.24, n=10; pVitamins C and E antagonized this effect (DexCE group; CSD velocity: 3.43 ± 0.12, n=9). No intergroup difference was observed concerning P-wave amplitude and duration. In all groups, after the cortex underwent CSD, the electrocorticogram (ECoG) amplitude increased approximately 50% compared with the baseline amplitude for the same animal (CSD-induced ECoG potentiation); however, no intergroup difference was observed. Data suggest that coadministration of antioxidant vitamins with Dex may be a helpful therapeutic strategy to reduce brain adverse effects of dexamethasone. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Dexamethasone Drug Eluting Nanowafers Control Inflammation in Alkali-Burned Corneas Associated With Dry Eye

    Science.gov (United States)

    Bian, Fang; Shin, Crystal S.; Wang, Changjun; Pflugfelder, Stephen C.; Acharya, Ghanashyam; De Paiva, Cintia S.

    2016-01-01

    Purpose To evaluate the efficacy of a controlled release dexamethasone delivery system for suppressing inflammation in an ocular burn + desiccating stress (OB+DS) model. Methods Nanowafers (NW) loaded with Dexamethasone (Dex, 10 μg) or vehicles (2.5% Methylcellulose; MC) were fabricated using hydrogel template strategy. C57BL/6 mice were subjected to unilateral alkali ocular burn with concomitant desiccating stress for 2 or 5 days and topically treated either with 2 μL of 0.1% Dex or vehicle four times per day and compared with mice that had MC-NW or Dex-NW placed on their corneas. Clinical parameters were evaluated daily. Mice were euthanized after 2 or 5 days. Quantitative PCR evaluated the expression of inflammatory cytokines IL-1β and IL-6 and matrix metalloproteinases (MMP) in whole cornea lysates. Myeloperoxidase activity (MPO) was measured using a commercial kit in cornea lysates. Results Both Dex drop and Dex-NW groups had significantly lower corneal opacity scores compared with their vehicles. Both Dex drops and Dex-NW significantly decreased expression of IL-1β, IL-6, and MMP-9 RNA transcripts compared with vehicle drops or wafers 2 and 5 days after the initial lesion. A significant lower number of neutrophils was found in both Dex treatment groups and this was accompanied by decreased MPO activity compared with vehicle controls. Conclusions Dex-NW has efficacy equal to Dex drops in preserving corneal clarity and decreasing expression of MMPs and inflammatory cytokines of the corneas of mice subjected to an OB+DS model. PMID:27327581

  3. An in vitro approach for prioritization and evaluation of chemical effects on glucocorticoid receptor mediated adipogenesis.

    Science.gov (United States)

    Hartman, Jessica K; Beames, Tyler; Parks, Bethany; Doheny, Daniel; Song, Gina; Efremenko, Alina; Yoon, Miyoung; Foley, Briana; Deisenroth, Chad; McMullen, Patrick D; Clewell, Rebecca A

    2018-05-18

    Rising obesity rates worldwide have socio-economic ramifications. While genetics, diet, and lack of exercise are major contributors to obesity, environmental factors may enhance susceptibility through disruption of hormone homeostasis and metabolic processes. The obesogen hypothesis contends that chemical exposure early in development may enhance adipocyte differentiation, thereby increasing the number of adipocytes and predisposing for obesity and metabolic disease. We previously developed a primary human adipose stem cell (hASC) assay to evaluate the effect of environmental chemicals on PPARG-dependent adipogenesis. Here, the assay was modified to determine the effects of chemicals on the glucocorticoid receptor (GR) pathway. In differentiation cocktail lacking the glucocorticoid agonist dexamethasone (DEX), hASCs do not differentiate into adipocytes. In the presence of GR agonists, adipocyte maturation was observed using phenotypic makers for lipid accumulation, adipokine secretion, and expression of key genes. To evaluate the role of environmental compounds on adipocyte differentiation, progenitor cells were treated with 19 prioritized compounds previously identified by ToxPi as having GR-dependent bioactivity, and multiplexed assays were used to confirm a GR-dependent mode of action. Five chemicals were found to be strong agonists. The assay was also modified to evaluate GR-antagonists, and 8/10 of the hypothesized antagonists inhibited adipogenesis. The in vitro bioactivity data was put into context with extrapolated human steady state concentrations (Css) and clinical exposure data (Cmax). These data support using a human adipose-derived stem cell differentiation assay to test the potential of chemicals to alter human GR-dependent adipogenesis. Copyright © 2017. Published by Elsevier Inc.

  4. OGT-related mitochondrial motility is associated with sex differences and exercise effects in depression induced by prenatal exposure to glucocorticoids.

    Science.gov (United States)

    Liu, Weina; Wang, Hongmei; Xue, Xiangli; Xia, Jie; Liu, Jiatong; Qi, Zhengtang; Ji, Liu

    2018-01-15

    Prenatal exposure to glucocorticoids (GCs) has been found to trigger abnormal behaviors and deleterious neurological effects on offspring both in animals and in humans. The sex differences in depression have been replicated in numerous studies across cultures, persisting throughout the reproductive years. As an X-linked gene in rodents and in humans, O-GlcNAc transferase (OGT) may provide a novel perspective for the sex differences in depression. In the last third of pregnancy (gestational day 14-21), rats were subcutaneously administered either 0.13mg/kg dexamethasone-21-phosphate disodium salt (0.1mg/kg DEX) or vehicle (0.9% saline) once a day for 7 days. Adolescent (4 weeks) offspring were then trained in a swimming program or not. Here we found that adult offspring rats exposed to DEX prenatally exhibited sex-specific depression-like behaviors, males being more vulnerable than females. Swimming exercise ameliorated the above-mentioned depressive syndromes, which may be a compensatory effect for male disadvantage suffering from prenatal stress. Furthermore, the effects of prenatal DEX exposure and swimming exercise on depression were associated with OGT-related mitochondrial motility, including PINK1/Parkin pathway and AKT/GSK3β pathway. Representative kymographs of mitochondrial motility were not detected and no causal effects were obtained by OGT gene overexpression or gene knockout in this study. Our results provide a new perspective for better understanding sex differences and exercise effects in depression and may offer new mechanism-based therapeutic targets for depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Alterations in glucocorticoid negative feedback following maternal Pb, prenatal stress and the combination: A potential biological unifying mechanism for their corresponding disease profiles

    International Nuclear Information System (INIS)

    Rossi-George, A.; Virgolini, M.B.; Weston, D.; Cory-Slechta, D.A.

    2009-01-01

    Combined exposures to maternal lead (Pb) and prenatal stress (PS) can act synergistically to enhance behavioral and neurochemical toxicity in offspring. Maternal Pb itself causes permanent dysfunction of the body's major stress system, the hypothalamic pituitary adrenal (HPA) axis. The current study sought to determine the potential involvement of altered negative glucocorticoid feedback as a mechanistic basis of the effects in rats of maternal Pb (0, 50 or 150 ppm in drinking water beginning 2 mo prior to breeding), prenatal stress (PS; restraint on gestational days 16-17) and combined maternal Pb + PS in 8 mo old male and female offspring. Corticosterone changes were measured over 24 h following an i.p. injection stress containing vehicle or 100 or 300 μg/kg (females) or 100 or 150 μg/kg (males) dexamethasone (DEX). Both Pb and PS prolonged the time course of corticosterone reduction following vehicle injection stress. Pb effects were non-monotonic, with a greater impact at 50 vs. 150 ppm, particularly in males, where further enhancement occurred with PS. In accord with these findings, the efficacy of DEX in suppressing corticosterone was reduced by Pb and Pb + PS in both genders, with Pb efficacy enhanced by PS in females, over the first 6 h post-administration. A marked prolongation of DEX effects was found in males. Thus, Pb, PS and Pb + PS, sometimes additively, produced hypercortisolism in both genders, followed by hypocortisolism in males, consistent with HPA axis dysfunction. These findings may provide a plausible unifying biological mechanism for the reported links between Pb exposure and stress-associated diseases and disorders mediated via the HPA axis, including obesity, hypertension, diabetes, anxiety, schizophrenia and depression. They also suggest broadening of Pb screening programs to pregnant women in high stress environments

  6. CHLORPYRIFOS DEVELOPMENTAL NEUROTOXICITY: INTERACTION WITH GLUCOCORTICOIDS IN PC12 CELLS

    Science.gov (United States)

    Slotkin, Theodore A.; Card, Jennifer; Seidler, Frederic J.

    2012-01-01

    Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on concentrations relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuri to genesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent. PMID:22796634

  7. Dexamethasone intravitreal implant downregulates PDGFR-α and upregulates caveolin-1 in experimental branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Cehofski, Lasse Jørgensen; Kruse, Anders; Magnusdottir, Sigriður Olga

    2018-01-01

    while the left control eye was given an identical injection without an implant. Fifteen days after BRVO and DEX implant intervention the retinas were excised and analyzed with tandem mass tag based mass spectrometry. A total of 26 significantly changed proteins were identified. Dexamethasone...... following an intervention with a dexamethasone (DEX) implant this study combined an experimental model of BRVO with proteomic techniques. In six Danish Landrace pigs experimental BRVO was induced in both eyes using argon laser. After inducing BRVO a DEX implant was injected in the right eye of each animal......-α and caveolin-1 were confirmed with immunohistochemistry. DEX implant intervention may inhibit PDGF signaling by decreasing the retinal level of PDGFR-α while an increased content of caveolin-1 may help maintain the integrity of the blood-retinal barrier....

  8. Edaravone protects osteoblastic cells from dexamethasone through inhibiting oxidative stress and mPTP opening.

    Science.gov (United States)

    Sun, Wen-xiao; Zheng, Hai-ya; Lan, Jun

    2015-11-01

    Existing evidences have emphasized an important role of oxidative stress in dexamethasone (Dex)-induced osteoblastic cell damages. Here, we investigated the possible anti-Dex activity of edaravone in osteoblastic cells, and studied the underlying mechanisms. We showed that edaravone dose-dependently attenuated Dex-induced death and apoptosis of established human or murine osteoblastic cells. Further, Dex-mediated damages to primary murine osteoblasts were also alleviated by edaravone. In osteoblastic cells/osteoblasts, Dex induced significant oxidative stresses, tested by increased levels of reactive oxygen species and lipid peroxidation, which were remarkably inhibited by edaravone. Meanwhile, edaravone repressed Dex-induced mitochondrial permeability transition pore (mPTP) opening, or mitochondrial membrane potential reduction, in osteoblastic cells/osteoblasts. Significantly, edaravone-induced osteoblast-protective activity against Dex was alleviated with mPTP inhibition through cyclosporin A or cyclophilin-D siRNA. Together, we demonstrate that edaravone protects osteoblasts from Dex-induced damages probably through inhibiting oxidative stresses and following mPTP opening.

  9. In Vitro/In Vivo Evaluation of Dexamethasone--PAMAM Dendrimer Complexes for Retinal Drug Delivery.

    Science.gov (United States)

    Yavuz, Burçin; Pehlivan, Sibel Bozdağ; Vural, İmran; Ünlü, Nurşen

    2015-11-01

    Current treatment options for diabetic retinopathy (DR) have side effects because of invasive application and topical application does not generally result in therapeutic levels in the target tissue. Therefore, improving the drug delivery to retina, following topical administration, might be a solution to DR treatment problems. The purpose of this study was to investigate the complexation effects of poly(amidoamine) (PAMAM) dendrimers on ocular absorption of dexamethasone (DEX). Using different PAMAM generations, complex formulations were prepared and characterized. Formulations were evaluated in terms of cytotoxicity and cell permeability, as well as ex vivo transport across ocular tissues. The ocular pharmacokinetic properties of DEX formulations were studied in Sprague-Dawley rats following topical and subconjunctival applications, to evaluate the effect of PAMAM on retinal delivery of DEX. Methyl-thiazol-tetrazolium (MTT) assay indicated that all groups resulted in cell viability comparable to DEX solution (87.5%), with the cell viability being the lowest for G3 complex at 73.5%. Transport study results showed that dendrimer complexation increases DEX transport across both cornea and sclera tissues. The results of in vivo studies were also indicated that especially anionic DEX-PAMAM complex formulations have reached higher DEX concentrations in ocular tissues compared with plain DEX suspension. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Cellular reactions of CD3+ CD4+ CD45RO+ T-lymphocytes on dexamethason in in normal patients and in patients with with rheumatoid arthritis in vitro

    Directory of Open Access Journals (Sweden)

    L. S. Litvinova

    2017-01-01

    Full Text Available The aim of the study was to analyze the influence of glucocorticoid (GC dexamethasone (Dex on changes in CD4+ T-cells expressing the surface molecule of activation (CD25, CD71, HLA-DR and CD95 and their ability to produce proinflammatory mediators in cultures of TCR-stimulated CD3+CD45RO+ T-lymphocytes obtained from healthy donors and patients with rheumatoid arthritis in vitro.Materials and methods. The study included 50 patients and 20 healthy donors. T-cell cultures (CD3+ CD45RO+ were obtained from mononuclear leukocytes of immunomagnetic separation (MACS® technology. As an activator of T-lymphocytes, antibiotic particles with biotinylated antibodies against CD2+, CD3+, CD28+, which simulate the process of costimulation of T cells by antigen-presenting cells, were used. The following concentrations of dexamethasone (2, 8, 16, 32, 64 mg were used in the experiment. The change in the immunophenotype of T-lymphocytes was analyzed by flow cytofluoometry. The secretion of CD3+CD45RO+ T-cells of proinflammatory cytokines IL-2, IFNγ, TNFα, IL-17 and IL-21 was evaluated by enzyme-linked immunosorbent assay.Results. The general suppressor effect of Dex on CD3+CD45RO+ T-cell cultures mediated by a decrease in the number of CD4 + T cells expressing activation molecules (CD25 and proliferation (CD71, as well as inhibition of the production of inflammatory mediators: IFNγ, IL-2 and TNFα. It is shown that against the background of TCR activation Dex increases the number of CD4+CD95+HLA-DR+ cells in CD3+CD45RO+ cultures obtained from RA patients and does not change their content in the control. The correlations between the number of proinflammatory factors (IL-17, IL-21 and TNFα in CD4+CD45RO+CD95+HLA-DR+ T cells in supernatants of cell cultures in RA patients indicate the presence of a pro-inflammatory potential of this population of T cells. We assume that the resistance of CD4+CD45RO+CD95+HLA-DR+ T cells in RA patients to the suppressor effect of

  11. Glucocorticoid cell reception in mice of different strains with natural killer cell activity depressed during immobilization stress

    International Nuclear Information System (INIS)

    Lyashko, V.N.; Sukhikh, G.T.

    1987-01-01

    The authors study differences in stress-induced depression of natural killer cell activity in mice of different inbred lines, depending on parameters of glucocorticoid binding with glucorticoid receptors of spleen cells and on the hormonal status of the animals. In determining the parameters of glucocorticoid binding on intact splenocytes, aliquots of a suspension of washed splenocytes were incubated with tritium-labeled dexamethasone

  12. Melatonin attenuates prenatal dexamethasone-induced blood pressure increase in a rat model.

    Science.gov (United States)

    Tain, You-Lin; Chen, Chih-Cheng; Sheen, Jiunn-Ming; Yu, Hong-Ren; Tiao, Mao-Meng; Kuo, Ho-Chang; Huang, Li-Tung

    2014-04-01

    Although antenatal corticosteroid is recommended to accelerate fetal lung maturation, prenatal dexamethasone exposure results in hypertension in the adult offspring. Since melatonin is a potent antioxidant and has been known to regulate blood pressure, we examined the beneficial effects of melatonin therapy in preventing prenatal dexamethasone-induced programmed hypertension. Male offspring of Sprague-Dawley rats were assigned to four groups (n = 12/group): control, dexamethasone (DEX), control + melatonin, and DEX + melatonin. Pregnant rats received intraperitoneal dexamethasone (0.1 mg/kg) from gestational day 16 to 22. In the melatonin-treatment groups, rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Blood pressure was measured by an indirect tail-cuff method. Gene expression and protein levels were analyzed by real-time quantitative polymerase chain reaction and Western blotting, respectively. At 16 weeks of age, the DEX group developed hypertension, which was partly reversed by maternal melatonin therapy. Reduced nephron numbers due to prenatal dexamethasone exposure were prevented by melatonin therapy. Renal superoxide and NO levels were similar in all groups. Prenatal dexamethasone exposure led to increased mRNA expression of renin and prorenin receptor and up-regulated histone deacetylase (HDAC)-1 expression in the kidneys of 4-month-old offspring. Maternal melatonin therapy augmented renal Mas protein levels in DEX + melatonin group, and increased renal mRNA expression of HDAC-1, HDAC-2, and HDAC-8 in control and DEX offspring. Melatonin attenuated prenatal DEX-induced hypertension by restoring nephron numbers, altering RAS components, and modulating HDACs. Copyright © 2014 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  13. Dexamethasone minimizes the risk of cranial nerve injury during CEA.

    Science.gov (United States)

    Regina, Guido; Angiletta, Domenico; Impedovo, Giovanni; De Robertis, Giovanni; Fiorella, Marialuisa; Carratu', Maria Rosaria

    2009-01-01

    The incidence of cranial and cervical nerve injury during carotid endarterectomy (CEA) ranges from less than 7.6% to more than 50%. Lesions are mainly due to surgical maneuvers such as traction, compression, tissue electrocoagulation, clamping, and extensive dissections. The use of dexamethasone (DEX) and its beneficial effects in spinal cord injuries have already been described. We investigated whether DEX could also be beneficial to minimize the incidence of cranial and cervical nerve injury during CEA. To evaluate whether dexamethasone is able to reduce the incidence of cranial nerve injuries. From March 1999 through April 2006, 1126 patients undergoing CEA because of high-grade carotid stenosis were enrolled and randomized by predetermined randomization tables into two groups. The first group, "A", included 586 patients that all received an intravenous administration of dexamethasone following a therapeutic scheme. The second group, "B", included 540 control subjects that received the standard pre- and postoperative therapy. All patients were submitted to a deep cervical plexus block, eversion carotid endarterectomy, and selective shunting. Three days after the operation, an independent neurologist and otorhinolaryngologist evaluated the presence of cranial nerve deficits. All patients (group A and group B) showing nerve injuries continued the treatment (8 mg of dexamethasone once in the morning) for 7 days and were re-evaluated after 2 weeks, 30 days, and every 3 months for 1 year. Recovery time took from 2 weeks to 12 months, with a mean time of 3.6 months. The chi(2) test was used to compare the two groups and to check for statistical significance. The incidence of cranial nerve dysfunction was higher in group B and the statistical analysis showed a significant effect of dexamethasone in preventing the neurological damage (P = .0081). The incidence of temporary lesions was lower in group A and the chi(2) test yielded a P value of .006. No statistically

  14. Prophylactic Use of Oral Dexamethasone to Alleviate Fatigue During Regorafenib Treatment for Patients With Metastatic Colorectal Cancer.

    Science.gov (United States)

    Fukuoka, Shota; Shitara, Kohei; Noguchi, Masaaki; Kawazoe, Akihito; Kuboki, Yasutoshi; Bando, Hedeaki; Okamoto, Wataru; Kojima, Takashi; Doi, Toshihiko; Ohtsu, Atsushi; Yoshino, Takayuki

    2017-06-01

    Fatigue is the most common toxicity of all grade toxicities with regorafenib, was the second most common toxicity in the CORRECT (regorafenib monotherapy for previously treated metastatic colorectal cancer) study, and is a major reason for early dose modification. The results from a recent randomized study suggested that dexamethasone (DEX) can improve cancer-related fatigue. We retrospectively analyzed the effect of prophylactic use of an oral DEX on fatigue during regorafenib treatment in patients with metastatic colorectal cancer (mCRC). A total of 105 patients who had received regorafenib at our institution from May 2013 to August 2014 were divided into 2 groups according to oral DEX use (2 mg/day; at the physician's discretion). Of the 105 patients, 31 received prophylactic DEX and 74 received regorafenib alone. The time to dose modification was significantly longer in the DEX group than in the no DEX group (15 days vs. 9 days; P = .009). The incidence of fatigue (grade ≥ 1) was significantly lower with DEX than without DEX (25.8% vs. 50.0%; P = .022). Fewer patients experienced a decreased appetite (grade ≥ 1; 3.2% vs. 35.1%; P regorafenib treatment, resulting in prolonging the time to dose modification for regorafenib. The decreased incidence of appetite loss and HFSR also suggest that concurrent DEX administration with regorafenib warrants further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. ThermoDex An index of selected thermodynamic data handbooks

    CERN Document Server

    This database contains records for printed handbooks and compilations of thermodynamic and thermophysical data for chemical compounds and other substances. You can enter both a type of compound and a property, and ThermoDex will return a list of hand

  16. Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin - assessment by intradermal microdialysis and extraction from the different skin layers.

    Science.gov (United States)

    Döge, Nadine; Hönzke, Stefan; Schumacher, Fabian; Balzus, Benjamin; Colombo, Miriam; Hadam, Sabrina; Rancan, Fiorenza; Blume-Peytavi, Ulrike; Schäfer-Korting, Monika; Schindler, Anke; Rühl, Eckart; Skov, Per Stahl; Church, Martin K; Hedtrich, Sarah; Kleuser, Burkhard; Bodmeier, Roland; Vogt, Annika

    2016-11-28

    Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-term ex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for

  17. Cytokine-induced loss of glucocorticoid function: effect of kinase inhibitors, long-acting β(2-adrenoceptor [corrected] agonist and glucocorticoid receptor ligands.

    Directory of Open Access Journals (Sweden)

    Christopher F Rider

    Full Text Available Acting on the glucocorticoid receptor (NR3C1, glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2 × glucocorticoid response element (GRE reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3

  18. Modulation of cortisol responses to the DEX/CRH test by polymorphisms of the interleukin-1beta gene in healthy adults.

    Science.gov (United States)

    Sasayama, Daimei; Hori, Hiroaki; Iijima, Yoshimi; Teraishi, Toshiya; Hattori, Kotaro; Ota, Miho; Fujii, Takashi; Higuchi, Teruhiko; Amano, Naoji; Kunugi, Hiroshi

    2011-07-05

    Recently, hypothalamus-pituitary-adrenal (HPA) axis function assessed with the combined dexamethasone (DEX)/corticotropin releasing hormone (CRH) test has been shown to be associated with response to antidepressant treatment. A polymorphism (rs16944) in the interleukin-1beta (IL-1β) gene has also been reported to be associated with the medication response in depression. These findings prompted us to examine the possible association between IL-1β gene polymorphisms and HPA axis function assessed with the DEX/CRH test. DEX/CRH test was performed in 179 healthy volunteers (45 males: mean age 40.5 ± 15.8 years; 134 females: mean age 47.1 ± 13.2 years). Five tagging single nucleotide polymorphisms (SNPs) of IL-1β gene (rs2853550, rs1143634, rs1143633, rs1143630, rs16944) were selected at an r2 threshold of 0.80 with a minor allele frequency > 0.1. Genotyping was performed by the TaqMan allelic discrimination assay. A two-way factorial analysis of variance (ANOVA) was performed with the DEX/CRH test results as the dependent variable and genotype and gender as independent variables. To account for multiple testing, P values rs16944 (P = 0.00049) and rs1143633 (P = 0.0060), with no significant gender effect or genotype × gender interaction. On the other hand, cortisol levels after CRH administration (DEX/CRH-Cortisol) were affected by gender but were not significantly influenced by the genotype of the examined SNPs, with no significant genotype × gender interaction. Our results suggest that genetic variations in the IL-1β gene contribute to the HPA axis alteration assessed by DST-Cortisol in healthy subjects. On the other hand, no significant associations of the IL-1β gene polymorphisms with the DEX/CRH-Cortisol were observed. Confirmation of our findings in futures studies may add new insight into the communication between the immune system and the HPA axis.

  19. Dexamethasone loaded nanoparticles exert protective effects against Cisplatin-induced hearing loss by systemic administration.

    Science.gov (United States)

    Sun, Changling; Wang, Xueling; Chen, Dongye; Lin, Xin; Yu, Dehong; Wu, Hao

    2016-04-21

    Ototoxicity is one of the most important adverse effects of cisplatin chemotherapy. As a common treatment of acute sensorineural hearing loss, systemic administration of steroids was demonstrated ineffective against cisplatin-induced hearing loss (CIHL) in published studies. The current study aimed to evaluate the potential protective effect of dexamethasone (DEX) encapsulated in polyethyleneglycol-coated polylactic acid (PEG-PLA) nanoparticles (DEX-NPs) against cisplatin-induced hearing loss following systemic administration. DEX was fabricated into PEG-PLA nanoparticles using emulsion and evaporation technique as previously reported. DEX or DEX-NPs was administered intraperitoneally to guinea pigs 1h before cisplatin administration. Auditory brainstem response (ABR) threshold shifts were measured at four frequencies (4, 8, 16, and 24kHz) 1 day before and three days after cisplatin injection. Cochlear morphology was examined to evaluate inner ear injury induced by cisplatin exposure. A single dose of DEX-NPs 1h before cisplatin treatment resulted in a significant preservation of the functional and structural properties of the cochlea, which was equivalent to the effect of multidose (3 days) DEX injection. In contrast, no significant protective effect was observed by single dose injection of DEX. The results of histological examination of the cochleae were consistent with the functional measurements. In conclusion, a single dose DEX-NPs significantly attenuated cisplatin ototoxicity in guinea pigs after systemic administration at both histological and functional levels indicating the potential therapeutic benefits of these nanoparticles for enhancing the delivery of DEX in acute sensorineural hearing loss. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Cell-specific expression of the glucocorticoid receptor within granular convoluted tubules of the rat submaxillary gland

    International Nuclear Information System (INIS)

    Antakly, T.; Zhang, C.X.; Sarrieau, A.; Raquidan, D.

    1991-01-01

    The submaxillary gland, a heterogeneous tissue composed essentially of two functionally distinct cell types (tubular epithelial and acinar), offers an interesting system in which to study the mechanisms of steroid-dependent growth and differentiation. One cell type, the granular convoluted tubular (GCT) cell, secretes a large number of physiologically important polypeptides, including epidermal and nerve growth factors. Two steroids, androgens and glucocorticoids, greatly influence the growth, differentiation, and secretory activity of GCT cells. Because glucocorticoids can partially mimic or potentiate androgen effects, it has been thought that glucocorticoids act via androgen receptors. Since the presence of glucocorticoid receptors is a prerequisite for glucocorticoid action, we have investigated the presence and cellular distribution of glucocorticoid receptors within the rat submaxillary gland. Binding experiments using [3H]dexamethasone revealed the presence of high affinity binding sites in rat submaxillary tissue homogenates. Most of these sites were specifically competed by dexamethasone, corticosterone, and a pure glucocorticoid agonist RU 28362. Neither testosterone nor dihydrotestosterone competed for glucocorticoid binding. The cellular distribution of glucocorticoid receptors within the submaxillary gland was investigated by immunocytochemistry, using two highly specific glucocorticoid receptor antibodies. The receptor was localized in the GCT cells, but not in the acinar cells of rat and mouse submaxillary tissue sections. In GCT cells, the glucocorticoid receptor colocalized with several secretory polypeptides, including epidermal growth factor, nerve growth factor, alpha 2u-globulin, and atrial natriuretic factor

  1. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; Meer, Berend van; Ward-van Oostwaard, Dorien [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Passier, Robert [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); MIRA, University of Twente (Netherlands); Tertoolen, Leon G.J.; Mummery, Christine L. [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Casini, Simona, E-mail: s.casini@amc.uva.nl [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands)

    2015-11-27

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation. - Highlights: • Dexamethasone accelerates Ca{sup 2+} transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I{sub Ca,L} and action potential characteristics in hESC-CMs.

  2. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    International Nuclear Information System (INIS)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; Meer, Berend van; Ward-van Oostwaard, Dorien; Passier, Robert; Tertoolen, Leon G.J.; Mummery, Christine L.; Casini, Simona

    2015-01-01

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation. - Highlights: • Dexamethasone accelerates Ca"2"+ transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I_C_a_,_L and action potential characteristics in hESC-CMs.

  3. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong-Su, E-mail: seong-su-han@uiowa.edu [Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Han, Sangwoo [Health and Human Physiology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Kamberos, Natalie L. [Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, Iowa City, IA (United States)

    2014-09-26

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.

  4. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    International Nuclear Information System (INIS)

    Han, Seong-Su; Han, Sangwoo; Kamberos, Natalie L.

    2014-01-01

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL

  5. Glucocorticoid-induced hyperglycaemia

    NARCIS (Netherlands)

    Gerards, M.C.

    2018-01-01

    This thesis contains studies on current practice, clinical implications and treatment of excess glucocorticoid receptor (GCR) stimulation, with a focus on glucocorticoid-induced hyperglycaemia (GCIH). Chapter 1 is a general introduction to the glucocorticoid hormone. In chapter 2 , we have

  6. Exercício físico previne alterações cardiometabólicas induzidas pelo uso crônico de glicocorticóides Ejercicio físico previene alteraciones cardiometabólicas inducidas por el uso crónico de glucocorticoides Exercise prevents cardiometabolic alterations induced by chronic use of glucocorticoids

    Directory of Open Access Journals (Sweden)

    Carlos Hermano da Justa Pinheiro

    2009-10-01

    exercise on cardiometabolic alterations induced by chronic administration of dexamethasone (Dex - 0.5 mg/kg/day ip in rats. METHODS: Male Wistar rats (n = 24 were divided in four groups: Control group; Trained group; Treated with Dex group and Treated with Dex and trained group. The exercise training (initiated 72 hours after the first dose of Dex was carried out three times a week until the end of the treatment. At the end of this period, the following biochemical assessments were performed: fasting glycemia, oral glucose tolerance test and analysis of the blood lipid profile that included total cholesterol (TC, LDL-c, HDL-c, VLDL-c and triglycerides (TG. The weight of the gastrocnemius muscle, the histopathological analysis of the liver and cardiometabolic indices (TC/HDL-c, LDL-c/HDL-c and TG/HDL-c were also performed. RESULTS: Hyperglycemia, lower glucose tolerance, increased TC, LDL-c, VLDL-c, TG, CT/HDL-c, LDL-c/HDL-c and TG/HDL-c, decreased HDL-c, presence of liver steatosis and muscular hypotrophy were observed in the animals treated with Dex. The exercise training reduced hyperglycemia, improved glucose tolerance, decreased dyslipidemia and prevented liver steatosis, muscular hypotrophy and reduced CT/HDL-c, LDL-c/HDL-c and TG/HDL-c ratios. However, there was no significant effect on HDL-c. CONCLUSION: The aerobic exercise training have a protective effect against the cardiometabolic alterations induced by the chronic use of glucocorticoids.

  7. Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors.

    Science.gov (United States)

    Lehrner, Amy; Bierer, Linda M; Passarelli, Vincent; Pratchett, Laura C; Flory, Janine D; Bader, Heather N; Harris, Iris R; Bedi, Aarti; Daskalakis, Nikolaos P; Makotkine, Iouri; Yehuda, Rachel

    2014-02-01

    Intergenerational effects of trauma have been observed clinically in a wide range of populations, and parental PTSD has been associated with an increased risk for psychopathology in offspring. In studies of Holocaust survivor offspring, parental PTSD, and particularly maternal PTSD, has been associated with increased risk for PTSD, low basal urinary cortisol excretion and enhanced cortisol suppression in response to dexamethasone. Such findings implicate maternally derived glucocorticoid programming in the intergenerational transmission of trauma-related consequences, potentially resulting from in utero influences or early life experiences. This study investigated the relative influence of Holocaust exposure and PTSD in mothers and fathers on glucocorticoid sensitivity in offspring. Eighty Holocaust offspring and 15 offspring of non-exposed Jewish parents completed evaluations and provided blood and urine samples. Glucocorticoid sensitivity was evaluated using the lysozyme suppression test (LST), an in vitro measure of glucocorticoid receptor sensitivity in a peripheral tissue, the dexamethasone suppression test (DST), and 24-h urinary cortisol excretion. Maternal PTSD was associated with greater glucocorticoid sensitivity in offspring across all three measures of glucocorticoid function. An interaction of maternal and paternal PTSD on the DST and 24-h urinary cortisol showed an effect of decreased glucocorticoid sensitivity in offspring with paternal, but not maternal, PTSD. Although indirect, these findings are consistent with the hypothesis that epigenetic programming may be involved in the intergenerational transmission of trauma-related effects on glucocorticoid regulation. Published by Elsevier Ltd.

  8. Functional effects of polymorphisms on glucocorticoid receptor modulation of human anxiogenic substance-P gene promoter activity in primary amygdala neurones.

    Science.gov (United States)

    Hay, Colin W; Shanley, Lynne; Davidson, Scott; Cowie, Philip; Lear, Marissa; McGuffin, Peter; Riedel, Gernot; McEwan, Iain J; MacKenzie, Alasdair

    2014-09-01

    Expression or introduction of the neuropeptide substance-P (SP; encoded by the TAC1 gene in humans and Tac1 in rodents) in the amygdala induces anxiety related behaviour in rodents. In addition, pharmacological antagonism of the main receptor of SP in humans; NK1, is anxiolytic. In the current study, we show that the Tac1 locus is up-regulated in primary rat amygdala neurones in response to activation of the glucocorticoid receptor (GR); a classic component of the stress response. Using a combination of bioinformatics, electrophoretic mobility shift assays (EMSA) and reporter plasmid magnetofection into rat primary amygdala neurones we identified a highly conserved GR response sequence (2GR) in the human TAC1 promoter that binds GR in response to dexamethasone (Dex) or forskolin. We also identified a second GR binding site in the human promoter that was polymorphic and whose T-allele is only found in Japanese and Chinese populations. We present evidence that the T-allele of SNPGR increases the activity of the TAC1 promoter through de-sequestration or de-repression of 2GR. The identification of Dex/forskolin response elements in the TAC1 promoter in amygdala neurones suggests a possible link in the chain of molecular events connecting GR activation and anxiety. In addition, the discovery of a SNP which can alter this response may have implications for our understanding of the role of regulatory variation in susceptibility to stress in specific populations. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders.

    Science.gov (United States)

    Tyrka, A R; Parade, S H; Welch, E S; Ridout, K K; Price, L H; Marsit, C; Philip, N S; Carpenter, L L

    2016-07-05

    Early adversity increases risk for developing psychopathology. Epigenetic modification of stress reactivity genes is a likely mechanism contributing to this risk. The glucocorticoid receptor (GR) gene is of particular interest because of the regulatory role of the GR in hypothalamic-pituitary-adrenal (HPA) axis function. Mounting evidence suggests that early adversity is associated with GR promoter methylation and gene expression. Few studies have examined links between GR promoter methylation and psychopathology, and findings to date have been mixed. Healthy adult participants (N=340) who were free of psychotropic medications reported on their childhood experiences of maltreatment and parental death and desertion. Lifetime depressive and anxiety disorders and past substance-use disorders were assessed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Methylation of exon 1F of the GR gene (NR3C1) was examined in leukocyte DNA via pyrosequencing. On a separate day, a subset of the participants (n=231) completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Childhood adversity and a history of past substance-use disorder and current or past depressive or anxiety disorders were associated with lower levels of NR3C1 promoter methylation across the region as a whole and at individual CpG sites (Pdisorder. GR promoter methylation was linked to altered cortisol responses to the Dex/CRH test (Pdepressive, anxiety and substance-use disorders in adults. This finding stands in contrast to our prior work, but is consistent with emerging findings, suggesting complexity in the regulation of this gene.

  10. Functional aspects of dexamethasone upregulated nicotinic acetylcholine receptors in C2C12 myotubes

    NARCIS (Netherlands)

    Maestrone, E; Lagostena, L; Henning, RH; DenHertog, A; Nobile, M

    Three days of treatment with the glucocorticoid dexamethasone (1 nM-mu M) induced a concentration-dependent up-regulation of muscle nicotinic acetylcholine receptor (nAChR) in C2C12 mouse myotubes (EC(50)=10+/-7.3 nM), as assessed by [H-3]alpha-BuTx binding. The maximum increase in binding amounted

  11. A single dose of dexamethasone encapsulated in polyethylene glycol-coated polylactic acid nanoparticles attenuates cisplatin-induced hearing loss following round window membrane administration.

    Science.gov (United States)

    Sun, Changling; Wang, Xueling; Zheng, Zhaozhu; Chen, Dongye; Wang, Xiaoqin; Shi, Fuxin; Yu, Dehong; Wu, Hao

    2015-01-01

    This study aimed to investigate the sustained drug release properties and hearing protection effect of polyethylene glycol-coated polylactic acid (PEG-PLA) stealth nanoparticles loaded with dexamethasone (DEX). DEX was fabricated into PEG-PLA nanoparticles using an emulsion and evaporation technique, as previously reported. The DEX-loaded PEG-PLA nanoparticles (DEX-NPs) had a hydrodynamic diameter of 130±4.78 nm, and a zeta potential of -26.13±3.28 mV. The in vitro release of DEX from DEX-NPs lasted 24 days in phosphate buffered saline (pH 7.4), 5 days in artificial perilymph (pH 7.4), and 1 day in rat plasma. Coumarin 6-labeled NPs placed onto the round window membrane (RWM) of guinea pigs penetrated RWM quickly and accumulated to the organs of Corti, stria vascularis, and spiral ganglion cells after 1 hour of administration. The DEX-NPs locally applied onto the RWM of guinea pigs by a single-dose administration continuously released DEX in 48 hours, which was significantly longer than the free DEX that was cleared out within 12 hours after administration at the same dose. Further functional studies showed that locally administrated single-dose DEX-NPs effectively preserved outer hair cells in guinea pigs after cisplatin insult and thus significantly attenuated hearing loss at 4 kHz and 8 kHz frequencies when compared to the control of free DEX formulation. Histological analyses indicated that the administration of DEX-NPs did not induce local inflammatory responses. Therefore, prolonged delivery of DEX by PEG-PLA nanoparticles through local RWM diffusion (administration) significantly protected the hair cells and auditory function in guinea pigs from cisplatin toxicity, as determined at both histological and functional levels, suggesting the potential therapeutic benefits in clinical applications.

  12. Dexamethasone-Mediated Upregulation of Calreticulin Inhibits Primary Human Glioblastoma Dispersal Ex Vivo

    Directory of Open Access Journals (Sweden)

    Mohan Nair

    2018-02-01

    Full Text Available Dispersal of Glioblastoma (GBM renders localized therapy ineffective and is a major cause of recurrence. Previous studies have demonstrated that Dexamethasone (Dex, a drug currently used to treat brain tumor–related edema, can also significantly reduce dispersal of human primary GBM cells from neurospheres. It does so by triggering α5 integrin activity, leading to restoration of fibronectin matrix assembly (FNMA, increased neurosphere cohesion, and reduction of neurosphere dispersal velocity (DV. How Dex specifically activates α5 integrin in these GBM lines is unknown. Several chaperone proteins are known to activate integrins, including calreticulin (CALR. We explore the role of CALR as a potential mediator of Dex-dependent induction of α5 integrin activity in primary human GBM cells. We use CALR knock-down and knock-in strategies to explore the effects on FNMA, aggregate compaction, and dispersal velocity in vitro, as well as dispersal ex vivo on extirpated mouse retina and brain slices. We show that Dex increases CALR expression and that siRNA knockdown suppresses Dex-mediated FNMA. Overexpression of CALR in GBM cells activates FNMA, increases compaction, and decreases DV in vitro and on explants of mouse retina and brain slices. Our results define a novel interaction between Dex, CALR, and FNMA as inhibitors of GBM dispersal.

  13. Hepatoprotective effects of parsley, basil, and chicory aqueous extracts against dexamethasone-induced in experimental rats

    Science.gov (United States)

    Soliman, Hanan A.; El-Desouky, Mohamed A.; Hozayen, Walaa G.; Ahmed, Rasha R.; Khaliefa, Amal K.

    2016-01-01

    Aim: The objective of this study is to investigate the hypoglycemic, hypolipidemic, and hepatoprotective effects of the aqueous extract of parsley, basil, and chicory whole plant in normal and dexamethasone (Dex) rats. Materials and Methods: 50 female albino rats were used in this study and divided into 5 groups (for each 10). Group (1) fed basal diet and maintained as negative control group. Group (2) received Dex in a dose of (0.1 mg/kg b. wt.). Groups 3, 4, and 5 were treated with Dex along with three different plant extracts of parsley, basil, and chicory (2 g/kg b. wt.), (400 mg/kg b. wt.), and (100 mg/kg b. wt.), respectively. Results: All these groups were treated given three times per week for 8 consecutive weeks. Dex-induced alterations in the levels of serum glucose, triglyceride, cholesterol, low-density lipoprotein-cholesterol levels and cardiovascular indices and serum alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase activities, liver thiobarbituric acid (TBARS) levels increased, while high-density lipoprotein-cholesterol, total protein, albumin, and liver glutathione (GSH) levels decreased. On the other hand, plant extracts succeeded to modulate these observed abnormalities resulting from Dex as indicated by the reduction of glucose, cholesterol, TBARS, and the pronounced improvement of the investigated biochemical and antioxidant parameters. Conclusions: It was concluded that probably, due to its antioxidant property, parsley, basil, and chicory extracts have hepatoprotective effects in Dex-induced in rats. PMID:27069727

  14. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure.

    Science.gov (United States)

    Akahane, M; Shimizu, T; Kira, T; Onishi, T; Uchihara, Y; Imamura, T; Tanaka, Y

    2016-11-01

    To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis.Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569-576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1. © 2016 Akahane et al.

  15. Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits

    OpenAIRE

    Sun, Hongfan

    2009-01-01

    Linhua Zhang1, Yue Li2, Chao Zhang1, Yusheng Wang2, Cunxian Song11Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China; 2Department of Ophthalmology, Institute of Ophthalmology of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an, ChinaAbstract: The aim of the study was to investigate the tolerance and pharmacokinetics of dexamethasone (DEX)-loaded poly(lactic acid–co-glycolic acid) ...

  16. Maternal Melatonin Therapy Rescues Prenatal Dexamethasone and Postnatal High-Fat Diet Induced Programmed Hypertension in Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    You-Lin eTain

    2015-12-01

    Full Text Available Prenatal dexamethasone (DEX exposure and high-fat (HF intake are linked to hypertension. We examined whether maternal melatonin therapy prevents programmed hypertension synergistically induced by prenatal DEX plus postnatal HF in adult offspring. We also examined whether DEX and melatonin causes renal programming using next-generation RNA sequencing (NGS technology. Pregnant Sprague-Dawley rats received intraperitoneal dexamethasone (0.1 mg/kg or vehicle from gestational day 16 to 22. In the melatonin-treatment groups (M, rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Male offspring were assigned to five groups: control, DEX, HF, DEX+HF, and DEX+HF+M. Male offspring in the HF group were fed a HF diet from weaning to 4 months of age. Prenatal DEX and postnatal HF diet synergistically induced programmed hypertension in adult offspring, which melatonin prevented. Maternal melatonin treatment modified over 3000 renal transcripts in the developing offspring kidney. Our NGS data indicate that PPAR signaling and fatty acid metabolism are two significantly regulated pathways. In addition, maternal melatonin therapy elicits longstanding alterations on renal programming, including regulation of the melatonin signaling pathway and upregulation of Agtr1b and Mas1 expression in the renin-angiotensin system (RAS, to protect male offspring against programmed hypertension. Postnatal HF aggravates prenatal DEX induced programmed hypertension in adult offspring, which melatonin prevented. The protective effects of melatonin on programmed hypertension is associated with regulation of the RAS and melatonin receptors. The long-term effects of maternal melatonin therapy on renal transcriptome require further clarification.

  17. Fluvoxamine moderates reduced voluntary activity following chronic dexamethasone infusion in mice via recovery of BDNF signal cascades.

    Science.gov (United States)

    Terada, Kazuki; Izumo, Nobuo; Suzuki, Biora; Karube, Yoshiharu; Morikawa, Tomomi; Ishibashi, Yukiko; Kameyama, Toshiki; Chiba, Koji; Sasaki, Noriko; Iwata, Keiko; Matsuzaki, Hideo; Manabe, Takayuki

    2014-04-01

    Major depression is a complex disorder characterized by genetic and environmental interactions. Selective serotonin reuptake inhibitors (SSRIs) effectively treat depression. Neurogenesis following chronic antidepressant treatment activates brain derived neurotrophic factor (BDNF) signaling. In this study, we analyzed the effects of the SSRI fluvoxamine (Flu) on locomotor activity and forced-swim behavior using chronic dexamethasone (cDEX) infusions in mice, which engenders depression-like behavior. Infusion of cDEX decreased body weight and produced a trend towards lower locomotor activity during darkness. In the forced-swim test, cDEX-mice exhibited increased immobility times compared with mice administered saline. Flu treatment reversed decreased locomotor activity and mitigated forced-swim test immobility. Real-time polymerase chain reactions using brain RNA samples yielded significantly lower BDNF mRNA levels in cDEX-mice compared with the saline group. Endoplasmic reticulum stress-associated X-box binding protein-1 (XBP1) gene expression was lower in cDEX-mice compared with the saline group. However, marked expression of the XBP1 gene was observed in cDEX-mice treated with Flu compared with mice given saline and untreated cDEX-mice. Expression of 5-HT2A and Sigma-1 receptors decreased after cDEX infusion compared with the saline group, and these decreases normalized to control levels upon Flu treatment. Our results indicate that the Flu moderates reductions in voluntary activity following chronic dexamethasone infusions in mice via recovery of BDNF signal cascades. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Glucocorticoid receptor polymorphism in obesity and glucose homeostasis.

    Science.gov (United States)

    Majer-Łobodzińska, Agnieszka; Adamiec-Mroczek, Joanna

    2017-01-01

    Glucocorticoid receptor (GR) activity plays a significant role in the etiology of obesity and is essential for glucose homeostasis, the development of hyperinsulinaemia and subsequent increased fat deposition. Several polymorphisms in the GR gene have been described, and at least three of them seem to be associated with altered glucocorticoid sensitivity and changes in glucose homeostasis, and other metabolic parameters. The N363S polymorphism has been associated with increased sensitivity to glucocorticoides, increased insulin response to dexamethasone and increased plasma glucose level. BclI polymorphism is associated with increased abdominal obesity, hyperinsulinaemia and increased insulin resistance. Another polymorphism, ER22/23EK, in contrast to the others, is associated with relative resistance to glucocoricides actions and more beneficial metabolic profile-lower insulin resistance level, decreased lower cardiovascular risk and subseuent prolongation of life time. More research is still needed to understand the mechanisms behind these associations at the molecular level.

  19. Modulation of cortisol responses to the DEX/CRH test by polymorphisms of the interleukin-1beta gene in healthy adults

    Directory of Open Access Journals (Sweden)

    Ota Miho

    2011-07-01

    Full Text Available Abstract Background Recently, hypothalamus-pituitary-adrenal (HPA axis function assessed with the combined dexamethasone (DEX/corticotropin releasing hormone (CRH test has been shown to be associated with response to antidepressant treatment. A polymorphism (rs16944 in the interleukin-1beta (IL-1β gene has also been reported to be associated with the medication response in depression. These findings prompted us to examine the possible association between IL-1β gene polymorphisms and HPA axis function assessed with the DEX/CRH test. Methods DEX/CRH test was performed in 179 healthy volunteers (45 males: mean age 40.5 ± 15.8 years; 134 females: mean age 47.1 ± 13.2 years. Five tagging single nucleotide polymorphisms (SNPs of IL-1β gene (rs2853550, rs1143634, rs1143633, rs1143630, rs16944 were selected at an r2 threshold of 0.80 with a minor allele frequency > 0.1. Genotyping was performed by the TaqMan allelic discrimination assay. A two-way factorial analysis of variance (ANOVA was performed with the DEX/CRH test results as the dependent variable and genotype and gender as independent variables. To account for multiple testing, P values Results The cortisol levels after DEX administration (DST-Cortisol showed significant associations with the genotypes of rs16944 (P = 0.00049 and rs1143633 (P = 0.0060, with no significant gender effect or genotype × gender interaction. On the other hand, cortisol levels after CRH administration (DEX/CRH-Cortisol were affected by gender but were not significantly influenced by the genotype of the examined SNPs, with no significant genotype × gender interaction. Conclusions Our results suggest that genetic variations in the IL-1β gene contribute to the HPA axis alteration assessed by DST-Cortisol in healthy subjects. On the other hand, no significant associations of the IL-1β gene polymorphisms with the DEX/CRH-Cortisol were observed. Confirmation of our findings in futures studies may add new insight into

  20. Radioreceptor assay for evaluation of the plasma glucocorticoid activity of natural and synthetic steroids in man

    International Nuclear Information System (INIS)

    Ballard, P.L.; Carter, J.P.; Graham, B.S.; Baxter, J.D.

    1975-01-01

    An assay for plasma glucocorticoid activity has been developed using specific glucocorticoid receptors. Unlike other assays for cortisol and certain synthetic corticosteroids, this radioreceptor assay measures the glucocorticoid activity of all natural and synthetic steroids. Steroids extracted from as little as 0.05 ml of plasma are incubated with 3 H-dexamethasone and cytosol receptors from cultured rat hepatoma cells. From 0.5 to 50 ng of cortisol are accurately detected. Glucocorticoid activities of adult plasmas determined by the assay correlate closely with corticoid levels obtained in the CBG-isotope and fluorometric assays. Other steroids are measured in proportion to both concentration and potency as glucocorticoids. Relative activities include: cortisol 100, dexamethasone 940, prednisolone 230, prednisone 3, estradiol 1 and androstenedione 1. A similar ranking of steroids was found using receptors from a human source (fetal lung). The assay has been useful in detecting glucocorticoid activity in unidentified medications and in measuring plasma glucocorticoid levels after administration of synthetic corticosteroids. (auth)

  1. Impact of dexamethason

    Directory of Open Access Journals (Sweden)

    Zahra Basirat

    2016-09-01

    Full Text Available Objective: Infertile women with polycystic ovary (PCOs involve with anovulatory cycles. Various adjuvant treatments have been suggested to improve ovarian response in these patients. In this study, we aimed to evaluate the role of dexamethasone in the outcome of IVF/ICSI in PCOs infertile women. Study design: 129 PCOs infertile women undergone IVF/ICSI were enrolled for this single blind clinical trial study in 2012–2013. Setting: Fatemezahra Infertility and Reproductive Health Research Center, Babol University of Medical Sciences, Babol, Iran. Method: 43 patients who underwent IVF received dexamethasone (0.5 mg, 4 tab/day in the treatment group and 74 patients were considered as the placebo group. Main outcome measure: Pregnancy rate was compared between the two groups. In addition, number of dominant follicle, oocytes retrieved, embryos transferred, and number of gonadotropin ampoule were evaluated. Results: The pregnancy rate in the group receiving dexamethasone was 17.5% significantly higher versus 4.3% in the placebo group (P < 0.05. The mean number of embryos in the patients received dexamethasone was 6.7 ± 4.3, significantly greater than placebo which was 4.9 ± 4.9 (P < 0.05. The mean number of gonadotropin ampoules used in the group received dexamethasone was 3.5 ± 1.6, significantly lower versus the placebo which was 5.3 ± 2.5 (P < 0.05. The mean number of oocytes in the group received dexamethasone was 11.8 ± 8 and in the placebo group was 9.6 ± 5.8 that was not significant. Conclusion: Dexamethasone enhances embryos and pregnancy rate; in addition, it reduces gonadotropines ampoule used for stimulation, hence, and we recommend using of dexamethasone in women with PCOs undertreatment of IVF/ICSI.

  2. Effect of Glucocorticoid-Induced Insulin Resistance on Follicle Development and Ovulation1

    Science.gov (United States)

    Hackbart, Katherine S.; Cunha, Pauline M.; Meyer, Rudelle K.; Wiltbank, Milo C.

    2013-01-01

    ABSTRACT Polycystic ovarian syndrome (PCOS) is characterized by hyperandrogenemia, polycystic ovaries, and menstrual disturbance and a clear association with insulin resistance. This research evaluated whether induction of insulin resistance, using dexamethasone (DEX), in a monovular animal model, the cow, could produce an ovarian phenotype similar to PCOS. In all of these experiments, DEX induced insulin resistance in cows as shown by increased glucose, insulin, and HOMA-IR (homeostasis model assessment of insulin resistance). Experiment 1: DEX induced anovulation (zero of five DEX vs. four of four control cows ovulated) and decreased circulating estradiol (E2). Experiment 2: Gonadotropin-releasing hormone (GnRH) was administered to determine pituitary and follicular responses during insulin resistance. GnRH induced a luteinizing hormone (LH) surge and ovulation in both DEX (seven of seven) and control (seven of seven) cows. Experiment 3: E2 was administered to determine hypothalamic responsiveness after induction of an E2 surge in DEX (eight of eight) and control (eight of eight) cows. An LH surge was induced in control (eight of eight) but not DEX (zero of eight) cows. All control (eight of eight) but only two of eight DEX cows ovulated within 60 h of E2 administration. Experiment 4: Short-term DEX was initiated 24 h after induced luteal regression to determine if DEX could acutely block ovulation before peak insulin resistance was induced, similar to progesterone (P4). All control (five of five), no P4-treated (zero of six), and 50% of DEX-treated (three of six) cows ovulated by 96 h after luteal regression. All anovular cows had reduced circulating E2. These data are consistent with DEX creating a lesion in hypothalamic positive feedback to E2 without altering pituitary responsiveness to GnRH or ovulatory responsiveness of follicles to LH. It remains to be determined if the considerable insulin resistance and the reduced follicular E2 production induced by DEX

  3. Effects of dexamethasone treatment and respiratory vaccination on rectal temperature, complete blood count, and functional capacities of neutrophils in beef steers

    Science.gov (United States)

    The objective of this research was to examine the effects of dexamethasone (DEX) treatment on various aspects of immunity following administration of a multivalent respiratory vaccine, using a model intended to mimic acute versus chronic stress. Angus × Hereford steers (n = 32; 209 ± 8 kg) were str...

  4. Além do Códex

    Directory of Open Access Journals (Sweden)

    Ana Beatriz Barroso

    2012-07-01

    Full Text Available http://dx.doi.org/10.5007/1807-9288.2012v8n1p40 O artigo explora o transbordamento da escrita e da leitura para fora das páginas. O texto enquanto trama de sentidos e nexos extrapola a dobra, marco fundamental na história do livro. Quando este deixa de ser rolo e passa a ser códex, quando este deixa de ser códex e passa a ser fluxo, quando essas passagens são percebidas mais como sobreposições e convivências de códigos distintos do que como exclusões e viradas radicais, sentimos a sutil flexibilidade dos conceitos fundamentais da cultura. A meta, então, é abordar algumas dessas convivências, observadas principalmente no diálogo entre as artes visuais e este precioso objeto de cultura, o livro. Para tanto, investigaremos algumas experiências artísticas contemporâneas que transitam pela relação do texto escrito com a imagem, bem como pelos escritos e livros de artista. Veremos, então, algumas possibilidades de abertura para o livro-códice na atualidade, quando experimentamos um contato ímpar com a presença massiva dos meios digitais de comunicação. Tal contato demanda uma compreensão renovada do próprio conceito de comunicação.

  5. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells.

    Science.gov (United States)

    Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.

  6. [Glucocorticoid induced osteoporosis].

    Science.gov (United States)

    Anić, Branimir; Mayer, Miroslav

    2014-01-01

    Secondary osteoporosis most often develops due to glucocorticoid therapy. Glucocorticoids affect all stages of the bone remodeling cycle, its formation and resorption. Osteoblasts are primarily affected, decreasing their activity and enhancing apoptosis. Patients treated with glucocorticoids have lower bone mineral density and increased fracture risk. Glucocorticoid-induced osteoporosis can be prevented by administering the minimal effective dose of glucocorticoids, calcium and vitamin D supplementation or, if possible, by hormone replace- ment therapy. Moreover, appropriate physical activity should be encouraged. Patients who are at higher risk for low-energy fractures (for example post-menopausal women) have to be actively treated, usually with antiresorptive drugs among which bisphosphonates are currently the first line therapy.

  7. Glucocorticoid receptor modulators.

    Science.gov (United States)

    Meijer, Onno C; Koorneef, Lisa L; Kroon, Jan

    2018-06-01

    The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Dexamethasone intravitreal implant in previously treated patients with diabetic macular edema : Subgroup analysis of the MEAD study

    OpenAIRE

    Augustin, A.J.; Kuppermann, B.D.; Lanzetta, P.; Loewenstein, A.; Li, X.; Cui, H.; Hashad, Y.; Whitcup, S.M.; Abujamra, S.; Acton, J.; Ali, F.; Antoszyk, A.; Awh, C.C.; Barak, A.; Bartz-Schmidt, K.U.

    2015-01-01

    Background Dexamethasone intravitreal implant 0.7?mg (DEX 0.7) was approved for treatment of diabetic macular edema (DME) after demonstration of its efficacy and safety in the MEAD registration trials. We performed subgroup analysis of MEAD study results to evaluate the efficacy and safety of DEX 0.7 treatment in patients with previously treated DME. Methods Three-year, randomized, sham-controlled phase 3 study in patients with DME, best-corrected visual acuity (BCVA) of 34?68 Early Treatment...

  9. Impact of physicochemical properties of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond on drug loading and release behavior

    Science.gov (United States)

    Numpilai, Thanapha; Witoon, Thongthai; Chareonpanich, Metta; Limtrakul, Jumras

    2017-02-01

    The conjugation of dexamethasone (DEX) onto modified-porous silica materials via a pH-responsive hydrazone bond has been reported to be highly efficient method to specifically deliver the DEX to diseased sites. However, the influence of physicochemical properties of porous silica materials has not yet been fully understood. In this paper, the impact of pore sizes, particle sizes and silanol contents on surface functionalization, drug loading and release behavior of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond was investigated. The grafting density was found to relate to the number of silanol groups on the surface of porous silica materials. The particle size and macropores of the porous silica materials played an vital role on the drug loading and release behavior. Although the porous silica materials with larger particle sizes possessed a lower grafting density, a larger amount of drug loading could be achieved. Moreover, the porous silica materials with larger particle sizes showed a slower release rate of DEX due to a longer distance for cleaved DEX diffusion out of pores. DEX release rate exhibited pH-dependent, sustained release. At pH 4.5, the amount of DEX release within 10 days could be controlled in the range of 12.74-36.41%, depending on the host material. Meanwhile, less than 1.5% of DEX was released from each of type of the porous silica materials at pH 7.4. The results of silica dissolution suggested that the degradation of silica matrix did not significantly affect the release rate of DEX. In addition, the kinetic modeling studies revealed that the DEX releases followed Korsmeyer-Peppas model with a release exponent (n) ranged from 0.3 to 0.47, indicating a diffusion-controlled release mechanism.

  10. Effect of vitamin B12 on cleft palate induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin and dexamethasone in mice*

    Science.gov (United States)

    Zhao, Shu-fan; Chai, Mao-zhou; Wu, Min; He, Yong-hong; Meng, Tian; Shi, Bing

    2014-01-01

    The purpose of this study was to investigate the effect of vitamin B12 on palatal development by co-administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dexamethasone (DEX). We examined the morphological and histological features of the palatal shelf and expression levels of key signaling molecules (transforming growth factor-β3 (TGF-β3) and TGF-β type I receptor (activin receptor-like kinase 5, ALK5)) during palatogenesis among a control group (Group A), TCDD+DEX exposed group (Group B), and TCDD+DEX+vitamin B12 exposed group (Group C). While we failed to find that vitamin B12 decreased the incidence of cleft palate induced by TCDD+DEX treatment, the expression levels of key signaling molecules (TGF-β3 and ALK5) during palatogenesis were significantly modulated. In TCDD+DEX exposed and TCDD+DEX+vitamin B12 exposed groups, palatal shelves could not contact in the midline due to their small sizes. Our results suggest that vitamin B12 may inhibit the expression of some cleft palate inducers such as TGF-β3 and ALK5 in DEX+TCDD exposed mice, which may be beneficial against palatogenesis to some degree, even though we were unable to observe a protective role of vitamin B12 in morphological and histological alterations of palatal shelves induced by DEX and TCDD. PMID:24599693

  11. Effect of vitamin B12 on cleft palate induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin and dexamethasone in mice.

    Science.gov (United States)

    Zhao, Shu-Fan; Chai, Mao-Zhou; Wu, Min; He, Yong-Hong; Meng, Tian; Shi, Bing

    2014-03-01

    The purpose of this study was to investigate the effect of vitamin B12 on palatal development by co-administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dexamethasone (DEX). We examined the morphological and histological features of the palatal shelf and expression levels of key signaling molecules (transforming growth factor-β3 (TGF-β3) and TGF-β type I receptor (activin receptor-like kinase 5, ALK5)) during palatogenesis among a control group (Group A), TCDD+DEX exposed group (Group B), and TCDD+DEX+vitamin B12 exposed group (Group C). While we failed to find that vitamin B12 decreased the incidence of cleft palate induced by TCDD+DEX treatment, the expression levels of key signaling molecules (TGF-β3 and ALK5) during palatogenesis were significantly modulated. In TCDD+DEX exposed and TCDD+DEX+vitamin B12 exposed groups, palatal shelves could not contact in the midline due to their small sizes. Our results suggest that vitamin B12 may inhibit the expression of some cleft palate inducers such as TGF-β3 and ALK5 in DEX+TCDD exposed mice, which may be beneficial against palatogenesis to some degree, even though we were unable to observe a protective role of vitamin B12 in morphological and histological alterations of palatal shelves induced by DEX and TCDD.

  12. Combinatorial release of dexamethasone and amiodarone from a nano-structured parylene-C film to reduce perioperative inflammation and atrial fibrillation

    Science.gov (United States)

    Robinson, Erik; Kaushal, Sunjay; Alaboson, Justice; Sharma, Sudhish; Belagodu, Amogh; Watkins, Claire; Walker, Brandon; Webster, Gregory; McCarthy, Patrick; Ho, Dean

    2016-02-01

    Suppressing perioperative inflammation and post-operative atrial fibrillation requires effective drug delivery platforms (DDP). Localized anti-inflammatory and anti-arrhythmic agent release may be more effective than intravenous treatment to improve patient outcomes. This study utilized a dexamethasone (DEX) and amiodarone (AMIO)-loaded Parylene-C (PPX) nano-structured film to inhibit inflammation and atrial fibrillation. The PPX film was tested in an established pericardial adhesion rabbit model. Following sternotomy, the anterior pericardium was resected and the epicardium was abraded. Rabbits were randomly assigned to five treatment groups: control, oxidized PPX (PPX-Oxd), PPX-Oxd infused with DEX (PPX-Oxd[DEX]), native PPX (PPX), and PPX infused with DEX and AMIO (PPX[AMIO, DEX]). 4 weeks post-sternotomy, pericardial adhesions were evaluated for gross adhesions using a 4-point grading system and histological evaluation for epicardial neotissue fibrosis (NTF). Atrial fibrillation duration and time per induction were measured. The PPX[AMIO, DEX] group had a significant reduction in mean adhesion score compared with the control group (control 2.75 +/- 0.42 vs. PPX[AMIO, DEX] 0.25 +/- 0.42, P atrial fibrillation was decreased in rabbits with PPX[AMIO, DEX] films compared to control (9.5 +/- 6.8 s vs. 187.6 +/- 174.7 s, p = 0.003). Time of atrial fibrillation per successful induction decreased among PPX[AMIO, DEX] films compared to control (2.8 +/- 1.2 s vs. 103.2 +/- 178 s, p = 0.004). DEX/AMIO-loaded PPX films are associated with reduced perioperative inflammation and a diminished atrial fibrillation duration. Epicardial application of AMIO, DEX films is a promising strategy to prevent post-operative cardiac complications.Suppressing perioperative inflammation and post-operative atrial fibrillation requires effective drug delivery platforms (DDP). Localized anti-inflammatory and anti-arrhythmic agent release may be more effective than intravenous treatment to

  13. Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone.

    Science.gov (United States)

    Shimizu, Kazunori; Genma, Riho; Gotou, Yuuki; Nagasaka, Sumire; Honda, Hiroyuki

    2017-06-15

    Drug screening systems for muscle atrophy based on the contractile force of cultured skeletal muscle tissues are required for the development of preventive or therapeutic drugs for atrophy. This study aims to develop a muscle atrophy model by inducing atrophy in normal muscle tissues constructed on microdevices capable of measuring the contractile force and to verify if this model is suitable for drug screening using the contractile force as an index. Tissue engineered skeletal muscles containing striated myotubes were prepared on the microdevices for the study. The addition of 100 µM dexamethasone (Dex), which is used as a muscle atrophy inducer, for 24 h reduced the contractile force significantly. An increase in the expression of Atrogin-1 and MuRF-1 in the tissues treated with Dex was established. A decrease in the number of striated myotubes was also observed in the tissues treated with Dex. Treatment with 8 ng/mL Insulin-like Growth Factor (IGF-I) for 24 h significantly increased the contractile force of the Dex-induced atrophic tissues. The same treatment, though, had no impact on the force of the normal tissues. Thus, it is envisaged that the atrophic skeletal muscle tissues induced by Dex can be used for drug screening against atrophy.

  14. Composite PLA/PEG/nHA/Dexamethasone Scaffold Prepared by 3D Printing for Bone Regeneration.

    Science.gov (United States)

    Li, Xiaoyuan; Wang, Yu; Wang, Zigui; Qi, Yanxin; Li, Linlong; Zhang, Peibiao; Chen, Xuesi; Huang, Yubin

    2018-04-24

    3D printing has become an essential part of bone tissue engineering and attracts great attention for the fabrication of bioactive scaffolds. Combining this rapid manufacturing technique with chemical precipitation, biodegradable 3D scaffold composed of polymer matrix (polylactic acid and polyethylene glycol), ceramics (nano hydroxyapatite), and drugs (dexamethasone (Dex)) is prepared. Results of water contact angle, differential scanning calorimeter, and mechanical tests confirm that incorporation of Dex leads to significantly improved wettability, higher crystallinity degree, and tunable degradation rates. In vitro experiment with mouse MC3T3-E1 cells implies that Dex released from scaffolds is not beneficial for early cell proliferation, but it improves late alkaline phosphatase secretion and mineralization significantly. Anti-inflammation assay of murine RAW 264.7 cells proves that Dex released from all the scaffolds successfully suppresses lipopolysaccharide induced interleukin-6 and inducible nitric oxide synthase secretion by M1 macrophages. Further in vivo experiment on rat calvarial defects indicates that scaffolds containing Dex promote osteoinduction and osteogenic response and would be promising candidates for clinical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: Improving preocular retention and ocular bioavailability.

    Science.gov (United States)

    Gan, Li; Han, Shun; Shen, Jinqiu; Zhu, Jiabi; Zhu, Chunliu; Zhang, Xinxin; Gan, Yong

    2010-08-30

    The object of this study was to design novel self-assembled liquid crystalline nanoparticles (cubosomes) as an ophthalmic delivery system for dexamethasone (DEX) to improve its preocular retention and ocular bioavailability. DEX cubosome particles were produced by fragmenting a cubic crystalline phase of monoolein and water in the presence of stabilizer Poloxamer 407. Small angle X-ray diffraction (SAXR) profiles revealed its internal structure as Pn3m space group, indicating the diamond cubic phase. In vitro, the apparent permeability coefficient of DEX administered in cubosomes exhibited a 4.5-fold (F1) and 3.5-fold (F2) increase compared to that of Dex-Na phosphate eye drops. Preocular retention studies revealed that the retention of cubosomes was significantly longer than that of solution and carbopol gel, with AUC(0-->180min) of Rh B cubosomes being 2-3-fold higher than that of the other two formulations. In vivo pharmacokinetics in aqueous humor was evaluated by microdialysis, which indicated a 1.8-fold (F1) increase in AUC(0-->240min) of DEX administered in cubosomes relative to that of Dex-Na phosphate eye drops, with about an 8-fold increase compared to that of DEX suspension. Corneal cross-sections after incubation with DEX cubosomes demonstrated an unaffected corneal structure and tissue integrity, which indicated the good biocompatibility of DEX cubosomes. In conclusion, self-assembled liquid crystalline nanoparticles might represent a promising vehicle for effective ocular drug delivery. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  16. Time-dependent pharmacokinetics of dexamethasone and its efficacy in human breast cancer xenograft mice: a semi-mechanism-based pharmacokinetic/pharmacodynamic model.

    Science.gov (United States)

    Li, Jian; Chen, Rong; Yao, Qing-Yu; Liu, Sheng-Jun; Tian, Xiu-Yun; Hao, Chun-Yi; Lu, Wei; Zhou, Tian-Yan

    2018-03-01

    Dexamethasone (DEX) is the substrate of CYP3A. However, the activity of CYP3A could be induced by DEX when DEX was persistently administered, resulting in auto-induction and time-dependent pharmacokinetics (pharmacokinetics with time-dependent clearance) of DEX. In this study we investigated the pharmacokinetic profiles of DEX after single or multiple doses in human breast cancer xenograft nude mice and established a semi-mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for characterizing the time-dependent PK of DEX as well as its anti-cancer effect. The mice were orally given a single or multiple doses (8 mg/kg) of DEX, and the plasma concentrations of DEX were assessed using LC-MS/MS. Tumor volumes were recorded daily. Based on the experimental data, a two-compartment model with first order absorption and time-dependent clearance was established, and the time-dependence of clearance was modeled by a sigmoid E max equation. Moreover, a semi-mechanism-based PK/PD model was developed, in which the auto-induction effect of DEX on its metabolizing enzyme CYP3A was integrated and drug potency was described using an E max equation. The PK/PD model was further used to predict the drug efficacy when the auto-induction effect was or was not considered, which further revealed the necessity of adding the auto-induction effect into the final PK/PD model. This study established a semi-mechanism-based PK/PD model for characterizing the time-dependent pharmacokinetics of DEX and its anti-cancer effect in breast cancer xenograft mice. The model may serve as a reference for DEX dose adjustments or optimization in future preclinical or clinical studies.

  17. Glucocorticoid receptors in anorexia nervosa and Cushing's disease.

    Science.gov (United States)

    Invitti, C; Redaelli, G; Baldi, G; Cavagnini, F

    1999-06-01

    Patients with anorexia nervosa do not display cushingoid features in spite of elevated cortisol plasma levels. Whether a cortisol resistance or a reduced availability of the metabolic substrates necessary to develop the effect of glucocorticoids is responsible for this has not been established. Twenty-two patients with severe restrictive anorexia nervosa, 10 patients with active Cushing's disease, and 24 healthy volunteers without psychiatric disorders or mood alterations were investigated. Glucocorticoid receptor characteristics were examined on mononuclear leukocytes by measuring [3H]dexamethasone binding and the effect of dexamethasone on [3H]thymidine incorporation, which represents an index of DNA synthesis. The number of glucocorticoid receptors on mononuclear leukocytes (MNL) was comparable in patients with anorexia nervosa, patients with active Cushing's disease, and normal subjects (binding capacity 3.3 +/- 0.23 vs. 3.7 +/- 0.30 and 3.5 +/- 0.20 fmol/10(6) cells). Conversely, glucocorticoid receptor affinity was significantly decreased in anorexia nervosa as well as in Cushing's patients compared to control subjects (dissociation constant 4.0 +/- 0.31 and 4.1 +/- 0.34 vs. 2.9 +/- 0.29 nmol/L, p Cushing's patients compared to control subjects (p Cushing's disease. In patients with anorexia nervosa, the incorporation of [3H]thymidine into the MNL was inversely correlated with urinary free cortisol levels. These data indicate that the lack of cushingoid features in patients with anorexia nervosa is not ascribable to a reduced sensitivity to glucocorticoids but is more likely due to the paucity of metabolic substrates.

  18. Effect of dexamethasone on skeletal muscle Na+,K+ pump subunit specific expression and K+ homeostasis during exercise in humans

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Ovesen, Jakob; Thomassen, Martin

    2008-01-01

    The effect of dexamethasone on Na(+),K(+) pump subunit expression and muscle exchange of K(+) during exercise in humans was investigated. Nine healthy male subjects completed a randomized double blind placebo controlled protocol, with ingestion of dexamethasone (Dex: 2 x 2 mg per day) or placebo...... (Pla) for 5 days. Na(+),K(+) pump catalytic alpha1 and alpha2 subunit expression was approximately 17% higher (P ...). The results indicate that an increased Na(+),K(+) pump expression per se is of importance for thigh K(+) reuptake at the onset of low and moderate intensity exercise, but less important during high intensity exercise....

  19. A new factor from enteric bacteria of rats amplifying induction of liver enzyme by glucocorticoid. Pt. 2

    International Nuclear Information System (INIS)

    Kido, Hiroshi; Higashi, Takao; Katanuma, Nobuhiko

    1977-01-01

    1) An amplifier of the action of glucocorticoid was purified from Proteus mirabilis as described previously. It was found that it amplified the induction of liver tyrosine aminotransferase by dexamethasone markedly with doses of dexamethasone that caused minimal enzyme induction, but had little effect with doses that caused maximal induction. Thus the amplification may represent a saving of glucocorticoid. The amplification of enzyme activity was brought about by increase in amount of enzyme. 2) The amplification was observed when the amplifier was administered before or with dexamethasone, but not when it was given 2 h after dexamethasone. These results and the finding that actinomycin D inhibited the amplification indicate that the amplifier does not act on the translational level of enzyme induction. 3) It was found that the amplifier increased both incorporation of [ 3 H]dexamethasone into the cytosol and binding of [ 3 H]dexamethasone to cytosol protein and that it decreased decay of the [ 3 H]dexamethasone protein complex. (orig.) [de

  20. Transcriptional profiling of mesenchymal stromal cells from young and old rats in response to Dexamethasone

    Directory of Open Access Journals (Sweden)

    Rechavi Gideon

    2006-04-01

    Full Text Available Abstract Background Marrow-derived stromal cells (MSCs maintain the capability of self-renewal and differentiation into multiple lineages in adult life. Age-related changes are recognized by a decline in the stemness potential that result in reduced regeneration potential of the skeleton. To explore the molecular events that underline skeletal physiology during aging we catalogued the profile of gene expression in ex vivo cultured MSCs derived from 3 and 15 month old rats. The ex vivo cultured cells were analyzed following challenge with or without Dexamethasone (Dex. RNA retrieved from these cells was analyzed using Affymetrix Gene Chips to compare the effect of Dex on gene expression in both age groups. Results The molecular mechanisms that underline skeletal senescence were studied by gene expression analysis of RNA harvested from MSCs. The analysis resulted in complex profiles of gene expression of various differentiation pathways. We revealed changes of lineage-specific gene expression; in general the pattern of expression included repression of proliferation and induction of differentiation. The functional analysis of genes clustered were related to major pathways; an increase in bone remodeling, osteogenesis and muscle formation, coupled with a decrease in adipogenesis. We demonstrated a Dex-related decrease in immune response and in genes that regulate bone resorption and an increase in osteoblastic differentiation. Myogenic-related genes and genes that regulate cell cycle were induced by Dex. While Dex repressed genes related to adipogenesis and catabolism, this decrease was complementary to an increase in expression of genes related to osteogenesis. Conclusion This study summarizes the genes expressed in the ex vivo cultured mesenchymal cells and their response to Dex. Functional clustering highlights the complexity of gene expression in MSCs and will advance the understanding of major pathways that trigger the natural changes

  1. Efficacy of palonosetron and 1-day dexamethasone in moderately emetogenic chemotherapy compared with fosaprepitant, granisetron, and dexamethasone: a prospective randomized crossover study.

    Science.gov (United States)

    Kitayama, Hiromitsu; Tsuji, Yasushi; Sugiyama, Junko; Doi, Ayako; Kondo, Tomohiro; Hirayama, Michiaki

    2015-12-01

    Although palonosetron (PALO) and NK1 receptor antagonist both reduce chemotherapy-induced nausea and vomiting, no comparison trial in moderately emetogenic chemotherapy (MEC) had been reported. The purpose of this study was to find out which drug combinations are preferable for patients receiving MEC. Chemotherapy-naive patients receiving MEC were randomized to two groups; group A first received PALO therapy [PALO plus 1-day dexamethasone (DEX)], and group B first received fosaprepitant (FAPR) therapy [FAPR, granisetron (GRAN), and DEX]. Patients were re-allocated to the other therapy, respectively, for the second cycle of chemotherapy. We administered intravenous PALO (0.75 mg) and DEX (9.9 mg) to the PALO therapy group, and FAPR (150 mg), DEX (4.95 mg), and GRAN (3 mg) to the FAPR therapy group, on Day 1. Complete response (CR) was the primary endpoint; complete control (CC), total control (CT), and the therapy chosen by the patients for their third and following cycles of antiemetic therapy were the secondary endpoints. We evaluated CR, CC, and TC in the acute phase, in the delayed phase, and over the whole period. A total of 35 patients and 70 cycles of therapy was evaluable for analysis. No significant difference was found at all evaluation points. Overall CR rates for PALO and FAPR therapy were 74 vs 69 % (P = 0.567), CC rates 66 vs 69 % (P = 0.521), and TC rates 46 vs 60 % (P = 0.235), respectively. Patients also showed no clear preference for their third and following cycles of chemotherapy, choosing both regimens almost equally often (PALO 10 vs FAPR 13). PALO and 1-day DEX is almost equivalent to FAPR, GRAN, and DEX for MEC.

  2. Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering

    International Nuclear Information System (INIS)

    Paun, Irina Alexandra; Zamfirescu, Marian; Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Mustaciosu, Cosmin Catalin; Mihailescu, Mona; Dinescu, Maria

    2017-01-01

    Highlights: • Electrically-responsive microreservoires (ERRs) for controlled release of Dex. • ERRs made of microtubes produced by two photon polymerization of IP-L780 photoresist. • Microtubes loaded with PPy/Dex mixture and sealed with a thin PLGA layer. • Kinetics of Dex release controlled by electrical stimulation of the ERRs. • Controlled Dex release accelerates the cells osteogenic differentiation. - Abstract: A major concern in orthopedic implants is to decrease the chronic inflammation using specific drug therapies. The newest strategies rely on the controlled delivery of antiinflammatory drugs from carrier biointerfaces designed in the shape of 3D architectures. We report on electrically responsive microreservoires (ERRs) acting as microcontainers for antiinflammatory drugs, as potential biointerfaces in orthopedic implants. The ERRs consist in arrays of vertical microtubes produced by laser direct writing using two photon polymerization effects (2PP-LDW) of a commercially available photoresist, IP-L780. A polypyrrole (conductive)/dexamethasone (drug model) (PPy/Dex) mixture was loaded into the ERRs via a simple immersion process. Then, the ERRs were sealed with a poly(lactic-co-glycolic acid)(PLGA) layer by Matrix Assisted Pulsed Laser Evaporation. ERRs stimulation using voltage cycles between −1 V and +1 V, applied at specific time intervals, at a scan rate of 0.1 V s −1 , enabled to control the Dex release. The release time scales were between 150 and 275 h, while the concentrations of Dex released were between 450–460 nM after three applied voltage cycles, for different microreservoires dimensions. The proposed approach was validated in osteoblast-like MG-63 cell cultures. Cell viability and adhesion assays showed that the Dex-loaded ERRs sustained the cells growth and preserved their characteristic polygonal shape. Importantly, for the electrically-stimulated Dex release, the level of the alkaline phosphatase activity increased twice

  3. Live cell imaging of actin dynamics in dexamethasone-treated porcine trabecular meshwork cells.

    Science.gov (United States)

    Fujimoto, Tomokazu; Inoue, Toshihiro; Inoue-Mochita, Miyuki; Tanihara, Hidenobu

    2016-04-01

    The regulation of the actin cytoskeleton in trabecular meshwork (TM) cells is important for controlling outflow of the aqueous humor. In some reports, dexamethasone (DEX) increased the aqueous humor outflow resistance and induced unusual actin structures, such as cross-linked actin networks (CLAN), in TM cells. However, the functions and dynamics of CLAN in TM cells are not completely known, partly because actin stress fibers have been observed only in fixed cells. We conducted live-cell imaging of the actin dynamics in TM cells with or without DEX treatment. An actin-green fluorescent protein (GFP) fusion construct with a modified insect virus was transfected into porcine TM cells. Time-lapse imaging of live TM cells treated with 25 μM Y-27632 and 100 nM DEX was performed using an inverted fluorescence microscope. Fluorescent images were recorded every 15 s for 30 min after Y-27632 treatment or every 30 min for 72 h after DEX treatment. The GFP-actin was expressed in 22.7 ± 10.9% of the transfected TM cells. In live TM cells, many actin stress fibers were observed before the Y-27632 treatment. Y-27632 changed the cell shape and decreased stress fibers in a time-dependent manner. In fixed cells, CLAN-like structures were seen in 26.5 ± 1.7% of the actin-GFP expressed PTM cells treated with DEX for 72 h. In live imaging, there was 28% CLAN-like structure formation at 72 h after DEX treatment, and the lifetime of CLAN-like structures increased after DEX treatment. The DEX-treated cells with CLAN-like structures showed less migration than DEX-treated cells without CLAN-like structures. Furthermore, the control cells (without DEX treatment) with CLAN-like structures also showed less migration than the control cells without CLAN-like structures. These results suggested that CLAN-like structure formation was correlated with cell migration in TM cells. Live cell imaging of the actin cytoskeleton provides valuable information on the actin dynamics in TM

  4. Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Paun, Irina Alexandra, E-mail: irina.paun@physics.pub.ro [Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 (Romania); National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania); Zamfirescu, Marian [National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania); Luculescu, Catalin Romeo, E-mail: catalin.luculescu@inflpr.ro [National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania); Acasandrei, Adriana Maria; Mustaciosu, Cosmin Catalin [Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, Magurele, Bucharest RO-077125 (Romania); Mihailescu, Mona [Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 (Romania); Dinescu, Maria, E-mail: dinescum@nipne.ro [National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania)

    2017-01-15

    Highlights: • Electrically-responsive microreservoires (ERRs) for controlled release of Dex. • ERRs made of microtubes produced by two photon polymerization of IP-L780 photoresist. • Microtubes loaded with PPy/Dex mixture and sealed with a thin PLGA layer. • Kinetics of Dex release controlled by electrical stimulation of the ERRs. • Controlled Dex release accelerates the cells osteogenic differentiation. - Abstract: A major concern in orthopedic implants is to decrease the chronic inflammation using specific drug therapies. The newest strategies rely on the controlled delivery of antiinflammatory drugs from carrier biointerfaces designed in the shape of 3D architectures. We report on electrically responsive microreservoires (ERRs) acting as microcontainers for antiinflammatory drugs, as potential biointerfaces in orthopedic implants. The ERRs consist in arrays of vertical microtubes produced by laser direct writing using two photon polymerization effects (2PP-LDW) of a commercially available photoresist, IP-L780. A polypyrrole (conductive)/dexamethasone (drug model) (PPy/Dex) mixture was loaded into the ERRs via a simple immersion process. Then, the ERRs were sealed with a poly(lactic-co-glycolic acid)(PLGA) layer by Matrix Assisted Pulsed Laser Evaporation. ERRs stimulation using voltage cycles between −1 V and +1 V, applied at specific time intervals, at a scan rate of 0.1 V s{sup −1}, enabled to control the Dex release. The release time scales were between 150 and 275 h, while the concentrations of Dex released were between 450–460 nM after three applied voltage cycles, for different microreservoires dimensions. The proposed approach was validated in osteoblast-like MG-63 cell cultures. Cell viability and adhesion assays showed that the Dex-loaded ERRs sustained the cells growth and preserved their characteristic polygonal shape. Importantly, for the electrically-stimulated Dex release, the level of the alkaline phosphatase activity increased

  5. Rats Born to Mothers Treated with Dexamethasone 15 cH Present Changes in Modulation of Inflammatory Process

    Directory of Open Access Journals (Sweden)

    Leoni V. Bonamin

    2012-01-01

    Full Text Available As little information about the effect of ultra high dilutions of glucocorticoid in reproduction is available in the literature, pregnant female Wistar rats (N=12 were blindly subcutaneously treated during all gestational and lactation period with: dexamethasone 4 mg/kg diluted into dexamethasone 15 cH (mixed; or dexamethasone 4 mg/kg diluted in water; or dexamethasone 15 cH, or vehicle. Parental generation had body weight, food and water consumption monitored. The F1 generation was monitored regarding to newborn development. No birth occurred in both groups treated with dexamethasone 4 mg/kg. After 60 days from birth, 12 male F1 rats were randomly selected from each remaining group and inoculated subcutaneously with 1% carrageenan into the footpad, for evaluation of inflammatory performance. Edema and histopathology of the footpad were evaluated, using specific staining methods, immunohistochemistry and digital histomorphometry. Mothers treated with mixed dexamethasone presented reduced water consumption. F1 rats born to dexamethasone 15 cH treated females presented significant increase in mast cell degranulation, decrease in monocyte percentage, increase in CD18+ PMN cells, and early expression of ED2 protein, in relation to control. The results show that the exposure of parental generation to highly diluted dexamethasone interferes in inflammation modulation in the F1 generation.

  6. 78 FR 61387 - Supermedia LLC, Publishing Operations Divison, Account Management Group, a Subsidiary of Dex...

    Science.gov (United States)

    2013-10-03

    ... LLC, Publishing Operations Divison, Account Management Group, a Subsidiary of Dex Media Inc..., Publishing Operations Divison, Listing Management Group, a Subsidiary of Dex Media Inc., Including On-Site... to workers and former workers of SuperMedia LLC, Publishing Operation Division, Account Management...

  7. 76 FR 21034 - Dex One, et al.; Amended Certification Regarding Eligibility To Apply for Worker Adjustment...

    Science.gov (United States)

    2011-04-14

    ... firm acquiring from a foreign country services like or directly competitive with the services supplied..., Including On-Site Leased Workers of Advantage XPO, Fort Myers, Maitland, and Ocala, FL TA-W-75,172A Dex One... Advantage XPO, Arlington Heights, Chicago, Lombard, Springfield, and Tinley Park, IL TA-W-75,172B Dex One...

  8. Removal of dexamethasone from aqueous solution and hospital wastewater by electrocoagulation

    International Nuclear Information System (INIS)

    Arsand, Daniel R.; Kümmerer, Klaus; Martins, Ayrton F.

    2013-01-01

    This study is concerned with the removal of the anti-inflammatory dexamethasone from aqueous solution and hospital wastewater by electrocoagulation. The variation of the toxicity during the electrocoagulation was also studied through experiments that were designed and optimized by means of response surface methodology. The coagulation efficiency was evaluated by measuring the dexamethasone concentration by high performance liquid chromatography coupled to a diode array detector. In addition, variation was evaluated through a Vibrio fischeri test. The results showed an increase in the removal of dexamethasone (up to 38.1%) with a rise of the current applied and a decrease of the inter-electrode distance, in aqueous solutions. The application to hospital effluent showed similar results for the removal of dexamethasone. The main effect of the electrocoagulation was that it removed colloids and reduced the organic load of the hospital wastewater. Regarding the current applied, the calculated energy efficiency was 100%. Without pH adjustment of the aqueous solution or hospital wastewater, the residual aluminum concentration always remained lower than 10 mg L −1 , and, with adjustment (to pH 6.5), lower than 0.30 mg L −1 , at the final stage. No toxicity variation was observed during the electrocoagulation process in aqueous solution, either in the presence or absence of dexamethasone. - Highlights: ► Removal of DEX and organic load from aqueous solution and hospital wastewater by EC ► Evaluation of the toxicity during the removal of DEX by EC ► Suggestion of the EC process as a pretreatment for subsequent processes

  9. Removal of dexamethasone from aqueous solution and hospital wastewater by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Arsand, Daniel R., E-mail: danielarsand@pelotas.ifsul.edu.br [Chemistry Department, Federal University of Santa Maria, RS (Brazil); Kümmerer, Klaus, E-mail: klaus.kuemmerer@leuphana.de [Institute for Environmental Chemistry, Leuphana University Lüneburg (Germany); Martins, Ayrton F., E-mail: martins@quimica.ufsm.br [Chemistry Department, Federal University of Santa Maria, RS (Brazil)

    2013-01-15

    This study is concerned with the removal of the anti-inflammatory dexamethasone from aqueous solution and hospital wastewater by electrocoagulation. The variation of the toxicity during the electrocoagulation was also studied through experiments that were designed and optimized by means of response surface methodology. The coagulation efficiency was evaluated by measuring the dexamethasone concentration by high performance liquid chromatography coupled to a diode array detector. In addition, variation was evaluated through a Vibrio fischeri test. The results showed an increase in the removal of dexamethasone (up to 38.1%) with a rise of the current applied and a decrease of the inter-electrode distance, in aqueous solutions. The application to hospital effluent showed similar results for the removal of dexamethasone. The main effect of the electrocoagulation was that it removed colloids and reduced the organic load of the hospital wastewater. Regarding the current applied, the calculated energy efficiency was 100%. Without pH adjustment of the aqueous solution or hospital wastewater, the residual aluminum concentration always remained lower than 10 mg L{sup −1}, and, with adjustment (to pH 6.5), lower than 0.30 mg L{sup −1}, at the final stage. No toxicity variation was observed during the electrocoagulation process in aqueous solution, either in the presence or absence of dexamethasone. - Highlights: ► Removal of DEX and organic load from aqueous solution and hospital wastewater by EC ► Evaluation of the toxicity during the removal of DEX by EC ► Suggestion of the EC process as a pretreatment for subsequent processes.

  10. Inhibition of dehydration-induced water intake by glucocorticoids is associated with activation of hypothalamic natriuretic peptide receptor-A in rat.

    Directory of Open Access Journals (Sweden)

    Chao Liu

    Full Text Available Atrial natriuretic peptide (ANP provides a potent defense mechanism against volume overload in mammals. Its primary receptor, natriuretic peptide receptor-A (NPR-A, is localized mostly in the kidney, but also is found in hypothalamic areas involved in body fluid volume regulation. Acute glucocorticoid administration produces potent diuresis and natriuresis, possibly by acting in the renal natriuretic peptide system. However, chronic glucocorticoid administration attenuates renal water and sodium excretion. The precise mechanism underlying this paradoxical phenomenon is unclear. We assume that chronic glucocorticoid administration may activate natriuretic peptide system in hypothalamus, and cause volume depletion by inhibiting dehydration-induced water intake. Volume depletion, in turn, compromises renal water excretion. To test this postulation, we determined the effect of dexamethasone on dehydration-induced water intake and assessed the expression of NPR-A in the hypothalamus. The rats were deprived of water for 24 hours to have dehydrated status. Prior to free access to water, the water-deprived rats were pretreated with dexamethasone or vehicle. Urinary volume and water intake were monitored. We found that dexamethasone pretreatment not only produced potent diuresis, but dramatically inhibited the dehydration-induced water intake. Western blotting analysis showed the expression of NPR-A in the hypothalamus was dramatically upregulated by dexamethasone. Consequently, cyclic guanosine monophosphate (the second messenger for the ANP content in the hypothalamus was remarkably increased. The inhibitory effect of dexamethasone on water intake presented in a time- and dose-dependent manner, which emerged at least after 18-hour dexamethasone pretreatment. This effect was glucocorticoid receptor (GR mediated and was abolished by GR antagonist RU486. These results indicated a possible physiologic role for glucocorticoids in the hypothalamic control of

  11. Sustained intra-cartilage delivery of low dose dexamethasone using a cationic carrier for treatment of post traumatic osteoarthritis

    Directory of Open Access Journals (Sweden)

    AG Bajpayee

    2017-12-01

    Full Text Available Disease-modifying osteoarthritis drugs (DMOADs should reach their intra-tissue target sites at optimal doses for clinical efficacy. The dense, negatively charged matrix of cartilage poses a major hindrance to the transport of potential therapeutics. In this work, electrostatic interactions were utilised to overcome this challenge and enable higher uptake, full-thickness penetration and enhanced retention of dexamethasone (Dex inside rabbit cartilage. This was accomplished by using the positively charged glycoprotein avidin as nanocarrier, conjugated to Dex by releasable linkers. Therapeutic effects of a single intra-articular injection of low dose avidin-Dex (0.5 mg Dex were evaluated in rabbits 3 weeks after anterior cruciate ligament transection (ACLT. Immunostaining confirmed that avidin penetrated the full cartilage thickness and was retained for at least 3 weeks. Avidin-Dex suppressed injury-induced joint swelling and catabolic gene expression to a greater extent than free Dex. It also significantly improved the histological score of cell infiltration and morphogenesis within the periarticular synovium. Micro-computed tomography confirmed the reduced incidence and volume of osteophytes following avidin-Dex treatment. However, neither treatment restored the loss of cartilage stiffness following ACLT, suggesting the need for a combinational therapy with a pro-anabolic factor for enhancing matrix biosynthesis. The avidin dose used caused significant glycosaminoglycan (GAG loss, suggesting the use of higher Dex : avidin ratios in future formulations, such that the delivered avidin dose could be much less than that shown to affect GAGs. This charge-based delivery system converted cartilage into a drug depot that could also be employed for delivery to nearby synovium, menisci and ligaments, enabling clinical translation of a variety of DMOADs.

  12. Postnatal administration of 2-oxoglutaric acid improves articular and growth plate cartilages and bone tissue morphology in pigs prenatally treated with dexamethasone.

    Science.gov (United States)

    Tomaszewska, E; Dobrowolski, P; Wydrych, J

    2012-10-01

    The potential effects of prenatal administration of dexamethasone (DEX) and postnatal treatment with 2-oxoglutaric acid (2-Ox) on postnatal development of connective tissue of farm animals were not examined experimentally. The aim of this study was to establish changes in morphological parameters of bone and articular and growth plate cartilages damaged by the prenatal action of DEX in piglets supplemented with 2-Ox. The 3 mg of DEX was administered by intramuscular route every second day from day 70 of pregnancy to parturition and then piglets were supplemented with 2-Ox during 35 days of postnatal life (0.4 g/kg body weight). The mechanical properties, BMD and BMC of bones, and histomorphometry of articular and growth plate cartilages were determined. Maternal treatment with DEX decreased the weight by 48%, BMD by 50% and BMC by 61% of the tibia in male piglets while such action of DEX in female piglets was not observed. DEX led to thinning of articular and growth plate cartilages and trabeculae thickness and reduced the serum GH concentration in male piglets. The administration of 2-Ox prevented the reduction of trabeculae thickness, the width of articular and growth plate cartilages in male piglets connected with higher growth hormone concentration compared with non-supplemented male piglets. The result showed that the presence of 2-Ox in the diet had a positive effect on the development of connective tissue in pigs during suckling and induced a complete recovery from bone and cartilage damage caused by prenatal DEX action.

  13. Effects of cortisol and dexamethasone on insulin signalling pathways in skeletal muscle of the ovine fetus during late gestation.

    Directory of Open Access Journals (Sweden)

    Juanita K Jellyman

    Full Text Available Before birth, glucocorticoids retard growth, although the extent to which this is mediated by changes in insulin signalling pathways in the skeletal muscle of the fetus is unknown. The current study determined the effects of endogenous and synthetic glucocorticoid exposure on insulin signalling proteins in skeletal muscle of fetal sheep during late gestation. Experimental manipulation of fetal plasma glucocorticoid concentration was achieved by fetal cortisol infusion and maternal dexamethasone treatment. Cortisol infusion significantly increased muscle protein levels of Akt2 and phosphorylated Akt at Ser473, and decreased protein levels of phosphorylated forms of mTOR at Ser2448 and S6K at Thr389. Muscle GLUT4 protein expression was significantly higher in fetuses whose mothers were treated with dexamethasone compared to those treated with saline. There were no significant effects of glucocorticoid exposure on muscle protein abundance of IR-β, IGF-1R, PKCζ, Akt1, calpastatin or muscle glycogen content. The present study demonstrated that components of the insulin signalling pathway in skeletal muscle of the ovine fetus are influenced differentially by naturally occurring and synthetic glucocorticoids. These findings may provide a mechanism by which elevated concentrations of endogenous glucocorticoids retard fetal growth.

  14. Glucocorticoids promote a glioma stem cell-like phenotype and resistance to chemotherapy in human glioblastoma primary cells

    DEFF Research Database (Denmark)

    Kostopoulou, Ourania N; Mohammad, Abdul-Aleem; Bartek, Jiri

    2018-01-01

    Glioma stem cells (GSCs) are glioblastoma (GBM) cells that are resistant to therapy and can give rise to recurrent tumors. The identification of patient-related factors that support GSCs is thus necessary to design effective therapies for GBM patients. Glucocorticoids (GCs) are used to treat GBM......-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, which has been linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and GSCs. Here, we treated primary human GBM cells with dexamethasone and evaluated GC......-driven changes in cell morphology, proliferation, migration, gene expression, secretory activity and growth as neurospheres. Dexamethasone treatment of GBM cells appeared to promote the development of a GSC-like phenotype and conferred resistance to physiological stress and chemotherapy. We also analyzed...

  15. Effects of thyroxine and dexamethasone on rat submandibular glands

    International Nuclear Information System (INIS)

    Sagulin, G.B.; Roomans, G.M.

    1989-01-01

    Glucocorticoids and thyroxine are known to have a marked effect on the flow rate and protein composition of rat parotid saliva in hormonally intact animals. In the present study, the effects of a one-week treatment of male rats with dexamethasone and thyroxine were studied by electron microscopy and x-ray micro-analysis, and by measurement of the flow rate and determination of the chemical composition of pilocarpine-induced submandibular saliva. Thyroxine had the most extensive effects on the submandibular gland. The acinar cells were enlarged and filled with mucus; the cellular calcium concentration was significantly increased. The flow rate of the submandibular saliva was significantly reduced compared with that in saline-injected control animals. Thyroxine caused an increase in the concentrations of protein, total calcium, and potassium in the saliva. Dexamethasone had no significant effects on gland ultrastructure or on the elemental composition of the acinar cells; flow rate was not affected, but the concentrations of protein, calcium, and potassium were significantly increased. The effects of dexamethasone and thyroxine on the flow rate and protein composition of pilocarpine-induced rat submandibular saliva differ from those reported earlier for rat parotid saliva after simultaneous stimulation with pilocarpine and isoproterenol

  16. Identification of hormone-interacting amino acid residues within the steroid-binding domain of the glucocorticoid receptor in relation to other steroid hormone receptors

    International Nuclear Information System (INIS)

    Carlstedt-Duke, J.; Stroemstedt, P.E.; Persson, B.; Cederlund, E.; Gustafsson, J.A.; Joernvall, H.

    1988-01-01

    Purified rat liver glucocorticoid receptor was covalently charged with [ 3 H]glucocorticoid by photoaffinity labeling (UV irradiation of [ 3 H]triamcinolone acetonide-glucocorticoid receptor) or affinity labeling (incubation with [ 3 H]dexamethasone mesylate). After labeling, separate samples of the denatured receptor were cleaved with trypsin (directly or after prior succinylation), chymotrypsin, and cyanogen bromide. Labeled residues in the peptides obtained were identified by radiosequence analysis. The peaks of radioactivity corresponded to Met-622 and Cys-754 after photoaffinity labeling with [ 3 H]triamcinolone acetonide and Cys-656 after affinity labeling with [ 3 H]dexamethasone mesylate. The labeled residues are all positioned within hydrophobic segments of the steroid-binding domain. The patterns of hydropathy and secondary structure for the glucocorticoid receptor are highly similar to those for the progestin receptor and similar but less so to those for the estrogen receptor and to those for c-erb A

  17. General effect of endotoxin on glucocorticoid receptors in mammalian tissues

    International Nuclear Information System (INIS)

    Stith, R.D.; McCallum, R.E.

    1986-01-01

    Considering the ubiquitous nature of glucocorticoid actions and the fact that endotoxin inhibits glucocorticoid action in the liver, we proposed to examine whether endotoxin affected extrahepatic actions of glucocorticoids. Fasted C57BL/6J mice were injected intraperitoneally with endotoxin (LD50) at 0800 and were killed 6 h later. Control mice were injected with an equal volume of saline. 3 H-dexamethasone binding, measured by a new cytosol exchange assay utilizing molybdate plus dithiothreitol, in liver, kidney, skeletal muscle, spleen, lung, and heart tissue was significantly lower in treated than in control mice. The equilibrium dissociation constants were not significantly different, but the number of available binding sites in each tissue was reduced by endotoxin treatment. Phosphoenolpyruvate carboxykinase activity was significantly reduced in liver but not in kidney. Endotoxin treatment lowered glycogen content in liver but not in skeletal muscle. The reduction observed in the a form of liver glycogen synthase due to endotoxin was not seen in skeletal muscle glycogen synthase a. These data support the proposal that endotoxin or a mediator of its action inhibits systemic glucocorticoid action. The results also emphasize the central role of the liver in the metabolic disturbances of the endotoxin-treated mouse

  18. Dexras1 mediates glucocorticoid-associated adipogenesis and diet-induced obesity

    Science.gov (United States)

    Cha, Jiyoung Y.; Kim, Hyo Jung; Yu, Jung Hwan; Xu, Jing; Kim, Daham; Paul, Bindu D.; Choi, Hyeonjin; Kim, Seyun; Lee, Yoo Jeong; Ho, Gary P.; Rao, Feng; Snyder, Solomon H.; Kim, Jae-woo

    2013-01-01

    Adipogenesis, the conversion of precursor cells into adipocytes, is associated with obesity and is mediated by glucocorticoids acting via hitherto poorly characterized mechanisms. Dexras1 is a small G protein of the Ras family discovered on the basis of its marked induction by the synthetic glucocorticoid dexamethasone. We show that Dexras1 mediates adipogenesis and diet-induced obesity. Adipogenic differentiation of 3T3-L1 cells is abolished with Dexras1 depletion, whereas overexpression of Dexras1 elicits adipogenesis. Adipogenesis is markedly reduced in mouse embryonic fibroblasts from Dexras1-deleted mice, whereas adiposity and diet-induced weight gain are diminished in the mutant mice. PMID:24297897

  19. Long-term outcome of prenatal dexamethasone treatment of 21-hydroxylase deficiency.

    Science.gov (United States)

    Lajic, Svetlana; Nordenström, Anna; Hirvikoski, Tatja

    2011-01-01

    Prenatal treatment of congenital adrenal hyperplasia (CAH) with dexamethasone (DEX) has been in use since the mid- 1980s. Its effectiveness for reducing virilization of external genitalia is well established. DEX treatment has to be started in the 6th-7th postmenstrual week and continued until the results of the prenatal diagnosis are available. Hence, the dilemma is that 7 out of 8 fetuses (boys and unaffected girls) are treated unnecessarily. Girls with CAH are treated until term. Accumulating evidence from animal studies and follow-up data has raised concerns regarding the long-term consequences of this controversial treatment. We have previously reported that direct neuropsychological assessment of children exposed to DEX and controls show normal full-scale IQ, learning and longterm memory. However, the children exposed to DEX during the first trimester had an impaired verbal working memory which was significantly associated with low self-perceived scholastic competence. In addition, the children showed increased self-rated social anxiety. The same cohort of children answered questions concerning friends, activities and gender-related behaviors. The results indicate less masculine and more neutral behavior in short-term DEX-exposed boys. These findings indicate that long-term follow-ups of this group of patients are of extreme importance and that future DEX treatment of CAH may be questioned. We therefore encourage additional studies on larger cohorts in order to draw more decisive conclusions about the safety of the treatment. Until then, it is important that the parents are thoroughly informed about the potential risks and uncertainties, as well as the benefits, of this treatment. Copyright © 2011 S. Karger AG, Basel.

  20. Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering

    Science.gov (United States)

    Paun, Irina Alexandra; Zamfirescu, Marian; Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Mustaciosu, Cosmin Catalin; Mihailescu, Mona; Dinescu, Maria

    2017-01-01

    A major concern in orthopedic implants is to decrease the chronic inflammation using specific drug therapies. The newest strategies rely on the controlled delivery of antiinflammatory drugs from carrier biointerfaces designed in the shape of 3D architectures. We report on electrically responsive microreservoires (ERRs) acting as microcontainers for antiinflammatory drugs, as potential biointerfaces in orthopedic implants. The ERRs consist in arrays of vertical microtubes produced by laser direct writing using two photon polymerization effects (2PP_LDW) of a commercially available photoresist, IP-L780. A polypyrrole (conductive)/dexamethasone (drug model) (PPy/Dex) mixture was loaded into the ERRs via a simple immersion process. Then, the ERRs were sealed with a poly(lactic-co-glycolic acid)(PLGA) layer by Matrix Assisted Pulsed Laser Evaporation. ERRs stimulation using voltage cycles between -1 V and +1 V, applied at specific time intervals, at a scan rate of 0.1 V s-1, enabled to control the Dex release. The release time scales were between 150 and 275 h, while the concentrations of Dex released were between 450-460 nM after three applied voltage cycles, for different microreservoires dimensions. The proposed approach was validated in osteoblast-like MG-63 cell cultures. Cell viability and adhesion assays showed that the Dex-loaded ERRs sustained the cells growth and preserved their characteristic polygonal shape. Importantly, for the electrically-stimulated Dex release, the level of the alkaline phosphatase activity increased twice, the osteogenic differentiation surpassed by 1.6 times and the relative level of osteocalcin gene expression was 2.2 times higher as compared with the unstimulated drug release. Overall, the ERRs were able to accelerate the cells osteogenic differentiation via electrically controlled release of Dex.

  1. Intravitreal bevacizumab injections versus dexamethasone implant for treatment-naïve retinal vein occlusion related macular edema

    Directory of Open Access Journals (Sweden)

    Laine I

    2017-11-01

    Full Text Available Ilkka Laine,1–3 Juha-Matti Lindholm,1,2 Petteri Ylinen,1,4 Raimo Tuuminen1,2,5 1Helsinki Retina Research Group, University of Helsinki, Helsinki, 2Unit of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland; 3Department of Automation and Electrical Engineering, Aalto University, Helsinki, Finland; 4Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland; 5The Insurance Centre, Patient Insurance Centre, Helsinki, Finland Purpose: To compare the short-term effects of three monthly intravitreal bevacizumab (IVB injections to single dexamethasone (DEX implantation in treatment-naïve patients with cystoid macular edema (CME secondary to branch (BRVO and central retinal vein occlusion (CRVO.Design: A retrospective single-center study.Subjects: A total of 135 eyes of 135 patients with BRVO (n=83 and CRVO (n=52.Methods: Changes in clinical parameters were recorded before treatment and at the first and third month after commencement of IVB (n=121 and DEX (n=14.Main outcome measures: Central retinal thickness (CRT, intraocular pressure (IOP, and best-corrected visual acuity (BCVA.Results: The baseline parameters were comparable between IVB and DEX groups. After the first month, CRT decreased by 131.3±42.9 µm in IVB and by 266.9±48.3 µm in DEX (mean ± SEM; p=0.047. IOP change was –0.29±0.39 mmHg in IVB and +3.70±2.34 mmHg in DEX (p=0.005. IOP elevation to ≥25 mmHg and ≥5 mmHg from the baseline was observed in two of the DEX- and in none of the IVB-treated eyes (p=0.010. After the third month, no differences regarding CRT and IOP were observed between the treatment modalities. Moreover, BCVA gain was comparable between IVB (0.37±0.05 logarithm of minimum angle of resolution [logMAR] units and DEX (0.33±0.30 logMAR units groups.Conclusion: DEX was associated with faster resolution of CME, but had greater probability for short-term IOP elevation when compared to IVB. After the third month, treatments were

  2. Dexamethasone-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microparticles for controlled release

    International Nuclear Information System (INIS)

    Riekes, Manoela Klueppel; Paula, Josiane Padilha de; Farago, Paulo Vitor; Zawadzki, Sonia Faria

    2009-01-01

    Dexamethasone (DEX) has been widely used for the treatment of ulcerative colitis. The aim of the present study was to obtain DEX-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) microparticles prepared by simple emulsion/solvent evaporation method. The drug loading and the encapsulation efficiency were determined by a previously validated UV method at 233 nm. Morphological, spectroscopical and dissolution analyses were also performed. The microparticles (formulation F no. 0, F no. 1 and F no. 2) were successfully obtained as off-white powders. A drug loading of 92.27 mg.g -1 and 218.54 mg.g -1 and an encapsulation efficiency of 93.96 % and 87.43 % were respectively observed for F no. 1 and F no. 2. Particles showed spherical and rough aspect by SEM. X-ray diffraction analysis demonstrated that the encapsulation reduced the drug crystallinity. FTIR spectra showed that no chemical bonding occurred between PHBV and DEX. Drug-loaded microparticles revealed controlled release profiles compared to pure DEX. (author)

  3. Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone

    Directory of Open Access Journals (Sweden)

    Chen Y

    2011-05-01

    Full Text Available Yupeng Chen1,2, Shang Song2, Zhimin Yan3, Hicham Fenniri3, Thomas J Webster2,41Department of Chemistry, Brown University, Providence, RI, USA; 2School of Engineering, Brown University, Providence, RI, USA; 3National Institute for Nanotechnology and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; 4Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Rosette nanotubes (RNTs are novel, self-assembled, biomimetic, synthetic drug delivery materials suitable for numerous medical applications. Because of their amphiphilic character and hollow architecture, RNTs can be used to encapsulate and deliver hydrophobic drugs otherwise difficult to deliver in biological systems. Another advantage of using RNTs for drug delivery is their biocompatibility, low cytotoxicity, and their ability to engender a favorable, biologically-inspired environment for cell adhesion and growth. In this study, a method to incorporate dexamethasone (DEX, an inflammatory and a bone growth promoting steroid into RNTs was developed. The drug-loaded RNTs were characterized using diffusion ordered nuclear magnetic resonance spectroscopy (DOSY NMR and UV-Vis spectroscopy. Results showed for the first time that DEX can be easily and quickly encapsulated into RNTs and released to promote osteoblast (bone-forming cell functions over long periods of time. As a result, RNTs are presented as a novel material for the targeted delivery of hydrophobic drugs otherwise difficult to deliver.Keywords: nanotubes, drug delivery, self-assembly, physiological conditions

  4. Glucocorticoid-Induced Osteoporosis

    Science.gov (United States)

    ... nervosa Cigarette smoking Alcohol abuse Low calcium and vitamin D, by low dietary intake or poor absorption in your gut Sedentary (inactive) lifestyle or immobility Certain medications besides glucocorticoids, including the following: excess thyroid hormone replacement the blood thinner heparin some ...

  5. Neutrophils are not less sensitive than other blood leukocytes to the genomic effects of glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Gaelle Hirsch

    Full Text Available Neutrophils are generally considered less responsive to glucocorticoids compared to other inflammatory cells. The reported increase in human neutrophil survival mediated by these drugs partly supports this assertion. However, it was recently shown that dexamethasone exerts potent anti-inflammatory effects in equine peripheral blood neutrophils. Few comparative studies of glucocorticoid effects in neutrophils and other leukocytes have been reported and a relative insensitivity of neutrophils to these drugs could not be ruled out.We assessed glucocorticoid-responsiveness in equine and human peripheral blood neutrophils and neutrophil-depleted leukocytes.Blood neutrophils and neutrophil-depleted leukocytes were isolated from 6 healthy horses and 4 human healthy subjects. Cells were incubated for 5 h with or without LPS (100 ng/mL alone or combined with hydrocortisone, prednisolone or dexamethasone (10(-8 M and 10(-6 M. IL-1β, TNF-α, IL-8, glutamine synthetase and GR-α mRNA expression was quantified by qPCR. Equine neutrophils were also incubated for 20 h with or without the three glucocorticoids and cell survival was assessed by flow cytometry and light microscopy on cytospin preparations.We found that glucocorticoids down-regulated LPS-induced pro-inflammatory mRNA expression in both cell populations and species. These drugs also significantly increased glutamine synthetase gene expression in both equine cell populations. The magnitude of glucocorticoid response between cell populations was generally similar in both species. We also showed that dexamethasone had a comparable inhibitory effect on pro-inflammatory gene expression in both human and equine neutrophils. As reported in other species, glucocorticoids significantly increase the survival in equine neutrophils.Glucocorticoids exert genomic effects of similar magnitude on neutrophils and on other blood leukocytes. We speculate that the poor response to glucocorticoids observed in some

  6. Neutrophils Are Not Less Sensitive Than Other Blood Leukocytes to the Genomic Effects of Glucocorticoids

    Science.gov (United States)

    Hirsch, Gaelle; Lavoie-Lamoureux, Anouk; Beauchamp, Guy; Lavoie, Jean-Pierre

    2012-01-01

    Background Neutrophils are generally considered less responsive to glucocorticoids compared to other inflammatory cells. The reported increase in human neutrophil survival mediated by these drugs partly supports this assertion. However, it was recently shown that dexamethasone exerts potent anti-inflammatory effects in equine peripheral blood neutrophils. Few comparative studies of glucocorticoid effects in neutrophils and other leukocytes have been reported and a relative insensitivity of neutrophils to these drugs could not be ruled out. Objective We assessed glucocorticoid-responsiveness in equine and human peripheral blood neutrophils and neutrophil-depleted leukocytes. Methods Blood neutrophils and neutrophil-depleted leukocytes were isolated from 6 healthy horses and 4 human healthy subjects. Cells were incubated for 5 h with or without LPS (100 ng/mL) alone or combined with hydrocortisone, prednisolone or dexamethasone (10−8 M and 10−6 M). IL-1β, TNF-α, IL-8, glutamine synthetase and GR-α mRNA expression was quantified by qPCR. Equine neutrophils were also incubated for 20 h with or without the three glucocorticoids and cell survival was assessed by flow cytometry and light microscopy on cytospin preparations. Results We found that glucocorticoids down-regulated LPS-induced pro-inflammatory mRNA expression in both cell populations and species. These drugs also significantly increased glutamine synthetase gene expression in both equine cell populations. The magnitude of glucocorticoid response between cell populations was generally similar in both species. We also showed that dexamethasone had a comparable inhibitory effect on pro-inflammatory gene expression in both human and equine neutrophils. As reported in other species, glucocorticoids significantly increase the survival in equine neutrophils. Conclusions Glucocorticoids exert genomic effects of similar magnitude on neutrophils and on other blood leukocytes. We speculate that the poor response to

  7. Ex vivo stimulation of whole blood as a means to determine glucocorticoid sensitivity

    Directory of Open Access Journals (Sweden)

    Burnsides C

    2012-08-01

    Full Text Available Christopher Burnsides,1,* Jacqueline Corry,1,* Jacob Alexander,1 Catherine Balint,1 David Cosmar,1 Gary Phillips,2 Jeanette I Webster Marketon1,31Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, 2Center for Biostatistics, 3Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, Columbus, OH, USA*JC and CB have equally contributed to this workPurpose: Glucocorticoids are commonly prescribed to treat a number of diseases including the majority of inflammatory diseases. Despite considerable interpersonal variability in response to glucocorticoids, an insensitivity rate of about 30%, and the risk of adverse side effects of glucocorticoid therapy, currently no assay is performed to determine sensitivity.Patients and methods: Here we propose a whole blood ex vivo stimulation assay to interrogate known glucocorticoid receptor (GR up- and downregulated genes to indicate glucocorticoid sensitivity. We have chosen to employ real-time PCR in order to provide a relatively fast and inexpensive assay.Results: We show that the GR-regulated genes, GILZ and FKBP51, are upregulated in whole blood by treatment with dexamethasone and that LPS-induction of cytokines (IL-6 and TNFα are repressed by dexamethasone in a dose responsive manner. There is considerable interpersonal variability in the maximum induction of these genes but little variation in the EC50 and IC50 concentrations. The regulation of the GR-induced genes differs throughout the day whereas the suppression of LPS-induced cytokines is not as sensitive to time of day.Conclusion: In all, this assay would provide a method to determine glucocorticoid receptor responsiveness in whole blood.Keywords: glucocorticoid responsiveness, gene regulation, nuclear receptor, GILZ, FKBP51, cytokines

  8. Intravenous dex medetomidine or propofol adjuvant to spinal anesthesia in total knee replacement surgery

    International Nuclear Information System (INIS)

    AlOweidi, A.S.; Al-Mustafa, M.M.; Alghanem, S.M.; Qudaisat, Y.; Halaweh, S.A.; Massad, I.M.; Al Ajlouni, J.M; Mas'ad, D. F.

    2011-01-01

    The purpose of this study was to compare effect of intravenous dex medetomidine with the intravenous propofol adjuvant to spinal intrathecal anesthesia on the duration of spinal anesthesia and hemodynamic parameters during total knee replacement surgery. Supplementation of spinal anesthesia with intravenous dexemedetomidine or propofol produces good sedation levels without significant clinical hemodynamic changes. Adding dex medetomidine produces significantly longer sensory and motor block than propofol . (authors).

  9. Effect of Dex medetomidine on Neuromuscular Blockade in Patients Undergoing Complex Major Abdominal or Pelvic Surgery

    International Nuclear Information System (INIS)

    El-Awady, G.A.; Abdelhalim, J.M.K.; Azer, M.S.

    2003-01-01

    Dex medetomidine is a highly selective α2 agonist with anesthetic, analgesic and sympatholytic properties. Its neuromuscular effects in humans are unknown. This study evaluates the effect of dex medetomidine on neuromuscular block and hemodynamics during thiopental/ isoflurane anesthesia for patients with complex abdominal or pelvic surgery. Patients and methods: During thiopental/isoflurane anesthesia, the rocuronium infusion rate was adjusted in 20 complex surgery patients to maintain a stable first response (T1) in the train of four sequence of 50% ± 3 of the pre-rocuronium value. Dex medetomidine was then administered by infusion pump, targeting a plasma dex medetomidine concentration of 0.6 ng/dL for 45 min. The evoked mechanical responses of the adductor pollicis responses (T1 response and T4/T1 ratio), systolic blood pressure, diastolic blood pressure and heart rate (HR) were measured during the dex medetomidine infusion using repeated measures analysis of variance. Plasma levels ranged from 0.73 to 1.38 ng/mL. Results: T1 values decreased during the infusion from 55(ρ2 to 38±9 ((ρ< 0.05). T4/Tl values did not change during the infusion. Dex medetomidine increased SBP (ρ< 0.001) and decreased HR ((ρ< 0.05) (10 min median values) during the infusion compared with values before the infusion. This study demonstrated that dex medetomidine decreased T1, increased SBP and decreased HR during thiopental/isoflurane anesthesia. Conclusion: We conclude that dex medetomidine induced direct vasoconstriction may alter pharmacokinetics of rocuronium, therefore increasing plasma rocuronium concentration. Although these effects were statistically significant, further studies should be held for understanding and characterizing the peripheral vasoconstrictive effects of a2 agonists that allow better management and determination of drug dosing regimens

  10. Hyperactivity of Hypothalamic-Pituitary-Adrenal Axis Due to Dysfunction of the Hypothalamic Glucocorticoid Receptor in Sigma-1 Receptor Knockout Mice

    Directory of Open Access Journals (Sweden)

    Tingting Di

    2017-09-01

    Full Text Available Sigma-1 receptor knockout (σ1R-KO mice exhibit a depressive-like phenotype. Because σ1R is highly expressed in the neuronal cells of hypothalamic paraventricular nuclei (PVN, this study investigated the influence of σ1R deficiency on the regulation of the hypothalamic-pituitary-adrenocortical (HPA axis. Here, we show that the levels of basal serum corticosterone (CORT, adrenocorticotropic hormone (ACTH and corticotrophin releasing factor (CRF as well as the level of CRF mRNA in PVN did not significantly differ between adult male σ1R-KO mice and wild-type (WT mice. Acute mild restraint stress (AMRS induced a higher and more sustainable increase in activity of HPA axis and CRF expression in σ1R-KO mice. Percentage of dexamethasone (Dex-induced reduction in level of CORT was markedly attenuated in σ1R−/− mice. The levels of glucocorticoid receptor (GR and protein kinase C (PKC phosphorylation were reduced in the PVN of σ1R-KO mice and σ1R antagonist NE100-treated WT mice. The exposure to AMRS in σ1R-KO mice induced a stronger phosphorylation of cAMP-response element binding protein (CREB in PVN than that in WT mice. Intracerebroventricular (i.c.v. injection of PKC activator PMA for 3 days in σ1R-KO mice not only recovered the GR phosphorylation and the percentage of Dex-reduced CORT but also corrected the AMRS-induced hyperactivity of HPA axis and enhancement of CRF mRNA and CREB phosphorylation. Furthermore, the injection (i.c.v. of PMA in σ1R-KO mice corrected the prolongation of immobility time in forced swim test (FST and tail suspension test (TST. These results indicate that σ1R deficiency causes down-regulation of GR by reducing PKC phosphorylation, which attenuates GR-mediated feedback inhibition of HPA axis and facilitates the stress response of HPA axis leading to the production of depressive-like behaviors.

  11. PPARβ/δ regulates glucocorticoid- and sepsis-induced FOXO1 activation and muscle wasting.

    Directory of Open Access Journals (Sweden)

    Estibaliz Castillero

    Full Text Available FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ upregulates muscle FOXO1 expression and activity with a downstream upregulation of atrogin-1 and MuRF1 expression during sepsis and glucocorticoid treatment and that inhibition of PPARβ/δ activity can prevent muscle wasting. We found that activation of PPARβ/δ in cultured myotubes increased FOXO1 activity, atrogin-1 and MuRF1 expression, protein degradation and myotube atrophy. Treatment of myotubes with dexamethasone increased PPARβ/δ expression and activity. Dexamethasone-induced FOXO1 activation and atrogin-1 and MuRF1 expression, protein degradation, and myotube atrophy were inhibited by PPARβ/δ blocker or siRNA. Importantly, muscle wasting induced in rats by dexamethasone or sepsis was prevented by treatment with a PPARβ/δ inhibitor. The present results suggest that PPARβ/δ regulates FOXO1 activation in glucocorticoid- and sepsis-induced muscle wasting and that treatment with a PPARβ/δ inhibitor may ameliorate loss of muscle mass in these conditions.

  12. A putative role for hypothalamic glucocorticoid receptors in hypertension induced by prenatal undernutrition in the rat.

    Science.gov (United States)

    Pérez, Hernán; Soto-Moyano, Rubén; Ruiz, Samuel; Hernández, Alejandro; Sierralta, Walter; Olivares, Ricardo; Núñez, Héctor; Flores, Osvaldo; Morgan, Carlos; Valladares, Luis; Gatica, Arnaldo; Flores, Francisco J

    2010-10-08

    Prenatal undernutrition induces hypertension later in life, possibly by disturbing the hypothalamo-pituitary-adrenal axis through programming decreased expression of hypothalamic glucocorticoid receptors. We examined the systolic blood pressure, heart rate and plasma corticosterone response to intra-paraventricular dexamethasone, mifepristone and corticosterone in eutrophic and prenatally undernourished young rats. Undernutrition was induced during fetal life by restricting the diet of pregnant mothers to 10 g daily (40% of diet consumed by well-nourished controls). At day 40 of postnatal life (i) intra-paraventricular administration of dexamethasone significantly reduced at least for 24h both the systolic pressure (-11.6%), the heart rate (-20.8%) and the plasma corticosterone (-40.0%) in normal animals, while producing lower effects (-5.5, -8.7, and -22.3%, respectively) on undernourished rats; (ii) intra-paraventricular administration of the antiglucocorticoid receptor ligand mifepristone to normal rats produced opposite effects (8.2, 20.3, and 48.0% increase, respectively) to those induced by dexamethasone, being these not significant in undernourished animals; (iii) intra-paraventricular corticosterone did not exert any significant effect. Results suggest that the low sensitivity of paraventricular neurons to glucocorticoid receptor ligands observed in prenatally undernourished rats could be due to the already reported glucocorticoid receptor expression, found in the hypothalamus of undernourished animals. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes

    International Nuclear Information System (INIS)

    Carter-Su, C.; Okamoto, K.

    1987-01-01

    The ability of glucocorticoids to modify the effect of insulin on glucose (L-1- 3 H(N)]glucose and D-[ 14 C-U]glucose) transport was investigated in both intact isolated rat adipocytes and in membranes isolated from hormone-treated adipocytes. In intact adipocytes, dexamethasone, a potent synthetic glucocorticoid, inhibited insulin-stimulated 3-O-methylglucose transport at all concentrations of insulin tested. Insulin sensitivity, as well as the maximal response to insulin, was decreased by dexamethasone in the absence of a change in 125 I insulin binding. The inhibition was observed regardless of which hormone acted first, was blocked by actinomycin D, and resulted from a decrease in V/sub max/ rather than an increase in K/sub t/ of transport. In plasma membranes isolated from insulin-treated adipocytes, glucose transport activity and the amount of glucose transporter covalently labeled with [ 3 H]cytochalasin B were increased in parallel in a dose-dependent fashion. The amount of labeled transporter in a low-density microsomal fraction (LDMF) was decreased in a reciprocal fashion. In contrast, addition of dexamethasone to insulin-stimulated cells caused decreases in both transport activity and amount of labeled transporter in the plasma membranes. This was accompanied by a small increase in the amount of [ 3 H]cytochalasin B incorporated into the glucose transporter in the LDMF. These results are consistent with both insulin and glucocorticoids altering the distribution of glucose transporters between the plasma membrane and LDMF, in opposite directions

  14. Covalent affinity labeling, radioautography, and immunocytochemistry localize the glucocorticoid receptor in rat testicular Leydig cells

    International Nuclear Information System (INIS)

    Stalker, A.; Hermo, L.; Antakly, T.

    1989-01-01

    The presence and distribution of glucocorticoid receptors in the rat testis were examined by using 2 approaches: in vivo quantitative radioautography and immunocytochemistry. Radioautographic localization was made possible through the availability of a glucocorticoid receptor affinity label, dexamethasone 21-mesylate, which binds covalently to the glucocorticoid receptor, thereby preventing dissociation of the steroid-receptor complex. Adrenalectomized adult rats were injected with a tritiated (3H) form of this steroid into the testis and the tissue was processed for light-microscope radioautography. Silver grains were observed primarily over the Leydig cells of the interstitial space and to a lesser extent, over the cellular layers which make up the seminiferous epithelium, with no one cell type showing preferential labeling. To determine the specificity of the labeling, a 25- or 50-fold excess of unlabeled dexamethasone was injected simultaneously with the same dose of (3H)-dexamethasone 21-mesylate. In these control experiments, a marked reduction in label intensity was noted over the Leydig as well as tubular cells. Endocytic macrophages of the interstitium were non-specifically labeled, indicating uptake of the ligand possibly by fluid-phase endocytosis. A quantitative analysis of the label confirmed the presence of statistically significant numbers of specific binding sites for glucocorticoids in both Leydig cells and the cellular layers of the seminiferous epithelium; 86% of the label was found over Leydig cells, and only 14% over the cells of the seminiferous epithelium. These binding data were confirmed by light-microscope immunocytochemistry using a monoclonal antibody to the glucocorticoid receptor

  15. Cyclodextrin-Based Nanohydrogels Containing Polyamidoamine Units: A New Dexamethasone Delivery System for Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Monica Argenziano

    2017-06-01

    Full Text Available Glucocorticoids are widely prescribed in treatment of rheumatoid arthritis, asthma, systemic lupus erythematosus, lymphoid neoplasia, skin and eye inflammations. However, well-documented adverse effects offset their therapeutic advantages. In this work, novel nano-hydrogels for the sustained delivery of dexamethasone were designed to increase both bioavailability and duration of the administered drug and reducing the therapeutic dose. Hydrogels are soft materials consisting of water-swollen cross-linked polymers to which the insertion of cyclodextrin (CD moieties adds hydrophobic drug-complexing sites. Polyamidoamines (PAAs are biocompatible and biodegradable polymers apt to create CD moieties in hydrogels. In this work, β or γ-CD/PAA nanogels have been developed. In vitro studies showed that a pretreatment for 24–48 h with dexamethasone-loaded, β-CD/PAA nanogel (nanodexa inhibits adhesion of Jurkat cells to human umbilical vein endothelial cells (HUVEC in conditions mimicking inflammation. This inhibitory effect was faster and higher than that displayed by free dexamethasone. Moreover, nanodexa inhibited COX-2 expression induced by PMA+A23187 in Jurkat cells after 24–48 h incubation in the 10−8–10−5 M concentration range, while dexamethasone was effective only at 10−5 M after 48 h treatment. Hence, the novel nanogel-dexamethasone formulation combines faster action with lower doses, suggesting the potential for being more manageable than the free drug, reducing its adverse side effects.

  16. Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity.

    Science.gov (United States)

    Quarta, Carmelo; Clemmensen, Christoffer; Zhu, Zhimeng; Yang, Bin; Joseph, Sini S; Lutter, Dominik; Yi, Chun-Xia; Graf, Elisabeth; García-Cáceres, Cristina; Legutko, Beata; Fischer, Katrin; Brommage, Robert; Zizzari, Philippe; Franklin, Bernardo S; Krueger, Martin; Koch, Marco; Vettorazzi, Sabine; Li, Pengyun; Hofmann, Susanna M; Bakhti, Mostafa; Bastidas-Ponce, Aimée; Lickert, Heiko; Strom, Tim M; Gailus-Durner, Valerie; Bechmann, Ingo; Perez-Tilve, Diego; Tuckermann, Jan; Hrabě de Angelis, Martin; Sandoval, Darleen; Cota, Daniela; Latz, Eicke; Seeley, Randy J; Müller, Timo D; DiMarchi, Richard D; Finan, Brian; Tschöp, Matthias H

    2017-10-03

    Chronic inflammation has been proposed to contribute to the pathogenesis of diet-induced obesity. However, scarce therapeutic options are available to treat obesity and the associated immunometabolic complications. Glucocorticoids are routinely employed for the management of inflammatory diseases, but their pleiotropic nature leads to detrimental metabolic side effects. We developed a glucagon-like peptide-1 (GLP-1)-dexamethasone co-agonist in which GLP-1 selectively delivers dexamethasone to GLP-1 receptor-expressing cells. GLP-1-dexamethasone lowers body weight up to 25% in obese mice by targeting the hypothalamic control of feeding and by increasing energy expenditure. This strategy reverses hypothalamic and systemic inflammation while improving glucose tolerance and insulin sensitivity. The selective preference for GLP-1 receptor bypasses deleterious effects of dexamethasone on glucose handling, bone integrity, and hypothalamus-pituitary-adrenal axis activity. Thus, GLP-1-directed glucocorticoid pharmacology represents a safe and efficacious therapy option for diet-induced immunometabolic derangements and the resulting obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay

    Science.gov (United States)

    Meleis, Ahmed M.; Mahtabfar, Aria; Danish, Shabbar

    2017-01-01

    Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex), a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal. PMID:29040322

  18. Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay.

    Directory of Open Access Journals (Sweden)

    Ahmed M Meleis

    Full Text Available Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex, a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal.

  19. Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation.

    Directory of Open Access Journals (Sweden)

    Nicholas J Kenyon

    Full Text Available Nanocarriers can deliver a wide variety of drugs, target them to sites of interest, and protect them from degradation and inactivation by the body. They have the capacity to improve drug action and decrease undesirable systemic effects. We have previously developed a well-defined non-toxic PEG-dendritic block telodendrimer for successful delivery of chemotherapeutics agents and, in these studies, we apply this technology for therapeutic development in asthma. In these proof-of-concept experiments, we hypothesized that dexamethasone contained in self-assembling nanoparticles (Dex-NP and delivered systemically would target the lung and decrease allergic lung inflammation and airways hyper-responsiveness to a greater degree than equivalent doses of dexamethasone (Dex alone. We found that ovalbumin (Ova-exposed mice treated with Dex-NP had significantly fewer total cells (2.78 ± 0.44 × 10(5 (n = 18 vs. 5.98 ± 1.3 × 10(5 (n = 13, P<0.05 and eosinophils (1.09 ± 0.28 × 10(5 (n = 18 vs. 2.94 ± 0.6 × 10(5 (n = 12, p<0.05 in the lung lavage than Ova-exposed mice alone. Also, lower levels of the inflammatory cytokines IL-4 (3.43 ± 1.2 (n = 11 vs. 8.56 ± 2.1 (n = 8 pg/ml, p<0.05 and MCP-1 (13.1 ± 3.6 (n = 8 vs. 28.8 ± 8.7 (n = 10 pg/ml, p<0.05 were found in lungs of the Dex-NP compared to control, and they were not lower in the Dex alone group. In addition, respiratory system resistance was lower in the Dex-NP compared to the other Ova-exposed groups suggesting a better therapeutic effect on airways hyperresponsiveness. Taken together, these findings from early-stage drug development studies suggest that the encapsulation and protection of anti-inflammatory agents such as corticosteroids in nanoparticle formulations can improve efficacy. Further development of novel drugs in nanoparticles is warranted to explore potential treatments for chronic inflammatory diseases such as asthma.

  20. Impedance Changes and Fibrous Tissue Growth after Cochlear Implantation Are Correlated and Can Be Reduced Using a Dexamethasone Eluting Electrode.

    Directory of Open Access Journals (Sweden)

    Maciej Wilk

    Full Text Available The efficiency of cochlear implants (CIs is affected by postoperative connective tissue growth around the electrode array. This tissue formation is thought to be the cause behind post-operative increases in impedance. Dexamethasone (DEX eluting CIs may reduce fibrous tissue growth around the electrode array subsequently moderating elevations in impedance of the electrode contacts.For this study, DEX was incorporated into the silicone of the CI electrode arrays at 1% and 10% (w/w concentration. Electrodes prepared by the same process but without dexamethasone served as controls. All electrodes were implanted into guinea pig cochleae though the round window membrane approach. Potential additive or synergistic effects of electrical stimulation (60 minutes were investigated by measuring impedances before and after stimulation (days 0, 7, 28, 56 and 91. Acoustically evoked auditory brainstem responses were recorded before and after CI insertion as well as on experimental days 7, 28, 56, and 91. Additionally, histology performed on epoxy embedded samples enabled measurement of the area of scala tympani occupied with fibrous tissue.In all experimental groups, the highest levels of fibrous tissue were detected in the basal region of the cochlea in vicinity to the round window niche. Both DEX concentrations, 10% and 1% (w/w, significantly reduced fibrosis around the electrode array of the CI. Following 3 months of implantation impedance levels in both DEX-eluting groups were significantly lower compared to the control group, the 10% group producing a greater effect. The same effects were observed before and after electrical stimulation.To our knowledge, this is the first study to demonstrate a correlation between the extent of new tissue growth around the electrode and impedance changes after cochlear implantation. We conclude that DEX-eluting CIs are a means to reduce this tissue reaction and improve the functional benefits of the implant by attenuating

  1. Dexamethasone Treatment Leads to Enhanced Fear Extinction and Dynamic Fkbp5 Regulation in Amygdala.

    Science.gov (United States)

    Sawamura, Takehito; Klengel, Torsten; Armario, Antonio; Jovanovic, Tanja; Norrholm, Seth D; Ressler, Kerry J; Andero, Raül

    2016-02-01

    Posttraumatic stress disorder (PTSD) is both a prevalent and debilitating trauma-related disorder associated with dysregulated fear learning at the core of many of its signs and symptoms. Improvements in the currently available psychological and pharmacological treatments are needed in order to improve PTSD treatment outcomes and to prevent symptom relapse. In the present study, we used a putative animal model of PTSD that included presentation of immobilization stress (IMO) followed by fear conditioning (FC) a week later. We then investigated the acute effects of GR receptor activation on the extinction (EXT) of conditioned freezing, using dexamethasone administered systemically which is known to result in suppression of the HPA axis. In our previous work, IMO followed by tone-shock-mediated FC was associated with impaired fear EXT. In this study, we administered dexamethasone 4 h before EXT training and then examined EXT retention (RET) 24 h later to determine whether dexamethasone suppression rescued EXT deficits. Dexamethasone treatment produced dose-dependent enhancement of both EXT and RET. Dexamethasone was also associated with reduced amygdala Fkbp5 mRNA expression following EXT and after RET. Moreover, DNA methylation of the Fkbp5 gene occurred in a dose-dependent and time course-dependent manner within the amygdala. Additionally, we found dynamic changes in epigenetic regulation, including Dnmt and Tet gene pathways, as a function of both fear EXT and dexamethasone suppression of the HPA axis. Together, these data suggest that dexamethasone may serve to enhance EXT by altering Fkbp5-mediated glucocorticoid sensitivity via epigenetic regulation of Fkbp5 expression.

  2. Glucocorticoid-related bone changes from endogenous or exogenous glucocorticoids.

    Science.gov (United States)

    Warriner, Amy H; Saag, Kenneth G

    2013-12-01

    Glucocorticoids have a negative impact on bone through direct effects on bone cells and indirect effects on calcium absorption. Here, recent findings regarding glucocorticoid-induced osteoporosis, bone changes in patients with endogenous glucocorticoid derangements, and treatment of steroid-induced bone disease are reviewed. Although the majority of our understanding arises from the outcomes of patients treated with exogenous steroids, endogenous overproduction appears to be similarly destructive to bone, but these effects are reversible with cure of the underlying disease process. Additionally, there are bone changes that occur in diseases that interrupt adrenal glucocorticoid production, both in response to our inability to perfectly match glucocorticoid replacement and also related to the underlying disease process. More investigation is required to understand which patients with endogenous overproduction or underproduction of glucocorticoid would benefit from osteoporosis treatment. Better understood is the benefit that can be achieved with currently approved treatments for glucocorticoid-induced osteoporosis from exogenous steroids. With growing concern of long-term use of bisphosphonates, however, further investigation into the duration of use and use in certain populations, such as children and premenopausal women, is essential. Glucocorticoid-induced osteoporosis is a complex disease that is becoming better understood through advances in the study of exogenous and endogenous glucocorticoid exposure. Further advancement of proper treatment and prevention is on the horizon.

  3. Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP

    International Nuclear Information System (INIS)

    Lewis, E.J.; Harrington, C.A.; Chikaraishi, D.M.

    1987-01-01

    Glucocorticoid and cyclic AMP increase tyrosine hydroxylase (TH) activity and mRNA levels in pheochromocytoma cultures. The transcriptional activity of the TH gene, as measured by nuclear run-on assay, is also increased when cultures are treated with the synthetic glucocorticoid dexamethasone or agents that increase intracellular cyclic AMP, such as forskolin and 8-BrcAMP. Both inducers effect transcriptional changes within 10 min after treatment and are maximal after 30 min for forskolin and after 60 min for dexamethasone. The 5' flanking sequences of the TH gene were fused to the bacterial gene chloramphenicol acetyltransferase (CAT), and the hybrid gene was transfected into pheochromocytoma cultures and GH 4 pituitary cells. In both cell lines, a region of the TH gene containing bases -272 to +27 conferred induction of CAT by cyclic AMP, but not by glucocorticoid. The same results were found when a region of the TH gene containing -773 to + 27 was used. Thus, the sequences required for induction of TH by cyclic AMP are contained within 272 bases of 5' flanking sequence, but sequences sufficient for glucocorticoid regulation are not contained with 773 bases

  4. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  5. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-01-01

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction

  6. Effects of a single glucocorticoid injection on propylene glycol-treated cows with clinical ketosis.

    Science.gov (United States)

    van der Drift, Saskia G A; Houweling, Martin; Bouman, Marina; Koets, Ad P; Tielens, Aloysius G M; Nielen, Mirjam; Jorritsma, Ruurd

    2015-05-01

    This study investigated the metabolic effects of glucocorticoids when administered to propylene glycol-treated cows with clinical ketosis. Clinical ketosis was defined by depressed feed intake and milk production, and a maximal score for acetoacetate in urine. All cows received 250 mL oral propylene glycol twice daily for 3 days and were randomly assigned to a single intramuscular injection with sterile isotonic saline solution (n = 14) or dexamethasone-21-isonicotinate (n = 17). Metabolic blood variables were monitored for 6 days and adipose tissue variables for 3 days. β-Hydroxybutyrate (BHBA) concentrations in blood decreased in all cows during treatment, but were lower in glucocorticoid-treated cows. Cows treated with glucocorticoids had higher plasma glucose and insulin concentrations, whereas concentrations of non-esterified fatty acids, 3-methylhistidine and growth hormone were unaffected. mRNA expression of hormone-sensitive lipase, BHBA receptor and peroxisome proliferator-activated receptor type γ in adipose tissue was not affected. This shows that lipolytic effects do not appear to be important in ketotic cows when glucocorticoids are combined with PG. Plasma 3-methyl histidine concentrations were similar in both groups, suggesting that glucocorticoids did not increase muscle breakdown and that the greater rise in plasma glucose in glucocorticoid-treated cows may not be due to increased supply of glucogenic amino acids from muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Dickkopf1 Up-Regulation Induced by a High Concentration of Dexamethasone Promotes Rat Tendon Stem Cells to Differentiate Into Adipocytes

    Directory of Open Access Journals (Sweden)

    Wan Chen

    2015-11-01

    Full Text Available Background/Aims: Dexamethasone (Dex-induced spontaneous tendon rupture and decreased self-repair capability is very common in clinical practice. The metaplasia of adipose tissue in the ruptured tendon indicates that Dex may induce tendon stem cells (TSCs to differentiate into adipocytes, but the mechanism remains unclear. In the present study, we used in vitro methods to investigate the effects of Dex on rat TSC differentiation and the molecular mechanisms underlying this process. Methods: First, we used qPCR and Western blotting to detect the expression of the adipogenic differentiation markers aP2 and C/EBPα after treating the TSCs with Dex. Oil red staining was used to confirm that high concentration Dex promoted adipogenic differentiation of rat TSCs. Next, we used qPCR and Western blotting to detect the effect of a high concentration of dexamethasone on molecules related to the canonical WNT/β-catenin pathway in TSCs. Results: Treating rat TSCs with Dex promoted the synthesis of the inhibitory molecule dickkopf1 (DKK1 at the mRNA and protein levels. Western blotting results further showed that Dex downregulated the cellular signaling molecule phosphorylated glycogen synthase kinase-3β (P-GSK-3 β (ser9, upregulated P-GSK-3β (tyr216, and downregulated the pivotal signaling molecule β-catenin. Furthermore, DKK1 knockdown attenuated Dex-induced inhibition of the canonical WNT/β-catenin pathway and of the adipogenic differentiation of TSCs. Lithium chloride (LiCl, a GSK-3β inhibitor reduced Dex-induced inhibition of the classical WNT/β-catenin pathway in TSCs and of the differentiation of TSCs to adipocytes. Conclusion: In conclusion, by upregulating DKK1 expression, reducing the level of P-GSK-3β (ser9, and increasing the level of P-GSK-3β (tyr216, Dex causes the degradation of β-catenin, the central molecule of the classical WNT pathway, thereby inducing rat TSCs to differentiate into adipocytes.

  8. Glucocorticoid Signaling and Bone Biology.

    Science.gov (United States)

    Komori, T

    2016-11-01

    Since glucocorticoids remain an effective therapeutic option for the treatment of many inflammatory and autoimmune diseases, glucocorticoid-induced osteoporosis is the most common form of secondary osteoporosis. Fractures may occur in as many as 30-50% of patients receiving chronic glucocorticoid therapy. Under physiological conditions, glucocorticoids are required for normal bone development due to their regulation of osteoblast differentiation, possibly via the Wnt/β-catenin pathway and TSC22D3. However, serum levels of endogenous corticosterone are elevated in aged mice and glucocorticoids exert negative effects on the survival of osteoblasts and osteocytes as well as angiogenesis. Glucocorticoid treatments impair bone formation and enhance bone resorption. Excess glucocorticoids induce osteoblast and osteocyte apoptosis by increasing pro-apoptotic molecules, reactive oxygen species, and endoplasmic reticulum stress and suppressing the Wnt/β-catenin pathway. Autophagy protects osteocytes from glucocorticoid-induced apoptosis, but passed some threshold, the process of autophagy leads the cells to apoptosis. Excess glucocorticoids impair osteoblastogenesis by inducing Wnt antagonists, including Dkk1, Sost, and sFRP-1. However, the findings are controversial and the involvement of Wnt antagonists requires further study. Excess glucocorticoids reduce the phosphorylation of Akt and GSK3β, which enhances the degradation of β-catenin. Excess glucocorticoids have been shown to modulate the expression of miRNAs, including miR-29a, miR-34a-5p, and miR-199a-5p, which regulate the proliferation and differentiation of osteoblast lineage cells. Excess glucocorticoids also enhance bone resorption by reducing OPG expression, increasing Rankl expression and reactive oxygen species, and prolonging the life span of osteoclasts; however, they also suppress the bone-degrading capacity of osteoclasts by disturbing the organization of the cytoskeleton. © Georg Thieme Verlag KG

  9. Altered Pathogenesis of Porcine Respiratory Coronavirus in Pigs due to Immunosuppressive Effects of Dexamethasone: Implications for Corticosteroid Use in Treatment of Severe Acute Respiratory Syndrome Coronavirus▿

    OpenAIRE

    Jung, Kwonil; Alekseev, Konstantin P.; Zhang, Xinsheng; Cheon, Doo-Sung; Vlasova, Anastasia N.; Saif, Linda J.

    2007-01-01

    The pathogenesis and optimal treatments for severe acute respiratory syndrome (SARS) are unclear, although corticosteroids were used to reduce lung and systemic inflammation. Because the pulmonary pathology of porcine respiratory coronavirus (PRCV) in pigs resembles SARS, we used PRCV as a model to clarify the effects of the corticosteroid dexamethasone (DEX) on coronavirus (CoV)-induced pneumonia. Conventional weaned pigs (n = 130) in one of four groups (PRCV/phosphate-buffered saline [PBS] ...

  10. The obesity-associated transcription factor ETV5 modulates circulating glucocorticoids

    Science.gov (United States)

    Gutierrez-Aguilar, Ruth; Thompson, Abigail; Marchand, Nathalie; Dumont, Patrick; Woods, Stephen C.; de Launoit, Yvan; Seeley, Randy J.; Ulrich-Lai, Yvonne M.

    2015-01-01

    The transcription factor E-twenty-six version 5 (ETV5) has been linked with obesity in genome-wide association studies. Moreover, ETV5-deficient mice (knockout; KO) have reduced body weight, lower fat mass, and are resistant to diet-induced obesity, directly linking ETV5 to the regulation of energy balance and metabolism. ETV5 is expressed in hypothalamic brain regions that regulate both metabolism and HPA axis activity, suggesting that ETV5 may also modulate HPA axis function. In order to test this possibility, plasma corticosterone levels were measured in ETV5 KO and wildtype (WT) mice before (pre-stress) and after (post-stress) a mild stressor (intraperitoneal injection). ETV5 deficiency increased both pre- and post-stress plasma corticosterone, suggesting that loss of ETV5 elevated glucocorticoid tone. Consistent with this idea, ETV5 KO mice have reduced thymus weight, suggestive of increased glucocorticoid-induced thymic involution. ETV5 deficiency also decreased the mRNA expression of glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and vasopressin receptor 1A in the hypothalamus, without altering vasopressin, corticotropin-releasing hormone, or oxytocin mRNA expression. In order to test whether reduced MR and GR expression affected glucocorticoid negative feedback, a dexamethasone suppression test was performed. Dexamethasone reduced plasma corticosterone in both ETV5 KO and WT mice, suggesting that glucocorticoid negative feedback was unaltered by ETV5 deficiency. In summary, these data suggest that the obesity-associated transcription factor ETV5 normally acts to diminish circulating glucocorticoids. This might occur directly via ETV5 actions on HPA-regulatory brain circuitry, and/or indirectly via ETV5-induced alterations in metabolic factors that then influence the HPA axis. PMID:25813907

  11. Effects of maternal dexamethasone exposure on hematological ...

    African Journals Online (AJOL)

    Exposure to dexamethasone at LD 1-14 and 1-21 significantly (P<0.05) reduced RBC and platelet counts but it raised MCV and MCH relative to control. This study suggests that prenatal and lactational dexamethasone administration may affect the hematological indices in the male offspring. Keywords: Dexamethasone ...

  12. The effect of dexamethasone on the uptake of p-boronophenylalanine in the rat brain and intracranial 9L gliosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G.M.; Micca, P.L.; Coderre, J.A. E-mail: coderre@mit.edu

    2004-11-01

    The steroid dexamethasone sodium phosphate (DEX) is routinely used to treat edema in brain tumor patients. The objective of the present study was to evaluate the effects of DEX on the uptake of boronophenylalanine (BPA) using the rat 9L gliosarcoma tumor model and surrounding brain tissue. Two steroid dosage protocols were used. The high-dose DEX protocol involved five 3 mg/kg intraperitoneal injections at 47, 35, 23, 11 and 1 h prior to the administration of the BPA for a total dose of 15 mg DEX/kg rat. The low-dose DEX administration protocol involved two doses of 1.5 mg/kg at 17 h and 1 h prior to BPA injection for a total dose of 3 mg DEX/kg rat. The control animals received no pretreatment, prior to the administration of BPA. Seventeen days after tumor implantation, rats were injected i.p. with 0.014 ml/g body weight BPA solution (1200 mg BPA/kg; {approx}59 mg {sup 10}B/kg). In all groups, rats were euthanized at 3 h after BPA injection. Administration of the steroid had an effect on tumor weight, which decreased to {approx}78% (p>0.05) of the control weight in the low-dose DEX group, and {approx}48% (p<0.001) of the control weight in the high-dose DEX group. At 3 h after the administration of BPA, the concentration of boron in tumor was comparable (p>0.1) in the control and high-dose DEX groups. The lowest mean value (73.8{+-}1.6 {mu}g/g) was obtained in the low-dose DEX group. This was significantly lower (p>0.02) than the tumor boron contents in the high-dose DEX and control groups, which were 81.1{+-}1.9 and 79.9{+-}1.7 {mu}g/g, respectively. Tumor:blood boron partition ratios for the control, low- and high-dose DEX groups were 2.3, 2.3 and 2.5, respectively. Boron concentrations were also measured in the normal brain and in the zone of brain adjacent to the tumor exhibiting edema. Although treatment with DEX had no appreciable effect on boron uptake in the normal brain of the rat, after the administration of BPA, it did impact on the boron levels in the

  13. Efficacy of dexamethasone suppression test during the diagnosis of primary pigmented nodular adrenocortical disease in Chinese adrenocorticotropic hormone-independent Cushing syndrome.

    Science.gov (United States)

    Chen, Shi; Li, Ran; Lu, Lin; Duan, Lian; Zhang, Xuebin; Tong, Anli; Pan, Hui; Zhu, Huijuan; Lu, Zhaolin

    2018-01-01

    To evaluate the cut-off value of the ratio of 24 h urinary free cortisol (24 h UFC) levels post-dexamethasone to prior-dexamethasone in dexamethasone suppression test (DST) during the diagnosis of primary pigmented nodular adrenocortical disease in Chinese adrenocorticotropic hormone-independent Cushing syndrome. Retrospective study. The patients diagnosed with primary pigmented nodular adrenocortical disease (PPNAD, n = 25), bilateral macronodular adrenal hyperplasia (BMAH, n = 27), and adrenocortical adenoma (ADA, n = 84) were admitted to the Peking Union Medical College Hospital from 2001 to 2016. Serum cortisol, adrenocorticotropic hormone (ACTH), and 24 h UFC were measured before and after low-dose dexamethasone suppression test (LDDST) and high-dose dexamethasone suppression test (HDDST). After LDDST and HDDST, 24 h UFC elevated in patients with PPNAD (paired t-test, P = 0.007 and P = 0.001), while it remained unchanged in the BMAH group (paired t-test, P = 0.471 and P = 0.414) and decreased in the ADA group (paired t-test, P = 0.002 and P = 0.004). The 24 h UFC level after LDDST was higher in PPNAD and BMAH as compared to ADA (P < 0.017), while no significant difference was observed between PPNAD and BMAH. After HDDST, 24 h UFC was higher in patients with PPNAD as compared to that of ADA and BMAH (P < 0.017). The cut-off value of 24 h UFC (Post-L-Dex)/(Pre-L-Dex) was 1.16 with 64.0% sensitivity and 77.9% specificity, and the cut-off value of 24 h UFC (Post-H-Dex)/(Pre-H-Dex) was 1.08 with 84.0% sensitivity and 75.6% specificity. The ratio of post-dexamethasone to prior-dexamethasone had a unique advantage in distinguishing PPNAD from BMAH and ADA.

  14. Effects of glucocorticoid hormones on radiation induced and 12-O-tetradecanoylphorbol-13-acetate enhanced radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Umans, R.S.

    1988-01-01

    We have studied the interactions of glucocorticoid hormones with radiation in the induction of transformation in vitro in C3AH10T1/2 cells. We have observed that cortisone has its primary enhancing effect on radiation transformation when present after the radiation exposure during the ''expression period'', or the time after carcinogen exposure during which promoting agents have been shown to enhance radiation transformation in vitro, and that two different glucocorticoid hormones, dexamethasone and cortisone, have a suppressive effect on the 12-O-tetradecanoylphorbol-13-acetate (TPA) enhancement of radiation transformation in vitro

  15. Glucocorticoids, chronic stress, and obesity

    NARCIS (Netherlands)

    Dallman, Mary F.; Pecoraro, Norman C.; la Fleur, Susanne E.; Warne, James P.; Ginsberg, Abigail B.; Akana, Susan F.; Laugero, Kevin C.; Houshyar, Hani; Strack, Alison M.; Bhatnagar, Seema; Bell, Mary E.

    2006-01-01

    Glucocorticoids either inhibit or sensitize stress-induced activity in the hypothalamo-pituitary-adrenal (HPA) axis, depending on time after their administration, the concentration of the steroids, and whether there is a concurrent stressor input. When there are high glucocorticoids together with a

  16. Creation of lung-targeted dexamethasone immunoliposome and its therapeutic effect on bleomycin-induced lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xue-Yuan Chen

    Full Text Available OBJECTIVE: Acute lung injury (ALI, is a major cause of morbidity and mortality, which is routinely treated with the administration of systemic glucocorticoids. The current study investigated the distribution and therapeutic effect of a dexamethasone(DXM-loaded immunoliposome (NLP functionalized with pulmonary surfactant protein A (SP-A antibody (SPA-DXM-NLP in an animal model. METHODS: DXM-NLP was prepared using film dispersion combined with extrusion techniques. SP-A antibody was used as the lung targeting agent. Tissue distribution of SPA-DXM-NLP was investigated in liver, spleen, kidney and lung tissue. The efficacy of SPA-DXM-NLP against lung injury was assessed in a rat model of bleomycin-induced acute lung injury. RESULTS: The SPA-DXM-NLP complex was successfully synthesized and the particles were stable at 4°C. Pulmonary dexamethasone levels were 40 times higher with SPA-DXM-NLP than conventional dexamethasone injection. Administration of SPA-DXM-NLP significantly attenuated lung injury and inflammation, decreased incidence of infection, and increased survival in animal models. CONCLUSIONS: The administration of SPA-DXM-NLP to animal models resulted in increased levels of DXM in the lungs, indicating active targeting. The efficacy against ALI of the immunoliposomes was shown to be superior to conventional dexamethasone administration. These results demonstrate the potential of actively targeted glucocorticoid therapy in the treatment of lung disease in clinical practice.

  17. Protection against dexamethasone-induced muscle atrophy is related to modulation by testosterone of FOXO1 and PGC-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Weiping, E-mail: weiping.qin@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY (United States); Department of Medicine, Mount Sinai School of Medicine, NY (United States); Pan, Jiangping; Wu, Yong [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY (United States); Bauman, William A. [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY (United States); Department of Medicine, Mount Sinai School of Medicine, NY (United States); Department of Rehabilitation Medicine, Mount Sinai School of Medicine, NY (United States); Cardozo, Christopher, E-mail: Chris.Cardozo@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY (United States); Department of Medicine, Mount Sinai School of Medicine, NY (United States); Department of Rehabilitation Medicine, Mount Sinai School of Medicine, NY (United States)

    2010-12-17

    Research highlights: {yields} In rat gastrocnemius muscle, dexamethasone reduced PGC-1{alpha} cellular and nuclear levels without altering mRNA levels for this factor. {yields} Dexamethasone reduced phosphorylating of p38 MAPK, which stabilizes PGC-1{alpha} and promotes its nuclear entry. {yields} Co-administration of testosterone with dexamethasone increased cellular and nuclear levels of PGC-1{alpha} protein without changing its mRNA levels. {yields} Co-administration of testosterone restored p38 MAPK levels to those of controls. -- Abstract: Glucocorticoid-induced muscle atrophy results from muscle protein catabolism and reduced protein synthesis, associated with increased expression of two muscle-specific ubiquitin ligases (MAFbx and MuRF1), and of two inhibitors of protein synthesis, REDD1 and 4EBP1. MAFbx, MuRF1, REDD1 and 4EBP1 are up-regulated by the transcription factors FOXO1 and FOXO3A. The transcriptional co-activator PGC-1{alpha} has been shown to attenuate many forms of muscle atrophy and to repress FOXO3A-mediated transcription of atrophy-specific genes. Dexamethasone-induced muscle atrophy can be prevented by testosterone, which blocks up-regulation by dexamethasone of FOXO1. Here, an animal model of dexamethasone-induced muscle atrophy was used to further characterize effects of testosterone to abrogate adverse actions of dexamethasone on FOXO1 levels and nuclear localization, and to determine how these agents affect PGC-1{alpha}, and its upstream activators, p38 MAPK and AMPK. In rat gastrocnemius muscle, testosterone blunted the dexamethasone-mediated increase in levels of FOXO1 mRNA, and FOXO1 total and nuclear protein. Dexamethasone reduced total and nuclear PGC-1{alpha} protein levels in the gastrocnemius; co-administration of testosterone with dexamethasone increased total and nuclear PGC-1{alpha} levels above those present in untreated controls. Testosterone blocked dexamethasone-induced decreases in activity of p38 MAPK in the gastrocnemius

  18. Dexamethasone Resisted Podocyte Injury via Stabilizing TRPC6 Expression and Distribution

    Directory of Open Access Journals (Sweden)

    Shengyou Yu

    2012-01-01

    Full Text Available TRPC6, a member of the canonical transient receptor potential channel (TRPC subfamily, is an important cation selective ion channel on podocytes. Podocytes are highly differentiated cells located on the visceral face of glomerular basement membrane and featured by numerous foot processes, on which nephrin, podocin, and TRPC6 locate. Podocytes and the slit diaphragm (SD between adjacent foot processes form a selective filtration barrier impermeable to proteins. TRPC6 is very critical for normal podocyte function. To investigate the function of TRPC6 in podocytes and its relation to proteinuria in kidney diseases, we over-expressed TRPC6 in podocytes by puromycin aminonucleoside (PAN and observed the changes of foot processes, TRPC6 protein distribution, and mRNA expression. Accordingly, in this study, we further investigated the role of specific signaling mechanisms underlying the prosurvival effects of dexamethasone (DEX on podocyte repair. Our results showed that podocytes processes of overexpressing TRPC6 were reduced remarkably. These changes could be rescued by DEX via blocking TRPC6 channel. Additionally, our results also showed an improvement in TRPC6 arrangement in the cells and decrease of mRNA expression and protein distribution. From these results, we therefore proposed that overexpression of TRPC6 in podocytes may be one of the fundamental changes relating to the dysfunction of the SD and proteinuria. DEX may be maintained the structure and function integrity of SD by blocking TRPC6 signal pathway and played an important role in mechanisms of anti-proteinuria.

  19. The combined dexamethasone/TSST paradigm--a new method for psychoneuroendocrinology.

    Directory of Open Access Journals (Sweden)

    Julie Andrews

    Full Text Available The two main physiological systems involved in the regulation of the stress response are the hypothalamus-pituitary-adrenal (HPA axis and the sympathetic nervous system (SNS. However, the interaction of these systems on the stress response remains poorly understood. To better understand the cross-regulatory effects of the different systems involved in stress regulation, we developed a new stress paradigm that keeps the activity of the HPA constant when exposing subjects to psychosocial stress. Thirty healthy male participants were recruited and randomly assigned to either a dexamethasone (DEX; n = 15 or placebo (PLC; n = 15 group. All subjects were instructed to take the Dexamethasone (2 mg or Placebo pill the night before coming to the laboratory to undergo the Trier Social Stress Task (TSST. Salivary cortisol, salivary alpha amylase (sAA, heart rate, blood pressure and subjective stress were assessed throughout the protocol. As expected, the DEX group presented with suppressed cortisol levels. In comparison, their heart rate was elevated by approximately ten base points compared to the PLC group, with increases throughout the protocol and during the TSST. Neither sAA, nor systolic or diastolic blood pressures showed significant group differences. Subjective stress levels significantly increased from baseline, and were found to be higher before and after the TSST after DEX compared to placebo. These results demonstrate a significant interaction between the HPA and the SNS during acute stress. The SNS activity was found to be elevated in the presence of a suppressed HPA axis, with some further effects on subjective levels of stress. The method to suppress the HPA prior to inducing stress was found to completely reliable, without any adverse side effects. Therefore, we propose this paradigm as a new method to investigate the interaction of the two major stress systems in the regulation of the stress response.

  20. Comparison of the Effect of Intravitreal Dexamethasone Implant in Vitrectomized and Nonvitrectomized Eyes for the Treatment of Diabetic Macular Edema

    Directory of Open Access Journals (Sweden)

    Sadık Görkem Çevik

    2018-01-01

    Full Text Available Purpose. To compare the effectiveness of sustained-release dexamethasone (DEX intravitreal implant in nonvitrectomized eyes and vitrectomized eyes with diabetic macular edema (DME. Methods. A retrospective review of the medical records of 40 eyes of 30 consecutive patients with diabetic macular edema who underwent intravitreal DEX implant injection. Patients were divided into 2 subgroups: 31 eyes that were nonvitrectomized (group 1 and 9 eyes that had previously undergone standard pars plana vitrectomy (group 2. The main outcome measures were BCVA and foveal thickness (FT. Results. A significant improvement was seen in BCVA in both group 1 and group 2 at the 1st, 2nd, and 6th months after treatment with DEX implant (p<0.05. In group 1, a significant reduction in FT was observed at the 1st, 2nd, and 6th months (p<0.05. In group 2, a significant reduction in FT was seen at the 1st and 2nd months (p<0.05, but the reduction rate at the 6th month after the injection was not statistically significant (p=0.06. Conclusion. DEX implant is effective for the treatment of diabetic macular edema, and the effectiveness of the drug is similar in vitrectomized and nonvitrectomized eyes.

  1. Antenatal dexamethasone before asphyxia promotes cystic neural injury in preterm fetal sheep by inducing hyperglycemia.

    Science.gov (United States)

    Lear, Christopher A; Davidson, Joanne O; Mackay, Georgia R; Drury, Paul P; Galinsky, Robert; Quaedackers, Josine S; Gunn, Alistair J; Bennet, Laura

    2018-04-01

    Antenatal glucocorticoid therapy significantly improves the short-term systemic outcomes of prematurely born infants, but there is limited information available on their impact on neurodevelopmental outcomes in at-risk preterm babies exposed to perinatal asphyxia. Preterm fetal sheep (0.7 of gestation) were exposed to a maternal injection of 12 mg dexamethasone or saline followed 4 h later by asphyxia induced by 25 min of complete umbilical cord occlusion. In a subsequent study, fetuses received titrated glucose infusions followed 4 h later by asphyxia to examine the hypothesis that hyperglycemia mediated the effects of dexamethasone. Post-mortems were performed 7 days after asphyxia for cerebral histology. Maternal dexamethasone before asphyxia was associated with severe, cystic brain injury compared to diffuse injury after saline injection, with increased numbers of seizures, worse recovery of brain activity, and increased arterial glucose levels before, during, and after asphyxia. Glucose infusions before asphyxia replicated these adverse outcomes, with a strong correlation between greater increases in glucose before asphyxia and greater neural injury. These findings strongly suggest that dexamethasone exposure and hyperglycemia can transform diffuse injury into cystic brain injury after asphyxia in preterm fetal sheep.

  2. Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration.

    Science.gov (United States)

    Koch, Alexander; Jäger, Manuel; Völzke, Anja; Grammatikos, Georgios; Zu Heringdorf, Dagmar Meyer; Huwiler, Andrea; Pfeilschifter, Josef

    2015-06-01

    Sphingosine 1-phosphate (S1P) is generated by sphingosine kinase (SK)-1 and -2 and acts mainly as an extracellular ligand at five specific receptors, denoted S1P1-5. After activation, S1P receptors regulate important processes in the progression of renal diseases, such as mesangial cell migration and survival. Previously, we showed that dexamethasone enhances SK-1 activity and S1P formation, which protected mesangial cells from stress-induced apoptosis. Here we demonstrate that dexamethasone treatment lowered S1P1 mRNA and protein expression levels in rat mesangial cells. This effect was abolished in the presence of the glucocorticoid receptor antagonist RU-486. In addition, in vivo studies showed that dexamethasone downregulated S1P1 expression in glomeruli isolated from mice treated with dexamethasone (10 mg/kg body weight). Functionally, we identified S1P1 as a key player mediating S1P-induced mesangial cell migration. We show that dexamethasone treatment significantly lowered S1P-induced migration of mesangial cells, which was again reversed in the presence of RU-486. In summary, we suggest that dexamethasone inhibits S1P-induced mesangial cell migration via downregulation of S1P1. Overall, these results demonstrate that dexamethasone has functional important effects on sphingolipid metabolism and action in renal mesangial cells.

  3. Elevated glucocorticoid receptor binding in cultured human lymphoblasts following hydroxyurea treatment: lack of effect on steroid responsiveness

    International Nuclear Information System (INIS)

    Littlefield, B.A.; Hoagland, H.C.; Greipp, P.R.

    1986-01-01

    While studying the effects of chemotherapy on glucocorticoid receptor (GR) binding levels in hematological malignancies, we observed a sizable increase in nuclear GR binding of [ 3 H]dexamethasone in peripheral leukocytes from a chronic basophilic leukemia patient following treatment with hydroxyurea plus prednisone, but not after prednisone alone. This apparent clinical effect of hydroxyurea led to an examination of hydroxyurea effects on GR binding and sensitivity in the glucocorticoid-sensitive human lymphoblast cell line GM4672A. GR binding levels in GM4672A cells were measured following a 3-day exposure to 50 microM hydroxyurea, a concentration chosen to have a minimal but measurable effect on cellular growth rates with little or no effect on cellular viability. Under these conditions, nuclear [ 3 H]dexamethasone receptor binding measured by Scatchard analysis using a whole-cell assay was elevated 2.4-fold over control values (P less than 0.05), while cytosolic residual receptor binding (measured at 37 0 C) remained unchanged. Thus, the total cellular content of measurable GR was increased, and this increase was totally accounted for by GR capable of nuclear binding. Hydroxyurea treatment of GM4672A cells had no effect on the affinity of nuclear or cytosolic GR for [ 3 H]dexamethasone. The increase in measurable nuclear-bound receptors occurred in a time-dependent manner over a period of 3 days and was fully reversible within 3 days following removal of hydroxyurea. The increase in receptor binding could not be explained by the slight alterations in cell cycle kinetics which occur at this low level of hydroxyurea. Despite increased receptor binding, cellular glucocorticoid responsiveness was unaltered as assessed by dexamethasone inhibition of cell growth and dexamethasone inhibition of a urokinase-like plasminogen activator

  4. Xenobiotics and the Glucocorticoid Receptor

    International Nuclear Information System (INIS)

    Gulliver, Linda S M

    2017-01-01

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  5. Xenobiotics and the Glucocorticoid Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Linda S M, E-mail: linda.gulliver@otago.ac.nz

    2017-03-15

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  6. Activated Glucocorticoid Receptor Interacts with the INHAT Component Set/TAF-Iβ and Releases it from a Glucocorticoid-responsive Gene Promoter, Relieving Repression: Implications for the Pathogenesis of Glucocorticoid Resistance in Acute Undifferentiated Leukemia with Set-Can Translocation

    Science.gov (United States)

    Ichijo, Takamasa; Chrousos, George P.; Kino, Tomoshige

    2008-01-01

    SUMMARY Set/template-activating factor (TAF)-Iβ, part of the Set-Can oncogene product found in acute undifferentiated leukemia, is a component of the inhibitor of acetyltransferases (INHAT) complex. Set/TAF-Iβ interacted with the DNA-binding domain of the glucocorticoid receptor (GR) in yeast two-hybrid screening, and repressed GR-induced transcriptional activity of a chromatin-integrated glucocorticoid-responsive and a natural promoter. Set/TAF-Iβ was co-precipitated with glucocorticoid response elements (GREs) of these promoters in the absence of dexamethasone, while addition of the hormone caused dissociation of Set/TAF-Iβ from and attraction of the p160-type coactivator GRIP1 to the promoter GREs. Set-Can fusion protein, on the other hand, did not interact with GR, was constitutively co-precipitated with GREs and suppressed GRIP1-induced enhancement of GR transcriptional activity and histone acetylation. Thus, Set/TAF-Iβ acts as a ligand-activated GR-responsive transcriptional repressor, while Set-Can does not retain physiologic responsiveness to ligand-bound GR, possibly contributing to the poor responsiveness of Set-Can-harboring leukemic cells to glucocorticoids. PMID:18096310

  7. Activated glucocorticoid receptor interacts with the INHAT component Set/TAF-Ibeta and releases it from a glucocorticoid-responsive gene promoter, relieving repression: implications for the pathogenesis of glucocorticoid resistance in acute undifferentiated leukemia with Set-Can translocation.

    Science.gov (United States)

    Ichijo, Takamasa; Chrousos, George P; Kino, Tomoshige

    2008-02-13

    Set/template-activating factor (TAF)-Ibeta, part of the Set-Can oncogene product found in acute undifferentiated leukemia, is a component of the inhibitor of acetyltransferases (INHAT) complex. Set/TAF-Ibeta interacted with the DNA-binding domain of the glucocorticoid receptor (GR) in yeast two-hybrid screening, and repressed GR-induced transcriptional activity of a chromatin-integrated glucocorticoid-responsive and a natural promoter. Set/TAF-Ibeta was co-precipitated with glucocorticoid response elements (GREs) of these promoters in the absence of dexamethasone, while addition of the hormone caused dissociation of Set/TAF-Ibeta from and attraction of the p160-type coactivator GRIP1 to the promoter GREs. Set-Can fusion protein, on the other hand, did not interact with GR, was constitutively co-precipitated with GREs and suppressed GRIP1-induced enhancement of GR transcriptional activity and histone acetylation. Thus, Set/TAF-Ibeta acts as a ligand-activated GR-responsive transcriptional repressor, while Set-Can does not retain physiologic responsiveness to ligand-bound GR, possibly contributing to the poor responsiveness of Set-Can-harboring leukemic cells to glucocorticoids.

  8. Elucidation and modulation of glucocorticoid-induced apoptosis in acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Eberhart, K.

    2011-01-01

    This thesis deals with the elucidation of the synergistic effect of the glucocorticoid dexamethasone and the metabolic modulator 2-deoxyglucose on apoptosis induction in two in vitro model systems of childhood acute lymphoblastic leukemia. 2-deoxyglucose accelerated the kinetics of, and increased the sensitivity to, glucocorticoid-induced apoptosis in two leukemia cell lines. In primary lymphocytes from healthy donors, in contrast, 2-deoxyglucose and dexamethasone did not act synergistically on apoptosis induction. To elucidate the molecular basis of the synergistic effect, glycolysis by means of glucose uptake, lactate production, ATP levels, glucose transporter and hexokinase expression and mitochondrial oxygen consumption was analyzed in treated vs. untreated cells. The study revealed a downregulation of gene expression of the glucose transporter GLUT1 and hexokinase 2 (HK2), release of HK2 from the outer mitochondrial membrane, as well as reduced glycolysis and mitochondrial respiration. Moreover, the analysis of the mitochondrial proteome by 2 dimensional differential gel electrophoresis after treatment with 2-deoxyglucose and dexamethasone revealed the regulation of several interesting candidate proteins involved in treatment related apoptosis. (author)

  9. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting

    Science.gov (United States)

    Wing, S. S.; Goldberg, A. L.; Goldberger, A. L. (Principal Investigator)

    1993-01-01

    Glucocorticoids are essential for the increase in protein breakdown in skeletal muscle normally seen during fasting. To determine which proteolytic pathway(s) are activated upon fasting, leg muscles from fed and fasted normal rats were incubated under conditions that block or activate different proteolytic systems. After food deprivation (1 day), the nonlysosomal ATP-dependent process increased by 250%, as shown in experiments involving depletion of muscle ATP. Also, the maximal capacity of the lysosomal process increased 60-100%, but no changes occurred in the Ca(2+)-dependent or the residual energy-independent proteolytic processes. In muscles from fasted normal and adrenalectomized (ADX) rats, the protein breakdown sensitive to inhibitors of the lysosomal or Ca(2+)-dependent pathways did not differ. However, the ATP-dependent process was 30% slower in muscles from fasted ADX rats. Administering dexamethasone to these animals or incubating their muscles with dexamethasone reversed this defect. During fasting, when the ATP-dependent process rises, muscles show a two- to threefold increase in levels of ubiquitin (Ub) mRNA. However, muscles of ADX animals failed to show this response. Injecting dexamethasone into the fasted ADX animals increased muscle Ub mRNA within 6 h. Thus glucocorticoids activate the ATP-Ub-dependent proteolytic pathway in fasting apparently by enhancing the expression of components of this system such as Ub.

  10. Dominance rank causally affects personality and glucocorticoid regulation in female rhesus macaques

    Science.gov (United States)

    Kohn, Jordan N.; Snyder-Mackler, Noah; Barreiro, Luis B.; Johnson, Zachary P.; Tung, Jenny; Wilson, Mark E.

    2017-01-01

    Low social status is frequently associated with heightened exposure to social stressors and altered glucocorticoid regulation by the hypothalamic-pituitary-adrenal (HPA) axis. Additionally, personality differences can affect how individuals behave in response to social conditions, and thus may aggravate or protect against the effects of low status on HPA function. Disentangling the relative importance of personality from the effects of the social environment on the HPA axis has been challenging, since social status can predict aspects of behavior, and both can remain stable across the lifespan. To do so here, we studied an animal model of social status and social behavior, the rhesus macaque (Macaca mulatta). We performed two sequential experimental manipulations of dominance rank (i.e., social status) in 45 adult females, allowing us to characterize personality and glucocorticoid regulation (based on sensitivity to the exogenous glucocorticoid dexamethasone) in each individual while she occupied two different dominance ranks. We identified two behavioral characteristics, termed ‘social approachability’ and ‘boldness,’ which were highly social status-dependent. Social approachability and a third dimension, anxiousness, were also associated with cortisol dynamics in low status females, suggesting that behavioral tendencies may sensitize individuals to the effects of low status on HPA axis function. Finally, we found that improvements in dominance rank increased dexamethasone-induced acute cortisol suppression and glucocorticoid negative feedback. Our findings indicate that social status causally affects both behavioral tendencies and glucocorticoid regulation, and that some behavioral tendencies also independently affect cortisol levels, beyond the effects of rank. Together, they highlight the importance of considering personality and social status together when investigating their effects on HPA axis function. PMID:27639059

  11. Vitamin K2 Ameliorates Damage of Blood Vessels by Glucocorticoid: a Potential Mechanism for Its Protective Effects in Glucocorticoid-induced Osteonecrosis of the Femoral Head in a Rat Model.

    Science.gov (United States)

    Zhang, Yuelei; Yin, Junhui; Ding, Hao; Zhang, Changqing; Gao, You-Shui

    2016-01-01

    Glucocorticoid has been reported to decrease blood vessel number and harm the blood supply in the femoral head, which is recognized to be an important mechanism of glucocorticoid-induced osteonecrosis of the femoral head (ONFH). To prevent glucocorticoid-induced ONFH, medication that promotes both bone formation and angiogenesis would be ideal. Vitamin K2 has been revealed to play an important role in bone metabolism; however, few studies have focused on the effect of Vitamin K2 on new vascular formation. Thus, this study aimed to investigate whether Vitamin K2 promoted new blood vessel formation in the presence of glucocorticoids, both in vitro and in vivo. The effect of Vitamin K2 on viability, migration, in vitro tube formation, and VEGF, vWF, CD31, KDR, Flt and PDGFB in EAhy926 incubated with or without dexamethasone were elucidated. VEGF, TGF-β and BMP-2, angiogenesis-related proteins secreted by osteoblasts, were also detected in the osteoblast-like cell line of MG63. In addition, blood vessels of the femoral head in rats administered with or without methylprednisolone and Vitamin K2 were evaluated using angiography and CD31 staining. In vitro studies showed that Vitamin K2 significantly protected endothelial cells from dexamethasone-induced apoptosis, promoted endothelial cell migration and in vitro tube formation. Angiogenesis-related proteins both in EAhy926 and MG63 were also upregulated by Vitamin K2 when cotreated with dexamethasone. In vivo studies showed enhanced blood vessel volume and CD31-positive staining cells in rats cotreated with VK2 and methylprednisolone compared to rats treated with methylprednisolone only. Collectively, Vitamin K2 has the ability to promote angiogenesis in vitro and to ameliorate vessels of the femoral head in glucocorticoid-treated rats in vivo, indicating that Vitamin K2 is a promising drug that may be used to prevent steroid-induced ONFH.

  12. Dexamethasone/1alpha-25-dihydroxyvitamin D3-treated dendritic cells suppress colitis in the SCID T-cell transfer model

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Schmidt, Esben Gjerløff Wedebye; Gad, Monika

    2008-01-01

    severe combined immunodeficient (SCID) mice adoptively transferred with CD4(+) CD25(-) T cells from the development of wasting disease and colitis. We therefore established an in vitro test that could predict the in vivo function of DCs and improve strategies for the preparation of immunomodulatory DCs...... in this model. Based on these in vitro findings, we here evaluate three methods for DC generation including short-term and long-term IL-10 exposure or DC exposure to dexamethasone in combination with vitamin D3 (Dex/D3). All DCs resulted in lower CD4(+) CD25(-) T-cell enteroantigen-specific responses in vitro...

  13. Adding Fludarabine to Cyclophophamide-dexamethason induction therapy impair stem cell harvest in MM

    DEFF Research Database (Denmark)

    Johnsen, Hans Erik; Meldgaard Knudsen, Lene; Mylin, Anne Kærsgaard

    BACKGROUND AND OBJECTIVES Recent data have indicated that the myeloma cell hierarchy includes resistant Recent data have indicated that the myeloma cell hierarchy includes resistant circulating clonal memory B cells, which differ considerably from the classical end stage plasma cells infiltrating......, placebo controlled, single blinded, phase II study evaluating This was a randomized, placebo controlled, single blinded, phase II study evaluating toxicity and safety of Fludarabine added to Cyclophosphamide and Dexamethasone (CyDex) as induction therapy in younger patients with untreated and treatment...

  14. Immunoprecipitation assay of alpha-fetoprotein synthesis by cultured mouse hepatoma cells treated with estrogens and glucocorticoids.

    Science.gov (United States)

    Rosebrock, J A; Parker, C L; Kute, T E

    1981-01-01

    This investigation was to study the biosynthesis of 3H-labeled alpha-fetoprotein (AFP) by cultured mouse hepatoma (HEPA-2) cells. Both the function and regulation of this oncodevelopmental gene are unknown. However, evidence indicates that mechanisms controlling the expression of AFP involve aspects of both normal embryonic development and neoplastic transformation. the secretion of AFP was analyzed during different phases of the growth cycle to provide information on AFP production using standard culture conditions. The highest rate of secretion occurred during the stationary phase, followed by the late logarithmic and early logarithmic phases of growth, respectively. The production of AFP was then determined following the addition of glucocorticoids and estrogens in an attempt to understand hormonal factors that may be involved. Studies utilizing estradiol-17 beta indicated that the secretion of AFP did not appear to be sensitive to this steroid even though sucrose density gradient analysis of HEPA-2 cytosol, for estrogenic receptors, revealed competitive binding moieties on the 8S and 4S regions of the gradient. In contrast, the secretion of the total complement of proteins, including AFP, was significantly stimulated by the glucocorticoids, dexamethasone and corticosterone. Analysis of HEPA-2 cytosol for glucocorticoid receptors revealed binding components in the 7S and 3-4S regions of the gradient. The 3H-dexamethasone binding appeared to be stereospecific since nonlabeled dexamethasone, but not nonlabeled estradiol-17 beta, effectively displaced the bound radioactivity. The glucocorticoid-binding component in HEPA-2 therefore displayed characteristics reported for glucocorticoid receptors in normal liver and other hepatomas.

  15. Effects of BMP-2 and dexamethasone on osteogenic differentiation of rat dental follicle progenitor cells seeded on three-dimensional beta-TCP

    Energy Technology Data Exchange (ETDEWEB)

    Xu Lulu; Jin Zuolin; Duan Yinzhong [Department of Orthodontics, Stomatological College, Fourth Military Medical University, Xi' an 710032 (China); Liu Hongchen; Wang Dongsheng; E Lingling [Department of Stomatology, China PLA General Hospital, Beijing 100853 (China); Xu Lin, E-mail: jinzuolin88@yahoo.com.c, E-mail: duanyinzhong@yahoo.com.c [Department of Stomatology, the First Hospital of PLA, Lanzhou 730000 (China)

    2009-12-15

    The aim of this study was to investigate the effects of BMP-2 and dexamethasone (Dex) on osteogenic differentiation of rat dental follicle progenitor cells (RDFCs) seeded on three-dimensional beta-TCP. The alkaline phosphatase (ALP), the calcium and phosphonium, the osteocalcin in media of the third passage RDFCs on biomaterial beta-TCP after 1-3, 3-7, 7-14 days of culture were examined respectively. The growth of cells on the scaffolds was observed by scanning electron microscope (SEM) after 3, 7 days of culture and by implanting in the backs of severe combined immunodeficient (SCID) mice for bone regeneration. The third passage RDFCs could be seen adhered, extended and proliferated on the beta-TCP by scanning electron microscopy. The ALP activity, the calcium and phosphoniums and the osteocalcin content of dexamethasone (10{sup -8} M) or/and BMP-2 (100 ng ml{sup -1}) were significantly higher than their existence in the control group. They were the significantly highest among four groups after joint application of BMP-2 and dexamethasone. After 8 weeks of implantation, the percentage of the new bones formed area in the RDFCs+beta-TCP+BMP-2+Dex group was significantly higher than that in the RDFCs+beta-TCP+BMP-2 group. In contrast, beta-TCP, RDFCs+beta-TCP+Dex and control constructs lacked new bone formation by histological staining and histomorphometric analysis. The BMP-2+Dex could significantly promote osteogenic differentiation of RDFCs on beta-TCP. beta-TCP supported fast cellular adhesion, proliferation and differentiation of RDFCs. The feasibility of its application in periodontal tissue engineering was also proved.

  16. Effects of BMP-2 and dexamethasone on osteogenic differentiation of rat dental follicle progenitor cells seeded on three-dimensional β-TCP

    International Nuclear Information System (INIS)

    Xu Lulu; Jin Zuolin; Duan Yinzhong; Liu Hongchen; Wang Dongsheng; E Lingling; Xu Lin

    2009-01-01

    The aim of this study was to investigate the effects of BMP-2 and dexamethasone (Dex) on osteogenic differentiation of rat dental follicle progenitor cells (RDFCs) seeded on three-dimensional β-TCP. The alkaline phosphatase (ALP), the calcium and phosphonium, the osteocalcin in media of the third passage RDFCs on biomaterial β-TCP after 1-3, 3-7, 7-14 days of culture were examined respectively. The growth of cells on the scaffolds was observed by scanning electron microscope (SEM) after 3, 7 days of culture and by implanting in the backs of severe combined immunodeficient (SCID) mice for bone regeneration. The third passage RDFCs could be seen adhered, extended and proliferated on the β-TCP by scanning electron microscopy. The ALP activity, the calcium and phosphoniums and the osteocalcin content of dexamethasone (10 -8 M) or/and BMP-2 (100 ng ml -1 ) were significantly higher than their existence in the control group. They were the significantly highest among four groups after joint application of BMP-2 and dexamethasone. After 8 weeks of implantation, the percentage of the new bones formed area in the RDFCs+β-TCP+BMP-2+Dex group was significantly higher than that in the RDFCs+β-TCP+BMP-2 group. In contrast, β-TCP, RDFCs+β-TCP+Dex and control constructs lacked new bone formation by histological staining and histomorphometric analysis. The BMP-2+Dex could significantly promote osteogenic differentiation of RDFCs on β-TCP. β-TCP supported fast cellular adhesion, proliferation and differentiation of RDFCs. The feasibility of its application in periodontal tissue engineering was also proved.

  17. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT

    Directory of Open Access Journals (Sweden)

    Mejía Salvador

    2006-02-01

    Full Text Available Abstract Background The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Results Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. Conclusion NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.

  18. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT.

    Science.gov (United States)

    Machuca, Catalina; Mendoza-Milla, Criselda; Córdova, Emilio; Mejía, Salvador; Covarrubias, Luis; Ventura, José; Zentella, Alejandro

    2006-02-21

    The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex) dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs) expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.

  19. Impact of glucocorticoid on neurogenesis

    Directory of Open Access Journals (Sweden)

    Haruki Odaka

    2017-01-01

    Full Text Available Neurogenesis is currently an area of great interest in neuroscience. It is closely linked to brain diseases, including mental disorders and neurodevelopmental disease. Both embryonic and adult neurogeneses are influenced by glucocorticoids secreted from the adrenal glands in response to a variety of stressors. Moreover, proliferation/differentiation of the neural stem/progenitor cells (NSPCs is affected by glucocorticoids through intracellular signaling pathways such as phosphoinositide 3-kinase (PI3K/Akt, hedgehog, and Wnt. Our review presents recent evidence of the impact of glucocorticoids on NSPC behaviors and the underlying molecular mechanisms; this provides important information for understanding the pathological role of glucocorticoids on neurogenesis-associated brain diseases.

  20. Use of the Dexamethasone-Corticotrophin Releasing Hormone Test to Assess Hypothalamic-Pituitary-Adrenal Axis Function in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Eman A. Hasan

    2009-01-01

    Full Text Available Objectives. Hypothalamic-Pituitary-Adrenal axis function may be abnormal in rheumatoid arthritis (RA. A pilot study in 7 patients suggested impaired glucocorticoid feedback in some patients after the dexamethasone-corticotrophin releasing hormone (CRH test. This study aimed to investigate the dexamethasone-corticotrophin releasing factor test in a larger group of patients and relate the results to characteristics of the disease. Methods. Outpatients with active RA (≥3 swollen and tender joints and C-reactive protein > 10 mg/L took dexamethasone (1.5 mg at 23:00 hour in the evening. Next day, baseline saliva and plasma samples were collected, CRH was infused at 11:00 hour, and 4 serial blood and saliva samples were collected. Plasma samples were stored at −80∘C and a radioimmunoassay performed for saliva and plasma cortisol. Results. All 20 participants showed normal dexamethasone suppression and mounted no response to the CRH challenge. In samples with measurable cortisol, there was a strong correlation between saliva and plasma values (r = 0.876, n = 26, P<.01. Conclusion. No abnormalities were found in the Dexamethasone-CRH test in RA patients in contrast to a previous pilot study. Salivary cortisol measurement may offer an alternative noninvasive technique to plasma cortisol in RA patients in future studies.

  1. Developmental programming of adult adrenal structure and steroidogenesis: effects of fetal glucocorticoid excess and postnatal dietary omega-3 fatty acids.

    Science.gov (United States)

    Waddell, Brendan J; Bollen, Maike; Wyrwoll, Caitlin S; Mori, Trevor A; Mark, Peter J

    2010-05-01

    Fetal glucocorticoid excess programs a range of detrimental outcomes in the adult phenotype, at least some of which may be due to altered adult adrenocortical function. In this study, we determined the effects of maternal dexamethasone treatment on offspring adrenal morphology and function, as well as the interactive effects of postnatal dietary omega-3 (n-3) fatty acids. This postnatal dietary intervention has been shown to alleviate many of the programming outcomes in this model, but whether this is via the effects on adrenal function is unknown. Dexamethasone acetate was administered to pregnant rats (0.75 microg/ml drinking water) from day 13 to term. Cross-fostered offspring were raised on either a standard or high-n-3 diet. Adrenal weight (relative to body weight) at 6 months of age was unaffected by prenatal dexamethasone, regardless of postnatal diet, and stereological analysis showed no effect of dexamethasone on the volumes of adrenal components (zona glomerulosa, zona fasciculata/reticularis or adrenal medulla). Expression of key steroidogenic genes (Cyp11a1 and Star) was unaffected by either prenatal dexamethasone or postnatal diet. In contrast, adrenal expression of Mc2r mRNA, which encodes the ACTH receptor, was higher in offspring of dexamethasone-treated mothers, an effect partially attenuated by the Hn3 diet. Moreover, stress-induced levels of plasma and urinary corticosterone and urinary aldosterone were elevated in offspring of dexamethasone-treated mothers, indicative of enhanced adrenal responsiveness. In conclusion, this study shows that prenatal exposure to dexamethasone does not increase basal adrenocortical activity but does result in a more stress-responsive adrenal phenotype, possibly via increased Mc2r expression.

  2. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Chen, Ying; Kawazoe, Naoki; Chen, Guoping

    2018-02-01

    Although bone is regenerative, its regeneration capacity is limited. For bone defects beyond a critical size, further intervention is required. As an attractive strategy, bone tissue engineering (bone TE) has been widely investigated to repair bone defects. However, the rapid and effective bone regeneration of large non-healing defects is still a great challenge. Multifunctional scaffolds having osteoinductivity and osteoconductivity are desirable to fasten functional bone tissue regeneration. In the present study, biomimetic composite scaffolds of collagen and biphasic calcium phosphate nanoparticles (BCP NPs) with a controlled release of dexamethasone (DEX) and the controlled pore structures were prepared for bone TE. DEX was introduced in the BCP NPs during preparation of the BCP NPs and hybridized with collagen scaffolds, which pore structures were controlled by using pre-prepared ice particulates as a porogen material. The composite scaffolds had well controlled and interconnected pore structures, high mechanical strength and a sustained release of DEX. The composite scaffolds showed good biocompatibility and promoted osteogenic differentiation of hMSCs when used for three-dimensional culture of human bone marrow-derived mesenchymal stem cells. Subcutaneous implantation of the composite scaffolds at the dorsa of athymic nude mice demonstrated that they facilitated the ectopic bone tissue regeneration. The results indicated the DEX-loaded BCP NPs/collagen composite scaffolds had high potential for bone TE. Scaffolds play a crucial role for regeneration of large bone defects. Biomimetic scaffolds having the same composition of natural bone and a controlled release of osteoinductive factors are desirable for promotion of bone regeneration. In this study, composite scaffolds of collagen and biphasic CaP nanoparticles (BCP NPs) with a controlled release nature of dexamethasone (DEX) were prepared and their porous structures were controlled by using ice particulates

  3. Cross-Comparison of Leaching Strains Isolated from Two Different Regions: Chambishi and Dexing Copper Mines

    OpenAIRE

    Ngom, Baba; Liang, Yili; Liu, Xueduan

    2014-01-01

    A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different...

  4. Evaluation of hyperglycaemic response to intra-operative dexamethasone administration in patients undergoing elective intracranial surgery: A randomised, prospective study.

    Science.gov (United States)

    Sethi, Rakesh; Naqash, Imtiaz A; Bajwa, Sukhminder Jit Singh; Dutta, Vikas; Ramzan, Altaf Umar; Zahoor, Syed Amir

    2016-01-01

    The glucocorticoid dexamethasone in a bolus dose of 8-10 mg followed by quarterly dose of 4 mg is commonly used during intracranial surgery so as to reduce oedema and vascular permeability. However, the detrimental hyperglycaemic effects of dexamethasone may override its potentially beneficial effects. The present prospective, randomised study aimed at comparing the degree and magnitude of hyperglycaemia induced by prophylactic administration of dexamethasone in patients undergoing elective craniotomy. Sixty American Society of Anaesthesiologist (ASA) grade-I and II patients were randomly assigned to three groups of 20 patients each. Group-I received dexamethasone during surgery for the first time. Group-II received dexamethasone in addition to receiving it pre-operatively, whereas Group-III (control group) patients were administered normal saline as placebo. Baseline blood glucose (BG) was measured in all the three groups before induction of anaesthesia and thereafter after every hour for 4 h and then two-hourly. Besides intra- and intergroup comparison of BG, peak BG concentration was also recorded for each patient. Statistical analysis was carried out with analysis of variance (ANOVA) and Student's t-test and value of P < 0.05 was considered statistically significant. Baseline BG reading were higher and statistically significant in Group-II as compared with Group-I and Group-III (P < 0.05). However, peak BG levels were significantly higher in Group-I than in Group-II and III (P < 0.05). Similarly, the magnitude of change in peak BG was significantly higher in Group-I as compared to Group-II and III (P < 0.05). Peri-operative administration of dexamethasone during neurosurgical procedures can cause significant increase in BG concentration especially in patients who receive dexamethasone intra-operatively only.

  5. LipiDex: An Integrated Software Package for High-Confidence Lipid Identification.

    Science.gov (United States)

    Hutchins, Paul D; Russell, Jason D; Coon, Joshua J

    2018-04-17

    State-of-the-art proteomics software routinely quantifies thousands of peptides per experiment with minimal need for manual validation or processing of data. For the emerging field of discovery lipidomics via liquid chromatography-tandem mass spectrometry (LC-MS/MS), comparably mature informatics tools do not exist. Here, we introduce LipiDex, a freely available software suite that unifies and automates all stages of lipid identification, reducing hands-on processing time from hours to minutes for even the most expansive datasets. LipiDex utilizes flexible in silico fragmentation templates and lipid-optimized MS/MS spectral matching routines to confidently identify and track hundreds of lipid species and unknown compounds from diverse sample matrices. Unique spectral and chromatographic peak purity algorithms accurately quantify co-isolation and co-elution of isobaric lipids, generating identifications that match the structural resolution afforded by the LC-MS/MS experiment. During final data filtering, ionization artifacts are removed to significantly reduce dataset redundancy. LipiDex interfaces with several LC-MS/MS software packages, enabling robust lipid identification to be readily incorporated into pre-existing data workflows. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. β–Hydroxy β–Methylbutyrate Improves Dexamethasone-Induced Muscle Atrophy by Modulating the Muscle Degradation Pathway in SD Rat

    Science.gov (United States)

    Choi, Yeon Ja; Park, Min Hi; Jang, Eun Ji; Park, Chan Hum; Yoon, Changshin; Kim, Nam Deuk; Kim, Mi Kyung; Chung, Hae Young

    2014-01-01

    Skeletal muscle atrophy results from various conditions including high levels of glucocorticoids, and β–hydroxy β–methylbutyrate (HMB; a metabolite of leucine) is a potent therapeutical supplement used to treat various muscle disorders. Recent studies have demonstrated that HMB inhibits dexamethasone-induced atrophy in cultured myotubes, but its effect on dexamethasone-induced muscle atrophy has not been determined in vivo. In the present study, we investigated the effect of HMB on dexamethasone-induced muscle atrophy in rats. Treatment with dexamethasone weakened grip strengths and increased muscle damage as determined by increased serum creatine kinase levels and by histological analysis. Dexamethasone treatment also reduced both soleus and gastrocnemius muscle masses. However, HMB supplementation significantly prevented reductions in grip strengths, reduced muscle damage, and prevented muscle mass and protein concentration decrease in soleus muscle. Biochemical analysis demonstrated that dexamethasone markedly increased levels of MuRF1 protein, which causes the ubiquitination and degradation of MyHC. Indeed, dexamethasone treatment decreased MyHC protein expression and increased the ubiquitinated-MyHC to MyHC ratio. However, HMB supplementation caused the down-regulations of MuRF1 protein and of ubiquitinated-MyHC. Furthermore, additional experiments provided evidence that HMB supplementation inhibited the nuclear translocation of FOXO1 induced by dexamethasone, and showed increased MyoD expression in the nuclear fractions of soleus muscles. These findings suggest that HMB supplementation attenuates dexamethasone-induced muscle wasting by regulating FOXO1 transcription factor and subsequent MuRF1 expression. Accordingly, our results suggest that HMB supplementation could be used to prevent steroid myopathy. PMID:25032690

  7. Icam-1 targeted nanogels loaded with dexamethasone alleviate pulmonary inflammation.

    Directory of Open Access Journals (Sweden)

    M Carme Coll Ferrer

    Full Text Available Lysozyme dextran nanogels (NG have great potential in vitro as a drug delivery platform, combining simple chemistry with rapid uptake and cargo release in target cells with "stealth" properties and low toxicity. In this work, we study for the first time the potential of targeted NG as a drug delivery platform in vivo to alleviate acute pulmonary inflammation in animal model of LPS-induced lung injury. NG are targeted to the endothelium via conjugation with an antibody (Ab directed to Intercellular Adhesion Molecule-1(ICAM-NG, whereas IgG conjugated NG (IgG-NG are used for control formulations. The amount of Ab conjugated to the NG and distribution in the body after intravenous (IV injection have been quantitatively analyzed using a tracer isotope-labeled [125I]IgG. As a proof of concept, Ab-NG are loaded with dexamethasone, an anti-inflammatory therapeutic, and the drug uptake and release kinetics are measured by HPLC. In vivo studies in mice showed that: i ICAM-NG accumulates in mouse lungs (∼120% ID/g vs ∼15% ID/g of IgG-NG; and, ii DEX encapsulated in ICAM-NG, but not in IgG-NG practically blocks LPS-induced overexpression of pro-inflammatory cell adhesion molecules including ICAM-1 in the pulmonary inflammation.

  8. A single dose of dexamethasone encapsulated in polyethylene glycol-coated polylactic acid nanoparticles attenuates cisplatin-induced hearing loss following round window membrane administration

    Directory of Open Access Journals (Sweden)

    Sun CL

    2015-05-01

    Full Text Available Changling Sun,1,3,* Xueling Wang,1,* Zhaozhu Zheng,2 Dongye Chen,1 Xiaoqin Wang,2 Fuxin Shi,1 Dehong Yu,1 Hao Wu11Department of Otolaryngology–Head and Neck Surgery, Xinhua Hospital, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 2National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 3Department of Otolaryngology–Head and Neck Surgery, Affiliated Hospital of Jiangnan University, The Fourth People’s Hospital of Wuxi City, Wuxi, People’s Republic of China*These authors have contributed equally to this workAbstract: This study aimed to investigate the sustained drug release properties and hearing protection effect of polyethylene glycol-coated polylactic acid (PEG-PLA stealth nanoparticles loaded with dexamethasone (DEX. DEX was fabricated into PEG-PLA nanoparticles using an emulsion and evaporation technique, as previously reported. The DEX-loaded PEG-PLA nanoparticles (DEX-NPs had a hydrodynamic diameter of 130±4.78 nm, and a zeta potential of -26.13±3.28 mV. The in vitro release of DEX from DEX-NPs lasted 24 days in phosphate buffered saline (pH 7.4, 5 days in artificial perilymph (pH 7.4, and 1 day in rat plasma. Coumarin 6-labeled NPs placed onto the round window membrane (RWM of guinea pigs penetrated RWM quickly and accumulated to the organs of Corti, stria vascularis, and spiral ganglion cells after 1 hour of administration. The DEX-NPs locally applied onto the RWM of guinea pigs by a single-dose administration continuously released DEX in 48 hours, which was significantly longer than the free DEX that was cleared out within 12 hours after administration at the same dose. Further functional studies showed that locally administrated single-dose DEX-NPs effectively preserved outer hair cells in guinea pigs after cisplatin insult and thus significantly attenuated hearing loss at 4 kHz and 8

  9. Optimal glucocorticoid therapy.

    Science.gov (United States)

    Debono, Miguel; Ross, Richard J

    2011-01-01

    The rhythmic regulation of human physiology and behaviour is controlled by a central endogenous clock located in the suprachiasmatic nucleus. Most tissues have peripheral clocks that oscillate in time with this central clock. How the central time keeper controls peripheral clocks is not established, however there is evidence to suggest that the cortisol rhythm is one important secondary messenger. Loss of the endogenous cortisol rhythm is associated with sleep disturbance, depression, and metabolic abnormalities. In adrenal insufficiency, current glucocorticoid replacement regimens cannot replace the normal circadian rhythm of cortisol, and patients have an increased mortality and impaired quality of life. We propose that reproducing circadian cortisol levels may improve quality of life in patients with adrenal insufficiency and we have been investigating the impact of circadian hydrocortisone replacement. Using Chronocort, a modified release preparation of hydrocortisone, we have demonstrated that it is possible to simulate the overnight rise in cortisol release and, in preliminary studies in patients with congenital adrenal hyperplasia, control morning androgen levels. Future studies are now required to determine whether Chronocort can improve quality of life in patients with adrenal insufficiency. Copyright © 2011 S. Karger AG, Basel.

  10. Stabilization of glucocorticoid receptors in isolated rat hepatocytes by radioprotectants

    International Nuclear Information System (INIS)

    Karle, J.M.; Ridder, W.E.; Wright, N.; Olmeda, R.; Nielsen, C.J.

    1986-01-01

    Previous work has shown that glucocorticoid receptors in rat liver homogenate can be stabilized by the addition of MoO 4 plus the sulfhydryl-containing compounds dithiothreitol and WR 1065. The latter is the dephosphorylated, principal metabolite of the radioprotectant WR 2721 (or S-2-(3-aminopropylamino)ethanesphosphorothioic acid). The current work results from applying this knowledge to intact rat hepatocytes. Cells were isolated by collagenase perfusion and incubated in supplemented minimum essential medium at 37 0 C with various concentrations of WR 2721, WR 1065, or vehicle. Samples of these cell suspensions were analyzed at various times for steroid binding capacity by incubating homogenates (27,000 x g supernates) with 50 nM 3 H-triamcinolone acetonide in the presence or absence of excess unlabelled dexamethasone. Concentrations of 10 mM WR 2721 provided marked preservation of the binding capacity (>85% of the initial value at 5 hours) compared to control at 60% of the binding capacity. WR 1065 at 10 mM provided no such protection. This is consistent with the observation that WR 1065 does not pass cell membranes. The authors propose that supplying reducing equivalents to intracellular components such as the glucocorticoid receptor may be one mechanism of the radioprotection afforded by WR 2721

  11. The effects of dexamethasone on post-asphyxial cerebral oxygenation in the preterm fetal sheep

    Science.gov (United States)

    Lear, Christopher A; Koome, Miriam E; Davidson, Joanne O; Drury, Paul P; Quaedackers, Josine S; Galinsky, Robert; Gunn, Alistair J; Bennet, Laura

    2014-01-01

    Exposure to clinical doses of the glucocorticoid dexamethasone increases brain activity and causes seizures in normoxic preterm fetal sheep without causing brain injury. In contrast, the same treatment after asphyxia increased brain injury. We hypothesised that increased injury was in part mediated by a mismatch between oxygen demand and oxygen supply. In preterm fetal sheep at 0.7 gestation we measured cerebral oxygenation using near-infrared spectroscopy, electroencephalographic (EEG) activity, and carotid blood flow (CaBF) from 24 h before until 72 h after asphyxia induced by 25 min of umbilical cord occlusion. Ewes received dexamethasone intramuscularly (12 mg 3 ml–1) or saline 15 min after the end of asphyxia. Fetuses were studied for 3 days after occlusion. During the first 6 h of recovery after asphyxia, dexamethasone treatment was associated with a significantly greater fall in CaBF (P < 0.05), increased carotid vascular resistance (P < 0.001) and a greater fall in cerebral oxygenation as measured by the difference between oxygenated and deoxygenated haemoglobin (delta haemoglobin; P < 0.05). EEG activity was similarly suppressed in both groups. From 6 to 10 h onward, dexamethasone treatment was associated with a return of CaBF to saline control levels, increased EEG power (P < 0.005), greater epileptiform transient activity (P < 0.001), increased oxidised cytochrome oxidase (P < 0.05) and an attenuated increase in [delta haemoglobin] (P < 0.05). In conclusion, dexamethasone treatment after asphyxia is associated with greater hypoperfusion in the critical latent phase, leading to impaired intracerebral oxygenation that may exacerbate neural injury after asphyxia. PMID:25384775

  12. Long-Term Therapeutic Effects of Mesenchymal Stem Cells Compared to Dexamethasone on Recurrent Experimental Autoimmune Uveitis of Rats

    Science.gov (United States)

    Zhang, Lingjun; Zheng, Hui; Shao, Hui; Nian, Hong; Zhang, Yan; Bai, Lingling; Su, Chang; Liu, Xun; Dong, Lijie; Li, Xiaorong; Zhang, Xiaomin

    2014-01-01

    Purpose. We tested the long-term effects of different regimens of mesenchymal stem cell (MSC) administration in a recurrent experimental autoimmune uveitis (rEAU) model in rats, and compared the efficacy of MSC to that of dexamethasone (DEX). Methods. One or two courses of MSC treatments were applied to R16-specific T cell–induced rEAU rats before or after disease onsets. The DEX injections were given for 7 or 50 days continuously after disease onsets. Clinical appearances were observed until the 50th day after transfer. On the 10th day, T cells from control and MSC groups were analyzed by flow cytometry. Supernatants from the proliferation assay and aqueous humor were collected for cytokine detection. Functions of T cells and APCs in spleens also were studied by lymphocyte proliferation assays. Results. One course of MSC therapy, administered after disease onset, led to a lasting therapeutic effect, with a decreased incidence, reduced mean clinical score, and reduced retinal impairment after 50 days of observation, while multiple courses of treatment did not improve the therapeutic benefit. Although DEX and MSCs equally reduced the severity of the first episode of rEAU, the effect of DEX was shorter lasting, and DEX therapy failed to control the disease even with long periods of treatment. The MSCs significantly decreased T helper 1 (Th1) and Th17 responses, suppressed the function of antigen-presenting cells, and upregulated T regulatory cells. Conclusions. These results suggested that MSCs might be new corticosteroid spring agents, while providing fewer side effects and longer lasting suppressive effects for recurrent uveitis. PMID:25125599

  13. Therapeutic effect of dexamethasone implant in retinal vein occlusions resistant to anti-VEGF therapy

    Directory of Open Access Journals (Sweden)

    Wallsh J

    2016-05-01

    Full Text Available Josh Wallsh, Behnam Sharareh, Ron GallemoreRetina Macula Institute, Torrance, CA, USAPurpose: To test the efficacy of the intravitreal dexamethasone (DEX implant in patients with retinal vein occlusions (RVOs who have failed multiple anti-vascular endothelial growth factor (anti-VEGF treatments.Methods: A randomized exploratory study of ten patients with branch RVO or central RVO who received at least two previous anti-VEGF treatments and had persistent or unresponsive cystoid macular edema. Treatment with the DEX implant was either every 4 months or pro re nata (PRN depending on their group assignment for 1 year. Multifocal electroretinography and microperimetry were the primary end points, with high-resolution optical coherence tomography and best-corrected visual acuity as the secondary end points.Results: All patients in both the every 4 month and PRN cohorts who completed the study received the three maximal injections of DEX; therefore, the data from both cohorts were combined and reported as a case series. On average, the multifocal electroretinography amplitude increased significantly from 5.11±0.66 to 24.19±5.30 nV/deg2 at 12 months (P<0.005, mean macular sensitivity increased from 7.67±2.10 to 8.01±1.98 dB at 4 months (P=0.32, best-corrected visual acuity increased significantly from 51.0±5.1 to 55.4±5.1 early treatment of diabetic retinopathy study letters at 2 months (P<0.05, and central retinal thickness decreased from 427.6±39.5 to 367.1±37.8 µm at 4 months (P<0.05. Intraocular pressure increased significantly in one patient, with that patient requiring an additional glaucoma medication for management. Additionally, cataract progression increased significantly (P<0.05 in this patient population and partially limited analysis of other end points.Conclusion: DEX should be considered as a treatment option in patients with RVOs who have failed anti-VEGF therapy, as the results of this study demonstrated an improvement in

  14. Exenatide improves glucocorticoid-induced glucose intolerance in mice

    Directory of Open Access Journals (Sweden)

    Ruiying Zhao

    2011-01-01

    Full Text Available Ruiying Zhao1,2*, Enrique Fuentes-Mattei1,2*, Guermarie Velazquez-Torres1,3, Chun-Hui Su1,2, Jian Chen1, Mong-Hong Lee1,2, Sai-Ching Jim Yeung4,51Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Program in Genes and Development, 3Program in Cancer Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center in Houston, Houston, TX, USA; 4Department of Endocrine Neoplasia and Hormonal Disorders, 5Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA *Both authors contributed equally.Abstract: Exenatide is an incretin mimetic that is recently available in the US for the treatment of diabetes. There is a paucity of information on the effects of exenatide in glucocorticoid (GC-induced diabetes. Although the effect of continuous intravenous infusion of exenatide on GC-induced glucose intolerance has been investigated before in healthy human males receiving oral prednisolone, we investigated the efficacy of a single subcutaneous dose of exenatide (3 µg/kg in lowering blood glucose in GC-induced glucose intolerance in C57BL/6 mice. In a longitudinal experiment, the area under the curve (AUC of oral glucose tolerance tests (OGTT significantly increased after dexamethasone (P = 0.004, which was subsequently decreased by exenatide (P < 0.001. A cross-sectional experiment showed that exenatide improved glucose tolerance compared with placebo in a mouse model of dexamethasone-induced glucose intolerance. AUC of OGTT in the exenatide group were significantly (P < 0.001 lower than in the placebo group. Insulin tolerance tests (ITT demonstrated that exenatide decreased the ability of the mice to tolerate insulin compared with placebo. The AUC of ITT in the exenatide group were also significantly (P = 0.006 lower than in the placebo group. In conclusion, a single dose of exenatide was able to decrease glucose intolerance and

  15. Can short-term administration of dexamethasone abrogate radiation-induced acute cytokine gene response in lung and modify subsequent molecular responses?

    International Nuclear Information System (INIS)

    Hong, J.-H.; Chiang, C.-S.; Tsao, C.-Y.; Lin, P.-Y.; Wu, C.-J.; McBride, William H.

    2001-01-01

    Purpose: To investigate the effects of short-term administration of dexamethasone (DEX) on radiation-induced responses in the mouse lung, focusing on expression of pro-inflammatory cytokine and related genes. Methods and Materials: At indicated times after thoracic irradiation and/or drug treatment, mRNA expression levels of cytokines (mTNF-α, mIL-1α, mIL-1β, mIL-2, mIL-3, mIL-4, mIL-5, mIL-6, mIFN-γ) and related genes in the lungs of C3H/HeN mice were measured by RNase protection assay. Results: Radiation-induced pro-inflammatory cytokine mRNA expression levels in lung peak at 6 h after thoracic irradiation. DEX (5 mg/kg) suppresses both basal cytokine mRNA levels and this early response when given immediately after irradiation. However, by 24 h, in mice treated with DEX alone or DEX plus radiation, there was a strong rebound effect that lasted up to 3 days. Modification of the early radiation-induced response by DEX did not change the second wave of cytokine gene expression in the lung that occurs at 1 to 2 weeks, suggesting that early cytokine gene induction might not determine subsequent molecular events. A single dose of DEX attenuated, but did not completely suppress, increases in cytokine mRNA levels induced by lipopolysaccharide (2.5 mg/kg) treatment, but, unlike with radiation, no significant rebound effect was seen. Five days of dexamethasone treatment in the pneumonitic phase also inhibited pro-inflammatory cytokine gene expression and, again, there was a rebound effect after withdrawal of the drug. Conclusions: Our findings suggest that short-term use of dexamethasone can temporarily suppress radiation-induced pro-inflammatory cytokine gene expression, but there may be a rebound after drug withdrawal and the drug does little to change the essence and course of the pneumonitic process

  16. Glucocorticoid programming of neuroimmune function.

    Science.gov (United States)

    Walker, David J; Spencer, Karen A

    2018-01-15

    Throughout life physiological systems strive to maintain homeostasis and these systems are susceptible to exposure to maternal or environmental perturbations, particularly during embryonic development. In some cases, these perturbations may influence genetic and physiological processes that permanently alter the functioning of these physiological systems; a process known as developmental programming. In recent years, the neuroimmune system has garnered attention for its fundamental interactions with key hormonal systems, such as the hypothalamic pituitary adrenal (HPA) axis. The ultimate product of this axis, the glucocorticoid hormones, play a key role in modulating immune responses within the periphery and the CNS as part of the physiological stress response. It is well-established that elevated glucocorticoids induced by developmental stress exert profound short and long-term physiological effects, yet there is relatively little information of how these effects are manifested within the neuroimmune system. Pre and post-natal periods are prime candidates for manipulation in order to uncover the physiological mechanisms that underlie glucocorticoid programming of neuroimmune responses. Understanding the potential programming role of glucocorticoids may be key in uncovering vulnerable windows of CNS susceptibility to stressful experiences during embryonic development and improve our use of glucocorticoids as therapeutics in the treatment of neurodegenerative diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. Psychosocial animal model of PTSD produces a long-lasting traumatic memory, an increase in general anxiety and PTSD-like glucocorticoid abnormalities.

    Science.gov (United States)

    Zoladz, Phillip R; Fleshner, Monika; Diamond, David M

    2012-09-01

    Post-traumatic stress disorder (PTSD) is characterized by a pathologically intense memory for a traumatic experience, persistent anxiety and physiological abnormalities, such as low baseline glucocorticoid levels and increased sensitivity to dexamethasone. We have addressed the hypothesis that rats subjected to chronic psychosocial stress would exhibit PTSD-like sequelae, including traumatic memory expression, increased anxiety and abnormal glucocorticoid responses. Adult male Sprague-Dawley rats were exposed to a cat on two occasions separated by 10 days, in conjunction with chronic social instability. Three weeks after the second cat exposure, the rats were tested for glucocorticoid abnormalities, general anxiety and their fear-conditioned memory of the two cat exposures. Stressed rats exhibited reduced basal glucocorticoid levels, increased glucocorticoid suppression following dexamethasone administration, heightened anxiety and a robust fear memory in response to cues that were paired with the two cat exposures. The commonalities in endocrine and behavioral measures between psychosocially stressed rats and traumatized people with PTSD provide the opportunity to explore mechanisms underlying psychological trauma-induced changes in neuroendocrine systems and cognition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response

    Directory of Open Access Journals (Sweden)

    Brian eGriffiths

    2012-10-01

    Full Text Available One function of glucocorticoids is to restore homeostasis after an acute stress response by providing negative feedback to stress circuits in the brain. Loss of this negative feedback leads to elevated physiological stress and may contribute to depression, anxiety and post-traumatic stress disorder. We investigated the early, developmental effects of glucocorticoid signaling deficits on stress physiology and related behaviors using a mutant zebrafish, grs357, with non-functional glucocorticoid receptors. These mutants are morphologically inconspicuous and adult-viable. A previous study of adult grs357 mutants showed loss of glucocorticoid-mediated negative feedback and elevated physiological and behavioral stress markers. Already at five days post-fertilization, mutant larvae had elevated whole body cortisol, increased expression of pro-opiomelanocortin (POMC, the precursor of adrenocorticotropic hormone (ACTH, and failed to show normal suppression of stress markers after dexamethasone treatment. Mutant larvae had larger auditory-evoked startle responses compared to wildtype sibling controls (grwt, despite having lower spontaneous activity levels. Fluoxetine (Prozac treatment in mutants decreased startle responding and increased spontaneous activity, making them behaviorally similar to wildtype. This result mirrors known effects of selective serotonin reuptake inhibitors (SSRIs in modifying glucocorticoid signaling and alleviating stress disorders in human patients. Our results suggest that larval grs357 zebrafish can be used to study behavioral, physiological and molecular aspects of stress disorders. Most importantly, interactions between glucocorticoid and serotonin signaling appear to be highly conserved among vertebrates, suggesting deep homologies at the neural circuit level and opening up new avenues for research into psychiatric conditions.

  19. Increase of glucocorticoids is not required for the acquisition, but hinders the extinction, of lithium-induced conditioned taste aversion.

    Science.gov (United States)

    Kim, Kyu-Nam; Kim, Bom-Taeck; Kim, Young-Sang; Lee, Jong-Ho; Jahng, Jeong Won

    2014-05-05

    Lithium chloride at doses sufficient to induce conditioned taste aversion (CTA) causes c-Fos expression in the paraventricular nucleus and increases the plasma level of corticosterone with activation of the hypothalamic-pituitary-adrenal axis. This study was conducted to define the role of glucocorticoid in the acquisition and extinction of lithium-induced CTA. In experiment 1, Sprague-Dawley rats received dexamethasone (2mg/kg) or RU486 (20mg/kg) immediately after 5% sucrose access, and then an intraperitoneal injection of isotonic lithium chloride (12ml/kg) was followed with 30min interval. Rats had either 1 or 7 days of recovery period before the daily sucrose drinking tests. In experiment 2, rats were conditioned with the sucrose-lithium pairing, and then received dexamethasone or vehicle at 30min before each drinking test. In experiment 3, adrenalectomized (ADX or ADX+B) rats were subjected to sucrose drinking tests after the sucrose-lithium pairing. Dexamethasone, but not RU486, pretreatment blunted the formation of lithium-induced CTA memory. Dexamethasone prior to each drinking test suppressed sucrose consumption and prolonged the extinction of lithium-induced CTA. Sucrose consumption was significantly suppressed not only in ADX+B rats but also in ADX rats during the first drinking session; however, a significant decrease was found only in ADX rats on the fourth drinking session. These results reveal that glucocorticoid is not a necessary component in the acquisition, but an important player in the extinction, of lithium-induced CTA, and suggest that a pulse increase of glucocorticoid may hinder the extinction memory formation of lithium-induced CTA. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Dexamethasone protects RAW264.7 macrophages from growth arrest and apoptosis induced by H2O2 through alteration of gene expression patterns and inhibition of nuclear factor-kappa B (NF-κB) activity

    International Nuclear Information System (INIS)

    Fong, C.-C.; Zhang Yaou; Zhang Qi; Tzang, C.-H.; Fong, W.-F.; Wu, R.S.S.; Yang Mengsu

    2007-01-01

    In this study, the effect of dexamethasone, a synthetic glucocorticoid, on H 2 O 2 stimulated murine RAW264.7 macrophages was investigated. It was found that dexamethasone protected the cells from apoptosis induced by H 2 O 2 . A cDNA microarray, which consists of 1000 genes selected from a mouse clone set provided from NIA, was used to study the gene expression profiles involved in the protective effect. Our data show that dexamethasone exerts the anti-apoptosis function by changing the expression patterns of many genes involved inhibiting the up-regulation of apoptosis promoting genes and the down-regulation of cell cycle stimulating genes as well as keeping the up-regulation of cell survival related genes. Our study also revealed that dexamethasone protects RAW264.7 macrophages from H 2 O 2 induced apoptosis through blocking nuclear factor-kappa B (NF-κB) activity

  1. Urtica dioica extract attenuates depressive like behavior and associative memory dysfunction in dexamethasone induced diabetic mice.

    Science.gov (United States)

    Patel, Sita Sharan; Udayabanu, Malairaman

    2014-03-01

    Evidences suggest that glucocorticoids results in depression and is a risk factor for type 2 diabetes. Further diabetes induces oxidative stress and hippocampal dysfunction resulting in cognitive decline. Traditionally Urtica dioica has been used for diabetes mellitus and cognitive dysfunction. The present study investigated the effect of the hydroalcoholic extract of Urtica dioica leaves (50 and 100 mg/kg, p.o.) in dexamethasone (1 mg/kg, i.m.) induced diabetes and its associated complications such as depressive like behavior and cognitive dysfunction. We observed that mice administered with chronic dexamethasone resulted in hypercortisolemia, oxidative stress, depressive like behavior, cognitive impairment, hyperglycemia with reduced body weight, increased water intake and decreased hippocampal glucose transporter-4 (GLUT4) mRNA expression. Urtica dioica significantly reduced hyperglycemia, plasma corticosterone, oxidative stress and depressive like behavior as well as improved associative memory and hippocampal GLUT4 mRNA expression comparable to rosiglitazone (5 mg/kg, p.o.). Further, Urtica dioica insignificantly improved spatial memory and serum insulin. In conclusion, Urtica dioica reversed dexamethasone induced hyperglycemia and its associated complications such as depressive like behavior and cognitive dysfunction.

  2. The In Vivo Granulopoietic Response to Dexamethasone Injection Is Abolished in Perforin-Deficient Mutant Mice and Corrected by Lymphocyte Transfer from Nonsensitized Wild-Type Donors

    Directory of Open Access Journals (Sweden)

    Pedro Xavier-Elsas

    2015-01-01

    Full Text Available Exogenously administered glucocorticoids enhance eosinophil and neutrophil granulocyte production from murine bone-marrow. A hematological response dependent on endogenous glucocorticoids underlies bone-marrow eosinophilia induced by trauma or allergic sensitization/challenge. We detected a defect in granulopoiesis in nonsensitized, perforin-deficient mice. In steady-state conditions, perforin- (Pfp- deficient mice showed significantly decreased bone-marrow and blood eosinophil and neutrophil counts, and colony formation in response to GM-CSF, relative to wild-type controls of comparable age and/or weight. By contrast, peripheral blood or spleen total cell and lymphocyte numbers were not affected by perforin deficiency. Dexamethasone enhanced colony formation by GM-CSF-stimulated progenitors from wild-type controls, but not Pfp mice. Dexamethasone injection increased bone-marrow eosinophil and neutrophil counts in wild-type controls, but not Pfp mice. Because perforin is expressed in effector lymphocytes, we examined whether this defect would be corrected by transferring wild-type lymphocytes into perforin-deficient recipients. Short-term reconstitution of the response to dexamethasone was separately achieved for eosinophils and neutrophils by transfer of distinct populations of splenic lymphocytes from nonsensitized wild-type donors. Transfer of the same amount of splenic lymphocytes from perforin-deficient donors was ineffective. This demonstrates that the perforin-dependent, granulopoietic response to dexamethasone can be restored by transfer of innate lymphocyte subpopulations.

  3. Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering.

    Science.gov (United States)

    Nadim, Afsaneh; Khorasani, Saied Nouri; Kharaziha, Mahshid; Davoodi, Seyyed Mohammadreza

    2017-09-01

    The aim of this research was to fabricate dexamethasone (Dex)-loaded poly (glycerol sebacate) (PGS)-poly (caprolactone) (PCL)/gelatin (Gt) (PGS-PCL/Gt-Dex) fibrous scaffolds in the form of core/shell structure which have potential application in soft tissues. In this regard, after synthesize and characterizations of PGS, PGS-PCL and gelatin fibrous scaffolds were separately developed in order to optimize the electrospinning parameters. In the next step, coaxial electrospun fibrous scaffold of PGS-PCL/Gt fibrous scaffold with PGS-PCL as core and Gt as shell was developed and its mechanical, physical and chemical properties were characterized. Moreover, degradability, hydrophilicity and biocompatibility of PGS-PCL/Gt fibrous scaffold were evaluated. In addition, Dex was encapsulated in PGS-PCL/Gt fibrous scaffold and drug release was assessed for tissue engineering application. Results demonstrated the formation of coaxial fibrous scaffold with average porosity of 79% and average fiber size of 294nm. Moreover, PGS-PCL/Gt fibrous scaffold revealed lower elastic modulus, ultimate tensile and ultimate elongation than those of PGS-PCL scaffold and more close to mechanical properties of natural tissue. Furthermore, lower contact angle of PGS-PCL/Gt than that of PGS-PCL demonstrated improved surface hydrophilicity of scaffold. DEX release was sustained over a period time of 30days from the scaffolds via three steps consisting of an initial burst release, secondary linear phase release pattern with slower rate over 20days followed by an apparent zero-order release phase. MTT observations demonstrated that there was no evidence of toxicity in the samples with and without Dex. Our findings indicated that core/shell PGS-PCL/Gt-Dex fibrous could be used as a carrier for the sustained release of drugs relevant for tissue engineering which makes it appropriate for soft tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Dexamethasone and vorinostat cooperatively promote differentiation and apoptosis in Kasumi-1 leukemia cells through ubiquitination and degradation of AML1-ETO].

    Science.gov (United States)

    Chen, Li-ping; Zhang, Jian-wei; Xu, Fa-mei; Xing, Hai-yan; Tian, Zheng; Wang, Min; Wang, Jian-xiang

    2013-09-01

    To probe the effects of dexamethasone (DEX) combined with histone deacetylase (HDAC) inhibitor vorinostat on inhibiting proliferation and inducing differentiation and apoptosis in Kasumi-1 leukemia cells, and its possible mechanisms in order to provide a theoretical basis for the treatment of AML1-ETO positive AML. The cell survival, differentiation and apoptosis rates were tested by MTT or flow cytometry analysis after Kasumi-1 cells were treated by DMSO, DEX (20 nmol/L), vorinostat (1 μmol/L) or DEX (20 nmol/L) in combination with vorinostat (1 μmol/L). WB and IP-WB were performed to detect AML1-ETO and its ubiquitination. Treatment with the combination of DEX and vorinostat for 48 h led to statistically significant differences of inhibited proliferation [(42.06±8.20)%], increased differentiation [(52.83±8.97)%] and apoptosis [(52.92±2.53)%] of Kasumi-1 cells when compared with vorinostat [(33.82±9.41)%, (43.93±9.04)% and (42.98±3.01)%, respectively], DEX [(17.30±3.49)%, (22.53±4.51)% and (19.57±2.17)%, respectively] or control [(6.96±0.39)%, (21.73±2.03)% and (6.96±0.39)%, respectively]. Also significant ubiquitination and decreased AML1-ETO protein in Kasumi-1 cells after the combination treatment over single agent or control were observed. The results indicated that DEX and vorinostat could synergistically inhibit the Kasumi-1 cells proliferation, induce Kasumi-1 cells differentiation and apoptosis through ubiquitination and degradation of AML1-ETO.

  5. Porous, Dexamethasone-loaded polyurethane coatings extend performance window of implantable glucose sensors in vivo.

    Science.gov (United States)

    Vallejo-Heligon, Suzana G; Brown, Nga L; Reichert, William M; Klitzman, Bruce

    2016-01-01

    Continuous glucose sensors offer the promise of tight glycemic control for insulin dependent diabetics; however, utilization of such systems has been hindered by issues of tissue compatibility. Here we report on the in vivo performance of implanted glucose sensors coated with Dexamethasone-loaded (Dex-loaded) porous coatings employed to mediate the tissue-sensor interface. Two animal studies were conducted to (1) characterize the tissue modifying effects of the porous Dex-loaded coatings deployed on sensor surrogate implants and (2) investigate the effects of the same coatings on the in vivo performance of Medtronic MiniMed SOF-SENSOR™ glucose sensors. The tissue response to implants was evaluated by quantifying macrophage infiltration, blood vessel formation, and collagen density around implants. Sensor function was assessed by measuring changes in sensor sensitivity and time lag, calculating the Mean Absolute Relative Difference (MARD) for each sensor treatment, and performing functional glucose challenge test at relevant time points. Implants treated with porous Dex-loaded coatings diminished inflammation and enhanced vascularization of the tissue surrounding the implants. Functional sensors with Dex-loaded porous coatings showed enhanced sensor sensitivity over a 21-day period when compared to controls. Enhanced sensor sensitivity was accompanied with an increase in sensor signal lag and MARD score. These results indicate that Dex-loaded porous coatings were able to elicit an attenuated tissue response, and that such tissue microenvironment could be conducive towards extending the performance window of glucose sensors in vivo. In the present article, a coating to extend the functionality of implantable glucose sensors in vivo was developed. Our study showed that the delivery of an anti-inflammatory agent with the presentation of micro-sized topographical cues from coatings may lead to improved long-term glucose sensor function in vivo. We believe that

  6. Mechanisms of interleukin-2-induced hydrothoraxy in mice: protective effect of endotoxin tolerance and dexamethasone and possible role of reactive oxygen intermediates.

    Science.gov (United States)

    Faggioni, R; Allavena, P; Cantoni, L; Carelli, M; Demitri, M T; Delgado, R; Gatti, S; Gnocchi, P; Isetta, A M; Paganin, C

    1994-04-01

    Interleukin (IL)-2 is known to induce vascular leak syndrome (VLS), which was suggested to be mediated by immune system-derived cytokines, including tumor necrosis factor (TNF). To characterize the role of TNF in IL-2 toxicity in C3H/HeN mice, we used two approaches to downregulate TNF production in vivo: treatment with dexamethasone (DEX) and induction of endotoxin (lipopolysaccharide) (LPS) tolerance by a 4-day pretreatment with LPS (35 micrograms/mouse/day). Mice were then treated with IL-2 for 5 days (1.8 x 10(5) IU/mouse, twice daily). Both DEX and LPS tolerance blocked development of hydrothorax in IL-2-treated mice and inhibited TNF induction. DEX and LPS tolerance also ameliorated IL-2 toxicity in terms of decrease in food intake and inhibited the increase of the acute-phase protein, serum amyloid A (SAA). The IL-2 activation of splenic natural killer (NK) cell activity was also diminished by DEX and, to a lesser extent, by LPS-tolerance. Treatment with IL-2 also caused induction of the superoxide-generating enzyme xanthine oxidase (XO) in tissues and serum and induced bacterial translocation in the mesenteric lymph nodes (MLN). These data suggest that multiple mechanisms, including NK cell activity, cytokines, and reactive oxygen intermediates, might be important in the vascular toxicity of IL-2.

  7. 1,25-dihydroxyvitamin D3 and dexamethasone increase interleukin-10 production in CD4+ T cells from patients with Crohn's disease

    DEFF Research Database (Denmark)

    Bartels, Lars Erik; Jørgensen, Søren Peter; Agnholt, Jørgen

    2007-01-01

    ,25-dihydroxyvitamin D3 with and without DEX could induce IL-10 production, downregulate pro-inflammatory Interferon (IFN)-gamma and Tumor Necrosis Factor (TNF)-alpha production, and influence cell kinetics in peripheral CD4+ T cells from CD patients. METHODS: CD4+ T cells were separated from peripheral blood from CD......BACKGROUND AND AIM: In Crohn's disease (CD), epidemiological data and animal studies suggest that vitamin D (vitD) has protective immune-modulating properties. 1,25-dihydroxyvitamin D3 and dexamethasone (DEX) induce interleukin (IL)-10 productions in healthy controls (HC) T cells. We studied if 1...... patients and HC. Cells were activated by anti-CD3 and anti-CD28 in the presence of 1,25-dihydroxyvitamin D3 and/or DEX. Cytokine levels, proliferation, and apoptosis were measured following 7 days of culture. RESULTS: In T cells from CD patients, 1,25-dihydroxyvitamin D3 and DEX increased IL-10 production...

  8. Glucocorticoids in early rheumatoid arthritis

    NARCIS (Netherlands)

    Everdingen, Amalia A. van

    2002-01-01

    For 50 years, glucocorticoids (GC) are used for symptomatic treatment of rheumatoid arthritis (RA). In the last decade, results from clinical studies of treatment with GC as additional therapy to long-acting antirheumatic drugs in patients with early RA suggested also disease-modifying properties of

  9. Glucocorticoid programming of intrauterine development.

    Science.gov (United States)

    Fowden, A L; Valenzuela, O A; Vaughan, O R; Jellyman, J K; Forhead, A J

    2016-07-01

    Glucocorticoids (GCs) are important environmental and maturational signals during intrauterine development. Toward term, the maturational rise in fetal glucocorticoid receptor concentrations decreases fetal growth and induces differentiation of key tissues essential for neonatal survival. When cortisol levels rise earlier in gestation as a result of suboptimal conditions for fetal growth, the switch from tissue accretion to differentiation is initiated prematurely, which alters the phenotype that develops from the genotype inherited at conception. Although this improves the chances of survival should delivery occur, it also has functional consequences for the offspring long after birth. Glucocorticoids are, therefore, also programming signals that permanently alter tissue structure and function during intrauterine development to optimize offspring fitness. However, if the postnatal environmental conditions differ from those signaled in utero, the phenotypical outcome of early-life glucocorticoid receptor overexposure may become maladaptive and lead to physiological dysfunction in the adult. This review focuses on the role of GCs in developmental programming, primarily in farm species. It examines the factors influencing GC bioavailability in utero and the effects that GCs have on the development of fetal tissues and organ systems, both at term and earlier in gestation. It also discusses the windows of susceptibility to GC overexposure in early life together with the molecular mechanisms and long-term consequences of GC programming with particular emphasis on the cardiovascular, metabolic, and endocrine phenotype of the offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Characterization of electron beam irradiated collagen-polyvinylpyrrolidone (PVP) and collagen-dextran (DEX) blends

    International Nuclear Information System (INIS)

    Dumitrascu, M.; Sima, E.; Minea, R.; Vancea, C.; Meltze, V.; Albu, M.G.

    2011-01-01

    Complete text of publication follows. The aim of the present study was to investigate the influence of electron beam irradiation on some blends of collagen-polyvinylpyrrolidone (PVP) and collagen-dextran (DEX). The blends were prepared by mixing different quantities of collagen, PVP and DEX in distilled water. After irradiation the obtained hydrogels were processed by controlled drying and freeze-drying. Both types of materials were characterized by FT-IR, FT-Raman, TG, DSC, water uptake and SEM. The intensity of the characteristic bands, in the range 2800-3600 cm -1 from FT-IR spectra, varied considerably as function of absorbed radiation dose. Raman spectra revealed the absence of the characteristic peak at 2700 cm -1 for irradiated blends at 30 kGy. Kinetic parameters were calculated from the TG, DTG and DSC data by means of isoconversion methods at different heating rates. Thereby a relation between absorbed radiation dose and activation energy was established. Water uptake studies were carried out in PBS solution (phosphate buffer saline) at 37 deg C and pH = 7.4 and the results revealed a decrease of the water uptake with increasing of absorbed radiation dose.

  11. Hydroxyapatite/polylactide biphasic combination scaffold loaded with dexamethasone for bone regeneration.

    Science.gov (United States)

    Son, Jun-Sik; Kim, Su-Gwan; Oh, Ji-Su; Appleford, Mark; Oh, Sunho; Ong, Joo L; Lee, Kyu-Bok

    2011-12-15

    This study presents a novel design of a ceramic/polymer biphasic combination scaffold that mimics natural bone structures and is used as a bone graft substitute. To mimic the natural bone structures, the outside cortical-like shells were composed of porous hydroxyapatite (HA) with a hollow interior using a polymeric template-coating technique; the inner trabecular-like core consisted of porous poly(D,L-lactic acid) (PLA) that was loaded with dexamethasone (DEX) and was directly produced using a particle leaching/gas forming technique to create the inner diameter of the HA scaffold. It was observed that the HA and PLA parts of the fabricated HA/PLA biphasic scaffold contained open and interconnected pore structures, and the boundary between both parts was tightly connected without any gaps. It was found that the structure of the combination scaffold was analogous to that of natural bone based on micro-computed tomography analysis. Additionally, the dense, uniform apatite layer was formed on the surface of the HA/PLA biphasic scaffold through a biomimetic process, and DEX was successfully released from the PLA of the biphasic scaffold over a 1-month period. This release caused human embryonic palatal mesenchyme cells to proliferate, differentiate, produce ECM, and form tissue in vitro. Therefore, it was concluded that this functionally graded scaffold is similar to natural bone and represents a potential bone-substitute material. Copyright © 2011 Wiley Periodicals, Inc.

  12. Dexamethasone

    Science.gov (United States)

    ... during periods of stress (injuries, infections, and severe asthma attacks). Ask your pharmacist or doctor how to obtain ... sputum (the matter you cough up during an asthma attack) thickens or changes color from clear white to ...

  13. The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes.

    OpenAIRE

    Salter, M; Pogson, C I

    1985-01-01

    The metabolism of L-tryptophan by isolated liver cells prepared from control, adrenalectomized, glucocorticoid-treated, acute-diabetic, chronic-diabetic and insulin-treated chronic-diabetic rats was studied. Liver cells from adrenalectomized rats metabolized tryptophan at rates comparable with the minimum diurnal rates of controls, but different from rates determined for cells from control rats 4h later. Administration of dexamethasone phosphate increased the activity of tryptophan 2,3-dioxyg...

  14. Dexamethasone up-regulates skeletal muscle maximal Na+,K+ pump activity by muscle group specific mechanisms in humans

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Goodmann, Craig; McKenna, Michael J.

    2005-01-01

    Dexamethasone, a widely clinically used glucocorticoid, increases human skeletal muscle Na+,K+ pump content, but the effects on maximal Na+,K+ pump activity and subunit specific mRNA are unknown. Ten healthy male subjects ingested dexamethasone for 5 days and the effects on Na+,K+ pump content......, maximal activity and subunit specific mRNA level (a1, a2, ß1, ß2, ß3) in deltoid and vastus lateralis muscle were investigated. Before treatment, maximal Na+,K+ pump activity, as well as a1, a2, ß1 and ß2 mRNA levels were higher (P ... increased Na+,K+ pump maximal activity in vastus lateralis and deltoid by 14 ± 7% (P Na+,K+ pump content by 18 ± 9% (P

  15. Effects of Dexamethasone and Insulin Alone or in Combination on Energy and Protein Metabolism Indicators and Milk Production in Dairy Cows in Early Lactation - A Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Mehrdad Sami

    Full Text Available This study investigated the effects of dexamethasone and insulin, when administered at 3rd or 10th day of lactation on energy and protein metabolism in dairy cows.Two hundred Holstein cows were enrolled in a randomized controlled clinical trial. The cows were randomly assigned to receive 1 of 4 treatments at 3 or 10 days in milk: control group, 10-mL i.m. injection of sterile water, group insulin, s.c. injection of 100 units of insulin, group dexamethasone, i.m. injection of 20 mg of dexamethasone, group insulin plus dexamethasone, i.m. injection of 20 mg of dexamethasone and 100 units of insulin. The cows randomly assigned to receive the treatments on 3 or 10 days of lactation. Serum samples obtained at the time of enrollment, time of treatment and at 2, 4, 7 and 14 days after intervention. The sera were analyzed for β-hydroxybutyrate (BHBA, nonesterified fatty acids (NEFA, glucose, cholesterol, albumin, urea, and aspartate amino transferase (AST. Data were analyzed using a repeated measures mixed model that accounted for the effects of parity, body condition score, dystocia, retained placenta, metritis and the random effect of cow.There was no significant interaction of group of treatment and time of intervention (day 3 or 10 post-partum on serum components. Cows that received insulin or dexamethasone alone or in combination, had lower BHBA 2 days after treatment compared with control cows, whereas concentrations of NEFA, were unaffected suggesting that glucocorticoids lipolytic effects do not appear to be important in healthy cows. AST activities significantly reduced in cows that received dexamethasone with or without insulin at 2 and 4 days after treatment. Albumin and urea concentrations 2 days after treatment were higher for cows that received dexamethasone only or dexamethasone plus insulin compared with control and Ins received cows. There were no treatment effects on test-day milk production, milk fat and protein percentages

  16. Effects of Dexamethasone and Insulin Alone or in Combination on Energy and Protein Metabolism Indicators and Milk Production in Dairy Cows in Early Lactation - A Randomized Controlled Trial.

    Science.gov (United States)

    Sami, Mehrdad; Mohri, Mehrdad; Seifi, Hesam A

    2015-01-01

    This study investigated the effects of dexamethasone and insulin, when administered at 3rd or 10th day of lactation on energy and protein metabolism in dairy cows. Two hundred Holstein cows were enrolled in a randomized controlled clinical trial. The cows were randomly assigned to receive 1 of 4 treatments at 3 or 10 days in milk: control group, 10-mL i.m. injection of sterile water, group insulin, s.c. injection of 100 units of insulin, group dexamethasone, i.m. injection of 20 mg of dexamethasone, group insulin plus dexamethasone, i.m. injection of 20 mg of dexamethasone and 100 units of insulin. The cows randomly assigned to receive the treatments on 3 or 10 days of lactation. Serum samples obtained at the time of enrollment, time of treatment and at 2, 4, 7 and 14 days after intervention. The sera were analyzed for β-hydroxybutyrate (BHBA), nonesterified fatty acids (NEFA), glucose, cholesterol, albumin, urea, and aspartate amino transferase (AST). Data were analyzed using a repeated measures mixed model that accounted for the effects of parity, body condition score, dystocia, retained placenta, metritis and the random effect of cow. There was no significant interaction of group of treatment and time of intervention (day 3 or 10 post-partum) on serum components. Cows that received insulin or dexamethasone alone or in combination, had lower BHBA 2 days after treatment compared with control cows, whereas concentrations of NEFA, were unaffected suggesting that glucocorticoids lipolytic effects do not appear to be important in healthy cows. AST activities significantly reduced in cows that received dexamethasone with or without insulin at 2 and 4 days after treatment. Albumin and urea concentrations 2 days after treatment were higher for cows that received dexamethasone only or dexamethasone plus insulin compared with control and Ins received cows. There were no treatment effects on test-day milk production, milk fat and protein percentages. The results suggested

  17. Type 1 plaminogen activator inhibitor gene: Functional analysis and glucocorticoid regulation of its promoter

    International Nuclear Information System (INIS)

    Van Zonneveld, A.J.; Curriden, S.A.; Loskutoff, D.J.

    1988-01-01

    Plasminogen activator inhibitor type 1 is an important component of the fibrinolytic system and its biosynthesis is subject to complex regulation. To study this regulation at the level of transcription, the authors have identified and sequenced the promoter of the human plasminogen activator inhibitor type 1 gene. Nuclease protection experiments were performed by using endothelial cell mRNA and the transcription initiation (cap) site was established. Sequence analysis of the 5' flanking region of the gene revealed a perfect TATA box at position -28 to position -23, the conserved distance from the cap site. Comparative functional studies with the firefly luciferase gene as a reporter gene showed that fragments derived from this 5' flanking region exhibited high promoter activity when transfected into bovine aortic endothelial cells and mouse Ltk - fibroblasts but were inactive when introduced into HeLa cells. These studies indicate that the fragments contain the plasminogen activator inhibitor type 1 promoter and that it is expressed in a tissue-specific manner. Although the fragments were also silent in rat FTO2B hepatoma cells, their promoter activity could be induced up to 40-fold with the synthetic glucocorticoid dexamethasone. Promoter deletion mapping experiments and studies involving the fusion of promoter fragments to a heterologous gene indicated that dexamethasone induction is mediated by a glucocorticoid responsive element with enhancer-like properties located within the region between nucleotides -305 and +75 of the plasminogen activator inhibitor type 1 gene

  18. Contralateral eye-to-eye comparison of intravitreal ranibizumab and a sustained-release dexamethasone intravitreal implant in recalcitrant diabetic macular edema

    Directory of Open Access Journals (Sweden)

    Thomas BJ

    2016-08-01

    Full Text Available Benjamin J Thomas, Yoshihiro Yonekawa, Jeremy D Wolfe, Tarek S Hassan Department of Vitreoretinal Surgery, William Beaumont Hospital, Royal Oak, MI, USA Objective: To compare the effects of intravitreal ranibizumab (RZB or dexamethasone (DEX intravitreal implant in cases of recalcitrant diabetic macular edema (DME.Methods: Retrospective, interventional study examining patients with symmetric bilateral, center-involved DME recalcitrant to treatment with RZB, who received DEX in one eye while the contralateral eye continued to receive RZB every 4–5 weeks for a study period of 3 months.Results: Eleven patients (22 eyes were included: mean logarithm of the minimal angle of resolution (logMAR visual acuity (VA for the DEX arm improved from 0.415 (standard deviation [SD] ±0.16 to 0.261 (SD ±0.18 at final evaluation, and mean central macular thickness (CMT improved from 461 µm (SD ±156 to 356 µm (SD ±110; net decrease: 105 µm, P=0.01. Mean logMAR VA for the RZB arm improved from 0.394 (SD ±0.31 to 0.269 (SD ±0.19 at final evaluation. Mean CMT improved from 421 µm (SD ±147 to 373 µm (SD ±129; net decrease: 48 µm, P=0.26.Conclusion: A subset of recalcitrant DME patients demonstrated significant CMT reduction and VA improvement after a single DEX injection. Keywords: aflibercept, bevacizumab, central macular thickness, macular edema, dexamethasone implant, diabetic macular edema, diabetic retinopathy, ranibizumab

  19. Comparative Efficacy of Daratumumab Monotherapy and Pomalidomide Plus Low-Dose Dexamethasone in the Treatment of Multiple Myeloma: A Matching Adjusted Indirect Comparison.

    Science.gov (United States)

    Van Sanden, Suzy; Ito, Tetsuro; Diels, Joris; Vogel, Martin; Belch, Andrew; Oriol, Albert

    2018-03-01

    Daratumumab (a human CD38-directed monoclonal antibody) and pomalidomide (an immunomodulatory drug) plus dexamethasone are both relatively new treatment options for patients with heavily pretreated multiple myeloma. A matching adjusted indirect comparison (MAIC) was used to compare absolute treatment effects of daratumumab versus pomalidomide + low-dose dexamethasone (LoDex; 40 mg) on overall survival (OS), while adjusting for differences between the trial populations. The MAIC method reduces the risk of bias associated with naïve indirect comparisons. Data from 148 patients receiving daratumumab (16 mg/kg), pooled from the GEN501 and SIRIUS studies, were compared separately with data from patients receiving pomalidomide + LoDex in the MM-003 and STRATUS studies. The MAIC-adjusted hazard ratio (HR) for OS of daratumumab versus pomalidomide + LoDex was 0.56 (95% confidence interval [CI], 0.38-0.83; p  = .0041) for MM-003 and 0.51 (95% CI, 0.37-0.69; p  < .0001) for STRATUS. The treatment benefit was even more pronounced when the daratumumab population was restricted to pomalidomide-naïve patients (MM-003: HR, 0.33; 95% CI, 0.17-0.66; p  = .0017; STRATUS: HR, 0.41; 95% CI, 0.21-0.79; p  = .0082). An additional analysis indicated a consistent trend of the OS benefit across subgroups based on M-protein level reduction (≥50%, ≥25%, and <25%). The MAIC results suggest that daratumumab improves OS compared with pomalidomide + LoDex in patients with heavily pretreated multiple myeloma. This matching adjusted indirect comparison of clinical trial data from four studies analyzes the survival outcomes of patients with heavily pretreated, relapsed/refractory multiple myeloma who received either daratumumab monotherapy or pomalidomide plus low-dose dexamethasone. Using this method, daratumumab conferred a significant overall survival benefit compared with pomalidomide plus low-dose dexamethasone. In the absence of head-to-head trials, these

  20. Cross-Comparison of Leaching Strains Isolated from Two Different Regions: Chambishi and Dexing Copper Mines

    Directory of Open Access Journals (Sweden)

    Baba Ngom

    2014-01-01

    Full Text Available A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa and Dexing copper mine (China, Asia, was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains.

  1. Application of Photoshop-based image analysis and TUNEL for the distribution and quantification of dexamethasone-induced apoptotic cells in rat thymus.

    Science.gov (United States)

    Hussar, Piret; Tokin, Ivan; Hussar, Ulo; Filimonova, Galina; Suuroja, Toivo

    2006-01-01

    The aim of the present study was to determine the target site cells in the rat thymus after exposure to the synthetic glucocorticoid, dexamethasone, at therapeutic doses. The findings of histology and histochemistry (Feulgen, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling--TUNEL) with quantification by computerized histomorphometry are described. A quantified investigation of apoptotic and mitotic thymic lymphocytes in 36 young adult Wistar rats was performed at 1-7 days after a 3-day injection of dexamethasone (a total dose of 1.2 mg/rat intraperitoneally). At the first day after dexamethasone administration the moderate involution and atrophy of thymus histology were observed with simultaneous fall in cortical cellularity and mitotic activity of thymocytes. More rapid fall appeared in the inner cortex. The number of apoptotic (TUNEL-positive) cells was significantly increased. On the days 5 and 7 the expression of apoptosis and the cell proliferation were at almost normal level. The findings suggest that dexamethasone-induced apoptosis of cortical thymic lymphocytes, mainly correlated with synchronous inhibition of mitosis and cell number fall in thymus. The main target sites of dexamethasone injury were cells in the inner cortex of lobuli thymi.

  2. Prenatal Dexamethasone and Postnatal High-Fat Diet Decrease Interferon Gamma Production through an Age-Dependent Histone Modification in Male Sprague-Dawley Rats

    Science.gov (United States)

    Yu, Hong-Ren; Tain, You-Lin; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Chen, Chih-Cheng; Kuo, Ho-Chang; Hung, Pi-Lien; Hsieh, Kai-Sheng; Huang, Li-Tung

    2016-01-01

    Overexposure to prenatal glucocorticoid (GC) disturbs hypothalamic-pituitary-adrenocortical axis-associated neuroendocrine metabolism and susceptibility to metabolic syndrome. A high-fat (HF) diet is a major environmental factor that can cause metabolic syndrome. We aimed to investigate whether prenatal GC plus a postnatal HF diet could alter immune programming in rat offspring. Pregnant Sprague-Dawley rats were given intraperitoneal injections of dexamethasone or saline at 14–21 days of gestation. Male offspring were then divided into four groups: vehicle, prenatal dexamethasone exposure, postnatal HF diet (VHF), and prenatal dexamethasone exposure plus a postnatal HF diet (DHF). The rats were sacrificed and adaptive immune function was evaluated. Compared to the vehicle, the DHF group had lower interferon gamma (IFN-γ) production by splenocytes at postnatal day 120. Decreases in H3K9 acetylation and H3K36me3 levels at the IFN-γ promoter correlated with decreased IFN-γ production. The impaired IFN-γ production and aberrant site-specific histone modification at the IFN-γ promoter by prenatal dexamethasone treatment plus a postnatal HF diet resulted in resilience at postnatal day 180. Prenatal dexamethasone and a postnatal HF diet decreased IFN-γ production through a site-specific and an age-dependent histone modification. These findings suggest a mechanism by which prenatal exposure to GC and a postnatal environment exert effects on fetal immunity programming. PMID:27669212

  3. Prenatal Dexamethasone and Postnatal High-Fat Diet Decrease Interferon Gamma Production through an Age-Dependent Histone Modification in Male Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Hong-Ren Yu

    2016-09-01

    Full Text Available Overexposure to prenatal glucocorticoid (GC disturbs hypothalamic-pituitary-adrenocortical axis-associated neuroendocrine metabolism and susceptibility to metabolic syndrome. A high-fat (HF diet is a major environmental factor that can cause metabolic syndrome. We aimed to investigate whether prenatal GC plus a postnatal HF diet could alter immune programming in rat offspring. Pregnant Sprague-Dawley rats were given intraperitoneal injections of dexamethasone or saline at 14–21 days of gestation. Male offspring were then divided into four groups: vehicle, prenatal dexamethasone exposure, postnatal HF diet (VHF, and prenatal dexamethasone exposure plus a postnatal HF diet (DHF. The rats were sacrificed and adaptive immune function was evaluated. Compared to the vehicle, the DHF group had lower interferon gamma (IFN-γ production by splenocytes at postnatal day 120. Decreases in H3K9 acetylation and H3K36me3 levels at the IFN-γ promoter correlated with decreased IFN-γ production. The impaired IFN-γ production and aberrant site-specific histone modification at the IFN-γ promoter by prenatal dexamethasone treatment plus a postnatal HF diet resulted in resilience at postnatal day 180. Prenatal dexamethasone and a postnatal HF diet decreased IFN-γ production through a site-specific and an age-dependent histone modification. These findings suggest a mechanism by which prenatal exposure to GC and a postnatal environment exert effects on fetal immunity programming.

  4. Glucocorticoid resistance is reverted by LCK inhibition in pediatric T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Serafin, Valentina; Capuzzo, Giorgia; Milani, Gloria; Minuzzo, Sonia Anna; Pinazza, Marica; Bortolozzi, Roberta; Bresolin, Silvia; Porcù, Elena; Frasson, Chiara; Indraccolo, Stefano; Basso, Giuseppe; Accordi, Benedetta

    2017-12-21

    Pediatric T-acute lymphoblastic leukemia (T-ALL) patients often display resistance to glucocorticoid (GC) treatment. These patients, classified as prednisone poor responders (PPR), have poorer outcome than do the other pediatric T-ALL patients receiving a high-risk adapted therapy. Because glucocorticoids are administered to ALL patients during all the different phases of therapy, GC resistance represents an important challenge to improving the outcome for these patients. Mechanisms underlying resistance are not yet fully unraveled; thus our research focused on the identification of deregulated signaling pathways to point out new targeted approaches. We first identified, by reverse-phase protein arrays, the lymphocyte cell-specific protein-tyrosine kinase (LCK) as aberrantly activated in PPR patients. We showed that LCK inhibitors, such as dasatinib, bosutinib, nintedanib, and WH-4-023, are able to induce cell death in GC-resistant T-ALL cells, and remarkably, cotreatment with dexamethasone is able to reverse GC resistance, even at therapeutic drug concentrations. This was confirmed by specific LCK gene silencing and ex vivo combined treatment of cells from PPR patient-derived xenografts. Moreover, we observed that LCK hyperactivation in PPR patients upregulates the calcineurin/nuclear factor of activated T cells signaling triggering to interleukin-4 ( IL-4 ) overexpression. GC-sensitive cells cultured with IL-4 display an increased resistance to dexamethasone, whereas the inhibition of IL-4 signaling could increase GC-induced apoptosis in resistant cells. Treatment with dexamethasone and dasatinib also impaired engraftment of leukemia cells in vivo. Our results suggest a quickly actionable approach to supporting conventional therapies and overcoming GC resistance in pediatric T-ALL patients. © 2017 by The American Society of Hematology.

  5. Glucocorticoids regulate surfactant protein synthesis in a pulmonary adenocarcinoma cell line

    International Nuclear Information System (INIS)

    O'Reilly, M.A.; Gazdar, A.F.; Clark, J.C.; Pilot-Matias, T.J.; Wert, S.E.; Hull, W.M.; Whitsett, J.A.

    1989-01-01

    Synthesis of pulmonary surfactant proteins SP-A, SP-B, and SP-C was demonstrated in a cell line derived from a human adenocarcinoma of the lung. The cells contained numerous lamellar inclusion bodies and formed organized groups of cells containing well-developed junctional complexes and apical microvillous membranes. Synthesis of SP-A was detected in the cells by enzyme-linked immunoabsorbent assay and by immunoprecipitation of [35S]methionine-labeled protein. SP-A was identified as an Mr 31,000-36,000 polypeptide containing asparagine-linked carbohydrate. Northern blot analysis detected SP-A mRNA of 2.2 kb. Dexamethasone (1-10 nM) enhanced the relative abundance of SP-A mRNA. Despite stimulation of SP-A mRNA, intracellular SP-A content was unaltered or inhibited by dexamethasone. SP-B and SP-C mRNAs and synthesis of the SP-B and SP-C precursors were markedly induced by dexamethasone. ProSP-B was synthesized and secreted primarily as an Mr 42,000-46,000 polypeptide. Proteolysis of the proSP-B resulted in the generation of endoglycosidase F-sensitive Mr = 19,000-21,000 and 25,000-27,000 peptides, which were detected both intra- and extracellularly. SP-C proprotein of Mr = 22,000 and smaller SP-C fragments were detected intracellularly but were not detected in the media. Mature forms of SP-B (Mr = 8,000) and SP-C (Mr = 4,000) were not detected. Glucocorticoids directly enhance the relative synthesis and mRNA of the surfactant proteins SP-A, SP-B, and SP-C. Discrepancies among SP-A mRNA, its de novo synthesis, and cell content suggest that glucocorticoid may alter both pre- and posttranslational factors modulating SP-A expression

  6. Glucocorticoids and hemopoietic stem cells

    International Nuclear Information System (INIS)

    Romashko, O.O.; Berin, G.I.

    1978-01-01

    Analyzing the data of home and foreign investigators the problems of the glucocorticoid effect on blood and bone marrow of experimental (including irradiated ones) animals are discussed. Considered are a character and mechanism of the adrenal cortex hormones effect on blood formation, as well as the effect of pharmacological doses of corticosteroids on CFU, their erythropoietic effect in physiological doses on a morphological picture of bone marrow after irradiation and subsequent introduction of hormones and the hormone effect on intensity of erythropoiesis recovery in irradiated mice. Presented are the experimental data on studying the effect of endogenic hypercorticoidism and a reduced level of endogenic corticosteroids on blood-forming stem cells in the irradiated mice and the data on the ACTH injection effect on CFU migration after irradiation. Evaluated are already available data and further investigations to ground advisability and conditions of using corticosteroids as well as determining rational therapeutic effects on secretion of endogenic glucocorticoids when treating blood system diseases

  7. Glucocorticoid-regulated and constitutive trafficking of proteolytically processed cell surface-associated glycoproteins in wild type and variant rat hepatoma cells

    International Nuclear Information System (INIS)

    Amacher, S.L.; Goodman, L.J.; Bravo, D.A.; Wong, K.Y.; Goldfine, I.D.; Hawley, D.M.; Firestone, G.L.

    1989-01-01

    Glucocorticoids regulate the trafficking of mouse mammary tumor virus (MMTV) glycoproteins to the cell surface in the rat hepatoma cell line M1.54, but not in the immunoselected sorting variant CR4. To compare the localization of MMTV glycoproteins to another proteolytically processed glycoprotein, both wild type M1.54 cells and variant CR4 cells were transfected with a human insulin receptor (hIR) expression vector, pRSVhIR. The production of cell surface hIR was monitored in dexamethasone-treated and -untreated wild type M1.54 and variant CR4 cells by indirect immunofluorescence, direct plasma membrane immunoprecipitation, and by [125I] insulin binding. In both wild type and variant rat hepatoma cells, hIR were localized at the cell surface in the presence or in the absence of 1 microM dexamethasone. In contrast, the glucocorticoid-regulated trafficking of cell surface MMTV glycoproteins occurred only in wild type M1.54 cells. We conclude that the hIR, which undergoes posttranslational processing reactions similar to MMTV glycoproteins, does not require glucocorticoids to be transported to the plasma membrane and is representative of a subset of cell surface glycoproteins whose trafficking is constitutive in rat hepatoma cells. Thus, MMTV glycoproteins and hIR provide specific cell surface markers to characterize the glucocorticoid-regulated and constitutive sorting pathways

  8. Piper sarmentosum Effects on 11β-Hydroxysteroid Dehydrogenase Type 1 Enzyme in Serum and Bone in Rat Model of Glucocorticoid-Induced Osteoporosis.

    Science.gov (United States)

    Mohamad Asri, Siti Fadziyah; Mohd Ramli, Elvy Suhana; Soelaiman, Ima Nirwana; Mat Noh, Muhamad Alfakry; Abdul Rashid, Abdul Hamid; Suhaimi, Farihah

    2016-11-15

    Glucocorticoid-induced osteoporosis is one of the common causes of secondary osteoporosis. Piper sarmentosum ( Ps ) extract possesses antioxidant and anti-inflammatory activities. In this study, we determined the correlation between the effects of Ps leaf water extract with the regulation of 11β-hydroxysteroid dehydrogenase (HSD) type 1 enzyme activity in serum and bone of glucocorticoid-induced osteoporotic rats. Twenty-four Sprague-Dawley rats were grouped into following: G1: sham-operated group administered with intramuscular vehicle olive oil and vehicle normal saline orally; G2: adrenalectomized (adrx) control group given intramuscular dexamethasone (120 μg/kg/day) and vehicle normal saline orally; G3: adrx group given intramuscular dexamethasone (120 μg/kg/day) and water extract of Piper sarmentosum (125 mg/kg/day) orally. After two months, the femur and serum were taken for ELISA analysis. Results showed that Ps leaf water extract significantly reduced the femur corticosterone concentration ( p < 0.05). This suggests that Ps leaf water extract was able to prevent bone loss due to long-term glucocorticoid therapy by acting locally on the bone cells by increasing the dehydrogenase action of 11β-HSD type 1. Thus, Ps may have the potential to be used as an alternative medicine against osteoporosis and osteoporotic fracture in patients on long-term glucocorticoid treatment.

  9. Glucocorticoid receptor signaling in health and disease

    Science.gov (United States)

    Kadmiel, Mahita; Cidlowski, John A.

    2013-01-01

    Glucocorticoids are steroid hormones regulated in a circadian and stres-associated manner to maintain various metabolic and homeostatic functions that are necessary for life. Synthetic glucocorticoids are widely prescribed drugs for many conditions including asthma, chronic obstructive pulmonary disease (COPD), and inflammatory disorders of the eye. Research in the last few years has begun to unravel the profound complexity of glucocorticoid signaling and has contributed remarkably to improved therapeutic strategies. Glucocorticoids signal through the glucocorticoid receptor, a member of the superfamily of nuclear receptors, in both genomic and non-genomic ways in almost every tissue in the human body. In this review, we will provide an update on glucocorticoid receptor signaling and highlight the role of GR signaling in physiological and pathophysiological conditions in the major organ systems in the human body. PMID:23953592

  10. InDEx: Open Source iOS and Android Software for Self-Reporting and Monitoring of Alcohol Consumption.

    Science.gov (United States)

    Leightley, Daniel; Puddephatt, Jo-Anne; Goodwin, Laura; Rona, Roberto; Fear, Nicola T

    2018-03-23

    InDEx is a software package for reporting and monitoring alcohol consumption via a smartphone application. Consumption of alcohol is self-reported by the user, and the app provides a visual representation of drinking behaviour and offers feedback on consumption levels compared to the general population. InDEx is intended as an exemplar app, operating as a standalone smartphone application and is highly customisable for a variety of research domains. InDEx is written in JavaScript, using IONIC framework which is cross-platform and is available under the liberal GNU General Public License (v3). The software is available from GitHub (https://github.com/DrDanL/index-app-public).

  11. Renal sodium retention in cirrhotic rats depends on glucocorticoid-mediated activation of mineralocorticoid receptor due to decreased renal 11beta-HSD-2 activity

    DEFF Research Database (Denmark)

    Thiesson, Helle; Jensen, Boye L; Bistrup, Claus

    2007-01-01

    Downregulation of the renal glucocorticoid-metabolizing enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD-2) during liver cirrhosis may allow activation of the mineralocorticoid receptor (MR) by glucocorticoids and contribute to sodium retention. We tested this hypothesis in male Wistar...... rats with decompensated liver cirrhosis and ascites 7 wk after bile duct ligation (BDL). Renal 11beta-HSD-2 mRNA, protein, and activity were significantly decreased in decompensated rats. The urinary Na(+)/K(+) ratio was reduced by 40%. Renal epithelial sodium channel (ENaC) mRNA and immunostaining...... were only slightly affected. Complete metabolic studies, including fecal excretion, showed that the BDL rats had avid renal sodium retention. Treatment of the BDL rats with dexamethasone suppressed endogenous glucocorticoid production, normalized total sodium balance and renal sodium excretion...

  12. Glucocorticoid control of gene transcription in neural tissue

    NARCIS (Netherlands)

    Morsink, Maarten Christian

    2007-01-01

    Glucocorticoid hormones exert modulatory effects on neural function in a delayed genomic fashion. The two receptor types that can bind glucocorticoids, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are ligand-inducible transcription factors. Therefore, changes in gene

  13. Glucocorticoid up-regulation of high-affinity interleukin 6 receptors on human epithelial cells

    International Nuclear Information System (INIS)

    Snyers, L.; De Wit, L.; Content, J.

    1990-01-01

    Interleukin 6 (IL-6) is a potent pleiotropic cytokine, known, among others, to stimulate immunoglobulin production by B cells and to trigger acute-phase protein synthesis by hepatocytes. Similar to IL-1, it is produced by monocytes and macrophages following an inflammatory challenge. Analysis of IL-6 receptor (IL-6R) expression on different human cell lines indicates that dexamethasone could up-regulate the number of IL-6R on one epithelial cell line (UAC) and on two hepatoma cell lines (HepG2 and Hep3B). This effect was confirmed by Scatchard analysis of binding experiments, using [ 35 S]methionine and [ 35 S]cysteine metabolically labeled IL-6. It was confirmed at the level of mRNA expression by Northern blot analysis. These results provide evidence for a link between IL-6 and glucocorticoids. They could represent an example of a system in which one role of glucocorticoids is to define more accurately the target of cytokines, and they could explain, at least partly, the frequently observed synergy between IL-6 and glucocorticoids, notably in the case of hepatocytes

  14. Clinical and Genomic Crosstalk between Glucocorticoid Receptor and Estrogen Receptor α In Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Jeffery M. Vahrenkamp

    2018-03-01

    Full Text Available Summary: Steroid hormone receptors are simultaneously active in many tissues and are capable of altering each other’s function. Estrogen receptor α (ER and glucocorticoid receptor (GR are expressed in the uterus, and their ligands have opposing effects on uterine growth. In endometrial tumors with high ER expression, we surprisingly found that expression of GR is associated with poor prognosis. Dexamethasone reduced normal uterine growth in vivo; however, this growth inhibition was abolished in estrogen-induced endometrial hyperplasia. We observed low genomic-binding site overlap when ER and GR are induced with their respective ligands; however, upon simultaneous induction they co-occupy more sites. GR binding is altered significantly by estradiol with GR recruited to ER-bound loci that become more accessible upon estradiol induction. Gene expression responses to co-treatment were more similar to estradiol but with additional regulated genes. Our results suggest phenotypic and molecular interplay between ER and GR in endometrial cancer. : Estrogen receptor α (ER and glucocorticoid receptor (GR are expressed in the uterus and have differential effects on growth. Vahrenkamp et al. find that expression of both receptors is associated with poor outcome in endometrial cancer and that simultaneous induction of ER and GR leads to molecular interplay between the receptors. Keywords: estrogen receptor, glucocorticoid receptor, endometrial cancer

  15. Effect of glucocorticoid therapy upon glucose metabolism in COPD patients with acute exacerbation

    International Nuclear Information System (INIS)

    Wu Sihai; Wei Zhenggan; Huang Ming'an; Yao Jianguo; Li Hongsheng

    2002-01-01

    Objective: To study the effect of glucocorticoids therapy upon glucose metabolism in COPD patients with acute exacerbation. Methods: Plasma glucose and insulin levels in COPD patients after intravenous administration of 10 mg dexamethasone daily for 5 days were determined oral with glucose tolerance test (OGTT) and insulin release test (IRT). Results: 1) The levels of basal plasma glucose and insulin were significantly higher in severe hypoxemic group than those in moderate hypoxemic group (p 2 (r = -0.5242, p < 0.05). 2) The levels of plasma glucose in intermediate and severe hypoxemic groups were remarkable higher (p < 0.05) than those in mild group. The two peak times of glucose curve were observed at one and two hour after oral glucose load. 3) After the administration of glucocorticoids, at half an hour and one hour plasma glucose levels were significantly higher than those before, the peak time of glucose levels appeared earlier and the insulin release levels were higher than they were before therapy (p < 0.05). Conclusion: COPD patients with acute exacerbation complicated with hypoxemia had problems of impaired glucose tolerance. The administration of glucocorticoids made the impairment worse

  16. The use of dexamethasone in animals: implication for fertility ...

    African Journals Online (AJOL)

    Exposure to dexamethasone causes numerous changes in various biological systems including the reproductive system and this has huge implication on fertility and pregnancy. Maternal dexamethasone administration promotes foetal lung maturation and thermoregulation in premature foetuses. This indication makes ...

  17. The role of dexamethasone in peripheral and neuraxial nerve blocks ...

    African Journals Online (AJOL)

    pain and prolongs analgesia in the postoperative period when combined with ... management of acute pain and that focused on dexamethasone's ability to prolong ... of dexamethasone to brachial plexus nerve blocks and Akram and Hassani ...

  18. Intra-Articular Injection of Cross-Linked Hyaluronic Acid-Dexamethasone Hydrogel Attenuates Osteoarthritis: An Experimental Study in a Rat Model of Osteoarthritis.

    Science.gov (United States)

    Zhang, Zhiwei; Wei, Xiaochun; Gao, Jizong; Zhao, Yu; Zhao, Yamin; Guo, Li; Chen, Chongwei; Duan, Zhiqing; Li, Pengcui; Wei, Lei

    2016-04-15

    Cross-linked hyaluronic acid hydrogel (cHA gel) and dexamethasone (Dex) have been used to treat knee osteoarthritis (OA) in clinical practice owing to their chondroprotective and anti-inflammatory effects, respectively. The aim of the present study was to compare the treatment effects of the cHA gel pre-mixed with/without Dex in a surgery-induced osteoarthritis model in rats. Anterior cruciate ligament transection (ACLT) surgery was performed on the right knee of rats to induce OA. Male 2-month-old Sprague-Dawley rats were randomly divided into five groups (n = 10/per group): (1) ACLT + saline; (2) ACLT + cHA gel; (3) ACLT + cHA-Dex (0.2 mg/mL) gel; (4) ACLT + cHA-Dex (0.5 mg/mL) gel; (5) Sham + saline. Intra-joint injections were performed four weeks after ACLT in the right knee. All animals were euthanized at 12 weeks post-surgery. Cartilage damage and changes in the synovial membrane were assessed by micro X-ray, Indian ink articular surface staining, Safranin-O/Fast Green staining, immunohistochemistry, hematoxylin and eosin staining of the synovial membrane, and quantitative reverse transcription-polymerase chain reaction for changes in gene expression. Micro X-ray revealed that the knee joint treated with the cHA-Dex gel was wider than those treated with cHA gel alone or saline. The cHA-Dex gel group had less Indian ink staining (indicator of cartilage fibrillation) than the cHA gel or saline injection groups. Safranin-O/Fast Green staining indicated that increased proteoglycan staining and less cartilage damage were found in the cHA-Dex gel group compared with the cHA gel or saline injection groups. Quantification of histology findings from saline, cHA gel, cHA-Dex (0.2 mg/mL) gel, cHA-Dex (0.5 mg/mL) gel, and sham groups were 5.84 ± 0.29, 4.50 ± 0.87, 3.00 ± 1.00, 2.00 ± 0.48, and 0.30 ± 0.58 (p < 0.05), respectively. A strong staining of type II collagen was found in both the cHA-Dex gel groups compared with saline group or cHA alone group. Similar

  19. Intra-Articular Injection of Cross-Linked Hyaluronic Acid-Dexamethasone Hydrogel Attenuates Osteoarthritis: An Experimental Study in a Rat Model of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Zhiwei Zhang

    2016-04-01

    Full Text Available Cross-linked hyaluronic acid hydrogel (cHA gel and dexamethasone (Dex have been used to treat knee osteoarthritis (OA in clinical practice owing to their chondroprotective and anti-inflammatory effects, respectively. The aim of the present study was to compare the treatment effects of the cHA gel pre-mixed with/without Dex in a surgery-induced osteoarthritis model in rats. Anterior cruciate ligament transection (ACLT surgery was performed on the right knee of rats to induce OA. Male 2-month-old Sprague-Dawley rats were randomly divided into five groups (n = 10/per group: (1 ACLT + saline; (2 ACLT + cHA gel; (3 ACLT + cHA-Dex (0.2 mg/mL gel; (4 ACLT + cHA-Dex (0.5 mg/mL gel; (5 Sham + saline. Intra-joint injections were performed four weeks after ACLT in the right knee. All animals were euthanized at 12 weeks post-surgery. Cartilage damage and changes in the synovial membrane were assessed by micro X-ray, Indian ink articular surface staining, Safranin-O/Fast Green staining, immunohistochemistry, hematoxylin and eosin staining of the synovial membrane, and quantitative reverse transcription-polymerase chain reaction for changes in gene expression. Micro X-ray revealed that the knee joint treated with the cHA-Dex gel was wider than those treated with cHA gel alone or saline. The cHA-Dex gel group had less Indian ink staining (indicator of cartilage fibrillation than the cHA gel or saline injection groups. Safranin-O/Fast Green staining indicated that increased proteoglycan staining and less cartilage damage were found in the cHA-Dex gel group compared with the cHA gel or saline injection groups. Quantification of histology findings from saline, cHA gel, cHA-Dex (0.2 mg/mL gel, cHA-Dex (0.5 mg/mL gel, and sham groups were 5.84 ± 0.29, 4.50 ± 0.87, 3.00 ± 1.00, 2.00 ± 0.48, and 0.30 ± 0.58 (p < 0.05, respectively. A strong staining of type II collagen was found in both the cHA-Dex gel groups compared with saline group or cHA alone group

  20. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

    NARCIS (Netherlands)

    S.W. Paugh (Steven); E.J. Bonten (Erik J.); D. Savic (Daniel); L.B. Ramsey (Laura B.); W.E. Thierfelder (William E.); P. Gurung (Prajwal); R.K.S. Malireddi (R. K. Subbarao); M. Actis (Marcelo); A. Mayasundari (Anand); J. Min (Jaeki); D.R. Coss (David R.); L.T. Laudermilk (Lucas T.); J.C. Panetta (John); J.R. McCorkle (J. Robert); Y. Fan (Yiping); K.R. Crews (Kristine R.); G. Stocco (Gabriele); M.R. Wilkinson (Mark R.); A.M. Ferreira (Antonio M.); C. Cheng (Cheng); W. Yang (Wenjian); S.E. Karol (Seth E.); C.A. Fernandez (Christian A.); B. Diouf (Barthelemy); C. Smith (Colton); J.K. Hicks (J Kevin); A. Zanut (Alessandra); A. Giordanengo (Audrey); D.J. Crona; J.J. Bianchi (Joy J.); L. Holmfeldt (Linda); C.G. Mullighan (Charles); M.L. den Boer (Monique); R. Pieters (Rob); S. Jeha (Sima); T.L. Dunwell (Thomas L.); F. Latif (Farida); D. Bhojwani (Deepa); W.L. Carroll (William L.); C.-H. Pui (Ching-Hon); R.M. Myers (Richard M.); R.K. Guy (R Kiplin); T.-D. Kanneganti (Thirumala-Devi); M.V. Relling (Mary); W.E. Evans (William)

    2015-01-01

    textabstractGlucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia

  1. Fingerprinting two metal contaminants in streams with Cu isotopes near the Dexing Mine, China

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shiming [Chinese Geological Survey, Nanjing Center, Nanjing (China); Mathur, Ryan, E-mail: mathurr@juniata.edu [Department of Geology, Juniata College, Huntingdon, PA (United States); Ruiz, Joaquin [Department of Geosciences, University of Arizona, Tucson, AZ (United States); Chen, Dandan [Chinese Geological Survey, Nanjing Center, Nanjing (China); Allin, Nicholas [Department of Geology, Juniata College, Huntingdon, PA (United States); Guo, Kunyi; Kang, Wenkai [Chinese Geological Survey, Nanjing Center, Nanjing (China)

    2016-02-15

    Transition metal isotope signatures are becoming useful for fingerprinting sources in surface waters. This study explored the use of Cu isotope values to trace dissolved metal contaminants in stream water throughout a watershed affected by mining by-products of the Dexing Mine, the largest porphyry Cu operation in Asia. Cu isotope values of stream water were compared to potential mineral sources of Cu in the mining operation, and to proximity to the known Cu sources. The first mineral source, chalcopyrite, CuFeS{sub 2} has a ‘tight’ cluster of Cu isotope values (− 0.15‰ to + 1.65‰; + 0.37 ± 0.6‰, 1σ, n = 10), and the second mineral source, pyrite (FeS{sub 2}), has a much larger range of Cu isotope values (− 4‰ to + 11.9‰; 2.7 ± 4.3‰, 1σ, n = 16). Dissolved Cu isotope values of stream water indicated metal derived from either chalcopyrite or pyrite. Above known Cu mineralization, stream waters are approximately + 1.5‰ greater than the average chalcopyrite and are interpreted as derived from weathering of chalcopyrite. In contrast, dissolved Cu isotope values in stream water emanating from tailings piles had Cu isotope values similar to or greater than pyrite (>+6‰, a common mineral in the tailings). These values are interpreted as sourced from the tailings, even in solutions that possess significantly lower concentrations of Cu (< 0.05 ppm). Elevated Cu isotope values were also found in two soil and two tailings samples (δ{sup 65}Cu ranging between + 2 to + 5‰). These data point to the mineral pyrite in tailings as the mineral source for the elevated Cu isotope values. Therefore, Cu isotope values of waters emanating from a clearly contaminated drainage possess different Cu isotope values, permitting the discrimination of Cu derived from chalcopyrite and pyrite in solution. Data demonstrate the utility of Cu isotopic values in waters, minerals, and soils to fingerprint metallic contamination for environmental problems. - Highlights:

  2. Dexamethasone for pain after outpatient shoulder surgery

    DEFF Research Database (Denmark)

    Bjørnholdt, K. T.; Mønsted, P. N.; Søballe, Kjeld

    2014-01-01

    Background Dexamethasone has analgesic properties when given intravenously before surgery, but the optimal dose has not been determined. We hypothesised that a dose of 40 mg dexamethasone would improve analgesia after outpatient shoulder surgery compared with 8 mg. Methods A randomised, double...... a dose–response relationship, increasing the dexamethasone dose from 8 to 40 mg did not improve analgesia significantly after outpatient shoulder surgery.......) or placebo (D0) before surgery. The primary outcome was pain intensity 8 h after surgery rated on a numeric rating scale of 0 to 10. Secondary outcomes were pain intensity, analgesic consumption and side effects during the first 3 days after surgery. Results Data from 73 patients were available for analysis...

  3. Glucocorticoid control of rat growth hormone gene expression: Effect on cytoplasmic messenger ribonucleic acid production and degradation

    International Nuclear Information System (INIS)

    Gertz, B.J.; Gardner, D.G.; Baxter, J.D.

    1987-01-01

    The effect of the glucocorticoid dexamethasone on the production and degradation of rat GH (rGH) cytoplasmic mRNA was studied in cultured rat pituitary tumor (GC) cells. The incorporation of [3H]uridine into both rGH cytoplasmic mRNA and the pyrimidine nucleotide precursor pool was determined in hormone-treated and control cells. From these measurements glucocorticoid effects on absolute production rates of rGH cytoplasmic mRNA were determined and compared to effects on rGH mRNA accumulation. Rat GH mRNA half-life was then calculated based on a first-order decay model. Rat GH mRNA half-life was also directly assayed by: (1) pulse-chase studies and (2) measuring the kinetics of decay of rGH mRNA in cells after transfer from serum-containing to hormone-deficient media. From these independent analyses rGH mRNA half-life estimates ranged from 28-55 h in different experiments. Within individual experiments there was little variability of rGH mRNA decay rates; glucocorticoids were found not to alter the stability of rGH cytoplasmic mRNA. Glucocorticoid induction of rGH cytoplasmic mRNA accumulation was accounted for solely on the basis of increased mRNA production

  4. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.

    Science.gov (United States)

    Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.

  5. Optimal glucocorticoid replacement in adrenal insufficiency.

    Science.gov (United States)

    Øksnes, Marianne; Ross, Richard; Løvås, Kristian

    2015-01-01

    Adrenal insufficiency (glucocorticoid deficiency) comprises a group of rare diseases, including primary adrenal insufficiency, secondary adrenal insufficiency and congenital adrenal hyperplasia. Lifesaving glucocorticoid therapy was introduced over 60 years ago, but since then a number of advances in treatment have taken place. Specifically, little is known about short- and long-term treatment effects, and morbidity and mortality. Over the past decade, systematic cohort and registry studies have described reduced health-related quality of life, an unfavourable metabolic profile and increased mortality in patients with adrenal insufficiency, which may relate to unphysiological glucocorticoid replacement. This has led to the development of new modes of replacement that aim to mimic normal glucocorticoid physiology. Here, evidence for the inadequacy of conventional glucocorticoid therapy and recent developments in treatment are reviewed, with an emphasis on primary adrenal insufficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Glucocorticoids as mediators of developmental programming effects.

    Science.gov (United States)

    Khulan, Batbayar; Drake, Amanda J

    2012-10-01

    Epidemiological evidence suggests that exposure to an adverse environment in early life is associated with an increased risk of cardio-metabolic and behavioral disorders in adulthood, a phenomenon termed 'early life programming'. One major hypothesis for early life programming is fetal glucocorticoid overexposure. In animal studies, prenatal glucocorticoid excess as a consequence of maternal stress or through exogenous administration to the mother or fetus is associated with programming effects on cardiovascular and metabolic systems and on the brain. These effects can be transmitted to subsequent generations. Studies in humans provide some evidence that prenatal glucocorticoid exposure may exert similar programming effects on glucose/insulin homeostasis, blood pressure and neurodevelopment. The mechanisms by which glucocorticoids mediate these effects are unclear but may include a role for epigenetic modifications. This review discusses the evidence for glucocorticoid programming in animal models and in humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Altered pathogenesis of porcine respiratory coronavirus in pigs due to immunosuppressive effects of dexamethasone: implications for corticosteroid use in treatment of severe acute respiratory syndrome coronavirus.

    Science.gov (United States)

    Jung, Kwonil; Alekseev, Konstantin P; Zhang, Xinsheng; Cheon, Doo-Sung; Vlasova, Anastasia N; Saif, Linda J

    2007-12-01

    The pathogenesis and optimal treatments for severe acute respiratory syndrome (SARS) are unclear, although corticosteroids were used to reduce lung and systemic inflammation. Because the pulmonary pathology of porcine respiratory coronavirus (PRCV) in pigs resembles SARS, we used PRCV as a model to clarify the effects of the corticosteroid dexamethasone (DEX) on coronavirus (CoV)-induced pneumonia. Conventional weaned pigs (n = 130) in one of four groups (PRCV/phosphate-buffered saline [PBS] [n = 41], PRCV/DEX [n = 41], mock/PBS [n = 23], and mock/DEX [n = 25]) were inoculated intranasally and intratracheally with the ISU-1 strain of PRCV (1 x 10(7) PFU) or cell culture medium. DEX was administered (once daily, 2 mg/kg of body weight/day, intramuscularly) from postinoculation day (PID) 1 to 6. In PRCV/DEX pigs, significantly milder pneumonia, fewer PRCV-positive cells, and lower viral RNA titers were present in lungs early at PID 2; however, at PID 4, 10, and 21, severe bronchointerstitial pneumonia, significantly higher numbers of PRCV-positive cells, and higher viral RNA titers were observed compared to results for PRCV/PBS pigs. Significantly lower numbers of CD2(+), CD3(+), CD4(+), and CD8(+) T cells were also observed in lungs of PRCV/DEX pigs than in those of PRCV/PBS pigs at PID 8 and 10, coincident with fewer gamma interferon (IFN-gamma)-secreting cells in the tracheobronchial lymph nodes as determined by enzyme-linked immunospot assay. Our results confirm that DEX treatment alleviates PRCV pneumonia early (PID 2) in the infection but continued use through PID 6 exacerbates later stages of infection (PID 4, 10, and 21), possibly by decreasing cellular immune responses in the lungs (IFN-gamma-secreting T cells), thereby creating an environment for more-extensive viral replication. These data have potential implications for corticosteroid use with SARS-CoV patients and suggest a precaution against prolonged use based on their unproven efficacy in humans

  8. Regulation of hormone release by cultured cells from a thyrotropin-growth hormone-secreting pituitary tumor. Direct inhibiting effects of 3,5,3'-triiodothyronine and dexamethasone on thyrotropin secretion.

    Science.gov (United States)

    Lamberts, S W; Oosterom, R; Verleun, T; Krenning, E P; Assies, H

    1984-08-01

    The regulation of TSH and GH secretion was investigated in cultured tumor cells prepared from a mixed TSH/GH secreting pituitary tumor. The tumor tissue had been removed transsphenoidally from a patient with hyperthyroidism and inappropriately high serum TSH levels and acromegaly. TSH and GH secretion by cultured cells were stimulated in a parallel way by TRH (300 nM) and LHRH (50 nM), but were unaffected by bromocriptine (10 nM). Exposure of the tumor cells to dexamethasone (0.1 microM) or T3 (50 nM) had differential effects on hormone secretion. GH secretion was greatly stimulated by dexamethasone, but unaffected by T3. TSH secretion was inhibited both by T3 and by dexamethasone. So, T3 and glucocorticoids inhibit TSH release by the human pituitary tumor cells studied at least partly by means of a direct effect.

  9. Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism.

    Science.gov (United States)

    Nikolopoulou, Elena; Mytilinaios, Dimitrios; Calogero, Aldo E; Kamilaris, Themis C; Troupis, Theodore; Chrousos, George P; Johnson, Elizabeth O

    2015-08-01

    Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [(3)H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.

  10. Risk of catecholaminergic crisis following glucocorticoid administration in patients with an adrenal mass: a literature review.

    Science.gov (United States)

    Barrett, Catherine; van Uum, Stan H M; Lenders, Jacques W M

    2015-11-01

    Glucocorticoids as diagnostic or therapeutic agents have been reported to carry an increased risk of catecholaminergic crisis (CC) in patients with pheochromocytoma or paraganglioma (PPGL). We searched literature databases using the following terms: pheochromocytoma, paraganglioma, adrenal incidentaloma, steroids, glucocorticoids, dexamethasone suppression test (DST), hypertensive crisis, cosyntropin and CRH. From all published case reports (1962-2013), we reviewed medical history, presenting symptoms, dose and route of steroid administration, location and size of adrenal mass, biochemical phenotype and outcome. Twenty-five case reports describing a CC were identified. Three patients with an adrenal incidentaloma suffered a CC following high-dose DST, and in one case, this was fatal. In two of these patients, biochemical testing missed the diagnosis, and in the third, a DST was done despite elevated urinary metanephrines. No CC has been reported for patients undergoing a low-dose DST. Three of 16 patients who received therapeutic glucocorticoids and four of six patients following cosyntropin testing died. No specific biochemical phenotype was related to adverse events. Although a causal relationship cannot be established from this review, it seems prudent to exclude a PPGL in patients with a large incidentaloma or when high-dose DST is considered in a patient with an incidentaloma of any size. Our literature review does not support the need for biochemical testing for PPGL prior to a low-dose (1 mg) DST. Finally, before starting therapeutic glucocorticoids, any clinical signs or symptoms of a potential PPGL should prompt reliable biochemical testing to rule out a PPGL. © 2015 John Wiley & Sons Ltd.

  11. Dexamethasone abrogates the antimicrobial and antibiofilm activities of different drugs against clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Aquila Rodrigues

    2017-01-01

    Full Text Available Staphylococcus aureus and Pseudomonas aeruginosa are part of the human microbiota and are also important bacterial pathogens, for which therapeutic options are lacking nowadays. The combined administration of corticosteroids and antimicrobials is commonly used in the treatment of infectious diseases to control inflammatory processes and to minimize potential toxicity of antimicrobials, avoiding sequelae. Although different pharmaceutical dosage forms of antimicrobials combined to corticosteroids are available, studies on the interference of corticosteroids on the pharmacological activity of antimicrobials are scarce and controversial. Here, we provide evidence of the interference of dexamethasone on the pharmacological activity of clinically important antimicrobial drugs against biofilms and planktonic cells of S. aureus and P. aeruginosa. Broth microdilution assays of minimal inhibitory concentration (MIC, minimum bactericidal concentration (MBC, and minimum biofilm eradication concentration (MBEC of gentamicin, chloramphenicol, oxacillin, ceftriaxone and meropenem were conducted with and without the addition of dexamethasone. The effect of all drugs was abrogated by dexamethasone in their MIC, MBC, and MBEC, except gentamicin and meropenem, for which the MBC was not affected in some strains. The present study opens doors for more investigations on in vitro and in vivo effects and safety of the combination of antimicrobials and glucocorticoids.

  12. N-myristoylated ubiquitin ligase Cbl-b inhibitor prevents on glucocorticoid-induced atrophy in mouse skeletal muscle.

    Science.gov (United States)

    Ochi, Arisa; Abe, Tomoki; Nakao, Reiko; Yamamoto, Yoriko; Kitahata, Kanako; Takagi, Marina; Hirasaka, Katsuya; Ohno, Ayako; Teshima-Kondo, Shigetada; Taesik, Gwag; Choi, Inho; Kawamura, Tomoyuki; Nemoto, Hisao; Mukai, Rie; Terao, Junji; Nikawa, Takeshi

    2015-03-15

    A DGpYMP peptide mimetic of tyrosine(608)-phosphorylated insulin receptor substrate-1 (IRS-1), named Cblin, was previously shown to significantly inhibit Cbl-b-mediated IRS-1 ubiquitination. In the present study, we developed N-myristoylated Cblin and investigated whether it was effective in preventing glucocorticoid-induced muscle atrophy. Using HEK293 cells overexpressing Cbl-b, IRS-1 and ubiquitin, we showed that the 50% inhibitory concentrations of Cbl-b-mediated IRS-1 ubiquitination by N-myristoylated Cblin and Cblin were 30 and 120 μM, respectively. Regarding the DEX-induced atrophy of C2C12 myotubes, N-myristoylated Cblin was more effective than Cblin for inhibiting the DEX-induced decreases in C2C12 myotube diameter and IRS-1 degradation. The inhibitory efficacy of N-myristoylated Cblin on IRS-1 ubiquitination in C2C12 myotubes was approximately fourfold larger than that of Cblin. Furthermore, N-myristoylation increased the incorporation of Cblin into HEK293 cells approximately 10-folds. Finally, we demonstrated that N-myristoylated Cblin prevented the wet weight loss, IRS-1 degradation, and MAFbx/atrogin-1 and MuRF-1 expression in gastrocnemius muscle of DEX-treated mice approximately fourfold more effectively than Cblin. Taken together, these results suggest that N-myristoylated Cblin prevents DEX-induced skeletal muscle atrophy in vitro and in vivo, and that N-myristoylated Cblin more effectively prevents muscle atrophy than unmodified Cblin. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Does Growth Impairment Underlie the Adverse Effects of Dexamethasone on Development of Noradrenergic Systems?

    Science.gov (United States)

    Slotkin, Theodore A; Ko, Ashley; Seidler, Frederic J

    2018-06-20

    Glucocorticoids are given in preterm labor to prevent respiratory distress but these agents evoke neurobehavioral deficits in association with reduced brain region volumes. To determine whether the neurodevelopmental effects are distinct from growth impairment, we gave developing rats dexamethasone at doses below or within the therapeutic range (0.05, 0.2 or 0.8 mg/kg) at different stages: gestational days (GD) 17-19, postnatal days (PN) 1-3 or PN7-9. In adolescence and adulthood, we assessed the impact on noradrenergic systems in multiple brain regions, comparing the effects to those on somatic growth or on brain region growth. Somatic growth was reduced with exposure in all three stages, with greater sensitivity for the postnatal regimens; brain region growth was impaired to a lesser extent. Norepinephrine content and concentration were reduced depending on the treatment regimen, with a rank order of deficits of PN7-9 > PN1-3 > GD17-19. However, brain growth impairment did not parallel reduced norepinephrine content in magnitude, dose threshold, sex or regional selectivity, or temporal pattern, and even when corrected for reduced brain region weights (norepinephrine per g tissue), the dexamethasone-exposed animals showed subnormal values. Regression analysis showed that somatic growth impairment accounted for an insubstantial amount of the reduction in norepinephrine content, and brain growth impairment accounted for only 12%, whereas specific effects on norepinephrine accounted for most of the effect. The adverse effects of dexamethasone on noradrenergic system development are not simply related to impaired somatic or brain region growth, but rather include specific targeting of neurodifferentiation. Copyright © 2018. Published by Elsevier B.V.

  14. Dexamethasone Therapy for Bacterial Meningitis: Better Never Than Late?

    Directory of Open Access Journals (Sweden)

    Susan M King

    1994-01-01

    Full Text Available A multicentre randomized controlled trial was conducted in children with bacterial meningitis using dexamethasone or placebo for four days within 24 h of starting antibiotics. Primary outcomes were hearing loss and neurological abnormalities at 12 months after meningitis. The dexamethasone (n=50 and placebo (n=51 groups were similar in age, severity of illness and etiological agent. Hearing loss occurred in 10% and 11% of the dexamethasone and placebo groups and neurological deficits occurred in 20% and 18% of patients, respectively. Duodenal perforation occurred in one dexamethasone-treated child. In conclusion, there was no significant benefit in those receiving dexamethasone. The lack of benefit may have been due to the delay in administration of dexamethasone (median delay of 11 h after antibiotics. Therefore, if dexamethasone is used for meningitis it should be given immediately with the antibiotic.

  15. Pinoresinol diglucoside exhibits protective effect on dexamethasone ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of pinoresinol diglucoside (PDG) on dexamethasone-induced osteoporosis in rats. Methods: Sixty Wistar rats were randomly and equally divided into normal, control, alendronate and PDG (10, 20 or 40 mg/kg) groups. Bone tissue parameters, including length, transverse diameter, weight, ...

  16. Effects of dexamethasone on brain edema

    International Nuclear Information System (INIS)

    Takemoto, Motohisa

    1982-01-01

    Experimental cerebral edema was produced on the right parietal lobe of Wistar male rats with a cold metal probe cooled by liquid nitrogen. Twenty hour later, 3 H-dexamethasone was either intramuscularly or intravenously injected into rats, estimated in the brain tissue by the liquid scintillation counting method. Edematous brain generally contained much higher 3 H-activity than the control. Furthermore, I.V. injection showed higher 3 H-activity than I.M injection in edematous and control brains at all times. For examination of the subcellular distribution of 3 H-dexamethasone in edematous brain, 3 H-activity was most strongly detected in the supernatant fraction (63%), followed by the heavy mitochondrial fraction (25.4%) and the nuclear fraction (8.4%). Although edematous brain tissue constantly demonstrated higher 3 H-activity than the control, its supernatant fraction conversely had less activity. As a next step, distribution of 3 H-dexamethasone in the supernatant fraction was studies. The result was that the high molecular weight fraction in the edematous brain showed higher radioactivity than the control. From these findings, unequivocal distribution of dexamethasone in the supernatant fraction of edematous brain tissue could be correlated with its biochemical action for preventing brain edema. (J.P.N.)

  17. Antinociception induced by chronic glucocorticoid treatment is correlated to local modulation of spinal neurotransmitter content

    Directory of Open Access Journals (Sweden)

    Almeida Armando

    2009-07-01

    Full Text Available Abstract Background While acute effects of stress on pain are well described, those produced by chronic stress are still a matter of dispute. Previously we demonstrated that chronic unpredictable stress results in antinociception in the tail-flick test, an effect that is mediated by increased levels of corticosteroids. In the present study, we evaluated nociception in rats after chronic treatment with corticosterone (CORT and dexamethasone (DEX in order to discriminate the role of each type of corticosteroid receptors in antinociception. Results Both experimental groups exhibited a pronounced antinociceptive effect after three weeks of treatment when compared to controls (CONT; however, at four weeks the pain threshold in CORT-treated animals returned to basal levels whereas in DEX-treated rats antinociception was maintained. In order to assess if these differences are associated with altered expression of neuropeptides involved in nociceptive transmission we evaluated the density of substance P (SP, calcitonin gene-related peptide (CGRP, somatostatin (SS and B2-γ-aminobutiric acid receptors (GABAB2 expression in the spinal dorsal horn using light density measurements and stereological techniques. After three weeks of treatment the expression of CGRP in the superficial dorsal horn was significantly decreased in both CORT and DEX groups, while GABAB2 was significantly increased; the levels of SP for both experimental groups remained unchanged at this point. At 4 weeks, CGRP and SP are reduced in DEX-treated animals and GABAB2 unchanged, but all changes were restored to CONT levels in CORT-treated animals. The expression of SS remained unaltered throughout the experimental period. Conclusion These data indicate that corticosteroids modulate nociception since chronic corticosteroid treatment alters the expression of neuropeptides involved in nociceptive transmission at the spinal cord level. As previously observed in some supraspinal areas, the

  18. Comparison of dexamethasone intravitreal implant and intravitreal triamcinolone acetonide for the treatment of pseudophakic cystoid macular edema in diabetic patients

    Directory of Open Access Journals (Sweden)

    Dang Y

    2014-09-01

    Full Text Available Yalong Dang,1,* Yalin Mu,2,* Lin Li,3,* Yahui Mu,2 Shujing Liu,2 Chun Zhang,4 Yu Zhu,1 Yimin Xu4 1Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 2Department of Ophthalmology, Yellow River Hospital, Henan University of Science and Technology, Sanmenxia, Henan Province, 3Department of Ophthalmology, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province, 4Department of Ophthalmology, Peking University Third Hospital, Haidian District, Beijing, People's Republic of China *These authors contributed equally to this work. Background and objective: Our objective was to investigate the efficacy and safety of dexamethasone (DEX implant for the treatment of pseudophakic cystoid macular edema (PCME in diabetic patients. Study design: This was a prospective, non-randomized, interventional case series of 43 participants. Eighteen patients were enrolled in the DEX implant group and 25 were enrolled in an intravitreal triamcinolone acetonide (IVTA group. Main outcome measures: The primary efficacy measurement was the percentage of patients who gained improvements of more than ten letters in best corrected visual acuity (BCVA during 6 months of follow-up. Other efficacy measurements included change in BCVA, change in central macular thickness (CMT, and number of retreatments. The primary safety evaluation was the percentage of patients with intraocular hypertension and variation in intraocular pressure (IOP during 6 months of follow-up. Other adverse events, such as conjunctival hemorrhage, eye pain, secondary infection, endophthalmitis, noninfectious inflammation, retinal detachment, and implant migration, were also recorded during follow-up. Results: At month 1, we observed that the percentage of patients gaining improvement of more than ten letters was similar in both groups (P=0.625. As patients in the IVTA group were retreated several times, this

  19. Effect of reducing milk production using a prolactin-release inhibitor or a glucocorticoid on metabolism and immune functions in cows subjected to acute nutritional stress.

    Science.gov (United States)

    Ollier, S; Beaudoin, F; Vanacker, N; Lacasse, P

    2016-12-01

    When cows are unable to consume enough feed to support milk production, they often fall into severe negative energy balance. This leads to a weakened immune system and increases their susceptibility to infectious diseases. Reducing the milk production of cows subjected to acute nutritional stress decreases their energy deficit. The aim of this study was to compare the effects on metabolism and immune function of reducing milk production using quinagolide (a prolactin-release inhibitor) or dexamethasone in feed-restricted cows. A total of 23 cows in early/mid-lactation were fed for 5 d at 55.9% of their previous dry matter intake to subject them to acute nutritional stress. After 1 d of feed restriction and for 4 d afterward (d 2 to 5), cows received twice-daily i.m. injections of water (control group; n=8), 2mg of quinagolide (QN group; n=7), or water after a first injection of 20mg of dexamethasone (DEX group; n=8). Feed restriction decreased milk production, but the decrease was greater in the QN and DEX cows than in the control cows on d 2 and 3. As expected, feed restriction reduced the energy balance, but the reduction was lower in the QN cows than in the control cows. Feed restriction decreased plasma glucose concentration and increased plasma nonesterified fatty acid (NEFA) and β-hydroxybutyrate (BHB) concentrations. The QN cows had higher glucose concentration and lower BHB concentration than the control cows. The NEFA concentration was also lower in the QN cows than in the control cows on d 2. Dexamethasone injection induced transient hyperglycemia concomitant with a reduction in milk lactose concentration; it also decreased BHB concentration and decreased NEFA initially but increased it later. Feed restriction and quinagolide injections did not affect the blood concentration or activity of polymorphonuclear leukocytes (PMN), whereas dexamethasone injection increased PMN blood concentration but decreased the proportion of PMN capable of inducing oxidative

  20. Brain-derived neurotrophic factor Val66Met polymorphism and dexamethasone/CRH test results in depressed patients.

    Science.gov (United States)

    Schüle, Cornelius; Zill, Peter; Baghai, Thomas C; Eser, Daniela; Zwanzger, Peter; Wenig, Nadine; Rupprecht, Rainer; Bondy, Brigitta

    2006-09-01

    Data suggest that both neurotrophic and hypothalamic-pituitary-adrenocortical (HPA) systems are involved in the pathophysiology of depression. The aim of the present study was to investigate whether the non-conservative brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has an impact on HPA axis activity in depressed patients. At admission, the dexamethasone/CRH (DEX/CRH) test was performed in 187 drug-free in-patients suffering from major depression or depressed state of bipolar disorder (DSM-IV criteria). Moreover, genotyping of BDNF Val66Met polymorphism was carried out using the fluorescence resonance energy transfer method (FRET). Homozygous carriers of the Met/Met genotype showed a significantly higher HPA axis activity during the DEX/CRH test than patients carrying the Val/Val or Val/Met genotype (ACTH, cortisol). Our results further contribute to the hypothesized association between HPA axis dysregulation and reduced neuroplasticity in depression and are consistent with the assumption that BDNF is a stress-responsive intercellular messenger modifying HPA axis activity.

  1. Low submetamorphic doses of dexamethasone and thyroxine induce complete metamorphosis in the axolotl (Ambystoma mexicanum) when injected together.

    Science.gov (United States)

    Kühn, Eduard R; De Groef, Bert; Grommen, Sylvia V H; Van der Geyten, Serge; Darras, Veerle M

    2004-06-01

    Entanglement of functions between the adrenal (or interrenal) and thyroid axis has been well described for all vertebrates and can be tracked down up to the level of gene expression. Both thyroid hormones and corticosteroids may induce morphological changes leading to metamorphosis climax in the neotenic Mexican axolotl (Ambystoma mexicanum). In a first series of experiments, metamorphosis was induced with an injection of 25 microg T(4) on three alternate days as judged by a decrease in body weight and tail height together with complete gill resorption. This injection also resulted in elevated plasma concentrations of T(3) and corticosterone. Previous results have indicated that the same dose of dexamethasone (DEX) is ineffective in this regard (Gen. Comp. Endocrinol. 127 (2002) 157). In a second series of experiments low doses of T(4) (0.5 microg) or DEX (5 microg) were ineffective to induce morphological changes. However, when these submetamorphic doses were injected together, morphological changes were observed within one week leading to complete metamorphosis. It is concluded that thyroid hormones combined with corticosteroids are essential for metamorphosis in the axolotl and that only high doses of either thyroid hormone or corticosteroid can induce morphological changes when injected separately.

  2. Effect of 8-bromo-cAMP and dexamethasone on glutamate metabolism in rat astrocytes

    International Nuclear Information System (INIS)

    Zielke, H.R.; Tildon, J.T.; Landry, M.E.; Max, S.R.

    1990-01-01

    Glutamine synthetase (GS) activity in cultured rat astrocytes was measured in extracts and compared to the intracellular rate of glutamine synthesis by intact control astrocytes or astrocytes exposed to 1 mM 8-bromo-cAMP (8Br-cAMP) + 1 microM dexamethasone (DEX) for 4 days. GS activity in extracts of astrocytes treated with 8Br-cAMP + DEX was 7.5 times greater than the activity in extracts of control astrocytes. In contrast, the intracellular rate of glutamine synthesis by intact cells increased only 2-fold, suggesting that additional intracellular effectors regulate the expression of GS activity inside the intact cell. The rate of glutamine synthesis by astrocytes was 4.3 times greater in MEM than in HEPES buffered Hank's salts. Synthesis of glutamine by intact astrocytes cultured in MEM was independent of the external glutamine or ammonia concentrations but was increased by higher extracellular glutamate concentrations. In studies with intact astrocytes 80% of the original [U- 14 C]glutamate was recovered in the medium as radioactive glutamine, 2-3% as aspartate, and 7% as glutamate after 2 hours for both control and treated astrocytes. The results suggest: (1) astrocytes are highly efficient in the conversion of glutamate to glutamine; (2) induction of GS activity increases the rate of glutamate conversion to glutamine by astrocytes and the rate of glutamine release into the medium; (3) endogenous intracellular regulators of GS activity control the flux of glutamate through this enzymatic reaction; and (4) the composition of the medium alters the rate of glutamine synthesis from external glutamate

  3. Influence of dexamethasone and weight loss on the regulation of serum leptin levels in obese individuals

    Directory of Open Access Journals (Sweden)

    D.D.G. Lerario

    2001-04-01

    Full Text Available The adipocyte hormone leptin is thought to serve as a signal to the central nervous system reflecting the status of fat stores. Serum leptin levels and adipocyte leptin messenger RNA levels are clearly increased in obesity. Nevertheless, the factors regulating leptin production are not fully understood. The aim of this study was to determine the effects of in vivo administration of the synthetic glucocorticoid dexamethasone and weight loss on serum leptin levels in two independent protocols. Twenty-five obese subjects were studied (18 women and 7 men, mean age 26.6 ± 6 years, BMI 31.1 ± 2.5 kg/m², %fat 40.3 ± 8.3 and compared at baseline to 22 healthy individuals. Serum levels of leptin, insulin, proinsulin and glucose were assessed at baseline and after ingestion of dexamethasone, 4 mg per day (2 mg, twice daily for two consecutive days. To study the effects of weight loss on serum leptin, 17 of the obese subjects were submitted to a low-calorie dietary intervention trial for 8 weeks and again blood samples were collected. Serum leptin levels were significantly higher in the obese group compared to the control group and a high positive correlation between leptinemia and the magnitude of fat mass was found (r = 0.88, P<0.0001. After dexamethasone, there was a significant increase in serum leptin levels (22.9 ± 12.3 vs 51.4 ± 23.3 ng/ml, P<0.05. Weight loss (86.1 ± 15.1 vs 80.6 ± 14.2 kg, P<0.05 led to a reduction in leptin levels (25.13 ± 12.8 vs 15.9 ± 9.1 ng/ml, P<0.05. We conclude that serum leptin levels are primordially dependent on fat mass magnitude. Glucocorticoids at supraphysiologic levels are potent secretagogues of leptin in obese subjects and a mild fat mass reduction leads to a disproportionate decrease in serum leptin levels. This suggests that, in addition to the changes in fat mass, complex nutritional and hormonal interactions may also play an important role in the regulation of leptin levels.

  4. Antenatal dexamethasone after asphyxia increases neural injury in preterm fetal sheep.

    Directory of Open Access Journals (Sweden)

    Miriam E Koome

    Full Text Available BACKGROUND AND PURPOSE: Maternal glucocorticoid treatment for threatened premature delivery dramatically improves neonatal survival and short-term morbidity; however, its effects on neurodevelopmental outcome are variable. We investigated the effect of maternal glucocorticoid exposure after acute asphyxia on injury in the preterm brain. METHODS: Chronically instrumented singleton fetal sheep at 0.7 of gestation received asphyxia induced by complete umbilical cord occlusion for 25 minutes. 15 minutes after release of occlusion, ewes received a 3 ml i.m. injection of either dexamethasone (12 mg, n = 10 or saline (n = 10. Sheep were killed after 7 days recovery; survival of neurons in the hippocampus and basal ganglia, and oligodendrocytes in periventricular white matter were assessed using an unbiased stereological approach. RESULTS: Maternal dexamethasone after asphyxia was associated with more severe loss of neurons in the hippocampus (CA3 regions, 290 ± 76 vs 484 ± 98 neurons/mm(2, mean ± SEM, P<0.05 and basal ganglia (putamen, 538 ± 112 vs 814 ± 34 neurons/mm(2, P<0.05 compared to asphyxia-saline, and with greater loss of both total (913 ± 77 vs 1201 ± 75/mm(2, P<0.05 and immature/mature myelinating oligodendrocytes in periventricular white matter (66 ± 8 vs 114 ± 12/mm(2, P<0.05, vs sham controls 165 ± 10/mm(2, P<0.001. This was associated with transient hyperglycemia (peak 3.5 ± 0.2 vs. 1.4 ± 0.2 mmol/L at 6 h, P<0.05 and reduced suppression of EEG power in the first 24 h after occlusion (maximum -1.5 ± 1.2 dB vs. -5.0 ± 1.4 dB in saline controls, P<0.01, but later onset and fewer overt seizures. CONCLUSIONS: In preterm fetal sheep, exposure to maternal dexamethasone during recovery from asphyxia exacerbated brain damage.

  5. Spectrophotometric and chemometric methods for determination of imipenem, ciprofloxacin hydrochloride, dexamethasone sodium phosphate, paracetamol and cilastatin sodium in human urine

    Science.gov (United States)

    El-Kosasy, A. M.; Abdel-Aziz, Omar; Magdy, N.; El Zahar, N. M.

    2016-03-01

    New accurate, sensitive and selective spectrophotometric and chemometric methods were developed and subsequently validated for determination of Imipenem (IMP), ciprofloxacin hydrochloride (CIPRO), dexamethasone sodium phosphate (DEX), paracetamol (PAR) and cilastatin sodium (CIL) in human urine. These methods include a new derivative ratio method, namely extended derivative ratio (EDR), principal component regression (PCR) and partial least-squares (PLS) methods. A novel EDR method was developed for the determination of these drugs, where each component in the mixture was determined by using a mixture of the other four components as divisor. Peak amplitudes were recorded at 293.0 nm, 284.0 nm, 276.0 nm, 257.0 nm and 221.0 nm within linear concentration ranges 3.00-45.00, 1.00-15.00, 4.00-40.00, 1.50-25.00 and 4.00-50.00 μg mL- 1 for IMP, CIPRO, DEX, PAR and CIL, respectively. PCR and PLS-2 models were established for simultaneous determination of the studied drugs in the range of 3.00-15.00, 1.00-13.00, 4.00-12.00, 1.50-9.50, and 4.00-12.00 μg mL- 1 for IMP, CIPRO, DEX, PAR and CIL, respectively, by using eighteen mixtures as calibration set and seven mixtures as validation set. The suggested methods were validated according to the International Conference of Harmonization (ICH) guidelines and the results revealed that they were accurate, precise and reproducible. The obtained results were statistically compared with those of the published methods and there was no significant difference.

  6. Structural Stereochemistry of Androstene Hormones Determines Interactions with Human Androgen, Estrogen, and Glucocorticoid Receptors

    Directory of Open Access Journals (Sweden)

    Thomas L. Shaak

    2013-01-01

    Full Text Available DHEA, 17α-AED, 17β-AED, and 17β-AET exhibit strong biological activity that has been attributed to androgenic, estrogenic, or antiglucocorticoid activity in vivo and in vitro. This study compared DHEA, 17α-AED, 17β-AED, and 17β-AET for their ability to activate the human AR, ER, and GR and determine the relative androgenicity, estrogenicity, and glucocorticoid activity. The results show that, at the receptor level, these androstene hormones are weak AR and even weaker ER activators. Direct androstene hormone activation of the human AR, ERα, and ERβ may not be essential for their biological function. Similarly, these hormones indirectly activated the human GR, only in the presence of high dexamethasone concentrations. These results underscore the major difference between androstene hormone interactions with these nuclear receptors and their biological effects.

  7. Glucocorticoids inhibit the proliferation of IL-2-dependent T cell clones

    International Nuclear Information System (INIS)

    Fresno, M.; Redondo, J.M.; Lopez-Rivas, A.

    1986-01-01

    It has been shown that glucocorticoids inhibit mitogen or antigen-induced lymphocyte proliferation by decreasing the production of interleukin-2 (IL-2). They have studied the effect of dexamethasone (Dx) on the proliferation of IL-2-dependent T cell clones. They have found that preincubation of these clones with Dx inhibits ( 3 H) thymidine incorporation and cell proliferation in a dose-dependent manner (ID 50 % 5 x 10 -10 M). The inhibition of DNA synthesis by Dx was dependent on the concentration of IL-2. High concentration of IL-2 reversed completely this inhibition. The action of Dx seems to be mediated through the induction of a protein since the simultaneous presence of cycloheximide and Dx prevented the inhibitory effect of the latter. Moreover, dialyzed conditioned medium of Dx treated cells inhibited DNA synthesis by T cell clones. The biochemical characterization of this protein is in progress

  8. Effects of Dexamethasone and Insulin Alone or in Combination on Energy and Protein Metabolism Indicators and Milk Production in Dairy Cows in Early Lactation – A Randomized Controlled Trial

    Science.gov (United States)

    Sami, Mehrdad; Mohri, Mehrdad; Seifi, Hesam A.

    2015-01-01

    Objectives This study investigated the effects of dexamethasone and insulin, when administered at 3rd or 10th day of lactation on energy and protein metabolism in dairy cows. Materials and Methods Two hundred Holstein cows were enrolled in a randomized controlled clinical trial. The cows were randomly assigned to receive 1 of 4 treatments at 3 or 10 days in milk: control group, 10-mL i.m. injection of sterile water, group insulin, s.c. injection of 100 units of insulin, group dexamethasone, i.m. injection of 20 mg of dexamethasone, group insulin plus dexamethasone, i.m. injection of 20 mg of dexamethasone and 100 units of insulin. The cows randomly assigned to receive the treatments on 3 or 10 days of lactation. Serum samples obtained at the time of enrollment, time of treatment and at 2, 4, 7 and 14 days after intervention. The sera were analyzed for β-hydroxybutyrate (BHBA), nonesterified fatty acids (NEFA), glucose, cholesterol, albumin, urea, and aspartate amino transferase (AST). Data were analyzed using a repeated measures mixed model that accounted for the effects of parity, body condition score, dystocia, retained placenta, metritis and the random effect of cow. Results There was no significant interaction of group of treatment and time of intervention (day 3 or 10 post-partum) on serum components. Cows that received insulin or dexamethasone alone or in combination, had lower BHBA 2 days after treatment compared with control cows, whereas concentrations of NEFA, were unaffected suggesting that glucocorticoids lipolytic effects do not appear to be important in healthy cows. AST activities significantly reduced in cows that received dexamethasone with or without insulin at 2 and 4 days after treatment. Albumin and urea concentrations 2 days after treatment were higher for cows that received dexamethasone only or dexamethasone plus insulin compared with control and Ins received cows. There were no treatment effects on test-day milk production, milk fat and

  9. Effects of Maternal Dexamethasone Exposure During Lactation on ...

    African Journals Online (AJOL)

    The male offspring were thereafter separated and sacrificed at 12weeks of age for evaluation of lipid profile and oxidative stress marker in the liver. Results from this study indicate that Total Cholesterol (TC), Triglycerides (TAG) and LDL- cholesterol (LDL-C) were significantly (p<0.001) higher in the Dex 1-7, Dex 1-14 and ...

  10. Effort-reward-imbalance in healthy teachers is associated with higher LPS-stimulated production and lower glucocorticoid sensitivity of interleukin-6 in vitro.

    Science.gov (United States)

    Bellingrath, Silja; Rohleder, Nicolas; Kudielka, Brigitte M

    2013-02-01

    According to the effort-reward-imbalance (ERI) model, a lack of reciprocity between costs and gains at work increases the risk for adverse health outcomes. Inflammation has been shown to play a crucial role in a variety of stress-related diseases and alterations in immune system glucocorticoid sensitivity may help to explain the increased risk for cardiovascular disease (CVD) and depression related to chronic work stress. Changes in lipopolysaccharide (LPS)-induced interleukin (IL)-6 production and inhibition of IL-6 production by dexamethasone in reaction to the Trier Social Stress Test (TSST) were assessed in forty-six healthy school teachers to test whether chronic work stress is accompanied by alterations in inflammatory activity and glucocorticoid sensitivity of the innate immune system. High ERI was associated with an increase in pro-inflammatory potential, reflected in elevated IL-6 production before and after stress and with a lower capacity of dexamethasone to suppress IL-6 production in vitro over all measurement time points. ERI was not associated with stress-related changes in GC sensitivity. The present findings suggest a less effective anti-inflammatory regulation by glucocorticoids in teachers suffering from chronic work stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. La geometria del còdex 80 (s. XII de la catedral de Tortosa

    Directory of Open Access Journals (Sweden)

    Lluís i Ginovart, Josep

    2015-12-01

    Full Text Available The geometry in codex 80 of the Capitular Archive has traditionally been understood as a complete text and attributed to Gerbert of Aurillac (c. 940-1003. From a new reading of the text, we can say that it is a miscellaneous writing about geometry, composed of three independent parts: one containing the Geometria Incerti Auctoris apocryphical by Gerbert of Aurillac (c. 940-1003; another one is a fragment of De Nuptiis Philologiae et Mercurii by Martianus Capella (fl . 430 from Ergasticis Schematibus of Book VII of the Geometry; and finally there is a gloss to the Elementa by Euclides (c. 325-c. 265 bC. by Al-Ḥajjāj ibn Yūsuf ibn Maṭar (786-833. The interpretation of the geometrical propositions provides knowledge about the indirect measure of places which are inaccessible using medieval instrumental, the astrolabe, mirrors, cane and squares.[ct] La geometria del còdex 80 de l’Arxiu Capitular de Tortosa ha estat tradicionalment atribuïda, com un text únic, a Gerbert d’Orlhac (c. 940-1003. Una nova lectura del text ens permet assegurar que es tracta d’un text de caràcter miscel·lani de geometria, compost per tres textos independents: una part pertany a la Geometria Incerti Auctoris apòcrifa de Gerbert d’Orlhac; una altra, al fragment De Nuptiis Philologiae et Mercurii de Marcià Capella (fl . 430 Ergasticis Schematibus, del llibre VII de la Geometria; i, finalment, s’hi llegeix una glossa als Elementa d’Euclides (c. 325-c. 265 aC. d’Al-Ḥajjāj ibn Yūsuf ibn Maṭar (786-833. La interpretació de les proposicions de la geometria dóna el coneixement de la mesura indirecta de llocs als quals no es pot accedir amb l’instrumental medieval, és a dir, amb astrolabi, miralls, bastons i escaires.

  12. Programming Effects of Prenatal Glucocorticoid Exposure with a Postnatal High-Fat Diet in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Jiunn-Ming Sheen

    2016-04-01

    Full Text Available Increasing evidence has shown that many chronic diseases originate from early life, even before birth, through what are termed as fetal programming effects. Glucocorticoids are frequently used prenatally to accelerate the maturation of the lungs of premature infants. High-fat diets are associated with insulin resistance, but the effects of prenatal glucocorticoid exposure plus a postnatal high-fat diet in diabetes mellitus remain unclear. We administered pregnant Sprague-Dawley rats’ intraperitoneal dexamethasone (0.1 mg/kg body weight or vehicle at gestational days 14–20. Male offspring were administered a normal or high-fat diet starting from weaning. We assessed the effects of prenatal steroid exposure plus postnatal high-fat diet on the liver, pancreas, muscle and fat at postnatal day 120. At 15 and 30 min, sugar levels were higher in the dexamethasone plus high-fat diet (DHF group than the vehicle plus high-fat diet (VHF group in the intraperitoneal glucose tolerance test (IPGTT. Serum insulin levels at 15, 30 and 60 min were significantly higher in the VHF group than in the vehicle and normal diet group. Liver insulin receptor and adenosine monophosphate-activated protein kinase mRNA expressions and protein levels were lower in the DHF group. Insulin receptor and insulin receptor substrate-1 mRNA expressions were lower in the epididymal adipose tissue in the VHF and DHF groups. “Programming” of liver or epididymal adipose tissue resulted from prenatal events. Prenatal steroid exposure worsened insulin resistance in animals fed a high-fat diet.

  13. Programming Effects of Prenatal Glucocorticoid Exposure with a Postnatal High-Fat Diet in Diabetes Mellitus.

    Science.gov (United States)

    Sheen, Jiunn-Ming; Hsieh, Chih-Sung; Tain, You-Lin; Li, Shih-Wen; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Miao-Meng; Chen, Yu-Chieh; Huang, Li-Tung

    2016-04-08

    Increasing evidence has shown that many chronic diseases originate from early life, even before birth, through what are termed as fetal programming effects. Glucocorticoids are frequently used prenatally to accelerate the maturation of the lungs of premature infants. High-fat diets are associated with insulin resistance, but the effects of prenatal glucocorticoid exposure plus a postnatal high-fat diet in diabetes mellitus remain unclear. We administered pregnant Sprague-Dawley rats' intraperitoneal dexamethasone (0.1 mg/kg body weight) or vehicle at gestational days 14-20. Male offspring were administered a normal or high-fat diet starting from weaning. We assessed the effects of prenatal steroid exposure plus postnatal high-fat diet on the liver, pancreas, muscle and fat at postnatal day 120. At 15 and 30 min, sugar levels were higher in the dexamethasone plus high-fat diet (DHF) group than the vehicle plus high-fat diet (VHF) group in the intraperitoneal glucose tolerance test (IPGTT). Serum insulin levels at 15, 30 and 60 min were significantly higher in the VHF group than in the vehicle and normal diet group. Liver insulin receptor and adenosine monophosphate-activated protein kinase mRNA expressions and protein levels were lower in the DHF group. Insulin receptor and insulin receptor substrate-1 mRNA expressions were lower in the epididymal adipose tissue in the VHF and DHF groups. "Programming" of liver or epididymal adipose tissue resulted from prenatal events. Prenatal steroid exposure worsened insulin resistance in animals fed a high-fat diet.

  14. Glucocorticoids Protect Neonatal Rat Brain in Model of Hypoxic-Ischemic Encephalopathy (HIE

    Directory of Open Access Journals (Sweden)

    Benjamin Harding

    2016-12-01

    Full Text Available Hypoxic-ischemic encephalopathy (HIE resulting from asphyxia in the peripartum period is the most common cause of neonatal brain damage and can result in significant neurologic sequelae, including cerebral palsy. Currently therapeutic hypothermia is the only accepted treatment in addition to supportive care for infants with HIE, however, many additional neuroprotective therapies have been investigated. Of these, glucocorticoids have previously been shown to have neuroprotective effects. HIE is also frequently compounded by infectious inflammatory processes (sepsis and as such, the infants may be more amenable to treatment with an anti-inflammatory agent. Thus, the present study investigated dexamethasone and hydrocortisone treatment given after hypoxic-ischemic (HI insult in neonatal rats via intracerebroventricular (ICV injection and intranasal administration. In addition, we examined the effects of hydrocortisone treatment in HIE after lipopolysaccharide (LPS sensitization in a model of HIE and sepsis. We found that dexamethasone significantly reduced rat brain infarction size when given after HI treatment via ICV injection; however it did not demonstrate any neuroprotective effects when given intranasally. Hydrocortisone after HI insult also significantly reduced brain infarction size when given via ICV injection; and the intranasal administration showed to be protective of brain injury in male rats at a dose of 300 µg. LPS sensitization did significantly increase the brain infarction size compared to controls, and hydrocortisone treatment after LPS sensitization showed a significant decrease in brain infarction size when given via ICV injection, as well as intranasal administration in both genders at a dose of 300 µg. To conclude, these results show that glucocorticoids have significant neuroprotective effects when given after HI injury and that these effects may be even more pronounced when given in circumstances of additional

  15. Glucocorticoids are ineffective in alcoholic hepatitis

    DEFF Research Database (Denmark)

    Christensen, E; Gluud, C

    1995-01-01

    The aim of this study was to perform a meta-analysis of controlled clinical trials of glucocorticoid treatment in clinical alcoholic hepatitis, adjusting for prognostic variables and their possible interaction with therapy, because these trials have given appreciably different results. Weighted...... logistic regression analysis was applied using the summarised descriptive data (for example, % with encephalopathy, mean bilirubin value) of the treatment and control groups of 12 controlled trials that gave this information. Despite evidence of publication bias favouring glucocorticoid treatment, its...... overall effect on mortality was not statistically significant (p = 0.20)--the relative risk (steroid/control) was 0.78 (95% confidence intervals 0.51, 1.18). There was indication of interaction between glucocorticoid therapy and gender, but not encephalopathy. Thus, the effect of glucocorticoid treatment...

  16. Molecular mechanisms of glucocorticoid receptor signaling

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  17. The effects of irradiation on the cytosol glucocorticoid receptor and concentrations of corticosterone and cyclic nucleotides in the rat liver

    International Nuclear Information System (INIS)

    Teshima, Teruki; Mori, Masaki; Honke, Yoshifumi

    1983-01-01

    The effects of irradiation on both the cytosol glucocorticoid receptor and concentrations of corticosterone and cyclic nucleotides in the rat liver were investigated. The liver concentrations of corticosterone and cyclic nucleotides were measured by radioimmunoassay before and after the irradiation of 1,000 rad/l fraction. The glucocorticoid receptor in the liver cytosol was determined by the measurement of the cytosol binding to 3 H-dexamethasone. The cytosol and nuclear corticosterone levels reached a peak 1 day after the irradiation of the rat liver and declined to the control levels after 2 days. The increase in corticosterone levels may be due to the direct stimulation of the right adrenal gland and/ or the stress induced by the irradiation. The binding capacity of the glucocorticoid receptor in rat liver cytosol decreased to the minimum 1 day after the irradiation, and the recovery occurred at 4 days. The Kd value of the glucocorticoid receptor remained unchanged from 1 hour until 4 days but was high at 4 and 7 days. The distinctly increased levels of cyclic GMP in the rat liver were found from 1 hour through 7 days after the irradiation, while cyclic AMP did not change. The inversed relationship between the cytosol glucocorticoid receptor and corticosterone levels in cytosol and the nuclei indicates that the receptor-bound corticosterone in cytosol can be transferred to a nucleus and remain there in the presence of appropriate amounts of corticosterone in cytosol, after which the receptor is released from the nucleus into cytosol. The high Kd values observed 4 -- 7 days after the irradiation may be either due to the direct effect of irradiation or to the replenishment of the receptor with a low affinity. (author)

  18. Glucocorticoids and fetal programming part 2: Mechanisms.

    Science.gov (United States)

    Moisiadis, Vasilis G; Matthews, Stephen G

    2014-07-01

    The lifelong health of an individual is shaped during critical periods of development. The fetus is particularly susceptible to internal and external stimuli, many of which can alter developmental trajectories and subsequent susceptibility to disease. Glucocorticoids are critical in normal development of the fetus, as they are involved in the growth and maturation of many organ systems. The surge in fetal glucocorticoid levels that occurs in most mammalian species over the last few days of pregnancy is an important developmental switch leading to fundamental changes in gene regulation in many organs, including the brain. These changes are important for the transition to postnatal life. Exposure of the fetus to increased levels of glucocorticoids, resulting from maternal stress or treatment with synthetic glucocorticoids, can lead to long-term 'programming' of hypothalamic-pituitary-adrenal function and behaviours. Glucocorticoids act at multiple levels within the fetal brain. Growing evidence indicates that they can exert powerful effects on the epigenome, including on DNA methylation, histone acetylation and microRNA, to influence gene expression. Such influences probably represent a critical component of the 'programming' process, and might be partly responsible for the transgenerational effects of antenatal glucocorticoid exposure on neurologic, cardiovascular and metabolic function.

  19. Does Dexamethasone Helps in Meningococcal Sepsis?

    OpenAIRE

    Tolaj, Ilir; Ramadani, Hamdi; Mehmeti, Murat; Gashi, Hatixhe; Kasumi, Arbana; Gashi, Visar; Jashari, Haki

    2017-01-01

    Purpose: Prompt recognition and aggressive early treatment are the only effective measures against invasive meningococcal disease (IMD). Anti-inflammatory adjunctive treatment remains controversial and difficult to assess in patients with IMD. The purpose of this study was to evaluate the effect of dexamethasone (DXM) as adjunctive treatment in different clinical forms of IMD, and attempt to answer if DXM should be routinely used in the treatment of IMD. Methods: In this non-interventional cl...

  20. Glucocorticoid effects on the programming of AT1b angiotensin receptor gene methylation and expression in the rat.

    Directory of Open Access Journals (Sweden)

    Irina Bogdarina

    2010-02-01

    Full Text Available Adverse events in pregnancy may 'programme' offspring for the later development of cardiovascular disease and hypertension. Previously, using a rodent model of programmed hypertension we have demonstrated the role of the renin-angiotensin system in this process. More recently we showed that a maternal low protein diet resulted in undermethylation of the At1b angiotensin receptor promoter and the early overexpression of this gene in the adrenal of offspring. Here, we investigate the hypothesis that maternal glucocorticoid modulates this effect on fetal DNA methylation and gene expression. We investigated whether treatment of rat dams with the 11beta-hydroxylase inhibitor metyrapone, could prevent the epigenetic and gene expression changes we observed. Offspring of mothers subjected to a low protein diet in pregnancy showed reduced adrenal Agtr1b methylation and increased adrenal gene expression as we observed previously. Treatment of mothers with metyrapone for the first 14 days of pregnancy reversed these changes and prevented the appearance of hypertension in the offspring at 4 weeks of age. As a control for non-specific effects of programmed hypertension we studied offspring of mothers treated with dexamethasone from day 15 of pregnancy and showed that, whilst they had raised blood pressure, they failed to show any evidence of Agtr1b methylation or increase in gene expression. We conclude that maternal glucocorticoid in early pregnancy may induce changes in methylation and expression of the Agtr1b gene as these are clearly reversed by an 11 beta-hydroxylase inhibitor. However in later pregnancy a converse effect with dexamethasone could not be demonstrated and this may reflect either an alternative mechanism of this glucocorticoid or a stage-specific influence.

  1. Paradoxical response to dexamethasone and spontaneous hypocortisolism in Cushing's disease

    OpenAIRE

    Lila, Anurag R; Sarathi, Vijaya; Bandgar, Tushar R; Shah, Nalini S

    2013-01-01

    Paradoxical response to dexamethasone and spontaneous development of hypocortisolism are rare features of Cushing's disease. We report a 13-year-old boy with Cushing's disease owing to a pituitary macroadenoma. On initial evaluation, he had partial suppression of serum cortisol by dexamethasone. He developed transient hypocortisolism after first adenomectomy, but the disease recurred after 1 year. Repeat evaluation showed recurrent hypercortisolism and paradoxical response to dexamethasone. H...

  2. Does Dexamethasone Helps in Meningococcal Sepsis?

    Science.gov (United States)

    Tolaj, Ilir; Ramadani, Hamdi; Mehmeti, Murat; Gashi, Hatixhe; Kasumi, Arbana; Gashi, Visar; Jashari, Haki

    2017-06-01

    Prompt recognition and aggressive early treatment are the only effective measures against invasive meningococcal disease (IMD). Anti-inflammatory adjunctive treatment remains controversial and difficult to assess in patients with IMD. The purpose of this study was to evaluate the effect of dexamethasone (DXM) as adjunctive treatment in different clinical forms of IMD, and attempt to answer if DXM should be routinely used in the treatment of IMD. In this non-interventional clinical study (NIS), 39 patients with meningococcal septicaemia with or without of meningitis were included, and compared regarding the impact of dexamethasone (DXM), as an adjunctive treatment, on the outcome of IMD. SPSS statistics is used for statistical processing of data. Thirty (76.9%) patients with IMD had sepsis and meningitis, and 9 (23.1%) of them had sepsis alone. Dexamethasone was used in 24 (61.5%) cases, in both clinical groups. The overall mortality rate was 10.3%. Pneumonia was diagnosed in 6 patients (15.4%), arthritis in 3 of them (7.7%), and subdural effusion in one patient (2.6%). The data showed a significant statistical difference on the length of hospitalization, and WBC normalization in groups of patients treated with DXM. The use of DXM as adjunctive therapy in invasive meningococcal disease has a degree of proven benefits and no harmful effects. In fighting this very dangerous and complex infection, even a limited benefit is sufficient to recommend the use of DXM as adjunctive treatment in invasive meningococcal disease.

  3. Intravitreal clindamycin and dexamethasone for toxoplasmic retinochoroiditis.

    Science.gov (United States)

    Kishore, K; Conway, M D; Peyman, G A

    2001-01-01

    To present a new method for the management of toxoplasmic retinochoroiditis (TRC). The patients were females ranging in age from 10 to 61 years (average 26.5). Four eyes of 4 patients were treated with intravitreal injections of 1.0 mg clindamycin in 0.1 mL and 1.0 mg of dexamethasone in 0.1 mL. The injections were given under general or peribulbar anesthesia. Three patients continued one systemic drug. Follow-up ranged from 11 to 26 months (mean 17.5). A favorable response was noted in each eye within two weeks after the intravitreal injections. All patients required 2 to 4 intravitreal injections in the affected eye for the control of TRC. Visual acuity improved in each eye. The disc and macula were preserved in all eyes. Recurrence was noted in one case, which responded to a repeated intravitreal injection of clindamycin and dexamethasone. Intravitreal injections of clindamycin and dexamethasone are well tolerated and may offer an additional strategy to treat TRC in patients who are unable to afford or tolerate systemic therapy, or whose disease progresses despite systemic therapy.

  4. Role of dexamethasone in brachial plexus block

    International Nuclear Information System (INIS)

    Dawood, M.

    2015-01-01

    To evaluate the effect of dexamethasone added to (lignocaine) on the onset and duration of axillary brachial plexus block. Study Design: Randomized controlled trial. Place and Duration of Study: Combined Military Hospital Rawalpindi, from September 2009 to March 2010. Patients and Methods: A total of 100 patients, who were scheduled for elective hand and forearm surgery under axillary brachial plexus block, were randomly allocated to group A in which patients received 40 ml 1.5% lidocaine with 2 ml of isotonic saline (0.9%) and group B in which patients received 40 ml 1.5% lidocaine with 2 ml of dexamethasone (8 mg). Nerve stimulator with insulated needle for multiple stimulations technique was used to locate the brachial plexus nerves. After the injection onset of action and duration of sensory blockade of brachial plexus were recorded at 5 minutes and 15 minutes interval. Results: Group A showed the onset of action of 21.64 ± 2.30 min and in group B it was 15.42 ± 1.44 min (p< 0.001). Duration of nerve block was 115.08 ± 10.92 min in group A and 265.42 ± 16.56 min in group B (p < 0.001). Conclusion: The addition of dexamethasone to 1.5% lignocaine solution in axillary brachial plexus block prolongs the duration of sensory blockade significantly. (author)

  5. Fast automatic analysis of antenatal dexamethasone on micro-seizure activity in the EEG

    International Nuclear Information System (INIS)

    Rastin, S.J.; Unsworth, C.P.; Bennet, L.

    2010-01-01

    Full text: In this work wc develop an automatic scheme for studying the effect of the antenatal Dexamethasone on the EEG activity. To do so an FFT (Fast Fourier Transform) based detector was designed and applied to the EEG recordings obtained from two groups of fetal sheep. Both groups received two injections with a time delay of 24 h between them. However the applied medicine was different for each group (Dex and saline). The detector developed was used to automatically identify and classify micro-seizures that occurred in the frequency bands corresponding to the EEG transients known as slow waves (2.5 14 Hz). For each second of the data recordings the spectrum was computed and the rise of the energy in each predefined frequency band then counted when the energy level exceeded a predefined corresponding threshold level (Where the threshold level was obtained from the long term average of the spectral points at each band). Our results demonstrate that it was possible to automatically count the micro-seizures for the three different bands in a time effective manner. It was found that the number of transients did not strongly depend on the nature of the injected medicine which was consistent with the results manually obtained by an EEG expert. Tn conclusion, the automatic detection scheme presented here would allow for rapid micro-seizure event identification of hours of highly sampled EEG data thus providing a valuable time-saving device.

  6. Identification of steroid-binding and phosphorylated sites within the glucocorticoid receptor

    International Nuclear Information System (INIS)

    Smith, L.I.

    1989-01-01

    The primary goal of these studies was to localize the steroid-binding and phosphorylated sites of the glucocorticoid receptor. The synthetic steroid, dexamethasone 21-mesylate (DM) forms a covalent thioether bond via the sulfhydryl group of a cysteine residue in the receptor. To determine the covalent site of attachment of this ligand, receptors in WEHI-7 mouse thymoma cells were labeled with [ 3 H]DM and purified with a monoclonal antibody. The receptor was completely digested with trypsin and a single peptide covalently labeled with steroid identified by reversed-phase HPLC. This peptide was analyzed by automated Edman degradation to determine the location of the steroid-labeled residue. A similar analysis was performed on an overlapping peptide produced by Staphylococcus aureus protease digestion. Analysis of tryptic peptides from receptors labeled with both [ 3 H]DM and L-[ 35 S]methionine indicated that this peptide contained methionine. These analyses, coupled with the published amino acid sequence of the receptor, identified Cysteine-644 in the steroid-binding domain of the mouse glucocorticoid receptor as the residue involved in covalent steroid-binding. A synthetic peptide representing amino acids 640-650 of the mouse receptor was prepared and analyzed to confirm the identification. These biochemical studies represent a direct demonstration of an amino acid important in receptor function. It has been proposed that the receptor functions through a phosphorylation-dephosphorylation cycle to explain the dependence of hormone binding capacity upon cellular ATP. The glucocorticoid receptor has been shown to be a phosphoprotein. As an initial step to identifying a role of phosphorylation in receptor action, phosphorylated sites within the functional domains of the protein were identified

  7. [Efficacy of systemic glucocorticoids combined with inhaled steroid on children with acute laryngitis].

    Science.gov (United States)

    Chen, Q P; Zhou, R F; Zhang, Y M; Yang, L

    2018-01-07

    Objective: To evaluate the efficacy of systemic glucocorticoid (steroid) combined with high dose inhaled steroid in the treatment of children with acute laryngitis. Methods: A total of 78 children with acute laryngitis were randomly divided into study group( n =40) and control group( n =38) between November 2016 and April 2017. In addition to routine treatment of anti infection and symptomatic treatment, Dexamethasone injection(0.3-0.5 mg/kg, 1-3 d, according to the patient's condition) was provided to each group. In addition to the treatment mentioned above, the study group were assigned to receive 1.0 mg Budesonide suspension for inhalation, oxygen-driven atomizing inhalation, every/30 minutes, 2 times in a row, after that every 12 hours. The improvement of inspiratory dyspnea, hoarseness, barking cough and wheezing of both groups was evaluated at 30 min, 1 h, 2 h, 6 h, 12 h, 24 h and 72 h after treatment.Sigmaplot 11.5 software was used to analyze the data. Results: No significant difference was detected in terms of inspiratory dyspnea, hoarseness, barking cough or stridor score before treatment between the two groups( P >0.05). Compared with those before treatment, symptoms of inspiratory dyspnea, hoarseness, barking cough and stridor score of both groups improved markedly at 12 h and 24 h after treatment( P dyspnea, hoarseness, barking cough or stridor score at each time point after treatment between the two groups( P >0.05). The effective rate was 92.50% and 92.11% in study group and control group, respectively, and no significant difference was noted ( P >0.05). Conclusion: Compared with single systemic glucocorticoid, systemic glucocorticoids combined with inhaled steroid possessed similar efficacy in treating acute laryngitis and relieving laryngeal obstruction of children.

  8. Prophylactic Effect of Dexamethasone on Regorafenib-Related Fatigue and/or Malaise: A Randomized, Placebo-Controlled, Double-Blind Clinical Study in Patients with Unresectable Metastatic Colorectal Cancer (KSCC1402/HGCSG1402).

    Science.gov (United States)

    Tanioka, Hiroaki; Miyamoto, Yuji; Tsuji, Akihito; Asayama, Masako; Shiraishi, Takeshi; Yuki, Satoshi; Kotaka, Masahito; Makiyama, Akitaka; Shimokawa, Mototsugu; Shimose, Takayuki; Masuda, Satohiro; Yamaguchi, Takuhiro; Komatsu, Yoshito; Saeki, Hiroshi; Emi, Yasunori; Baba, Hideo; Oki, Eiji; Maehara, Yoshihiko

    2018-01-01

    Regorafenib is an oral multikinase inhibitor with a proven survival benefit for metastatic colorectal cancer patients. The KSCC1402/HGCSG1402 study investigated the prophylactic effect of oral dexamethasone (DEX) on regorafenib-related fatigue and/or malaise. Patients who progressed after standard chemotherapy were randomized 1: 1 to a DEX group (2 mg/day; days 1-28) with regorafenib or a placebo group with regorafenib. The primary endpoint was the incidence of fatigue and/or malaise, based on version 4.0 of the National Cancer Institute's CTCAE (Common Terminology Criteria for Adverse Events). One of the secondary endpoints was the in-cidence of fatigue and/or malaise based on the CTCAE assessed by patient-reported outcome (PRO). The incidence of any grade of fatigue and/or malaise assessed by the investigators was 58.8% in the DEX group and 61.1% in the placebo group (p = 0.8101), and that assessed by PRO was 47.2 and 58.3%, respectively (p = 0.3450). The incidence of grade ≥2 fatigue and/or malaise, as assessed by the investigators, was 19.4% for the DEX group and 38.9% for the placebo group (p = 0.0695), and that assessed by PRO was 27.8 and 52.8%, respectively (p = 0.0306). Our results suggest that prophylactic oral DEX is clinically effective in improving regorafenib-related fatigue and/or malaise. © 2018 S. Karger AG, Basel.

  9. Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign

    OpenAIRE

    I. Tegen; B. Heinold; M. Todd; J. Helmert; R. Washington; O. Dubovik; O. Dubovik

    2006-01-01

    We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx) that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust production occurs via self-abras...

  10. Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign

    OpenAIRE

    Tegen , I.; Heinold , B.; Todd , M.; Helmert , J.; Washington , R.; Dubovik , O.

    2006-01-01

    International audience; We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx) that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust producti...

  11. Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign

    OpenAIRE

    R. Washington; J. Helmert; M. Todd; B. Heinold; I. Tegen; O. Dubovik

    2006-01-01

    We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx) that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust production occurs via ...

  12. Controlled transdermal iontophoresis for poly-pharmacotherapy: Simultaneous delivery of granisetron, metoclopramide and dexamethasone sodium phosphate in vitro and in vivo.

    Science.gov (United States)

    Cázares-Delgadillo, Jennyfer; Ganem-Rondero, Adriana; Merino, Virginia; Kalia, Yogeshvar N

    2016-03-31

    Iontophoresis has been used to deliver small molecules, peptides and proteins into and across the skin. In principle, it provides a controlled, non-invasive method for poly-pharmacotherapy since it is possible to formulate and to deliver multiple therapeutic agents simultaneously from the anodal and cathodal compartments. The objective of this proof-of-principle study was to investigate the simultaneous anodal iontophoretic delivery of granisetron (GST) and metoclopramide (MCL) and cathodal iontophoresis of dexamethasone sodium phosphate (DEX-P). In addition to validating the hypothesis, these are medications that are routinely used in combination to treat chemotherapy-induced emesis. Two preliminary in vitro studies using porcine skin were performed: Study 1 - effect of formulation composition on anodal co-iontophoresis of GST and MCL and Study 2 - combined anodal iontophoresis of GST (10mM) and MCL (110 mM) and cathodal iontophoresis of DEX-P (40 mM). The results from Study 1 demonstrated the dependence of GST/MCL transport on the respective drug concentrations when co-iontophoresed at 0.3 mA·cm(-2). Although they possess similar physicochemical properties, MCL seemed to be a more efficient charge carrier (JMCL=0.0591∗CMCLvs JGST=0.0414∗CGST). In Study 2, MCL permeation was markedly superior to that of GST (2324.83 ± 307.85 and 209.83 ± 24.84 μg·cm(-2), respectively); this was consistent with the difference in their relative concentrations; DEX-P permeation was 336.94 ± 71.91 μg·cm(-2). The in vivo studies in Wistar rats (10mM GST, 110 mM MCL and 40 mM DEX-P (0.5 mA·cm(-2) for 5h with Ag/AgCl electrodes and salt bridges) demonstrated that significant drug levels were achieved rapidly for each drug. This was most noticeable for dexamethasone (DEX) where relatively constant plasma levels were obtained from the 1 to 5h time-points; DEX-P was not detected in the plasma since it was completely hydrolyzed to the active metabolite. The calculated input

  13. Efficacy and tolerability of bilateral sustained-release dexamethasone intravitreal implants for the treatment of noninfectious posterior uveitis and macular edema secondary to retinal vein occlusion

    Directory of Open Access Journals (Sweden)

    Ryder SJ

    2015-06-01

    Full Text Available Steven J Ryder,1 Danilo Iannetta,1 Swetangi D Bhaleeya,2 Szilárd Kiss1 1Department of Ophthalmology, Weill Cornell Medical College, New York, NY, USA; 2Department of Ophthalmology, University of South Florida, Tampa, FL, USA Purpose: To report our experience with bilateral placement of dexamethasone 0.7 mg (DEX sustained-release intravitreal implant in the management of noninfectious posterior uveitis or macular edema secondary to retinal vein occlusion.Methods: A retrospective chart review of patients with bilateral noninfectious posterior uveitis and macular edema secondary to retinal vein occlusion who were treated with DEX intravitreal implant was performed. Ocular side effects such as intraocular pressure (IOP, cataract, and tolerability of bilateral injections was reviewed.Results: Twenty-two eyes of eleven patients treated with a total of 32 DEX implants were included. Ten of eleven patients received bilateral implants due to active noninfectious uveitis while the other demonstrated macular edema in both eyes following separate central retinal vein occlusions. Among the patients with bilateral uveitis, the mean interval between DEX implant in the initial eye and the subsequent DEX in the fellow eye was 15.6 days (range 2–71 days. Seven of the ten patients received the second implant in the fellow eye within 8 days of the initial implantation. None of the patients had bilateral implantations on the same day. Seven eyes required reimplantation for recurrence of inflammation (mean interval between first and repeat implantation was 6.00±2.39 months. Following single or, in the case of the aforementioned seven eyes, repeat DEX implantation, all 20 uveitic eyes demonstrated clinical and/or angiographic evidence of decreased inflammation in the form of reduction in vitreous cells on slit lamp ophthalmoscopy, macular edema on ophthalmoscopy, or optical coherence tomography and/or disc and vascular leakage on fluorescein angiography. The mean

  14. Real-world assessment of intravitreal dexamethasone implant (0.7 mg in patients with macular edema: the CHROME study

    Directory of Open Access Journals (Sweden)

    Lam WC

    2015-07-01

    Full Text Available Wai-Ching Lam,1 David A Albiani,2 Pradeepa Yoganathan,3 John Chanchiang Chen,4 Amin Kherani,5 David AL Maberley,6 Alejandro Oliver,7 Theodore Rabinovitch,3 Thomas G Sheidow,8 Eric Tourville,9 Leah A Wittenberg,10 Chris Sigouin,11 Darryl C Baptiste12 1Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, 2West Coast Retinal Consultants, Vancouver, BC, 3North Toronto Eye Care, North York, ON, 4Department of Ophthalmology, McGill University, Montreal, QC, 5Southern Alberta Eye Center, Calgary, AB, 6Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, 7Timmins and District Hospital, Timmins, ON, 8Ivey Eye Institute, London, ON, 9Center Oculaire de Quebec, Quebec City, QC, 10Retina Surgical Associates, New Westminster, BC, 11Clinwest Research Inc, Burlington, ON, 12Allergan Inc., Markham, ON, Canada Background: The purpose of this study was to evaluate the real-world use, efficacy, and safety of one or more dexamethasone intravitreal implant(s 0.7 mg (DEX implant in patients with macular edema (ME.Methods: This was a retrospective cohort study of patients with ME secondary to retinal disease treated at ten Canadian retina practices, including one uveitis center. Best-corrected visual acuity (BCVA, central retinal thickness (CRT, intraocular pressure (IOP, glaucoma and cataract surgery, and safety data were collected from the medical charts of patients with ≥3 months of follow-up after the initial DEX implant.Results: One hundred and one patient charts yielded data on 120 study eyes, including diagnoses of diabetic ME (DME (n=34, retinal vein occlusion (RVO, n=30; branch in 19 and central in 11, and uveitis (n=23. Patients had a mean age of 60.9 years, and 73.3% of the study eyes had ME for a duration of ≥12 months prior to DEX implant injection(s. Baseline mean (± standard error BCVA was 0.63±0.03 logMAR (20/86 Snellen equivalents and mean CRT was 474.4±18.2 µm. The

  15. NALP3 inflammasome up-regulation and CASP1 cleavage of the glucocorticoid receptor causes glucocorticoid resistance in leukemia cells

    Science.gov (United States)

    Paugh, Steven W.; Bonten, Erik J.; Savic, Daniel; Ramsey, Laura B.; Thierfelder, William E.; Gurung, Prajwal; Malireddi, R. K. Subbarao; Actis, Marcelo; Mayasundari, Anand; Min, Jaeki; Coss, David R.; Laudermilk, Lucas T.; Panetta, John C.; McCorkle, J. Robert; Fan, Yiping; Crews, Kristine R.; Stocco, Gabriele; Wilkinson, Mark R.; Ferreira, Antonio M.; Cheng, Cheng; Yang, Wenjian; Karol, Seth E.; Fernandez, Christian A.; Diouf, Barthelemy; Smith, Colton; Hicks, J. Kevin; Zanut, Alessandra; Giordanengo, Audrey; Crona, Daniel; Bianchi, Joy J.; Holmfeldt, Linda; Mullighan, Charles G.; den Boer, Monique L.; Pieters, Rob; Jeha, Sima; Dunwell, Thomas L.; Latif, Farida; Bhojwani, Deepa; Carroll, William L.; Pui, Ching-Hon; Myers, Richard M.; Guy, R. Kiplin; Kanneganti, Thirumala-Devi; Relling, Mary V.; Evans, William E.

    2015-01-01

    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and leukemia cell resistant to glucocorticoids confers a poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the sensitivity to prednisolone of primary leukemia cells from 444 newly diagnosed ALL patients, revealing significantly higher expression of caspase 1 (CASP1) and its activator NLRP3 in glucocorticoid resistant leukemia cells, due to significantly lower somatic methylation of CASP1 and NLRP3 promoters. Over-expression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1 overexpressing ALL. Our findings establish a new mechanism by which the NLRP3/CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on glucocorticoid transcriptional response suggests this mechanism could also modify glucocorticoid effects in other diseases. PMID:25938942

  16. Perioperative glucocorticoids in hip and knee surgery - benefit vs. harm?

    DEFF Research Database (Denmark)

    Lunn, T H; Kehlet, H

    2013-01-01

    with systemic glucocorticoid. Pain was reduced with high-dose systemic and local glucocorticoid, but not with low-dose systemic glucocorticoid. Systemic inflammatory markers were reduced with low-dose and high-dose systemic glucocorticoid, and with local glucocorticoid. Functional recovery was improved...... with local glucocorticoid. All studies were small-sized and none sufficiently powered to meaningfully evaluate uncommon adverse events. Most of the local administration studies had poor scientific quality (high risk of bias). Due to clinical heterogeneity and poor scientific quality, no meta......-analysis was performed. In conclusion, in addition to PONV reduction with low-dose systemic glucocorticoid, this review supports high-dose systemic glucocorticoid to ameliorate post-operative pain after hip and knee surgery. However, large-scale safety and dose-finding studies are warranted before final recommendations....

  17. Glucocorticoids and the regulation of memory in health and disease

    NARCIS (Netherlands)

    de Quervain, Dominique J. -F; Aerni, Amanda; Schelling, Gustav; Roozendaal, Benno

    Over the last decades considerable evidence has accumulated indicating that glucocorticoids - stress hormones released from the adrenal cortex - are crucially involved in the regulation of memory. Specifically, glucocorticoids have been shown to enhance memory consolidation of emotionally arousing

  18. Adverse consequences of glucocorticoid medication: psychological, cognitive, and behavioral effects

    NARCIS (Netherlands)

    Judd, L.L.; Schettler, P.J.; Brown, E.S.; Wolkowitz, O.M.; Sternberg, E.M.; Bender, B.G.; Bulloch, K.; Cidlowski, J.A.; Kloet, E.R. de; Fardet, L.; Joels, M.; Leung, D.Y.; McEwen, B.S.; Roozendaal, B.; Rossum, E.F. van; Ahn, J.; Brown, D.W.; Plitt, A.; Singh, G.

    2014-01-01

    Glucocorticoids are the most commonly prescribed anti-inflammatory/immunosuppressant medications worldwide. This article highlights the risk of clinically significant and sometimes severe psychological, cognitive, and behavioral disturbances that may be associated with glucocorticoid use, as well as

  19. Adverse Consequences of Glucocorticoid Medication : Psychological, Cognitive, and Behavioral Effects

    NARCIS (Netherlands)

    Judd, Lewis L.; Schettler, Pamela J.; Brown, E. Sherwood; Wolkowitz, Owen M.; Sternberg, Esther M.; Bender, Bruce G.; Bulloch, Karen; Cidlowski, John A.; de Kloet, E. Ronald; Fardet, Laurence; Joëls, Marian; Leung, Donald Y. M.; McEwen, Bruce S.; Roozendaal, Benno; Van Rossum, Elisabeth F. C.; Ahn, Junyoung; Brown, David W.; Plitt, Aaron; Singh, Gagandeep

    2014-01-01

    Glucocorticoids are the most commonly prescribed anti-inflammatory/immunosuppressant medications worldwide. This article highlights the risk of clinically significant and sometimes severe psychological, cognitive, and behavioral disturbances that may be associated with glucocorticoid use, as well as

  20. Rituximab and Dexamethasone vs Dexamethasone Monotherapy in Newly Diagnosed Patients with Primary Immune Thrombocytopenia

    DEFF Research Database (Denmark)

    Gudbrandsdottir, Sif; Birgens, Henrik Sverre; Frederiksen, Henrik

    2013-01-01

    In this study, we report the results from the largest cohort to date of newly diagnosed adult immune thrombocytopenia patients randomized to treatment with dexamethasone alone or in combination with rituximab. Eligible were patients with platelet counts ≤25×10(9)/L or ≤50×10(9)/L with bleeding sy...

  1. Glucocorticoids and fetal programming part 1: Outcomes.

    Science.gov (United States)

    Moisiadis, Vasilis G; Matthews, Stephen G

    2014-07-01

    Fetal development is a critical period for shaping the lifelong health of an individual. However, the fetus is susceptible to internal and external stimuli that can lead to adverse long-term health consequences. Glucocorticoids are an important developmental switch, driving changes in gene regulation that are necessary for normal growth and maturation. The fetal hypothalamic-pituitary-adrenal (HPA) axis is particularly susceptible to long-term programming by glucocorticoids; these effects can persist throughout the life of an organism. Dysfunction of the HPA axis as a result of fetal programming has been associated with impaired brain growth, altered behaviour and increased susceptibility to chronic disease (such as metabolic and cardiovascular disease). Moreover, the effects of glucocorticoid-mediated programming are evident in subsequent generations, and transmission of these changes can occur through both maternal and paternal lineages.

  2. Exogenous glucocorticoids and adverse cerebral effects in children

    DEFF Research Database (Denmark)

    Damsted, Sara K.; Born, A P; Paulson, Olaf B

    2011-01-01

    of the glucocorticoid receptor, which is associated with unfavorable cellular outcomes. Prenatal treatment with glucocorticoids can compromise brain growth and is associated with periventricular leukomalacia, attentions deficits and poorer cognitive performance. In the neonatal period exposure to glucocorticoids....... Glucocortioids affect several cellular structures and functions, which may explain the observed adverse effects. Glucocorticoids can impair neuronal glucose uptake, decrease excitability, cause atrophy of dendrites, compromise development of myelin-producing oligodendrocytes and disturb important cellular...

  3. Islet-cell dysfunction induced by glucocorticoid treatment

    DEFF Research Database (Denmark)

    van Raalte, Daniël H; Kwa, Kelly A A; van Genugten, Renate E

    2013-01-01

    Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system.......Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system....

  4. Effects of dexamethasone on liver enzymes and some serum ...

    African Journals Online (AJOL)

    Concomitant usage of dexamethasone and other medications may alter electrolyte metabolism and increase the formation of potentially hepatotoxic reactive metabolites which can contribute to elevated liver enzymes. The role of dexamethasone in liver functions and electrolyte metabolism during pregnancy in Yankasa ...

  5. Dexamethasone enhances the anti-emetic effect of metoclopramide ...

    African Journals Online (AJOL)

    Ninety patients, ASA I or II, aged 21-64years were randomly selected to either the dexamethasone-metoclopramide group, metoclopramide group or dexamethasone group using computer-generated random numbers . Spinal anaesthesia was induced in the sitting position under strict aseptic technique with hyperbaric ...

  6. Oval pulsed high-dose dexamethasone for myositis

    NARCIS (Netherlands)

    Hoogendijk, JE; Wokke, JHJ; de Visser, M

    To study the short-term effect of oral pulsed high-dose dexamethasone for myositis we treated eight newly diagnosed patients with three 28-day cycles of oral dexamethasone. Primary outcome measures were muscle strength, pain, and serum creatine kinase activity. Sis patients responded. Side effects

  7. Oral pulsed high-dose dexamethasone for myositis

    NARCIS (Netherlands)

    van der Meulen, M. F.; Hoogendijk, J. E.; Wokke, J. H.; de Visser, M.

    2000-01-01

    To study the short-term effect of oral pulsed high-dose dexamethasone for myositis we treated eight newly diagnosed patients with three 28-day cycles of oral dexamethasone. Primary outcome measures were muscle strength, pain, and serum creatine kinase activity. Six patients responded. Side effects

  8. Does Dexamethasone Helps in Meningococcal Sepsis?

    Science.gov (United States)

    Tolaj, Ilir; Ramadani, Hamdi; Mehmeti, Murat; Gashi, Hatixhe; Kasumi, Arbana; Gashi, Visar; Jashari, Haki

    2017-01-01

    Purpose: Prompt recognition and aggressive early treatment are the only effective measures against invasive meningococcal disease (IMD). Anti-inflammatory adjunctive treatment remains controversial and difficult to assess in patients with IMD. The purpose of this study was to evaluate the effect of dexamethasone (DXM) as adjunctive treatment in different clinical forms of IMD, and attempt to answer if DXM should be routinely used in the treatment of IMD. Methods: In this non-interventional clinical study (NIS), 39 patients with meningococcal septicaemia with or without of meningitis were included, and compared regarding the impact of dexamethasone (DXM), as an adjunctive treatment, on the outcome of IMD. SPSS statistics is used for statistical processing of data. Results: Thirty (76.9%) patients with IMD had sepsis and meningitis, and 9 (23.1%) of them had sepsis alone. Dexamethasone was used in 24 (61.5%) cases, in both clinical groups. The overall mortality rate was 10.3%. Pneumonia was diagnosed in 6 patients (15.4%), arthritis in 3 of them (7.7%), and subdural effusion in one patient (2.6%). The data showed a significant statistical difference on the length of hospitalization, and WBC normalization in groups of patients treated with DXM. Conclusion: The use of DXM as adjunctive therapy in invasive meningococcal disease has a degree of proven benefits and no harmful effects. In fighting this very dangerous and complex infection, even a limited benefit is sufficient to recommend the use of DXM as adjunctive treatment in invasive meningococcal disease. PMID:28974828

  9. In vivo evaluation of zirconia ceramic in the DexAide right ventricular assist device journal bearing.

    Science.gov (United States)

    Saeed, Diyar; Shalli, Shanaz; Fumoto, Hideyuki; Ootaki, Yoshio; Horai, Tetsuya; Anzai, Tomohiro; Zahr, Roula; Horvath, David J; Massiello, Alex L; Chen, Ji-Feng; Dessoffy, Raymond; Catanese, Jacquelyn; Benefit, Stephen; Golding, Leonard A R; Fukamachi, Kiyotaka

    2010-06-01

    Zirconia is a ceramic with material properties ideal for journal bearing applications. The purpose of this study was to evaluate the use of zirconium oxide (zirconia) as a blood journal bearing material in the DexAide right ventricular assist device. Zirconia ceramic was used instead of titanium to manufacture the DexAide stator housing without changing the stator geometry or the remaining pump hardware components. Pump hydraulic performance, journal bearing reliability, biocompatibility, and motor efficiency data of the zirconia stator were evaluated in six chronic bovine experiments for 14-91 days and compared with data from chronic experiments using the titanium stator. Pump performance data including average in vivo pump flows and speeds using a zirconia stator showed no statistically significant difference to the average values for 16 prior titanium stator in vivo studies, with the exception of a 19% reduction in power consumption. Indices of hemolysis were comparable for both stator types. Results of coagulation assays and platelet aggregation tests for the zirconia stator implants showed no device-induced increase in platelet activation. Postexplant evaluation of the zirconia journal bearing surfaces showed no biologic deposition in any of the implants. In conclusion, zirconia ceramic can be used as a hemocompatible material to improve motor efficiency while maintaining hydraulic performance in a blood journal bearing application.

  10. The new inhibitor of monoamine oxidase, M30, has a neuroprotective effect against dexamethasone-induced brain cell apoptosis

    Directory of Open Access Journals (Sweden)

    Shakevia Johnson

    2010-11-01

    Full Text Available Stress detrimentally affects the brain and body and can lead to or be accompanied by depression. Although stress and depression may contribute to each other, the exact molecular mechanism underlying the effects is unclear. However, there is a correlation between stress and an increase in glucocorticoid secretion which causes a subsequent increase in monoamine oxidase (MAO activity during stress. Consequently, MAO inhibitors have been used as traditional antidepressant drugs. Cellular treatment with the synthetic glucocorticoid, dexamethasone (a cellular stressor, has been reported to markedly increase both MAO A and MAO B catalytic activities, as well as apoptosis. This study compares the neuroprotective abilities of M30 (a new generation inhibitor of both MAO A and MAO B with rasagiline (Azilect®, another new MAO B inhibitor and selegiline (Deprenyl®, a traditional MAO B inhibitor in the prevention of dexamethasone-induced brain cell death and MAO activity in human neuroblastoma cells, SH-SY5Y. M30 demonstrated the highest inhibitory effect on MAO A; however, M30 showed the lowest inhibitory effect on MAO B enzymatic activity in comparison to rasagiline and selegiline. Although, M30 exhibited the greatest neuroprotective effect by decreasing cell death rates and apoptotic DNA damage compared to rasagiline and selegiline, these neuroprotective effects of M30 were, overall, similar to rasagiline. Summarily, M30 has a generally greater impact on neuroprotection than the MAO B inhibitors, selegiline and rasagiline. Our results suggest that M30 may have great potential in alleviating disorders involving increases in both MAO A and MAO B, such as stress-induced disorders.

  11. Subcellular distribution of [3H]-dexamethasone mesylate binding sites in Leydig cells using electron microscope radioautography

    International Nuclear Information System (INIS)

    Stalker, A.; Hermo, L.; Antakly, T.

    1991-01-01

    The present view is that glucocorticoid hormones bind to their cytoplasmic receptors before reaching their nuclear target sites, which include specific DNA sequences. Although it is believed that cytoplasmic sequestration of steroid receptors and other transcription factors (such as NFKB) may regulate the overall activity of these factors, there is little information on the exact subcellular sites of steroid receptors or even of any other transcription factors. Tritiated (3H)-dexamethasone 21-mesylate (DM) is an affinity label that binds covalently to the glucocorticoid receptor (GR), thereby allowing morphological localization of the receptor at the light and electron microscope levels as well as for quantitative radioautographic (RAG) analysis. After injection of 3H-DM into the testis, a specific radioautographic signal was observed in Leydig cells, which correlated with a high level of immunocytochemically demonstrable GR in these cells at the light-microscope level. To localize the 3H-DM binding sites at the electron microscope (EM) level, the testes of 5 experimental and 3 control adrenalectomized rats were injected directly with 20 microCi 3H-DM; control rats received simultaneously a 25-fold excess of unlabeled dexamethasone; 15 min later, rats were fixed with glutaraldehyde and the tissue was processed for EM RAG analysis combined with quantitative morphometry. The radioautographs showed that the cytosol, nucleus, smooth endoplasmic reticulum (sER), and mitochondria were labeled. Since the cytosol was always adjacent to tubules of the sER, the term sER-rich cytosol was used to represent label over sER networks, which may also represent cytosol labeling due to the limited resolution of the radioautographic technique. Labeling was highest in sER-rich cytosol and mitochondria, at 53% and 31% of the total, respectively

  12. Effect of Intravenous Dexamethasone on Preparing the Cervix and Labor Induction

    Directory of Open Access Journals (Sweden)

    Fatemeh Laloha

    2015-10-01

    Full Text Available The use of corticosteroids is one of the methods put forward for the strengthening and speeding up the process of labor. After identification of glucocorticoid receptors in human amnion, the role of corticosteroids in starting the process of labor has been studied in numerous studies. The purpose of this study was to determine the effect of intravenous Dexamethasone on preparing the cervix and on labor induction. A randomized, clinical, and double – blind trial was conducted on 172 women divided into a control and an experimental group. The inclusion criteria were that they had to be primparous, in or before the 40th week of pregnancy, and with Bishop scores (B.S.s of 4 or lower. The exclusion criteria were diabetes, preeclampsia, macrosomia, twin pregnancy, rupture of the membrane (ROM, breech, and women suffering from background diseases. The B.S.s of the women was measured in charge of the study, and each woman was intravenously injected with eight milligrams of Dexamethasone or eight milligrams of distilled water. Four hours after the injections, the B.S.s of the participants was measured, and they were put under the conditions of labor induction using oxytocin. Information was collected in checklists A and B. The patients were compared with respect to B.S., the time the induction started, the average interval between the start of induction and the beginning of the active phase of childbirth, and the average length of time between the start of the active phase and the second stage of childbirth. The first and five minutes Apgar scores of the two groups of women were compared. The frequencies, the means,  and the standard deviations were calculated using the SPSS – 16 software, and analysis of the results was performed with the Student’s t- test and the chi-square test with PPPP

  13. Dexmedetomidine (DEX) protects against hepatic ischemia/reperfusion (I/R) injury by suppressing inflammation and oxidative stress in NLRC5 deficient mice.

    Science.gov (United States)

    Chen, Zong; Ding, Tao; Ma, Chuan-Gen

    2017-11-18

    Hepatic ischemia/reperfusion (I/R) injury could arise as a complication of liver surgery and transplantation. No specific therapeutic strategies are available to attenuate I/R injury. NOD-, LRR-and CARD-containing 5 (NLRC5), a member of the NOD-like protein family, has been suggested to negatively regulate nuclear factor kappa B (NF-κB) through interacting with IKKα and blocking their phosphorylation. Dexmedetomidine (DEX) has been shown to attenuate liver injury. In the current study, we investigated the pre-treatment of DEX on hepatic I/R injury in wild type (WT) and NLRC5 knockout (NLRC5 -/- ) mice. Our results indicated that NLRC5 -/- showed significantly stronger histologic damage, inflammatory response, oxidative stress and apoptosis after I/R compared to the WT group of mice, indicating the protective role of NLRC5 against liver I/R injury. Importantly, I/R-induced increase of NLRC5 was reduced by DEX pre-treatment. After hepatic I/R injury, WT and NLRC5 -/- mice pre-treated with DEX exhibited attenuated histological disruption, and reduced pro-inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and inducible nitric oxide synthase (iNOS), which was associated with the inactivated NF-κB pathway. Moreover, suppression of oxidative stress and apoptosis was observed in DEX-treated mice with I/R injury, probably through enhancing nuclear factor erythroid 2-related factor 2 (Nrf2), reducing mitogen-activated protein kinases (MAPKs) and Caspase-3/poly (ADP-ribose) polymerase (PARP) pathways. In vitro, the results were further confirmed in WT and NLRC5 -/- hepatocytes pre-treated with or without DEX. Together, the findings illustrated that lack of NLRC5 resulted in severer liver I/R injury, which could be alleviated by DEX pre-treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Synthesis of dexamethasone-4-14C

    International Nuclear Information System (INIS)

    Rao, P.N.; Cessac, J.W.; Hill, K.A.

    1982-01-01

    The bismethylenedioxy (BMD) derivative of dexamethasone 2 was silylated with trimethylchlorosilane and imidazole in dimethylformamide to give the 11β-trimethylsilyloxy BMD derivative 3. The Δ 1 -double bond in 3 was hydrogenated over 5% palladium on carbon to give the Δ 4 -3-oxo steroid 4. Oxidation of 4 with potassium permanganate-sodium metaperiodate gave the seco-acid 5 which on subsequent treatment with acetic anhydride; sodium acetate and triethylamine gave the enol-lactone 6. The enol-lactone 6 was reacted with 14 C-methylmagnesium iodide to give an adduct 7a which on heating at reflux with lithium 2,6-di-t-butylphenoxide in dioxane gave the Δ 4 -3-oxo derivative 8. Compound 8 was heated at reflux with m-iodylbenzoic acid and diphenyl diselenide in toluene to give the Δsup(1,4)-3-oxo steroid 9. The protecting BMD and silyl groups were removed in a single step by reaction with aqueous trifluoroacetic acid containing 2N hydrochloric acid at room temperature to give dexamethasone-4- 14 C 10. (author)

  15. Plasmodium berghei NK65 in Combination with IFN-γ Induces Endothelial Glucocorticoid Resistance via Sustained Activation of p38 and JNK

    Science.gov (United States)

    Zielińska, Karolina A.; de Cauwer, Lode; Knoops, Sofie; Van der Molen, Kristof; Sneyers, Alexander; Thommis, Jonathan; De Souza, J. Brian; Opdenakker, Ghislain; De Bosscher, Karolien; Van den Steen, Philippe E.

    2017-01-01

    Malaria-associated acute respiratory distress syndrome (MA-ARDS) is an often lethal complication of malaria. Currently, no adequate therapy for this syndrome exists. Although glucocorticoids (GCs) have been used to improve clinical outcome of ARDS, their therapeutic benefits remain unclear. We previously developed a mouse model of MA-ARDS, in which dexamethasone treatment revealed GC resistance. In the present study, we investigated GC sensitivity of mouse microvascular lung endothelial cells stimulated with interferon-γ (IFN-γ) and Plasmodium berghei NK65 (PbNK65). Upon challenge with IFN-γ alone, dexamethasone inhibited the expression of CCL5 (RANTES) by 90% and both CCL2 (MCP-1) and CXCL10 (IP-10) by 50%. Accordingly, whole transcriptome analysis revealed that dexamethasone differentially affected several gene clusters and in particular inhibited a large cluster of IFN-γ-induced genes, including chemokines. In contrast, combined stimulation with IFN-γ and PbNK65 extract impaired inhibitory actions of GCs on chemokine release, without affecting the capacity of the GC receptor to accumulate in the nucleus. Subsequently, we investigated the effects of GCs on two signaling pathways activated by IFN-γ. Dexamethasone left phosphorylation and protein levels of signal transducer and activator of transcription 1 (STAT1) unhampered. In contrast, dexamethasone inhibited the IFN-γ-induced activation of two mitogen-activated protein kinases (MAPK), JNK, and p38. However, PbNK65 extract abolished the inhibitory effects of GCs on MAPK signaling, inducing GC resistance. These data provide novel insights into the mechanisms of GC actions in endothelial cells and show how malaria may impair the beneficial effects of GCs. PMID:29033931

  16. Plasmodium berghei NK65 in Combination with IFN-γ Induces Endothelial Glucocorticoid Resistance via Sustained Activation of p38 and JNK

    Directory of Open Access Journals (Sweden)

    Karolina A. Zielińska

    2017-09-01

    Full Text Available Malaria-associated acute respiratory distress syndrome (MA-ARDS is an often lethal complication of malaria. Currently, no adequate therapy for this syndrome exists. Although glucocorticoids (GCs have been used to improve clinical outcome of ARDS, their therapeutic benefits remain unclear. We previously developed a mouse model of MA-ARDS, in which dexamethasone treatment revealed GC resistance. In the present study, we investigated GC sensitivity of mouse microvascular lung endothelial cells stimulated with interferon-γ (IFN-γ and Plasmodium berghei NK65 (PbNK65. Upon challenge with IFN-γ alone, dexamethasone inhibited the expression of CCL5 (RANTES by 90% and both CCL2 (MCP-1 and CXCL10 (IP-10 by 50%. Accordingly, whole transcriptome analysis revealed that dexamethasone differentially affected several gene clusters and in particular inhibited a large cluster of IFN-γ-induced genes, including chemokines. In contrast, combined stimulation with IFN-γ and PbNK65 extract impaired inhibitory actions of GCs on chemokine release, without affecting the capacity of the GC receptor to accumulate in the nucleus. Subsequently, we investigated the effects of GCs on two signaling pathways activated by IFN-γ. Dexamethasone left phosphorylation and protein levels of signal transducer and activator of transcription 1 (STAT1 unhampered. In contrast, dexamethasone inhibited the IFN-γ-induced activation of two mitogen-activated protein kinases (MAPK, JNK, and p38. However, PbNK65 extract abolished the inhibitory effects of GCs on MAPK signaling, inducing GC resistance. These data provide novel insights into the mechanisms of GC actions in endothelial cells and show how malaria may impair the beneficial effects of GCs.

  17. Systems Biology of Glucocorticoids in Muscle Disease

    Science.gov (United States)

    2010-10-01

    Introduction Duchenne muscular dystrophy (DMD) is the most common and incurable muscular dystrophy of childhood. Muscle regeneration fails with...SUBJECT TERMS Duchenne Muscular dystrophy , Glucocorticoids, Systems biology, Drug mechanism 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION...better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant proposal is led by Dr. Eric Hoffman, and it

  18. On the retinal toxicity of intraocular glucocorticoids.

    Science.gov (United States)

    Torriglia, Alicia; Valamanesh, Fatemeh; Behar-Cohen, Francine

    2010-12-15

    Corticosteroids are hormones involved in many physiological responses such as stress, immune modulation, protein catabolism and water homeostasis. The subfamily of glucocorticoids is used systemically in the treatment of inflammatory diseases or allergic reactions. In the eye, glucocorticoides are used to treat macular edema, inflammation and neovascularization. The most commonly used glucocorticoid is triamcinolone acetonide (TA). The pharmaceutical formulation of TA is not adapted for intravitreal administration but has been selected by ophthalmologists because its very low intraocular solubility provides sustained effect. Visual benefits of intraocular TA do not clearly correlate with morpho-anatomical improvements, suggesting potential toxicity. We therefore studied, non-common, but deleterious effects of glucocorticoids on the retina. We found that the intravitreal administration of TA is beneficial in the treatment of neovascularization because it triggers cell death of endothelial cells of neovessels by a caspase-independent mechanism. However, this treatment is toxic for the retina because it induces a non-apoptotic, caspase-independent cell death related to paraptosis, mostly in the retinal pigmented epithelium cells and the Müller cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Are BDNF and glucocorticoid activities calibrated?

    Science.gov (United States)

    Jeanneteau, Freddy; Chao, Moses V.

    2012-01-01

    One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of ‘BDNF therapies’, however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitate stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles share by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects. PMID:23022538

  20. From receptor balance to rational glucocorticoid therapy.

    Science.gov (United States)

    de Kloet, E Ron

    2014-08-01

    Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.

  1. Effects of valproic acid and dexamethasone administration on early bio-markers and gene expression profile in acute kidney ischemia-reperfusion injury in the rat.

    Directory of Open Access Journals (Sweden)

    Ryan W Speir

    Full Text Available Renal ischemia-reperfusion (IR causes acute kidney injury (AKI with high mortality and morbidity. The objective of this investigation was to ameliorate kidney IR injury and identify novel biomarkers for kidney injury and repair. Under general anesthesia, left renal ischemia was induced in Wister rats by occluding renal artery for 45 minutes, followed by reperfusion and right nephrectomy. Thirty minutes prior to ischemia, rats (n = 8/group received Valproic Acid (150 mg/kg; VPA, Dexamethasone (3 mg/kg; Dex or Vehicle (saline intraperitoneally. Animals were sacrificed at 3, 24 or 120 h post-IR. Plasma creatinine (mg/dL at 24 h was reduced (P<0.05 in VPA (2.7±1.8 and Dex (2.3±1.2 compared to Vehicle (3.8±0.5 group. At 3 h, urine albumin (mg/mL was higher in Vehicle (1.47±0.10, VPA (0.84±0.62 and Dex (1.04±0.73 compared to naïve (uninjured/untreated control (0.14±0.26 group. At 24 h post-IR urine lipocalin-2 (μg/mL was higher (P<0.05 in VPA, Dex and Vehicle groups (9.61-11.36 compared to naïve group (0.67±0.29; also, kidney injury molecule-1 (KIM-1; ng/mL was higher (P<0.05 in VPA, Dex and Vehicle groups (13.7-18.7 compared to naïve group (1.7±1.9. Histopathology demonstrated reduced (P<0.05 ischemic injury in the renal cortex in VPA (Grade 1.6±1.5 compared to Vehicle (Grade 2.9±1.1. Inflammatory cytokines IL1β and IL6 were downregulated and anti-apoptotic molecule BCL2 was upregulated in VPA group. Furthermore, kidney DNA microarray demonstrated reduced injury, stress, and apoptosis related gene expression in the VPA administered rats. VPA appears to ameliorate kidney IR injury via reduced inflammatory cytokine, apoptosis/stress related gene expression, and improved regeneration. KIM-1, lipocalin-2 and albumin appear to be promising early urine biomarkers for the diagnosis of AKI.

  2. High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations

    Directory of Open Access Journals (Sweden)

    Oller do Nascimento Cláudia

    2011-01-01

    Full Text Available Abstract Background Adiponectin is the most abundant plasma protein synthesized for the most part in adipose tissue, and it is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. In addition, it increases fatty acid oxidation in the muscle and potentiates insulin inhibition of hepatic gluconeogenesis. Two adiponectin receptors have been identified: AdipoR1 is the major receptor expressed in skeletal muscle, whereas AdipoR2 is mainly expressed in liver. Consumption of high levels of dietary fat is thought to be a major factor in the promotion of obesity and insulin resistance. Excessive levels of cortisol are characterized by the symptoms of abdominal obesity, hypertension, glucose intolerance or diabetes and dyslipidemia; of note, all of these features are shared by the condition of insulin resistance. Although it has been shown that glucocorticoids inhibit adiponectin expression in vitro and in vivo, little is known about the regulation of adiponectin receptors. The link between glucocorticoids and insulin resistance may involve the adiponectin receptors and adrenalectomy might play a role not only in regulate expression and secretion of adiponectin, as well regulate the respective receptors in several tissues. Results Feeding of a high-fat diet increased serum glucose levels and decreased adiponectin and adipoR2 mRNA expression in subcutaneous and retroperitoneal adipose tissues, respectively. Moreover, it increased both adipoR1 and adipoR2 mRNA levels in muscle and adipoR2 protein levels in liver. Adrenalectomy combined with the synthetic glucocorticoid dexamethasone treatment resulted in increased glucose and insulin levels, decreased serum adiponectin levels, reduced adiponectin mRNA in epididymal adipose tissue, reduction of adipoR2 mRNA by 7-fold in muscle and reduced adipoR1 and adipoR2 protein levels in muscle. Adrenalectomy alone increased adiponectin mRNA expression 3-fold in subcutaneous adipose

  3. Epigenetic modifications and glucocorticoid sensitivity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS).

    Science.gov (United States)

    de Vega, Wilfred C; Herrera, Santiago; Vernon, Suzanne D; McGowan, Patrick O

    2017-02-23

    Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating idiopathic disease characterized by unexplained fatigue that fails to resolve with sufficient rest. Diagnosis is based on a list of symptoms and exclusion of other fatigue-related health conditions. Despite a heterogeneous patient population, immune and hypothalamic-pituitary-adrenal (HPA) axis function differences, such as enhanced negative feedback to glucocorticoids, are recurring findings in ME/CFS studies. Epigenetic modifications, such as CpG methylation, are known to regulate long-term phenotypic differences and previous work by our group found DNA methylome differences in ME/CFS, however the relationship between DNA methylome modifications, clinical and functional characteristics associated with ME/CFS has not been examined. We examined the DNA methylome in peripheral blood mononuclear cells (PBMCs) of a larger cohort of female ME/CFS patients using the Illumina HumanMethylation450 BeadChip Array. In parallel to the DNA methylome analysis, we investigated in vitro glucocorticoid sensitivity differences by stimulating PBMCs with phytohaemagglutinin and suppressed growth with dexamethasone. We explored DNA methylation differences using bisulfite pyrosequencing and statistical permutation. Linear regression was implemented to discover epigenomic regions associated with self-reported quality of life and network analysis of gene ontology terms to biologically contextualize results. We detected 12,608 differentially methylated sites between ME/CFS patients and healthy controls predominantly localized to cellular metabolism genes, some of which were also related to self-reported quality of life health scores. Among ME/CFS patients, glucocorticoid sensitivity was associated with differential methylation at 13 loci. Our results indicate DNA methylation modifications in cellular metabolism in ME/CFS despite a heterogeneous patient population, implicating these processes in immune and HPA

  4. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes.

    Science.gov (United States)

    Mangiapane, E H; Brindley, D N

    1986-01-01

    Rat hepatocytes in monolayer culture were preincubated for 19 h with 1 microM-dexamethasone, and the incubation was continued for a further 23 h with [14C]oleate, [3H]glycerol and 1 microM-dexamethasone. Dexamethasone increased the secretion of triacylglycerol into the medium in particles that had the properties of very-low-density lipoproteins. The increased secretion was matched by a decrease in the triacylglycerol and phosphatidylcholine that remained in the hepatocytes. Preincubating the hepatocytes for the total 42 h period with 36 nM-insulin decreased the amount of triacylglycerol in the medium and in the cells after the final incubation for 23 h with radioactive substrates. However, insulin had no significant effect on the triacylglycerol content of the cell and medium when it was present only in the final 23 h incubation. Insulin antagonized the effects of dexamethasone in stimulating the secretion of triacylglycerol from the hepatocytes, especially when it was present throughout the total 42 h period. The labelling of lysophosphatidylcholine in the medium when hepatocytes were incubated with [14C]oleate and [3H]glycerol was greater than that of phosphatidylcholine. The appearance of this lipid in the medium, unlike that of triacylglycerol and phosphatidylcholine, was not stimulated by dexamethasone, or inhibited by colchicine. However, the presence of lysophosphatidylcholine in the medium was decreased when the hepatocytes were incubated with both dexamethasone and insulin. These findings are discussed in relation to the control of the synthesis of glycerolipids and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by the liver, particularly in relation to the interactions of glucocorticoids and insulin. PMID:3513755

  5. Theory-based design and field-testing of an intervention to support women choosing surgery for breast cancer: BresDex.

    Science.gov (United States)

    Sivell, Stephanie; Marsh, William; Edwards, Adrian; Manstead, Antony S R; Clements, Alison; Elwyn, Glyn

    2012-02-01

    Design and undertake usability and field-testing evaluation of a theory-guided decision aid (BresDex) in supporting women choosing surgery for early breast cancer. An extended Theory of Planned Behavior (TPB) and the Common Sense Model of Illness Representations (CSM) guided the design of BresDex. BresDex was evaluated and refined across 3 cycles by interviewing 6 women without personal history of breast cancer, 8 women with personal history of breast cancer who had completed treatment and 11 women newly diagnosed with breast cancer. Participants were interviewed for views on content, presentation (usability) and perceived usefulness towards deciding on treatment (utility). Framework analysis was used, guided by the extended TPB and the CSM. BresDex was positively received in content and presentation (usability). It appeared an effective support to decision-making and useful source for further information, particularly in clarifying attitudes, social norms and perceived behavioral control, and presenting consequences of decisions (utility). This study illustrates the potential benefit of the extended TPB and CSM in designing a decision aid to support women choosing breast cancer surgery. BresDex could provide decision-making support and serve as an additional source of information, to complement the care received from the clinical team. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Does dexamethasone have a perineural mechanism of action?

    DEFF Research Database (Denmark)

    Jæger, P; Grevstad, Jens Ulrik; Koscielniak-Nielsen, Z J

    2016-01-01

    BACKGROUND: Dexamethasone prolongs block duration. Whether this is achieved via a peripheral or a central mechanism of action is unknown. We hypothesized that perineural dexamethasone added as an adjuvant to ropivacaine prolongs block duration compared with ropivacaine alone, by a locally mediated...... effect when controlled for a systemic action. METHODS: We performed a paired, blinded, randomized trial, including healthy men. All subjects received bilateral blocks of the saphenous nerve with ropivacaine 0.5%, 20 ml mixed with dexamethasone 2 mg in one leg and saline in the other, according...

  7. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma.

    Science.gov (United States)

    Dimopoulos, Meletios A; Oriol, Albert; Nahi, Hareth; San-Miguel, Jesus; Bahlis, Nizar J; Usmani, Saad Z; Rabin, Neil; Orlowski, Robert Z; Komarnicki, Mieczyslaw; Suzuki, Kenshi; Plesner, Torben; Yoon, Sung-Soo; Ben Yehuda, Dina; Richardson, Paul G; Goldschmidt, Hartmut; Reece, Donna; Lisby, Steen; Khokhar, Nushmia Z; O'Rourke, Lisa; Chiu, Christopher; Qin, Xiang; Guckert, Mary; Ahmadi, Tahamtan; Moreau, Philippe

    2016-10-06

    Daratumumab showed promising efficacy alone and with lenalidomide and dexamethasone in a phase 1-2 study involving patients with relapsed or refractory multiple myeloma. In this phase 3 trial, we randomly assigned 569 patients with multiple myeloma who had received one or more previous lines of therapy to receive lenalidomide and dexamethasone either alone (control group) or in combination with daratumumab (daratumumab group). The primary end point was progression-free survival. At a median follow-up of 13.5 months in a protocol-specified interim analysis, 169 events of disease progression or death were observed (in 53 of 286 patients [18.5%] in the daratumumab group vs. 116 of 283 [41.0%] in the control group; hazard ratio, 0.37; 95% confidence interval [CI], 0.27 to 0.52; P<0.001 by stratified log-rank test). The Kaplan-Meier rate of progression-free survival at 12 months was 83.2% (95% CI, 78.3 to 87.2) in the daratumumab group, as compared with 60.1% (95% CI, 54.0 to 65.7) in the control group. A significantly higher rate of overall response was observed in the daratumumab group than in the control group (92.9% vs. 76.4%, P<0.001), as was a higher rate of complete response or better (43.1% vs. 19.2%, P<0.001). In the daratumumab group, 22.4% of the patients had results below the threshold for minimal residual disease (1 tumor cell per 10 5 white cells), as compared with 4.6% of those in the control group (P<0.001); results below the threshold for minimal residual disease were associated with improved outcomes. The most common adverse events of grade 3 or 4 during treatment were neutropenia (in 51.9% of the patients in the daratumumab group vs. 37.0% of those in the control group), thrombocytopenia (in 12.7% vs. 13.5%), and anemia (in 12.4% vs. 19.6%). Daratumumab-associated infusion-related reactions occurred in 47.7% of the patients and were mostly of grade 1 or 2. The addition of daratumumab to lenalidomide and dexamethasone significantly lengthened

  8. Developmental neurotoxicity targeting hepatic and cardiac sympathetic innervation: effects of organophosphates are distinct from those of glucocorticoids.

    Science.gov (United States)

    Seidler, Frederic J; Slotkin, Theodore A

    2011-05-30

    Early-life exposure to organophosphate pesticides leads to subsequent hyperresponsiveness of β-adrenergic receptor-mediated cell signaling that regulates hepatic gluconeogenesis, culminating in metabolic abnormalities resembling prediabetes. In the current study, we evaluated the effects of chlorpyrifos or parathion on presynaptic sympathetic innervation to determine whether the postsynaptic signaling effects are accompanied by defects in neuronal input. We administered either chlorpyrifos or parathion to newborn rats using exposure paradigms known to elicit the later metabolic changes but found no alterations in either hepatic or cardiac norepinephrine levels in adolescence or adulthood. However, shifting chlorpyrifos exposure to the prenatal period did evoke changes: exposure early in gestation produced subsequent elevations in norepinephrine, whereas later gestational exposure produced significant deficits. We also distinguished the organophosphate effects from those of the glucocorticoid, dexamethasone, a known endocrine disruptor that leads to later-life metabolic and cardiovascular disruption. Postnatal exposure to dexamethasone elicited deficits in peripheral norepinephrine levels but prenatal exposure did not. Our results indicate that early-life exposure to organophosphates leads to subsequent abnormalities of peripheral sympathetic innervation through mechanisms entirely distinct from those of glucocorticoids, ruling out the possibility that the organophosphate effects are secondary to stress or disruption of the HPA axis. Further, the effects on innervation were separable from those on postsynaptic signaling, differing in critical period as well as tissue- and sex-selectivity. Organophosphate targeting of both presynaptic and postsynaptic β-adrenergic sites, each with different critical periods of vulnerability, thus sets the stage for compounding of hepatic and cardiac functional abnormalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Dexamethasone enhances necrosis-like neuronal death in ischemic rat hippocampus involving μ-calpain activation

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Hasseldam, Henrik; Rasmussen, Rune Skovgaard

    2014-01-01

    - and necrosis-like cell death morphologies in CA1 of rats treated with dexamethasone prior to TFI (DPTI). In addition, apoptosis- (casp-9, casp-3, casp-3-cleaved PARP and cleaved α-spectrin 145/150 and 120kDa) and necrosis-related (calpain-specific casp-9 cleavage, μ-calpain upregulation and cleaved α......Transient forebrain ischemia (TFI) leads to hippocampal CA1 pyramidal cell death which is aggravated by glucocorticoids (GC). It is unknown how GC affect apoptosis and necrosis in cerebral ischemia. We therefore investigated the co-localization of activated caspase-3 (casp-3) with apoptosis......-spectrin 145/150kDa) cell death mechanisms were investigated by Western blot analysis. DPTI expedited CA1 neuronal death from day 4 to day 1 and increased the magnitude of CA1 neuronal death from 66.2% to 91.3% at day 7. Furthermore, DPTI decreased the overall (days 1-7) percentage of dying neurons displaying...

  10. Independent association of glucocorticoids with damage accrual in SLE.

    Science.gov (United States)

    Apostolopoulos, Diane; Kandane-Rathnayake, Rangi; Raghunath, Sudha; Hoi, Alberta; Nikpour, Mandana; Morand, Eric F

    2016-01-01

    To determine factors associated with damage accrual in a prospective cohort of patients with SLE. Patients with SLE who attended the Lupus Clinic at Monash Health, Australia, between 2007 and 2013 were studied. Clinical variables included disease activity (Systemic Lupus Erythematosus Disease Activity Index-2K, SLEDAI-2K), time-adjusted mean SLEDAI, cumulative glucocorticoid dose and organ damage (Systemic Lupus International Collaborating Clinics Damage Index (SDI)). Multivariate logistic regression analyses were performed to identify factors associated with damage accrual. A total of 162 patients were observed over a median (IQR) 3.6 (2.0-4.7) years. Seventy-five per cent (n=121) of patients received glucocorticoids. Damage accrual was significantly more frequent in glucocorticoid-exposed patients (42% vs 15%, p<0.01). Higher glucocorticoid exposure was independently associated with overall damage accrual after controlling for factors including ethnicity and disease activity and was significant at time-adjusted mean doses above 4.42 mg prednisolone/day; the OR of damage accrual in patients in the highest quartile of cumulative glucocorticoid exposure was over 10. Glucocorticoid exposure was independently associated with damage accrual in glucocorticoid-related and non-glucocorticoid related domains of the SDI. Glucocorticoid use is independently associated with the accrual of damage in SLE, including in non-glucocorticoid related domains.

  11. Randomized controlled trial to study the effect of dexamethasone as additive to ropivacaine on duration of ultrasound-guided transversus abdominis plane block in cesarean section

    Directory of Open Access Journals (Sweden)

    Jasleen Sachdeva

    2016-01-01

    Full Text Available Background: Transversus abdominis plane (TAP block is a regional anesthesia technique whose efficacy has been proven for postoperative pain relief after cesarean section (CS. Dexamethasone, a glucocorticoid, is now emerging as a new adjunct to local anesthetics for prolonging the duration of action and has been studied in different brachial plexus blocks. The primary outcome was to study the effect of dexamethasone as additive to ropivacaine on the duration of TAP block as assessed by time to first analgesic (TFA . The secondary outcome was total postoperative analgesic consumption, postoperative nausea and vomiting, and patient satisfaction. Method: This RCT was conducted on seventy American Society of Anesthesiology Grade I and II patients undergoing CS under subarachnoid block. Patients were randomly allocated to two groups comprising 35 patients each. Patients in Group I received ultrasound-guided bilateral TAP block at the end of surgery using 40 ml ropivacaine 0.2% and 2 ml saline, and patients in Group II received the block using 40 ml ropivacaine 0.2% and 2 ml (8 mg dexamethasone. Result: TFA was significantly longer in Group II (5.92 ± 1.02 vs. 3.11 ± 0.82 h, P = 0. Group II also had decreased tramadol requirement postoperatively (100.00 ± 0.00 vs. 140.00 ± 50.26 mg, P = 0.046. The incidence of nausea and vomiting was also lower (82.86% vs. 97.14%, P = 0.02318. The patient satisfaction with regard to pain relief was more (57.14% vs. 25.71%, P = 0.038. Conclusion: Addition of dexamethasone to ropivacaine in TAP block prolonged the duration of the block. There was no complication seen with TAP block in any of the patients.

  12. 77 FR 32010 - New Animal Drugs; Altrenogest; Dexamethasone; Florfenicol

    Science.gov (United States)

    2012-05-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Parts 510, 516, 520, 522, and 558 [Docket No. FDA-2012-N-0002] New Animal Drugs; Altrenogest; Dexamethasone; Florfenicol AGENCY: Food and Drug Administration, HHS. [[Page 32011

  13. Effects of Antenatal Betamethasone and Dexamethasone in Preterm Neonates

    Directory of Open Access Journals (Sweden)

    Chen-Yu Chen

    2005-09-01

    Conclusion: In our study, no significant differences between antenatal betamethasone and dexamethasone were found in complications of preterm neonates. Incomplete courses of antenatal corticosteroids were associated with an increased incidence of RDS compared with complete courses.

  14. Paradoxical response to dexamethasone and spontaneous hypocortisolism in Cushing's disease

    Science.gov (United States)

    Lila, Anurag R; Sarathi, Vijaya; Bandgar, Tushar R; Shah, Nalini S

    2013-01-01

    Paradoxical response to dexamethasone and spontaneous development of hypocortisolism are rare features of Cushing's disease. We report a 13-year-old boy with Cushing's disease owing to a pituitary macroadenoma. On initial evaluation, he had partial suppression of serum cortisol by dexamethasone. He developed transient hypocortisolism after first adenomectomy, but the disease recurred after 1 year. Repeat evaluation showed recurrent hypercortisolism and paradoxical response to dexamethasone. He underwent second surgery and, postoperatively, hypercostisolism persisted even after 2 years of surgery. Repeat evaluations after 8 years of second surgery revealed persistent hypocortisolism despite residual tumour of same size and similar plasma adrenocorticotropic hormone (ACTH) levels. We have also shown that the paradoxical increase in serum cortisol was preceded by a paradoxical increase in ACTH. The paradoxical response persisted despite hypocortisolism. This patient with Cushing's disease had two very rare features: paradoxical response to dexamethasone and spontaneous development of hypocortisolism. PMID:23365169

  15. Glucocorticoid Availability in Colonic Inflammation of Rat

    Czech Academy of Sciences Publication Activity Database

    Ergang, Peter; Leden, Pavel; Bryndová, Jana; Žbánková, Šárka; Mikšík, Ivan; Kment, M.; Pácha, Jiří

    2008-01-01

    Roč. 53, č. 8 (2008), s. 2160-2167 ISSN 0163-2116 R&D Projects: GA MZd(CZ) NR8576; GA ČR GA305/07/0328 Grant - others:Univerzita Karlova(CZ) 77/2006C Institutional research plan: CEZ:AV0Z50110509 Keywords : glucocorticoids * 11beta hydroxisteroid dehydrogenase 1 Subject RIV: ED - Physiology Impact factor: 1.583, year: 2008

  16. Biochemical endpoints of glucocorticoid hormone action

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Nicholson, M.L.; Guyette, W.A.; Giddings, S.J.; Mendelsohn, S.L.; Nordeen, S.K.; Lyons, R.T.

    1978-01-01

    Both the rapidly evolving metabolic effects of glucocorticoids and the more slowly developing lethal actions appear to be initiated via the synthesis of new mRNAs and proteins. The chronic suppression of cell growth may be the consequence of suppression of overall rates of protein synthesis (and probably RNA and DNA synthesis as well) that in turn may represent the cellular response to the small changes in ratios of adenine nucleotides that result from the suppression of oxidative ATP production. The inhibition of glucose transport may also play a role here to prevent a compensatory increase in glycolytic ATP production. Some other hormone actions, the decrease in the ability of cells to concentrate AIB and the increase in nuclear fragility are unrelated to, and evolve separately from, the hormonal inhibitions on energy production. Cell killing is not the result of suppression of protein synthesis, nor of hormone-induced increases in calcium uptake. While the mechanisms are unknown, the increase in nuclear fragility appears to be the earliest measure of their operation. In tumor cells resistance to lethal actions of glucocorticoids may emerge via the selection of cells with hardier membranes, that are better able to withstand the intracellular destructive events set in motion by high levels of glucocorticoids.

  17. Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production.

    Directory of Open Access Journals (Sweden)

    Christel Gumy

    Full Text Available BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK and tyrosine-aminotransferase (TAT and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6 and TNF-alpha production in lipopolysaccharide (LPS-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

  18. Inhibitory effects of glucocorticoid on apoptosis and activation of NF-κB in P388 cells induced by radiation

    International Nuclear Information System (INIS)

    Shi Jianhui; Niu Yuhong; Ge Junbo; Xu Xiaoping; Cheng Wenying; Feng Xiao; Zhang Zongliang

    2002-01-01

    Objective: To explore effects of glucocorticoid on apoptosis and activation of NF-κB in P388 cells induced by radiation. Methods: Apoptosis in P388 cells induced by radiation treatment was detected by TUNEL assay. EMSA was used to detect the activation of NF-κB . Results: The apoptosis and activation of NF-κB in P388 cells could be induced by radiation. Dexamethasone (DXM) which could suppress activation of NF-κB of P388 cells increased significantly the apoptosis induced by radiation. Apoptosis rates in DXM-treated P388 cells after 2, 4, 6 and 8 Gy exposure increased by 60%, 100%, 129% and 67%, respectively. Activation rates of NF-κB in DXM-treated P388 cells after 2, 4, 6 and 8 Gy exposure decreased by 25%, 45%, 52% and 40%, respectively. Conclusion: Radiation induces apoptosis and activation of NF-κB in P388 cells simultaneously. Glucocorticoid enhances apoptosis in leukemic cells, which may be by means of suppressing activation of NF-κB

  19. Synthesis and self-assembly behavior of amphiphilic diblock copolymer dextran-block-poly(ε-caprolactone (DEX-b-PCL in aqueous media

    Directory of Open Access Journals (Sweden)

    2010-10-01

    Full Text Available An amphiphilic diblock copolymer, dextran-block-poly(ε-caprolactone (DEX-b-PCL, with a series of welldefined chain lengths of each block was prepared by conjugating a dextran chain with a PCL block via aza-Michael addition reaction under mild conditions. For the dextran block, samples with relatively uniform molecular weight, 3.5 and 6.0 kDa, were used, and the PCL blocks were prepared via ring-opening polymerization at defined ratios of ε-caprolactone to initiator in order to give copolymers with mass fraction of dextran (fDEX ranging from 0.16 to 0.45. When these copolymers were allowed to self-assemble in aqueous solution, the morphology of assembled aggregates varied as a function of fDEX when characterized by transmission electron microscope (TEM, fluorescence microscope (FM and dynamic laser scattering (DLS. As fDEX decreases gradually from 0.45 to 0.16, the morphology of the copolymer assembly changes from spherical micelles to worm-like micelles and eventually to polymersomes, together with an increase in particle sizes.

  20. The mother or the fetus? 11beta-hydroxysteroid dehydrogenase type 2 null mice provide evidence for direct fetal programming of behavior by endogenous glucocorticoids.

    Science.gov (United States)

    Holmes, Megan C; Abrahamsen, Christian T; French, Karen L; Paterson, Janice M; Mullins, John J; Seckl, Jonathan R

    2006-04-05

    Low birth weight associates with increased susceptibility to adult cardiometabolic and affective disorders spawning the notion of fetal "programming." Prenatal exposure to excess glucocorticoids may be causal. In support, maternal stress or treatment during pregnancy with dexamethasone (which crosses the placenta) or inhibitors of fetoplacental 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), the physiological "barrier" to maternal glucocorticoids, reduces birth weight and programs permanent offspring hypertension, hyperglycemia, and anxiety behaviors. It remains uncertain whether such effects are mediated indirectly via altered maternal function or directly on the fetus and its placenta. To dissect this critical issue, we mated 11beta-HSD2(+/-) mice such that each pregnant female produces +/+, +/-, and -/- offspring and compared them with offspring of homozygous wild-type and -/- matings. We show that 11beta-HSD2(-/-) offspring of either +/- or -/- mothers have lower birth weight and exhibit greater anxiety than 11beta-HSD2(+/+) littermates. This provides clear evidence for the key role of fetoplacental 11beta-HSD2 in prenatal glucocorticoid programming.

  1. Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression)

    NARCIS (Netherlands)

    Appelhof, Bente C.; Huyser, Jochanan; Verweij, Mijke; Brouwer, Jantien P.; van Dyck, Richard; Fliers, Eric; Hoogendijk, Witte J. G.; Tijssen, Jan G. P.; Wiersinga, Wilmar M.; Schene, Aart H.

    2006-01-01

    BACKGROUND: Knowledge of pathogenic mechanisms and predictors of relapse in major depressive disorder is still limited. Hypothalamic-pituitary-adrenocortical (HPA) axis dysregulation is thought to be related to the development and course of depression. METHODS: We investigated whether

  2. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring.

    Science.gov (United States)

    Yehuda, Rachel; Daskalakis, Nikolaos P; Lehrner, Amy; Desarnaud, Frank; Bader, Heather N; Makotkine, Iouri; Flory, Janine D; Bierer, Linda M; Meaney, Michael J

    2014-08-01

    Differential effects of maternal and paternal posttraumatic stress disorder (PTSD) have been observed in adult offspring of Holocaust survivors in both glucocorticoid receptor sensitivity and vulnerability to psychiatric disorder. The authors examined the relative influences of maternal and paternal PTSD on DNA methylation of the exon 1F promoter of the glucocorticoid receptor (GR-1F) gene (NR3C1) in peripheral blood mononuclear cells and its relationship to glucocorticoid receptor sensitivity in Holocaust offspring. Adult offspring with at least one Holocaust survivor parent (N=80) and demographically similar participants without parental Holocaust exposure or parental PTSD (N=15) completed clinical interviews, self-report measures, and biological procedures. Blood samples were collected for analysis of GR-1F promoter methylation and of cortisol levels in response to low-dose dexamethasone, and two-way analysis of covariance was performed using maternal and paternal PTSD as main effects. Hierarchical clustering analysis was used to permit visualization of maternal compared with paternal PTSD effects on clinical variables and GR-1F promoter methylation. A significant interaction demonstrated that in the absence of maternal PTSD, offspring with paternal PTSD showed higher GR-1F promoter methylation, whereas offspring with both maternal and paternal PTSD showed lower methylation. Lower GR-1F promoter methylation was significantly associated with greater postdexamethasone cortisol suppression. The clustering analysis revealed that maternal and paternal PTSD effects were differentially associated with clinical indicators and GR-1F promoter methylation. This is the first study to demonstrate alterations of GR-1F promoter methylation in relation to parental PTSD and neuroendocrine outcomes. The moderation of paternal PTSD effects by maternal PTSD suggests different mechanisms for the intergenerational transmission of trauma-related vulnerabilities.

  3. Effects of dexamethasone on palate mesenchymal cell phospholipase activity

    International Nuclear Information System (INIS)

    Bulleit, R.F.; Zimmerman, E.F.

    1984-01-01

    Corticosteroids will induce cleft palate in mice. One suggested mechanism for this effect is through inhibition of phospholipase activity. This hypothesis was tested by measuring the effects of dexamethasone, a synthetic corticosteroid, on phospholipase activity in cultures of palate mesenchymal cells. Palate mesenchymal cells were prelabeled with [3H]arachidonic acid. The cells were subsequently treated with various concentrations of dexamethasone. Concurrently, cultures of M-MSV-transformed 3T3 cells were prepared identically. After treatment, phospholipase activity was stimulated by the addition of serum or epidermal growth factor (EGF), and radioactivity released into the medium was taken as a measure of phospholipase activity. Dexamethasone (1 X 10(-5) or 1 X 10(-4) M) could inhibit serum-stimulated phospholipase activity in transformed 3T3 cells after 1 to 24 hr of treatment. However, no inhibition of activity was measured in palate mesenchymal cells following this period of treatment. Not until 120 hr of treatment with dexamethasone (1 X 10(-4) M) was any significant inhibition of serum-stimulated phospholipase activity observed in palate mesenchymal cells. When EGF was used to stimulate phospholipase activity, dexamethasone (1 X 10(-5) M) caused an increase in phospholipase activity in palate mesenchymal cells. These observations suggested that phospholipase in transformed 3T3 cells was sensitive to inhibition by dexamethasone. However, palate mesenchymal cell phospholipase is only minimally sensitive to dexamethasone, and in certain instances can be enhanced. These results cannot support the hypothesis that corticosteroids mediate their teratogenic effect via inhibition of phospholipase activity

  4. The Regulation of Muscle Mass by Endogenous Glucocorticoids

    Directory of Open Access Journals (Sweden)

    Daniel L Marks

    2015-02-01

    Full Text Available Glucocorticoids are highly conserved fundamental regulators of energy homeostasis. In response to stress in the form of perceived danger or acute inflammation, glucocorticoids are released from the adrenal gland, rapidly mobilizing energy from carbohydrate, fat and protein stores. In the case of inflammation, mobilized protein is critical for the rapid synthesis of acute phase reactants and an efficient immune response to infection. While adaptive in response to infection, chronic mobilization can lead to a p rofound depletion of energy stores. Skeletal muscle represents the major body store of protein, and can become substantially atrophied under conditions of chronic inflammation. Glucocorticoids elicit the atrophy of muscle by increasing the rate of protein degradation by the ubiquitin-proteasome system and autophagy lysosome system. Protein synthesis is also suppressed at the level of translational initiation, preventing the production of new myofibrillar protein. Glucocorticoids also antagonize the action of anabolic regulators such as insulin further exacerbating the loss of protein and muscle mass. The loss of muscle mass in the context of chronic disease is a key feature of cachexia and contributes substantially to morbidity and mortality. A growing body of evidence demonstrates that glucocorticoid signaling is a common mediator of wasting, irrespective of the underlying initiator or disease state. This review will highlight fundamental mechanisms of glucocorticoid signaling and detail the mechanisms of glucocorticoid-induced muscle atrophy. Additionally, the evidence for glucocorticoids as a driver of muscle wasting in numerous disease states will be discussed. Given the burden of wasting diseases and the nodal nature of glucocorticoid signaling, effective anti-glucocorticoid therapy would be a valuable clinical tool. Therefore, the progress and potential pitfalls in the development of glucocorticoid antagonists for muscle wasting will

  5. Low-dose dexamethasone during arthroplasty: What do we know about the risks?

    NARCIS (Netherlands)

    Wegener, Jessica T.; Kraal, Tim; Stevens, Markus F.; Hollmann, Markus W.; Kerkhoffs, Gino M. M. J.; Haverkamp, Daniël

    2016-01-01

    Dexamethasone is commonly applied during arthroplasty to control post-operative nausea and vomiting (PONV). However, conflicting views of orthopaedic surgeons and anaesthesiologists regarding the use of dexamethasone raise questions about risks of impaired wound healing and surgical site infections

  6. The effect of exogenous glucocorticoids on plasma catecholamines and metanephrines in patients without phaeochromocytomas.

    Science.gov (United States)

    Druce, M R; Walker, D; Maher, K T; Dodzo, K; Perry, L; Ball, S; Peaston, R; Chew, S L; Drake, W M; Akker, S A; Grossman, A B

    2011-04-01

    The aim of the study was to evaluate the effects of steroid administration under standardised conditions in a range of patients both normal and with adrenal pathologies and to review the impact on plasma catecholamines and metanephrines. Corticosteroid administration has been linked to the development of hypertensive crises in patients with phaeochromocytoma, however a mechanism for this is not fully understood. We aimed to add useful information about the effect of steroids on levels of these hormones under usual circumstances. A prospective, observational cohort study of 50 patients undergoing the low-dose dexamethasone suppression test (LDDST) was undertaken. Additional blood samples were taken at the start and end of the standard LDDST. Biochemical analysis was carried out for plasma catecholamines and plasma free metanephrines. Demographic and hormonal data were acquired from review of the notes or measured at baseline. No significant changes in plasma catecholamines or metanephrines were seen at the end of the LDDST compared to baseline. This was also true of subgroup analysis, divided by age, gender, or type of underlying pathology. Our results suggest that hypertensive reaction responses, rare as they are, are unlikely to be related to normal adrenal physiology. Thus LDDST is likely to be safe under most circumstances, however caution should be exercised in patients with adrenal masses with imaging characteristics compatible with phaeochromocytoma. It may be prudent to defer glucocorticoid administration until functioning phaeochromocytoma has been excluded biochemically. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Laura L Gathercole

    Full Text Available Patients with glucocorticoid (GC excess, Cushing's syndrome, develop a classic phenotype characterized by central obesity and insulin resistance. GCs are known to increase the release of fatty acids from adipose, by stimulating lipolysis, however, the impact of GCs on the processes that regulate lipid accumulation has not been explored. Intracellular levels of active GC are dependent upon the activity of 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1 and we have hypothesized that 11β-HSD1 activity can regulate lipid homeostasis in human adipose tissue (Chub-S7 cell line and primary cultures of human subcutaneous (sc and omental (om adipocytes. Across adipocyte differentiation, lipogenesis increased whilst β-oxidation decreased. GC treatment decreased lipogenesis but did not alter rates of β-oxidation in Chub-S7 cells, whilst insulin increased lipogenesis in all adipocyte cell models. Low dose Dexamethasone pre-treatment (5 nM of Chub-S7 cells augmented the ability of insulin to stimulate lipogenesis and there was no evidence of adipose tissue insulin resistance in primary sc cells. Both cortisol and cortisone decreased lipogenesis; selective 11β-HSD1 inhibition completely abolished cortisone-mediated repression of lipogenesis. GCs have potent actions upon lipid homeostasis and these effects are dependent upon interactions with insulin. These in vitro data suggest that manipulation of GC availability through selective 11β-HSD1 inhibition modifies lipid homeostasis in human adipocytes.

  8. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    NARCIS (Netherlands)

    Kroon, Jan; Kroon, Jan; Puhr, M.; Buijs, J.T.; van der Horst, G.; Hemmer, D.M.; Marijt, K.A.; Hwang, M.S.; Masood, M.; Grimm, S.; Storm, Gerrit; Metselaar, Josbert Maarten; Meijer, O.C.; Culig, Z.; van der Pluijm, M.

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance.

  9. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    NARCIS (Netherlands)

    Kroon, Jan; Puhr, Martin; Buijs, Jeroen T.; Van Der Horst, Geertje; Lemhemmer, Daniël; Marijt, Koen A.; Hwang, Ming S.; Masood, Motasim; Grimm, Stefan; Storm, Gert; Metselaar, Josbert M.|info:eu-repo/dai/nl/244207690; Meijer, Onno C.; Culig, Zoran; Van Der Pluijm, Gabri

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCA). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance.

  10. Using fecal glucocorticoids for stress assessment in Mourning Doves

    Science.gov (United States)

    Washburn, Brian E.; Millspaugh, Joshua J.; Schulz, John H.; Jones, Susan B.; Mong, T.

    2003-01-01

    Fecal glucocorticoid assays provide a potentially useful, noninvasive means to study physiological responses of wildlife to various stressors. The objective of our study was to validate a method for measuring glucocorticoid metabolites in Mourning Dove (Zenaida macroura) feces. We validated the assay using standard procedures (e.g., parallelism, recovery of exogenous corticosterone) to demonstrate that the assay accurately and precisely measured glucocorticoid metabolites in Mourning Dove fecal extracts. We conducted adrenocorticotropin (ACTH) challenge experiments to validate the assay's ability to determine biologically important changes in fecal glucocorticoids. Fecal glucocorticoid levels increased significantly approximately 2-3 hr after administration of ACTH at 50 IU per kg body mass to wild Mourning Doves held in captivity. In contrast, fecal glucocorticoid metabolites did not increase in control birds, birds that received saline injections, or a lower dose of ACTH (1 IU per kg body mass). Variation in overall fecal glucocorticoid metabolite levels may have been influenced by season and the length of time birds were held in captivity. Non-invasive fecal glucocorticoid metabolite analyses, in combination with demographic information, may have considerable utility for monitoring the effects of natural and anthropogenic disturbances on Mourning Dove populations.

  11. Randomized clinical trial of dexamethasone versus placebo in laparoscopic inguinal hernia repair

    DEFF Research Database (Denmark)

    Tolver, M A; Strandfelt, P; Bryld, Clara E

    2012-01-01

    The effect of dexamethasone on recovery and length of convalescence has not been evaluated in patients after laparoscopic groin hernia repair. It was hypothesized that preoperative intravenous dexamethasone would reduce postoperative pain.......The effect of dexamethasone on recovery and length of convalescence has not been evaluated in patients after laparoscopic groin hernia repair. It was hypothesized that preoperative intravenous dexamethasone would reduce postoperative pain....

  12. Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign

    Science.gov (United States)

    Tegen, I.; Heinold, B.; Todd, M.; Helmert, J.; Washington, R.; Dubovik, O.

    2006-09-01

    We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx) that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust production occurs via self-abrasion of saltating diatomite flakes in the Bodélé, the emission model based on the assumption of dust production by saltation and using observed surface wind speeds as input parameters reproduces observed dust optical thicknesses well. Although the peak wind speeds in the regional model underestimate the highest wind speeds occurring on 10-12 March 2005, the spatio-temporal evolution of the dust cloud can be reasonably well reproduced by this model. Dust aerosol interacts with solar and thermal radiation in the regional model; it is responsible for a decrease in maximum daytime temperatures by about 5 K at the beginning the dust storm on 10 March 2005. This direct radiative effect of dust aerosol accounts for about half of the measured temperature decrease compared to conditions on 8 March. Results from a global dust model suggest that the dust from the Bodélé is an important contributor to dust crossing the African Savannah region towards the Gulf of Guinea and the equatorial Atlantic, where it can contribute up to 40% to the dust optical thickness.

  13. Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign

    Directory of Open Access Journals (Sweden)

    I. Tegen

    2006-01-01

    Full Text Available We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust production occurs via self-abrasion of saltating diatomite flakes in the Bodélé, the emission model based on the assumption of dust production by saltation and using observed surface wind speeds as input parameters reproduces observed dust optical thicknesses well. Although the peak wind speeds in the regional model underestimate the highest wind speeds occurring on 10–12 March 2005, the spatio-temporal evolution of the dust cloud can be reasonably well reproduced by this model. Dust aerosol interacts with solar and thermal radiation in the regional model; it is responsible for a decrease in maximum daytime temperatures by about 5 K at the beginning the dust storm on 10 March 2005. This direct radiative effect of dust aerosol accounts for about half of the measured temperature decrease compared to conditions on 8 March. Results from a global dust model suggest that the dust from the Bodélé is an important contributor to dust crossing the African Savannah region towards the Gulf of Guinea and the equatorial Atlantic, where it can contribute up to 40% to the dust optical thickness.

  14. Exogenous glucocorticoids and adverse cerebral effects in children

    DEFF Research Database (Denmark)

    Damsted, Sara K.; Born, A P; Paulson, Olaf B

    2011-01-01

    of the glucocorticoid receptor, which is associated with unfavorable cellular outcomes. Prenatal treatment with glucocorticoids can compromise brain growth and is associated with periventricular leukomalacia, attentions deficits and poorer cognitive performance. In the neonatal period exposure to glucocorticoids...... reduces neurogenesis and cerebral volume, impairs memory and increases the incidence of cerebral palsy. Cerebral effects of glucocorticoids in later childhood have been less thoroughly studied, but apparent brain atrophy, reduced size of limbic structures and neuropsychiatric symptoms have been reported....... Glucocortioids affect several cellular structures and functions, which may explain the observed adverse effects. Glucocorticoids can impair neuronal glucose uptake, decrease excitability, cause atrophy of dendrites, compromise development of myelin-producing oligodendrocytes and disturb important cellular...

  15. Anti-CD163-dexamethasone conjugate inhibits the acute phase response to lipopolysaccharide in rats

    DEFF Research Database (Denmark)

    Thomsen, Karen Louise; Møller, Holger Jon; Graversen, Jonas Heilskov

    2016-01-01

    ± 4036 pg/mL, P = 0.03) compared to the low dose dexamethasone. The high dose dexamethasone dose decreased the spleen weight (421 ± 11 mg vs 465 ± 12 mg, P any other group. CONCLUSION: Low-dose anti-CD163-dexamethasone conjugate effectively decreased...

  16. Neurotoxicity induced by dexamethasone in the human neuroblastoma SH-SY5Y cell line can be prevented by folic acid.

    Science.gov (United States)

    Budni, J; Romero, A; Molz, S; Martín-de-Saavedra, M D; Egea, J; Del Barrio, L; Tasca, C I; Rodrigues, A L S; López, M G

    2011-09-08

    Folic acid (folate) is a vitamin of the B-complex group that is essential for cell replication. Folate is a major determinant of one-carbon metabolism, in which S-adenosylmethionine donates methyl groups that are crucial for neurological function. Many roles for folic acid have been reported, including neuroprotective and antidepressant properties. On the other hand, increased concentrations of corticoids have proven neurotoxic effects and hypersecretion of glucocorticoids has been linked to different mood disorders. The purpose of this study was to investigate the potential protective effect of folic acid on dexamethasone-induced cellular death in SH-SY5Y neuroblastoma cell line and the possible intracellular signaling pathway involved in such effect. Exposure to 1 mM dexamethasone for 48 h caused a significant reduction of cell viability measured as 3-[4,5 dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) reduction. Exposure of SH-SY5Y cells for 72 h to increasing concentrations of folate (1-300 μM) was not cytotoxic. However, pretreatment with folate (10-300 μM) reduced dexamethasone-induced toxicity in a significant manner. To explore the putative intracellular signaling pathways implicated in the protective effect of folate we used different protein kinase inhibitors. The protective effect of folic acid on dexamethasone-induced neurotoxicity was reversed by the phosphatidylinositol-3 kinase/Akt (PI3K/Akt, LY294002), Ca²⁺/Calmodulin-dependent protein kinase II (CaMKII, KN-93), and protein kinase A (PKA, H-89) inhibitors, but not the mitogen-activated protein/extracellular signal-regulated kinase (MEK1/2, PD98059) and protein kinase C (PKC, chelerythrine) inhibitors. In conclusion, the results of this study show that folic acid can protect against dexamethasone-induced neurotoxicity and its protective mechanism is related to a signaling pathway that involves PI3K/Akt, CaMKII, and PKA. Copyright © 2011. Published by Elsevier Ltd.

  17. Gene expression analysis in human osteoblasts exposed to dexamethasone identifies altered developmental pathways as putative drivers of osteoporosis

    Directory of Open Access Journals (Sweden)

    Sadlier Denise M

    2007-02-01

    Full Text Available Abstract Background Osteoporosis, a disease of decreased bone mineral density represents a significant and growing burden in the western world. Aging population structure and therapeutic use of glucocorticoids have contributed in no small way to the increase in the incidence of this disease. Despite substantial investigative efforts over the last number of years the exact molecular mechanism underpinning the initiation and progression of osteoporosis remain to be elucidated. This has meant that no significant advances in therapeutic strategies have emerged, with joint replacement surgery being the mainstay of treatment. Methods In this study we have used an integrated genomics profiling and computational biology based strategy to identify the key osteoblast genes and gene clusters whose expression is altered in response to dexamethasone exposure. Primary human osteoblasts were exposed to