WorldWideScience

Sample records for glovebox glove failures

  1. Decrease the Number of Glovebox Glove Breaches and Failures

    Energy Technology Data Exchange (ETDEWEB)

    Hurtle, Jackie C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2013-12-24

    Los Alamos National Laboratory (LANL) is committed to the protection of the workers, public, and environment while performing work and uses gloveboxes as engineered controls to protect workers from exposure to hazardous materials while performing plutonium operations. Glovebox gloves are a weak link in the engineered controls and are a major cause of radiation contamination events which can result in potential worker exposure and localized contamination making operational areas off-limits and putting programmatic work on hold. Each day of lost opportunity at Technical Area (TA) 55, Plutonium Facility (PF) 4 is estimated at $1.36 million. Between July 2011 and June 2013, TA-55-PF-4 had 65 glovebox glove breaches and failures with an average of 2.7 per month. The glovebox work follows the five step safety process promoted at LANL with a decision diamond interjected for whether or not a glove breach or failure event occurred in the course of performing glovebox work. In the event that no glove breach or failure is detected, there is an additional decision for whether or not contamination is detected. In the event that contamination is detected, the possibility for a glove breach or failure event is revisited.

  2. Determining the Radiation Damage Effect on Glovebox Glove Material

    International Nuclear Information System (INIS)

    Cournoyer, M.E.; Balkey, J.J.; Andrade, R.M.

    2005-01-01

    The Nuclear Material Technology (NMT) Division has the largest inventory of glove box gloves at Los Alamos National Laboratory. The minimization of unplanned breaches in the glovebox, e.g., glove failures, is a primary concern in the daily operations in NMT Division facilities, including the Plutonium Facility (PF-4) at TA-55 and Chemical and Metallurgy Research (CMR) Facility. Glovebox gloves in these facilities are exposed to elevated temperatures and exceptionally aggressive radiation environments (particulate 239 Pu and 238 Pu). Predictive models are needed to estimate glovebox glove service lifetimes, i.e. change-out intervals. Towards this aim aging studies have been initiated that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on previously reported mechanical data of thermally aged hypalon glove samples. Specifications for 30 mil tri-layered hypalon/lead glovebox gloves (TLH) and 15 mil hypalon gloves (HYP) have already been established. The relevant mechanical properties are shown on Table 1. Tensile strength is defined as the maximum load applied in breaking a tensile test piece divided by the original cross-sectional area of the test piece (Also termed maximum stress and ultimate tensile stress). Ultimate elongation is the elongation at time of rupture (Also termed maximum strain). The specification for the tensile test and ultimate elongation are the minimum acceptable values. In addition, the ultimate elongation must not vary 20% from the original value. In order to establish a service lifetimes for glovebox gloves in a thermal environment, the mechanical properties of glovebox glove materials were studied.

  3. Determining the Radiation Damage Effect on Glovebox Glove Material.

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, M. E. (Michael E.); Balkey, J. J. (James J.); Andrade, R.M. (Rose M.)

    2005-01-01

    The Nuclear Material Technology (NMT) Division has the largest inventory of glove box gloves at Los Alamos National Laboratory. The minimization of unplanned breaches in the glovebox, e.g., glove failures, is a primary concern in the daily operations in NMT Division facilities, including the Plutonium Facility (PF-4) at TA-55 and Chemical and Metallurgy Research (CMR) Facility. Glovebox gloves in these facilities are exposed to elevated temperatures and exceptionally aggressive radiation environments (particulate {sup 239}Pu and {sup 238}Pu). Predictive models are needed to estimate glovebox glove service lifetimes, i.e. change-out intervals. Towards this aim aging studies have been initiated that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on previously reported mechanical data of thermally aged hypalon glove samples. Specifications for 30 mil tri-layered hypalon/lead glovebox gloves (TLH) and 15 mil hypalon gloves (HYP) have already been established. The relevant mechanical properties are shown on Table 1. Tensile strength is defined as the maximum load applied in breaking a tensile test piece divided by the original cross-sectional area of the test piece (Also termed maximum stress and ultimate tensile stress). Ultimate elongation is the elongation at time of rupture (Also termed maximum strain). The specification for the tensile test and ultimate elongation are the minimum acceptable values. In addition, the ultimate elongation must not vary 20% from the original value. In order to establish a service lifetimes for glovebox gloves in a thermal environment, the mechanical properties of glovebox glove materials were studied.

  4. Develop and Manufacture an Ergonomically Sound Glovebox Glove Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Cindy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    Ergonomic injury and radiation exposure are two safety concerns for the Plutonium Facility at Los Alamos National Laboratory (LANL). This facility employs the largest number of gloveboxes (GB) at LANL with approximately 6000 gloves installed. The current GB glove design dates back to the 1960’s and is not based on true hand anatomy, revealing several issues: short fingers, inappropriate length from the wrist to finger webbing, nonexistent joint angles and incorrect thumb placement. These design flaws are directly related to elbow (lateral epicondylitis) and thumb (DeQuervain’s tenosynovitis) injuries. The current design also contributes to increased wear on the glove, causing unplanned glove openings (failures) which places workers at risk of exposure. An improved glovebox glove design has three significant benefits: 1) it will reduce the risk of injury, 2) it will improve comfort and productivity, and 3) it will reduce the risk of a glovebox failures. The combination of these three benefits has estimated savings of several million dollars. The new glove design incorporated the varied physical attributes of workers ranging from the 5th percentile female to the 95th percentile male. Anthropometric hand dimensions along with current GB worker dimensions were used to develop the most comprehensive design specifications for the new glove. Collaboration with orthopedic hand surgeons also provided major contributtions to the design. The new glovebox glove was developed and manufactured incorporating over forty dimensions producing the most comprehensive ergonomically sound design. The new design received a LANL patent (patent attorney docket No: LANS 36USD1 “Protective Glove”, one of 20 highest patents awarded by the Richard P. Feynman Center for Innovation. The glove dimensions were inputed into a solid works model which was used to produce molds. The molds were then shipped to a glove manufacturer for production of the new glovebox gloves. The new

  5. MINIMIZING GLOVEBOX GLOVE BREACHES, PART IV: CONTROL CHARTS

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Lee, Michelle B.; Schreiber, Stephen B.

    2007-01-01

    At the Los Alamos National Laboratory (LANL) Plutonium Facility, plutonium. isotopes and other actinides are handled in a glovebox environment. The spread of radiological contamination, and excursions of contaminants into the worker's breathing zone, are minimized and/or prevented through the use of glovebox technology. Evaluating the glovebox configuration, the glovebo gloves are the most vulnerable part of this engineering control. Recognizing this vulnerability, the Glovebox Glove Integrity Program (GGIP) was developed to minimize and/or prevent unplanned openings in the glovebox environment, i.e., glove failures and breaches. In addition, LANL implement the 'Lean Six Sigma (LSS)' program that incorporates the practices of Lean Manufacturing and Six Sigma technologies and tools to effectively improve administrative and engineering controls and work processes. One tool used in LSS is the use of control charts, which is an effective way to characterize data collected from unplanned openings in the glovebox environment. The benefit management receives from using this tool is two-fold. First, control charts signal the absence or presence of systematic variations that result in process instability, in relation to glovebox glove breaches and failures. Second, these graphical representations of process variation detennine whether an improved process is under control. Further, control charts are used to identify statistically significant variations (trends) that can be used in decision making to improve processes. This paper discusses performance indicators assessed by the use control charts, provides examples of control charts, and shows how managers use the results to make decisions. This effort contributes to LANL Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations.

  6. Light transmission and air used for inspection of glovebox gloves

    International Nuclear Information System (INIS)

    Castro, Julio M.; Steckle, Warren P. Jr.; Macdonald, John M.

    2002-01-01

    Various materials used for manufacturing the glovebox gloves are translucent material such as hypalon, rubbers, and neoprene. This means that visible light can be transmitted through the inside of the material. Performing this test can help to increase visualization of the integrity of the glove. Certain flaws such as pockmarks, foreign material, pinholes, and scratches could be detected with increased accuracy. An analysis was conducted of the glovebox gloves obscure polymer material using a inspection light table. The fixture is equipped with a central light supply and small air pump to inflate the glove and test for leak and stability. A glove is affixed to the fixture for 360-degree inspection. Certain inspection processes can be performed: (1) Inspection for pockmarks and thin areas within the gloves; (2) Observation of foreign material within the polymer matrix; and (3) Measurements could be taken for gloves thickness using light measurements. This process could help reduce eyestrain when examining gloves and making a judgment call on the size of material thickness in some critical areas. Critical areas are fingertips and crotch of fingers.

  7. Determination of an Ergonomically Sound Glovebox Glove Port Center Line

    Energy Technology Data Exchange (ETDEWEB)

    Christman, Marissa St John [Los Alamos National Laboratory

    2016-11-30

    Determine an ergonomic glovebox glove port center line location which will be used for standardization in new designs, thus allowing for predictable human work performance, reduced worker exposure to radiation and musculoskeletal injury risks, and improved worker comfort, efficiency, health, and safety.

  8. Determination of an Ergonomically Sound Glovebox Glove Port Center Line

    International Nuclear Information System (INIS)

    Christman, Marissa St; Land, Whitney Morgan

    2016-01-01

    Determine an ergonomic glovebox glove port center line location which will be used for standardization in new designs, thus allowing for predictable human work performance, reduced worker exposure to radiation and musculoskeletal injury risks, and improved worker comfort, efficiency, health, and safety.

  9. Glovebox glove deterioration in the Hanford Engineering Development Laboratory fuel fabrication facility

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.; Smith, R.C.; Powell, D.L.

    1979-07-01

    Neoprene glovebox gloves have been found susceptible to periodic rapid deterioration under normal operating conditions in fuel fabrication facilities. Examinations of glove failure histories and measurements of the atmospheres in inert atmosphere dry-boxes indicated ozone at low concentrations of 100 to 500 ppB was probably the most important factor in rapid glove deterioration. Testing of a varity of new glove materials indicated that Hypalon and ethylene-propylene-diamine monomer (EDPM) gloves have greater than 30 times the longevity of neoprene in low-level ozone concentration atmospheres. comparative tests over a 30-month period have also confirmed that the two glove candidates have a significantly longer operative life. 14 figures

  10. Dexterity test data contribute to proper glovebox over-glove use

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Lawton, Cindy M.; Castro, Armanda M.; Costigan, Stephen A.; Apel, D.M.; Neal, G.E.; Castro, J.M.; Michelotti, R.A.

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). The glovebox gloves are the weakest part of this engineering control. The Glovebox Glove Integrity Program, which controls glovebox gloves from procurement to disposal at TA-55, manages this vulnerability. A key element of this program is to consider measures that lower the overall risk of glovebox operations. Proper selection of over-gloves is one of these measures. Line management owning glovebox processes have the responsibility to approve the appropriate personal protective equipment/glovebox glove/over-glove combination. As low as reasonably achievable (ALARA) considerations to prevent unplanned glovebox glove openings must be balanced with glove durability and worker dexterity, both of which affect the final overall risk to the worker. In this study, the causes of unplanned glovebox glove openings, the benefits of over-glove features, the effect of over-gloves on task performance using standard dexterity tests, the pollution prevention benefits, and the recommended over-gloves for a task are presented.

  11. Glovebox glove change program at Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Olivas, J.D.; Burkett, B.O.; Weier, D.R.

    1992-01-01

    A formal glovebox glove change program is planned for the the gloveboxes in technical area 55 at the Los Alamos National laboratory. The program will increase worker safety by reducing the chance of having worn out gloves in service. The Los Alamos program is based on a similar successful program at the Rocky Flats Plant in Golden, Colorado. Glove change frequencies at Rocky Flats were determined statistically, and are based on environmental factors the glovebox gloves are subjected to

  12. Dexterity tests data contribute to reduction in leaded glovebox gloves use

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Lawton, Cindy M [Los Alamos National Laboratory; Castro, Amanda M [Los Alamos National Laboratory

    2008-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alphaemitting materials. The spread of radiological contamination on surfaces and airborne contamination and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Through an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program (GGJP). A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management owning glovebox processes through this program make decisions on which type of glovebox gloves (the weakest component of this safety significant system) would perform in these aggressive environments. As Low As Reasonably Achievable (ALARA) considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) glovebox gloves made from Hypalon(reg.) had been the workhorse of programmatic operations at TA-55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduced the amount of mixed TRU waste. This effort contributes to Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations. In the following report, the pros and cons of wearing leaded glovebox gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and pollution prevention benefits of this dramatic change in the glovebox system are presented.

  13. Dexterity Test Data Contribute To Reduction in Leaded Glovebox Glove Use

    International Nuclear Information System (INIS)

    Cournoyer, M.E.; Lawton, C.M.; Castro, A.M.; Costigan, S.A.; Schreiber, S.

    2009-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Using an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program. A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management who own glovebox processes through this program make decisions on which type of glovebox gloves (hereafter referred to as gloves), the weakest component of this safety-significant system, would perform best in these aggressive environments. As Low as Reasonably Achievable considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) gloves made from Hypalon R were the primary glove for programmatic operations at TA-55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduce the amount of mixed transuranic waste. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the pros and cons of wearing leaded gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and the pollution prevention benefits of this dramatic change in the glovebox system are presented. (authors)

  14. In-Situ Leak Testing And Replacement Of Glovebox Isolator, Or Containment Unit Gloves

    Science.gov (United States)

    Castro, Julio M.; Macdonald, John M.; Steckle, Jr., Warren P.

    2004-11-02

    A test plug for in-situ testing a glove installed in a glovebox is provided that uses a top plate and a base plate, and a diametrically expandable sealing mechanism fitting between the two plates. The sealing mechanism engages the base plate to diametrically expand when the variable distance between the top plate and the bottom plate is reduced. An inlet valve included on the top plate is used to introducing a pressurized gas to the interior of the glove, and a pressure gauge located on the top plate is used to monitor the interior glove pressure.

  15. Adaptation of a glow discharge mass spectrometer in a glove-box for the analysis of nuclear materials

    International Nuclear Information System (INIS)

    Betti, M.; Rasmussen, G.; Hiernaut, T.; Koch, L.

    1994-01-01

    A VG9000 glow discharge mass spectrometer has been modified for the direct analysis of solid nuclear samples within a glove-box environment. Because containment is needed for the analysis of this kind of material, the glove-box encloses all parts of the instrument that come into contact with the sample, namely the ion source chamber, sample interlock and associated pumping system. External modifications eliminate outside contamination by the fitting of absolute filters on all source supplies. Internally the design of the ion source has been altered to minimize the number of operations performed inside the glove-box thereby simplifying operation and routine maintenance. These modifications retain the ion extraction and focusing properties of the instrument. The data presented show that there is no compromise in the analytical performance of the instrument when placed in the glove-box. Data representative of nuclear materials is also shown. (Author)

  16. A new glove-box system for a high-pressure tritium pump

    International Nuclear Information System (INIS)

    Wilson, S.W.; Borree, R.J.; Chambers, D.I.; Chang, Y.; Merrill, J.T.; Souers, P.C.; Wiggins, R.K.

    1988-01-01

    A new glove-box system that was designed around a high-pressure tritium pump is described. The system incorporates new containment ideas such as ''burpler'' passive pressure controls, valves that can be turned from outside the box, inflatable door seals, ferro-fluidic motor-shaft seals, and rapid box-to-hood conversion during cryostaging. Currently under construction, the system will contain nine separate sections with automatic pressure-balancing and venting systems. 3 refs., 5 figs

  17. Study of plutonium fire extinction in glove-boxes

    International Nuclear Information System (INIS)

    Boisson, H.; Chappellier, A.; Debiar, A.; Savornin, J.

    1965-01-01

    The report concerns attempts to extinguish fire in uranium - chosen as a basis for comparison - and in plutonium, these being contained in glove boxes. The extinguishing powders TEC and MG 10 were tried and compared. The operator used in plastic bags. The metal was dealt with respectively in the form of billets, compact chips and finally thin shavings. In each case fire control was without difficulty. One must allow a certain time for cooling. The powder MG 10 showed very good results. Moreover, the trials proved that densely packed shavings are a very real security factor. The interior lay-out of the glove boxes ought, in order to facilitate further manipulations, be such as to render extinction as easy as possible should the need arise. (authors) [fr

  18. Strategy for decommissioning of the glove-boxes in the Belgonucleaire Dessel MOX fuel fabrication plant

    International Nuclear Information System (INIS)

    Vandergheynst, Alain; Cuchet, Jean-Marie

    2007-01-01

    Available in abstract form only. Full text of publication follows: BELGONUCLEAIRE has been operating the Dessel plant from the mid-80's at industrial scale. In this period, over 35 metric tons of plutonium (HM) was processed into almost 100 reloads of MOX fuel for commercial West-European Light Water Reactors. In late 2005, the decision was made to stop the production because of the shortage of MOX fuel market remaining accessible to BELGONUCLEAIRE after the successive capacity increases of the MELOX plant (France) and the commissioning of the SMP plant (UK). As a significant part of the decommissioning project of this Dessel plant, about 170 medium-sized glove-boxes are planned for dismantling. In this paper, after having reviewed the different specifications of ±-contaminated waste in Belgium, the authors introduce the different options considered for cleaning, size reduction and packaging of the glove-boxes, and the main decision criteria (process, α-containment, mechanization and radiation protection, safety aspects, generation of secondary waste, etc) are analyzed. The selected strategy consists in using cold cutting techniques and manual operation in shielded disposable glove-tents, and packaging α-waste in 200-liter drums for off-site conditioning and intermediate disposal. (authors)

  19. A human factors approach towards the design of a new glovebox glove for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Jude M. [Los Alamos National Laboratory

    2012-08-06

    Present day glovebox gloves at Los Alamos National Laboratory (LANL) are underdeveloped and ergonomically inaccurate. This problem results in numerous sprain and strain injuries every year for employees who perform glovebox work. In addition to injuries, using the current glovebox glove design also contributes to breaches and contamination. The current glove used today at LANL has several problems: (1) The length of the fingers is incorrect, (2) the web spacing between the fingers is nonexistent, (3) the angles between each digit on the finger are incorrect, (4) the thumb is placed inaccurately, and (5) the length of the hand is incorrect. These problems present a need to correct the current glove design to decrease the risk of injuries, breaches, and contamination. Anthropometrics were researched to help find the best range of hand measurements to fix the current glove design. Anthropometrics is the measure of the human physical variation. Anthropometrics for this study were gathered from the American National Survey (ANSUR) data that was conducted by the U.S Army in 1988. The current glovebox glove uses anthropometrics from the 95th to 105th percentile range which is too large so the new gloves are going to implement data from a smaller range of percentile groups. The 105th percentile range represents measurements that exceed the human population but are needed to fit certain circumstance such as wearing several under gloves within the glovebox gloves. Anthropometrics used in this study include: 105th percentile measurements for joint circumference which was unchanged because the room for under gloves plus ease of hand insertion and extraction is needed, 80th percentile measurements for crotch length to allow workers to reach the web spacing in the glove, 20th percentile measurements for finger length to allow workers to reach the end of the glove, standard 10.5cm hand breadth to allow more room to accommodate under gloves, 45 degrees abduction angle for the

  20. Effects of glovebox gloves on grip and key pinch strength and contact forces for simulated manual operations with three commonly used hand tools.

    Science.gov (United States)

    Sung, Peng-Cheng

    2014-01-01

    This study examined the effects of glovebox gloves for 11 females on maximum grip and key pinch strength and on contact forces generated from simulated tasks of a roller, a pair of tweezers and a crescent wrench. The independent variables were gloves fabricated of butyl, CSM/hypalon and neoprene materials; two glove thicknesses; and layers of gloves worn including single, double and triple gloving. CSM/hypalon and butyl gloves produced greater grip strength than the neoprene gloves. CSM/hypalon gloves also lowered contact forces for roller and wrench tasks. Single gloving and thin gloves improved hand strength performances. However, triple layers lowered contact forces for all tasks. Based on the evaluating results, selection and design recommendations of gloves for three hand tools were provided to minimise the effects on hand strength and optimise protection of the palmar hand in glovebox environments. To improve safety and health in the glovebox environments where gloves usage is a necessity, this study provides recommendations for selection and design of glovebox gloves for three hand tools including a roller, a pair of tweezers and a crescent wrench based on the results discovered in the experiments.

  1. Glovebox

    International Nuclear Information System (INIS)

    Herrmann, F.

    1980-01-01

    On handling nitric solutions in the glove box nitrous gases are formed that are sucked off via a heated activated charcoal filter and a catalyst cartridge containing e.g. the FG 590 H catalist (Degussa). By the activated charcoal the nitrous gases are reduced to N 2 and CO gas; the catalyst will oxidize CO to CO 2 . The CO 2 obtained is discharged through an exhaust air filter in the glove box. (DG) [de

  2. Applications of a glove-box ICP-MS for the analysis of nuclear materials

    International Nuclear Information System (INIS)

    Garcia Alonso, J.I.; Babelot, J.F.; Glatz, J.P.; Cromboom, O.; Koch, L.

    1993-01-01

    The relatively new analytical technique, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), has been used for the analysis of nuclear materials stemming from different parts of the nuclear fuel cycle. The original instrument has been modified in order to work with radioactive materials in a glove box. The plasma torch and vacuum interface are situated inside the glove box while the mass spectrometer and associated electronics are outside. Samples analysed include fresh nuclear fuels (natural impurities), spent fuels (fission products and actinides), reprocessing solutions (minor actinides) and leachates of spent fuel and high level waste glasses (natural elements, fission products and actinides). (orig.)

  3. Object-oriented process dose modeling for glove-box operations

    International Nuclear Information System (INIS)

    Boerigter, S.T.; Fasel, J.H.; Kornreich, D.E.

    1999-01-01

    The Plutonium Facility at Los Alamos National Laboratory (LANL) supports several defense- and non-defense-related missions for the country by performing fabrication, surveillance, and research and development for materials and components that contain plutonium. Most operations occur in rooms with one or more arrays of glove boxes connected to each other via trolley glove boxes. Each room may contain glove boxes dedicated to several different operations or functions. Minimizing the effective dose equivalent (EDE) is a growing concern as a result of steadily allowable dose limits being imposed and a growing general awareness of safety in the workplace. In general, the authors discriminate three components of a worker's total EDE: the primary EDE, the secondary EDE, and background EDE. The immediate sources to which a worker is exposed provide the primary EDE. The secondary EDE results from operations and sources in the same vicinity or room as the worker. The background EDE results from all other sources of radiation, such as natural sources and sources outside of the room. A particular background source of interest is the nuclear materials vault. The distinction between sources inside and outside of a particular room is arbitrary with the underlying assumption that building walls and floors provide significant shielding to justify including sources in other rooms in the background category. An associated paper details the tool that they use to determine the primary and secondary EDEs for all processes of interest in a room containing glove boxes

  4. Institutional glovebox safety committee (IGSC) annual report FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Roybal, Richard F [Los Alamos National Laboratory; Lee, Roy J [Los Alamos National Laboratory

    2011-01-04

    The Institutional Glovebox Safety Committee (IGSC) was chartered to minimize and/or prevent glovebox operational events. Highlights of the IGSC's third year are discussed. The focus of this working committee is to address glovebox operational and safety issues and to share Lessons Learned, best practices, training improvements, and glovebox glove breach and failure data. Highlights of the IGSC's third year are discussed. The results presented in this annual report are pivotal to the ultimate focus of the glovebox safety program, which is to minimize work-related injuries and illnesses. This effort contributes to the LANL Continuous Improvement Program by providing information that can be used to improve glovebox operational safety.

  5. Students build glovebox at Space Science Center

    Science.gov (United States)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  6. Operating manual for the electrostatic glove-box prefilter installed inside the filter glove box No. 046 at Rocky Flats, Building 776

    International Nuclear Information System (INIS)

    Bergman, W.; Kaifer, R.C.; Hebard, H.D.; Taylor, R.D.; Lum, B.Y.; Boling, R.M.; Buttedahl, O.I.; Woodard, R.W.; Terada, K.

    1979-01-01

    Objective of the evaluation is to evaluate the effectiveness of the electrostatic prefilter in prolonging the life of HEPA (high-efficiency particulate-air) filters. The theory of the electrostatic filter is reviewed, and Glove Box Number 046 is described in detail, followed by a description of the electrostatic prefilter used in the present application. Engineering drawings of the electrostatic prefilter are included. The procedure for evaluating the electrostatic prefilter includes the steps for conducting five different tests: evaluating (1) the HEPA filter alone, (2 and 3) the HEPA filter with a standard prefilter treated both as disposable and reusable, and (4 and 5) the HEPA filter with the electrostatic prefilter, again treated as disposable and reusable. Procedures for flowmeter calibrations and measurements of particle-size distributions are also included. Long-term maintenence of the system during the evaluation program is outlined, and estimates of component durability are given. An electrical engineering safety note describes the high-voltage operational hazard of the electrostatic prefilter and the testing of safety devices

  7. Glove failure in elective thyroid surgery: A prospective randomized study

    Directory of Open Access Journals (Sweden)

    Dariusz Timler

    2015-06-01

    Full Text Available Objectives: To analyze perforation rate in sterile gloves used by surgeons in the operating theatre of the Department of Endocrinological and General Surgery of Medical University of Lodz. Material and Methods: Randomized and controlled trial. This study analyses the incidents of tears in sterile surgical gloves used by surgeons during operations on 3 types of thyroid diseases according to the 10th revision of International Statistical Classification of Diseases and Related Health Problems (ICD-10 codes. Nine hundred seventy-two pairs (sets of gloves were collected from 321 surgical procedures. All gloves were tested immediately following surgery using the water leak test (EN455-1 to detect leakage. Results: Glove perforation was detected in 89 of 972 glove sets (9.2%. Statistically relevant more often glove tears occurred in operator than the 1st assistant (p < 0.001. The sites of perforation were localized mostly on the middle finger of the non-dominant hand (22.5%, and the non-dominant ring finger (17.9%. Conclusions: This study has proved that the role performed by the surgeon during the procedure (operator, 1st assistant has significant influence on the risk of glove perforations. Nearly 90% of glove perforations are unnoticed during surgery.

  8. Design criteria for plutonium gloveboxes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The standard defines criteria for the design of glovebox systems to be used for the handling of plutonium in any form or isotopic composition or when mixed with other elements or compounds. The glovebox system is a series of physical barriers provided with glove ports and gloves, through which process and maintenance operations may be performed, together with an operating ventilation system. The system minimizes the potential for release of radioactive material to the environment, protects operators from contamination, and mitigates the consequences of abnormal condiations. The standard covers confinement, construction, materials, windows, glove ports, gloves, equipment insertion and removal, lighting, ventilation, fire protection, criticality prevention, services and utilities, radiation shielding, waste systems, monitoring and alarm systems, safeguards, quality assurance, and decommissioning

  9. Glovebox and Experiment Safety

    Science.gov (United States)

    Maas, Gerard

    2005-12-01

    Human spaceflight hardware and operations must comply with NSTS 1700.7. This paper discusses how a glovebox can help.A short layout is given on the process according NSTS/ISS 13830, explaining the responsibility of the payload organization, the approval authority of the PSRP and the defined review phases (0 till III).Amongst others, the following requirement has to be met:"200.1 Design to Tolerate Failures. Failure tolerance is the basic safety requirement that shall be used to control most payload hazards. The payload must tolerate a minimum number of credible failures and/or operator errors determined by the hazard level. This criterion applies when the loss of a function or the inadvertent occurrence of a function results in a hazardous event.200.1a Critical Hazards. Critical hazards shall be controlled such that no single failure or operator error can result in damage to STS/ISS equipment, a nondisabling personnel injury, or the use of unscheduled safing procedures that affect operations of the Orbiter/ISS or another payload.200.1b Catastrophic Hazards. Catastrophic hazards shall be controlled such that no combination of two failures or operator errors can result in the potential for a disabling or fatal personnel injury or loss of the Orbiter/ISS, ground facilities or STS/ISS equipment."For experiments in material science, biological science and life science that require real time operator manipulation, the above requirement may be hard or impossible to meet. Especially if the experiment contains substances that are considered hazardous when released into the habitable environment. In this case operation of the experiment in a glovebox can help to comply.A glovebox provides containment of the experiment and at the same time allows manipulation and visibility to the experiment.The containment inside the glovebox provides failure tolerance because the glovebox uses a negative pressure inside the working volume (WV). The level of failure tolerance is dependent of

  10. Study of plutonium fire extinction in glove-boxes; Etude sur l'extinction des feux de plutonium en boites a gants

    Energy Technology Data Exchange (ETDEWEB)

    Boisson, H; Chappellier, A; Debiar, A; Savornin, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The report concerns attempts to extinguish fire in uranium - chosen as a basis for comparison - and in plutonium, these being contained in glove boxes. The extinguishing powders TEC and MG 10 were tried and compared. The operator used in plastic bags. The metal was dealt with respectively in the form of billets, compact chips and finally thin shavings. In each case fire control was without difficulty. One must allow a certain time for cooling. The powder MG 10 showed very good results. Moreover, the trials proved that densely packed shavings are a very real security factor. The interior lay-out of the glove boxes ought, in order to facilitate further manipulations, be such as to render extinction as easy as possible should the need arise. (authors) [French] II s'agit d'un compte rendu d'essais d'extinction sur feux d'uranium - pris comme base de comparaison - et de plutonium, en boites a gants. Sont utilisees et comparees les poudres extinctrices TEC et MG 10. Elles sont employees par l'operateur en sachets de plastique. Le metal est pris successivement sous forme de billettes, de copeaux compactes, enfin de tournures fines. L'intervention est aisee dans tous les cas; il faut laisser un certain temps de refroidissement. La poudre MG 10 a donne de tres bons resultats, Les essais ont montre, de plus, que le compactage des copeaux est un facteur reel de securite. L'agencement interieur des boites a gants pour les manipulations a venir, devrait tenir compte de cette facilite d'extinction afin de la rendre la plus aisee possible en cas de besoin. (auteurs)

  11. Glove boxes. Dimensions and requirements. Draft

    International Nuclear Information System (INIS)

    1985-07-01

    The standard is to be applied to work done in glove-boxes, whereby either the personnel need to be protected from the damaging effects of the materials being handled, or the materials from the effects of the environment. It is to be applied to glove-boxes in which substances are handled which emit ionising radiation (radioactive substances). This norm is not restricted to glove-boxes in which processes are carried out on a technique scale. In accordance with this norm, only those pressures and temperatures are allowed to be present in the glove-boxes, that do not offer significantly from the work areas. Alongside the stipulations of this standard regard is also always to be taken of the regulations in the radiation protection ordinance. (orig./HP) [de

  12. Hands-on glovebox decommissioning

    International Nuclear Information System (INIS)

    Smith, D.

    1997-01-01

    Over recent years, the United Kingdom Atomic Energy Authority (UKAEA) has undertaken the decommissioning of a large number of Plutonium glove boxes at Winfrith Technology Centre. UKAEA has managed this work on behalf of the DTI, who funded most of the work. Most of the planning and practical work was contracted to AEA Technology (AEAT), which, until 1996, was the commercial arm of UKAEA, but is now a private company. More than 70 gloveboxes, together with internal plant and equipment such as ball mills, presses and furnaces, have been successfully size reduced into drums for storage, leaving the area, in which they were situated, in a clean condition. (UK)

  13. Rubber glove wearing device

    International Nuclear Information System (INIS)

    Nozaki, Tatsuo; Takada, Kaoru.

    1994-01-01

    Rubber groves are attached each to an upper end of a glove putting vessel having an air-sucking hole on the bottom by enlarging an opening end of the rubber glove and turning back the inside to the outside. When the sucking device is operated, air in the glove putting device is sucked and the rubber glove is expanded by an atmospheric pressure. After expansion of the rubber glove to some extent, the sucking device is stopped, and presence or absence of failures of the rubber glove is confirmed by shrinkage of the rubber glove and by an indication value of a pressure gauge for detecting the pressure change in the vessel. Then, a hand is inserted to the expanded rubber glove, and a detaching switch in the vessel is pushed by a finger tip. A detaching piece at the upper end of the vessel is protruded outwardly to enlarge the turned-back portion of the rubber glove to easily release the rubber glove from the putting vessel, and the rubber glove is put on. This enables to wear the rubber glove and conduct failure test simultaneously. Further, a user can put on the rubber glove without touching the outside of the rubber glove. (I.N.)

  14. 2014 AFCI Glovebox Event Executive Summary

    International Nuclear Information System (INIS)

    Campbell, Joseph Lenard

    2016-01-01

    One of the primary INL missions is to support development of advanced fuels with the goal of creating reactor fuels that produce less waste and are easier to store. The Advanced Fuel Cycle Initiative (AFCI) Glovebox in the Fuel Manufacturing Facility (FMF) is used for several fuel fabrication steps that involve transuranic elements, including americium. The AFCI glove box contains equipment used for fuel fabrication, including an arc melter - a small, laboratory-scale version of an electric arc furnace used to make new metal alloys for research - and an americium distillation apparatus. This overview summarizes key findings related to the investigation into the releases of airborne radioactivity that occurred in the AFCI glovebox room in late August and early September 2014. The full report (AFCI Glovebox Radiological Release - Evaluation, Corrective Actions and Testing, INL/INL-15-36996) provides details of the identified issues, corrective actions taken as well as lessons learned

  15. Compatibility of selected elastomers with plutonium glovebox environment

    International Nuclear Information System (INIS)

    Burns, R.

    1994-06-01

    This illustrative test was undertaken as a result of on-going failure of elastomer components in plutonium gloveboxes. These failures represent one of the major sources of required maintenance to keep gloveboxes operational. In particular, it was observed that the introduction of high specific activity Pu-238 into a glovebox, otherwise contaminated with Pu-239, resulted in an inordinate failure of elastomer components. Desiring to keep replacement of elastomer components to a minimum, a decision to explore a few possible alternative elastomer candidates was undertaken and reported upon herewith. Sample specimens of Neoprene, Urethane, Viton, and Hypalon elastomeric formulations were obtained from the Bacter Rubber Company. Strips of the elastomer specimens were placed in a plutonium glovebox and outside of a glovebox, and were observed for a period of three years. Of the four types of elastomers, only Hypalon remained completely viable

  16. Glove Use and Glove Education in Workers with Hand Dermatitis.

    Science.gov (United States)

    Rowley, Kyle; Ajami, Daana; Gervais, Denise; Mooney, Lindsay; Belote, Amy; Kudla, Irena; Switzer-McIntyre, Sharon; Holness, D Linn

    2016-01-01

    Occupational skin diseases are common. The occurrence of occupational skin diseases represents a failure of primary prevention strategies that may include the use of personal protective equipment, most commonly gloves. The objective of this study was to describe current glove use and education practices related to gloves in workers being assessed for possible work-related hand dermatitis. Participants included consecutive patients being assessed for possible work-related hand dermatitis. A self-administered questionnaire obtained information on demographics, workplace characteristics and exposures, glove use, and education regarding gloves. Ninety percent of the 105 participants reported using gloves. Only 44% had received training related to glove use in the workplace. Major gaps in training content included skin care when using gloves, warning signs of skin problems, and glove size. If the worker indicated no glove training received, the majority reported they would have used gloves if such training was provided. Although the majority of workers being assessed wore gloves, the minority had received training related to glove use. Particular gaps in training content were identified. Those who had not received training noted they would likely have used gloves if training had been provided.

  17. Glovebox characterization and barrier integrity testing using fluorescent powder

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1996-01-01

    This paper presents a method for characterizing the spread of contamination and testing the barrier integrity of a new glovebox during material transfer operations and glove change-outs using fluorescent powder. Argonne National Laboratory-West has performed this test on several new gloveboxes prior to putting them into service. The test is performed after the glovebox has been leak tested and all systems have been verified to be operational. The purpose of the test is to show that bag-in/bag-out operations and glove change-outs can be accomplished without spreading the actual contaminated material to non-contaminated areas. The characterization test also provides information as to where contamination might be expected to build-up during actual operations. The fluorescent powder is used because it is easily detectable using an ultra-violet light and disperses in a similar fashion to radioactive material. The characterization and barrier integrity test of a glovebox using fluorescent powder provides a visual method of determining areas of potential contamination accumulation and helps evaluate the ability to perform clean transfer operations and glove change-outs

  18. Glovebox decontamination technology comparison

    International Nuclear Information System (INIS)

    Quintana, D.M.; Rodriguez, J.B.; Cournoyer, M.E.

    1999-01-01

    Reconfiguration of the CMR Building and TA-55 Plutonium Facility for mission requirements will require the disposal or recycle of 200--300 gloveboxes or open front hoods. These gloveboxes and open front hoods must be decontaminated to meet discharge limits for Low Level Waste. Gloveboxes and open front hoods at CMR have been painted. One of the deliverables on this project is to identify the best method for stripping the paint from large numbers of gloveboxes. Four methods being considered are the following: conventional paint stripping, dry ice pellets, strippable coatings, and high pressure water technology. The advantages of each technology will be discussed. Last, cost comparisons between the technologies will be presented

  19. Glove 101

    Science.gov (United States)

    Ross, Amy

    2008-01-01

    This presentation addressed the question "What is a spacesuit glove?" - a highly specialized mobility system. It is an excellent basic tutorial on the design considerations of a spacesuit glove and the many facets of developing a glove that provides good mobility and thermal protection.

  20. TRU waste characterization chamber gloveboxes

    International Nuclear Information System (INIS)

    Duncan, D. S.

    1998-01-01

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes

  1. Removable glove for a glove box

    International Nuclear Information System (INIS)

    Lucas, J.M.

    1982-01-01

    The glove includes one part forming a cuff and another part forming the glove. These two parts are joined in a leak-tight manner by a rigid ring. The glove part is interchangeable without breaking the seal through two neighbouring grooves formed on the ring to receive a bead made on the open end of the glove. The grooves are visible when the glove is placed outside the glove box, thereby enabling the glove part to be changed in this position [fr

  2. A sealed enclosure of the glove box type

    International Nuclear Information System (INIS)

    Moreels, Pierre.

    1974-01-01

    The invention relates to a sealed enclosure of the glove-box type. According to the invention, the box-frame comprises: angle-bars having a right-angled cross-section, sealing joints, tightening bars and fastening means [fr

  3. Process and device for extinguishing fires inside gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, P

    1975-01-09

    The present invention relates to a process of extinguishing all types of fire inside gloveboxes. Said process prevents the inner part of the box to communicate with the room atmosphere: the glove that is the nearest to the hearth of fire is perforated with an edged tip mounted on the outlet of the extinguisher and the product contained inside said extinguisher is released until the fire extinction is achieved. A device for operating said process consists in an edged tubular tip, the end of which is bevelled and in means of dispersion and of connection to an extinguisher at the other end.

  4. Glove boxes

    International Nuclear Information System (INIS)

    Eisert, G.A.

    1979-01-01

    An arrangement for effecting access for performing work within a glove box comprises an elongate arm-length impermeable flexible sleeve, a fitting having an aperture therethrough, adapted to be secured in sealing relation in a port, in a wall of the glove box, the fitting including an outwardly extending lip having at least one continuous groove extending around its outer periphery, one end of the sleeve extending through the aperture in fitting and being folded back against the outer periphery of the lip, a resilient fastening ring securing the sleeve in sealing engagement in the groove, clamping means securing the sleeves to the lip and a glove secured in sealing relation via a bushing to the other end of the sleeve. (author)

  5. Use of simulation to examine operational scenarios in a lathe glovebox for the processing of nuclear materials

    International Nuclear Information System (INIS)

    McQueen, M.; Ashok, P.; Cox, D.J.; Pittman, P.C.; Turner, C.J.; Hollen, R.M.

    2001-01-01

    In the process of dispositioning nuclear materials into storage, the use of a robot eliminates the safety risks to humans and increases productivity. The current process of processing typically uses humans to handle the hazardous material using gloves through glove-ports. This process is not only dangerous, but also costly, because humans can only be subjected to limited exposure to nuclear materials due to the actual Occupational Radiation Exposure (ORE) and thus have a fixed amount of dedicated workload per unit time. Use of robotics reduces ORE to humans and increases productivity. The Robotics Research Group at the University of Texas at Austin has created a simulation model of a conceptual application that uses a robot inside the glovebox to handle hazardous materials for lathe machining process operations in cooperation with Los Alamos National Laboratories (LANL). The actions of the robot include preparing the parts for entry into the box, weighing the parts, positioning the parts into the headstock chuck of the lathe, handling the subsequent processed parts, changing and replacing the lathe tools and chuck assemblies are necessary to process the material. The full three-dimensional geometric model of the simulation demonstrates the normal expected operation from beginning to end and verifies the path plans for the robot. The emphasis of this paper is to report additional findings from the simulation model, which is currently being expanded to include failure mode analysis, error recovery, and other what-if scenarios involved in unexpected, or unplanned, operation of the robot and lathe process inside of the glovebox.

  6. Glove box

    International Nuclear Information System (INIS)

    Morita, Atsushi

    1990-01-01

    Wire rope earthquake proof supports having sufficient vibration transmitting and attenuating property are disposed between a fixed floor and the bottom of a glove box in order to improve earthquake proofness of the glove box. The vertical weight of the glove box is supported by support legs slidable on the surface of the fixed floor. The wire rope earthquake-proof supports when undergoing a load, cause stretching and rolling against the external force such as earthquakes, and provide flexible spring support and cause a great damping due to friction with strands. Further, the vertical weight is always supported by the support legs and, when a horizontal weight is applied, the glove box slides on the fixed floor freely with slidable members. In this way, stress concentration generated at joint portions of columns and beams can be moderated greatly and earthquake proofness can be improved. Further, quality control and maintenance for the device is almost unnecessary owing to excellent fatigue-resistant characteristics of the wire rope earthquake proof supports. (N.H.)

  7. Measuring Pu in a glove box using portable NaI and germanium detectors

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1984-01-01

    A NaI crystal or germanium detector inside a portable lead shield can determine the amount of plutonium in a glove box. The number of counts required are defined and the locations outside the box where the detector needs to be positioned are given. The calculated accuracy for measuring the Pu when these locations are used is within +/-30% for most glove boxes. Other factors that may affect this accuracy, such as γ-ray absorption by glove-box materials, self-absorption by Pu, absorption by equipment in the glove box, and the limits of the counting equipment are also discussed

  8. Comprehension Strategy Gloves.

    Science.gov (United States)

    Newman, Gayle

    2002-01-01

    Describes the idea of creating a glove for each of the comprehension strategies for use with different text structures. Notes that the gloves serve as a multisensory approach by providing visual clues through icons on each finger and the palm. Discusses three different gloves: the prereading glove, the narrative text structure glove, and the…

  9. Latex medical gloves

    DEFF Research Database (Denmark)

    Palosuo, Timo; Antoniadou, Irini; Gottrup, Finn

    2011-01-01

    Many hospitals have implemented policies to restrict or ban the use of devices made of natural rubber latex (NRL) in healthcare as precautionary measures against the perceived risk of NRL allergy. Changes in glove technology, progress in measuring the specific allergenic potential of gloves...... properties of NRL and synthetic gloves and the role of glove powder. The review shows that NRL medical gloves, when compared with synthetic gloves, tend to be stronger, more flexible and better accepted by clinicians. The introduction of powder-free gloves has been associated with reductions in protein...

  10. Redefining design criteria for Pu-238 gloveboxes

    International Nuclear Information System (INIS)

    Acosta, S.V.

    1998-01-01

    Enclosures for confinement of special nuclear materials (SNM) have evolved into the design of gloveboxes. During the early stages of glovebox technology, established practices and process operation requirements defined design criteria. Proven boxes that performed and met or exceeded process requirements in one group or area, often could not be duplicated in other areas or processes, and till achieve the same success. Changes in materials, fabrication and installation methods often only met immediate design criteria. Standardization of design criteria took a big step during creation of ''Special-Nuclear Materials R and D Laboratory Project, Glovebox standards''. The standards defined design criteria for every type of process equipment in its most general form. Los Alamos National Laboratory (LANL) then and now has had great success with Pu-238 processing. However with ever changing Environment Safety and Health (ES and H) requirements and Ta-55 Facility Configuration Management, current design criteria are forced to explore alternative methods of glovebox design fabrication and installation. Pu-238 fuel processing operations in the Power Source Technologies Group have pushed the limitations of current design criteria. More than half of Pu-238 gloveboxes are being retrofitted or replaced to perform the specific fuel process operations. Pu-238 glovebox design criteria are headed toward process designed single use glovebox and supporting line gloveboxes. Gloveboxes that will house equipment and processes will support TA-55 Pu-238 fuel processing needs into the next century and extend glovebox expected design life

  11. Modular glovebox connector and associated good practices for control of radioactive and chemically toxic materials

    International Nuclear Information System (INIS)

    Hoover, M.D.; Mewhinney, C.J.; Newton, G.J.

    1999-01-01

    Design and associated good practices are described for a modular glovebox connector to improve control of radioactive and chemically toxic materials. The connector consists of an anodized aluminum circular port with a mating spacer, gaskets, and retaining rings for joining two parallel ends of commercially available or custom-manufactured glovebox enclosures. Use of the connector allows multiple gloveboxes to be quickly assembled or reconfigured in functional units. Connector dimensions can be scaled to meet operational requirements for access between gloveboxes. Options for construction materials are discussed, along with recommendations for installation of the connector in new or retrofitted systems. Associated good practices include application of surface coatings and caulking, use of disposable glovebags, and proper selection and protection of gasket and glove materials. Use of the connector at an inhalation toxicology research facility has reduced the time and expense required to reconfigure equipment for changing operational requirements, the dispersion of contamination during reconfigurations, and the need for decommissioning and disposal of contaminated enclosures

  12. Device Assembly Facility (DAF) Glovebox Radioactive Waste Characterization

    International Nuclear Information System (INIS)

    Dominick, J L

    2001-01-01

    The Device Assembly Facility (DAF) at the Nevada Test Site (NTS) provides programmatic support to the Joint Actinide Shock Physics Experimental Research (JASPER) Facility in the form of target assembly. The target assembly activities are performed in a glovebox at DAF and include Special Nuclear Material (SNM). Currently, only activities with transuranic SNM are anticipated. Preliminary discussions with facility personnel indicate that primarily two distributions of SNM will be used: Weapons Grade Plutonium (WG-Pu), and Pu-238 enhanced WG-Pu. Nominal radionuclide distributions for the two material types are included in attachment 1. Wastes generated inside glove boxes is expected to be Transuranic (TRU) Waste which will eventually be disposed of at the Waste Isolation Pilot Plant (WIPP). Wastes generated in the Radioactive Material Area (RMA), outside of the glove box is presumed to be low level waste (LLW) which is destined for disposal at the NTS. The process knowledge quantification methods identified herein may be applied to waste generated anywhere within or around the DAF and possibly JASPER as long as the fundamental waste stream boundaries are adhered to as outlined below. The method is suitable for quantification of waste which can be directly surveyed with the Blue Alpha meter or swiped. An additional quantification methodology which requires the use of a high resolution gamma spectroscopy unit is also included and relies on the predetermined radionuclide distribution and utilizes scaling to measured nuclides for quantification

  13. Electrochemical decontamination system for actinide processing gloveboxes

    International Nuclear Information System (INIS)

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL's Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused

  14. Laser dismantling of a glovebox

    International Nuclear Information System (INIS)

    Johnson, R.; Fender, M.

    1985-01-01

    A 5 kW laser has been used to cut up a 2.6 x 1 x 1 m glove box made of 5 mm mild steel with 12.5 mm perspex windows and 3 mm neoprene gaskets. The laser cut all components including the sandwich of perspex, neoprene and steel with ease. The production of fibrous filaments of perspex during the cutting process has been almost avoided by modifying the cutting variables. The combustion of material beyond that being cut has also been prevented by adopting the correct level of laser power. The problems encountered with loss of glove box rigidity with progressive dismantling are discussed, together with the relevance these problems have to possible cutting methods other than lasers. (author)

  15. Anti-vibration gloves?

    Science.gov (United States)

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.

  16. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant

  17. Scrap of gloveboxes No. 801-W and No. 802-W

    CERN Document Server

    Ohuchi, S; Kurosawa, M; Okane, S; Usui, T

    2002-01-01

    Both gloveboxes No. 801-W for measuring samples of uranium or plutonium and No. 802-W for analyzing the quantity of uranium or plutonium are established at twenty five years ago in the analyzing room No. 108 of Plutonium Fuel Research Facility. It was planned to scrap the gloveboxes and to establish new gloveboxes. This report describes the technical view of the scrapping works.

  18. Radio opaque gloves

    International Nuclear Information System (INIS)

    Whittaker, A.V.; Whittaker, R.E. Jr.; Goldstrom, R.A.; Shipko, F.J.

    1975-01-01

    Radiation shielding garments and accessories, such as radio-opaque gloves for surgeons, shielding against the harmful x-ray radiation in a fluoroscopic zone, are advantageously different from garments for shielding from other medical uses of x-rays. Such garments are provided with zones of differing opacity, whereby desired sensitivity and ''feel'' through the glove material is retained. One feature is the provision of an ''opacity gradient'' across the glove cross section with opacity being relatively low at the fingertip area (lesser shield-thickness), but relatively high at the less nonprehensile hand zones, such as the palm. Glove fabrication techniques for achieving such an opacity gradient are described. (U.S.)

  19. Robotic system for glovebox size reduction

    International Nuclear Information System (INIS)

    KWOK, KWAN S.; MCDONALD, MICHAEL J.

    2000-01-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories (SNL) is developing technologies for glovebox size reduction in the DOE nuclear complex. A study was performed for Kaiser-Hill (KH) at the Rocky Flats Environmental Technology Site (RFETS) on the available technologies for size reducing the glovebox lines that require size reduction in place. Currently, the baseline approach to these glovebox lines is manual operations using conventional mechanical cutting methods. The study has been completed and resulted in a concept of the robotic system for in-situ size reduction. The concept makes use of commercially available robots that are used in the automotive industry. The commercially available industrial robots provide high reliability and availability that are required for environmental remediation in the DOE complex. Additionally, the costs of commercial robots are about one-fourth that of the custom made robots for environmental remediation. The reason for the lower costs and the higher reliability is that there are thousands of commercial robots made annually, whereas there are only a few custom robots made for environmental remediation every year. This paper will describe the engineering analysis approach used in the design of the robotic system for glovebox size reduction

  20. Ventilation of gloveboxes and containment shells

    International Nuclear Information System (INIS)

    Guetron, R.

    1984-01-01

    In this paper are defined fundamental principles for the ventilation of containment enclosures and gloveboxes, and examined criteria required to maintain containment in normal or accidental conditions. Dimensioning of ventilation network and associated equipment (adjustement and filtering devices). Some examples are given [fr

  1. EVA Glove Research Team

    Science.gov (United States)

    Strauss, Alvin M.; Peterson, Steven W.; Main, John A.; Dickenson, Rueben D.; Shields, Bobby L.; Lorenz, Christine H.

    1992-01-01

    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area.

  2. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The Plutonium Immobilization Project (PIP), to be located at the Savannah River Site SRS, is a combined development and testing effort by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), and the Australian National Science and Technology Organization (ANSTO). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulating package and resistance heating elements located within a nuclear glovebox. Other furnaces types considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment

  3. Design considerations for heated wells in gloveboxes

    International Nuclear Information System (INIS)

    Frigo, A. A.; Preuss, D. E.

    1999-01-01

    Heated wells in gloveboxes have been used for many years by the Argonne National Laboratory Chemical Technology Division for nuclear-technology, waste-management, chemical-technology, and analytical-chemistry research. These wells allow experiments to be isolated from the main working volume of the glovebox. In addition, wells, when sealed, allow experiments to be conducted under pressurized or vacuum conditions. Until recently, typical maximum operational temperatures were about 500 C. However, more recent research is requiring operational temperatures approaching 900 C. These new requirements pose interesting design challenges that must be resolved. Some problem areas include temperature effects on material properties, maintaining a seal, cooling selected areas, and minimizing stresses. This paper discusses issues related to these design challenges and the ways in which these issues have been resolved

  4. Unique features in the ARIES glovebox line

    International Nuclear Information System (INIS)

    Martinez, H.E.; Brown, W.G.; Flamm, B.; James, C.A.; Laskie, R.; Nelson, T.O.; Wedman, D.E.

    1998-01-01

    A series of unique features have been incorporated into the Advanced Recovery and Integrated Extraction System (ARIES) at the Los Alamos National Laboratory, TA-55 Plutonium Facility. The features enhance the material handling in the process of the dismantlement of nuclear weapon primaries in the glovebox line. Incorporated into these features are the various plutonium process module's different ventilation zone requirements that the material handling systems must meet. These features include a conveyor system that consists of a remotely controlled cart that transverses the length of the conveyor glovebox, can be operated from a remote location and can deliver process components to the entrance of any selected module glovebox. Within the modules there exists linear motion material handling systems with lifting hoist, which are controlled via an Allen Bradley control panel or local control panels. To remove the packaged products from the hot process line, the package is processed through an air lock/electrolytic decontamination process that removes the radioactive contamination from the outside of the package container and allows the package to be removed from the process line

  5. An Integrated Science Glovebox for the Gateway Habitat

    Science.gov (United States)

    Calaway, M. J.; Evans, C. A.; Garrison, D. H.; Bell, M. S.

    2018-01-01

    Next generation habitats for deep space exploration of cislunar space, the Moon, and ultimately Mars will benefit from on-board glovebox capability. Such a glovebox facility will maintain sample integrity for a variety of scientific endeavors whether for life science, materials science, or astromaterials. Glovebox lessons learned from decades of astromaterials curation, ISS on-board sample handling, and robust analog missions provide key design and operational factors for inclusion in on-going habitat development.

  6. Glove box posting system

    International Nuclear Information System (INIS)

    McIntosh, A.E.

    1981-01-01

    A system for posting objects into closed containers, such as glove boxes, is described in which the bag used, preferably made of plastic, does not have to be fitted and sealed by the operator during each posting operation. (U.K.)

  7. WRAP low level waste (LLW) glovebox operational test report

    International Nuclear Information System (INIS)

    Kersten, J.K.

    1998-01-01

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution's (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation

  8. WRAP low level waste (LLW) glovebox operational test report

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, J.K.

    1998-02-19

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

  9. Delayed reactions to reusable protective gloves.

    Science.gov (United States)

    Pontén, Ann; Dubnika, Inese

    2009-04-01

    The materials in plastic protective gloves are thought to cause less contact allergy than rubber gloves. Our aim was to estimate the frequency of delayed reactions to different types of reusable protective gloves among dermatitis patients. 2 x 2 cm pieces of polyvinyl chloride (PVC) gloves, nitrile gloves, and natural rubber latex (NRL) gloves were tested as is in consecutive dermatitis patients tested with the baseline series. Among 658 patients, 6 patients reacted to PVC gloves and 6 patients to the NRL gloves. None reacted to both these types of gloves. Five of six patients with reactions to rubber gloves reacted to thiuram mix in the baseline series. Delayed reactions to reusable PVC gloves may be as common as to reusable NRL gloves. In contrast to most reactions to the NRL glove, the reactions to the PVC glove had no obvious association with reactions to any allergen(s) in the baseline series.

  10. Formaldehyde in reusable protective gloves.

    Science.gov (United States)

    Pontén, Ann

    2006-05-01

    Due to the clinical findings in a single patient's case, formaldehyde was suspected to be present in clinically relevant levels in reusable protective gloves. Therefore, 9 types of gloves were investigated with the semi-quantitative chromotropic acid method. It was found that 6/9 gloves emitted some formaldehyde and that 4/9 gloves emitted > or =40 microg of formaldehyde. Most of the formaldehyde was found on the inside of the gloves. To get an indication of the clinical relevance, a comparison with a protective cream declared to contain the formaldehyde-releasing agent diazolidinyl urea was performed by comparing areas of gloves with areas of cream layers with thickness 1-2 mg/cm(2). It was found that the amounts of formaldehyde emitted from the gloves might be in the same range as emitted from a layer of cream.

  11. Contaminated glove remover for rubber or synthetic gloves

    International Nuclear Information System (INIS)

    Counit, G.; Charvolin, M.

    1993-01-01

    The glove remover, especially for protective rubber or synthetic gloves used to handle toxic materials in the nuclear, chemical and other industries, consist of a housing with a chamber into which the gloved hand is inserted, an outer depression chamber and a perforated wall between the two. A vacuum unit creates a low pressure inside the chamber enabling the hand to be withdrawn from the glove, which is then drawn through the pipe into a container for disposal. The open end of the chamber is covered by a diaphragm which surrounds and seals the arm which is inserted into it with the gloved hand. The diaphragm can occupy three positions: closed, where it surrounds and seals the arm; open, allowing the hand to be inserted or withdrawn, and intermediate, when air can pass from the outside between the hand and glove. A similar chamber is used for removing boots

  12. Air-tighten test for used glove boxes

    International Nuclear Information System (INIS)

    Itoh, Masanori; Kashiro, Kashio; Matsumoto, Masaki; Ogiya, Takashi; Nakata, Keiji; Gohda, Masahiko

    2000-05-01

    All of the glove boxes in Plutonium Fuel Fabrication facilities are operated after confirming their condition by conducting negative pressure maintenance test and air-tighten test. Although we check the negative pressure maintenance condition before operating glove boxes in a daily basis, we have not been conducted the air-tighten test. Hence, we have conduct air-tighten test using the glove box that will be dismantled in the near future. In order to compare the present data to the criteria of licensing and to the measurement data for new glove box, the test was conducted by leak tightness vessel which is used the competent authority's test for newly constructed equipments. We also have confirmed the leakage condition in case failure of keeping negative pressure. The main results are as follows: 1. No leakage was detected after leaving the glove box 21 days in case failure of keeping negative pressure condition. 2. The measurement result of the air-tighten test was 0.025 vol%/h, and it was confirmed that this result is within the range of licensing criteria (-0.04 - 0.06 vol%/h). 3. The measurement result was also within the error of leak tightness vessel, and it was confirmed that the air-tighten condition was in force within this past 10 years after installing this glove box (the corresponding value for used the competent authority test for newly constructed equipments was 0.019 vol%/h). (author)

  13. Gloves, extra gloves or special types of gloves for preventing percutaneous exposure injuries in healthcare personnel.

    Science.gov (United States)

    Mischke, Christina; Verbeek, Jos H; Saarto, Annika; Lavoie, Marie-Claude; Pahwa, Manisha; Ijaz, Sharea

    2014-03-07

    Healthcare workers are at risk of acquiring viral diseases such as hepatitis B, hepatitis C and HIV through exposure to contaminated blood and body fluids at work. Most often infection occurs when a healthcare worker inadvertently punctures the skin of their hand with a sharp implement that has been used in the treatment of an infected patient, thus bringing the patient's blood into contact with their own. Such occurrences are commonly known as percutaneous exposure incidents. To determine the benefits and harms of extra gloves for preventing percutaneous exposure incidents among healthcare workers versus no intervention or alternative interventions. We searched CENTRAL, MEDLINE, EMBASE, NHSEED, Science Citation Index Expanded, CINAHL, NIOSHTIC, CISDOC, PsycINFO and LILACS until 26 June 2013. Randomised controlled trials (RCTs) with healthcare workers as the majority of participants, extra gloves or special types of gloves as the intervention, and exposure to blood or bodily fluids as the outcome. Two authors independently assessed study eligibility and risk of bias, and extracted data. We performed meta-analyses for seven different comparisons. We found 34 RCTs that included 6890 person-operations as participating units and reported on 46 intervention-control group comparisons. We grouped interventions as follows: increased layers of standard gloves, gloves manufactured with special protective materials or thicker gloves, and gloves with puncture indicator systems. Indicator gloves show a coloured spot when they are perforated. Participants were surgeons in all studies and they used at least one pair of standard gloves as the control intervention. Twenty-seven studies also included other surgical staff (e.g. nurses). All but one study used perforations in gloves as an indication of exposure. The median control group rate was 18.5 perforations per 100 person-operations. Seven studies reported blood stains on the skin and two studies reported self reported

  14. Guidelines for gloveboxes. Section 5.14: Electrical

    International Nuclear Information System (INIS)

    Tollner, R.L.

    1995-07-01

    This is the electric portion of the design guidelines for gloveboxes developed by the American Glovebox Society. The topics include applicable codes/industry standards, penetrations/feedthroughs, wireways, junction boxes, receptacles, derating factors, conductors, conductor insulation and grounding. References for the guidelines are provided

  15. Catalyst study for the decontamination of glove-box atmospheres containing tritium at MPC levels

    International Nuclear Information System (INIS)

    Chobot, J.; Montel, J.; Sannier, J.

    1988-01-01

    The BEATRICE loop was designed for studying the conversion of tritium at very low activity levels using catalytic oxidation followed by water trapping. The purpose is to study kinetic parameters required for the design of the NET tritium cleanup system with the two main objectives to operate without isotopic swamping and to determine the ability of efficient conversion at room temperature. From experiments carried out between 20 and 250 0 C it is concluded that two palladium/alumina and platinum/alumina catalysts are very efficient in removing tritium from contaminated gas mixtures down to a few MPC levels without isotopic swamping and even at room temperature. However at room temperature, in relation to tritium species trapped on the catalyst surface a progressive deactivation with time occurs. This phenomenon may be a concern for process efficiency and tritium inventory and regeneration conditions have to be determined in order to demonstrate industrial feasibility of operating at room temperature

  16. Corrosion studies and recommendation of alloys for an incinerator of glove-boxes wastes

    International Nuclear Information System (INIS)

    Devisme, F.; Garnier, M.H.

    1992-01-01

    In the framework of the development of an incineration process for high chlorinated wastes, commercial alloys have been investigated by means of parametric laboratory tests in HCl containing gas mixtures and also in field tests. Recommendations may be formulated for the three main components i.e. pyrolyser, calciner and cooler. In very low oxygen-potential atmospheres, the alloys Hastelloy C276 and Inconel 625 present the best behaviours. For the calciner, alloy Inconel 601 is more satisfactory than AISI 310 steel. As for the cooler, only the alloy Haynes 214 appears acceptable at 1100 deg C. Because of the very low stress level affecting the components, thermomechanical properties do not modify these recommendations based on corrosion behaviour

  17. Catalyst study for the decontamination of glove-boxe atmospheres containing tritium at MPC levels

    International Nuclear Information System (INIS)

    Chabot, J.; Montel, J.; Sannier, J.

    1988-01-01

    The BEATRICE loop was designed for studying the conversion of tritium at very low activity levels using catalytic oxidation followed by water trapping. The purpose is to study kinetic parameters required for the design of the NET tritium clean-up system with the two main objectives to operate without isotopic swamping and to determine the ability of efficient conversion at room temperature. From experiments carried out between 20 and 250 0 C it is concluded that two palladium/alumina and platinum/alumina catalysts are very efficient in removing tritium from contaminated gas mixtures down to a few MPC levels without isotopic swamping and even at room temperature. However at room temperature, in relation to tritium species trapped on the catalyst surface a progressive deactivation with time occurs. This phenomenon may be a concern for process efficiency and tritium inventory and best regeneration conditions have to be determined in order to demonstrate industrial feasibility of operating at room temperature

  18. Inert atmosphere system for plutonium processing gloveboxes

    International Nuclear Information System (INIS)

    Bogard, C.F.; Calkins, K.W.; Rogers, R.F.

    1975-01-01

    Recent efforts to reduce fire hazards in plutonium processing operations are described. In such operations, the major environmental controls are developed through various kinds of glovebox systems. In evaluating the air-atmosphere glovebox systems, formerly in use at Rocky Flats and many other plants, a decision was made to convert to a recirculating ''inert'' atmosphere. The inert atmosphere consists of nitrogen, supplied from an on-site generating plant, diluting oxygen content to one to 5 percent by volume. Problems encountered during the change over included: determination of all factors influencing air leakage into the system, and reducing leakage to the practical minimum; meeting all fire and safety standards on the filter plenum and exhaust systems; provision for converting portions of the system to an air atmosphere to conduct maintenance work; inclusion of oxygen analyzers throughout the system to check gas quality and monitor for leaks; and the use of automatic controls to protect against a variety of potential malfunctions. The current objectives to reduce fire hazards have been met and additional safeguards were added. The systems are operating satisfactorily. (U.S.)

  19. Glove use among hairdressers

    DEFF Research Database (Denmark)

    Oreskov, Katia W; Søsted, Heidi; Johansen, Jeanne D

    2015-01-01

    by each person, interrupted by a demonstration of how to use gloves correctly. Photographs were taken to compare UV contamination before and after the demonstration. RESULTS: All of the participants (100%) had their hands contaminated during the first round; the area ranged between 0.02 and 101.37 cm(2......) (median 3.62 cm(2)). In the second round, 55.8% were contaminated (range 0.00-3.08 cm(2) ; median 0.01 cm(2)). The reduction in contaminated skin areas was statistically significant (p 

  20. Wearing gloves in the hospital

    Science.gov (United States)

    ... your bare hands. Follow these steps: Grab the top of your right glove with your left hand. Pull toward your fingertips. ... hand. Put 2 right-hand fingers in the top of your left glove. Pull toward your fingertips until you have pulled ...

  1. Prospective data collection and analysis of perforations and tears of latex surgical gloves during primary endoprosthetic surgeries

    Directory of Open Access Journals (Sweden)

    Zaatreh, Sarah

    2016-12-01

    Full Text Available Introduction: Surgical gloves are used to prevent contamination of the patient and the hospital staff with pathogens. The aim of this study was to examine the actual effectiveness of gloves by examining the damage (perforations, tears to latex gloves during surgery in the case of primary hip and knee prosthesis implantation. Materials and methods: Latex surgical gloves used by surgeons for primary hip and knee replacement surgeries were collected directly after the surgery and tested using the watertightness test according to ISO EN 455-1:2000.Results: 540 gloves were collected from 104 surgeries. In 32.7% of surgeries at least one glove was damaged. Of all the gloves collected, 10.9% were damaged, mainly on the index finger. The size of the perforations ranged from ≤1 mm to over 5 mm. The surgeon’s glove size was the only factor that significantly influenced the occurrence of glove damage. Surgeon training level, procedure duration, and the use of bone cement had no significant influence.Conclusions: Our results highlight the high failure rate of surgical gloves. This has acute implications for glove production, surgical practice, and hygiene guidelines. Further studies are needed to detect the surgical steps, surface structures, and instruments that pose an increased risk for glove damage.

  2. Prospective data collection and analysis of perforations and tears of latex surgical gloves during primary endoprosthetic surgeries.

    Science.gov (United States)

    Zaatreh, Sarah; Enz, Andreas; Klinder, Annett; König, Tony; Mittelmeier, Lena; Kundt, Günther; Mittelmeier, Wolfram

    2016-01-01

    Introduction: Surgical gloves are used to prevent contamination of the patient and the hospital staff with pathogens. The aim of this study was to examine the actual effectiveness of gloves by examining the damage (perforations, tears) to latex gloves during surgery in the case of primary hip and knee prosthesis implantation. Materials and methods: Latex surgical gloves used by surgeons for primary hip and knee replacement surgeries were collected directly after the surgery and tested using the watertightness test according to ISO EN 455-1:2000. Results: 540 gloves were collected from 104 surgeries. In 32.7% of surgeries at least one glove was damaged. Of all the gloves collected, 10.9% were damaged, mainly on the index finger. The size of the perforations ranged from ≤1 mm to over 5 mm. The surgeon's glove size was the only factor that significantly influenced the occurrence of glove damage. Surgeon training level, procedure duration, and the use of bone cement had no significant influence. Conclusions: Our results highlight the high failure rate of surgical gloves. This has acute implications for glove production, surgical practice, and hygiene guidelines. Further studies are needed to detect the surgical steps, surface structures, and instruments that pose an increased risk for glove damage.

  3. Prospective data collection and analysis of perforations and tears of latex surgical gloves during primary endoprosthetic surgeries

    Science.gov (United States)

    Zaatreh, Sarah; Enz, Andreas; Klinder, Annett; König, Tony; Mittelmeier, Lena; Kundt, Günther; Mittelmeier, Wolfram

    2016-01-01

    Introduction: Surgical gloves are used to prevent contamination of the patient and the hospital staff with pathogens. The aim of this study was to examine the actual effectiveness of gloves by examining the damage (perforations, tears) to latex gloves during surgery in the case of primary hip and knee prosthesis implantation. Materials and methods: Latex surgical gloves used by surgeons for primary hip and knee replacement surgeries were collected directly after the surgery and tested using the watertightness test according to ISO EN 455-1:2000. Results: 540 gloves were collected from 104 surgeries. In 32.7% of surgeries at least one glove was damaged. Of all the gloves collected, 10.9% were damaged, mainly on the index finger. The size of the perforations ranged from ≤1 mm to over 5 mm. The surgeon’s glove size was the only factor that significantly influenced the occurrence of glove damage. Surgeon training level, procedure duration, and the use of bone cement had no significant influence. Conclusions: Our results highlight the high failure rate of surgical gloves. This has acute implications for glove production, surgical practice, and hygiene guidelines. Further studies are needed to detect the surgical steps, surface structures, and instruments that pose an increased risk for glove damage. PMID:28066701

  4. Tensile Properties and Integrity of Clean Room and Low-Modulus Disposable Nitrile Gloves: A Comparison of Two Dissimilar Glove Types

    Science.gov (United States)

    Phalen, Robert N.; Wong, Weng kee

    2012-01-01

    Background: The selection of disposable nitrile exam gloves is complicated by (i) the availability of several types or formulations, (ii) product variability, and (iii) an inability of common quality control tests to detect small holes in the fingers. Differences in polymer formulation (e.g. filler and plasticizer/oil content) and tensile properties are expected to account for much of the observed variability in performance. Objectives: This study evaluated the tensile properties and integrity (leak failure rates) of two glove choices assumed to contain different amounts of plasticizers/oils. The primary aims were to determine if the tensile properties and integrity differed and if associations existed among these factors. Additional physical and chemical properties were evaluated. Methods: Six clean room and five low-modulus products were evaluated using the American Society for Testing and Materials Method D412 and a modified water-leak test to detect holes capable of passing a virus or chemical agent. Results: Significant differences in the leak failure rates and tensile properties existed between the two glove types (P ≤ 0.05). The clean room gloves were about three times more likely to have leak failures (chi-square; P = 0.001). No correlation was observed between leak failures and tensile properties. Solvent extract, an indication of added plasticizer/oil, was not associated with leak failures. However, gloves with a maximum modulus gloves were a better choice for protection against aqueous chemical or biological penetration. The observed variability between glove products indicated that glove selection cannot rely solely on glove type or manufacturer labeling. Measures of modulus and AD may aid in the selection process, in contrast with common measures of tensile strength and elongation at break. PMID:22201179

  5. Glovebox pressure relief and check valve

    International Nuclear Information System (INIS)

    Blaedel, K.L.

    1986-01-01

    This device is a combined pressure relief valve and check valve providing overpressure protection and preventing back flow into an inert atmosphere enclosure. The pressure relief is embodied by a submerged vent line in a mercury reservior, the releif pressure being a function of the submerged depth. The pressure relief can be vented into an exhaust system and the relieving pressure is only slightly influenced by the varying pressure in the exhaust system. The check valve is embodied by a ball which floats on the mercury column and contacts a seat whenever vacuum exists within the glovebox enclosure. Alternatively, the check valve is embodied by a vertical column of mercury, the maximum back pressure being a function of the height of the column of mercury

  6. Glovebox pressure relief and check valve

    Energy Technology Data Exchange (ETDEWEB)

    Blaedel, K.L.

    1986-03-17

    This device is a combined pressure relief valve and check valve providing overpressure protection and preventing back flow into an inert atmosphere enclosure. The pressure relief is embodied by a submerged vent line in a mercury reservior, the releif pressure being a function of the submerged depth. The pressure relief can be vented into an exhaust system and the relieving pressure is only slightly influenced by the varying pressure in the exhaust system. The check valve is embodied by a ball which floats on the mercury column and contacts a seat whenever vacuum exists within the glovebox enclosure. Alternatively, the check valve is embodied by a vertical column of mercury, the maximum back pressure being a function of the height of the column of mercury.

  7. Low impact plutonium glovebox D ampersand D

    International Nuclear Information System (INIS)

    Rose, R.W.

    1995-01-01

    A dilemma often encountered in decontamination and decommissioning operations is the lack of choice as to the location where the work is to be performed. Facility siting, laboratory location, and adjacent support areas were often determined based on criteria, which while appropriate at the time, are not always the most conducive to a D ampersand D project. One must learn to adapt and cope with as found conditions. High priority research activities, which cannot be interrupted, may be occurring in adjacent non-radiological facilities in the immediate vicinity where highly contaminated materials must be handled in the course of a D ampersand D operation. The execution of a project within such an environment involves a high level of coordination, cooperation, professionalism and flexibility among the project, the work force and the surrounding occupants. Simply moving occupants from the potentially affected area is not always an option and much consideration must be given in the selection of the D ampersand D methodology to be employed and the processes to be implemented. Determining project boundaries and the ensuring that adjacent occupants are included in the planning/scheduling of specific operations which impact their work area are important in the development of the safety envelope. Such was the case in the recent D ampersand D of 61 gloveboxes contaminated with plutonium and other transuranic nuclides at the Argonne National Laboratory-East site. The gloveboxes, which were used in Department of Energy research and development program activities over the past 30 years, were decontaminated to below transuranic waste criteria, size reduced, packaged and removed from Building 212 by Argonne National Laboratory personnel in conjunction with Nuclear Fuel Services, Inc. with essentially no impact to adjacent occupants

  8. Low impact plutonium glovebox D&D

    Energy Technology Data Exchange (ETDEWEB)

    Rose, R.W.

    1995-12-31

    A dilemma often encountered in decontamination and decommissioning operations is the lack of choice as to the location where the work is to be performed. Facility siting, laboratory location, and adjacent support areas were often determined based on criteria, which while appropriate at the time, are not always the most conducive to a D&D project. One must learn to adapt and cope with as found conditions. High priority research activities, which cannot be interrupted, may be occurring in adjacent non-radiological facilities in the immediate vicinity where highly contaminated materials must be handled in the course of a D&D operation. The execution of a project within such an environment involves a high level of coordination, cooperation, professionalism and flexibility among the project, the work force and the surrounding occupants. Simply moving occupants from the potentially affected area is not always an option and much consideration must be given in the selection of the D&D methodology to be employed and the processes to be implemented. Determining project boundaries and the ensuring that adjacent occupants are included in the planning/scheduling of specific operations which impact their work area are important in the development of the safety envelope. Such was the case in the recent D&D of 61 gloveboxes contaminated with plutonium and other transuranic nuclides at the Argonne National Laboratory-East site. The gloveboxes, which were used in Department of Energy research and development program activities over the past 30 years, were decontaminated to below transuranic waste criteria, size reduced, packaged and removed from Building 212 by Argonne National Laboratory personnel in conjunction with Nuclear Fuel Services, Inc. with essentially no impact to adjacent occupants.

  9. Glove perforation rate with orthopedic gloving versus double gloving technique in tibial plateau leveling osteotomy: A randomized trial

    Science.gov (United States)

    Egeler, Kimberly; Stephenson, Nicole; Stanke, Natasha

    2016-01-01

    In this randomized, prospective study, perforation rates, glove change rates, and cost between orthopedic gloves (n = 227) and double gloving with standard latex surgical gloves (n = 178) worn in tibial plateau leveling osteotomy procedures were compared. Gloves were collected from the surgeon and surgical resident after procedures and were tested for perforations with a standardized water leak test, as described by the American Society for Testing and Materials International. No statistically significant difference was found between the perforation rate using orthopedic gloving and double gloving techniques (P = 0.629) or the rate at which gloves were changed (P = 0.146). Orthopedic gloving was 2.1 times more costly than double gloving but they may be preferred by surgeons for dexterity and comfort. PMID:27807378

  10. W-026, transuranic waste (TRU) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    On July 18, 1997, the Transuranic (TRU) glovebox was tested using glovebox acceptance test procedure 13021A-86. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, sorting table, lidder/delidder device and the TRU empty drum compactor were also conducted. As of February 25, 1998, 10 of the 102 test exceptions that affect the TRU glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test exceptions are provided as appendices to this report

  11. Seismic analysis of plutonium glovebox by MSC/NASTRAN

    International Nuclear Information System (INIS)

    Hirata, Masaru; Ishikawa, Kazuya; Korosawa, Makoto; Fukushima, Susumu; Hoshina, Hirofumi.

    1993-01-01

    Seismic analysis of the structural strength of gloveboxes is important for plutonium confinement evaluation. However, the analytical methods must be developed for evaluating the mutual displacement between the window frame and acrylic resin window panel with regard to plutonium confinement during an earthquake. Therefore, seismic analysis for a standard glovebox in Plutonium Fuel Research Facility at Oarai Research Establishment of JAERI has been conducted by FEM (Finite Element Method) computer code MSC/NASTRAN (MacNeal-Schwendler Corporation NASA Structural Analysis). Modelling of glovebox window frame has been investigated from the results of natural frequency analysis and static analysis. After the acquisition of a suitable model, displacement around the window frame and glovebox structural strength have been evaluated in detail by use of floor response spectrum analysis and time-history (transient response) analysis. (author)

  12. Macro and Micro Remote Viewing of Objects in Sealed Gloveboxes

    International Nuclear Information System (INIS)

    Heckendorn, F.M.

    2004-01-01

    The Savannah River Site uses sophisticated glovebox facilities to process and analyze material that is radiologically contaminated or that must be protected from contamination by atmospheric gases. The analysis can be visual, non destructive measurement, or destructive measurement, and allows for the gathering of information that would otherwise not be obtainable. Macro and Micro systems that cover a range of 2X to 400X magnifications with a robust system compatible with the harsh glovebox environment were installed. Remote video inspection systems were developed and deployed in Savannah River Site glovebox facilities that provide high quality or mega-pixel quality remote views, for remote inspections. The specialized video systems that are the subject of this report exhibited specialized field application of remote video/viewing techniques by expanding remote viewing to high and very high quality viewing in gloveboxes. This technological enhancement will allow the gathering of precision information that is otherwise not available

  13. WRAP low level waste (LLW) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report

  14. WRAP low level waste (LLW) glovebox acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Leist, K.J.

    1998-02-17

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report.

  15. 76 FR 28308 - Compliance Policy Guide: Surgeons' Gloves and Patient Examination Gloves; Defects-Criteria for...

    Science.gov (United States)

    2011-05-17

    .... FDA-2011-D-0258] Compliance Policy Guide: Surgeons' Gloves and Patient Examination Gloves; Defects... Compliance Policy Guide Sec. 335.700, Surgeons' Gloves and Patient Examination Gloves; Defects--Criteria for... FDA staff on the submission of seizure recommendations for medical gloves that exceed the defect...

  16. Issues for reuse of gloveboxes at LANL TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.; Pinson, P.A.; Miller, C.F.

    1998-08-01

    This report is a summary of issues that face plutonium glovebox designers and users at the Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55). Characterizing the issues is a step in the task of enhancing the next generation glovebox design to minimize waste streams while providing the other design functions. This report gives an initial assessment of eight important design and operation issues that can benefit from waste minimization.

  17. Ergonomic glovebox workspace layout tool and associated method of use

    Science.gov (United States)

    Roddy, Shannon Howard

    2018-02-20

    The present invention provides an elongate tool that aides in the placement of objects and machinery within a glovebox, such that the objects and machinery can be safely handled by a user. The tool includes a plurality of visual markings (in English units, metric units, other units, grooves, ridges, varying widths, etc.) that indicate distance from the user within the glovebox, optionally broken into placement preference zones that are color coded, grayscale coded, or the like.

  18. Issues for reuse of gloveboxes at LANL TA-55

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Pinson, P.A.; Miller, C.F.

    1998-08-01

    This report is a summary of issues that face plutonium glovebox designers and users at the Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55). Characterizing the issues is a step in the task of enhancing the next generation glovebox design to minimize waste streams while providing the other design functions. This report gives an initial assessment of eight important design and operation issues that can benefit from waste minimization

  19. Installation equipment for a glove box

    International Nuclear Information System (INIS)

    Loriot, P.

    1993-01-01

    The equipment uses a hollow support on which the glove to be replaced is mounted. It carries two grooves to ensure that the edges of the new and used glove are securely held in position. The new glove is temporarily fitted to a mounting ring using a mounting jig which stretches the edge of the new glove around its rim. The mounting ring is then positioned over the hollow support and the edge of the glove transferred onto it. (author)

  20. High Performance EVA Gloves (HPEG)

    Data.gov (United States)

    National Aeronautics and Space Administration — In collaboration with HEOMD's Human Research Program, we are researching mechanisms for hand injury and will be developing new gloves to significantly reduce injury...

  1. Computer modeling for optimal placement of gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Hench, K.W.; Olivas, J.D. [Los Alamos National Lab., NM (United States); Finch, P.R. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components (pits) in an environment of intense regulation and shrinking budgets. Historically, the location of gloveboxes in a processing area has been determined without benefit of industrial engineering studies to ascertain the optimal arrangement. The opportunity exists for substantial cost savings and increased process efficiency through careful study and optimization of the proposed layout by constructing a computer model of the fabrication process. This paper presents an integrative two- stage approach to modeling the casting operation for pit fabrication. The first stage uses a mathematical technique for the formulation of the facility layout problem; the solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a computer simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  2. Computer modeling for optimal placement of gloveboxes

    International Nuclear Information System (INIS)

    Hench, K.W.; Olivas, J.D.; Finch, P.R.

    1997-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components (pits) in an environment of intense regulation and shrinking budgets. Historically, the location of gloveboxes in a processing area has been determined without benefit of industrial engineering studies to ascertain the optimal arrangement. The opportunity exists for substantial cost savings and increased process efficiency through careful study and optimization of the proposed layout by constructing a computer model of the fabrication process. This paper presents an integrative two- stage approach to modeling the casting operation for pit fabrication. The first stage uses a mathematical technique for the formulation of the facility layout problem; the solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a computer simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units

  3. An evaluation of hospital hand hygiene practice and glove use in Hong Kong.

    Science.gov (United States)

    Chau, Janita P-C; Thompson, David R; Twinn, Sheila; Lee, Diana T F; Pang, Sharon W M

    2011-05-01

    To identify omissions in hand hygiene practice and glove use among hospital workers in Hong Kong. Hospital-acquired infection is the commonest complication affecting hospitalised patients. Even though research evidence suggests that hand hygiene and proper glove use are the most important ways to prevent the spread of disease and infection, compliance with both are reported to be unacceptably low. An observational study of hospital workers in one acute and two convalescence and rehabilitation hospitals in Hong Kong was conducted. The participating clinical areas included the medical and surgical wards, accident and emergency department and intensive care unit. Hand hygiene practice and glove use amongst 206 hospital health and support workers, stratified according to years of working experience, were observed. The number of observed episodes for hand hygiene was 1037 and for glove use 304. Compliance with hand hygiene was 74.7% and with glove use 72.4%. In approximately two-third of episodes, participants washed their hands after each patient contact; though, 78.5% failed to rub their hands together vigorously for at least 15 seconds. The major break in compliance with glove use was failure to change gloves between procedures on the same patient. In 28.6% of observed glove use episodes, participants did not wear gloves during procedures that exposed them to blood, body fluids, excretion, non-intact skin or mucous membranes. Significant differences in performance scores on antiseptic hand rub were found between the two types of hospital and on glove use between the three groups of work experience: ≤ 5, 6-10, >10 years. Education and reinforcement of proper hand hygiene practice and glove use among hospital health and support workers is needed. © 2011 Blackwell Publishing Ltd.

  4. Follow-On Vapor Containment Tests of the Rapid Response System Glovebox

    National Research Council Canada - National Science Library

    Arca, Victor

    1997-01-01

    ...) glovebox in April 1996. The tests were conducted by generating a cloud of the simulant methyl salicylate inside the glovebox and measuring the concentration of any simulant that permeated to the operator workspace...

  5. Knitted outer gloves in primary hip and knee arthroplasty.

    Science.gov (United States)

    Tanner, J; Wraighte, P; Howard, P

    2006-01-01

    A randomised trial was carried out to determine the rate of perforation to inner gloves when comparing latex with knitted gloves during hip and knee arthroplasty. Members of the surgical team were randomised to wear either two pairs of latex gloves (standard double gloving) or a knitted glove on top of a latex glove. In addition, participants completed a visual analogue assessment of their overall satisfaction with the gloves. A total of 406 inner gloves were tested for perforations over a four-month period: 23% of inner gloves were perforated when latex outer gloves were used and 6% of inner gloves were perforated when knitted outer gloves were used. In total, there were 64 perforations to the inner gloves; only one of these perforations was detected by the glove wearer. Wearing knitted outer gloves during hip and knee arthroplasty statistically significantly reduces the risk of perforation to inner latex gloves (p<0.0001).

  6. Comparison of deliverable and exhaustible pressurized air flow rates in laboratory gloveboxes

    International Nuclear Information System (INIS)

    Compton, J.A.

    1994-01-01

    Calculations were performed to estimate the maximum credible flow rates of pressurized air into Plutonium Process Support Laboratories gloveboxes. Classical equations for compressible fluids were used to estimate the flow rates. The calculated maxima were compared to another's estimates of glovebox exhaust flow rates and corresponding glovebox internal pressures. No credible pressurized air flow rate will pressurize a glovebox beyond normal operating limits. Unrestricted use of the pressurized air supply is recommended

  7. Rotator Cuff Strength Ratio and Injury in Glovebox Workers

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Amelia M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-30

    Rotator cuff integrity is critical to shoulder health. Due to the high workload imposed upon the shoulder while working in an industrial glovebox, this study investigated the strength ratio of the rotator cuff muscles in glovebox workers and compared this ratio to the healthy norm. Descriptive statistics were collected using a short questionnaire. Handheld dynamometry was used to quantify the ratio of forces produced in the motions of shoulder internal and external rotation. Results showed this population to have shoulder strength ratios that were significantly different from the healthy norm. The deviation from the normal ratio demonstrates the need for solutions designed to reduce the workload on the rotator cuff musculature of glovebox workers in order to improve health and safety. Assessment of strength ratios can be used to screen for risk of symptom development.

  8. Seismic analysis of safety class 1 incinerator glovebox in building 232-Z 200 W Area

    International Nuclear Information System (INIS)

    Ocoma, E.C.

    1994-09-01

    This report documents the seismic evaluation for the existing safety class 1 incinerator glovebox in 232Z Building. The glovebox is no longer in use and most of the internal mechanical equipment have been removed. However, the insulation firebricks are still in the glovebox for proper disposal

  9. Nitrile versus Latex for Glove Juice Sampling.

    Science.gov (United States)

    Landers, Timothy F; Dent, Anthony

    2014-01-01

    The objective of this study was to explore the utility of nitrile gloves as a replacement for latex surgical gloves in recovering bacteria from the hands. Two types of nitrile gloves were compared to latex gloves using the parallel streak method. Streaks of Klebsiella pneumoniae and Staphylococcus aureus were made on tryptic soy agar plates, and the zones of inhibition were measured around pieces of glove material placed on the plates. Latex gloves produced a mean zone of inhibition of 0.28 mm, compared to 0.002 mm for nitrile gloves (pnitrile may be a viable alternative to latex in glove juice sampling methods, since nitrile avoids the risk of latex exposure.

  10. Development of rubber gloves by radiation vulcanization

    International Nuclear Information System (INIS)

    Makuuchi, K.; Yoshii, F.; Ishigaki, I.; Mogi, M.; Saito, T.

    1990-01-01

    The processes of radiation vulcanization and production of protective rubber gloves for radioactive contamination are described. A newly developed sensitizing system consisting of 5 phr 2-ethylhexyl acrylate and 1 phr carbon tetrachloride was used to vulcanize natural rubber latex at 12 kGy. Transparent and soft gloves were obtained from the radiation vulcanized latex by a coagulant dipping process. The mechanical properties of the gloves meet Japanese Industrial Standard specification for protective gloves. Combustion analysis of the gloves revealed that the amount of evolved sulfur dioxide and remaining ashes are less than those from commercially available rubber gloves. A trial usage of the gloves at a nuclear power plant showed that the gloves were easy to use for delicate work without undergoing fatigue. (author)

  11. Nitrile versus Latex for Glove Juice Sampling.

    Directory of Open Access Journals (Sweden)

    Timothy F Landers

    Full Text Available The objective of this study was to explore the utility of nitrile gloves as a replacement for latex surgical gloves in recovering bacteria from the hands. Two types of nitrile gloves were compared to latex gloves using the parallel streak method. Streaks of Klebsiella pneumoniae and Staphylococcus aureus were made on tryptic soy agar plates, and the zones of inhibition were measured around pieces of glove material placed on the plates. Latex gloves produced a mean zone of inhibition of 0.28 mm, compared to 0.002 mm for nitrile gloves (p<.001. While the parallel streak method is not intended as a quantitative estimate of antimicrobial properties, these results suggest that nitrile may be a viable alternative to latex in glove juice sampling methods, since nitrile avoids the risk of latex exposure.

  12. Development of a new glove for glove boxes with high level performances

    International Nuclear Information System (INIS)

    Jerome Blancher; Jean-Marc Poirier

    2006-01-01

    This paper describes the results of a joint technological program of COGEMA and MAPA to develop a new generation of glove for glove boxes. The mechanical strength of this glove is twice as high as the best characteristics of gloves available on the market. This new generation of product has both a higher level of performance and better ergonomics. (authors)

  13. Development of a new glove for glove boxes with high level performances

    Energy Technology Data Exchange (ETDEWEB)

    Jerome Blancher [AREVA/COGEMA Recycling Business Unit, BP 94176 - 30204 Bagnols-sur-Ceze Cedex (France); Jean-Marc Poirier [MAPA SPONTEX, BP 190 - 92205 Neuilly sur Seine Cedex (France)

    2006-07-01

    This paper describes the results of a joint technological program of COGEMA and MAPA to develop a new generation of glove for glove boxes. The mechanical strength of this glove is twice as high as the best characteristics of gloves available on the market. This new generation of product has both a higher level of performance and better ergonomics. (authors)

  14. Organic Contamination Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    Science.gov (United States)

    Calaway, Michael J.; Allton, J. H.; Allen, C. C.; Burkett, P. J.

    2013-01-01

    Future planned sample return missions to carbon-rich asteroids and Mars in the next two decades will require strict handling and curation protocols as well as new procedures for reducing organic contamination. After the Apollo program, astromaterial collections have mainly been concerned with inorganic contamination [1-4]. However, future isolation containment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs.

  15. Applications of LabVIEW programming in a glovebox environment

    International Nuclear Information System (INIS)

    Evans, M.E.; Peralta, G.; Gray, D.

    1995-01-01

    When dealing with neutron radiation one of the keys to reducing worker exposure is to have as much distance and shielding between the radiation and the radiation worker as possible. Using a PC to control a process from a remote location allows the distance between the radiation worker and the radiation source to be increase. Increasing the distance at which radiation worker can control a process allows more shielding to be placed around the glovebox. There are many commercial packages that allow controlling remote processes with a PC. This paper shows how flexible the LabVIEW Graphical Programming Language can be in implementing the remote control of glovebox process

  16. Glove Perforations During Interventional Radiological Procedures

    International Nuclear Information System (INIS)

    Leena, R. V.; Shyamkumar, N. K.

    2010-01-01

    Intact surgical gloves are essential to avoid contact with blood and other body fluids. The objective of this study was to estimate the incidence of glove perforations during interventional radiological procedures. In this study, a total of 758 gloves used in 94 interventional radiological procedures were examined for perforations. Eleven perforations were encountered, only one of which was of occult type. No significant difference in the frequency of glove perforation was found between the categories with varying time duration.

  17. Gloves Reprocessing: Does It Really Save Money?

    Science.gov (United States)

    Arora, Pankaj; Kumari, Santosh; Sodhi, Jitender; Talati, Shweta; Gupta, Anil Kumar

    2015-12-01

    Gloves are reprocessed and reused in health-care facilities in resource-limited settings to reduce the cost of availability of gloves. The study was done with the aim to compute the cost of reprocessing of gloves so that an economically rationale decision can be taken. A retrospective record-based cross-sectional study was undertaken in a central sterile supply department where different steps during reprocessing of gloves were identified and the cost involved in reprocessing per pair of gloves was calculated. The cost of material and manpower was calculated to arrive at the cost of reprocessing per pair of gloves. The cost of a reprocessed pair of surgical gloves was calculated to be Indian Rupee (INR) 14.33 which was greater than the cost of a new pair of disposable surgical gloves (INR 9.90) as the cost of sterilization of one pair of gloves itself came out to  be INR 10.97. The current study showed that the purchase of sterile disposable single-use gloves is cheaper than the process of recycling. Reprocessing of gloves is not economical on tangible terms even in resource-limited settings, and from the perspective of better infection control as well as health-care worker safety, it further justifies the use of disposable gloves.

  18. Flexible protective gloves: The emperor's new clothes

    International Nuclear Information System (INIS)

    Kelsey, C.A.; Mettler, F.A. Jr.

    1990-01-01

    The risk of developing skin cancer is estimated for interventional radiologists who do and do not wear thin, flexible protective leaded gloves. The use of these gloves is extremely expensive in terms of dollars per potential cancer prevented. Good radiographic practice without the use of flexible protective gloves provides adequate protection

  19. Mastitis Control: take up the gloves!

    NARCIS (Netherlands)

    Jansen, J.; Renes, R.J.; Lam, T.J.G.M.

    2009-01-01

    This study shows the results of a communication campaign to increase the use of milkers gloves at Dutch dairy farms. Wearing milkers gloves is recommended as a proper method to reduce the risk of transmitting infections during milking. In 2004 only 16 percent of the Dutch dairy farmer used gloves

  20. 21 CFR 878.4460 - Surgeon's glove.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgeon's glove. 878.4460 Section 878.4460 Food... DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a) Identification. A surgeon's glove is a device made of natural or synthetic rubber intended to be worn by...

  1. Glove corrosive liquid immersion and permeability study

    International Nuclear Information System (INIS)

    Middleton, H.W.

    1977-01-01

    The Occupational Safety and Health Administration's requirement for protective equipment for personnel working with chemical hazards resulted in a study of gloves used in work with corrosive liquids. Gloves of different materials and weights were tested using ASTM methods, in various corrosive liquids. Results show the best material for gloves used for different lengths of time in the liquids

  2. Decommissioning a small glove box

    International Nuclear Information System (INIS)

    Bond, R.D.; McSherry, K.

    1985-11-01

    An account is given of dismantling a fuel fabrication glove box using simple tooling. The fissile content of the box was first measured by several non-destructive techniques. After cleaning, the box was dismantled using hand tools and finally packed for disposal. A record of operator radiation doses, the time taken for each stage of the operation and packing information is given. (author)

  3. Efficacy of Heated Glove Liners

    National Research Council Canada - National Science Library

    Santee, William

    2000-01-01

    .... It should therefore increase. The issue Light-duty glove (LD), Trigger-finger mitten (TF) and Arctic Mitten (AM), were tested as 2-layer systems at simulated altitudes of sea level, 2500 m and 5000 m in still air and at 5 m s-1 on a biophysical hand model...

  4. Glove boxes and similar containments

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    According to the present invention a glove box or similar containment is provided with an exhaust system including a vortex amplifier venting into the system, the vortex amplifier also having its main inlet in fluid flow connection with the containment and a control inlet in fluid flow connection with the atmosphere outside the containment. (U.S.)

  5. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    International Nuclear Information System (INIS)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-01-01

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost

  6. Constant depression fan system a novel glovebox ventilation system

    International Nuclear Information System (INIS)

    Milliner, W.V.

    1995-01-01

    In a conventional glovebox ventilation system the depression within the glovebox under normal operation is controlled by instrumentation. In the event of a breach the pressure within the box rises to atmospheric pressure, this pressure rise is detected by instrumentation which in turn operates a quick opening damper in a high depression extract to achieve a 1 metre/sec (200 fpm) inflow through the breach, which can take up to 2 seconds to establish. This system, although widely used, suffers from two distinct drawbacks: It takes a finite time to achieve the containment velocity of 1 metre/sec. It relies upon instrumentation to achieve its objectives. A new glovebox ventilation system has been developed by AWE to overcome these drawbacks. This is the Constant Depression Fan System (CDFS) which is based on an extract fan with a flat characteristic. This achieves all the requirements for the ventilation of gloveboxes and has the advantages that: It has only one moving part - the extract fan. It requires NO INSTRUMENTATION to achieve its objectives. It achieves the containment velocity of 1 metre/sec in the shortest possible time - approximately 0.2 seconds - and tests have shown that containment is maintained under breach conditions. Thus the CDFS is SAFER, SIMPLER and MORE RELIABLE

  7. Chloride-catalyzed corrosion of plutonium in glovebox atmospheres

    International Nuclear Information System (INIS)

    Burgess, M.; Haschke, J.M.; Allen, T.H.; Morales, L.A.; Jarboe, D.M.; Puglisi, C.V.

    1998-04-01

    Characterization of glovebox atmospheres and the black reaction product formed on plutonium surfaces shows that the abnormally rapid corrosion of components in the fabrication line is consistent with a complex salt-catalyzed reaction involving gaseous hydrogen chloride (HCl) and water. Analytical data verify that chlorocarbon and HCl vapors are presented in stagnant glovebox atmospheres. Hydrogen chloride concentrations approach 7 ppm at some locations in the glovebox line. The black corrosion product is identified as plutonium monoxide monohydride (PuOH), a product formed by hydrolysis of plutonium in liquid water and salt solutions at room temperature. Plutonium trichloride (PuCl 3 ) produced by reaction of HCl at the metal surface is deliquescent and apparently forms a highly concentrated salt solution by absorbing moisture from the glovebox atmosphere. Rapid corrosion is attributed to the ensuing salt-catalyzed reaction between plutonium and water. Experimental results are discussed, possible involvement of hydrogen fluoride (HF) is examined, and methods of corrective action are presented in this report

  8. Constant depression fan system a novel glovebox ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Milliner, W.V. [AME plc., Aldermaston (United Kingdom)

    1995-02-01

    In a conventional glovebox ventilation system the depression within the glovebox under normal operation is controlled by instrumentation. In the event of a breach the pressure within the box rises to atmospheric pressure, this pressure rise is detected by instrumentation which in turn operates a quick opening damper in a high depression extract to achieve a 1 metre/sec (200 fpm) inflow through the breach, which can take up to 2 seconds to establish. This system, although widely used, suffers from two distinct drawbacks: It takes a finite time to achieve the containment velocity of 1 metre/sec. It relies upon instrumentation to achieve its objectives. A new glovebox ventilation system has been developed by AWE to overcome these drawbacks. This is the Constant Depression Fan System (CDFS) which is based on an extract fan with a flat characteristic. This achieves all the requirements for the ventilation of gloveboxes and has the advantages that: It has only one moving part - the extract fan. It requires NO INSTRUMENTATION to achieve its objectives. It achieves the containment velocity of 1 metre/sec in the shortest possible time - approximately 0.2 seconds - and tests have shown that containment is maintained under breach conditions. Thus the CDFS is SAFER, SIMPLER and MORE RELIABLE.

  9. Tritium stripping in a nitrogen glovebox using SAES St 198

    International Nuclear Information System (INIS)

    Klein, J.E.; Wermer, J.R.

    1994-01-01

    SAES metal getter material St 198 was chosen for glovebox stripper tests to evaluate its effectiveness of removing tritium from a nitrogen atmosphere. The St 198 material is unique from a number of other metal hydride-based getter materials in that it is relatively inert to nitrogen and can thus be used in nitrogen glovebox atmospheres. Six tritium stripper experiments which mock-up the use of a SAES St 198 stripper bed for a full-scale (10,500 liter) nitrogen glovebox have been completed. Experiments consisted of a release of small quantity of protium/deuterium spiked with tritium which were scaled to simulate tritium releases of 0.1 g., 1.0 g., and 10 g. into the glovebox. The tritium spike allows detection using tritium ion chambers. The St 198 stripper system produced a reduction in tritium activity of approximately two orders of magnitude in 24 hours (6--8 atmosphere turn-overs) of stripper operation

  10. Contamination control using portable glove bags and containments

    International Nuclear Information System (INIS)

    Fink, C.

    1994-01-01

    Portable gloveboxes and containments have been used in the Navy Nuclear Power programs for many years. Their primary application has been to allow maintenance access to radioactive piping systems while limiting the spread of contamination to the immediate environment. The applications have spread to other areas of the nuclear industry and to other industries with similar contamination control problems. The general application is to keep the contaminants in, but other uses keep the contamination out. The devices can best be classified by material types and construction. They range from the relatively inexpensive polyethylene glove bags for asbestos removal to the semi-permanent aluminum and lexan hard-sided containment structures. There are free-standing open-quotes tentclose quotes structures, support ring devices and tube or bag designs. Only the cost seems to limit the size of these items. The key to the effective use of these devices lies in the planning and control of their application. Proper training of maintenance personnel will greatly facilitate their use, since the main objection seems to be in the exposure received during the rigging of these containments. When all of these considerations are accounted for, a program of contamination control can be quite successful. A brief description of the set-up and use of a specific application is described

  11. FY13 High Performance EVA Glove (HPEG) Collaboration: Glove Injury Data Mining Effort - Training Data Overview

    Science.gov (United States)

    Reid, Christopher; Benson, Elizabeth; England, Scott; Charvat, Jacqueline; Norcross, Jason; McFarland, Shane; Rajulu, Sudhakar

    2014-01-01

    From the time hand-intensive tasks were first created for EVAs, discomforts and injuries have been noted.. There have been numerous versions of EVA gloves for US crew over the past 50 years, yet pain and injuries persist. The investigation team was tasked with assisting in a glove injury assessment for the High Performance EVA Glove (HPEG) project.center dot To aid in this assessment, the team was asked to complete the following objectives: - First, to develop the best current understanding of what glove-related injuries have occurred to date, and when possible, identify the specific mechanisms that caused those injuries - Second, to create a standardized method for comparison of glove injury potential from one glove to another. center dot The overall goal of the gloved hand injury assessment is to utilize ergonomics in understanding how these glove injuries are occurring, and to propose mitigations to current designs or design changes in the next generation of EVA gloves.

  12. Glove material, reservoir formation, and dose affect glove permeation and subsequent skin penetration.

    Science.gov (United States)

    Nielsen, Jesper Bo; Sørensen, Jens Ahm

    2012-02-15

    Protective gloves are used to reduce dermal exposure when managing chemical exposures at the work place. Different glove materials may offer different degrees of protection. The present study combined the traditional ASTM (American Society for Testing and Materials) model with the Franz diffusion cell to evaluate overall penetration through glove and skin as well as the deposition in the different reservoirs. Benzoic acid was applied on latex or nitrile gloves placed on top of human skin. The amounts of chemical were quantified in the glove material, between glove and skin, within the skin, and in the receptor chamber. Both glove materials reduce total penetration of benzoic acid, but nitrile gloves offer a significantly better protection than latex gloves. This difference was less pronounced at the higher of the two concentrations of benzoic acid applied. Thus, glove types that offer relevant protection at low concentrations does not necessarily give appropriate protection at high concentrations. Significant amounts of benzoic acid could be extracted from the glove materials after exposure. If a chemical is accumulated in the glove material, reuse of single-use gloves should be cautioned. The reuse of gloves is generally not to be recommended without effective decontamination. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Touch sensitivity with sterile standard surgical gloves and single-use protective gloves.

    Science.gov (United States)

    Tiefenthaler, W; Gimpl, S; Wechselberger, G; Benzer, A

    2006-10-01

    The purpose of this study was to evaluate touch sensitivity and static two-point discrimination of the dominant index and middle finger in 20 anaesthetists wearing no gloves, single-use protective gloves or sterile standard surgical gloves. Semmes-Weinstein filaments were used to measure cutaneous pressure thresholds, and a Two-Point-Discriminator to estimate static two-point discrimination. Wearing gloves significantly reduced touch sensitivity (p gloves. The results of our study suggest that the additional cost of sterile standard surgical gloves can not be justified in terms of touch sensitivity.

  14. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    Science.gov (United States)

    Reid, C. R.; Benson, E.; England, S.; Charvat, J.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2015-01-01

    Human hands play a significant role during Extravehicular Activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. Because of this high frequency usage, hand and arm related injuries are known to occur during EVA and EVA training in the NBL. The primary objectives of this investigation were to: 1) document all known EVA glove related injuries and circumstances of these incidents, 2) determine likely risk factors, and 3) recommend interventions where possible that could be implemented in the current and future glove designs. METHODS: The investigation focused on the discomforts and injuries of U.S. crewmembers who had worn the pressurized Extravehicular Mobility Unit (EMU) spacesuit and experienced 4000 Series or Phase VI glove related incidents during 1981 to 2010 for either EVA ground training or in-orbit flight. We conducted an observational retrospective case-control investigation using 1) a literature review of known injuries, 2) data mining of crew injury, glove sizing, and hand anthropometry databases, 3) descriptive statistical analyses, and finally 4) statistical risk correlation and predictor analyses to better understand injury prevalence and potential causation. Specific predictor statistical analyses included use of principal component analyses (PCA), multiple logistic regression, and survival analyses (Cox proportional hazards regression). Results of these analyses were computed risk variables in the forms of odds ratios (likelihood of an injury occurring given the magnitude of a risk variable) and hazard ratios (likelihood of time to injury occurrence). Due to the exploratory nature of this investigation, we selected predictor variables significant at p=0.15. RESULTS: Through 2010, there have been a total of 330 NASA crewmembers, from which 96 crewmembers performed 322 EVAs during 1981-2010, resulting in 50 crewmembers being injured inflight and 44

  15. Is double-gloving really protective? A comparison between the glove perforation rate among perioperative nurses with single and double gloves during surgery.

    Science.gov (United States)

    Guo, Yue Ping; Wong, Po Ming; Li, Yi; Or, Peggy Pui Lai

    2012-08-01

    Surgical teams rely on surgical gloves as a barrier to protect themselves against blood-borne pathogenic infections during surgery. Double-gloving is adopted by surgeons to tackle the problem of glove perforation. Nevertheless, double-gloving is not practiced commonly by operating room nurses and there are only limited studies about double-gloving that targets only perioperative nurses. The aim of this research was to assess the effectiveness of double-gloving in protecting perioperative nurses by comparing the frequency of glove perforation between single-gloving and double-gloving groups. A prospective and randomized study was performed. Nurses were assigned randomly to single-gloved and double-gloved groups for comparison of the glove perforation rate. Water-leakage and air-inflation tests were used to detect glove perforation. Glove perforations was detected in 10 of 112 sets of single-gloves (8.9%) and 12 of 106 sets of outer gloves in the double-gloved group (11.3%). There was no inner double-glove perforation (0%). Glove perforations were found in 6 and 4 of the 112 sets of single-gloves for the first assistants (5.36%) and the scrub nurses (3.57%), and 5 and 7 of 106 sets of outer gloves in the double-gloved group for the first assistants (4.72%) and the scrub nurses (6.60%), respectively. The average occurrence of perforation was 69.8 minutes (range, 20-110 min) after the beginning of surgery. The sites of perforation were localized mostly on the left middle finger (42%) and the left ring finger (33.3%). Based on the findings of the study, double-gloving is indeed effective in protecting operating room nurses against blood-borne pathogen exposure. It should be introduced as a routine practice. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Decontamination and size reduction of plutonium contaminated process exhaust ductwork and glove boxes

    International Nuclear Information System (INIS)

    LaFrate, P.; Elliott, J.; Valasquez, M.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Program has decontaminated and demolished two filter plenum buildings at Technical Area 21 (TA-21). During the project a former hot cell was retrofitted to perform decontamination and size reduction of highly Pu contaminated process exhaust (1,100 ft) and gloveboxes. Pu-238/239 concentrations were as high a 1 Ci per linear foot and averaged approximately 1 mCi/ft. The Project decontamination objective was to reduce the plutonium contamination on surfaces below transuranic levels. If possible, metal surfaces were decontaminated further to meet Science and Ecology Group (SEG) waste classification guidelines to enable the metal to be recycled at their facility in oak Ridge, Tennessee. Project surface contamination acceptance criteria for low-level radioactive waste (LLRW), transuranic waste, and SEG waste acceptance criteria will be presented. Ninety percent of all radioactive waste for the project was characterized as LLRW. Twenty percent of this material was shipped to SEG. Process exhaust and glove boxes were brought to the project decontamination area, an old hot cell in Building 4 North. This paper focuses on process exhaust and glovebox decontamination methodology, size reduction techniques, waste characterization, airborne contamination monitoring, engineering controls, worker protection, lessons learned, and waste minimization. Decontamination objectives are discussed in detail

  17. EVA Glove Sensor Feasbility II Abstract

    Science.gov (United States)

    Melone, Kate

    2014-01-01

    The main objectives for the glove project include taking various measurements from human subjects during and after they perform different tasks in the glove box, acquiring data from these tests and determining the accuracy of these results, interpreting and analyzing this data, and using the data to better understand how hand injuries are caused during EVAs.1 Some of these measurements include force readings, temperature readings, and micro-circulatory blood flow.1 The three glove conditions tested were ungloved (a comfort glove was worn to house the sensors), Series 4000, and Phase VI. The general approach/procedure for the glove sensor feasibility project is as follows: 1. Prepare test subject for testing. This includes attaching numerous sensors (approximately 50) to the test subject, wiring, and weaving the sensors and wires in the glove which helps to keep everything together. This also includes recording baseline moisture data using the Vapometer and MoistSense. 2. Pressurizing the glove box. Once the glove box is pressurized to the desired pressure (4.3 psid), testing can begin. 3. Testing. The test subject will perform a series of tests, some of which include pinching a load cell, making a fist, pushing down on a force plate, and picking up metal pegs, rotating them 90 degrees, and placing them back in the peg board. 4. Post glove box testing data collection. After the data is collected from inside the glove box, the Vapometer and MoistSense device will be used to collect moisture data from the subject's hand. 5. Survey. At the conclusion of testing, he/she will complete a survey that asks questions pertaining to comfort/discomfort levels of the glove, glove sizing, as well as offering any additional feedback.

  18. Microgravity Science Glovebox Aboard the International Space Station

    Science.gov (United States)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  19. Peak pressures from hydrogen deflagrations in the PFP thermal stabilization glovebox

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1998-01-01

    This document describes the calculations of the peak pressures due to hydrogen deflagrations in the glovebox used for thermal stabilization (glovebox HC-21A) in PFP. Two calculations were performed. The first considered the burning of hydrogen released from a 7 inch Pu can in the Inert Atmosphere Confinement (IAC) section of the glovebox. The peak pressure increase was 12400 Pa (1.8 psi). The second calculation considered burning of the hydrogen from 25 g of plutonium hydride in the airlock leading to the main portion of the glovebox. Since the glovebox door exposes most of the airlock when open, the deflagration was assumed to pressurize the entire glovebox. The peak pressure increase was 3860 Pa (0.56 psi)

  20. Glove holder system for containment shell

    International Nuclear Information System (INIS)

    Picco, B.

    1993-01-01

    A glove holder for an isolated chamber used e.g. for handling toxic or radioactive materials and made with at least one access port in its wall, equipped with a ring to which the glove is attached, has a sleeve which connects the ring to the glove proper and protects the forarm. The sleeve is in at least two sections, a first corrugated section and a second, supple section which is able to fold inside the first section. ADVANTAGE - Reduced costs and quantity of waste produced by enabling glove proper only to be replaced. (author)

  1. Evaluation of the flexibility of protective gloves.

    Science.gov (United States)

    Harrabi, Lotfi; Dolez, Patricia I; Vu-Khanh, Toan; Lara, Jaime

    2008-01-01

    Two mechanical methods have been developed for the characterization of the flexibility of protective gloves, a key factor affecting their degree of usefulness for workers. The principle of the first method is similar to the ASTM D 4032 standard relative to fabric stiffness and simulates the deformations encountered by gloves that are not tight fitted to the hand. The second method characterizes the flexibility of gloves that are worn tight fitted. Its validity was theoretically verified for elastomer materials. Both methods should prove themselves as valuable tools for protective glove manufacturers, allowing for the characterization of their existing products in terms of flexibility and the development of new ones better fitting workers' needs.

  2. Standard guide for design criteria for plutonium gloveboxes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide defines criteria for the design of glovebox systems to be used for the handling of plutonium in any chemical or physical form or isotopic composition or when mixed with other elements or compounds. Not included in the criteria are systems auxiliary to the glovebox systems such as utilities, ventilation, alarm, and waste disposal. Also not addressed are hot cells or open-face hoods. The scope of this guide excludes specific license requirements relating to provisions for criticality prevention, hazards control, safeguards, packaging, and material handling. Observance of this guide does not relieve the user of the obligation to conform to all federal, state, and local regulations for design and construction of glovebox systems. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user...

  3. Author Contribution to the Pu Handbook II: Chapter 37 LLNL Integrated Sample Preparation Glovebox (TEM) Section

    International Nuclear Information System (INIS)

    Wall, Mark A.

    2016-01-01

    The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmosphere of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as the

  4. Author Contribution to the Pu Handbook II: Chapter 37 LLNL Integrated Sample Preparation Glovebox (TEM) Section

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Mark A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmosphere of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as the

  5. Glovebox enclosed dc plasma source for the determination of metals in plutonium

    International Nuclear Information System (INIS)

    Morris, W.F.

    1986-01-01

    The direct current plasma source of a Beckman Spectraspan IIIB emission spectrometer was enclosed in a glovebox at Lawrence Livermore National Laboratory in December 1982. Since that time, the system has been used for the routine determination of alloy and impurity metals in plutonium. This paper presents the systematic steps involved in developing the glovebox and gives information regarding performance of the plasma in the glovebox and the effectiveness of containment of plutonium. 8 refs., 9 figs., 3 tabs

  6. Double gloving to reduce surgical cross-infection.

    Science.gov (United States)

    Tanner, J; Parkinson, H

    2006-07-19

    The invasive nature of surgery, with its increased exposure to blood, means that during surgery there is a high risk of transfer of pathogens. Pathogens can be transferred through contact between surgical patients and the surgical team, resulting in post-operative or blood borne infections in patients or blood borne infections in the surgical team. Both patients and the surgical team need to be protected from this risk. This risk can be reduced by implementing protective barriers such as wearing surgical gloves. Wearing two pairs of surgical gloves, triple gloves, glove liners or cloth outer gloves, as opposed to one pair, is considered to provide an additional barrier and further reduce the risk of contamination. The primary objective of this review was to determine if additional glove protection reduces the number of surgical site or blood borne infections in patients or the surgical team. The secondary objective was to determine if additional glove protection reduces the number of perforations to the innermost pair of surgical gloves. The innermost gloves (next to skin) compared with the outermost gloves are considered to be the last barrier between the patient and the surgical team. We searched the Cochrane Wounds Group Specialised Register (January 2006), and the Cochrane Central Register of Controlled Trials (CENTRAL)(The Cochrane Library Issue 4, 2005). We also contacted glove manufacturing companies and professional organisations. Randomised controlled trials involving: single gloving, double gloving, triple gloving, glove liners, knitted outer gloves, steel weave outer gloves and perforation indicator systems. Both authors independently assessed the relevance and quality of each trial. Data was extracted by one author and cross checked for accuracy by the second author. Two trials were found which addressed the primary outcome, namely, surgical site infections in patients. Both trials reported no infections. Thirty one randomised controlled trials

  7. The Virtual Glovebox (VGX): An Immersive Simulation System for Training Astronauts to Perform Glovebox Experiments in Space

    Science.gov (United States)

    Smith, Jeffrey D.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The era of the International Space Station (ISS) has finally arrived, providing researchers on Earth a unique opportunity to study long-term effects of weightlessness and the space environment on structures, materials and living systems. Many of the physical, biological and material science experiments planned for ISS will require significant input and expertise from astronauts who must conduct the research, follow complicated assay procedures and collect data and samples in space. Containment is essential for Much of this work, both to protect astronauts from potentially harmful biological, chemical or material elements in the experiments as well as to protect the experiments from contamination by air-born particles In the Space Station environment. When astronauts must open the hardware containing such experiments, glovebox facilities provide the necessary barrier between astronaut and experiment. On Earth, astronauts are laced with the demanding task of preparing for the many glovebox experiments they will perform in space. Only a short time can be devoted to training for each experimental task and gl ovebox research only accounts for a small portion of overall training and mission objectives on any particular ISS mission. The quality of the research also must remain very high, requiring very detailed experience and knowledge of instrumentation, anatomy and specific scientific objectives for those who will conduct the research. This unique set of needs faced by NASA has stemmed the development of a new computer simulation tool, the Virtual Glovebox (VGB), which is designed to provide astronaut crews and support personnel with a means to quickly and accurately prepare and train for glovebox experiments in space.

  8. Survey of Technologies to Support Reuse of Gloveboxes at LANL TA-55

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Pinson, P.A.

    1998-01-01

    This report is a summary of ideas and technologies available to support reuse of plutonium gloveboxes at the Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55). This work is the second of two deliverables in the task to enhance glovebox design for longevity and reusability at TA-55. The report presents several design change suggestions to be evaluated for their feasibility by LANL glovebox designers. The report also describes some techniques to be evaluated by LANL for their usefulness in reducing glovebox waste

  9. HB-Line Dissolution of Glovebox Floor Sweepings

    International Nuclear Information System (INIS)

    Gray, J.H.

    1998-02-01

    Two candidate flowsheets for dissolving glovebox floor sweepings in the HB-Line Phase I geometrically favorable dissolver have been developed.Dissolving conditions tested and modified during the laboratory program were based on the current processing scheme for dissolving high-fired Pu-238 oxide in HB-Line. Subsequent adjustments made to the HB-Line flowsheet reflected differences in the dissolution behavior between high-fired Pu-238 oxide and the MgO sand/PuF 4 /PuO 2 mixture in glovebox floor sweepings. Although both candidate flowsheets involved two separate dissolving steps and resulted incomplete dissolution of all solids, the one selected for use in HB-Line will require fewer processing operations and resembles the initial flowsheet proposed for dissolving sand, slag, and crucible material in F-Canyon dissolvers. Complete dissolution of glovebox floor sweepings was accomplished in the laboratory by initially dissolving between 55 and 65 degree in a 14 molar nitric acid solution. Under these conditions, partial dissolution of PuF 4 and complete dissolution of PuO 2 and MgO sand were achieved in less than one hour. The presence of free fluoride in solution,uncomplexed by aluminum, was necessary for complete dissolution of the PuO 2 .The remaining PuF 4 dissolved following addition of aluminum nitrate nonahydrate (ANN) to complex the fluoride and heating between 75 and 85 degree C for an additional hour. Precipitation of magnesium and/or aluminum nitrates could occur before, during, and after transfer of product solutions. Both dilution and/or product solution temperature controls may be necessary to prevent precipitation of these salts. Corrosion of the dissolver should not be an issue during these dissolving operations. Corrosion is minimized when dissolving at 55-65 degree C for one to three hours at a maximum uncomplexed free fluoride concentration of 0.07 molar and by dissolving at 75-85 degree C at a one to one aluminum to fluoride mole ratio for another

  10. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    Science.gov (United States)

    Reid, C. R.; Benosn, E.; England, S.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2014-01-01

    Human hands play a significant role during extravehicular activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. It is because of this high frequency usage that hand- and arm-related injuries and discomfort are known to occur during training in the NBL and while conducting EVAs. Hand-related injuries and discomforts have been occurring to crewmembers since the days of Apollo. While there have been numerous engineering changes to the glove design, hand-related issues still persist. The primary objectives of this study are therefore to: 1) document all known EVA glove-related injuries and the circumstances of these incidents, 2) determine likely risk factors, and 3) recommend ergonomic mitigations or design strategies that can be implemented in the current and future glove designs. METHODS: The investigator team conducted an initial set of literature reviews, data mining of Lifetime Surveillance of Astronaut Health (LSAH) databases, and data distribution analyses to understand the ergonomic issues related to glove-related injuries and discomforts. The investigation focused on the injuries and discomforts of U.S. crewmembers who had worn pressurized suits and experienced glove-related incidents during the 1980 to 2010 time frame, either during training or on-orbit EVA. In addition to data mining of the LSAH database, the other objective of the study was to find complimentary sources of information such as training experience, EVA experience, suit-related sizing data, and hand-arm anthropometric data to be tied to the injury data from LSAH. RESULTS: Past studies indicated that the hand was the most frequently injured part of the body during both EVA and NBL training. This study effort thus focused primarily on crew training data in the NBL between 2002 and 2010. Of the 87 recorded training incidents, 19 occurred to women and 68 to men. While crew ages ranged from

  11. Electrical requirements for unshielded glove boxes

    International Nuclear Information System (INIS)

    1978-02-01

    The specification relates to the general design and installation of electrical services required in unshielded glove boxes in which atmospheres of air, argon or nitrogen etc. may exist either temporarily or permanently. The specification does not apply to electrical services for glove boxes with flammable explosive atmospheres. (author)

  12. The Efficacy of Anti-vibration Gloves

    Science.gov (United States)

    Hewitt, Sue; Dong, Ren; McDowell, Tom; Welcome, Daniel

    2016-01-01

    Anyone seeking to control the risks from vibration transmitted to the hands and arms may contemplate the use of anti-vibration gloves. To make an informed decision about any type of personal protective equipment, it is necessary to have performance data that allow the degree of protection to be estimated. The information provided with an anti-vibration glove may not be easy to understand without some background knowledge of how gloves are tested and does not provide any clear route for estimating likely protection. Some of the factors that influence the potential efficacy of an anti-vibration glove include how risks from hand–arm vibration exposure are assessed, how the standard test for a glove is carried out, the frequency range and direction of the vibration for which protection is sought, how much hand contact force or pressure is applied and the physical limitations due to glove material and construction. This paper reviews some of the background issues that are useful for potential purchasers of anti-vibration gloves. Ultimately, anti-vibration gloves cannot be relied on to provide sufficient and consistent protection to the wearer and before their use is contemplated all other available means of vibration control ought first to be implemented. PMID:27582615

  13. Influence of orthopedic reinforced gloves versus double standard gloves on contamination events during small animal orthopedic surgery.

    Science.gov (United States)

    Hayes, Galina; Singh, Ameet; Gibson, Tom; Moens, Noel; Oblak, Michelle; Ogilvie, Adam; Reynolds, Debbie

    2017-10-01

    To determine the influence of orthopedic reinforced gloves on contamination events during small animal orthopedic surgery. Prospective randomized controlled trial SAMPLE POPULATION: Two hundred and thirty-seven pairs of orthopedic gloves (474 gloves) and 203 pairs of double standard gloves (812 gloves) worn during 193 orthopedic procedures. Primary and assistant surgeons were randomized to wear either orthopedic reinforced gloves or double gloves. Gloves were leak tested to identify perforations at the end of procedures. Perforations detected intraoperatively or postoperatively were recorded. A contamination event was defined as at least one perforation on either hand for orthopedic reinforced gloves, or a perforation of both the inner and outer glove on the same hand for double gloves. Baseline characteristics between the 2 intervention groups were similar. There was no difference in contamination events between the double-gloved and orthopedic gloved groups (OR = 0.95, 95% CI = 0.49-1.87, P = .89). The same percentage of contamination events (8% glove pairs used) occurred in the double gloved group (17 contamination events) and in the orthopedic gloved group (19 contamination events). The odds of a contamination event increased by 1.02 (95% CI 1.01-1.03, P contamination events in small animal orthopedic procedures. Surgeons reluctant to double glove due to perceptions of decreased dexterity and discomfort may safely opt for wearing orthopedic gloves, which may improve their compliance. © 2017 The American College of Veterinary Surgeons.

  14. A permanently magnetized high gradient magnetic filter for glove-box cleaning and increasing HEPA filter life

    International Nuclear Information System (INIS)

    Watson, J.H.P.; Boorman, C.H.

    1991-01-01

    The purpose of this paper is to describe the structure and testing of a permanently magnetized magnetic filter on simulants for radioactive material. The experimental work was carried out at British Nuclear Fuels plc, Sellafield, England and in CEN/SCK, Mol, Belgium using Cr powder which is a good magnetic simulant for PuO 2 . The basis of the use of such a filter in the nuclear industry relies on the fact that much of the radioactive material is paramagnetic. In the last twenty years a separation technique has been developed which allows weakly paramagnetic particles of colloidal size to be separated from fluid which passes through the separator. This method is called high gradient magnetic separation (HGMS) and is accomplished by magnetizing a fine ferromagnetic wire matrix by an externally applied magnetic field. This paper describes a new approach to this problem, by using a magnetically hysteretic material to construct the ferromagnetic matrix, it has been possible to provide a magnetic field in the region of the matrix and also have a residual magnetization within the matrix. This provides extremely compact magnetic separation systems. There are some subtle differences between this separation system and conventional HGMS which makes the radial feed system, with all its advantages, almost mandatory for hysteretic HGMS

  15. Decontamination of TRU glove boxes

    International Nuclear Information System (INIS)

    Crawford, J.H.

    1978-03-01

    Two glove boxes that had been used for work with transuranic nuclides (TRU) for about 12 years were decontaminated in a test program to collect data for developing a decontamination facility for large equipment highly contaminated with alpha emitters. A simple chemical technique consisting of a cycle of water flushes and alkaline permanganate and oxalic acid washes was used for both boxes. The test showed that glove boxes and similar equipment that are grossly contaminated with transuranic nuclides can be decontaminated to the current DIE nonretrievable disposal guide of <10 nCi TRU/g with a moderate amount of decontamination solution and manpower. Decontamination of the first box from an estimated 1.3 Ci to about 5 mCi (6 nCi/g) required 1.3 gallons of decontamination solution and 0.03 man-hour of work for each square foot of surface area. The second box was decontaminated from an estimated 3.4 Ci to about 2.8 mCi (4.2 nCi/g) using 0.9 gallon of decontamination solution and 0.02 man-hour for each square foot of surface area. Further reductions in contamination were achieved by repetitive decontamination cycles, but the effectiveness of the technique decreased sharply after the initial cycle

  16. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    Energy Technology Data Exchange (ETDEWEB)

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Donohoue, Tom; Martin, E. Ray; Mason, John A. [ANTECH Corporation 9050 Marshall Court, Westminster, CO, 80031 (United States); Norton, Christopher J.; Crosby, Daniel [Environmental Alternatives, Inc., 149 Emerald Street, Suite R, Keene, NH 03431 (United States); Nachtman, Thomas J. [InstaCote, Inc., 160 C. Lavoy Road, Erie, MI, 48133 (United States)

    2013-07-01

    This paper describes the process of decommissioning two gloveboxes at the Argonne National Laboratory (ANL) that were employed for work with plutonium and other radioactive materials. The decommissioning process involved an initial phase of clearing tools and materials from the glove boxes and disconnecting them from the laboratory infrastructure. The removed materials, assessed as Transuranic (TRU) waste, were packaged into 55 gallon (200 litre) drums and prepared for ultimate disposal at the Waste Isolation Pilot Plant (WIPP) at Carlsbad New Mexico. The boxes were then sampled to determine the radioactive contents by means of smears that were counted with alpha and beta detectors to determine the residual surface contamination, especially in terms of alpha particle emitters that are an indicator of TRU activity. Paint chip samples were also collected and sent for laboratory analysis in order to ascertain the radioactive contamination contributing to the TRU activity as a fixed contamination. The investigations predicted that it may be feasible to reduce the residual surface contamination and render the glovebox structure low level waste (LLW) for disposal. In order to reduce the TRU activity a comprehensive decontamination process was initiated using chemical compounds that are particularly effective for lifting and dissolving radionuclides that adhere to the inner surfaces of the gloveboxes. The result of the decontamination process was a reduction in the TRU surface activity on the inner surfaces of the gloveboxes by four orders of magnitude in terms of disintegrations per unit area (DPA). The next phase of the process involved a comprehensive assay of the gloveboxes using a combination of passive neutron and gamma ray scintillation detectors and a shielded and collimated high purity Germanium (HPGe) gamma ray detector. The HPGe detector was used to obtain gamma ray spectra for a variety of measurement positions within the glovebox. The spectra were used to

  17. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    International Nuclear Information System (INIS)

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard; Donohoue, Tom; Martin, E. Ray; Mason, John A.; Norton, Christopher J.; Crosby, Daniel; Nachtman, Thomas J.

    2013-01-01

    This paper describes the process of decommissioning two gloveboxes at the Argonne National Laboratory (ANL) that were employed for work with plutonium and other radioactive materials. The decommissioning process involved an initial phase of clearing tools and materials from the glove boxes and disconnecting them from the laboratory infrastructure. The removed materials, assessed as Transuranic (TRU) waste, were packaged into 55 gallon (200 litre) drums and prepared for ultimate disposal at the Waste Isolation Pilot Plant (WIPP) at Carlsbad New Mexico. The boxes were then sampled to determine the radioactive contents by means of smears that were counted with alpha and beta detectors to determine the residual surface contamination, especially in terms of alpha particle emitters that are an indicator of TRU activity. Paint chip samples were also collected and sent for laboratory analysis in order to ascertain the radioactive contamination contributing to the TRU activity as a fixed contamination. The investigations predicted that it may be feasible to reduce the residual surface contamination and render the glovebox structure low level waste (LLW) for disposal. In order to reduce the TRU activity a comprehensive decontamination process was initiated using chemical compounds that are particularly effective for lifting and dissolving radionuclides that adhere to the inner surfaces of the gloveboxes. The result of the decontamination process was a reduction in the TRU surface activity on the inner surfaces of the gloveboxes by four orders of magnitude in terms of disintegrations per unit area (DPA). The next phase of the process involved a comprehensive assay of the gloveboxes using a combination of passive neutron and gamma ray scintillation detectors and a shielded and collimated high purity Germanium (HPGe) gamma ray detector. The HPGe detector was used to obtain gamma ray spectra for a variety of measurement positions within the glovebox. The spectra were used to

  18. Design/build/mockup of the Waste Isolation Pilot Plant gas generation experiment glovebox

    International Nuclear Information System (INIS)

    Rosenberg, K.E.; Benjamin, W.W.; Knight, C.J.; Michelbacher, J.A.

    1996-01-01

    A glovebox was designed, fabricated, and mocked-up for the WIPP Gas Generation Experiments (GGE) being conducted at ANL-W. GGE will determine the gas generation rates from materials in contact handled transuranic waste at likely long term repository temperature and pressure conditions. Since the customer's schedule did not permit time for performing R ampersand D of the support systems, designing the glovebox, and fabricating the glovebox in a serial fashion, a parallel approach was undertaken. As R ampersand D of the sampling system and other support systems was initiated, a specification was written concurrently for contracting a manufacturer to design and build the glovebox and support equipment. The contractor understood that the R ampersand D being performed at ANL-W would add additional functional requirements to the glovebox design. Initially, the contractor had sufficient information to design the glovebox shell. Once the shell design was approved, ANL-W built a full scale mockup of the shell out of plywood and metal framing; support systems were mocked up and resultant information was forwarded to the glovebox contractor to incorporate into the design. This approach resulted in a glovebox being delivered to ANL-W on schedule and within budget

  19. Operational considerations for the Space Station Life Science Glovebox

    Science.gov (United States)

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  20. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    Science.gov (United States)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  1. Performance Analysis of Exam Gloves Used for Aseptic Rodent Surgery

    Science.gov (United States)

    LeMoine, Dana M; Bergdall, Valerie K; Freed, Carrie

    2015-01-01

    Aseptic technique includes the use of sterile surgical gloves for survival surgeries in rodents to minimize the incidence of infections. Exam gloves are much less expensive than are surgical gloves and may represent a cost-effective, readily available option for use in rodent surgery. This study examined the effectiveness of surface disinfection of exam gloves with 70% isopropyl alcohol or a solution of hydrogen peroxide and peracetic acid (HP–PA) in reducing bacterial contamination. Performance levels for asepsis were met when gloves were negative for bacterial contamination after surface disinfection and sham ‘exertion’ activity. According to these criteria, 94% of HP–PA-disinfected gloves passed, compared with 47% of alcohol-disinfected gloves. In addition, the effect of autoclaving on the integrity of exam gloves was examined, given that autoclaving is another readily available option for aseptic preparation. Performance criteria for glove integrity after autoclaving consisted of: the ability to don the gloves followed by successful simulation of wound closure and completion of stretch tests without tearing or observable defects. Using this criteria, 98% of autoclaved nitrile exam gloves and 76% of autoclaved latex exam gloves met performance expectations compared with the performance of standard surgical gloves (88% nitrile, 100% latex). The results of this study support the use of HP–PA-disinfected latex and nitrile exam gloves or autoclaved nitrile exam gloves as viable cost-effective alternatives to sterile surgical gloves for rodent surgeries. PMID:26045458

  2. Performance analysis of exam gloves used for aseptic rodent surgery.

    Science.gov (United States)

    LeMoine, Dana M; Bergdall, Valerie K; Freed, Carrie

    2015-05-01

    Aseptic technique includes the use of sterile surgical gloves for survival surgeries in rodents to minimize the incidence of infections. Exam gloves are much less expensive than are surgical gloves and may represent a cost-effective, readily available option for use in rodent surgery. This study examined the effectiveness of surface disinfection of exam gloves with 70% isopropyl alcohol or a solution of hydrogen peroxide and peracetic acid (HP-PA) in reducing bacterial contamination. Performance levels for asepsis were met when gloves were negative for bacterial contamination after surface disinfection and sham 'exertion' activity. According to these criteria, 94% of HP-PA-disinfected gloves passed, compared with 47% of alcohol-disinfected gloves. In addition, the effect of autoclaving on the integrity of exam gloves was examined, given that autoclaving is another readily available option for aseptic preparation. Performance criteria for glove integrity after autoclaving consisted of: the ability to don the gloves followed by successful simulation of wound closure and completion of stretch tests without tearing or observable defects. Using this criteria, 98% of autoclaved nitrile exam gloves and 76% of autoclaved latex exam gloves met performance expectations compared with the performance of standard surgical gloves (88% nitrile, 100% latex). The results of this study support the use of HP-PA-disinfected latex and nitrile exam gloves or autoclaved nitrile exam gloves as viable cost-effective alternatives to sterile surgical gloves for rodent surgeries.

  3. 30 CFR 77.606-1 - Rubber gloves; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rubber gloves; minimum requirements. 77.606-1... COAL MINES Trailing Cables § 77.606-1 Rubber gloves; minimum requirements. (a) Rubber gloves (lineman's gloves) worn while handling high-voltage trailing cables shall be rated at least 20,000 volts and shall...

  4. A review of the materials and allergens in protective gloves.

    Science.gov (United States)

    Rose, Rebecca F; Lyons, Paul; Horne, Helen; Mark Wilkinson, S

    2009-09-01

    The ingredients previously reported to cause protective glove allergy are presented and evaluated for strength of evidence. Allergens that have caused both delayed hypersensitivity and contact urticaria are considered for rubber, plastic, leather, and textile gloves. The current guidelines regarding glove manufacture are described. A list of materials confirmed by the industry to be used in glove production is presented together with a suggested series for investigating patients with delayed type hypersensitivity and contact urticaria secondary to glove use.

  5. RoboGlove: Initial Work Toward a Robotically Assisted EVA Glove

    Science.gov (United States)

    Rogers, Jonathan

    2015-01-01

    The RoboGlove is a device designed to provide additional grip strength or endurance for a user. In applying this Robonaut 2 spinoff technology to the Phase VI Space Suit glove, the project is using robotic tendons and actuators to regain some of the hand performance that is lost when wearing a pressurized glove. An array of sensors embedded into the finger softgoods provides input to the control system which retracts the tendons, helping to close the user's hand. While active, this system provides augmentation, but is nonintrusive to glove usage when disabled.

  6. Innovative EVA Glove Exoskeleton, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Dexterous performance degradation resulting from donning an extra-vehicular activity (EVA) glove limits the capability of astronauts to perform certain tasks in...

  7. High Pressure EVA Glove (HPEG), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Final Frontier Design's (FFD) High Pressure EVA Glove (HPEG) is a game changing technology enabling future exploration class space missions. The high operating...

  8. Instrumented Glove Measures Positions Of Fingers

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1993-01-01

    Glove instrumented with flat membrane potentiometers to obtain crude measurements of relative positions of fingers. Resistance of each potentiometer varies with position of associated finger; translator circuit connected to each potentiometer converts analog reading to 1 of 10 digital levels. Digitized outputs from all fingers fed to indicating, recording, and/or data-processing equipment. Gloves and circuits intended for use in biomedical research, training in critical manual tasks, and other specialized applications.

  9. Evaluation of surgical gloves for radiation protection

    International Nuclear Information System (INIS)

    Antolin, E.; Rot, M.J.; Ordonez, J.; Arranz, L.; Sastre, J.M.; Ferrer, N.; Andres, J.C. de

    2006-01-01

    Full text of publication follows: Accumulated doses in hands during interventionist cardiology and radiological procedures can reach high values, and even go beyond legal limits for exposed professionals after years of work, unless they use specific radiation protection methods. An important protection mean for hands is the use of surgical gloves that attenuate the radiation while maintaining the tactile sensitivity demanded by physicians.There is a wide variety of commercialized gloves for radiation protection, with different advantages and disadvantages for various uses. In this paper nine different models of gloves have been evaluated for testing its attenuation capacity for several voltages, the maintenance of tactile sensitivity, its resistance to elongation, and the apparition of pores after successive sterilizing processes. It is very important that they do not lose its initial characteristics after processes of sterilization in order to optimize the product effective cost. The attenuation values have been measured under the voltages of 60, 70, 80 and 90 KVp obtaining very different values at each voltage with different gloves. The values measured range between 34 % before any supplementary sterilization with one model of glove (for 90 KVp), and 57 % after four sterilization processes with another glove (for 60 KVp). Some gloves lose its attenuation capacity after successive sterilizations, having not been found an y significant relation with their composition. The tactile sensitivity, a decisive factor for its users, decreases as its attenuation capacity increases, and remains mostly constant after being sterilized. The tests performed allow to conclude a set of fi nal results that can facilitate the choice of the most suitable gloves according to the practical applications (the priorities being the radiation protection and the tactile sensitivity)

  10. Handling of a glove box accident. Surgical treatment of a wound contaminated by a mixture of plutonium-239 and americium

    International Nuclear Information System (INIS)

    Lalu, P.

    1977-01-01

    An employee of the Valduc Centre (France) suffered an injury to his right thumb when working in a glove-box on a pipeline which had contained a solution of 239 Pu and Am. The lesion was slight but attempts at decontamination were fruitless. The contamination was deep-seated (activity of not less than 18nCi). DTPA was injected intravenously, and it was decided to excise the lesion surgically. Thanks to the quality of its physical facilities and the professional quality of its radiation medicine and surgery team, the Valduc Centre was able to carry out the operation successfully. The result was excellent, and the contamination was eliminated to the satisfaction of both the patient and the physician. (author)

  11. Requalification of the 235-F Metallograph Facility gloveboxes for use in the 773-A plutonium immobilization demonstration

    International Nuclear Information System (INIS)

    Hinds, S.S.; Hidlay, J.

    1997-01-01

    A concern has been identified regarding the viability of redesigning and requalifying existing glovebox lines for use as glovebox lines integral to future mission activities in the 773-A laboratory building at the Savannah River Site (SRS). The Bechtel Savannah River Inc. (BSRI) design engineering team has been requested to perform an evaluation which would investigate the reuse of these existing gloveboxes versus the procurement of completely new glovebox systems. The existing glovebox lines were manufactured for the Plutonium (Pu) Metallograph Facility, Project 3253, located in building 235-F at SRS. These gloveboxes were designed as independent, fully functional Pu 'metal' and Pu 'oxide' processing glovebox systems for this facility. These gloveboxes, although fully installed, have never processed radioactive material. The proposed use for these gloveboxes are: (1) to utilize the Pu 'metal' glovebox system for the primary containment associated with the Pre-Processing/Re-Processing Laboratory for obtaining radioactive glass compound viscometer analysis and (2) to utilize the Pu 'oxide' glovebox system for primary containment associated with the Pu 'Can in Can' Demonstration for proof of principle testing specific to long term Pu immobilization and storage technology. This report presents objective evidence that supports the engineering judgment indicating the existing gloveboxes can be requalified for the proposed uses indicated above. SRS has the ability to duplicate the test parameters, with site forces, that will meet or exceed the identical acceptance criteria established to qualify the existing gloveboxes. The qualification effort will be a documented procedure using the leak test criteria characteristic of the original glovebox purchase. Two equivalent tests will be performed, one for post modification leak test acceptance and one for post installation leak test acceptance. (Abstract Truncated)

  12. COMPUTER MODEL AND SIMULATION OF A GLOVE BOX PROCESS

    International Nuclear Information System (INIS)

    Foster, C.

    2001-01-01

    The development of facilities to deal with the disposition of nuclear materials at an acceptable level of Occupational Radiation Exposure (ORE) is a significant issue facing the nuclear community. One solution is to minimize the worker's exposure though the use of automated systems. However, the adoption of automated systems for these tasks is hampered by the challenging requirements that these systems must meet in order to be cost effective solutions in the hazardous nuclear materials processing environment. Retrofitting current glove box technologies with automation systems represents potential near-term technology that can be applied to reduce worker ORE associated with work in nuclear materials processing facilities. Successful deployment of automation systems for these applications requires the development of testing and deployment strategies to ensure the highest level of safety and effectiveness. Historically, safety tests are conducted with glove box mock-ups around the finished design. This late detection of problems leads to expensive redesigns and costly deployment delays. With wide spread availability of computers and cost effective simulation software it is possible to discover and fix problems early in the design stages. Computer simulators can easily create a complete model of the system allowing a safe medium for testing potential failures and design shortcomings. The majority of design specification is now done on computer and moving that information to a model is relatively straightforward. With a complete model and results from a Failure Mode Effect Analysis (FMEA), redesigns can be worked early. Additional issues such as user accessibility, component replacement, and alignment problems can be tackled early in the virtual environment provided by computer simulation. In this case, a commercial simulation package is used to simulate a lathe process operation at the Los Alamos National Laboratory (LANL). The Lathe process operation is indicative of

  13. Glove material, reservoir formation, and dose affect glove permeation and subsequent skin penetration

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo; Sørensen, Jens Ahm

    2012-01-01

    Protective gloves are used to reduce dermal exposure when managing chemical exposures at the work place. Different glove materials may offer different degrees of protection. The present study combined the traditional ASTM (American Society for Testing and Materials) model with the Franz diffusion...

  14. Object-oriented process dose modeling for glovebox operations

    International Nuclear Information System (INIS)

    Boerigter, S.T.; Fasel, J.H.; Kornreich, D.E.

    1999-01-01

    The Plutonium Facility at Los Alamos National Laboratory supports several defense and nondefense-related missions for the country by performing fabrication, surveillance, and research and development for materials and components that contain plutonium. Most operations occur in rooms with one or more arrays of gloveboxes connected to each other via trolley gloveboxes. Minimizing the effective dose equivalent (EDE) is a growing concern as a result of steadily declining allowable dose limits being imposed and a growing general awareness of safety in the workplace. In general, the authors discriminate three components of a worker's total EDE: the primary EDE, the secondary EDE, and background EDE. A particular background source of interest is the nuclear materials vault. The distinction between sources inside and outside of a particular room is arbitrary with the underlying assumption that building walls and floors provide significant shielding to justify including sources in other rooms in the background category. Los Alamos has developed the Process Modeling System (ProMoS) primarily for performing process analyses of nuclear operations. ProMoS is an object-oriented, discrete-event simulation package that has been used to analyze operations at Los Alamos and proposed facilities such as the new fabrication facilities for the Complex-21 effort. In the past, crude estimates of the process dose (the EDE received when a particular process occurred), room dose (the EDE received when a particular process occurred in a given room), and facility dose (the EDE received when a particular process occurred in the facility) were used to obtain an integrated EDE for a given process. Modifications to the ProMoS package were made to utilize secondary dose information to use dose modeling to enhance the process modeling efforts

  15. Development of the conductive glove for glove box operation. Production of prototypes and their experimental results

    International Nuclear Information System (INIS)

    Kodato, Kazuo; Enuma, Masahito; Kawasaki, Takeshi; Nogami, Yoshitaka; Kaneko, Kazunori; Kimura, Masanori; Yasumori, Tomokazu

    2014-02-01

    The glove used at glove boxes in the nuclear fuel plants is usually made with Chlorosulfonated polyethylene rubber. The rubber is excellent in terms of resistance to radiation because it has no double bond in its main chain of the component, however, it deteriorates rapidly in high dose environment such as direct contact of alpha ray. Plutonium oxide powder is treated in glove boxes at plutonium fuel facilities where the alpha ray from plutonium oxide powder adhered on surface of a glove causes the deterioration of the rubber. Therefore the effective method for prevent of the rapid deterioration is to decrease the amount of adhered powder, and the glove with conductive property which can prevent static electric charge on its surface has been developed and tested. The results showed that the rubber has less adherent property to powder compared with conventional one. (author)

  16. Whole glove permeation of cyclohexanol through disposable nitrile gloves on a dextrous robot hand: Fist clenching vs. non-clenching.

    Science.gov (United States)

    Mathews, Airek R; Que Hee, Shane S

    2017-04-01

    The differences in permeation parameters when a gloved dextrous robot hand clenched and did not were investigated with the dynamic permeation system described in the companion paper. Increased permeation through the gloves of the present study for cyclohexanol when the gloved hand clenched depended on glove thickness and porosity for cyclohexanol permeation. The Sterling glove, the thinnest and most porous, was the least protective. Hand clenching promoted more permeation for the Sterling glove in terms of breakthrough times, steady state permeation rate, and diffusion coefficient. The Safeskin glove showed increased permeation only for the steady state permeation rate but not breakthrough times or diffusion coefficient. The Blue and Purple gloves showed no differences when the hand was clenching or not. The correlational analysis supported differences between the clenching and non-clenching situations, and the risk assessment considered the worst and best scenarios relative to one and two hydrated hands that were and were not protected by specific gloves.

  17. Evaluation of an antimicrobial surgical glove to inactivate live human immunodeficiency virus following simulated glove puncture.

    Science.gov (United States)

    Edmiston, Charles E; Zhou, S Steve; Hoerner, Pierre; Krikorian, Raffi; Krepel, Candace J; Lewis, Brian D; Brown, Kellie R; Rossi, Peter J; Graham, Mary Beth; Seabrook, Gary R

    2013-02-01

    Percutaneous injuries associated with cutting instruments, needles, and other sharps (eg, metallic meshes, bone fragments, etc) occur commonly during surgical procedures, exposing members of surgical teams to the risk for contamination by blood-borne pathogens. This study evaluated the efficacy of an innovative integrated antimicrobial glove to reduce transmission of the human immunodeficiency virus (HIV) following a simulated surgical-glove puncture injury. A pneumatically activated puncturing apparatus was used in a surgical-glove perforation model to evaluate the passage of live HIV-1 virus transferred via a contaminated blood-laden needle, using a reference (standard double-layer glove) and an antimicrobial benzalkonium chloride (BKC) surgical glove. The study used 2 experimental designs. In method A, 10 replicates were used in 2 cycles to compare the mean viral load following passage through standard and antimicrobial gloves. In method B, 10 replicates were pooled into 3 aliquots and were used to assess viral passage though standard and antimicrobial test gloves. In both methods, viral viability was assessed by observing the cytopathic effects in human lymphocytic C8166 T-cell tissue culture. Concurrent viral and cell culture viability controls were run in parallel with the experiment's studies. All controls involving tissue culture and viral viability were performed according to study design. Mean HIV viral loads (log(10)TCID(50)) were significantly reduced (P reduction (log reduction and percent viral reduction) of the HIV virus ranged from 1.96 to 2.4 and from 98.9% to 99.6%, respectively, following simulated surgical-glove perforation. Sharps injuries in the operating room pose a significant occupational risk for surgical practitioners. The findings of this study suggest that an innovative antimicrobial glove was effective at significantly (P < .01) reducing the risk for blood-borne virus transfer in a model of simulated glove perforation. Copyright

  18. Permeation of Comite through protective gloves.

    Science.gov (United States)

    Zainal, Hanaa; Que Hee, Shane S

    2006-09-01

    The goal of the study was to assess how protective disposable (Safeskin) and chemical protective (Sol-Vex) nitrile gloves were against Comite emulsifiable concentrate formulation containing propargite (PROP) as active pesticidal ingredient, because there were no explicit recommendations for the gloves that should be worn for hand protection. The glove material was exposed in ASTM-type I-PTC-600 permeation cells at 30.0+/-0.5 degrees C, and gas chromatography-mass spectrometry used for PROP analysis. Aqueous solutions of Comite at 40.4 mg/mL permeated both Safeskin and Sol-Vex nitrile by 8h. Safeskin showed a mean PROP mass permeated of 176+/-27 microg after 8h compared with a mean mass permeated for Sol-Vex of 3.17+/-4.08 microg. Thus, Sol-Vex was about 56 times more protective than Safeskin for an 8-h exposure. However, the kinetics of the permeation revealed that Safeskin can be worn for at least 200 min before disposal. When undiluted Comite challenged both types of nitrile, much faster permeation was observed. Safeskin gloves showed two steady state periods. The first had lag times (t(l)) values of about 1h, although normalized breakthrough times (t(b)) were gloves exposed continuously to undiluted Comite permeated above the normalized breakthrough threshold beyond 2.7h. A risk assessment revealed that the PROP skin permeation rate of 7.1 ng cm(-2)h(-1) was much slower than the first steady state Safeskin glove P(s) of 62,000 ng cm(-2)h(-1). Infrared analysis showed that the glove surfaces were not degraded by the Comite challenge. The chemically protective Sol-Vex gloves protected adequately against undiluted formulation for about 2.7h, whereas they provided protection for nearly 8h when the formulation was diluted with water to the highest concentration for field application. In contrast, the disposable Safeskin gloves did not protect at all for the undiluted formulation, but did for 200 min when the formulation was diluted with water to the highest

  19. The mechanical and microbiological integrity of surgical gloves.

    Science.gov (United States)

    Jamal, Ala; Wilkinson, Stephen

    2003-03-01

    Several manufacturers supply surgical gloves that have been individually tested (IT) for leaks. Other manufacturers supply gloves in which sample gloves from each batch are tested for leaks (batch tested: BT). The latter brands may be rejected by surgeons because of presumed increased risk of wound infection and staff exposure to patient pathogens. The influence of differences between glove brands on performance in surgery has not been extensively studied. The aims of the present study were to test the mechanical and microbiological integrity of IT compared to BT gloves. A total of 110 unused gloves from each of an IT and a BT brand were tested for leaks, first, by observation of water-jets from water-filled gloves and second, by measuring electrical resistance between inside and outside the glove surfaces, to give a baseline measure. A total of 304 IT and 280 BT gloves were then similarly leak-tested after 98 clean surgical procedures. The hands and gloves of scrub team members were cultured postsurgery. A total of 1/110 BT and 0/110 IT unused gloves contained leaks (NS, Fisher's exact test). Operative perforation rates were lower for BT compared with IT (8/280 cf. 22/304; P leak rates for unused gloves. Paradoxically, although IT gloves were more likely to show macro-perforations after surgery, the incidence of contamination on the surface of BT gloves was greater, possibly reflecting a qualitative difference in glove material. This study suggests that both types of gloves develop microporosity during use, which may allow transfer of bacteria from the surgeon's skin to the surface of the glove.

  20. Health risk assessments of DEHP released from chemical protective gloves.

    Science.gov (United States)

    Chao, Keh-Ping; Huang, Chan-Sheng; Wei, Chung-Ying

    2015-01-01

    The substance di-2-ethylhexyl phthalate (DEHP) is widely used as a plasticizer in chemical protective gloves to improve their flexibility and workability. However, it is possible that workers using protective gloves to handle various solvents may be exposed to DEHP leached by the solvents. Using an ASTM F739 permeation cell, it was found that BTEX solvents permeating through the glove samples dissolved DEHP from the gloves. Even without continuously contacting the permeant, DEHP was released from the contaminated glove samples during the desorption experiments. The DEHP leaching amounts were found to be inversely correlated to the permeability coefficients of BTEX in the glove samples. This result implied that the larger the amount of DEHP released from the glove samples, the higher the permeation resistance of gloves. Although chemical protective gloves provide adequate skin exposure protection to workers, the dermal exposure model developed herein indicates that leaching of DEHP from the glove samples may pose a potential health risk to the workers who handle BTEX. This study suggests that the selection of protective gloves should not only be concerned with the chemical resistance of the gloves but also the health risk associated with leaching of chemicals, such as DEHP, used in the manufacturing of the gloves. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. [Migrants from disposable gloves and residual acrylonitrile].

    Science.gov (United States)

    Wakui, C; Kawamura, Y; Maitani, T

    2001-10-01

    Disposable gloves made from polyvinyl chloride with and without di(2-ethylhexyl) phthalate (PVC-DEHP, PVC-NP), polyethylene (PE), natural rubber (NR) and nitrile-butadiene rubber (NBR) were investigated with respect to evaporation residue, migrated metals, migrants and residual acrylonitrile. The evaporation residue found in n-heptane was 870-1,300 ppm from PVC-DEHP and PVC-NP, which was due to the plasticizers. Most of the PE gloves had low evaporation residue levels and migrants, except for the glove designated as antibacterial, which released copper and zinc into 4% acetic acid. For the NR and NBR gloves, the evaporation residue found in 4% acetic acid was 29-180 ppm. They also released over 10 ppm of calcium and 6 ppm of zinc into 4% acetic acid, and 1.68-8.37 ppm of zinc di-ethyldithiocarbamate and zinc di-n-butyldithiocarbamate used as vulcanization accelerators into n-heptane. The acrylonitrile content was 0.40-0.94 ppm in NBR gloves.

  2. Radiation Sterilization of Naturual Rubber Examination Gloves

    International Nuclear Information System (INIS)

    Jetawattana, S.; Na-Ranong, N.; Kajornchaiyakul, V.

    1998-01-01

    The sterilization dose setting by ISO 11137 method 1 was conducted for natural rubber examination gloves provided by a local factory. The suitable sterilization dose for an average product bioburden falls between 20 - 25 kilogray. Maximum dose of 25 or 50 kilogray results in no changes of tensile s and elongation at break. Samples of examination glove were irradiated using various doses between 10 - 50 kilogray. Analysis of soluble protein content using modified Lowry method was carried out and the results revealed that irradiation did not affect the decrement of soluble protein content in this case. However, thin film samples were prepared in laboratory and treated in the same procedure. The results were also the same. The results did not show any correlation. Two factors are possibly presumed : un consistency of samples and the irradiation of finished products could not affect those soluble proteins in rubber gloves

  3. Ballast system for maintaining constant pressure in a glove box

    Science.gov (United States)

    Shlichta, Paul J.

    1989-09-01

    A ballast system is disclosed for a glove box including a fixed platform on which is mounted an inflatable bag on top of which resides a cover and a weight. The variable gas volume of the inflatable bag communicates with that of the glove box via a valved tube. The weight and the gas volume are selected to maintain a relatively constant pressure in the glove box despite variations in the glove box volume while avoiding the use of complicated valving apparatus.

  4. Striking dynamics and kinetic properties of boxing and MMA gloves

    Directory of Open Access Journals (Sweden)

    Benjamin Lee

    2014-08-01

    Full Text Available With the growing popularity of Mixed Martial Arts (MMA as a competitive sport, questions regarding the dynamic response and properties of MMA gloves arise. High-energy impacts from punches are very similar to boxing yet MMA competition requires the use of 4 oz fingerless glove, compared to the larger full enclosure boxing glove. This work assessed the kinetic properties and strike dynamics of MMA gloves and compared findings with traditional boxing gloves. Gloves mounted on a molded fist were impacted repetitively on an instrumental anvil designed for impact, over a 5 hour period resulting in 10,000 continuous and consistent strikes. Kinetic data from impacts were sampled at the beginning of the data collection and subsequently every 30 minutes (every 1,000 strikes. MMA gloves produced 4-5 times greater peak force and 5 times faster load rate compared to the boxing glove. However, MMA gloves also showed signs of material fatigue, with peak force increasing by 35% and rate of loading increasing by 60% over the duration of the test. Boxing glove characteristics did deteriorate but to a lesser extent. In summary, the kinetic properties of MMA glove differed substantially from the boxing glove resulting in impacts characterized by higher peak forces and more rapid development of force. Material properties including stiffness and thickness play a role in the kinetic characteristics upon impact, and can be inferred to alter injury mechanisms of blunt force trauma.

  5. Safety of the surgeon: 'Double-gloving' during surgical procedures

    African Journals Online (AJOL)

    during exposure to blood and body fluids are now mandatory. Intact surgical gloves can ... HIV/AIDS infection is for the surgeon to 'double-glove' – wear two standard gloves on .... sharp fractured bones or bony structures.[12,16,17] The rate of ...

  6. 21 CFR 880.6250 - Patient examination glove.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Patient examination glove. 880.6250 Section 880.6250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.6250 Patient examination glove. (a) Identification. A patient examination glove is a...

  7. The durability of examination gloves used on intensive care units.

    Science.gov (United States)

    Hübner, Nils-Olaf; Goerdt, Anna-Maria; Mannerow, Axel; Pohrt, Ute; Heidecke, Claus-Dieter; Kramer, Axel; Partecke, Lars Ivo

    2013-05-20

    The use of examination gloves is part of the standard precautions to prevent medical staff from transmission of infectious agents between patients. Gloves also protect the staff from infectious agents originating from patients. Adequate protection, however, depends on intact gloves. The risk of perforation of examination gloves is thought to correlate with duration of wearing, yet, only very few prospective studies have been performed on this issue. A total number of 1500 consecutively used pairs of examination gloves of two different brands and materials (latex and nitrile) were collected over a period of two months on two ICU's. Used gloves were examined for micro perforations using the "water-proof-test" according to EN 455-1. Cox-regression for both glove types was used to estimate optimal changing intervals. Only 26% of gloves were worn longer than 15 min. The total perforation rate was 10.3% with significant differences and deterioration of integrity of gloves between brands (pgloves show marked differences in their durability that cannot be predicted based on the technical data routinely provided by the manufacturer. Based on the increase of micro perforations over time and the wearing behavior, recommendations for maximum wearing time of gloves should be given. Changing of gloves after 15 min could be a good compromise between feasibility and safety. HCWs should be aware of the benefits and limitations of medical gloves. To improve personal hygiene hand disinfection should be further encouraged.

  8. Methods for reducing energy dissipation in cosmetic gloves

    NARCIS (Netherlands)

    Herder, J.L.; Cool, J.C.; Plettenburg, D.H.

    1998-01-01

    For cosmetic reasons, hand prostheses are provided with cosmetic gloves. Their pleasing appearance, however, is accompanied by poor mechanical behavior, resulting in a negative influence on prosthesis operation. Glove stiffness is high and nonlinear, and internal friction in the glove material

  9. Durable Tactile Glove for Human or Robot Hand

    Science.gov (United States)

    Butzer, Melissa; Diftler, Myron A.; Huber, Eric

    2010-01-01

    A glove containing force sensors has been built as a prototype of tactile sensor arrays to be worn on human hands and anthropomorphic robot hands. The force sensors of this glove are mounted inside, in protective pockets; as a result of this and other design features, the present glove is more durable than earlier models.

  10. Bacterial migration through punctured surgical gloves under real surgical conditions

    Directory of Open Access Journals (Sweden)

    Heidecke Claus-Dieter

    2010-07-01

    Full Text Available Abstract Background The aim of this study was to confirm recent results from a previous study focussing on the development of a method to measure the bacterial translocation through puncture holes in surgical gloves under real surgical conditions. Methods An established method was applied to detect bacterial migration from the operating site through the punctured glove. Biogel™ double-gloving surgical gloves were used during visceral surgeries over a 6-month period. A modified Gaschen-bag method was used to retrieve organisms from the inner glove, and thus-obtained bacteria were compared with micro-organisms detected by an intra-operative swab. Results In 20 consecutive procedures, 194 gloves (98 outer gloves, 96 inner gloves were examined. The rate of micro-perforations of the outer surgical glove was 10% with a median wearing time of 100 minutes (range: 20-175 minutes. Perforations occurred in 81% on the non-dominant hand, with the index finger most frequently (25% punctured. In six cases, bacterial migration could be demonstrated microbiologically. In 5% (5/98 of outer gloves and in 1% (1/96 of the inner gloves, bacterial migration through micro-perforations was observed. For gloves with detected micro-perforations (n = 10 outer layers, the calculated migration was 50% (n = 5. The minimum wearing time was 62 minutes, with a calculated median wearing time of 71 minutes. Conclusions This study confirms previous results that bacterial migration through unnoticed micro-perforations in surgical gloves does occur under real practical surgical conditions. Undetected perforation of surgical gloves occurs frequently. Bacterial migration from the patient through micro-perforations on the hand of surgeons was confirmed, limiting the protective barrier function of gloves if worn over longer periods.

  11. Design improvements for gloveboxes used [in] {sup 238}PuO{sub 2} process operations

    Energy Technology Data Exchange (ETDEWEB)

    George, T.G. [Los Alamos National Lab., NM (United States). Nuclear Materials Technology Div.

    1997-09-01

    {sup 238}PuO{sub 2} process operations are housed in a complex of 76 gloveboxes and introductory hoods connected by means of an overhead trolley housed in a tunnel. Because a significant number of the gloveboxes used for {sup 238}PuO{sub 2} processing were installed before the original startup of the facility in 1978, they have been in service for nearly 20 years. During a recent heat source production campaign, numerous contamination releases in the {sup 238}PuO{sub 2} processing area were traced to degraded elastomer gaskets used for glovebox connections, and attachment of feed-throughs, service panels, and windows. Evaluation of the degraded gaskets revealed that a combination of radiolytic degradation related to the high specific activity of {sup 238}Pu, and extended service at high altitude in a low (to extremely low) humidity environment had resulted in accelerated gasket aging. However, it was also apparent that gasket design was the most important factor in actual contamination release. All of the contamination releases that were traced to degraded gaskets occurred in variations of a design that used a spline to expand an elastomeric gasket into the space between a connecting flange, window, or service panel, and a glovebox opening. No contamination releases were traced to the gasket design that employed bolted clamps to compress the gasket between a connecting flange, window, or panel, and the exterior surface of a glovebox opening. As a result of these findings, the Actinide Ceramics group at LANL (NMT-9) has initiated a routine replacement and upgrade program to replace aging gloveboxes. All of the new gloveboxes will utilize the preferred gasket design, which is expected to reduce the number and frequency of contamination releases.

  12. Design improvements for gloveboxes used [in] 238PuO2 process operations

    International Nuclear Information System (INIS)

    George, T.G.

    1997-01-01

    238 PuO 2 process operations are housed in a complex of 76 gloveboxes and introductory hoods connected by means of an overhead trolley housed in a tunnel. Because a significant number of the gloveboxes used for 238 PuO 2 processing were installed before the original startup of the facility in 1978, they have been in service for nearly 20 years. During a recent heat source production campaign, numerous contamination releases in the 238 PuO 2 processing area were traced to degraded elastomer gaskets used for glovebox connections, and attachment of feed-throughs, service panels, and windows. Evaluation of the degraded gaskets revealed that a combination of radiolytic degradation related to the high specific activity of 238 Pu, and extended service at high altitude in a low (to extremely low) humidity environment had resulted in accelerated gasket aging. However, it was also apparent that gasket design was the most important factor in actual contamination release. All of the contamination releases that were traced to degraded gaskets occurred in variations of a design that used a spline to expand an elastomeric gasket into the space between a connecting flange, window, or service panel, and a glovebox opening. No contamination releases were traced to the gasket design that employed bolted clamps to compress the gasket between a connecting flange, window, or panel, and the exterior surface of a glovebox opening. As a result of these findings, the Actinide Ceramics group at LANL (NMT-9) has initiated a routine replacement and upgrade program to replace aging gloveboxes. All of the new gloveboxes will utilize the preferred gasket design, which is expected to reduce the number and frequency of contamination releases

  13. PVC posting bags for glove boxes

    International Nuclear Information System (INIS)

    1976-12-01

    This specification covers the materials, measurements and manufacture of unpigmented PVC posting bags for use on glove boxes, together with methods of testing the materials. These bags are used in the handling of radioactive and toxic materials of a hazardous nature and therefore must be of the highest standard of mechanical strength, leak tightness and general finish. (author)

  14. Design report for shielded glove box

    International Nuclear Information System (INIS)

    Ku, J. H.; Lee, J. C.; Seo, K. S.; Bang, K. S.; Lee, D. W.; Kim, J. H.; Min, D. K.; Park, S. W.

    1999-05-01

    For the examination of spent fuels and high radioactive specimens using a specially equipped scanning electron microscope, a shielded glove box was designed and constructed at PIE facility of KAERI. This glove box consisted of shielding walls, containment box, lead glasses, manipulators, gloves, ventilation systems, doors, hot-cell specimen cask adapter, etc. It was emphasized that both the easy operation and radiation safety are important factors in the shielded glove box were installed also considered as a important factor to build the basic concept of the assembling. Two sliding doors and one hinge-type door were installed for the easy installation, operation and maintenance of scanning electron microscope. Containment box which confines the radioactive material into the box consisted of reinforced transparent glasses, aluminum frames and stainless steel plate liner. Therefore everything beyond the containment box can be seen through the lead glass which installed at the front shielding wall. All shielding walls and doors were introduced separately into the room and assembled by bolting. (author). 3 refs., 5 tabs., 18 figs

  15. Permeation of Telone EC through protective gloves.

    Science.gov (United States)

    Zainal, Hanaa; Que Hee, Shane S

    2005-09-30

    Telone is a potent fumigant that is based on the chlorinated unsaturated hydrocarbon, 1,3-dichloropropene (1,3-DCP). It is often applied without dilution and so poses severe inhalation and air pollution threats. Urinary metabolites of 1,3-DCP have been detected after Telone skin exposure, so that preventing dermal exposure is also important. The objective of the study was to assess if nitrile and multi-layer ("laminated") gloves provide adequate protection against Telone EC formulation. To accomplish this, disposable (Safeskin) and chemically resistant (Sol-Vex) nitrile and laminated (Barrier mark and Silver Shield) glove materials were challenged by Telone EC with hexane liquid collection in an ASTM-type I-PTC-600 permeation cell. Analyses of cis- and trans-1,3-DCP in the collection fluid at specified times were performed on a moderately polar capillary column by gas chromatography-electron capture detection. Telone EC caused microholes in both nitrile materials, though the chemically protective material was degraded slower than the disposable nitrile. The laminated gloves offered limited protection. Silver Shield protected best because 1.5-2.3 mg 1,3-DCP permeated by 8 h relative to 2.5-7.6 mg for Barrier, implying about 2.5 times more protection for 8 h. Even for Silver Shield, the extent of protection was inadequate as illustrated by a risk assessment of the skin exposure situation. The normalized breakthrough times for both types of laminated gloves varied between 27 and 60 min. It is recommended that Viton gloves still be worn for protection.

  16. How risky are pinholes in gloves? A rational appeal for the integrity of gloves for isolators.

    Science.gov (United States)

    Gessler, Angela; Stärk, Alexandra; Sigwarth, Volker; Moirandat, Claude

    2011-01-01

    Isolators provide a high degree of protection for the product and/or the environment and operators in pharmaceutical production, as well as for analytical and sterility testing. Gloves allow for performing testing and for easy access to the process. Due to their nature-thin plastic, highly flexible-and their risk of puncture or rupture, they are regarded as one of the main potential sources of contamination. Glove integrity testing is therefore a main issue and has been addressed by many regulations such as those imposed by the USP, U.S. Food and Drug Administration, and Pharmaceutical Inspection Convention. This paper presents a short overview of different glove integrity test procedures and their ability to detect leaking gloves. Additionally, extensive microbiological tests have been performed to give more evidence and cross-correlation to physical testing. Most of the physical tests have limitations either in detecting pinholes and/or they are difficult to implement for routine testing. Microbiological tests are only applicable for evaluation and validation purposes, but not for routine testing, because they are time-consuming and do not allow immediate action. Routine visual verification of gloves by trained personnel turns out to be a very reliable technique. Additional microbiological tests supported by microbiological environmental monitoring helped to develop a new concept presented here on how to handle gloves with pinholes. It is proposed not to automatically consider a pinhole in a glove as a breach in isolator integrity, but to consider any action in view of controlling and monitoring the effective bioload on the outside of the gloves. With the combination of semi-automatic physical testing with independent protocol, visual inspection, and control of bioload through microbiological environmental monitoring potential contamination, risks can be minimized and maximum safety maintained. Isolators are enclosure designs to protect critical handling and

  17. Hand hygiene compliance in a universal gloving setting.

    Science.gov (United States)

    Kuruno, Noriko; Kasahara, Kei; Mikasa, Keiichi

    2017-08-01

    The use of gloves for every patient contact (ie, universal gloving) has been suggested as an infection prevention adjunct and alternative to contact precautions. However, gloves may carry organisms unless they are changed properly. In addition, hand hygiene is required before donning and after removing gloves, and there are scarce data regarding glove changing and hand hygiene in a universal gloving setting. This nonrandomized observational before-after study evaluated the effect of education and feedback regarding hand hygiene. Compliance with hand hygiene and glove use was directly observed in a universal gloving setting at a 10-bed intensive care unit in a Japanese tertiary care university teaching hospital. A total of 6,050 hand hygiene opportunities were identified. Overall, hand hygiene compliance steadily increased from study period 1 (16.1%) to period 5 (56.8%), although there were indication-specific differences in the baseline compliance, the degree of improvement, and the reasons for noncompliance. There were decreases in the compliance with universal gloving and the incidence of methicillin-resistant Staphylococcus aureus. It is difficult to properly perform glove use and hand hygiene in a universal gloving setting, given its complexity. Direct observation with specific feedback and education may be effective in improving compliance. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. Wearing ambidextrous vinyl gloves does not impair manual dexterity.

    Science.gov (United States)

    Drabek, Tomas; Boucek, Charles D; Buffington, Charles W

    2013-01-01

    Universal precautions mandate that health care workers wear gloves to prevent the unintended spread of bloodborne pathogens. Gloves may affect manual dexterity, generally delaying task completion. Our previous study showed that wearing the wrong size latex surgical glove degraded manual dexterity. The use of non-sterile and non-latex gloves may limit certain risks and be more cost-effective. However, such gloves may produce different results. We hypothesized that ambidextrous vinyl examination gloves would degrade manual dexterity compared with bare hands. We studied 20 random subjects from a medical environment. Subjects performed a standard battery of Grooved Pegboard tasks while bare-handed, wearing ambidextrous non-sterile vinyl gloves that were their preferred size, a size too small, and a size too large. The order was randomized with a Latin Square design to minimize the effects of time, boredom, and fatigue on the subjects. Subjects were also invited to comment on the fit of different size gloves. Wearing vinyl gloves of both the preferred size and a size up or down failed to affect manual dexterity vs. bare hands on time to insert pegs, and pegs dropped during insertion or removal. In contrast, the time to remove pegs was reduced by wearing preferred size vinyl gloves compared with performing the task with bare hands (Pgloves that were too small caused significant hand discomfort. Vinyl gloves surprisingly do not degrade manual dexterity even when worn in ill-fitting sizes. Wearing a preferred size vinyl glove vs. bare hands may improve dexterity in selected tasks. Choosing a comfortable, large size seems the best strategy when the preferred size is unavailable. Thinner vinyl gloves may improve grip and may not degrade touch as much as latex surgical gloves and may thus represent a reasonable choice for selected tasks.

  19. Glove and gown effects on intraoperative bacterial contamination.

    Science.gov (United States)

    Ward, William G; Cooper, Joshua M; Lippert, Dylan; Kablawi, Rawan O; Neiberg, Rebecca H; Sherertz, Robert J

    2014-03-01

    Experiments were performed to determine the risk of bacterial contamination associated with changing outer gloves and using disposable spunlace paper versus reusable cloth gowns. Despite decades of research, there remains a lack of consensus regarding certain aspects of optimal aseptic technique including outer glove exchange while double-gloving and surgical gown type selection. In an initial glove study, 102 surgical team members were randomized to exchange or retain outer gloves 1 hour into clean orthopedic procedures; cultures were obtained 15 minutes later from the palm of the surgeon's dominant gloved hand and from the surgical gown sleeve. Surgical gown type selection was recorded. A laboratory strike-through study investigating bacterial transmission through cloth and paper gowns was performed with coagulase-negative staphylococci. In a follow-up glove study, 251 surgical team members, all wearing paper gowns, were randomized as in the first glove study. Glove study 1 revealed 4-fold higher levels of baseline bacterial contamination (31% vs 7%) on the sleeve of surgical team members wearing cloth gowns than those using paper gowns [odds ratio (95% confidence interval): 4.64 (1.72-12.53); P = 0.0016]. The bacterial strike-through study revealed that 26 of 27 cloth gowns allowed bacterial transmission through the material compared with 0 of 27 paper gowns (P < 0.001). In glove study 2, surgeons retaining outer gloves 1 hour into the case had a subsequent positive glove contamination rate of 23% compared with 13% among surgeons exchanging their original outer glove [odds ratio (95% confidence interval): 1.97 (1.02-3.80); P = 0.0419]. Paper gowns demonstrated less bacterial transmission in the laboratory and lower rates of contamination in the operating room. Disposable paper gowns are recommended for all surgical cases, especially those involving implants, because of the heightened risk of infection. Outer glove exchange just before handling implant materials

  20. Do clinical examination gloves provide adequate electrical insulation for safe hands-on defibrillation? I: Resistive properties of nitrile gloves.

    Science.gov (United States)

    Deakin, Charles D; Lee-Shrewsbury, Victoria; Hogg, Kitwani; Petley, Graham W

    2013-07-01

    Uninterrupted chest compressions are a key factor in determining resuscitation success. Interruptions to chest compression are often associated with defibrillation, particularly the need to stand clear from the patient during defibrillation. It has been suggested that clinical examination gloves may provide adequate electrical resistance to enable safe hands-on defibrillation in order to minimise interruptions. We therefore examined whether commonly used nitrile clinical examination gloves provide adequate resistance to current flow to enable safe hands-on defibrillation. Clinical examination gloves (Kimberly Clark KC300 Sterling nitrile) worn by members of hospital cardiac arrest teams were collected immediately following termination of resuscitation. To determine the level of protection afforded by visually intact gloves, electrical resistance across the glove was measured by applying a DC voltage across the glove and measuring subsequent resistance. Forty new unused gloves (control) were compared with 28 clinical (non-CPR) gloves and 128 clinical (CPR) gloves. One glove in each group had a visible tear and was excluded from analysis. Control gloves had a minimum resistance of 120 kΩ (median 190 kΩ) compared with 60 kΩ in clinical gloves (both CPR (median 140 kΩ) and non-CPR groups (median 160 kΩ)). Nitrile clinical examination gloves do not provide adequate electrical insulation for the rescuer to safely undertake 'hands-on' defibrillation and when exposed to the physical forces of external chest compression, even greater resistive degradation occurs. Further work is required to identify gloves suitable for safe use for 'hands-on' defibrillation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Effects of Frequent Glove Change on Outcomes of Orthopaedic Surgical Procedures - A Multicenter Study on Surgical Gloves

    Directory of Open Access Journals (Sweden)

    Nishit Palo

    2017-10-01

    Full Text Available Introduction: Intact surgical gloves are a barrier to microorganisms migration between surgical team members and the patient. The surgical gloves are changed at various junctures but the effects of changing gloves during surgical procedures on various surgical parameters or clinical outcomes are not established. Aim: To determine rationale of glove change during orthopaedic procedures, differences amongst surgical parameters with and without changing the surgical gloves and whether frequent glove change affected surgical parameters or clinical outcomes. Materials and Methods: A prospective multicenter study conducted at three centers from January 2014 to January 2016. A 250 patients were divided into 2 groups (n=125 each in Group 1, surgical team operated with regular changing of gloves. In Group 2, only 1 set of double gloves were worn throughout the procedure. Surgical parameters or clinical outcomes were assessed for both the groups. Statistical analyses included the median, mode, range, Interquartile Range (IQR and sample standard deviation (s and independent-samples t-test. Bacterial counts were expressed as median with (IQR. Results: Surgical Timing Difference was 10 (S.D.- 4.2 minutes more in Group-1 (<0.05, Surgical Cost was higher in Group-1 by Rs.150-450 (<0.05. Outer glove micro-perforation rate was 5.85% and 8.15% in group-1 and 2 respectively with no inner glove perforation or Surgical Site Infections. Outer glove micro perforations were proportional to duration of surgery; operations lasting 120-210 and 61-120 minutes had 66.6% and 37.2% micro perforation rates respectively (p<0.05. Conclusion: Under standard operating conditions, procedures performed without glove change are shorter and cost effective than procedures performed with regular glove change with similar surgical and functional results. Judicious use of surgical gloves is a patient and environment friendly option, thereby reducing the hospital’s biomedical waste load.

  2. WRAP low level waste restricted waste management (LLW RWM) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1997-01-01

    On April 22, 1997, the Low Level Waste Restricted Waste Management (LLW RWM) glovebox was tested using acceptance test procedure 13027A-87. Mr. Robert L. Warmenhoven served as test director, Mr. Kendrick Leist acted as test operator and test witness, and Michael Lane provided miscellaneous software support. The primary focus of the glovebox acceptance test was to examine glovebox control system interlocks, operator Interface Unit (OIU) menus, alarms, and messages. Basic drum port and lift table control sequences were demonstrated. OIU menus, messages, and alarm sequences were examined, with few exceptions noted. Barcode testing was bypassed, due to the lack of installed equipment as well as the switch from basic reliance on fixed bar code readers to the enhanced use of portable bar code readers. Bar code testing was completed during performance of the LLW RWM OTP. Mechanical and control deficiencies were documented as Test Exceptions during performance of this Acceptance Test. These items are attached as Appendix A to this report

  3. Building 773-A, Lab F003 Glovebox Project Radiological Design Summary Report

    International Nuclear Information System (INIS)

    Gaul, W.C.

    2003-01-01

    Engineering Standards present the radiological design criteria and requirements, which must be satisfied for all SRS facility designs. The radiological design criteria and requirements specified in the standard are based on the Code of Federal Regulations, DOE Orders, Site manuals, other applicable standards, and various DOE guides and handbooks. This report contains top-level requirements for the various areas of radiological protection for workers. For the purposes of demonstrating compliance with these requirements, the designer must examine the requirement for the design and either incorporate or provide a technical justification as to why the requirement is not incorporated. This document reports a radiological design review for the STREAK lab glovebox upgrades of inlet ventilation, additional mechanical and electrical services, new glovebox instrumentation and alarms. This report demonstrates that the gloveboxes meet the radiological design requirements of Engineering Standards

  4. A technique for the assessment of the masses of residual plutonium in gloveboxes using thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Day, B.; Godward, D.F.

    1979-01-01

    A means of measuring the mass of residual plutonium in gloveboxes in the size range 1 to 10 m 3 has been developed using multiple thermoluminescent detectors. By optimising the location and the number of detectors, and by using suitable filtration, the mean response from them has been made insensitive to the distribution and the composition of the plutonium. It is possible to detect 10 g of plutonium in the largest glovebox considered. The measurement and mass estimation processes have been reduced to simple operations which can be carried out by skilled industrial staff. The routine application of the technique has been arranged to minimise disturbance to be production work going on in the gloveboxes by making unattended measurements during silent hours

  5. Alternative approach for fire suppression of class A, B and C fires in gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberger, Mark S [Los Alamos National Laboratory; Tsiagkouris, James A [Los Alamos National Laboratory

    2011-02-10

    Department of Energy (DOE) Orders and National Fire Protection Association (NFPA) Codes and Standards require fire suppression in gloveboxes. Several potential solutions have been and are currently being considered at Los Alamos National Laboratory (LANL). The objective is to provide reliable, minimally invasive, and seismically robust fire suppression capable of extinguishing Class A, B, and C fires; achieve compliance with DOE and NFPA requirements; and provide value-added improvements to fire safety in gloveboxes. This report provides a brief summary of current approaches and also documents the successful fire tests conducted to prove that one approach, specifically Fire Foe{trademark} tubes, is capable of achieving the requirement to provide reliable fire protection in gloveboxes in a cost-effective manner.

  6. Seismic stability of a standalone glove box structure

    Energy Technology Data Exchange (ETDEWEB)

    Saraswat, A., E-mail: anupams@barc.gov.in [Bhabha Atomic Research Centre, Mumbai (India); Reddy, G.R. [Bhabha Atomic Research Centre, Mumbai (India); Ghosh, S. [Indian Institute of Technology Bombay, Mumbai (India); Ghosh, A.K.; Kumar, Arun [Bhabha Atomic Research Centre, Mumbai (India)

    2014-09-15

    Highlights: • Glove box is a leak tight, safety related structure used for handling radiotoxic materials. • To study the seismic performance of a freestanding glove box, extensive shake table testing has been carried out. • Glove box maintained structural integrity and leak tightness up to design basis earthquake loading. • Detailed three-dimensional finite element model of the structure is developed and analyzed by using direct time integration methods. • Simplified numerical method is proposed and successfully applied, to quickly estimate sliding displacement and determine upper bounds for it. - Abstract: In a nuclear fuel cycle facility, radiotoxic materials are being handled in freestanding leak tight enclosures called glove boxes (GBs). These glove boxes act as a primary confinement for the radiotoxic materials. Glove boxes are designed as per codal requirements for class I component. They are designed to withstand extreme level of earthquake loading with a return period of 10,000 years. To evaluate seismic performance of the glove box, there is a need to check the stability (sliding and overturning), structural integrity (stresses and strains) and leak tightness under earthquake loading. Extensive shake table experiments were conducted on a single standalone glove box. Actual laboratory conditions were simulated during testing to check the response. After extensive shake table testing, glove box structure was also analyzed using finite element (FE) software. Detailed three-dimensional model of glove box structure was developed and analyzed using nonlinear time history method. It was observed that finite element methods could be utilized to accurately predict dynamic response of glove box structure. This paper discusses the details and results of shake table testing and methodology used for modelling and analysing freestanding glove box structure under seismic loading. In addition, simplified numerical procedure, developed using energy conservation

  7. Seismic stability of a standalone glove box structure

    International Nuclear Information System (INIS)

    Saraswat, A.; Reddy, G.R.; Ghosh, S.; Ghosh, A.K.; Kumar, Arun

    2014-01-01

    Highlights: • Glove box is a leak tight, safety related structure used for handling radiotoxic materials. • To study the seismic performance of a freestanding glove box, extensive shake table testing has been carried out. • Glove box maintained structural integrity and leak tightness up to design basis earthquake loading. • Detailed three-dimensional finite element model of the structure is developed and analyzed by using direct time integration methods. • Simplified numerical method is proposed and successfully applied, to quickly estimate sliding displacement and determine upper bounds for it. - Abstract: In a nuclear fuel cycle facility, radiotoxic materials are being handled in freestanding leak tight enclosures called glove boxes (GBs). These glove boxes act as a primary confinement for the radiotoxic materials. Glove boxes are designed as per codal requirements for class I component. They are designed to withstand extreme level of earthquake loading with a return period of 10,000 years. To evaluate seismic performance of the glove box, there is a need to check the stability (sliding and overturning), structural integrity (stresses and strains) and leak tightness under earthquake loading. Extensive shake table experiments were conducted on a single standalone glove box. Actual laboratory conditions were simulated during testing to check the response. After extensive shake table testing, glove box structure was also analyzed using finite element (FE) software. Detailed three-dimensional model of glove box structure was developed and analyzed using nonlinear time history method. It was observed that finite element methods could be utilized to accurately predict dynamic response of glove box structure. This paper discusses the details and results of shake table testing and methodology used for modelling and analysing freestanding glove box structure under seismic loading. In addition, simplified numerical procedure, developed using energy conservation

  8. The Astronaut Glove Challenge: Big Innovation from a (Very) Small Team

    Science.gov (United States)

    Homer, Peter

    2008-01-01

    Many measurements were taken by test engineers from Hamilton Sundstrand, the prime contractor for the current EVA suit. Because the raw measurements needed to be converted to torques and combined into a final score, it was impossible to keep track of who was ahead in this phase. The final comfort and dexterity test was performed in a depressurized glove box to simulate real on-orbit conditions. Each competitor was required to exercise the glove through a defined set of finger, thumb, and wrist motions without any sign of abrasion or bruising of the competitor's hand. I learned a lot about arm fatigue! This was a pass-fail event, and both of the remaining competitors came through intact. After taking what seemed like an eternity to tally the final scores, the judges announced that I had won the competition. My glove was the only one to have achieved lower finger-bending torques than the Phase VI glove. Looking back, I see three sources of the success of this project that I believe also operate in other programs where small teams have broken new ground in aerospace technologies. These are awareness, failure, and trust. By remaining aware of the big picture, continuously asking myself, "Am I converging on a solution?" and "Am I converging fast enough?" I was able to see that my original design was not going to succeed, leading to the decision to start over. I was also aware that, had I lingered over this choice or taken time to analyze it, I would not have been ready on the first day of competition. Failure forced me to look outside conventional thinking and opened the door to innovation. Choosing to make incremental failures enabled me to rapidly climb the learning curve. Trusting my "gut" feelings-which are really an internalized accumulation of experiences-and my newly acquired skills allowed me to devise new technologies rapidly and complete both gloves just in time. Awareness, failure, and trust are intertwined: failure provides experiences that inform awareness

  9. Plutonium glove boxes - metrology and operational states

    International Nuclear Information System (INIS)

    Thyer, A.M.

    2001-01-01

    The main objective was to undertake a literature review in support of NII's ongoing work in improving safety in the nuclear industry to help define suitable standards of cleanliness for plutonium glove boxes. This is to cover the following areas: existing or proposed national/international standards relating to plutonium glove box cleanliness management; practicable metrology options for assessing the plutonium content of glove boxes; any available dose information relating to the operation of modern and 'old design'; current contamination levels of specific significance (i.e. any accepted level in decommissioning/waste terms, typical criticality limits (if available), any box plutonium loadings that are documented with corresponding operator doses etc.); and, techniques for the decontamination of plutonium glove boxes and their relative effectiveness. This should then form the basis of any further development work undertaken by the UK nuclear industry. Main recommendations are as follows: 1) No information could be found in open literature on acceptable levels of contamination in boxes and action levels for cleanup. If these are not available in closed publications the 2) Where possible, the decontamination methods identified should be tested and dose information recorded against each method to allow informed decisions on which is the optimum technique for a particular form of contamination. 3) Consideration should be given to utilisation of metrology options which have the lowest potential for exposure of operators. Preferred options, may be detection from the outside of boxes using hand-held or permanently located radiation detectors, or semi-intrusive methods such as air-ionisation readings which would require one-off installation of detectors in ductwork

  10. Inductively coupled plasma-atomic emission spectroscopy glovebox assembly system at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-01-01

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ''cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  11. Report of working group for technical standard of cutting and melting works in Glovebox dismantling

    International Nuclear Information System (INIS)

    Asazuma, Shinichiroh; Takeda, Shinsoh; Tajima, Shoichi

    2004-11-01

    In order to prevent spread of contamination, glovebox dismantling activity is usually performed in a confined enclosure with personal radioactive protective equipment. Since large potion of these materials is made of vinyl acetate, there exist potential risks of fire, damage and injury to the environment and workers during the dismantling (cutting or melting) operation. It is therefore important to establish standard for proper use of equipment and hazard controls in such a specific environment. Working Group composed of Tokai Works and Oarai Works has examined and developed the operational standard for cutting work in glovebox dismantlement. The result is reflected to the Tokai Works Safety Operational Standard. (author)

  12. The effects of vibration-reducing gloves on finger vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  13. Evaluating Utility Gloves as a Potential Reservoir for Pathogenic Bacteria.

    Science.gov (United States)

    Grant, Kathy L; Naber, E Donald; Halteman, William A

    2015-08-01

    This pilot study sought to determine the rate and degree to which gram-negative Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa and gram-positive Staphylococcus aureus occurred on the inside of utility gloves used at University of Maine at Augusta, Dental Health Programs' dental hygiene clinic. Five steam autoclave utility gloves were randomly selected to serve as control and a convenience sample of 10 used utility gloves were selected from the sterilization area. A sample was collected from a predetermined surface area from the inside of each steam autoclave utility glove and used utility glove. Each sample was used to inoculate a Petri plate containing 2 types of culture media. Samples were incubated at 37° C for 30 to 36 hours in aerobic conditions. Colony forming units (CFU) were counted. Confidence intervals (CI) estimated the rate of contamination with gram-negative K. pneumoniae, E. coli and P. aeruginosa on the inside of steam autoclave utility gloves to be n=33 95% CL [0.000, 0.049], used utility gloves to be n=70, 95% CL [0.000, 0.0303]. Data estimated the rate of contamination with gram-positive S. aureus on the inside of steam autoclave utility gloves to be n=35, 95% CL [0.233, 0.530], used utility gloves to be n=70, 95% CL [0.2730, 0.4975]. Culture media expressed a wide range of CFU from 0 to over 200. The risk of utility glove contamination with gram-negative bacteria is likely low. The expressed growth of S. aureus from steam autoclave utility gloves controls raises questions about the effectiveness and safety of generally accepted sterilization standards for the governmentally mandated use of utility gloves. Copyright © 2015 The American Dental Hygienists’ Association.

  14. Development of Wireless RFID Glove for Various Applications

    Science.gov (United States)

    Lee, Changwon; Kim, Minchul; Park, Jinwoo; Oh, Jeonghoon; Eom, Kihwan

    Radio Frequency Identification is increasingly popular technology with many applications. The majority of applications of RFID are supply-chain management. In this paper, we proposed the development of wireless RFID Glove for various applications in real life. Proposed wireless RFID glove is composed of RFID reader of 13.56 MHz and RF wireless module. Proposed Gloves were applied to two applications. First is the interactive leaning and second is Meal aid system for blind people. The experimental results confirmed good performances.

  15. The use of protective gloves by medical personnel

    Directory of Open Access Journals (Sweden)

    Anna Garus-Pakowska

    2013-06-01

    Full Text Available Introduction: To minimize the risk of cross-infection between the patient and the medical staff, it is necessary to use individual protective measures such as gloves. According to the recommendations of the Centers for Disease Control and Prevention (CDC and the World Health Organization (WHO, protective gloves should always be used upon contact with blood, mucosa, injured skin or other potentially infectious material. Materials and Methods: The aim of the study was to evaluate, through quasi-observation, the use of protective gloves by medical staff according to the guidelines issued by the CDC and WHO. The results were subject to statistical analysis (p < 0.05. Results: During 1544 hours of observations, 3498 situations were recorded in which wearing protective gloves is demanded from the medical staff. The overall percentage of the observance of using gloves was 50%. The use of gloves depended significantly on the type of ward, profession, performed activity, number of situations that require wearing gloves during the observation unit and the real workload. During the entire study, as many as 718 contacts with patients were observed in which the same gloves were used several times. Conclusion: Wearing disposable protective gloves by the medical staff is insufficient.

  16. New approaches to glove box design at Hanford

    International Nuclear Information System (INIS)

    Lini, D.C.; Fisher, F.D.; Walters, F.F.

    1986-01-01

    Glove boxes provide the primary environmental containment system for plutonium processing operations at US Dept. of Energy (DOE)-owned facilities such as Rockwell Hanford. As noted in previous presentations, glove box designs and operations have evolved through stages that are a result of advances in processing techniques, new regulatory requirements, and cost escalation. These factors will continue to influence the current glove box designs and operations. The purpose of this presentation is to discuss required upgrades and changes that are being incorporated into glove boxes being installed at Rockwell Hanford and other DOE installations or are being evaluated for future upgrades

  17. Handling chemotherapy drugs-Do medical gloves really protect?

    Science.gov (United States)

    Landeck, Lilla; Gonzalez, Ernesto; Koch, Olaf Manfred

    2015-10-15

    Due to their potential mutagenic, carcinogenic and teratogenic effects occupational exposure to chemotherapy drugs should be kept to a minimum. Utilization of personnel protective devices, especially the use of protective medical gloves, is a mainstay to avoid skin contact. The choice of appropriate gloves is of outstanding importance. For optimal protection in the oncology setting it is essential to establish general guidelines evaluating appropriate materials and defining quality standards. Establishing these guidelines can facilitate better handling and avoid potential hazards and late sequelae. In Europe there are no specific requirements or test methodologies for medical gloves used in the oncology environment. The implementation of uniform standards for gloves used while handling chemotherapy drugs would be desirable. In contrast, in the US medical gloves used to handle chemotherapy drugs have to fulfill requirements according to the ASTM International (American Society of Testing and Materials) standard D 6978-05. Nitrile or natural rubber latex is a preferred basic glove material, while vinyl is considered inappropriate because of its generally increased permeability. For extended exposure to chemotherapy drugs, double gloving, the use of thicker gloves and the frequent change of gloves increases their protective power. © 2014 UICC.

  18. The use of protective gloves by medical personnel.

    Science.gov (United States)

    Garus-Pakowska, Anna; Sobala, Wojciech; Szatko, Franciszek

    2013-06-01

    To minimize the risk of cross-infection between the patient and the medical staff, it is necessary to use individual protective measures such as gloves. According to the recommendations of the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO), protective gloves should always be used upon contact with blood, mucosa, injured skin or other potentially infectious material. The aim of the study was to evaluate, through quasi-observation, the use of protective gloves by medical staff according to the guidelines issued by the CDC and WHO. The results were subject to statistical analysis (p gloves is demanded from the medical staff. The overall percentage of the observance of using gloves was 50%. The use of gloves depended significantly on the type of ward, profession, performed activity, number of situations that require wearing gloves during the observation unit and the real workload. During the entire study, as many as 718 contacts with patients were observed in which the same gloves were used several times. Wearing disposable protective gloves by the medical staff is insufficient.

  19. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    Science.gov (United States)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  20. Initial Work Toward a Robotically Assisted EVA Glove

    Science.gov (United States)

    Rogers, J.; Peters, B.; McBryan, E.; Laske, E.

    2016-01-01

    The Space Suit RoboGlove is a device designed to provide additional grasp strength or endurance for an EVA crew member since gloved hand performance is a fraction of what the unencumbered human hand can achieve. There have been past efforts to approach this problem by employing novel materials and construction techniques to the glove design, as well as integrating powered assistance devices. This application of the NASA/GM RoboGlove technology uses a unique approach to integrate the robotic actuators and sensors into a Phase VI EVA glove. This design provides grasp augmentation to the glove user while active, but can also function as a normal glove when disabled. Care was taken to avoid adding excessive bulk to the glove or affecting tactility by choosing low-profile sensors and extrinsically locating the actuators. Conduits are used to guide robotic tendons from linear actuators, across the wrist, and to the fingers. The second generation of the SSRG includes updated electronics, sensors, and actuators to improve performance. The following discusses the electromechanical design, softgoods integration, and control system of the SSRG. It also presents test results from the first integration of a powered mobility element onto a space suit, the NASA Mark III. Early results show that sensor integration did not impact tactile feedback in the glove and the actuators show potential for reduction in grasp fatigue over time.

  1. Decontamination and dismantling of large plutonium-contamined glove boxes

    International Nuclear Information System (INIS)

    Draulans, J.

    1991-01-01

    This report describes the work performed in the frame of two C.E.C. - Contracts FI1D-002400-B Decommissioning of very large glove boxes and FI1D-0058 Decommissioning of a complex glove box structure to be dismounted partially on place. Detailed information is given about each glove box. The selection of the solution Transportation of the glove boxes to a specialized dismantling plant is justified. The necessary contacts inside the BELGONUCLEAIRE MOX plant and between the latter and other organizations are explained. The problems of manipulating large gloves are listed and the retained solution of building a so called Stiffening frame around each glove box is described. Furthermore information is given concerning required operators time for cleaning, manipulating, packing and dismantling together with received doses and quantities of waste produced. Concerning the glove box unit partially to be dismounted on place, detailed information is given about the way the glove boxes have been treated prior to this partial dismantling on place and about the way this partial dismantling has been performed. From these results one can conclude that such a delicate task can be performed without major difficulties. Finally information is given of the decontamination test of a highly Pu contaminated glove box with freon with rather poor results and of the preliminary CO 2 blasting tests on non active samples

  2. A Dexterity and Tactility Evaluation of the Australian Nuclear Biological Chemical (NBC) Glove

    National Research Council Canada - National Science Library

    Scanlan, S

    2004-01-01

    This report details the tactility and dexterity of four different glove types, including the Australian in-service NBC butyl rubber glove and Nomex flying glove for standardized (Purdue pegboard) and operational...

  3. Preliminary evaluation of the electrapette for possible use in the glovebox for pipetting plutonium solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hansbury, E.; Ortiz, B.; Roybal, C.

    1990-12-01

    At the Los Alamos Laboratory Plutonium Facility, Solution Assay Instruments (SAIs) are used to provide real-time information on the plutonium (Pu) content of the process stream at various stages in the process. Much of the solution analysis must be carried and as a glovebox to protect the operator from radiation. In order to overcome some of the difficulties usually encountered when working in a glovebox, an electronic solution-volume measuring device called an Electrapette was ordered from Matrix Technologies Corporation. It is said to be highly accurate, simple to use, and can handle the 25 ml of solution required for SAI analyses. It is microprocessor-controlled and comes in two components connected by a detachable cable so that the electronic part can be installed outside the box, while the nosepiece is inside. The two pieces are connected through a plug-in on the glovebox wall. The Electrapette was tested in three sets of experiments: a cold'' lab set, a set run is a hood in a production building, and a third set run in a glovebox using a process solution whose density had been predetermined. The accuracy of the determination could not be determined because the samples had been mixed with other feed before being sent for analysis by the Electrapette. 2 refs., 5 tabs.

  4. W-026, transuranic waste restricted waste management (TRU RWM) glovebox operational test report

    Energy Technology Data Exchange (ETDEWEB)

    Leist, K.J.

    1998-02-18

    The TRU Waste/Restricted Waste Management (LLW/PWNP) Glovebox 401 is designed to accept and process waste from the Transuranic Process Glovebox 302. Waste is transferred to the glovebox via the Drath and Schraeder Bagless Transfer Port (DO-07401) on a transfer stand. The stand is removed with a hoist and the operator inspects the waste (with the aid of the Sampling and Treatment Director) to determine a course of action for each item. The waste is separated into compliant and non compliant. One Trip Port DO-07402A is designated as ``Compliant``and One Trip Port DO-07402B is designated as ``Non Compliant``. As the processing (inspection, bar coding, sampling and treatment) of the transferred items takes place, residue is placed in the appropriate One Trip port. The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved for sampling or storage or it`s state altered by treatment, the Operator will track an items location using a portable barcode reader and entry any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolutions (described here) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

  5. Procedure for hazards analysis of plutonium gloveboxes used in analytical chemistry operations

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-06-01

    A procedure is presented to identify and assess hazards associated with gloveboxes used for analytical chemistry operations involving plutonium. This procedure is based upon analytic tree methodology and it has been adapted from the US Energy Research and Development Administration's safety program, the Management Oversight and Risk Tree

  6. W-026, transuranic waste restricted waste management (TRU RWM) glovebox operational test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    The TRU Waste/Restricted Waste Management (LLW/PWNP) Glovebox 401 is designed to accept and process waste from the Transuranic Process Glovebox 302. Waste is transferred to the glovebox via the Drath and Schraeder Bagless Transfer Port (DO-07401) on a transfer stand. The stand is removed with a hoist and the operator inspects the waste (with the aid of the Sampling and Treatment Director) to determine a course of action for each item. The waste is separated into compliant and non compliant. One Trip Port DO-07402A is designated as ''Compliant''and One Trip Port DO-07402B is designated as ''Non Compliant''. As the processing (inspection, bar coding, sampling and treatment) of the transferred items takes place, residue is placed in the appropriate One Trip port. The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved for sampling or storage or it's state altered by treatment, the Operator will track an items location using a portable barcode reader and entry any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolutions (described here) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation

  7. Glove use among hairdressers: difficulties in the correct use of gloves among hairdressers and the effect of education.

    Science.gov (United States)

    Oreskov, Katia W; Søsted, Heidi; Johansen, Jeanne D

    2015-06-01

    Hand eczema is frequent among Danish hairdressers, and they are advised to use gloves as protection. However, studies indicate that a significant proportion use gloves inappropriately. To determine whether hairdressers and apprentices use protective gloves in the correct way, and to determine whether a demonstration of correct use could cause an improvement. Forty-three hairdressers and apprentices were asked to perform a hair wash while wearing gloves. The shampoo used was contaminated with an ultraviolet (UV) trace material. Two rounds of hair washing were carried out by each person, interrupted by a demonstration of how to use gloves correctly. Photographs were taken to compare UV contamination before and after the demonstration. All of the participants (100%) had their hands contaminated during the first round; the area ranged between 0.02 and 101.37 cm(2) (median 3.62 cm(2)). In the second round, 55.8% were contaminated (range 0.00-3.08 cm(2) ; median 0.01 cm(2)). The reduction in contaminated skin areas was statistically significant (p glove demonstration. There were no significant differences between hairdressers and apprentices. Hairdressers and apprentices lack knowledge on how to handle gloves correctly. A short demonstration of correct glove use made a significant difference in the skin protection provided by gloves. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Comparison of the effect of using latex and nitrile gloves hand dexterity among Iranian population

    Directory of Open Access Journals (Sweden)

    T. Allahyari

    2014-02-01

    .Conclusion: Considering that there was no significant difference in the score of both fine finger and gross hand dexterity while using nitrile gloves as compared to the control condition (without gloves, means that use of nitrile gloves has no adverse effect on hand dexterity therefore, using nitrile gloves is recommended as a alternative for the latex gloves, considering the additional advantage of no allergic reaction in this gloves.

  9. Integrity of Disposable Nitrile Exam Gloves Exposed to Simulated Movement

    Science.gov (United States)

    Phalen, Robert N.; Wong, Weng Kee

    2011-01-01

    Every year, millions of health care, first responder, and industry workers are exposed to chemical and biological hazards. Disposable nitrile gloves are a common choice as both a chemical and physical barrier to these hazards, especially as an alternative to natural latex gloves. However, glove selection is complicated by the availability of several types or formulations of nitrile gloves, such as low-modulus, medical-grade, low-filler, and cleanroom products. This study evaluated the influence of simulated movement on the physical integrity (i.e., holes) of different nitrile exam glove brands and types. Thirty glove products were evaluated out-of-box and after exposure to simulated whole-glove movement for 2 hr. In lieu of the traditional 1-L water-leak test, a modified water-leak test, standardized to detect a 0.15 ± 0.05 mm hole in different regions of the glove, was developed. A specialized air inflation method simulated bidirectional stretching and whole-glove movement. A worst-case scenario with maximum stretching was evaluated. On average, movement did not have a significant effect on glove integrity (chi-square; p=0.068). The average effect was less than 1% between no movement (1.5%) and movement (2.1%) exposures. However, there was significant variability in glove integrity between different glove types (p ≤ 0.05). Cleanroom gloves, on average, had the highest percentage of leaks, and 50% failed the water-leak test. Low-modulus and medical-grade gloves had the lowest percentages of leaks, and no products failed the water-leak test. Variability in polymer formulation was suspected to account for the observed discrepancies, as well as the inability of the traditional 1-L water-leak test to detect holes in finger/thumb regions. Unexpectedly, greater than 80% of the glove defects were observed in the finger and thumb regions. It is recommended that existing water-leak tests be re-evaluated and standardized to account for product variability. PMID:21476169

  10. Anthropomorphic Robot Hand And Teaching Glove

    Science.gov (United States)

    Engler, Charles D., Jr.

    1991-01-01

    Robotic forearm-and-hand assembly manipulates objects by performing wrist and hand motions with nearly human grasping ability and dexterity. Imitates hand motions of human operator who controls robot in real time by programming via exoskeletal "teaching glove". Telemanipulator systems based on this robotic-hand concept useful where humanlike dexterity required. Underwater, high-radiation, vacuum, hot, cold, toxic, or inhospitable environments potential application sites. Particularly suited to assisting astronauts on space station in safely executing unexpected tasks requiring greater dexterity than standard gripper.

  11. Re-usable low density polyethylene arm glove for puerperal ...

    African Journals Online (AJOL)

    Objective: To design a long arm glove that can be used within a puerperal uterus to prevent the health-care worker contracting HIV from an infected patient. The designed long arm glove should be cheap (affordable) and readily available in low resource centres and must have proven sterility assurance and tensile strength ...

  12. Transmission of vibration through gloves: effects of contact area.

    Science.gov (United States)

    Md Rezali, Khairil Anas; Griffin, Michael J

    2017-01-01

    For three samples of material (12.5, 25.0 and 37.5 mm diameter) from each of three gloves, the dynamic stiffnesses and the vibration transmissibilities of the materials (to both the palm of the hand and the thenar eminence) were measured at frequencies from 10 to 300 Hz. Additional measurements showed the apparent masses of the hand at the palm and the thenar eminence were independent of contact area at frequencies less than about 40 Hz, but increased with increasing area at higher frequencies. The stiffness and damping of the glove materials increased with increasing area. These changes caused material transmissibilities to the hand to increase with increasing area. It is concluded that the size of the area of contact has a large influence on the transmission of vibration through a glove to the hand. The area of contact should be well-defined and controlled when evaluating the transmission of vibration through gloves. Practitioner Summary: The transmission of vibration through gloves depends on both the dynamic stiffness of glove material and the dynamic response of the hand. Both of these depend on the size of the contact area between a glove material and the hand, which should be taken into account when assessing glove transmissibility.

  13. Design options for improving protective gloves for industrial assembly work.

    Science.gov (United States)

    Dianat, Iman; Haslegrave, Christine M; Stedmon, Alex W

    2014-07-01

    The study investigated the effects of wearing two new designs of cotton glove on several hand performance capabilities and compared them against the effects of barehanded, single-layered and double cotton glove conditions when working with hand tools (screwdriver and pliers). The new glove designs were based on the findings of subjective hand discomfort assessments for this type of work and aimed to match the glove thickness to the localised pressure and sensitivity in different areas of the hand as well as to provide adequate dexterity for fine manipulative tasks. The results showed that the first prototype glove and the barehanded condition were comparable and provided better dexterity and higher handgrip strength than double thickness gloves. The results support the hypothesis that selective thickness in different areas of the hand could be applied by glove manufacturers to improve the glove design, so that it can protect the hands from the environment and at the same time allow optimal hand performance capabilities. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Haptic Glove Technology: Skill Development through Video Game Play

    Science.gov (United States)

    Bargerhuff, Mary Ellen; Cowan, Heidi; Oliveira, Francisco; Quek, Francis; Fang, Bing

    2010-01-01

    This article introduces a recently developed haptic glove system and describes how the participants used a video game that was purposely designed to train them in skills that are needed for the efficient use of the haptic glove. Assessed skills included speed, efficiency, embodied skill, and engagement. The findings and implications for future…

  15. Retained portion of latex glove during femoral nailing. Case report.

    Science.gov (United States)

    Sadat-Ali, M; Marwah, S; al-Habdan, I

    1996-11-01

    A case of retained glove during Kuntscher intramedullary nailing is described. An abscess around the glove could have lead to osteomyelitis. One need to be cautious feeling the top end of the nail while femoral nailing to avoid such a complication.

  16. High concentrations of natural rubber latex allergens in gloves used ...

    African Journals Online (AJOL)

    Introduction. Gloves made of natural rubber latex (NRL) are commonly used by healthcare workers because of their good qualities. However, allergic reactions to latex allergens are still commonly reported. Objective. To measure the concentrations of Hev b 1, Hev b 3, Hev b 5 and Hev b 6.02 allergens in gloves used by a ...

  17. A System for Cooling inside a Glove Box

    Science.gov (United States)

    Sanz, Martial

    2010-01-01

    An easy, efficient, reliable, and low-cost method of constructing a cooling system using a simple circulating pump is described. The system is employed in conjunction with an inert atmosphere glove box to achieve the synthesis of air- and moisture-sensitive compounds inside the glove box at controlled, low temperatures without contaminating the…

  18. Assessment of Protective Gloves for Use with Airfed Suits.

    Science.gov (United States)

    Millard, Claire E; Vaughan, Nicholas P

    2015-10-01

    Gloves are often needed for hand protection at work, but they can impair manual dexterity, especially if they are multilayered or ill-fitting. This article describes two studies of gloves to be worn with airfed suits (AFS) for nuclear decommissioning or containment level 4 (CL4) microbiological work. Both sets of workers wear multiple layers of gloves for protection and to accommodate decontamination procedures. Nuclear workers are also often required to wear cut-resistant gloves as an extra layer of protection. A total of 15 subjects volunteered to take part in manual dexterity testing of the different gloving systems. The subjects' hands were measured to ensure that the appropriate sized gloves were used. The gloves were tested with the subjects wearing the complete clothing ensembles appropriate to the work, using a combination of standard dexterity tests: the nine-hole peg test; a pin test adapted from the European Standard for protective gloves, the Purdue Pegboard test, and the Minnesota turning test. Specialized tests such as a hand tool test were used to test nuclear gloves, and laboratory-type manipulation tasks were used to test CL4 gloves. Subjective assessments of temperature sensation and skin wettedness were made before and after the dexterity tests of the nuclear gloves only. During all assessments, we made observations and questioned the subjects about ergonomic issues related to the clothing ensembles. Overall, the results show that the greater the thickness of the gloves and the number of layers the more the levels of manual dexterity performance are degraded. The nuclear cut-resistant gloves with the worst level of dexterity were stiff and inflexible and the subjects experienced problems picking up small items and bending their hands. The work also highlighted other factors that affect manual dexterity performance, including proper sizing, interactions with the other garments worn at the time, and the work equipment in use. In conclusion, when

  19. Determination of skin dose reduction by lead equivalent gloves

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Abd Aziz Mhd Ramli

    2006-01-01

    Radiation protective gloves are always used in medical facilities to protect radiation workers from unnecessary radiation exposure. A study on radiation protection gloves which are produced by local company had been performed by the Medical Physics Group, MINT. The gloves were made of lead equivalent material, as the attenuating element. The gloves were evaluated in term of the percentage of skin dose reduction by using a newly developed procedure and facilities in MINT. Attenuation measurements of the gloves had been carried out using direct beams and scattered radiations of different qualities. TLD rings were fitted on finger phantom; and water phantom were used in the measurement. The result were obtained and analysed based on data supplied by manufacturer. (Author)

  20. Production of surgical gloves from low extractable protein RVNRL

    Energy Technology Data Exchange (ETDEWEB)

    Marga, Utama; Yanti, S.; Made, Sumarti; Marsongko; Tita, Puspitasari; Dian, Iramani [Center for Research and Development of Isotopes and Radiation Technology, National Nuclear Energy Agency, Jakarta (Indonesia); Makuuchi, K. [EB System Cooperation, Takasaki, Gunma (Japan); Yoshii, F. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Siswanto [Research Unit for Biotechnology of Estate Crop (Indonesia)

    2001-03-01

    Study on the production of surgical gloves from low extractable protein PVNRL (Radiation Vulcanization of Natural Rubber Latex) in home industry scale with normal butyl acrylate as sensitizer has been carried out. The variation of dipping speed, concentration of coagulant agent and selection of antioxidant for producing good quality of surgical gloves were evaluated. The water-extractable protein and PBS (Phosphate Buffer Saline) - extractable protein content, the physical and mechanical properties of gloves were measured. The results show that for producing a good quality of surgical gloves from low extractable protein RVNRL, the concentration of latex is 50% with calcium nitrate as coagulant agent between 15-20%. By using this condition the physical and mechanical properties of surgical gloves is required to ASTM standard such as tensile strength more than 24 MPa, PBS-extractable protein is around 41-68 ug/g and water-extractable protein contents is around 23-35 ug/g. (author)

  1. Glove box operations for transplutonium element production

    International Nuclear Information System (INIS)

    Knauer, J.B.; Alexander, C.W.; Wiggins, J.T.

    1986-01-01

    Glove boxes are used in the Transuranium Processing Plant (TRU) at Oak Ridge National Laboratory for (1) completing the final chemical processing steps to isolate and purify the transplutonium elements, (2) packaging transplutonium elements for shipment, (3) preirradiation and postirradiation processing of samples used to produce special transplutonium isotopes in the High Flux Isotope Reactor (HFIR), and (4) conducting special projects, which include providing highly purified transplutonium products in special chemical forms and/or in experimental devices as requested by researchers. During 20 years of operation, the quantities of transplutonium elements produced, and thus the amount of radioactivity handled, have continually increased. At the same time, substantial effort has been expended to reduce personnel radiation exposures. Equipment and techniques have been developed to maintain the desired operational capabilities in the glove boxes while keeping radiation exposures to operating personnel as low as reasonably achievable. Developments have included the design and fabrication of product handling and collection devices, product storage containers, and laminated exterior shields of lead glass, lead acrylic, acrylic sheets, polyethylene, and lead

  2. Indications and the requirements for single-use medical gloves

    Science.gov (United States)

    Kramer, Axel; Assadian, Ojan

    2016-01-01

    Aim: While the requirements for single-use gloves for staff protection are clearly defined, the conventional medical differentiation between “sterile surgical gloves” used during surgical procedures and “single-use medical gloves” used in non-sterile medical areas does not adequately define the different requirements in these two areas of use. Sterilization of single-use medical gloves is not performed if sterility is not required; thus, another terminology must be found to identify the safety quality of non-sterile single-use medical gloves. Therefore, the labeling of such gloves should reflect this situation, by introducing the term “pathogen-free” single-use glove. The hygienic safety of such a glove would be attainable by ensuring aseptic manufacturing conditions during manufacturing and control of pathogen load of batch controls after fabrication. Proposed recommendation: Because single-use gloves employed in non-sterile areas come into contact not only with intact skin but also with mucous membranes, no potential pathogens should be detectable in 100 mL of rinse sample. In order to declare such gloves as pathogen-free we suggest absence of the indicator species S. aureus and E. coli. In addition, the total CFU count should be evaluated, since a high load indicates lack of optimal hygiene during the manufacturing process. Based on the requirements for potable water and findings obtained from investigations of the bacterial load of such gloves after manufacturing, the here suggested limit for the total bacterial count of glove seems realistic. PMID:26816673

  3. 21 CFR 800.20 - Patient examination gloves and surgeons' gloves; sample plans and test method for leakage defects...

    Science.gov (United States)

    2010-04-01

    ... examination and by a water leak test method, using 1,000 milliliters (ml) of water. (i) Units examined. Each... inches up the fill tube.) (iii) Leak test examination. Immediately after adding the water, examine the glove for water leaks. Do not squeeze the glove; use only minimum manipulation to spread the fingers to...

  4. CSER 98-003: criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    1999-01-01

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21 A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into Glovebox HC-21A are limited to those with a hydrogen to fissile atom ratio (H/X) ≤ 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k eff = 0.95 (including uncertainties). Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle

  5. CSER 98-003: Criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    1999-01-01

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into GloveboxHC-21 A are limited to those with a hydrogen to fissile atom ratio (H/X) ≤ 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k eff = 0.95. Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle

  6. Closure of an analytical chemistry glove box in alpha laboratory

    International Nuclear Information System (INIS)

    Adelfang, P.; Aparicio, G.; Cassaniti, P.

    1990-01-01

    The works with plutonium are performed in gloves box, operated below atmospheric pressure, to protect the experimenters from this alpha-active material. After 12 years of continual processes, it was necessary the decommissioning of the chemistry glove box in our alpha-laboratory. A great deal of our attention was devoted to the working techniques because of extreme care needed to avoid activity release. The decommissioning includes the following main operations: a) Planning and documentation for the regulatory authority. b) Internal decontamination with surface cleaning and chelating agents. c) Measurement of the remainder internal radioactivity. d) Sealing of the glove ports and nozzles. e) Disconnection of the glove box from the exhaust duct. f) Design and construction of a container for the glove box. g) Transportation of the glove box from alpha-laboratory, to a transitory storage until its final disposal. The above mentioned operations are described in this paper including too: data of personal doses during the operations, characteristics and volumes of radioactive wastes and a description of the instrument used for the measurement of inside glove box activity. (Author) [es

  7. Novel Smart Glove Technology as a Biomechanical Monitoring Tool

    Directory of Open Access Journals (Sweden)

    Brendan O’FLYNN

    2015-10-01

    Full Text Available Developments in Virtual Reality (VR technology and its overall market have been occurring since the 1960s when Ivan Sutherland created the world’s first tracked head-mounted display (HMD – a goggle type head gear. In society today, consumers are expecting a more immersive experience and associated tools to bridge the cyber-physical divide. This paper presents the development of a next generation smart glove microsystem to facilitate Human Computer Interaction through the integration of sensors, processors and wireless technology. The objective of the glove is to measure the range of hand joint movements, in real time and empirically in a quantitative manner. This includes accurate measurement of flexion, extension, adduction and abduction of the metacarpophalangeal (MCP, Proximal interphalangeal (PIP and Distal interphalangeal (DIP joints of the fingers and thumb in degrees, together with thumb-index web space movement. This system enables full real-time monitoring of complex hand movements. Commercially available gloves are not fitted with sufficient sensors for full data capture, and require calibration for each glove wearer. Unlike these current state-of-the-art data gloves, the UU / Tyndall Inertial Measurement Unit (IMU glove uses a combination of novel stretchable substrate material and 9 degree of freedom (DOF inertial sensors in conjunction with complex data analytics to detect joint movement. Our novel IMU data glove requires minimal calibration and is therefore particularly suited to multiple application domains such as Human Computer interfacing, Virtual reality, the healthcare environment..

  8. Development and Test of Robotically Assisted Extravehicular Activity Gloves

    Science.gov (United States)

    Rogers, Jonathan M.; Peters, Benjamin J.; Laske, Evan A.; McBryan, Emily R.

    2017-01-01

    Over the past two years, the High Performance EVA Glove (HPEG) project under NASA's Space Technology Mission Directorate (STMD) funded an effort to develop an electromechanically-assisted space suit glove. The project was a collaboration between the Johnson Space Center's Software, Robotics, and Simulation Division and the Crew and Thermal Systems division. The project sought to combine finger actuator technology developed for Robonaut 2 with the softgoods from the ILC Phase VI EVA glove. The Space Suit RoboGlove (SSRG) uses a system of three linear actuators to pull synthetic tendons attached to the glove's fingers to augment flexion of the user's fingers. To detect the user's inputs, the system utilizes a combination of string potentiometers along the back of the fingers and force sensitive resistors integrated into the fingertips of the glove cover layer. This paper discusses the development process from initial concepts through two major phases of prototypes, and the results of initial human testing. Initial work on the project focused on creating a functioning proof of concept, designing the softgoods integration, and demonstrating augmented grip strength with the actuators. The second year of the project focused on upgrading the actuators, sensors, and software with the overall goal of creating a system that moves with the user's fingers in order to reduce fatigue associated with the operation of a pressurized glove system. This paper also discusses considerations for a flight system based on this prototype development and address where further work is required to mature the technology.

  9. Efficacy of protection by latex gloves during orthodontic therapy.

    Science.gov (United States)

    Doll, G M; Zentner, A; Balan, R; Sergl, H G

    2000-01-01

    The wearing of gloves during orthodontic or dental treatment is generally indicated for reasons of hygiene and protection against infection. This study was aimed at determining the extent and localization of perforations caused by the various orthodontic treatment techniques and interrupting the infection barrier. The impermeability was tested by means of a water retention test according to European standard EN 455, Part 1, performed on 1600 Centramed (Centramed, Koblenz), Tekmedic and SafeEx non-sterile disposable latex gloves (both by Safe Med, Switzerland) and Safe Gan latex gloves with an additional acrylate coating (also by Safe Med). The perforation rate in unused gloves was between 0.5% and 7.5%, rising on average to 11% with increasing use. 36% of the total number of lesions resulted from handling removable appliances, and 57% from handling fixed appliances, especially when replacing arch wires and elastics. Most lesions were in the thumb, index finger and palm region. Only 18% of the defects were noticed by the dentists themselves. The gloves worn by beginners in their first year of postgraduate orthodontic training had about twice as many defects as those worn by qualified orthodontists. When patients with an increased risk of infection are to be treated, additional hand disinfection measures should be taken and 2 pairs of gloves worn in view of the relatively unreliable protection offered by commercially available latex gloves.

  10. Next Generation Life Support: High Performance EVA Glove

    Science.gov (United States)

    Walsh, Sarah K.

    2015-01-01

    The objectives of the High Performance EVA Glove task are to develop advanced EVA gloves for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. New technologies and manufacturing techniques will be incorporated into the new gloves to address finger and hand mobility, injury reduction and durability in nonpristine environments. Three prototypes will be developed, each focusing on different technological advances. A robotic assist glove will integrate a powered grasping system into the current EVA glove design to reduce astronaut hand fatigue and hand injuries. A mechanical counter pressure (MCP) glove will be developed to further explore the potential of MCP technology and assess its capability for countering the effects of vacuum or low pressure environments on the body by using compression fabrics or materials to apply the necessary pressure. A gas pressurized glove, incorporating new technologies, will be the most flight-like of the three prototypes. Advancements include the development and integration of aerogel insulation, damage sensing components, dust-repellant coatings, and dust tolerant bearings.

  11. Permeation of cytotoxic formulations through swatches from selected medical gloves.

    Science.gov (United States)

    Klein, Michael; Lambov, Nikolai; Samev, Nikola; Carstens, Gerhard

    2003-05-15

    The permeability of selected medical glove materials to various cytotoxic agents is described. Fifteen cytotoxic agents were prepared at the highest concentrations normally encountered by hospital personnel. Four single-layer and two double-layer glove systems made of two materials--latex and neoprene--were exposed to the drugs for 30, 60, 90, 120, 150, and 180 minutes. Circular sections of the glove material were cut from the cuff and evaluated without any pretreatment. Permeability tests were conducted in an apparatus consisting of a donor chamber containing the cytotoxic solution and a collection chamber filled with water (the acceptor medium). The two sections were separated by the glove material. Permeating portions, collected in water as the acceptor medium, were analyzed by either ultraviolet-visible light spectrophotometry or high-performance liquid chromatography (HPLC). Permeation rates were calculated on the basis of the concentration of the cytotoxic agent in the acceptor medium. Spectrophotometric measurements were taken every 30 minutes, and HPLC analysis was performed at the end of the three-hour period. Average permeation rates for 14 drugs were low (materials. All glove materials tested were impermeable to most of the cytotoxic agents over a period of three hours. Carmustine was the only agent that substantially permeated single-layer latex glove materials. Permeation of most tested cytotoxic formulations was low through swatches of material from various medical gloves.

  12. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    Science.gov (United States)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  13. Evaluation of the efficacy of antibacterial medical gloves in the ICU setting.

    Science.gov (United States)

    Kahar Bador, M; Rai, V; Yusof, M Y; Kwong, W K; Assadian, O

    2015-07-01

    Inappropriate use of medical gloves may support microbial transmission. New strategies could increase the safety of medical gloves without the risk of patient and surface contamination. To compare the efficacy of synthetic antibacterial nitrile medical gloves coated with polyhexamethylen-biguanid hydrochloride (PHMB) on the external surface with identical non-antibacterial medical gloves in reducing glove contamination after common patient care measures in an intensive care unit (ICU) setting. ICU staff wore either standard or antibacterial gloves during patient care activities. The number of bacteria on gloves was measured semi-quantitatively immediately after the performance of four clinical activities. There was a significant difference in mean bacterial growth [colony-forming units (cfu)] between control gloves and antibacterial gloves {60 [standard deviation (SD) 23] vs 16 (SD 23) cfu/glove imprint, P gloves had significantly less bacterial contamination compared with the control gloves (P = 0.011 and gloves showed lower bacterial contamination after changing linen compared with control gloves, the difference was not significant (P = 0.311). This study showed that use of antibacterial medical gloves significantly reduced bacterial contamination after typical patient care activities in 57% of the investigated clinical activities (P gloves may support reduction of cross-contamination in the ICU setting. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Dismantling techniques for plutonium-contaminated gloveboxes: experience from first year of decommissioning

    International Nuclear Information System (INIS)

    Baumann, R.; Faber, P.

    2003-01-01

    At the mixed-oxide (MOX) processing facility formerly operated by ALKEM GmbH in Hanau, Germany - which was taken over to Siemens in 1988 and renamed Siemens' Hanau Fuel Fabrication Plant, MOX facility - around 8500 kg of plutonium were processed to make MOX fuel rods and fuel assemblies since production started in 1965. After shutdown of the facility by the authorities in mid-1991 for political reasons, the remaining nuclear fuel materials were processed during the subsequent ''cleanout'' phase starting in 1997 into rods and assemblies suitable for long-term storage. The last step in cleanout consisted of ''flushing'' the production equipment with depleted uranium and thoroughly cleaning the gloveboxes. During cleanout around 700 kg of plutonium were processed in the form of mixed oxides. The cleanout phase including the subsequent cleaning and flushing operations ended on schedule in September 2001 without any significant problems. Starting in mid-1999, the various glovebox dismantling techniques were tested using uncontaminated components while cleanout was still in progress and then, once these trials had been successfully completed, further qualified through use on actual components. The pilot-phase trials required four separate licenses under Section 7, Subsection (3) of the German Atomic Energy Act. Thanks to detailed advance planning and experience from the pilot trials the individual dismantling steps could be described in sufficient detail for the highly complex German licensing procedure. The first partial license for decommissioning the MOX facility under Sec. 7, Subsec. (3) of the Atomic Energy Act was issued on May 28, 2001. It mainly covers dismantling of the interior equipment inside the gloveboxes a well as the gloveboxes themselves. Actual decommissioning work inside the former production areas of the MOX facility started on a large scale in early September 2001. (orig.)

  15. HOLDUP MEASUREMENTS FOR VISUAL EXAMINATION GLOVEBOXES AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, R

    2006-05-03

    Visual Examination (VE) gloveboxes are used at the Savannah River Site (SRS) to remediate transuranic waste (TRU) drums. Noncompliant items are removed before the drums undergo further characterization in preparation for shipment to the Waste Isolation Pilot Plant (WIPP). Maintaining the flow of drums through the remediation process is critical to the program's seven-days-per-week operation. Conservative assumptions are used to ensure that glovebox contamination from this continual operation is below acceptable limits. Holdup measurements are performed in order to confirm that these assumptions are conservative. High Cs-137 backgrounds in the VE glovebox areas preclude the use of a sodium iodide spectrometer, so a high-purity germanium (HPGe) detector, having superior resolution, is used. Plutonium-239 is usually the nuclide of interest; however, Pu-241, Np-237 (including its daughter Pa-233) and Pu-238 (if detected) are typically assayed. Cs-137 and Co-60 may also be detected but are not reported since they do not contribute to the Pu-239 Fissile Gram Equivalent or Pu-239 Equivalent Curies. HEPA filters, drums and waste boxes are also assayed by the same methodology. If--for example--the HEPA is contained in a stainless steel housing, attenuation corrections must be applied for both the filter and the housing. Dimensions, detector locations, materials and densities are provided as inputs to Ortec's ISOTOPIC software to estimate attenuation and geometry corrections for the measurement positions. This paper discusses the methodology, results and limitations of these measurements for different VE glovebox configurations.

  16. Tactile sensitivity of gloved hands in the cold operation.

    Science.gov (United States)

    Geng, Q; Kuklane, K; Holmér, I

    1997-11-01

    In this study, tactile sensitivity of gloved hand in the cold operation has been investigated. The relations among physical properties of protective gloves and hand tactile sensitivity and cold protection were also analysed both objectively and subjectively. Subjects with various gloves participated in the experimental study during cold exposure at different ambient temperatures of -12 degrees C and -25 degrees C. Tactual performance was measured using an identification task with various sizes of objects over the percentage of misjudgment. Forearm, hand and finger skin temperatures were also recorded throughout. The experimental data were analysed using analysis of variance (ANOVA) model and the Tukey's multiple range test. The results obtained indicated that the tactual performance was affected both by gloves and by hands/fingers cooling. Effect of object size on the tactile discrimination was significant and the misjudgment increased when similar sizes of objects were identified, especially at -25 degrees C.

  17. Earthquake resistance test of full-scale glove box

    International Nuclear Information System (INIS)

    Fujita, T.; Ohtani, K.; Hayashi, M.; Kozeki, M.; Ide, T.; Sakuno, K.

    1989-01-01

    A glove box used at nuclear facilities must confine radioactive materials. High airtightness and negative internal pressure are used to prevent leaks. The allowable leakage rate of air is 0.1% vol/hr or less at the pre-service inspection. The negative pressure value is kept at - 30 mm H 2 O in normal operation. The glove box structural strength and its confinement reliability during an earthquake are major concerns. The verification of aseismic analysis methods and assumptions for a glove box are thus of great importance. Data on the dynamic behavior of giant glove boxes was recently obtained in large shaker experiments. This paper describes these experimental results and the appropriateness of aseismic analysis methods used in current design

  18. Thermal comfort of dual-chamber ski gloves

    Science.gov (United States)

    Dotti, F.; Colonna, M.; Ferri, A.

    2017-10-01

    In this work, the special design of a pair of ski gloves has been assessed in terms of thermal comfort. The glove 2in1 Gore-Tex has a dual-chamber construction, with two possible wearing configurations: one called “grip” to maximize finger flexibility and one called “warm” to maximize thermal insulation in extremely cold conditions. The dual-chamber gloves has been compared with two regular ski gloves produced by the same company. An intermittent test on a treadmill was carried out in a climatic chamber: it was made of four intense activity phases, during which the volunteer ran at 9 km/h on a 5% slope for 4 minutes, spaced out by 5-min resting phases. Finger temperature measurements were compared with the thermal sensations expressed by two volunteers during the test.

  19. Confirmation test on confinement performance of improved glove box

    International Nuclear Information System (INIS)

    Miura, S.; Kanazawa, J.; Nakajima, M.; Sakuno, K.; Miyata, H.

    1995-01-01

    Glove boxes are used at nuclear facilities to confine radioactive materials by ensuring a high level of airtightness and negative internal pressure. The allowable rate of air leakage is 0.1% vol/hr or less at the pre-service inspection. The negative pressure value is normally maintained at about -30 mm H 2 O. Structural strength and confinement reliability of glove boxes during earthquake are major concerns, and most important glove boxes are designed to withstand seismic class A events is Japan. This paper describes vibration tests done to confirm that improve large-sized glove boxes maintain their confinement performance and structural strength even during earthquake and that the design analysis methods used are appropriate. (author). 1 ref., 6 figs., 3 tabs

  20. Permeation of aromatic solvent mixtures through nitrile protective gloves.

    Science.gov (United States)

    Chao, Keh-Ping; Hsu, Ya-Ping; Chen, Su-Yi

    2008-05-30

    The permeation of binary and ternary mixtures of benzene, toluene, ethyl benzene and p-xylene through nitrile gloves were investigated using the ASTM F739 test cell. The more slowly permeating component of a mixture was accelerated to have a shorter breakthrough time than its pure form. The larger differences in solubility parameter between a solvent mixture and glove resulted in a lower permeation rate. Solubility parameter theory provides a potential approach to interpret the changes of permeation properties for BTEX mixtures through nitrile gloves. Using a one-dimensional diffusion model based on Fick's law, the permeation concentrations of ASTM F739 experiments were appropriately simulated by the estimated diffusion coefficient and solubility. This study will be a fundamental work for the risk assessment of the potential dermal exposure of workers wearing protective gloves.

  1. Fusion welded fabrication of unshielded steel glove boxes

    International Nuclear Information System (INIS)

    1981-04-01

    This Specification deals with the manufacture, testing, inspection and delivery of fabricated glove boxes, including such internal and/or external fittings as are shown on the relevant drawings. (author)

  2. Energy evaluation of protection effectiveness of anti-vibration gloves.

    Science.gov (United States)

    Hermann, Tomasz; Dobry, Marian Witalis

    2017-09-01

    This article describes an energy method of assessing protection effectiveness of anti-vibration gloves on the human dynamic structure. The study uses dynamic models of the human and the glove specified in Standard No. ISO 10068:2012. The physical models of human-tool systems were developed by combining human physical models with a power tool model. The combined human-tool models were then transformed into mathematical models from which energy models were finally derived. Comparative energy analysis was conducted in the domain of rms powers. The energy models of the human-tool systems were solved using numerical simulation implemented in the MATLAB/Simulink environment. The simulation procedure demonstrated the effectiveness of the anti-vibration glove as a method of protecting human operators of hand-held power tools against vibration. The desirable effect is achieved by lowering the flow of energy in the human-tool system when the anti-vibration glove is employed.

  3. Benchmarking Evaluation Results for Prototype Extravehicular Activity Gloves

    Science.gov (United States)

    Aitchison, Lindsay; McFarland, Shane

    2012-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of four prototype gloves developed by Flagsuit LLC, Final Frontier Designs, LLC Dover, and David Clark Company as compared to the Phase VI. All of the companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test

  4. An Approach for Performance Assessments of Extravehicular Activity Gloves

    Science.gov (United States)

    Aitchison, Lindsay; Benosn, Elizabeth

    2014-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of two sets of prototype EVA gloves developed ILC Dover and David Clark Company as compared to the Phase VI. Both companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test subjects representing the design-to hand

  5. Improving Efficiency with 3-D Imaging: Technology Essential in Removing Plutonium Processing Equipment from Plutonium Finishing Plant Gloveboxes

    International Nuclear Information System (INIS)

    Crow, Stephen H.; Kyle, Richard N.; Minette, Michael J.

    2008-01-01

    The Plutonium Finishing Plant at Hanford, Washington began operations in 1949 to process plutonium and plutonium products. Its primary mission was to produce plutonium metal, fabricate weapons parts, and stabilize reactive materials. These operations, and subsequent activities, were performed in remote production lines, consisting primarily of hundreds of gloveboxes. Over the years these gloveboxes and processes have been continuously modified. The plant is currently inactive and Fluor Hanford has been tasked to clean out contaminated equipment and gloveboxes from the facility so it can be demolished in the near future. Approximately 100 gloveboxes at PFP have been cleaned out in the past four years and about 90 gloveboxes remain to be cleaned out. Because specific commitment dates for this work have been established with the State of Washington and other entities, it is important to adopt work practices that increase the safety and speed of this effort. The most recent work practice to be adopted by Fluor Hanford D and D workers is the use of 3-D models to improve the efficiency of cleaning out radioactive gloveboxes at the plant. The use of 3-D models has significantly improved the work planning process by providing workers with a clear image of glovebox construction and composition, which is then used to determine cleanout methods and work sequences. The 3-D visual products enhance safety by enabling workers to more easily identify hazards and implement controls. In addition, the ability to identify and target the removal of radiological materials early in the D and D process provides substantial dose reduction for the workers

  6. Minimizing surgical skin incision scars with a latex surgical glove.

    Science.gov (United States)

    Han, So-Eun; Ryoo, Suk-Tae; Lim, So Young; Pyon, Jai-Kyung; Bang, Sa-Ik; Oh, Kap-Sung; Mun, Goo-Hyun

    2013-04-01

    The current trend in minimally invasive surgery is to make a small surgical incision. However, the excessive tensile stress applied by the retractors to the skin surrounding the incision often results in a long wound healing time and extensive scarring. To minimize these types of wound problems, the authors evaluated a simple and cost-effective method to minimize surgical incision scars based on the use of a latex surgical glove. The tunnel-shaped part of a powder-free latex surgical glove was applied to the incision and the dissection plane. It was fixed to the full layer of the dissection plane with sutures. The glove on the skin surface then was sealed with Ioban (3 M Health Care, St. Paul, MN, USA) to prevent movement. The operation proceeded as usual, with the retractor running through the tunnel of the latex glove. It was possible to complete the operation without any disturbance of the visual field by the surgical glove, and the glove was neither torn nor separated by the retractors. The retractors caused traction and friction during the operation, but the extent of damage to the postoperative skin incision margin was remarkably less than when the operation was performed without a glove. This simple and cost-effective method is based on the use of a latex surgical glove to protect the surgical skin incision site and improve the appearance of the postoperative scar. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  7. Empirical Evidence of Risk and Performance: Top Glove Corporation Berhad

    OpenAIRE

    lim, yu zhi

    2017-01-01

    The purpose of this study is desired to examine the profitability performance of Top Glove Corporation Berhad with some risk factors (liquidity risk, operating risk) and macroeconomic factors. This study was according to the annual report data of Top Glove from year 2011 to year 2015. It shows that there are negative relationship between the company’s profitability and the operating ratio. By using the IBM SPSS Statistics software and add some measurement such as GDP, inflation rate, asset si...

  8. Protective gloves on manual sugar cane cutting are really effective?

    Science.gov (United States)

    Abrahão, R F; Gonzaga, M C; Braunbeck, O A

    2012-01-01

    Problems related to the use of personal protective equipment (PPE), specially the use of protective gloves for the manual sugar cane cutting, motivated this research, made possible by a tripartite negotiation involving the Ministry of Labor, the Union of Rural Workers and the Employer's Association of sugarcane agribusiness. The main objective was to evaluate, from an ergonomics perspective, the impact of use of the gloves during the manual cane sugar cutting, raising questions on safety, effectiveness and comfort. The research was carried in a sugarcane industry of São Paulo for two seasons involving 47 workers who made a qualitative analysis of acceptance of four models of protective gloves. The methodology included the use of semi-structured interviews, questionnaires and field observations and the experimental determination of the coefficient of static friction developed between the gloves and the surfaces of the machete handle. The main results indicate the general inadequacy of the gloves currently used forcing the employees to improvise. Workers found the glove of leather and nylon scraping the best reported for comfort in use. The overall results highlight the problem of detachment of test standards for the manufacture of PPE, ignoring users and the activity to be performed.

  9. Shielding ability of lead loaded radiation resistant gloves

    International Nuclear Information System (INIS)

    Kawano, Takao; Ebihara, Hiroshi

    1990-01-01

    The shielding ability of radiation resistant gloves were examined. The gloves are made of lead loaded (as PbO 2 ) polyvinyl chloride resin and are about 0.4 mm of thickness (70 mg/cm 2 ). Eleven test pieces were sampled from each of three gloves (total were thirty three) and the transmission rates for radiations (X-ray or γ-ray) through the test pieces were measured with radiation sources, 99m Tc, 57 Co, 133 Ba, 133 Xe and 241 Am. The differences of the transmission rate for radiations by the positions of the gloves were smaller than 15%, and the differences by three gloves were smaller than 5% in the case of 60 keV and 141 keV radiations. The average transmission rates for radiations in thirty three test pieces were about 40% for 30 keV radiation, about 90% for 80 keV and 140 keV radiations. The shielding characteristic of the gloves could be equivalent to about 0.026 mm thick lead plate. (author)

  10. Influence of material properties on gloves' bacterial barrier efficacy in the presence of microperforation.

    Science.gov (United States)

    Bardorf, Michael Hermann; Jäger, Bernd; Boeckmans, Eric; Kramer, Axel; Assadian, Ojan

    2016-12-01

    Medical examination gloves and surgical gloves protect the wearer directly and the patient indirectly from the risk of contamination. Because of concerns related to latex allergy, an increasing trend toward the use of synthetic gloves made of materials other than latex is observable. However, currently it is unknown if the physical properties of different materials may influence bacterial passage in case of a glove puncture. We examined 9 different medical examination gloves from various manufacturers made of nitrile (n = 4), latex (n = 3), or neoprene (n = 2). Additionally, 1 latex surgical glove each with and without antibacterial chlorhexidine gluconate coating and 1 synthetic surgical glove made of thermoplastic elastomer were included in the experiments. The studied materials were perforated following a standardized procedure, and direct bacterial passage was measured under dynamic conditions. Glove elasticity at 1 cm up to 2.5 cm elongation was measured following EN 455-2. Nitrile gloves demonstrated higher material stiffness compared with latex gloves. Medical examination gloves made of nitrile and neoprene showed a 10-fold higher bacterial passage through a standardized puncture compared with latex gloves. All surgical gloves showed a lower bacterial passage compared with the tested examination gloves. Bacterial passage through punctures is correlated with the stiffness or elasticity of the glove material. Therefore, gloves made of latex may have an increased protective effect in case of a glove breach. Whenever gloves are purchased and selected, a risk-benefit assessment should be conducted, balancing the risk of allergy against the degree of required protection in case of a glove puncture. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  11. Assessment of skin exposure to N,N-dimethylformamide and methyl ethylketone through chemical protective gloves and decontamination of gloves for reuse purposes.

    Science.gov (United States)

    Chao, Keh-Ping; Wang, Ping; Chen, Chen-Peng; Tang, Ping-Yu

    2011-02-15

    N,N-dimethylformamide (DMF) and methyl ethylketone (MEK) are the hazardous chemicals commonly used in the synthetic leather industries. Although chemical protective gloves provide adequate skin exposure protection to workers in these industries, there is currently no clear guideline or understanding with regard to the use duration of these gloves. In this study, the permeation of DMF/MEK mixture through neoprene gloves and the desorption of chemicals from contaminated gloves were conducted using the ASTM F739 cell. The acceptable use duration time of the gloves against DMF/MEK permeation was estimated by assuming a critical body burden of chemical exposure as a result of dermal absorption. In a re-exposure cycle of 5 days, decontamination of the gloves by aeration at 25°C was found to be inadequate in a reduction of breakthrough time as compared to a new unexposed glove. However, decontamination of the gloves by heating at 70 or 100°C showed that the protective coefficient of the exposed gloves had similar levels of resistance to DMF/MEK as that of new gloves. Implications of this study include an understanding of the use duration of neoprene gloves and proper decontamination of chemical protective gloves for reuse. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Contamination of Unused, Nonsterile Gloves in the Critical Care Setting: A Comparison of Bacterial Glove Contamination in Medical, Surgical and Burn Intensive Care Units

    Directory of Open Access Journals (Sweden)

    Matthew Hall

    2014-01-01

    Conclusions: Despite differences in infection control practices and the composition of pathologies managed in each ICU, the average bioburden of gloves left exposed in the environment was not significantly different. Further research is needed to assess for an association of glove bioburden with nosocomial infection rates and the effects of different infection control practices on the reduction of glove bioburdens.

  13. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    Science.gov (United States)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99 in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text chat communications, manipulation of procedureschecklists, cataloguingannotating images, scientific note taking, human-robot interaction, and control of suit andor other EVA systems.

  14. Prospective randomized assessment of single versus double-gloving for general surgical procedures.

    Science.gov (United States)

    Na'aya, H U; Madziga, A G; Eni, U E

    2009-01-01

    There is increased tendency towards double-gloving by general surgeons in our practice, due probably to awareness of the risk of contamination with blood or other body fluids during surgery. The aim of the study was to compare the relative frequency of glove puncture in single-glove versus double glove sets in general surgical procedures, and to determine if duration of surgery affects perforation rate. Surgeons at random do single or double gloves at their discretion, for general surgical procedures. All the gloves used by the surgeons were assessed immediately after surgery for perforation. A total of 1120 gloves were tested, of which 880 were double-glove sets and 240 single-glove sets. There was no significant difference in the overall perforation rate between single and double glove sets (18.3% versus 20%). However, only 2.3% had perforations in both the outer and inner gloves in the double glove group. Therefore, there was significantly greater risk for blood-skin exposure in the single glove sets (p < 0.01). The perforation rate was also significantly greater during procedures lasting an hour or more compared to those lasting less than an hour (p < 0.01). Double-gloving reduces the risk of blood-skin contamination in all general surgical procedures, and especially so in procedures lasting an hour or more.

  15. Will medical examination gloves protect rescuers from defibrillation voltages during hands-on defibrillation?

    Science.gov (United States)

    Sullivan, Joseph L; Chapman, Fred W

    2012-12-01

    Continuing compressions during a defibrillation shock has been proposed as a method of reducing pauses in cardiopulmonary resuscitation (CPR) but the safety of this procedure is unproven. The medical examination gloves worn by rescuers play an important role in protecting the rescuer yet the electrical characteristics of these gloves are unknown. This study examined the response of medical examination gloves to defibrillation voltages. Part 1 of this study measured voltage-current curves for a small sample (8) of gloves. Part 2 tested more gloves (460) to determine the voltage required to produce a specific amount of current flow. Gloves were tested at two current levels: 0.1 mA and 10 mA. Testing included four glove materials (chloroprene, latex, nitrile, and vinyl) in a single layer and double-gloved. All gloves tested in part 1 allowed little current to flow (gloves and 93 of 120 (77%) double gloves allowed at least 0.1 mA of current flow at voltages within the external defibrillation voltage range. Also, 6 of 80 (7.5%) single gloves and 5 of 80 (6.2%) double gloves allowed over 10 mA. Few of the gloves tested limited the current to levels proven to be safe. A lack of sensation during hands-on defibrillation does not guarantee that a safety margin exists. As such, we encourage rescuers to minimize rather than eliminate the pause in compressions for defibrillation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Science Literacy: Hand in Glove with Numeracy

    Directory of Open Access Journals (Sweden)

    Gerry G. Meisels

    2010-07-01

    Full Text Available Science Literacy requires numeracy as part of its foundation, and much of Numeracy draws on examples and applications from the sciences. They share the goal of creating a society that is mathematics numerate and science literate, and are interrelated. National priorities to strengthen both among all our students are driven by practical considerations of economic competitiveness that increasingly depend on technological innovation. It is also critical to each individual for long-term job opportunities and for informed citizenship. With up to 80% of 21st century jobs requiring mathematics and science skills, a large majority of the 2,900,000 students who graduate from America’s high schools every year must become Numerate and Science Literate. Many of these students are not motivated to learn, requiring a change in teaching strategies. Societal will and substantial resources are required to help teachers adopt new approaches that are much more demanding than traditional lectures. Major organizational changes may be needed to strengthen student experience in elementary schools. Advocates of Numeracy and Science Literacy need to work hand in glove to create a citizenry prepared to compete in the 21st century.

  17. Changes in chemical permeation of disposable latex, nitrile, and vinyl gloves exposed to simulated movement.

    Science.gov (United States)

    Phalen, Robert N; Le, Thi; Wong, Weng Kee

    2014-01-01

    Glove movement can affect chemical permeation of organic compounds through polymer glove products. However, conflicting reports make it difficult to compare the effects of movement on chemical permeation through commonly available glove types. The aim of this study was to evaluate the effect of movement on chemical permeation of an organic solvent through disposable latex, nitrile, and vinyl gloves. Simulated whole-glove permeation testing was conducted using ethyl alcohol and a previously designed permeation test system. With exposure to movement, a significant decrease (p ≤ 0.001) in breakthrough time (BT) was observed for the latex (-23%) and nitrile gloves (-31%). With exposure to movement, only the nitrile glove exhibited a significant increase (p ≤ 0.001) in steady-state permeation rate (+47%) and cumulative permeation at 30 min (+111%). Even though the nitrile glove provided optimum chemical resistance against ethyl alcohol, it was most affected by movement. With exposure to movement, the latex glove was an equivalent option for overall worker protection, because it was less affected by movement and the permeation rate was lower than that of the nitrile glove. In contrast, the vinyl glove was the least affected by movement, but did not provide adequate chemical resistance to ethyl alcohol in comparison with the nitrile and latex gloves. Glove selection should take movement and polymer type into account. Some glove polymer types are less affected by movement, most notably the latex glove in this test. With nitrile gloves, at least a factor of three should be used when attempting to assign a protection factor when repetitive hand motions are anticipated. Ultimately, the latex gloves outperformed nitrile and vinyl in these tests, which evaluated the effect of movement on chemical permeation. Future research should aim to resolve some of the observed discrepancies in test results with latex and vinyl gloves.

  18. CSER 00-003: Criticality Safety Evaluation report for PFP Magnesium Hydroxide Precipitation Process for Plutonium Stabilization Glovebox 3

    International Nuclear Information System (INIS)

    LAN, J.S.

    2000-01-01

    This Criticality Safety Evaluation Report analyzes the stabilization of plutonium/uranium solutions in Glovebox 3 using the magnesium hydroxide precipitation process at PFP. The process covered are the receipt of diluted plutonium solutions into three precipitation tanks, the precipitation of plutonium from the solution, the filtering of the plutonium precipitate from the solution, the scraping of the precipitate from the filter into boats, and the initial drying of the precipitated slurry on a hot plate. A batch (up to 2.5 kg) is brought into the glovebox as plutonium nitrate, processed, and is then removed in boats for further processing. This CSER establishes limits for the magnesium hydroxide precipitation process in Glovebox 3 to maintain criticality safety while handling fissionable material

  19. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, K.B.; Acosta, S.V. [Los Alamos National Lab., NM (United States); Wernly, K.D. [Molten Salt Oxidation Corp., Bensalem, PA (United States)

    1998-12-31

    This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented.

  20. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    International Nuclear Information System (INIS)

    Ramsey, K.B.; Acosta, S.V.; Wernly, K.D.

    1998-01-01

    This paper presents an overview of potential technologies for stabilization of 238 Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from 238 Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented

  1. The influence of hydrogen peroxide on the permeability of protective gloves to resorcinol in hairdressing.

    Science.gov (United States)

    Lind, Marie-Louise; Johnsson, Stina; Lidén, Carola; Meding, Birgitta; Boman, Anders

    2015-01-01

    Hairdressers are exposed to hair dye chemicals, for example resorcinol and hydrogen peroxide. Adequate skin protection is an important preventive measure against occupational skin disease. To examine whether hydrogen peroxide may cause deterioration of protective gloves. Permeation of resorcinol through gloves of polyvinylchloride (PVC) (n = 8), natural rubber latex (NRL) (n = 5) and nitrile rubber (NR) (n = 5) was studied in a two-compartment cell, with resorcinol as an indicator for hair dyes. The amount of resorcinol that had permeated was analysed with a high-performance liquid chromatography instrument. Cumulative breakthrough time and permeation rate were compared for hydrogen peroxide-pretreated and untreated gloves. The cumulative breakthrough time was > 1 hr but gloves. Pretreatment of PVC gloves resulted in a slightly decreased breakthrough time, and pretreatment of NRL gloves decreased the permeation rate. No change was recorded in NR gloves. Treatment with hydrogen peroxide had a minor effect on permeation in the tested gloves. NR gloves provided the best protection. However, taking the allergy risk of rubber gloves into account, plastic gloves are recommended in hairdressing. PVC gloves may be used, but not for > 1 hr. Disposable gloves should never be reused, regardless of material. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Pyrolysis of rubber gloves in integral pyrolysis test plant

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Mohd Noor Muhd Yunus; Mohd Annuar Assadat Husain; Farid Nasir Ani

    2010-01-01

    Previously, pyrolysis of rubber gloves in laboratory study was described. In order to visualize the practical application of rubber gloves pyrolysis in terms of treating rubber gloves in medical waste, a new test plant was designed and constructed. The semi-continuous test plant was designed to accommodate rubber gloves that were not cut or shredded. The test plant has a capacity of 2kg/ hr and employed auxiliary fuel instead of the conventional electrical power for heating. The concept was based on moving bed reactor, but additional feature of sand jacket feature was also introduced in the design. Pyrolysis of the gloves was conducted at three temperatures, namely 350 degree Celsius, 400 degree Celsius and 450 degree Celsius. Oxygen presents inside of the reactor due to the combined effect of imperfect sealing and suction effect. This study addresses the performance of this test plant covering the time temperature profile, gas evolution profile and product yield. Comparison between the yield of the liquid, gas and char pyrolyzate was made against the laboratory study. It was found that the oil yield was less than the one obtained from bench scale study. Water formation was more pronounced. The presence of the oxygen also altered the tail gas composition but eliminate the sticky nature of solid residue, making it easier to handle. The chemical composition of the oil was determined and the main compounds in the oil were esters and phtalic acid. (author)

  3. Risk of surgical glove perforation in oral and maxillofacial surgery.

    Science.gov (United States)

    Kuroyanagi, N; Nagao, T; Sakuma, H; Miyachi, H; Ochiai, S; Kimura, Y; Fukano, H; Shimozato, K

    2012-08-01

    Oral and maxillofacial surgery, which involves several sharp instruments and fixation materials, is consistently at a high risk for cross-contamination due to perforated gloves, but it is unclear how often such perforations occur. This study aimed to address this issue. The frequency of the perforation of surgical gloves (n=1436) in 150 oral and maxillofacial surgeries including orthognathic surgery (n=45) was assessed by the hydroinsufflation technique. Orthognathic surgery had the highest perforation rate in at least 1 glove in 1 operation (91.1%), followed by cleft lip and palate surgery (55.0%), excision of oral soft tumour (54.5%) and dental implantation (50.0%). The perforation rate in scrub nurses was 63.4%, followed by 44.4% in surgeons and first assistants, and 16.3% in second assistants. The odds ratio for the perforation rate in orthognathic surgery versus other surgeries was 16.0 (95% confidence interval: 5.3-48.0). The protection rate offered by double gloving in orthognathic surgery was 95.2%. These results suggest that, regardless of the surgical duration and blood loss in all fields of surgery, orthognathic surgery must be categorized in the highest risk group for glove perforation, following gynaecological and open lung surgery, due to the involvement of sharp objects. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Functional Fit Evaluation to Determine Optimal Ease Requirements in Canadian Forces Chemical Protective Gloves

    National Research Council Canada - National Science Library

    Tremblay-Lutter, Julie

    1995-01-01

    A functional fit evaluation of the Canadian Forces (CF) chemical protective lightweight glove was undertaken in order to quantify the amount of ease required within the glove for optimal functional fit...

  5. Human-computer interface glove using flexible piezoelectric sensors

    Science.gov (United States)

    Cha, Youngsu; Seo, Jeonggyu; Kim, Jun-Sik; Park, Jung-Min

    2017-05-01

    In this note, we propose a human-computer interface glove based on flexible piezoelectric sensors. We select polyvinylidene fluoride as the piezoelectric material for the sensors because of advantages such as a steady piezoelectric characteristic and good flexibility. The sensors are installed in a fabric glove by means of pockets and Velcro bands. We detect changes in the angles of the finger joints from the outputs of the sensors, and use them for controlling a virtual hand that is utilized in virtual object manipulation. To assess the sensing ability of the piezoelectric sensors, we compare the processed angles from the sensor outputs with the real angles from a camera recoding. With good agreement between the processed and real angles, we successfully demonstrate the user interaction system with the virtual hand and interface glove based on the flexible piezoelectric sensors, for four hand motions: fist clenching, pinching, touching, and grasping.

  6. Design and Dynamic Modeling of Flexible Rehabilitation Mechanical Glove

    Science.gov (United States)

    Lin, M. X.; Ma, G. Y.; Liu, F. Q.; Sun, Q. S.; Song, A. Q.

    2018-03-01

    Rehabilitation gloves are equipment that helps rehabilitation doctors perform finger rehabilitation training, which can greatly reduce the labour intensity of rehabilitation doctors and make more people receive finger rehabilitation training. In the light of the defects of the existing rehabilitation gloves such as complicated structure and stiff movement, a rehabilitation mechanical glove is designed, which provides driving force by using the air cylinder and adopts a rope-spring mechanism to ensure the flexibility of the movement. In order to fit the size of different hands, the bandage ring which can adjust size is used to make the mechanism fixed. In the interest of solve the complex problem of dynamic equation, dynamic simulation is carried out by using Adams to obtain the motion curve, which is easy to optimize the structure of ring position.

  7. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  8. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1996-01-01

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take place inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho

  9. Equipping a glovebox for waste form testing and characterization of plutonium bearing materials

    International Nuclear Information System (INIS)

    Noy, M.; Johnson, S.G.; Moschetti, T.L.

    1997-01-01

    The recent decision by the Department of Energy to pursue a hybrid option for the disposition of weapons plutonium has created the need for additional facilities that can examine and characterize waste forms that contain Pu. This hybrid option consists of the placement of plutonium into stable waste forms and also into mixed oxide fuel for commercial reactors. Glass and glass-ceramic waste forms have a long history of being effective hosts for containing radionuclides, including plutonium. The types of tests necessary to characterize the performance of candidate waste forms include: static leaching experiments on both monolithic and crushed waste forms, microscopic examination, and density determination. Frequently, the respective candidate waste forms must first be produced using elevated temperatures and/or high pressures. The desired operations in the glovebox include, but are not limited to the following: (1) production of vitrified/sintered samples, (2) sampling of glass from crucibles or other vessels, (3) preparing samples for microscopic inspection and monolithic and crushed static leach tests, and (4) performing and analyzing leach tests in situ. This paper will describe the essential equipment and modifications that are necessary to successfully accomplish the goal of outfitting a glovebox for these functions

  10. PLAY HANDS PROTECTIVE GLOVES: TECHNICAL NOTE ON DESIGN AND CONCEPT.

    Science.gov (United States)

    Houston-Hicks, Michele; Lura, Derek J; Highsmith, M Jason

    2016-09-01

    Cerebral Palsy (CP) is the leading cause of childhood motor disability, with a global incidence of 1.6 to 2.5/1,000 live births. Approximately 23% of children with CP are dependent upon assistive technologies. Some children with developmental disabilities have self-injurious behaviors such as finger biting but also have therapeutic needs. The purpose of this technical note is to describe design considerations for a protective glove and finger covering that maintains finger dexterity for children who exhibit finger and hand chewing (dermatophagia) and require therapeutic range of motion and may benefit from sensory stimulation resulting from constant contact between glove and skin. Protecting Little and Adolescent Youth (PLAY) Hands are protective gloves for children with developmental disorders such as CP who injure themselves by biting their hands due to pain or sensory issues. PLAY Hands will be cosmetically appealing gloves that provide therapeutic warmth, tactile sensory feedback, range of motion for donning/ doffing, and protection to maximize function and quality of life for families of children with developmental disorders. The technology is either a per-finger protective orthosis or an entire glove solution designed from durable 3D-printed biodegradable/bioabsorbable materials such as thermoplastics. PLAY Hands represent a series of protective hand wear interventions in the areas of self-mutilating behavior, kinematics, and sensation. They will be made available in a range of protective iterations from single- or multi-digit finger orthoses to a basic glove design to a more structurally robust and protective iteration. To improve the quality of life for patients and caregivers, they are conceptualized to be cosmetically appealing, protective, and therapeutic.

  11. Comparing the level of dexterity offered by latex and nitrile SafeSkin gloves.

    Science.gov (United States)

    Sawyer, Jo; Bennett, Allan

    2006-04-01

    An increase in the occurrence of latex allergy has been concurrent with the increasing use of latex gloves by laboratory and healthcare workers. In recent years nitrile gloves have been used to replace latex gloves to prevent latex allergy. Nitrile gloves offer a comparable level of protection against chemical and biological agents and are more puncture resistant. However, if manual dexterity is compromised by nitrile gloves to a greater degree than latex then this may increase the risk of sharps injuries. The Purdue pegboard test, which measures both gross and fine finger dexterity, was used to test the dexterity levels of two glove types used at HPA CEPR; Kimberly-Clark SafeSkin nitrile and latex laboratory gloves. There was a statistically significant 8.6% increase in fine finger dexterity provided by latex compared with nitrile SafeSkin laboratory gloves but no difference in gross dexterity between the glove types. There was no significant relationship between glove dexterity and age or gender. The selection of glove size was influenced by the digit length of participants. Moreover, those with longer, thinner fingers appeared to have an advantage when using nitrile SafeSkin gloves. The level of dexterity provided by latex and nitrile SafeSkin gloves for tasks on a gross dexterity level are comparable and health workers will benefit from the non-allergenic properties of nitrile. For tasks requiring fine finger dexterity nitrile SafeSkin gloves may impede dexterity. Despite this, the degree of restriction appears to have a negligible impact on safety in this study when compared with the risk of latex sensitization and subsequent allergy. In addition to glove material, working practices must also take into account glove size, fit, grip and thickness, as these factors can all influence dexterity.

  12. Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2016-01-01

    BACKGROUND Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration-reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for

  13. Glove box adaptation of oxygen, nitrogen and hydrogen determinator

    International Nuclear Information System (INIS)

    Ramanjaneyulu, P.S.; Phanindra Kumar, M.; Kulkarni, A.S.; Revathi, R.; Saxena, M.K.; Tomar, B.S.

    2017-01-01

    Radioanalytical Chemistry Division (RACD) is involved in chemical quality assurance (CQA) of various nuclear fuels and materials related to various DAE projects including FBTR and PFBR. Determination of oxygen, nitrogen and hydrogen in these fuels is one of the important steps in the CQA of material. For this purpose, O, N and H determinator was indigenously designed, fabricated and commissioned with the help of M/s Chromatography and Instruments Company Ltd., Vadodara, India. The present article describes about glove box adaptation of this instrument and various safety features incorporated in the glove box and instrument at Lab. C-25, RACD, as per the recommendations of the plant level safety committee

  14. Improvements in or relating to glove boxes or similar containers

    International Nuclear Information System (INIS)

    Strong, R.E.; Boyle, K.; Grant, J.

    1976-01-01

    The glove box described has an extract system that includes a vortex amplifier venting into the system. The main inlet of the vortex amplifier is connected with the containment system and a control inlet is provided in connection with the atmosphere outside the containment system. A variable flow restrictor is provided between the containment system and the extract system, bypassing the vortex amplifier. The arrangement is such that manipulation of a valve is not normally required. The arrangement is not restricted to glove boxes; it can provide an alternative to fume hoods. (U.K.)

  15. Development of remote handling tools for glove box

    International Nuclear Information System (INIS)

    Tomita, Yutaka; Nemoto, Takeshi; Denuma, Akio; Todokoro, Akio

    1996-01-01

    For a part of advanced nuclear fuel recycling technology development, we will separate and recover Americium from the MOX fuel scrap by solvent extraction. When we carry this examination, reduction of exposure from Americium-241 is one of important problems. To solve this problem fundamentally, we studied many joints type of the remote handling tools for glove box and produced a trial production machine. Also, we carried out basic function examinations of it. As a result, we got the prospect of development of the remote handling tools which could treat Americium in glove box. (author)

  16. Telepresence master glove controller for dexterous robotic end-effectors

    Science.gov (United States)

    Fisher, Scott S.

    1987-01-01

    This paper describes recent research in the Aerospace Human Factors Research Division at NASA's Ames Research Center to develop a glove-like, control and data-recording device (DataGlove) that records and transmits to a host computer in real time, and at appropriate resolution, a numeric data-record of a user's hand/finger shape and dynamics. System configuration and performance specifications are detailed, and current research is discussed investigating its applications in operator control of dexterous robotic end-effectors and for use as a human factors research tool in evaluation of operator hand function requirements and performance in other specialized task environments.

  17. A Glove for Tapping and Discrete 1D/2D Input

    Science.gov (United States)

    Miller, Sam A.; Smith, Andy; Bahram, Sina; SaintAmant, Robert

    2012-01-01

    This paper describes a glove with which users enter input by tapping fingertips with the thumb or by rubbing the thumb over the palmar surfaces of the middle and index fingers. The glove has been informally tested as the controller for two semi-autonomous robots in a a 3D simulation environment. A preliminary evaluation of the glove s performance is presented.

  18. CSER 00-008 use of PFP Glovebox HC-18BS for Storage and Transport of Fissionable Material

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    2000-01-01

    This CSER addresses the feasibility of increasing the allowed number of open containers and permitting the transfer and storage of fissionable material in Glovebox HC-18BS without regard to form or density (metal, oxide having an H/X (le) 20, material having unrestricted moderation and plutonium hydroxide having a plutonium density of 0.2 g/cm 3 )

  19. Semiautomatic machine for turning inside out industrial leather gloves

    International Nuclear Information System (INIS)

    Aragón-Gonzalez, G; Cano-Blanco, M; León-Galicia, A; Medrano-Sierra, L F; Morales-Gómez, J R

    2015-01-01

    The last step in the industrial leather gloves manufacturing is to turn the inside out so that the sewing be in the inside of the glove. This work presents the design and testing of a machine for that purpose. In order to quantify the relevant variables, testing was performed with a prototype glove. The employed devices and the testing proceeding were developed experimentally. The obtained information was used to build the turning inside out machine. This machine works with pneumatic power to carry the inside out turning by means of double effect lineal actuators. It has two independent work stations that could be operated simultaneously by two persons, one in each station or in single mode operating one station by one person. The turning inside out cycle is started by means of directional control valves operated with pedals. The velocity and developed force by the actuators is controlled with typical pneumatic resources. The geometrical dimensions of the machine are: 1.15 m length; 0.71 m width and 2.15 m high. Its approximated weight is 120 kg. The air consumption is 5.4 fps by each working station with 60 psig work pressure. The turning inside out operation is 40 s for each industrial leather glove

  20. [Identification of migrants from nitrile-butadiene rubber gloves].

    Science.gov (United States)

    Mutsuga, Motoh; Kawamura, Yoko; Wakui, Chiseko; Maitani, Tamio

    2003-04-01

    Polyvinyl chloride gloves containing di(2-ethylhexyl) phthalate are restricted for food contact use. In their place, disposable gloves made from nitrile-butadiene rubber (NBR) are used in contact with foodstuffs. Some unknown substances were found to migrate into n-heptane from NBR gloves. By GC/MS, HR-MS and NMR, their chemical structures were confirmed to be 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (used as a plasticizer), 4,4'-butylidenedi(6-tert-butyl-m-cresol), a mixture of styrenated phenols consisting of 2-(alpha-methylbenzyl)phenol, 4-(alpha-methylbenzyl)phenol, 2,6-di(alpha-methylbenzyl)phenol, 2,4-di(alpha-methylbenzyl)phenol and 2,4,6-tri(alpha-methylbenzyl)phenol (used as antioxidants), and 2,4-di-tert-butylphenol, which seems to a degradation product of antioxidant. Migration levels of these compounds were 1.68 micrograms/cm2 of 2,4-di-tert-butylphenol, 2.80 micrograms/cm2 of 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, 46.08 micrograms/cm2 of styrenated phenols and 4.22 micrograms/cm2 of 4,4'-butylidenedi(6-tert-butyl-m-cresol) into n-heptane, respectively. The content of total styrenated phenols was 6,900 micrograms/g in NBR gloves.

  1. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.

    Science.gov (United States)

    Ben-Tzvi, Pinhas; Ma, Zhou

    2015-11-01

    This paper presents the design, implementation and experimental validation of a novel robotic haptic exoskeleton device to measure the user's hand motion and assist hand motion while remaining portable and lightweight. The device consists of a five-finger mechanism actuated with miniature DC motors through antagonistically routed cables at each finger, which act as both active and passive force actuators. The SAFE Glove is a wireless and self-contained mechatronic system that mounts over the dorsum of a bare hand and provides haptic force feedback to each finger. The glove is adaptable to a wide variety of finger sizes without constraining the range of motion. This makes it possible to accurately and comfortably track the complex motion of the finger and thumb joints associated with common movements of hand functions, including grip and release patterns. The glove can be wirelessly linked to a computer for displaying and recording the hand status through 3D Graphical User Interface (GUI) in real-time. The experimental results demonstrate that the SAFE Glove is capable of reliably modeling hand kinematics, measuring finger motion and assisting hand grasping motion. Simulation and experimental results show the potential of the proposed system in rehabilitation therapy and virtual reality applications.

  2. Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove.

    Science.gov (United States)

    Ma, Zhou; Ben-Tzvi, Pinhas; Danoff, Jerome

    2016-12-01

    This paper presents a hand rehabilitation learning system, the SAFE Glove, a device that can be utilized to enhance the rehabilitation of subjects with disabilities. This system is able to learn fingertip motion and force for grasping different objects and then record and analyze the common movements of hand function including grip and release patterns. The glove is then able to reproduce these movement patterns in playback fashion to assist a weakened hand to accomplish these movements, or to modulate the assistive level based on the user's or therapist's intent for the purpose of hand rehabilitation therapy. Preliminary data have been collected from healthy hands. To demonstrate the glove's ability to manipulate the hand, the glove has been fitted on a wooden hand and the grasping of various objects was performed. To further prove that hands can be safely driven by this haptic mechanism, force sensor readings placed between each finger and the mechanism are plotted. These experimental results demonstrate the potential of the proposed system in rehabilitation therapy.

  3. Usage of Safety Gloves in the Gold Mining Industry

    CSIR Research Space (South Africa)

    Scheepers, JCE

    1978-10-01

    Full Text Available The safety departments of 31 mines were visited, and the data obtained was used to determine to what extent safety gloves were being used in the gold mining industry. The frequency of occurrence of hand injuries amongst black workers of the gold...

  4. FDM 3D printed coffee glove embedded with flexible electronic

    KAUST Repository

    Bahri, Meznan; Hussain, Muhammad Mustafa; Brahimi, Tayeb; Dahrouj, Hayssam

    2017-01-01

    , in collaboration with the Electrical and Computer Engineering Department at Effat University, and aimed at creating a heating coffee glove product operating on double alkaline batteries using Kapton© as a flexible substrate for the circuit. The circuit and its

  5. Indigenous development of a glove box for ICP-OES

    International Nuclear Information System (INIS)

    Khan, A.M.; Anwar, M.K.; Bangash, M.A.

    2011-01-01

    Chemical analysis involving nuclear materials are bound to be carried out in safety enclosures like glove box, fume hood etc. whereas chemical analysis which produce mist or vapors of these materials like Atomic absorption Spectrometry, Flame photometry and ICP-AE spectrometry etc. must be performed in a glove box with HEPA filters on exhaust. These instruments with glove box adaptation are rare and impossible to import for our country. An ICP-OES, model Integra-XL of GBC-Australia was purchased in 2008 for chemical analysis of similar materials. As usual it was manufactured to operate in open atmosphere. The required analytical work could not be done in open atmosphere due to active nature of the samples. Therefore modification and glove box (GB) adaptation was required. Although large in size yet difficult to adapt for GB, the instrument had to be modified to a large extent as only sample handling part of the instrument had to placed inside GB, leaving rest of the instrument available for later repair/maintenance work. Different options were considered for modification keeping in mind the isolation and negative pressure inside the GB and maintaining the integrity of the instrument. One of such option was finalized which involved shifting the optic tank etc. A no of isolation gadgets were designed and fabricated locally. This indigenization has saved some handsome amount of foreign exchange. (Author)

  6. The measurement of water vapor permeability of glove materials using dilute tritiated water

    International Nuclear Information System (INIS)

    Doughty, D.H.

    1982-01-01

    As fusion technology progresses, there will be an increasing need to handle tritium and tritiated compounds. Protective clothing, especially drybox gloves, must be an effective barrier to minimize worker exposure. The water vapor permeability of glove materials and finished glove constructions is a crucial property of drybox gloves and is not sufficiently well characterized. We have built an apparatus that measures water vapor permeability of elastomers using dilute tritiated water. The technique is more sensitive than other methods currently available and allows us to make measurements on materials and under conditions previously inaccessible. In particular, we present results on laminated drybox gloves for which data is not currently available. (orig.)

  7. Tactile Gloves for Autonomous Grasping With the NASA/DARPA Robonaut

    Science.gov (United States)

    Martin, T. B.; Ambrose, R. O.; Diftler, M. A.; Platt, R., Jr.; Butzer, M. J.

    2004-01-01

    Tactile data from rugged gloves are providing the foundation for developing autonomous grasping skills for the NASA/DARPA Robonaut, a dexterous humanoid robot. These custom gloves compliment the human like dexterity available in the Robonaut hands. Multiple versions of the gloves are discussed, showing a progression in using advanced materials and construction techniques to enhance sensitivity and overall sensor coverage. The force data provided by the gloves can be used to improve dexterous, tool and power grasping primitives. Experiments with the latest gloves focus on the use of tools, specifically a power drill used to approximate an astronaut's torque tool.

  8. Trial Production of Surgical Gloves from Irradiated Natural Rubber Latex on Factory Scale

    Directory of Open Access Journals (Sweden)

    M. Utama

    2005-07-01

    Full Text Available Trial production of surgical gloves from irradiated natural rubber latex at the PT. Laxindo Utama Serang Banten glove factory has been carried out. The variation of heating temperature and leaching time during processing were evaluated. The physical and mechanical properties and the protein allergen respond of surgical gloves using ELISA method were measured. The results showed that the physical and mechanical of surgical gloves such as tensile strength, modulus, and elongation at break arefound to meet the requirements of the ISO or SNI standard for surgical gloves. While the allergic response through clinical tested latex-sensitive protein allergen known as ELISA test is found to be negative.

  9. Permeability of different types of medical protective gloves to acrylic monomers.

    Science.gov (United States)

    Lönnroth, Emma-Christin; Wellendorf, Hanne; Ruyter, Eystein

    2003-10-01

    Dental personnel and orthopedic surgeons are at risk when manually handling products containing methyl methacrylate (MMA). Dental products may also contain cross-linking agents such as ethylene glycol dimethacrylate (EGDMA) or 1,4-butanediol dimethacrylate (1,4-BDMA). Skin contact with monomers can cause hand eczema, and the protection given by gloves manufactured from different types of material is not well known. The aim of this study was to determine the breakthrough time (BTT, min) as a measure of protection (according to the EU standard EN-374-3) for a mixture consisting of MMA, EGDMA and 1,4-BDMA. Fifteen different gloves representing natural rubber latex material, synthetic rubber material (e.g. nitrile rubbers), and synthetic polymer material were tested. The smallest monomer MMA permeated within 3 min through all glove materials. A polyethylene examination glove provided the longest protection period to EGDMA and 1, 4-BDMA (> 120 min and 25.0 min), followed by the surgical glove Tactylon (6.0 min and 8.7 min) and the nitrile glove Nitra Touch (5.0 min and 8.7 min). This study showed that the breakthrough time (based on permeation rate) cannot be regarded as a 'safe limit'. When the permeation rate is low, monomers may have permeated before BTT can be determined. Using double gloves with a synthetic rubber inner glove and a natural rubber outer glove provided longer protection when the inner glove was rinsed in water before placing the outer glove on top.

  10. [Do double gloves protect against contamination during cannulation of blood vessels? A prospective randomized study].

    Science.gov (United States)

    Szarpak, Łukasz; Kurowski, Andrzej

    2014-01-01

    Undamaged medical gloves protect medical personnel from contact with physiological fluids of the patient. Thus they protect the assistance provider from hand skin contamination with potentially infectious biological materials. The aim of the study was to evaluate the occurrence of pierce, perforations or damage of medical gloves during cannulation of blood vessels. In the prospective randomized study 303 pairs of gloves, used during cannulation of blood vessels under simulated resuscitation, were analyzed. Gloves were tested by the water leak test. The water test revealed 44 cases of damage to the gloves used during cannulation of blood vessels. Significant differences were noted in the frequency of damage to both the outer and single pairs of gloves and the inner pair of gloves. The study showed that the use of double gloves provides a higher level of security for a paramedic than the use of a single pair of gloves, however, double gloves reduce the manual dexterity of a paramedic. A large number of damages to gloves are not noticed by medical personnel during surgery.

  11. Latex Rubber Gloves as a Sampling Dosimeter Using a Novel Surrogate Sampling Device.

    Science.gov (United States)

    Sankaran, Gayatri; Lopez, Terry; Ries, Steve; Ross, John; Vega, Helen; Eastmond, David A; Krieger, Robert I

    2015-01-01

    Pesticide exposure during harvesting of crops occurs primarily to the workers' hands. When harvesters wear latex rubber gloves for personal safety and hygiene harvesting reasons, gloves accumulate pesticide residues. Hence, characterization of the gloves' properties may be useful for pesticide exposure assessments. Controlled field studies were conducted using latex rubber gloves to define the factors that influence the transfer of pesticides to the glove and that would affect their use as a residue monitoring device. A novel sampling device called the Brinkman Contact Transfer Unit (BCTU) was constructed to study the glove characteristics and residue transfer and accumulation under controlled conditions on turf. The effectiveness of latex rubber gloves as sampling dosimeters was evaluated by measuring the transferable pesticide residues as a function of time. The validation of latex rubber gloves as a residue sampling dosimeter was performed by comparing pesticide transfer and dissipation from the gloves, with the turf transferable residues sampled using the validated California (CA) Roller, a standard measure of residue transfer. The observed correlation (Pearson's correlation coefficient R(2)) between the two methods was .84 for malathion and .96 for fenpropathrin, indicating that the BCTU is a useful, reliable surrogate tool for studying available residue transfer to latex rubber gloves under experimental conditions. Perhaps more importantly, these data demonstrate that latex gloves worn by workers may be useful quantifiable matrices for measuring pesticide exposure.

  12. A study of clinicians' views on medical gloves and their effect on manual performance.

    Science.gov (United States)

    Mylon, Peter; Lewis, Roger; Carré, Matt J; Martin, Nicolas; Brown, Steven

    2014-01-01

    The effect of gloves on practitioners' performance has not been a major factor in their design. To determine the critical elements of performance and design appropriate tests, data from clinicians were needed. Semistructured interviews were carried out with medical practitioners from various disciplines, in which they were asked about their glove use, their views on gloves, medical tasks requiring the highest manual performance or most affected by gloves, and what the main issues with glove use were. Many participants expressed a preference for latex over nitrile, with glove fit being the main reason given. Satisfaction with surgical gloves (generally latex) was high but less so with examination gloves, which were generally nitrile. Tactile sensation, comfort, and donning were also seen as major issues with glove use. A number of tasks were identified for possible development as tests. Performance in medical practice needs to be clearly defined, separating perceived and measured performance, and understanding the effect of glove material, fit, and thickness. Development of new glove performance tests based on the tasks identified is an important part of this. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  13. Prediction of dose and field mapping around a shielded plutonium fuel fabrication glovebox

    International Nuclear Information System (INIS)

    Strode, J.N.; Soldat, K.L.; Brackenbush, L.W.

    1984-01-01

    Westinghouse Hanford Company, as the Department of Energy's (DOE) prime contractor for the operation of the Hanford Engineering Development Laboratory (HEDL), is responsible for the development of the Secure Automated Fabrication (SAF) Line which is to be installed in the recently constructed Fuels and Materials Examination Facility (FMEF). The SAF Line will fabricate mixed-oxide (MOX) fuel pins for the Fast Flux Test Facility (FFTF) at an annual throughput rate of six (6) metric tons (MT) of MOX. The SAF Line will also demonstrate the automated manufacture of fuel pins on a production-scale. This paper describes some of the techniques used to reduce personnel exposure on the SAF Line, as well as the prediction and field mapping of doses from a shielded fuel fabrication glovebox. Tables are also presented from which exposure rate estimates can be made for plutonium recovered from fuels having different isotopic compositions as a result of varied burnup

  14. An MCNP model of glove boxes in a plutonium processing facility

    International Nuclear Information System (INIS)

    Dooley, D.E.; Kornreich, D.E.

    1998-01-01

    Nuclear material processing usually occurs simultaneously in several glove boxes whose primary purpose is to contain radioactive materials and prevent inhalation or ingestion of radioactive materials by workers. A room in the plutonium facility at Los Alamos National Laboratory has been slated for installation of a glove box for storing plutonium metal in various shapes during processing. This storage glove box will be located in a room containing other glove boxes used daily by workers processing plutonium parts. An MCNP model of the room and glove boxes has been constructed to estimate the neutron flux at various locations in the room for two different locations of the storage glove box and to determine the effect of placing polyethylene shielding around the storage glove box. A neutron dose survey of the room with sources dispersed as during normal production operations was used as a benchmark to compare the neutron dose equivalent rates calculated by the MCNP model

  15. Is clinical performance adversely affected by wearing gloves during paediatric peripheral intravenous cannulation?

    Science.gov (United States)

    Zhang, Michael; Lee, Mark; Knott, Susan

    2014-10-01

    To investigate if wearing protective gloves during paediatric intravenous cannulation affects performance of the procedure. This was a prospective observational study. Peripheral intravenous cannulation (PIVC) performed within the Paediatric ED was observed and recorded over a 12 month period. Data were compared between those clinicians wearing gloves and those not wearing gloves during PIVC. One thousand and twenty paediatric cannulations were recorded during the observed period. The mean age of the children was 5.79 years. The overall success rate of cannulation was 86.18% and first attempt success rate 76.08%. Overall, gloves were used by 54.31% of clinicians to establish vascular access; glove use was lowest in the registrar group (41.11% compliance rate). The glove-wearing group had comparable overall success rate of 85.74% (475/554) to the no-gloves group of 86.70% (404/466). The difference was not statistically significant (P > 0.05). Higher incidence of significant blood spillage during the procedure was observed among clinicians wearing no gloves (16.74%) in comparison with their glove-wearing counterparts (9.03%, P glove-wearing group and no-gloves group (3.94% vs 3.76%, P > 0.05). The present study shows that the use of protective gloves was not associated with adverse outcomes of clinical performance during paediatric cannulation. The low compliance rate of gloves use is alarming, and many clinicians might be exposed to potential blood-borne infections. Clinicians should be encouraged and supported to use gloves for paediatric cannulation. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  16. Calculation note - Consequences of a fire in the sorting and repackaging glovebox in room 636 of bldg 2736-ZB - Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    JOHNSON, L.E.

    1999-01-01

    This Calculation Note provides a conservative estimate of the grams of plutonium released from Building 2736-ZB of the Plutonium Finishing Plant as a result of a fire within Glovebox 636, without consideration of mitigation

  17. Anatomy of a defective barrier: sequential glove leak detection in a surgical and dental environment.

    Science.gov (United States)

    Albin, M S; Bunegin, L; Duke, E S; Ritter, R R; Page, C P

    1992-02-01

    a) To determine the frequency of perforations in latex surgical gloves before, during, and after surgical and dental procedures; b) to evaluate the topographical distribution of perforations in latex surgical gloves after surgical and dental procedures; and c) to validate methods of testing for latex surgical glove patency. Multitrial tests under in vitro conditions and a prospective sequential patient study using consecutive testing. An outpatient dental clinic at a university dental school, the operating suite in a medical school affiliated with the Veteran's Hospital, and a biomechanics laboratory. Surgeons, scrub nurses, and dental technicians participating in 50 surgical and 50 dental procedures. We collected 679 latex surgical gloves after surgical procedures and tested them for patency by using a water pressure test. We also employed an electronic glove leak detector before donning, after sequential time intervals, and upon termination of 47 surgical (sequential surgical), 50 dental (sequential dental), and in three orthopedic cases where double gloving was used. The electronic glove leak detector was validated by using electronic point-by-point surface probing, fluorescein dye diffusion, as well as detecting glove punctures made with a 27-gauge needle. The random study indicated a leak rate of 33.0% (224 out of 679) in latex surgical gloves; the sequential surgical study demonstrated patency in 203 out of 347 gloves (58.5%); the sequential dental study showed 34 leaks in the 106 gloves used (32.1%); and with double gloving, the leak rate decreased to 25.0% (13 of 52 gloves tested). While the allowable FDA defect rate for unused latex surgical gloves is 1.5%, we noted defect rates in unused gloves of 5.5% in the sequential surgical, 1.9% in the sequential dental, and 4.0% in our electronic glove leak detector validating study. In the sequential surgical study, 52% of the leaks had occurred by 75 mins, and in the sequential dental study, 75% of the leaks

  18. Fundamentals of the knowledge about chemical additives present in rubber gloves.

    Science.gov (United States)

    Oliveira, Hegles Rosa de; Alchorne, Alice de Oliveira de Avelar

    2011-01-01

    One of the most frequent causes of allergic contact dermatitis of occupational origin are rubber additives, which are present in Personal Protective Equipment (PPE). The most allergenic additives of natural and synthetic gloves are thiurams, carbamates and mercapto group. To investigate the state of knowledge about the chemical additives used in the manufacture of synthetic rubber gloves. This was a qualitative research study in which professionals working in the manufacture, research, prescription and commercialization of gloves answered an open questionnaire. 30 individuals were interviewed: 4 researchers in occupational medicine, 5 occupational physicians, 2 occupational safety technicians, a rubber workers' union physician, an occupational safety engineer, a pro duction engineer of rubber gloves, 4 importers of gloves, a manufacturer of gloves, 3 businessmen who sell PPE, 3 salesclerks working in stores that sell PPE, 2 businessmen who own stores that sell products for allergic individuals, and 3 dermatologists. Knowledge of the chemical composition of rubber gloves is scant. The labeling of gloves, with the description of their chemical composition, would facilitate choosing the best type of glove for each person. This low-cost action to businesses would be a gain from the standpoint of public health, with huge repercussions for users of rubber gloves.

  19. Influence of wearing latex gloves on electric pulp tester readings in children.

    Science.gov (United States)

    Holan, G

    1993-12-01

    Electric pulp testers operated by completing an electric circuit. Latex examination gloves have been claimed to interrupt this circuit and lead to false-negative results. This study was conducted to evaluate the influence of wearing latex gloves on electric pulp tester (EPT) readings. The pulps of 80 maxillary permanent incisors of 22 children 10-13 1/2 years old were tested using the Pelton & Crane 'Vitapulp' instrument. Each tooth was tested twice: with gloves and with bare hands. Teeth failing to respond to the EPT without gloves were excluded from the study. All EPT readings ranged between 1 and 9.5. Five teeth gave the same responses with gloved and ungloved hands. Only five teeth did not respond when gloves were worn, and all of these gave readings near the top of the EPT scale when tested without gloves. The other 70 teeth presented significantly higher readings with gloves than without gloves. It is concluded that removal of examination gloves during the operation of the EPT is necessary only if no response is obtained.

  20. Methodology for evaluating gloves in relation to the effects on hand performance capabilities: a literature review.

    Science.gov (United States)

    Dianat, Iman; Haslegrave, Christine M; Stedmon, Alex W

    2012-01-01

    The present study was conducted to review the literature on the methods that have been considered appropriate for evaluation of the effects of gloves on different aspects of hand performance, to make recommendations for the testing and assessment of gloves, and to identify where further research is needed to improve the evaluation protocols. Eighty-five papers meeting the criteria for inclusion were reviewed. Many studies show that gloves may have negative effects on manual dexterity, tactile sensitivity, handgrip strength, muscle activity and fatigue and comfort, while further research is needed to determine glove effects on pinch strength, forearm torque strength and range of finger and wrist movements. The review also highlights several methodological issues (including consideration of both task type and duration of glove use by workers, guidance on the selection and allocation of suitable glove(s) for particular tasks/jobs, and glove design features) that need to be considered in future research. Practitioner Summary: The relevant literature on the effects of protective gloves on different aspects of hand performance was reviewed to make recommendations for the testing and assessment of gloves, and to improve evaluation protocols. The review highlights research areas and methodological issues that need to be considered in future research.

  1. Vibration-reducing gloves: transmissibility at the palm of the hand in three orthogonal directions.

    Science.gov (United States)

    McDowell, Thomas W; Dong, Ren G; Welcome, Daniel E; Xu, Xueyan S; Warren, Christopher

    2013-01-01

    Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand-arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test. Practitioner Summary: This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction.

  2. Application of glove box robotics to hazardous waste management

    International Nuclear Information System (INIS)

    Dennison, D.K.; Hurd, R.L.; Merrill, R.D.; Reitz, T.C.

    1995-02-01

    Lawrence Livermore Laboratory (LLNL) is developing a semi-automated system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM developed gantry robot with a special glove box enclosure designed to protect the operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely using the robot in a telerobotic mode for one-of-a-kind functions and in an autonomous mode for repetitive type operations. The system will initially be used in conjunction with a portable gas system designed to capture any gaseous phase tritium released into the glove box. This paper presents the objectives of this program, provides background related to LLNL's robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans

  3. F-16XL Ship #2 Laminar Flow Glove mounting

    Science.gov (United States)

    1995-01-01

    NASA's two-seat F-16XL research aircraft is shown in the modification hangar at NASA's Dryden Flight Research Center, Edwards, California, during installation of a titanium 'glove' on the upper surface of its modified left wing. The aircraft subsequently carried out a 13-month-long, 45-flight research program which investigated drawing off a small part of the boundary-layer air in order to provide laminar--or smooth--flow over a major portion of a wing flying at supersonic speeds. A turbo-compressor in the aircraft's fuselage provided suction to draw air through more than 10 million tiny laser-drilled holes in the glove via a manifold system employing 20 valves. Data obtained during the program could assist designers of future aircraft in developing a more efficient high-speed civil transport.

  4. FDM 3D printed coffee glove embedded with flexible electronic

    KAUST Repository

    Bahri, Meznan

    2017-10-31

    With the advances in 3D printing technology, Flexible Electronics can now be exploited to form the so-called “Embedded Electronics”. This paper describes experiences learned from a research project which ran during summer 2016 at KAUST, in collaboration with the Electrical and Computer Engineering Department at Effat University, and aimed at creating a heating coffee glove product operating on double alkaline batteries using Kapton© as a flexible substrate for the circuit. The circuit and its batteries are encapsulated in a 3D printed glove, designed using SolidWorks©. The proposed methodology and techniques applied during this work could be further used in implementing other technologies, such as thermoelectric coolers head patches, smart garments, and flexible smartphones. Limitation and recommendation of the present methodology are also discussed.

  5. An Instrumented Glove for Control Audiovisual Elements in Performing Arts

    Directory of Open Access Journals (Sweden)

    Rafael Tavares

    2018-02-01

    Full Text Available The use of cutting-edge technologies such as wearable devices to control reactive audiovisual systems are rarely applied in more conventional stage performances, such as opera performances. This work reports a cross-disciplinary approach for the research and development of the WMTSensorGlove, a data-glove used in an opera performance to control audiovisual elements on stage through gestural movements. A system architecture of the interaction between the wireless wearable device and the different audiovisual systems is presented, taking advantage of the Open Sound Control (OSC protocol. The developed wearable system was used as audiovisual controller in “As sete mulheres de Jeremias Epicentro”, a portuguese opera by Quarteto Contratempus, which was premiered in September 2017.

  6. Compression under a mechanical counter pressure space suit glove

    Science.gov (United States)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, pglove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  7. Chemical Resistance of Disposable Nitrile Gloves Exposed to Simulated Movement

    Science.gov (United States)

    Phalen, Robert N.; Wong, Weng Kee

    2012-01-01

    Large discrepancies between laboratory permeation testing and field exposures have been reported, with indications that hand movement could account for a portion of these differences. This study evaluated the influence of simulated movement on chemical permeation of 30 different disposable nitrile glove products. Products were investigated out-of-box and with exposure to simulated whole-glove movement. Permeation testing was conducted using ethanol as a surrogate test chemical. A previously designed pneumatic system was used to simulate hand movement. No movement and movement tests were matched-paired to control for environmental conditions, as were statistical analyses. Permeation data were collected for a 30-min exposure period or until a breakthrough time (BT) and steady-state permeation rate (SSPR) could be determined. A third parameter, area under the curve at 30 min (AUC-30), was used to estimate potential worker exposure. With movement, a significant decrease in BT (p ≤ 0.05), ranging from 6–33%, was observed for 28 products. The average decrease in BT was 18% (p ≤ 0.001). With movement, a significant increase in SSPR (p ≤ 0.05), ranging from 1–78%, was observed with 25 products. The average increase in SSPR was 18% (p ≤ 0.001). Significant increases in AUC-30 (p ≤ 0.05), ranging from 23–277%, were also observed for all products where it could be calculated. On average, there was a 58% increase (p ≤ 0.001). The overall effect of movement on permeation through disposable nitrile gloves was significant. Simulated movement significantly shortened the BT, increased the SSPR, and increased the cumulative 30-min exposure up to three times. Product variability also accounted for large differences, up to 40 times, in permeation and cumulative exposure. Glove selection must take these factors into account. It cannot be assumed that all products will perform in a similar manner. PMID:23009187

  8. Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials

    Energy Technology Data Exchange (ETDEWEB)

    Tyrpekl, V., E-mail: vaclav.tyrpekl@ec.europa.eu, E-mail: vaclav.tyrpekl@gmail.com; Berkmann, C.; Holzhäuser, M.; Köpp, F.; Cologna, M.; Somers, J. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Wangle, T. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, Praha 1, 115 19 (Czech Republic)

    2015-02-15

    Spark plasma sintering (SPS) is a rapidly developing method for densification of powders into compacts. It belongs to the so-called “field assisted sintering techniques” that enable rapid sintering at much lower temperatures than the classical approaches of pressureless sintering of green pellets or hot isostatic pressing. In this paper, we report the successful integration of a SPS device into a hermetic glovebox for the handling of highly radioactive material containing radioisotopes of U, Th, Pu, Np, and Am. The glovebox implantation has been facilitated by the replacement of the hydraulic system to apply pressure with a compact electromechanical unit. The facility has been successfully tested using UO{sub 2} powder. Pellets with 97% of the theoretical density were obtained at 1000 °C for 5 min, significantly lower than the ∼1600 °C for 5-10 h used in conventional pellet sintering.

  9. The Virtual GloveboX (VGX: a Semi-immersive Virtual Environment for Training Astronauts in Life Sciences Experiments

    Directory of Open Access Journals (Sweden)

    I. Alexander Twombly

    2004-06-01

    Full Text Available The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The "Virtual GloveboX" (VGX integrates high-fidelity graphics, force-feedback devices and real-time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  10. Dismantling of a furnace and gloveboxes of a U3O8 with 20% enrichment production line

    International Nuclear Information System (INIS)

    Yorio, Daniel; Cinat, Enrique; Cincotta, Daniel; Fernandez, Carlos A.; Bruno, Hernan R.; Camacho, Esteban F.; Boero, Norma

    1999-01-01

    In the Uranium Powder Manufacturing Plant at CAC, U 3 O 8 with 20% enrichment is manufactured for fuel plates to be used in test reactors. This plant is in full operation since 1986, producing uranium oxide for Peru, Algeria, Iran, Egypt and the RA-3-CAE reactors. Some of the equipment of the Plant have finished their life time and one of the furnaces of the processing line had to be replaced. This work implied the dismantling not only of the furnace, but also of the gloveboxes connected to the furnace and the dismantling of the extraction lines and air injection of the gloveboxes. The work had to be performed with the necessary care in order to minimize risks and effects on personnel, installations and environment involved. (author)

  11. In-situ dismantling of plutonium-contaminated glove box

    International Nuclear Information System (INIS)

    Numata, Koji; Watanabe, Hisashi; Ishikawa, Hisashi; Miyo, Hiroaki; Ohtsuka, Katsuyuki

    1980-01-01

    A plutonium-contaminated glove box was dismantled along with the development of the treatment techniques for plutonium-bearing wastes. The objectives of this in-situ dismantling of the glove box are to reuse the Plutonium Fuel Fabrication Facility more efficiently, to reduce the volume of wastes generated during the dismantling, and to acquire dismantling techniques for decommissioning the Plutonium Fuel Fabrication Facility in the future. Prior to the dismantling works, a greenhouse for decontamination was installed, and the decontamination with surfactants was performed. Unremovable contamination was coated with paint. After this greenhouse was removed, the main greenhouse for dismantling and three greenhouses for contamination control were assembled. The main workers wearing protective devices engaged in dismantling works in the greenhouse. As the protective devices, anorak type PVC suits with air line masks, Howell type pressurized suits, and respirators were used. The tools used for the dismantling are a plasma cutter, an electric nibbler, an electric disk grinder, an electric circular saw and an electric jig saw. The results of the dismantling in-situ were compared with two previous cases of dismantling carried out by different procedures. In the case of in-situ dismantling, the volume of wastes was 1.6 - 1.8 m 3 /m 3 of glove box, and considerable reduction was realized. (Kako, I.)

  12. Selecting protective gloves for oil spill response and cleanup

    International Nuclear Information System (INIS)

    McDermott, H.J.

    1993-01-01

    Oil spill responders and cleanup workers must be provided with gloves that prevent skin contact while permitting them to do their job safely and efficiently. Glove selection is largely based on professional judgment, considering permeation, resistance to puncture and abrasion, and whether the material gets slick when coated with oil. This paper consolidates the most useful information from various studies and presents a selection rationale. In general, we found neoprene, polyvinyl chloride (PVC), and nitrile to be the glove materials of choice for protection in oil spills. The skin toxicity potential for most petroleum materials encountered in a spill is low. Some fresh crudes may contain hydrocarbon molecules that may penetrate the skin and cause some systemic toxicity with high enough exposure. However, as crude weathers, the more volatile hydrocarbons evaporate rapidly, leaving behind the heavier fraction, which often contains polynuclear aromatic (PNA) compounds. Some PNAs have caused skin cancer in animals after prolonged and repeated contact. As a reference, most weathered crude is similar to used motor oil in skin toxicity; prolonged and repeated skin contact should be avoided, but there is no cause for concern if some gets on the skin. The typical skin problems from excessive skin contact are drying and cracking from the defatting action of the oil itself or from the soap or hand cleaners used to remove the oil, and pustules (similar to boils) if the oil plugs the sweat glands in the skin

  13. Decontamination of latex gloves; Decontamination de gants en latex

    Energy Technology Data Exchange (ETDEWEB)

    Boutot, P; Schipfer, P; Blachere, A [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1969-07-01

    Initially the latex gloves used in controlled zones were processed after use as radioactive waste. In view of the continually increasing number used, however, the persons in charge of the SPRAR have considered the possibility of decontaminating the gloves and using them again after control. The recovery installations which have been developed were initially designed rather crudely and operated irregularly; they have been progressively improved as a result of the experience acquired; today they are more really an industrial concern, equipped with automatic machinery. In 1967 it has been possible with this set-up to recover 247000 pairs of gloves, representing nearly 70 per cent of the number treated. (author) [French] Initialement, les gants de latex utilises dans les zones controlees etaient conditionnes apres emploi comme dechets radioactifs. Mais, devant l'augmentation sans cesse croissante des quantites employees, les responsables du SPRAR ont envisage leur decontamination et leur recyclage apres controles. Les installations de recuperation mises au point, de conception artisanale et fonctionnant de maniere episodique au depart, se sont progressivement ameliorees au fur et a mesure de l'experience acquise; elles revetent aujourd'hui le caractere d'une exploitation industrielle equipee de machines automatiques. En 1967, ces nouvelles installations ont permis de recuperer 247000 paires de gants, ce qui represente pres de 70 pour cent des quantites traitees. (auteur)

  14. Glovebox-contained forty-millimeter gun system for the study of one-dimensional shock waves in toxic materials

    International Nuclear Information System (INIS)

    Honodel, C.A.

    1975-01-01

    A new gun system is being constructed at the Lawrence Livermore Laboratory for studies of the behavior of toxic materials under shock-loaded conditions. Due to the extreme toxicity of some materials, such as plutonium, the entire gun system must be enclosed in gloveboxes. Some of the experimental requirements that affected the design of the system, various diagnostic techniques that will be employed with the system, and some details of the final design that is presently under assembly are presented

  15. Automation of Command and Data Entry in a Glovebox Work Volume: An Evaluation of Data Entry Devices

    Science.gov (United States)

    Steele, Marianne K.; Nakamura, Gail; Havens, Cindy; LeMay, Moira

    1996-01-01

    The present study was designed to examine the human-computer interface for data entry while performing experimental procedures within a glovebox work volume in order to make a recommendation to the Space Station Biological Research Project for a data entry system to be used within the Life Sciences Glovebox. Test subjects entered data using either a manual keypad, similar to a standard computer numerical keypad located within the glovebox work volume, or a voice input system using a speech recognition program with a microphone headset. Numerical input and commands were programmed in an identical manner between the two systems. With both electronic systems, a small trackball was available within the work volume for cursor control. Data, such as sample vial identification numbers, sample tissue weights, and health check parameters of the specimen, were entered directly into procedures that were electronically displayed on a video monitor within the glovebox. A pen and paper system with a 'flip-chart' format for procedure display, similar to that currently in use on the Space Shuttle, was used as a baseline data entry condition. Procedures were performed by a single operator; eight test subjects were used in the study. The electronic systems were tested under both a 'nominal' or 'anomalous' condition. The anomalous condition was introduced into the experimental procedure to increase the probability of finding limitations or problems with human interactions with the electronic systems. Each subject performed five test runs during a test day: two procedures each with voice and keypad, one with and one without anomalies, and one pen and paper procedure. The data collected were both quantitative (times, errors) and qualitative (subjective ratings of the subjects).

  16. Decontamination and reconditioning of the Argonne National Laboratory-West Casting Laboratory alpha glove box

    International Nuclear Information System (INIS)

    Poston, J.W. Jr.; Burke, L.L.

    1998-01-01

    The Casting Laboratory (CL) alpha glove box was used to melt and cast metallic uranium and plutonium fuels as part of the Department of Energy''s Liquid Metal Fast Breeder Reactor Program. This highly contaminated alpha glove box was decontaminated and reconditioned to allow a change in mission. The goal of reconditioning was to install experimental apparatus and to improve contamination control prior to introducing plutonium-238 into the CL glove box. Construction of a glove box containment structure and an increase in room ventilation were required. A temporary breathing air station was provided for personnel protection as well as personnel comfort. The historical contamination levels, the decontamination techniques, and the results of decontamination also are presented. The health physics aspects of the CL alpha glove box project may be applicable to other glove box refurbishment or decommissioning projects

  17. Commercial golf glove effects on golf performance and forearm muscle activity.

    Science.gov (United States)

    Sorbie, Graeme G; Darroch, Paul; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike C

    2017-01-01

    The study aimed to determine whether or not commercial golf gloves influence performance variables and forearm muscle activity during golf play. Fifteen golfers participated in the laboratory based study, each performing 8 golf swings with a Driver and 7-iron whilst wearing a glove and 8 without wearing the glove. Club head speed, ball speed and absolute carry distance performance variables were calculated. Surface electromyography was recorded from the flexor digitorum superficialis and extensor carpi radialis brevis on both forearm muscles. Club head speed, ball speed and absolute carry distance was significantly higher when using the Driver with the glove in comparison to the Driver without the glove (p < 0.05). No significant differences were evident when using the 7-iron and no significant differences were displayed in muscle activity in either of the conditions. Findings from this study suggest that driving performance is improved when wearing a glove.

  18. Tritium stripping in a nitrogen glove box using palladium/zeolite and SAES St 198 trademark

    International Nuclear Information System (INIS)

    Klien, J.E.; Wermer, J.R.

    1995-01-01

    Glove box clean-up experiments were conducted in a nitrogen glove box using palladium deposited on zeolite (Pd/z) and a SAES St 198 trademark getter as tritium stripping materials. Protium/deuterium samples spiked with tritium were released into a 620 liter glove box to simulate tritium releases in a 10,500 liter glove box. The Pd/z and the SAES St 198 trademark stripper beds produced a reduction in tritium activity of approximately two to three orders of magnitude and glove box clean-up was limited by a persistent background tritium activity level. Attempts to significantly reduce the glove box activity to lower levels without purging were unsuccessful

  19. Finger doses during interventional radiology: The value of flexible protective gloves

    International Nuclear Information System (INIS)

    Vehmas, T.

    1991-01-01

    Finger doses of radiologists and assistants during 19 interventional radiological procedures were measured with thermoluminescent dosimeters (TLDs), and two types of flexible protective gloves were compared with each other. There were considerable differences in doses between different sites of TLDs on fingers. The exact site of TLDs on hands/fingers should thus be reported in papers. Both gloves were also irradiated through an Alderson phantom and the attenuation values were measured. The gloves with slightly greater attenuation proved to be significantly less comfortable to use. Wearing flexible protective gloves did not lengthen screening times as compared to a previous study in the same department. Various aspects of using such gloves are discussed. The attenuation values of gloves reported by the manufacturers may not apply under all clinical circumstances. (orig.) [de

  20. Effect of shelf aging on vibration transmissibility of anti-vibration gloves

    Science.gov (United States)

    SHIBATA, Nobuyuki

    2017-01-01

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 yr of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves. PMID:28978817

  1. Investigation of X-ray permeability of surgical gloves coated with different contrast agents

    Science.gov (United States)

    Kayan, Mustafa; Yaşar, Selçuk; Saygın, Mustafa; Yılmaz, Ömer; Aktaş, Aykut Recep; Kayan, Fatmanur; Türker, Yasin; Çetinkaya, Gürsel

    2016-01-01

    Objective: We aimed to investigate the effectiveness and radiation protection capability of latex gloves coated with various contrast agents as an alternative to lead gloves. Methods: The following six groups were created to evaluate the permeability of X-ray in this experimental study: lead gloves, two different non-ionic contrast media (iopromide 370/100 mg I/mL and iomeprol 400/100 mg I/mL), 10% povidone–iodine (PV–I), 240/240 g/mL barium sulphate and a mixture of equal amounts of all contrast agents. A radiation dose detector was placed in coated latex gloves for each one. The absorption values of radiation from latex gloves coated with various contrast agents were measured and compared with the absorption of radiation from lead gloves. This study was designed as an ‘experimental study’. Results: The mean absorption value of X-ray from lead gloves was 3.0±0.08 µG/s. The mean absorption values of X-ray from latex gloves coated with various contrast agents were 3.7±0.09 µG/s (iopromide 370/100 mg I/mL), 3.6±0.09 µG/s (iomeprol 400/100 mg I/mL), 3.7±0.04 µG/s (PV–I), 3.1±0.07 µG/s (barium sulphate) and 3.8±0.05 µG/s (mixture of all contrast agents). Latex gloves coated with barium sulphate provided the best radiation absorption compared with latex gloves coated with other radiodense contrast agents. Conclusion: Latex gloves coated with barium sulphate may provide protection equivalent to lead gloves. PMID:26680548

  2. Space suit glove design with advanced metacarpal phalangeal joints and robotic hand evaluation.

    Science.gov (United States)

    Southern, Theodore; Roberts, Dustyn P; Moiseev, Nikolay; Ross, Amy; Kim, Joo H

    2013-06-01

    One area of space suits that is ripe for innovation is the glove. Existing models allow for some fine motor control, but the power grip--the act of grasping a bar--is cumbersome due to high torque requirements at the knuckle or metacarpal phalangeal joint (MCP). This area in particular is also a major source of complaints of pain and injury as reported by astronauts. This paper explores a novel fabrication and patterning technique that allows for more freedom of movement and less pain at this crucial joint in the manned space suit glove. The improvements are evaluated through unmanned testing, manned testing while depressurized in a vacuum glove box, and pressurized testing with a robotic hand. MCP joint flex score improved from 6 to 6.75 (out of 10) in the final glove relative to the baseline glove, and torque required for flexion decreased an average of 17% across all fingers. Qualitative assessments during unpressurized and depressurized manned testing also indicated the final glove was more comfortable than the baseline glove. The quantitative results from both human subject questionnaires and robotic torque evaluation suggest that the final iteration of the glove design enables flexion at the MCP joint with less torque and more comfort than the baseline glove.

  3. Permeation of hair dye ingredients, p-phenylenediamine and aminophenol isomers, through protective gloves.

    Science.gov (United States)

    Lee, Hsiao-Shu; Lin, Yu-Wen

    2009-04-01

    Skin irritation and contact allergies are skin disorders common to hairdressers. The predominant oxidative hair dye components, such as p-phenylenediamine (PPD) and aminophenol isomers, can cause contact dermatitis. Use of protective gloves can prevent dermal contact with skin irritants. This study investigates the permeation behaviors of p-aminophenol (PAP), m-aminophenol (MAP), o-aminophenol (OAP) and PPD in single and mixed challenge solutions with disposable natural rubber latex (NRL) gloves, disposable polyvinylchloride (PVC) gloves and neoprene (NP) gloves. The challenge solutions were 4% PPD (w/v), 3% OAP (w/v), 2% PAP (w/v) and 2% MAP (w/v) in ethanol or 12% hydrogen peroxide solutions. The cocktail solutions of the four chemicals were also tested. An American Society for Testing and Materials type permeation cell, ethanol liquid collection and gas chromatography-flame ionization detection of samples taken from the collection medium every 10 min facilitated determination of breakthrough times (BTs), cumulative permeated masses and steady-state permeation rates (SSPRs). Experiments were 4 h long for the NRL and PVC gloves and 8 h for NP gloves. No chemicals tested broke through the NP gloves when exposed for 8 h. In the ethanol solution, PPD and OAP started breaking through the PVC gloves at 40 min. The SSPRs of PVC gloves were higher than those for NRL gloves in all challenge conditions for both single chemicals and mixtures. No tested chemicals in hydrogen peroxide solutions permeated the gloves during the 4-h tests. The chemical composition of the challenge solution was a main effecter of BTs and SSPRs for the NRL glove. For disposable PVC gloves, the main factors of BTs were molecular size [molar volume (MV)] and polarity (logK(ow)), and the primary factors of SSPRs were concentration, MV and logK(ow). In conclusion, disposable NRL gloves and disposable PVC gloves should not be used repeatedly for handling the hair dye products. Hydrogen peroxide did not

  4. A powder-free surgical glove bag for retraction of the gallbladder during laparoscopic cholecystectomy.

    Science.gov (United States)

    Holme, Jørgen Bendix; Mortensen, Frank Viborg

    2005-08-01

    To test the use of a simple and cheap powder-free glove bag to extract the gallbladder during laparoscopic cholecystectomy (LC). The medical records of 142 consecutive patients who had their gallbladder removed using a powder-free glove bag were reviewed. No complications in the form of bile or stone spillage during extraction were observed. The absence of complications and the low cost make routine use of the glove bag a wise option for extracting the gallbladder during LC. The use of the glove bag seems to reduce the risk of contamination with bacteria, bile, and gallstones and may reduce contamination by malignant cells in case of unexpected gallbladder carcinoma.

  5. Comfort and performance of power line maintainers' gloves during electrical utility work in the cold.

    Science.gov (United States)

    Hunt, S; Boyle, C; Wells, R

    2014-01-01

    Electrical utility workers wear thick rubber gloves and often work in the cold. To document the challenge of working in the cold and the effectiveness of different glove/liner combinations in keeping workers' hands warm. Ten experienced male electrical utility employees worked in a controlled temperature walk-in chamber at -20 °C for 45 minutes for each of five glove conditions: standard five-finger rubber gloves with cotton liners and gauntlets, mitten style gloves, a prototype wool liner, and two heating options; glove or torso. Dependent measures were maximum grip force, skin temperatures, finger dexterity and sensitivity to touch, ratings of perceived effort and a rating of thermal sensation. Participants' hand skin temperatures decreased, they perceived their hands to be much colder, their finger sensitivity decreased and their ratings of perceived exertion increased, however their performance did not degrade over the 45 minute trials. The mitten-style gloves showed a smaller drop in skin temperature for the 3rd and 5th digits (pglove conditions. Mitten style gloves kept workers' hands warmer than the standard five finger glove.

  6. Alpha contamination assessment for D ampersand D activities: Monitoring inside glove boxes and vessels

    International Nuclear Information System (INIS)

    Rawool-Sullivan, M.W.; Bolton, R.D.; Conaway, J.G.; MacArthur, D.W.

    1996-02-01

    We have developed a new approach to glove box monitoring that involves drawing air out of one glove port through a detection grid that collects ions created in the air inside the glove box by ionizing radiation, especially alpha radiation. The charge deposited on the detection grid by the ions is measured with a sensitive electrometer. The air can be circulated back to the glove box through the other glove port, preventing contamination from leaving the glove box and detector system. Initial experiments using a mock-up constructed of sheet metal indicate that this technology provides the measurement technique needed to perform a defensible, non-invasive measurement of alpha contamination inside glove boxes destined for waste disposal. This can result in an enormous cost savings if a given glove box can be shown to fall into the catagory of Low-Level Waste rather than Trans-Uranic Waste. Considering that hundreds of glove boxes contaminated with plutonium will be taken out of service at various nuclear facilities over the next few years, the potential cost savings associated with disposal as LLW rather than TRU waste are substantial

  7. An open-walled ionization chamber appropriate to tritium monitoring for glovebox

    International Nuclear Information System (INIS)

    Chen Zhilin; Chang Ruiming; Mu Long; Song Guoyang; Wang Heyi; Wu Guanyin; Wei Xiye

    2010-01-01

    An open-walled ionization chamber is developed to monitor the tritium concentration in gloveboxes in tritium processing systems. Two open walls are used to replace the sealed wall in common ionization chambers, through which the tritium gas can diffuse into the chamber without the aid of pumps and pipelines. Some basic properties of the chamber are examined to evaluate its performance. Results turn out that an open-walled chamber of 1 l in volume shows a considerably flat plateau over 700 V for a range of tritium concentration. The chamber also gives a good linear response to gamma fields over 4 decades under a pressure condition of 1 atm. The pressure dependence characteristics show that the ionization current is only sensitive at low pressures. The pressure influence becomes weaker as the pressure increases mainly due to the decrease in the mean free path of β particles produced by tritium decay. The minimum detection limit of the chamber is 3.7x10 5 Bq/m 3 .

  8. Evaluation of Life Sciences Glovebox (LSG) and Multi-Purpose Crew Restraint Concepts

    Science.gov (United States)

    Whitmore, Mihriban

    2005-01-01

    Within the scope of the Multi-purpose Crew Restraints for Long Duration Spaceflights project, funded by Code U, it was proposed to conduct a series of evaluations on the ground and on the KC-135 to investigate the human factors issues concerning confined/unique workstations, such as the design of crew restraints. The usability of multiple crew restraints was evaluated for use with the Life Sciences Glovebox (LSG) and for performing general purpose tasks. The purpose of the KC-135 microgravity evaluation was to: (1) to investigate the usability and effectiveness of the concepts developed, (2) to gather recommendations for further development of the concepts, and (3) to verify the validity of the existing requirements. Some designs had already been tested during a March KC-135 evaluation, and testing revealed the need for modifications/enhancements. This flight was designed to test the new iterations, as well as some new concepts. This flight also involved higher fidelity tasks in the LSG, and the addition of load cells on the gloveports.

  9. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    International Nuclear Information System (INIS)

    Teese, G.D.; Randall, W.J.

    1992-01-01

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended

  10. Implementation of dynamic cross-talk correction (DCTC) for MOX holdup assay measurements among multiple gloveboxes

    International Nuclear Information System (INIS)

    Nakamichi, Hideo; Nakamura, Hironobu; Mukai, Yasunobu; Kurita, Tsutomu; Beddingfield, David H.

    2012-01-01

    Plutonium holdup in gloveboxes (GBs) are measured by (passive neutron based NDA (HBAS) for the material control and accountancy (MC and A) at Plutonium Conversion Development Facility (PCDF). In the case that the GBs are installed close to one another, the cross-talk which means neutron double counting among GBs should be corrected properly. Though we used to use predetermined constants as the cross-talk correction, a new correction methodology for neutron cross-talk among the GBs with inventory changes is required for the improvement of MC and A. In order to address the issue of variable cross-talk contributions to holdup assay values, we applied a dynamic cross-talk correction (DCTC) method, based on the distributed source-term analysis approach, to obtain the actual doubles derived from the cross-talk between multiple GBs. As a result of introduction of DCTC for HBAS measurement, we could reduce source biases from the assay result by estimating the reliable doubles-counting derived from the cross-talk. Therefore, we could improve HBAS measurement uncertainty to a half of conventional system, and we are going to confirm the result. Since the DCTC methodology can be used to determine the cross-correlation among multiple inventories in small areas, it is expected that this methodology can be extended to the knowledge of safeguards by design. (author)

  11. Conception of dismantling cell for glove box with alpha contamination

    International Nuclear Information System (INIS)

    Mangin, D.

    1987-01-01

    The new dismantling cell of Valduc treats particularly alpha glove boxes. This cell is conceived to reduce the intervention inside for man with ventilated clothes and to reduce the volume of alpha wastes by utilization of manipulators and appropriate tools. The respect of low level norms (0.1 Ci/ton) for storage of alpha wastes conductes us to make a first decontamination, to ameliorate the detection in quantity of plutonium in the wastes and for wastes with a level upper the norm to make studies on decontamination by Freon 113 [fr

  12. Developing glovebox robotics to meet the national robot safety standard and nuclear safety criteria

    International Nuclear Information System (INIS)

    McMahon, T.T.; Sievers, R.H.

    1991-09-01

    Development of a glove box based robotic system by the Lawrence Livermore National Laboratory (LLNL) is reported. Safety issues addressed include planning to meet the special constraints of operations within a hazardous material glove box and with hostile environments, compliance with the current and draft national robotic system safety standards, and eventual satisfaction of nuclear material handling requirements. Special attention has been required for the revision to the robot and control system models which antedate adoption of the present national safety standard. A robotic test bed, using non-radioactive surrogates is being activated at the Lawrence Livermore National Laboratory to develop the material handling system and the process interfaces for future special nuclear material processing applications. Part of this effort is to define, test, and revise adequate safety controls to ensure success when the system is eventually deployed at a DOE site. The current system is primarily for demonstration and testing, but will evolve into the baseline configuration from which the production system is to be derived. This results in special hazards associated with research activities which may not be present on a production line. Nuclear safety is of paramount importance and has been successfully addressed for 50 years in the DOE weapons production complex. It carries its particular requirements for robot systems and manual operations, as summarized below: Criticality must be avoided (materials cannot consolidate or accumulate to approach a critical mass). Radioactive materials must be confined. The public and workers must be protected from accountable radiation exposure. Nuclear material must be readily retrievable. Nuclear safety must be conclusively demonstrated through hazards analysis. 7 refs

  13. A prospective study on the risk of glove fingertip contamination during draping in joint replacement surgery.

    Science.gov (United States)

    Makki, D; Deierl, K; Pandit, A; Trakru, S

    2014-09-01

    The aim of this prospective study was to investigate the risk of contamination of surgical gloves during preparation and draping in joint replacement surgery. During 46 hip and knee replacement procedures, the gloves of orthopaedic consultants (n=5) and registrars (n=3) were assessed for contamination immediately after draping by impression of gloved fingers on blood agar. Contamination was evaluated by the surgeon's grade, the type of procedure, the role of the assistant and the dominance of the hand. A total of 125 pairs of top gloves were examined (79 pairs from registrars and 46 pairs from consultants). Bacterial contamination was isolated on 19 pairs (15.2%) (16 pairs from registrars and 3 pairs from consultants, p=0.04). Coagulase negative staphylococci were the main isolates and contamination was considered low in all cases (1-5 colonies). Contamination was seen more on the dominant hand (16 gloves from dominant hands and 6 from non-dominant hands, p=0.04), on the index finger and thumb. More contaminated gloves were seen in hip arthroplasty procedures (16 pairs from total hip replacements vs 3 pairs from total knee replacements, p=0.02). Contamination of glove fingertips during draping in joint replacement procedures is more likely to occur among junior surgeons, in hip rather than knee arthroplasty procedures and on the dominant hand. It is therefore essential that surgeons of different grades replace gloves used in draping to avoid exposing patients to the risk of infection.

  14. The Influence of Glove Type on Simulated Wheelchair Racing Propulsion: A Pilot Study.

    Science.gov (United States)

    Rice, I; Dysterheft, J; Bleakney, A W; Cooper, R A

    2016-01-01

    Our purpose was to examine the influence of glove type on kinetic and spatiotemporal parameters at the handrim in elite wheelchair racers. Elite wheelchair racers (n=9) propelled on a dynamometer in their own racing chairs with a force and moment sensing wheel attached. Racers propelled at 3 steady state speeds (5.36, 6.26 & 7.60 m/s) and performed one maximal effort sprint with 2 different glove types (soft & solid). Peak resultant force, peak torque, impulse, contact angle, braking torque, push time, velocity, and stroke frequency were recorded for steady state and sprint conditions. Multiple nonparametric Wilcoxon matched pair's tests were used to detect differences between glove types, while effect sizes were calculated based on Cohen's d. During steady state trials, racers propelled faster, using more strokes and larger contact angle, while applying less impulse with solid gloves compared to soft gloves. During the sprint condition, racers achieved greater top end velocities, applying larger peak force, with less braking torque with solid gloves compared to soft gloves. Use of solid gloves may provide some performance benefits to wheelchair racers during steady state and top end velocity conditions. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Influence of Glove Type on Mobility Performance for Wheelchair Rugby Players

    NARCIS (Netherlands)

    Mason, Barry S.; van der Woude, L. H. V.; Goosey-Tolfrey, V. L.

    Objective: The purpose of this study was to determine the effectiveness of different glove types on mobility performance in a series of field tests specific to wheelchair rugby. Design: Ten international wheelchair rugby players performed three drills in each glove condition: (i) players' current

  16. A new method of ergonomic testing of gloves protecting against cuts and stabs during knife use.

    Science.gov (United States)

    Irzmańska, Emilia; Tokarski, Tomasz

    2017-05-01

    The paper presents a new method of ergonomic evaluation of gloves protecting against cuts and stabs during knife use, consisting of five manual dexterity tests. Two of them were selected based on the available literature and relevant safety standards, and three were developed by the authors. All of the tests were designed to simulate occupational tasks associated with meat processing as performed by the gloved hand in actual workplaces. The tests involved the three most common types of protective gloves (knitted gloves made of a coverspun yarn, metal mesh gloves, and metal mesh gloves with an ergonomic polyurethane tightener) and were conducted on a group of 20 males. The loading on the muscles of the upper limb (adductor pollicis, flexor carpi ulnaris, flexor carpi radialis, and biceps brachii) was measured using surface electromyography. For the obtained muscle activity values, correlations were found between the glove type and loading of the upper limb. ANOVA showed that the activity of all muscles differed significantly between the five tests. A relationship between glove types and electromyographic results was confirmed at a significance level of α = 0.05. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Content of Asthmagen Natural Rubber Latex Allergens in Commercial Disposable Gloves.

    Science.gov (United States)

    Bittner, C; Garrido, M V; Krach, L H; Harth, V

    The use of natural rubber latex (NRL) gloves in many occupations may lead to latex sensitization, allergic asthma, and skin reactions. Due to their good properties and environmental safety NRL gloves are still being used in the healthcare setting, but also in the food industry, by hairdressers, cleaners, etc. The aim of our study was to assess the protein and NRL allergen content in commercial gloves by different methods, including a new assay. Twenty commercially available NRL gloves were analyzed. Protein extraction was performed according to the international standard ASTM D-5712. Total protein content was measured with a modified Lowry method, NRL content with the CAP Inhibition Assay, the Beezhold ELISA Inhibition Assay, and an innovative ELISA with IgY-antibodies extracted from eggs of NRL-immunized hens (IgY Inhibition Assay). We found a high protein content in a range of 215.0-1304.7 μg/g in 8 out of the 20 NRL gloves. Seven of the 20 gloves were powdered, four of them with a high protein content. In gloves with high protein content, the immunological tests detected congruently high levels of NRL allergen. We conclude that a high percentage of commercially available NRL gloves still represent a risk for NRL allergy, including asthma. The modified Lowry Method allows to infer on the latex allergen content.

  18. IMMEDIATE AND DELAYED HYPERSENSITIVITY REACTIONS TO LATEX GLOVES IN A DENTAL STUDENT. A case report.

    Directory of Open Access Journals (Sweden)

    Iliyana Stoeva

    2011-08-01

    Full Text Available The article presents a case of dental student with immediate and delayed hypersensitivity reaction to latex gloves. Symptoms appeared during the second year of regularly using of latex gloves. The student was with no history of allergies and no previous exposure to latex products.

  19. Irradiated latex as an economical raw material for making gloves with a simple technique

    International Nuclear Information System (INIS)

    Utama, Marga

    1983-01-01

    The radiation vulcanization process with stirring method at 3 Mrad irradiation dose has been done. Glove production at ''HOME INDUSTRY'' scale be commercially applied. The physical and mechanical properties, such as modulus, tensile strength, permanent set, and elongation at break, of the gloves can satisfy the standard requirements. (author)

  20. Applications of the PowerGlove for measurement of finger kinematics

    NARCIS (Netherlands)

    van den Noort, J.C.; van Dijk, Kees Joab; Kortier, H.G.; Veltink, Petrus H.; van Beek, N.; Verhagen, R.; Bour, L.J.; Troster, G.; Cantarella, G.

    2014-01-01

    Hand motor control is quite complex and measurement of hand kinematics is therefore of high interest in many fields. A new measurement system based on miniature inertial and magnetic sensors, the PowerGlove, has been developed. In the near future, the PowerGlove will be applied to study finger

  1. Utilizing Glove-Based Gestures and a Tactile Vest Display for Covert Communications and Robot Control

    Science.gov (United States)

    2014-06-01

    wearing instrumented glove for hand and arm signals. .......................................9 Figure 4. TDS Nomad handheld computer...of a standard tactical glove with accelerometers embedded within each finger, and an accelerometer, gyroscope, and digital compass embedded in the...signal communication were performed by two TDS Nomad GPS-enabled ruggedized handheld computers (one carried by the individual generating hand signals and

  2. Dismantling of alpha contaminated obsolete installations and glove boxes on the IRMM site in Geel (Belgium)

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Melis, Gustaaf

    2007-01-01

    At the Institute for Reference Materials and Measurements (European commission, Joint Research Centre, IRMM) a dismantling campaign of obsolete installations and glove boxes has been carried out in 2005. There were various reasons for their removal. Some large installations did not meet modern safety standards, other installations were worn out and expected to cause a radioactive contamination risk in the future. The main goal was to create as less waste as possible by extensive contamination checks and by decontamination if necessary. For the glove boxes, decontamination was not possible. A controlled area was set up around the installation to be dismantled in order to prevent spreading of contamination from dust and dirt. This was only possible for the 'minor' contaminated installations. The dismantling campaign of the glove boxes was carried out by using tents of two types depending the contamination inside the glove boxes. The most common glove boxes were dismantled in a tent constructed with hard surfaced polycarbonate plates (ventilated cell). For glove boxes with higher contamination, the same principle was used but with a second 'glove box tent' inside (ventilated glove tent). The purpose of this project was to learn from the experience of this campaign which gave the ability to make estimates of future radioactive waste or classic waste that could be expected from dismantled installations. (authors)

  3. Gloves and dermal exposure to chemicals: Proposals for evaluating workplace effectiveness

    NARCIS (Netherlands)

    Cherrie, J.W.; Semple, S.; Brouwer, D.

    2004-01-01

    There are standardized laboratory tests for chemical protective gloves that provide estimates of breakthrough time and steady-state permeation flux. However, there is evidence to suggest that these tests may not be completely relevant to glove usage in the workplace. There is no consensus about how

  4. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an

  5. Overview of the Life Science Glovebox (LSG) Facility and the Research Performed in the LSG

    Science.gov (United States)

    Cole, J. Michael; Young, Yancy

    2016-01-01

    The Life Science Glovebox (LSG) is a rack facility currently under development with a projected availability for International Space Station (ISS) utilization in the FY2018 timeframe. Development of the LSG is being managed by the Marshal Space Flight Center (MSFC) with support from Ames Research Center (ARC) and Johnson Space Center (JSC). The MSFC will continue management of LSG operations, payload integration, and sustaining following delivery to the ISS. The LSG will accommodate life science and technology investigations in a "workbench" type environment. The facility has a.Ii enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for handling Biohazard Level II and lower biological materials. This containment approach protects the crew from possible hazardous operations that take place inside the LSG work volume. Research investigations operating inside the LSG are provided approximately 15 cubic feet of enclosed work space, 350 watts of28Vdc and l IOVac power (combined), video and data recording, and real time downlink. These capabilities will make the LSG a highly utilized facility on ISS. The LSG will be used for biological studies including rodent research and cell biology. The LSG facility is operated by the Payloads Operations Integration Center at MSFC. Payloads may also operate remotely from different telescience centers located in the United States and different countries. The Investigative Payload Integration Manager (IPIM) is the focal to assist organizations that have payloads operating in the LSG facility. NASA provides an LSG qualification unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This poster will provide an overview of the LSG facility and a synopsis of the research that will be accomplished in the LSG. The authors would like to acknowledge Ames Research Center, Johnson

  6. Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses.

    Science.gov (United States)

    Laufersky, Geoffry; Bradley, Siobhan; Frécaut, Elian; Lein, Matthias; Nann, Thomas

    2018-05-10

    The synthesis of colloidal indium phosphide quantum dots (InP QDs) has always been plagued by difficulties arising from limited P3- sources. Being effectively restricted to the highly pyrophoric tris(trimethylsilyl) phosphine (TMS3P) creates complications for the average chemist and presents a significant risk for industrially scaled reactions. The adaptation of tris(dialkylamino) phosphines for these syntheses has garnered attention, as these new phosphines are much safer and can generate nanoparticles with competitive photoluminescence properties to those from (TMS)3P routes. Until now, the reaction mechanics of this precursor were elusive due to many experimental optimizations, such as the inclusion of a high concentration of zinc salts, being atypical of previous InP syntheses. Herein, we utilize density functional theory calculations to outline a logical reaction mechanism. The aminophosphine precursor is found to require activation by a zinc halide before undergoing a disproportionation reaction to self-reduce this P(iii) material to a P(-iii) source. We use this understanding to adapt this precursor for a two-pot nanoparticle synthesis in a noncoordinating solvent outside of glovebox conditions. This allowed us to generate spherical InP/ZnS nanoparticles possessing fluorescence quantum yields >55% and lifetimes as fast as 48 ns, with tunable emission according to varying zinc halide acidity. The development of high quality and efficient InP QDs with this safer aminophosphine in simple Schlenk environments will enable a broader range of researchers to synthesize these nontoxic materials for a variety of high-value applications.

  7. Bacterial contamination of surgeons' gloves during shunt insertion; a pilot study

    DEFF Research Database (Denmark)

    Sørensen, Preben; Ejlertsen, Tove; Aaen, Dorte

    2008-01-01

    antibiotics and double gloving, by surgeons experienced in shunt surgery. Surgical incision, dissection and tunnelling were done. Then the surgeon, the scrub-nurse and, in three cases, the assistant made an imprint of their outer gloves on agar plates. Hereafter, they changed the outer pair of gloves before...... handling the shunt and completing the operation. The plates were cultured for 6 days in both aerobic and anaerobic environment. In all cases the surgeons gloves were contaminated, and in six cases also the nurses' gloves were contaminated, as well as all three assistants. Propionebacterium acnes were...... nurse and assistant were contaminated with micro-organisms less than 15 min after surgery has been commenced and before the shunts were handled. This study offers a feasible, simple and logical explanation of how shunts may become contaminated and infected. A simple measure would be to change the outer...

  8. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    Science.gov (United States)

    Reid, Christopher R.; McFarland, Shane; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis

  9. Study on evaluation of containment capability of glove box under fire accident (2)

    International Nuclear Information System (INIS)

    Abe, Hitoshi; Watanabe, Koji; Tashiro, Shinsuke; Uchiyama, Gunzo

    2007-11-01

    In the MOX fuel fabrication facility, MOX is required to be handled in glove box to sustain containment of MOX into the facility. In case of fire in the facility, the containment capability of glove box may be deteriorated by pyrolysis or combustion of the plastic materials as components of glove box caused by thermal stress from flame. The purpose of this study is to examine pyrolysis and combustion properties of the materials for applying them to quantitative evaluation method for the containment capability of glove box under fire. This report summarize experimental results about the properties under the air condition and investigation of evaluation model for estimating time-course of deteriorating containment capability of glove box under fire. (author)

  10. Gestural Interaction for Virtual Reality Environments through Data Gloves

    Directory of Open Access Journals (Sweden)

    G. Rodriguez

    2017-05-01

    Full Text Available In virtual environments, virtual hand interactions play a key role in interactivity and realism allowing to perform fine motions. Data glove is widely used in Virtual Reality (VR and through simulating a human hands natural anatomy (Avatar’s hands in its appearance and motion is possible to interact with the environment and virtual objects. Recently, hand gestures are considered as one of the most meaningful and expressive signals. As consequence, this paper explores the use of hand gestures as a mean of Human-Computer Interaction (HCI for VR applications through data gloves. Using a hand gesture recognition and tracking method, accurate and real-time interactive performance can be obtained. To verify the effectiveness and usability of the system, an experiment of ease learning based on execution’s time was performed. The experimental results demonstrate that this interaction’s approach does not present problems for people more experienced in the use of computer applications. While people with basic knowledge has some problems the system becomes easy to use with practice.

  11. Computational Analysis of the G-III Laminar Flow Glove

    Science.gov (United States)

    Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan

    2011-01-01

    Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.

  12. Experimental study on the drying of natural latex medical gloves

    Science.gov (United States)

    Chankrachang, Mano; Yongyingsakthavorn, Pisit; Tohsan, Atitaya; Nontakaew, Udomkiat

    2018-01-01

    The purpose of this research was to study latex film drying at 70 °C using a laboratory drying oven. Two different total solid content (TSC) latex compounds, which 45% TSC and 35% TSC were used. The undried latex films were prepared according to the common procedures used in latex gloves manufacturers, that is, by dry coagulant dipping process. The experimental results such as initial moisture content, the amount of moisture and drying time of latex films in each latex compound formula were determined. After that, the results were projected to calculate on the production capacity expand by 1 million piece/day of natural latex medical gloves. Finally, the rate of moisture entering the latex drying oven and the energy consumption of the drying oven were estimated. The results indicated that when the 35% TSC of latex compound was used. The initial moisture content of latex film was higher than 45% TSC of latex compound about 7%. The drying time of 35% TSC was longer than 45% TSC for 2.5 min and consume more energy about 10%. As a result, the 45% TSC latex compound was the better way to saving energy and managing humidity in the production line. Therefore, it was found to very useful to an approximate design length and size of actual of latex drying oven and the rate of moisture entering the oven as well.

  13. Understanding Factors that Influence Protective Glove Use among Automotive Spray Painters

    Science.gov (United States)

    Ceballos, Diana; Reeb-Whitaker, Carolyn; Glazer, Patricia; Murphy-Robinson, Helen; Yost, Michael

    2017-01-01

    Dermal contact with isocyanate-based coatings may lead to systemic respiratory sensitization. The most common isocyanates found in sprayed automotive coatings are monomeric and oligomeric 1,6-hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI). Most spray painters use thin (4–5 mil) latex gloves that are not effective at preventing dermal exposures when spraying isocyanate paints. Personal interviews with collision repair industry personnel and focus groups with spray painters were held to characterize risk awareness, to examine perceptions and challenges concerning protective glove use and selection, and to generate ideas for protective glove use interventions. The most popular gloves among spray painters were thin (4–5 mil) and thick (14 mil) latex. We found that medium to thick (6–8 mil) nitrile were not always perceived as comfortable and were expected to be more expensive than thin (4–5 mil) latex gloves. Of concern is the users’ difficulty to distinguish between nitrile and latex gloves; latex gloves are now sold in different colors including blue, which has traditionally been associated with nitrile gloves. Even though spray painters were familiar with the health hazards related to working with isocyanate paints; most were not always aware that dermal exposure to isocyanates could contribute to the development of occupational asthma. There is a need for more research to identify dermal materials that are protective against sprayed automotive coatings. Automotive spray painters and their employers need to be educated in the selection and use of protective gloves, specifically on attributes such as glove material, color, and thickness. PMID:24215135

  14. How do gloves affect cutaneous sensibility in medical practice? Two new applied tests.

    Science.gov (United States)

    Mylon, Peter; Carré, Matt J; Martin, Nicolas; Lewis, Roger

    2017-01-01

    In order to quantify the effect of medical gloves on tactile performance, two new Simulated Medical Examination Tactile Tests (SMETT) have been developed to replicate the tactile and haptic ability required in medical examinations: the 'Bumps' test and the 'Princess and the Pea' (P&P) test. A pilot study was carried out using 30-40 subjects for each test in order to investigate the suitability of the tests for medical glove evaluation. Tests were performed with latex and nitrile examination gloves and without gloves. Following the tests, small-scale studies were carried out to investigate the effect of various design parameters, such as material stiffness and tactile exploration method. In the 'Bumps' test, subjects performed significantly better in the ungloved condition, and there were 'almost significant' differences between the gloves, with the thinner latex gloves performing better than the thicker nitrile gloves. Both finger orientation and surface lubrication were found to have a significant effect on results, indicating that these need to be clearly defined in the test procedure. In the 'P&P' test, no significant effect of hand condition was found, suggesting that haptic sensing is less affected by medical gloves than cutaneous sensibility. Other factors such as material stiffness, technique and test orientation had a more significant effect. The SMETT 'Bumps' test has potential as a clinical manual performance evaluation tool and may be used to evaluate the relative effects of different gloves. The SMETT 'P&P' test is a valid measure of haptic or tactile performance, but should not be used in glove evaluation. Both tests could have further applications, such as in the assessment of neurological impairment or aptitude testing for potential surgeons.

  15. Spacesuit Glove-Induced Hand Trauma and Analysis of Potentially Related Risk Variables

    Science.gov (United States)

    Charvat, Chacqueline M.; Norcross, Jason; Reid, Christopher R.; McFarland, Shane M.

    2015-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. Glove injuries, both anecdotal and recorded, have been reported during EVA training and flight persistently through NASA's history regardless of mission or glove model. Theories as to causation such as glove-hand fit are common but often lacking in supporting evidence. Previous statistical analysis has evaluated onycholysis in the context of crew anthropometry only. The purpose of this study was to analyze all injuries (as documented in the medical records) and available risk factor variables with the goal to determine engineering and operational controls that may reduce hand injuries due to the EVA glove in the future. A literature review and data mining study were conducted between 2012 and 2014. This study included 179 US NASA crew who trained or completed an EVA between 1981 and 2010 (crossing both Shuttle and ISS eras) and wore either the 4000 Series or Phase VI glove during Extravehicular Mobility Unit (EMU) spacesuit EVA training and flight. All injuries recorded in medical records were analyzed in their association to candidate risk factor variables. Those risk factor variables included demographic characteristics, hand anthropometry, glove fit characteristics, and training/EVA characteristics. Utilizing literature, medical records and anecdotal causation comments recorded in crewmember injury data, investigators were able to identify several risk factors associated with increased risk of glove related injuries. Prime among them were smaller hand anthropometry, duration of individual suited exposures, and improper glove-hand fit as calculated by the difference in the anthropometry middle finger length compared to the baseline EVA glove middle finger length.

  16. Fingers' vibration transmission and grip strength preservation performance of vibration reducing gloves.

    Science.gov (United States)

    Hamouda, K; Rakheja, S; Dewangan, K N; Marcotte, P

    2018-01-01

    The vibration isolation performances of vibration reducing (VR) gloves are invariably assessed in terms of power tools' handle vibration transmission to the palm of the hand using the method described in ISO 10819 (2013), while the nature of vibration transmitted to the fingers is ignored. Moreover, the VR gloves with relatively low stiffness viscoelastic materials affect the grip strength in an adverse manner. This study is aimed at performance assessments of 12 different VR gloves on the basis of handle vibration transmission to the palm and the fingers of the gloved hand, together with reduction in the grip strength. The gloves included 3 different air bladder, 3 gel, 3 hybrid, and 2 gel-foam gloves in addition to a leather glove. Two Velcro finger adapters, each instrumented with a three-axis accelerometer, were used to measure vibration responses of the index and middle fingers near the mid-phalanges. Vibration transmitted to the palm was measured using the standardized palm adapter. The vibration transmissibility responses of the VR gloves were measured in the laboratory using the instrumented cylindrical handle, also described in the standard, mounted on a vibration exciter. A total of 12 healthy male subjects participated in the study. The instrumented handle was also used to measure grip strength of the subjects with and without the VR gloves. The results of the study showed that the VR gloves, with only a few exceptions, attenuate handle vibration transmitted to the fingers only in the 10-200 Hz and amplify middle finger vibration at frequencies exceeding 200 Hz. Many of the gloves, however, provided considerable reduction in vibration transmitted to the palm, especially at higher frequencies. These suggest that the characteristics of vibration transmitted to fingers differ considerably from those at the palm. Four of the test gloves satisfied the screening criteria of the ISO 10819 (2013) based on the palm vibration alone, even though these caused

  17. Use of Traditional and Novel Methods to Evaluate the Influence of an EVA Glove on Hand Performance

    Science.gov (United States)

    Benson, Elizabeth A.; England, Scott A.; Mesloh, Miranda; Thompson, Shelby; ajulu, Sudhakar

    2010-01-01

    The gloved hand is one of an astronaut s primary means of interacting with the environment, and any restrictions imposed by the glove can strongly affect performance during extravehicular activity (EVA). Glove restrictions have been the subject of study for decades, yet previous studies have generally been unsuccessful in quantifying glove mobility and tactility. Past studies have tended to focus on the dexterity, strength, and functional performance of the gloved hand; this provides only a circumspect analysis of the impact of each type of restriction on the glove s overall capability. The aim of this study was to develop novel capabilities to provide metrics for mobility and tactility that can be used to assess the performance of a glove in a way that could enable designers and engineers to improve their current designs. A series of evaluations were performed to compare unpressurized and pressurized (4.3 psi) gloved conditions with the ungloved condition. A second series of evaluations were performed with the Thermal Micrometeoroid Garment (TMG) removed. This series of tests provided interesting insight into how much of an effect the TMG has on gloved mobility - in some cases, the presence of the TMG restricted glove mobility as much as pressurization did. Previous hypotheses had assumed that the TMG would have a much lower impact on mobility, but these results suggest that an improvement in the design of the TMG could have a significant impact on glove performance. Tactility testing illustrated the effect of glove pressurization, provided insight into the design of hardware that interfaces with the glove, and highlighted areas of concern. The metrics developed in this study served to benchmark the Phase VI EVA glove and to develop requirements for the next-generation glove for the Constellation program.

  18. Disposable gendine antimicrobial gloves for preventing transmission of pathogens in health care settings.

    Science.gov (United States)

    Reitzel, Ruth; Rosenblatt, Joel; Jiang, Ying; Hachem, Ray; Raad, Issam

    2014-01-01

    Transmission of organisms by contact of gloves with surfaces following contact with a pathogen source has been recognized as an important vector for pathogenesis of health care-associated infections. In these cases, the gloves protect the wearer from contact with the pathogenic organisms; however, this personal protection can facilitate the wearer unwittingly becoming a carrier of the pathogens from one location to another. A novel gendine (combination of chlorhexidine and gentian violet) antiseptic coating for the external surface of the glove was developed as a potential intervention to prevent this mode of transmission. We characterized the ability of the coating to rapidly kill bacterial and fungal pathogens within 1 minute of contact with the glove surface. The International Organization of Standardization 22196 concentrated inoculum contact testing methodology was followed. The gendine-coated gloves were able to fully eradicate multidrug-resistant organisms included methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterocci, multidrug-resistant Pseudomonas aeruginosa, and Klebsiella pneumoniae carbapenemase producing. In addition, Candida albicans, Candida glabarata, and 2 pathogenic Escherichia coli strains commonly associated with invasive gastroenteritis were also fully eradicated within 1 minute of contact. The gendine coating did not adversely impact the finish or integrity of the disposable gloves. The highly efficacious gendine-coated antimicrobial gloves potentially provide an additional means of protection against horizontal transmission of common pathogens in a hospital setting. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  19. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    Science.gov (United States)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  20. Investigation of incidence and risk factors for surgical glove perforation in small animal surgery.

    Science.gov (United States)

    Hayes, Galina M; Reynolds, Deborah; Moens, Noel M M; Singh, Ameet; Oblak, Michelle; Gibson, Thomas W G; Brisson, Brigitte A; Nazarali, Alim; Dewey, Cate

    2014-05-01

    To identify incidence and risk factors for surgical glove perforation in small animal surgery. Observational cohort study. Surgical gloves (n = 2132) worn in 363 surgical procedures. All gloves worn by operative personnel were assessed for perforation at end-procedure using a water leak test. Putative risk factors were recorded by a surgical team member. Associations between risk factors and perforation were assessed using multivariable multi-level random-effects logistic regression models to control for hierarchical data structure. At least 1 glove perforation occurred in 26.2% of procedures. Identified risk factors for glove perforation included increased surgical duration (surgery >1 hour OR = 1.79, 95% CI = 1.12-2.86), performing orthopedic procedures (OR = 1.88; 95% CI = 1.23-2.88), any procedure using powered instruments (OR = 1.93; 95% CI = 1.21-3.09) or surgical wire (OR = 3.02; 95% CI = 1.50-6.05), use of polyisoprene as a glove material (OR = 1.59, 95% CI = 1.05-2.39), and operative role as primary surgeon (OR = 2.01; 95% CI = 1.35-2.98). The ability of the wearer to detect perforations intraoperatively was poor, with a sensitivity of 30.8%. There is a high incidence of unrecognized glove perforations in small animal surgery. © Copyright 2014 by The American College of Veterinary Surgeons.

  1. Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG

    Science.gov (United States)

    Jordan, Lee

    2016-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of direct current power via a versatile supply interface (120, 28, plus or minus 12, and 5 volts direct current), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 27,000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, biological studies and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space Flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The Investigative Payload Integration Manager (IPIM) is the focal to assist organizations that have payloads operating in the MSG facility

  2. Development of a test method for protective gloves against nanoparticles in conditions simulating occupational use

    International Nuclear Information System (INIS)

    Dolez, Patricia; Vinches, Ludwig; Vu-Khanh, Toan; Wilkinson, Kevin; Plamondon, Philippe

    2011-01-01

    Nanoparticle manufacture and use are in full expansion. The associated risks of occupational exposure raise large concerns due to their potential toxicity. Even if they stand as a last resort in the traditional occupational Health and Safety (H and S) risk management strategy, personal protective equipment (PPE) against nanoparticles are an absolute need in the context of precautionary principle advocated by H and S organizations worldwide. However no standard test method is currently available for evaluating the efficiency of PPE against nanoparticles, in particular in the case of gloves. A project is thus underway to develop a test method for measuring nanoparticle penetration through protective gloves in conditions simulating glove-nanoparticle occupational interaction. The test setup includes an exposure and a sampling chamber separated by a circular glove sample. A system of cylinders is used to deform the sample while it is exposed to nanoparticles. The whole system is enclosed in a glove box to ensure the operator safety during assembly, dismounting and clean-up operations as well as during the tests. Appropriate nanoparticle detection techniques were also identified. Results are reported here for commercial 15nm TiO2 nanoparticles - powder and colloidal solutions in 1,2-propanediol, ethylene glycol and water - and four types of protective gloves: disposable nitrile and latex as well as unsupported neoprene and butyl rubber gloves. They show that mechanical deformations and contact with colloidal solution liquid carriers may affect glove materials. Preliminary results obtained with TiO2 powder indicate a possible penetration of nanoparticles through gloves following mechanical deformations.

  3. Development of a test method for protective gloves against nanoparticles in conditions simulating occupational use

    Energy Technology Data Exchange (ETDEWEB)

    Dolez, Patricia; Vinches, Ludwig; Vu-Khanh, Toan [Ecole de technologie superieure, 1100 rue Notre-Dame Ouest, Montreal QC H3C 1K3 (Canada); Wilkinson, Kevin [Universite de Montreal, C.P. 6128, succ. Centre-ville Montreal QC H3C 3J7 (Canada); Plamondon, Philippe, E-mail: patricia.dolez@etsmtl.ca [Ecole polytechnique, C.P. 6079, succ. Centre-ville, Montreal QC H3C 3A7 (Canada)

    2011-07-06

    Nanoparticle manufacture and use are in full expansion. The associated risks of occupational exposure raise large concerns due to their potential toxicity. Even if they stand as a last resort in the traditional occupational Health and Safety (H and S) risk management strategy, personal protective equipment (PPE) against nanoparticles are an absolute need in the context of precautionary principle advocated by H and S organizations worldwide. However no standard test method is currently available for evaluating the efficiency of PPE against nanoparticles, in particular in the case of gloves. A project is thus underway to develop a test method for measuring nanoparticle penetration through protective gloves in conditions simulating glove-nanoparticle occupational interaction. The test setup includes an exposure and a sampling chamber separated by a circular glove sample. A system of cylinders is used to deform the sample while it is exposed to nanoparticles. The whole system is enclosed in a glove box to ensure the operator safety during assembly, dismounting and clean-up operations as well as during the tests. Appropriate nanoparticle detection techniques were also identified. Results are reported here for commercial 15nm TiO2 nanoparticles - powder and colloidal solutions in 1,2-propanediol, ethylene glycol and water - and four types of protective gloves: disposable nitrile and latex as well as unsupported neoprene and butyl rubber gloves. They show that mechanical deformations and contact with colloidal solution liquid carriers may affect glove materials. Preliminary results obtained with TiO2 powder indicate a possible penetration of nanoparticles through gloves following mechanical deformations.

  4. Development of a test method for protective gloves against nanoparticles in conditions simulating occupational use

    Science.gov (United States)

    Dolez, Patricia; Vinches, Ludwig; Wilkinson, Kevin; Plamondon, Philippe; Vu-Khanh, Toan

    2011-07-01

    Nanoparticle manufacture and use are in full expansion. The associated risks of occupational exposure raise large concerns due to their potential toxicity. Even if they stand as a last resort in the traditional occupational Health & Safety (H&S) risk management strategy, personal protective equipment (PPE) against nanoparticles are an absolute need in the context of precautionary principle advocated by H&S organizations worldwide. However no standard test method is currently available for evaluating the efficiency of PPE against nanoparticles, in particular in the case of gloves. A project is thus underway to develop a test method for measuring nanoparticle penetration through protective gloves in conditions simulating glove-nanoparticle occupational interaction. The test setup includes an exposure and a sampling chamber separated by a circular glove sample. A system of cylinders is used to deform the sample while it is exposed to nanoparticles. The whole system is enclosed in a glove box to ensure the operator safety during assembly, dismounting and clean-up operations as well as during the tests. Appropriate nanoparticle detection techniques were also identified. Results are reported here for commercial 15nm TiO2 nanoparticles - powder and colloidal solutions in 1,2-propanediol, ethylene glycol and water - and four types of protective gloves: disposable nitrile and latex as well as unsupported neoprene and butyl rubber gloves. They show that mechanical deformations and contact with colloidal solution liquid carriers may affect glove materials. Preliminary results obtained with TiO2 powder indicate a possible penetration of nanoparticles through gloves following mechanical deformations.

  5. Validation for radiation sterilization of surgical latex glove

    International Nuclear Information System (INIS)

    Liu Degui

    2002-01-01

    Objective: To determine the optimal radiation mode for sterilization of surgical latex gloves. Methods: The dose distribution in the product loads inside radiation container was measured in different radiation mode. Results: Data of dose distribution in the product load in different radiation mode were obtained. Conclusion: At pre-set height of source working position and within pre-determined dwelling time of each irradiation container staying at the irradiation position, the delivered dose can meet the customers requirement by the radiation mode that, in the half cycle of radiation process, turns the horizontal middle layers of the product to the upper or lower layers, and the upper and lower layers to the middle layers

  6. Investigation on processing technology for tritiated water in glove box

    International Nuclear Information System (INIS)

    Luo Deli; Meng Daqiao

    2002-01-01

    A 0.5 nm molecular sieve absorption column and a hot decomposing magnesium bed was found to be one of the effective means to collect and decompose HTO in glove box atmosphere. The absorption characteristics of the 0.5 nm molecular sieve column and water decomposing characteristics of the hot Mg bed were obtained. The results showed that the column absorbs water vapour from air with efficiency up to 99.99%. Water in tested gases was between 3.4 x 10 3 to 4.2 x 10 3 μg·g -1 and the total water absorbed on the column was up to 162 g, under this condition no water was detected in output gases. Using the hot magnesium bed more than 99.9% desorption water from the column was decomposed

  7. e of the Surgical Glove in Modified Vacuum-Assisted Wound Healing

    Directory of Open Access Journals (Sweden)

    Shankar Ram Hemmanur

    2013-09-01

    Full Text Available Vacuum-assisted wound healing has been proven to be more efficacious than conventionaldressings. Vacuum dressing has been frequently modified given the restrictions in resourcesavailable. Here we present a modified method of vacuum dressing by using surgical orgynaecological gloves for lower and upper limb wounds. Vacuum dressing was applied withparts of a surgical or gynaecological glove and Opsite with T-tailing of the suction outlet.Vacuum-assisted wound healing using the surgical gloves showed relatively good woundhealing in the amputation stump, finger, arm, and leg in the cases studied.

  8. Evaluation of Glove Damage during Dental Procedures among Dental Specialists in Tabriz

    Directory of Open Access Journals (Sweden)

    Saeed Nezafati

    2007-08-01

    Full Text Available

    Background and aims. Dental practitioners are prone to occupational risk of infection. This can be prevented in part by wearing gloves. However, for this to be effective, gloves should be intact during the entire course of dental procedure. Leaky surgical latex gloves have been seen in 0.9% of cases before use. As much as 1.9% of latex gloves have been reported to be damaged during dental procedures. In this study, we decided to assess glove damage during dental procedures among dental specialists in Tabriz.

    Materials and methods. Thirty-six dental specialists were selected for this study. Each practitioner received 40 pairs of intact powdered latex gloves. Upon the completion of dental procedures, the gloves were retrieved and any tears were evaluated separately for right and left hands. Data was analyzed using chi-square test.

    Results. 159 punctures were detected in 144 gloves (5% out of 2880 unpaired gloves used by practitioners. They noticed the tear(s in 60 cases (2%, however, 99 cases (3% of tear(s were not noted during the procedure. The highest rate of glove damage was observed in the prosthodontists’ group (12.3%, which was statistically significant comparing to other groups (p=0.048. The lowest rate of the damage was observed in the oral surgeons’ group (2% which showed no significant difference (p=0.134. The highest rate of punctures in the gloves was observed in the first and second fingers of the non-dominant hand.

    Conclusion. The damage to 5% of the gloves is highly significant, with a potential role in occupational hazards. The higher rate of leaks in the prosthodontists’ group compared to other groups demands for greater prudence in this field. The high rate of leaks in the first and second fingers of the non-dominant hand requires more attention to this area during daily practice.

  9. CSER 99-002: CSER for unrestricted moderation of sludge material with two-boat operations in gloveboxes HC-21A and HC-21C

    International Nuclear Information System (INIS)

    LAN, J.S.

    1999-01-01

    This Criticality Safety Evaluation Report was prepared by Fluor Daniel Northwest under contract to BWHC. This document establishes the criticality safety parameters for unrestricted moderation of Sludge material with two-boat operations in gloveboxes HC-21A and HC-21C

  10. Decontamination and decommissioning of 61 plutonium gloveboxes in D-Wing, Building 212 Argonne National Laboratory-East: Final project report

    International Nuclear Information System (INIS)

    Cheever, C.L.; Rose, R.W.

    1996-09-01

    Argonne National Laboratory-East (ANL-E) is a government-owned, contractor operated, multipurpose research facility located 25 miles southwest of downtown Chicago on 689 hectares (1,700 acres) in DuPage County, Illinois, as shown in Figure 1.1. Building 212 is located in the central area of ANL-E, as shown in Figure 1.2. The purpose of this project was to eliminate the risk of radioactive material release from the contaminated glovebox systems and to make the laboratories available for unrestricted use. The following work objectives were established: (1) Identify and remove radioactive materials for return to ANL-E Special Materials control. (2) Remove and package the radioactively contaminated materials and equipment from the gloveboxes. (3) Decontaminate the gloveboxes to nontransuranic (non-TRU) levels. (4) Size-reduce and package the gloveboxes and support systems. (5) Document and dispose of the radioactive and mixed waste. (6) Decontaminate, survey, and release the nine laboratories and corridor areas for unrestricted use

  11. Study of Bio-Mimicry Surfaces for Optimization of Coupling Performance in Wheelchair Racing Gloves

    Directory of Open Access Journals (Sweden)

    Clara Usma

    2018-03-01

    Full Text Available In wheelchair racing, the optimal pair of gloves, as well as knowledge of conditioning of glove-rim contact surfaces can have a significant impact on race performance. Extreme temperatures, humidity, wet or dry conditions can considerably influence not only the hand-rim friction coupling (effectiveness of the athlete’s push cycle but also the risk of injuries, blisters or sore areas which in turn, can influence the endurance of the athlete across long distance events. This paper reports an experimental study of the effect of bio-mimicry surface textures as a supplement for heightening glove-rim coupling for dry and wet weather conditions. The paper also provides recommendations for the practical implementation of the study findings through a proposal for the design and development of a pair of bespoke gloves for a wheelchair racing athlete for initial prototyping and performance trials.

  12. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.

    Science.gov (United States)

    Hong Kai Yap; Kamaldin, Nazir; Jeong Hoon Lim; Nasrallah, Fatima A; Goh, James Cho Hong; Chen-Hua Yeow

    2017-06-01

    In this paper, we present the design, fabrication and evaluation of a soft wearable robotic glove, which can be used with functional Magnetic Resonance imaging (fMRI) during the hand rehabilitation and task specific training. The soft wearable robotic glove, called MR-Glove, consists of two major components: a) a set of soft pneumatic actuators and b) a glove. The soft pneumatic actuators, which are made of silicone elastomers, generate bending motion and actuate finger joints upon pressurization. The device is MR-compatible as it contains no ferromagnetic materials and operates pneumatically. Our results show that the device did not cause artifacts to fMRI images during hand rehabilitation and task-specific exercises. This study demonstrated the possibility of using fMRI and MR-compatible soft wearable robotic device to study brain activities and motor performances during hand rehabilitation, and to unravel the functional effects of rehabilitation robotics on brain stimulation.

  13. Determining Nuclear Fingerprints: Glove Boxes, Radiation Protection, and the International Atomic Energy Agency.

    Science.gov (United States)

    Rentetzi, Maria

    2017-06-01

    In a nuclear laboratory, a glove box is a windowed, sealed container equipped with two flexible gloves that allow the user to manipulate nuclear materials from the outside in an ostensibly safe environment. As a routine laboratory device, it invites neglect from historians and storytellers of science. Yet, since especially the Gulf War, glove boxes have put the interdependence of science, diplomacy, and politics into clear relief. Standing at the intersection of history of science and international history, technological materials and devices such as the glove box can provide penetrating insight into the role of international diplomatic organizations to the global circulation and control of scientific knowledge. The focus here is on the International Atomic Energy Agency. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  14. Test of the Fishbein and Ajzen models as predictors of health care workers' glove use.

    Science.gov (United States)

    Levin, P F

    1999-08-01

    The aim of this study was to identify predictors of health care workers' glove use when there is a potential for blood exposure. The study hypothesis was that an extension of the theory of planned behavior would explain more of the variance in glove use behavior than the theory of reasoned action or theory of planned behavior. A random sample of nurses and laboratory workers (N = 527) completed a 26-item questionnaire with acceptable content validity and reliability estimates. Using structural equation modeling techniques, intention, attitude, and perceived risk were significant predictors of behavior. Perceived control and attitude were the significant determinants of intention. The theory of reasoned action was the most parsimonious model, explaining 70% of the variance in glove use behavior. The theory of planned behavior extension was a viable model to study behavior related to glove use and reducing workers' risks to bloodborne diseases.

  15. Space Suit Glove Pressure Garment Metacarpal Joint and Robotic Hand Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacesuit glove pressure garments have been a design challenge for NASA since the inception of spacesuits. The human hand demands a complex range of motions, a close...

  16. A Novel Approach to Highly Damage Tolerant and Abrasion Resistant EVA Gloves, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As part of the spacesuit pressure garment, the EVA glove incorporates a silicone pad on the palm for protection of the bladder from cuts and punctures. Repeated...

  17. Detection and toxicity assessment of nitrosamines migration from latex gloves in the Chinese market.

    Science.gov (United States)

    Feng, Di; Wang, Huiping; Cheng, Xuelian; Wang, Jiedong; Ning, Lifeng; Zhou, Qingfeng; Zhou, Yue; Yang, Quanli

    2009-09-01

    Nitrosamines are potent carcinogens and have been found in latex products. In 2007, twenty-seven natural latex gloves including sterile gloves, examination gloves and household use gloves were sampled from the Chinese market. This study monitored the migration of nitrosamines and nitrosatable substance from these gloves, and evaluated their mutagenicity using a Salmonella typhimurium mutation assay (Ames assay) with the strains TA98, TA97, TA100 and TA102 and by a micronucleus test (MN test) using ICR mice. In addition, the cytotoxicity of these compounds was determined by a MTT assay. N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and N-nitrosodibutylamine (NDBA) were all found in samples treated with artificial sweat for 4h at 37 degrees C, and total nitrosamines varied from 18.89 to 244.51microg/Kg. The nitrosamine mixture of NDMA, NDEA and NDBA was used in both the Ames assay and the MN test. The proportion of NDMA, NDEA and NDBA (1:10:20) was selected according to the proportion of nitrosamines migration from sample E05. In the Ames assay, the lowest dose (1.98 x 10(-3)microg per plate) produced a positive result in the TA98 strain, corresponding to nitrosamines migration from sample E05 of 0.016g (the total nitrosamines migration from glove E05 was 122.55 microg/kg). The TA100 strain responded positively at a dose of 4.96 x 10(-2)microg per plate, corresponding to nitrosamines migration from glove E05 of 0.040g. The MN test showed nitrosamine migration of 3.04 mg from 2066 pairs of sample E05 and could induce micronuclei in one mouse weighing 28g (average weight of one E05 glove was 6g). Extracts from gloves were found to be cytotoxic and there was a significant correlation between cytotoxicity (IC50) and the release level of nitrosamines. In conclusion, in view of the high content of nitrosamines in latex gloves and the potential toxicity of nitrosamines migration from these gloves, it is suggested that both an effective and feasible detection

  18. Citizen's Petition to Food and Drug Administration to ban cornstarch powder on medical gloves: Maltese cross birefringence.

    Science.gov (United States)

    Edlich, Richard F; Long, William B; Gubler, K Dean; Rodeheaver, George T; Thacker, John G; Borel, Lise; Chase, Margot E; Cross, Catherine L; Fisher, Allyson L; Lin, Kant Y; Cox, Mary J; Zura, Robert B

    2009-02-01

    During the last 25 years, scientific experimental and clinical studies have documented the dangers of cornstarch powder on examination and surgical gloves because the cornstarch promotes wound infection, causes serious peritoneal adhesions and granulomatous peritonitis, and is a well-documented vector of the latex allergy epidemic in the world. Realizing the dangers of cornstarch on examination and surgical gloves, Germany's regulations of personal protective equipment banned the use of surgical glove powder cornstarch in 1997. In 2000, the Purchasing and Supply agency for the United Kingdom ceased to purchase any gloves lubricated with cornstarch. Realizing the dangers of cornstarch-powdered gloves, many hospitals and clinics in the United States have banned the use of cornstarch-powdered examination and surgical gloves. Hospitals that have banned cornstarch in their examination and surgical gloves have noted a marked reduction in the latex allergy epidemic in their facilities. Realizing the dangers of cornstarch-powdered examination and surgical gloves, Dr Sheila A. Murphey, branch chief, Infection Control Devices Branch, Division of Anesthesiology, General Hospital, Infection Control, and Dental Devices Office of Device Evaluation, Center for Devices and Radiological Health of the Food and Drug Administration (FDA), recommended that a Citizen's Petition be filed to the FDA to ban cornstarch on surgical and examination gloves. The 12 authors of this report have attached the enclosed petition to the FDA to ban the use of cornstarch on all synthetic and latex examination and surgical gloves used in the United States.

  19. Risk assessment of accidental exposure of surgeons to blood during orthopedic surgery. Are we safe in surgical gloves?

    Directory of Open Access Journals (Sweden)

    Dariusz Timler

    2014-03-01

    Full Text Available Aim. To analyze tears in sterile surgical gloves used by surgeons in the operating theatre of the Trauma and Orthopedic Surgery Department, Copernicus Memorial Hospital, Łódź, Poland Materials and Method. This study analyzes tears in sterile surgical gloves used by surgeons by ICD-9 and ICD-10 codes. 1,404 gloves were collected from 581 surgical procedures. All gloves were tested immediately following surgery using the test method described in Standard EN455–1 (each glove was inflated with 1,000 ± 50 ml of water and observed for leaks for 2–3 min.. Results. Analysis of tears took into consideration the role of medical personnel (operator, first assistant, second assistant during surgical procedure, the type of procedure according to ICD-9 and ICD-10 codes, and the elective or emergency nature of the procedure. The results of the study show that these factors have a significant influence on the risk of glove tears. Significant differences were observed in tear frequency and tear location depending on the function performed by the surgeon during the procedure. Conclusion. The study proved that the role performed by the surgeon during the procedure (operator, first assistant, second assistant has a significant influence on the risk of glove tearing. The role in the procedure determines exposure to glove tears. Implementing a double gloving procedure in surgical procedures or using single gloves characterized by higher tear resistance should be considered.

  20. Protective glove use and hygiene habits modify the associations of specific pesticides with Parkinson’s disease

    Science.gov (United States)

    Furlong, Melissa; Tanner, Caroline M; Goldman, Samuel M; Bhudhikanok, Grace S.; Blair, Aaron; Chade, Anabel; Comyns, Kathleen; Hoppin, Jane A.; Kasten, Meike; Korell, Monica; Langston, J William; Marras, Connie; Meng, Cheryl; Richards, Marie; Ross, G Webster; Umbach, David M; Sandler, Dale P; Kamel, Freya

    2014-01-01

    Pesticides have been associated with Parkinson’s disease (PD), and protective gloves and workplace hygiene can reduce pesticide exposure. We assessed whether use of gloves and workplace hygiene modified associations between pesticides and PD. The Farming and Movement Evaluation (FAME) Study is a nested case-control study within the Agricultural Health Study. Use of protective gloves, other PPE, and hygiene practices were determined by questionnaire (69 cases and 237 controls were included). We considered interactions of gloves and hygiene with ever-use of pesticides for all pesticides with ≥ 5 exposed and unexposed cases and controls in each glove-use stratum (paraquat, permethrin, rotenone, and trifluralin). 61% of respondents consistently used protective gloves and 87% consistently used ≥ 2 hygiene practices. Protective glove use modified the associations of paraquat and permethrin with PD: neither pesticide was associated with PD among protective glove users, while both pesticides were associated with PD among non-users (paraquat OR 3.9 [95% CI 1.3, 11.7], interaction p=0.15; permethrin OR 4.3 [95% CI 1.2, 15.6] interaction p=0.05). Rotenone was associated with PD regardless of glove use. Trifluralin was associated with PD among people who used glove use and hygiene practices appeared to be important modifiers of the association between pesticides and PD and may reduce risk of PD associated with certain pesticides. PMID:25461423

  1. Resistance of gloves and protective clothing materials to permeation of cytostatic solutions

    OpenAIRE

    Sylwia Krzemińska; Małgorzata Pośniak; Małgorzata Szewczyńska

    2018-01-01

    Objectives The objective of the work was to determine the resistance of selected protective clothing and glove materials to permeation of cytostatics such as docetaxel, fluorouracil, and doxorubicin. Material and Methods The following glove materials were used: natural rubber latex (code A), acrylonitrile-butadiene rubber (code B) and chloroprene rubber (code C). In addition, we tested a layered material composed of a non-woven polyester (PES), a polypropylene (PP) film, ...

  2. A quantification of occupational skin exposures and the use of protective gloves among hairdressers in Denmark

    DEFF Research Database (Denmark)

    Lysdal, Susan Hovmand; Johansen, Jeanne Duus; Flyvholm, Mari-Ann

    2012-01-01

    comprising all graduates from hairdressing vocational schools from 1985 to 2007 (n = 7840). The participants received a self-administered postal questionnaire in May 2009, including questions on hairdressing tasks performed in the past week at work and the extent of glove use. A response rate of 67.9% (n...... hairdressers; the extent of wet work and chemical treatments was high, and glove use was inconsistent, especially for certain hair colouring procedures and wet work tasks....

  3. Norovirus Transmission between Hands, Gloves, Utensils, and Fresh Produce during Simulated Food Handling

    Science.gov (United States)

    Aho, E.; Mikkelä, A.; Ranta, J.; Tuominen, P.; Rättö, M.; Maunula, L.

    2014-01-01

    Human noroviruses (HuNoVs), a leading cause of food-borne gastroenteritis worldwide, are easily transferred via ready-to-eat (RTE) foods, often prepared by infected food handlers. In this study, the transmission of HuNoV and murine norovirus (MuNoV) from virus-contaminated hands to latex gloves during gloving, as well as from virus-contaminated donor surfaces to recipient surfaces after simulated preparation of cucumber sandwiches, was inspected. Virus transfer was investigated by swabbing with polyester swabs, followed by nucleic acid extraction from the swabs with a commercial kit and quantitative reverse transcription-PCR. During gloving, transfer of MuNoV dried on the hand was observed 10/12 times. HuNoV, dried on latex gloves, was disseminated to clean pairs of gloves 10/12 times, whereas HuNoV without drying was disseminated 11/12 times. In the sandwich-preparing simulation, both viruses were transferred repeatedly to the first recipient surface (left hand, cucumber, and knife) during the preparation. Both MuNoV and HuNoV were transferred more efficiently from latex gloves to cucumbers (1.2% ± 0.6% and 1.5% ± 1.9%) than vice versa (0.7% ± 0.5% and 0.5% ± 0.4%). We estimated that transfer of at least one infective HuNoV from contaminated hands to the sandwich prepared was likely to occur if the hands of the food handler contained 3 log10 or more HuNoVs before gloving. Virus-contaminated gloves were estimated to transfer HuNoV to the food servings more efficiently than a single contaminated cucumber during handling. Our results indicate that virus-free food ingredients and good hand hygiene are needed to prevent HuNoV contamination of RTE foods. PMID:24951789

  4. Measurement of fractional x-ray absorption for radiation attenuating surgical gloves

    International Nuclear Information System (INIS)

    Nagalakshmi, B.; Sawant, S.G.; Nair, C.P.R.; Joshi, V.D.

    2000-01-01

    It is essential to make use of lead gloves having 0.25 mm lead equivalence only for routine x-ray screening as stipulated by International Commission on Radiological Protection. Such surgical gloves which provide attenuation to the extent of one half value thickness for low energy are very useful for the present trend of special x-ray examinations which are on the increase

  5. Disconnection and transport from a controlled zone of a closed plutonium glove box

    International Nuclear Information System (INIS)

    Aparicio, G.; Insegna, M.A.; Mathot, S.R.; Munoz, C.; Orlando, O.S.; Salguero, D.; Toubes, B.

    1990-01-01

    The glove box, to be closed due to the damage caused after 12 operation years in the alpha facility, and following the pertinent vacuum operations and decontamination (described in a previous work 'Closure of an analytical chemistry glove box in alpha-laboratory') must be transported to a transitory storage located in a site inspected by the Development Branch supervised by the Licentiating Branch. (Author) [es

  6. Replacement of the glove box panel in nuclear fuel reprocessing facility

    International Nuclear Information System (INIS)

    Yamamoto, Masahiko; Shirouzu, Hidetomo; Mori, Eito; Surugaya, Naoki

    2016-05-01

    The panels for visual confirmation of glove box installed at Operation Testing Laboratory in Tokai Reprocessing Plant have been deteriorated and transparencies have been decreased due to the long-term use. Therefore, the glove box panels have been replaced from the view point of preventive maintenance. In the new regulation formulated since the accident at Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Station, it is demanded that the glove box consists of incombustible or noncombustible materials. In this replacement, the new panels have been manufactured with the polycarbonate which satisfied the UL94 V-0 incombustible class. The glove box has been in service for 40 years and its inside is contaminated with radioactive materials. Thus, the contaminations have been investigated and decontaminated before the replacement work. Then, operator's exposure and radiation protection equipment have been estimated. Also, it is necessary to replace the panels with maintaining the glove box's enclosure function. The replacement has been conducted in closed space covering the opening parts with vinyl sheets. The enclosure function has been verified by the inspection of the new panels and glove box. (author)

  7. THE INFLUENCE OF FATLIQOURING PROCESS ON PROTECTIVE CHARACTERISTICS OF LEATHER GLOVES

    Directory of Open Access Journals (Sweden)

    KILIÇ Eylem

    2017-05-01

    Full Text Available Appropriate protective gloves are essential for industry workers to avoid hands and wrists injuries. Leather is a common material used by professionals for technical gloves. Mechanical resistance, protection against water and high temperature has to be fulfilled by leather that is intended for using in protective gloves. In this study recipes using various fatliquoring agents with different properties such as lesitin based, lanolin based, polymeric based and water proofing fat liquor were applied to produce technical glove leather and effect of each fatliquoring product on protective performance of leathers were analyzed in terms of physical and mechanical properties including tensile (ISO 3376, stitch tear (ISO 23910, tear resistance (ISO 3377-2, static (ISO 2417 and dynamicwater absorption (ISO 5403-1 and thermal stability such as dry heat (ISO 17227 and heat stability (ISO 11645. For this purpose, chromium tanned split calf leathers were used and retanning of protective leather gloves were performed by using tara and phosphonium combination. Performance testing results obtained from four different retanning processes was compared according to the type of fatliquoring material used in the production. Post-tanning with different types of fatliquoring products have significant effect on the protective performance properties of leather gloves, in terms of mechanical and thermal properties.

  8. Towards understanding the mechanisms and the kinetics of nanoparticle penetration through protective gloves

    International Nuclear Information System (INIS)

    Vinches, L; Boutrigue, N; Zemzem, M; Hallé, S; Peyrot, C; Lemarchand, L; Wilkinson, K J; Tufenkji, N

    2015-01-01

    Parallel to the increased use of engineered nanoparticles (ENP) in the formulation of commercial products or in medicine, numerous health and safety agencies have recommended the application of the precautionary principle to handle ENP; namely, the recommendation to use protective gloves against chemicals. However, recent studies reveal the penetration of titanium dioxide nanoparticles through nitrile rubber protective gloves in conditions simulating occupational use. This project is designed to understand the links between the penetration of gold nanoparticles (nAu) through nitrile rubber protective gloves and the mechanical and physical behaviour of the elastomer material subjected to conditions simulating occupational use (i.e., mechanical deformations (MD) and sweat). Preliminary analyses show that nAu suspensions penetrate selected glove materials after exposure to prolonged (3 hours) dynamic deformations. Significant morphological changes are observed on the outer surface of the glove sample; namely, the number and the surface of the micropores on the surface increase. Moreover, nitrile rubber protective gloves are also shown to be sensitive to the action of nAu suspension and to the action of the saline solution used to simulate sweat (swelling). (paper)

  9. Evaluation of decontamination during dismantling of plutonium-contaminated glove boxes

    International Nuclear Information System (INIS)

    Kinugasa, Manabu; Taguchi, Seigi; Ohzeki, Satoru; Inoue, Yoshiaki; Kashima, Sadamitsu

    1981-01-01

    The dismantling work of plutonium-contaminated glove boxes was carried out. These glove boxes had been used for the R and D of plutonium-uranium mixed oxide fuel for 15 years. The work was carried out in a pressure-controlled greenhouse, and the contamination of air in the greenhouse was monitored continuously. In order to reduce the contamination of air during dismantling, the decontamination and fixation of loose contaminants on the surfaces of glove boxes were very important. The correlation between decontamination and the contamination of air regarding dismantling is reported in this paper. The surface contamination density of the glove boxes was measured utilizing the smear method before and after the decontamination, and the decontamination effects were estimated. The contamination of air during dismantling was continuously measured with a plutonium dust monitor. It was found that loose contamination exponentially decreased by the decontamination process. When the so-called wet glove boxes, which contained wet recovery and waste disposal apparatus, were dismantled, the contamination of air did not exceed 500 (MPC) a. However, the contamination of air exceeded 500 (MPC) a several times in the present work of dismantling the so-called dry glove boxes which had been used for the fabrication of plutonium-uranium mixed oxide pellets. (Kato, T.)

  10. Organophosphorus pesticide exposure in agriculture: effects of temperature, ultraviolet light and abrasion on PVC gloves

    Science.gov (United States)

    ISMAIL, Ismaniza; GASKIN, Sharyn; PISANIELLO, Dino; EDWARDS, John W.

    2017-01-01

    Elbow length PVC gloves are often recommended for protection against organophosphorus pesticide (OP) exposure in agriculture. However, performance may be reduced due to high temperature, UV exposure and abrasion. We sought to assess these impacts for two OPs under normal use and reasonable worst-case scenarios. Glove permeation tests were conducted using ASTM cells with two PVC glove brands at 23°C and 45°C for up to 8 h. Technical grade dichlorvos and formulated diazinon were used undiluted and at application strength. Breakthough of undiluted dichlorvos occurred at both 23°C and 45°C, but only at 45°C for application strength. Breakthrough of diazinon was not achieved, except when undiluted at 45°C. UV-exposed and abraded gloves showed reduced performance, with the effect being approximately two-fold for dichlorvos. Only small differences were noted between glove brands. Extra precautions should be taken when handling concentrated OPs at high temperature, or when using abraded or sunlight-exposed gloves. PMID:29199264

  11. Design innovation for the management of alpha contaminated unserviceable glove boxes

    International Nuclear Information System (INIS)

    Devendra Sandhanshive; Shivaji Shendge; SK Pol; KNS Nair; PK Wattal; IA Sarjekhan, Arun Kumar

    2013-01-01

    With the maturing of nuclear industry, there is an added burden on the Back End of fuel cycle. Radioactive facilities are in the need for refurbishment. This paper describes the steps adopted for managing such alpha contaminated unserviceable Glove Boxes. The first step consisted of in-situ encasement of individual Glove Boxes, encountering the challenges of low head room and space congestion in these laboratories with cognizance to regulatory requirement related to radiation safety. The second step was removal, transfer and placement of encased Glove Boxes in a dedicated facility under continuous surveillance. The glove boxes will remain stored in this facility until arrangements are completed for dismantling and volume reduction in another facility dedicated for this purpose. The final step is the development of an appropriate technique for dismantling/cutting of Glove Boxes in an alpha-tight facility constructed to prevent spread of airborne activity, collection of cut pieces, subsequent decontamination of these metallic wastes and disposal. The paper describes the design scheme for dismantling of the glove box. The description also includes hands on evaluation of tools and gadgets in pilot set-up with a view to incorporating the most credible choice in an upcoming active facility. (authors)

  12. Are gloves sufficiently protective when hairdressers are exposed to permanent hair dyes? An in vivo study.

    Science.gov (United States)

    Antelmi, Annarita; Young, Ewa; Svedman, Cecilia; Zimerson, Erik; Engfeldt, Malin; Foti, Caterina; Bruze, Magnus

    2015-04-01

    The use of permanent hair dyes exposes hairdressers to contact allergens such as p-phenylenediamine (PPD), and the preventive measures are insufficient. To perform an in vivo test to study the protective effect of gloves commonly used by hairdressers. Six gloves from Sweden, Italy and Germany were studied: two vinyl, one natural rubber latex, two nitrile, and one polyethylene. The hair dye used for the provocation was a dark shade permanent dye containing PPD. The dye was mixed with hydrogen peroxide, and 8 PPD-sensitized volunteers were tested with the gloves as a membrane between the hair dye and the skin in a cylindrical open chamber system. Three exposure times (15, 30 and 60 min) were used. Eczematous reactions were found when natural rubber latex, polyethylene and vinyl gloves were tested with the dye. The nitrile gloves gave good protection, even after 60 min of exposure to the hair dye. Many protective gloves used by hairdressers are unsuitable for protection against the risk of elicitation of allergic contact dermatitis caused by PPD. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Transmission of MRSA to Healthcare Personnel Gowns and Gloves during Care of Nursing Home Residents

    Science.gov (United States)

    Roghmann, Mary-Claire; Johnson, J. Kristie; Sorkin, John D.; Langenberg, Patricia; Lydecker, Alison; Sorace, Brian; Levy, Lauren; Mody, Lona

    2016-01-01

    Objective To estimate the frequency of MRSA transmission to gowns and gloves worn by healthcare personnel (HCP) interacting with nursing home residents in order to inform infection prevention policies in this setting Design Observational study Setting and Participants Residents and HCP from 13 community-based nursing homes in Maryland and Michigan Methods Residents were cultured for MRSA at the anterior nares and perianal or perineal skin. HCP wore gowns and gloves during usual care activities. At the end of each activity, a research coordinator swabbed the HCP’s gown and gloves. Results 403 residents were enrolled; 113 were MRSA colonized. Glove contamination was higher than gown contamination (24% vs. 14% of 954 interactions, pgloves. We identified high risk activities (OR >1.0, pglove contamination. Conclusions MRSA transmission from MRSA positive residents to HCP gown and gloves is substantial with high contact activities of daily living conferring the highest risk. These activities do not involve overt contact with body fluids, skin breakdown or mucous membranes suggesting the need to modify current standards of care involving the use of gowns and gloves in this setting. PMID:26008727

  14. An improved experimental methodology to evaluate the effectiveness of protective gloves against nanoparticles in suspension.

    Science.gov (United States)

    Vinches, Ludwig; Zemzem, Mohamed; Hallé, Stéphane; Peyro, Caroline; Wilkinson, Kevin J; Tufenkji, Nathalie

    2017-07-01

    Recent studies underline the potential health risks associated to the "nano" revolution, particularly for the workers who handle engineered nanoparticles (ENPs) that can be found in the formulation of several commercial products. Although many Health & Safety agencies recommend the use of protective gloves against chemicals, few studies have investigated the effectiveness of these gloves towards nanoparticle suspensions. Moreover, the data that are available are often contradictory. This study was designed to evaluate the effectiveness of protective gloves against nanoparticles in suspension. For this purpose, a new methodology was developed in order to take into account parameters encountered in the workplace such as mechanical deformations (MD) that simulate hand flexion and sweat. The effects of the precise experimental protocol on the concentrations of nanoparticles that were detected in the sampling suspension were assessed. Several samples of nitrile rubber gloves (73 µm thick), taken from different boxes, were brought into contact with gold nanoparticles (5 nm) in water. During their exposure to ENPs, the glove samples submitted systematic mechanical deformations and were placed in contact with a physiological solution simulating human sweat. Under these conditions, results obtained by inductively coupled plasma mass spectrometry (ICPMS) showed that the 5 nm gold nanoparticles passed through the protective gloves. This result was acquired, in spite of the observation of significant losses during the sampling phase that will be important for future experiments evaluating the effectiveness of these materials.

  15. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  16. Latex allergy: assessment of knowledge, appropriate use of gloves and prevention practice among hospital healthcare workers.

    Science.gov (United States)

    Al-Niaimi, F; Chiang, Y Z; Chiang, Y N; Williams, J

    2013-01-01

    Healthcare workers and patients are often exposed to natural rubber latex (NRL) through contact with gloves and various healthcare products, which can potentially cause allergic reactions, with varying degrees of severity. In 2008, the Royal College of Physicians published their first evidence-based guidance on occupational health interventions for latex allergy, which emphasized the importance of healthcare workers having knowledge of latex allergy. This study aimed to survey the knowledge of healthcare workers (n = 156) about latex gloves and NRL allergy, routine prevention practice and the appropriate use of gloves in patient care. Healthcare workers in a large teaching hospital were surveyed using a standard questionnaire. We found that only 1% of healthcare workers were able to correctly match the appropriate gloves to the specifically designed procedure. More than half (n = 74.53%) were unable to recognize the presentation of type 1 allergy to NRL. Of the 156 participants, 131 (84%) considered that they would benefit from training about NRL allergy and the use of different types of gloves in clinical care. This survey indicates the importance of education regarding appropriate use of gloves and prevention of NRL allergy among healthcare workers, and dermatologists should play an important role in facilitating this. © The Author(s). CED © 2012 British Association of Dermatologists.

  17. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  18. In situ remediation of plutonium from glovebox exhaust ducts at the Department of Energy's Rocky Flats Plant

    International Nuclear Information System (INIS)

    Dugdale, J.S.; Humiston, T.J.; Omer, G.E.

    1993-01-01

    Plutonium and other miscellaneous hold-up materials have been accumulating in the glovebox exhaust ducts at the Rocky Flats Plant over the 40 years of weapons production at the site. The Duct Remediation Project was undertaken to assess the safety impacts of this material, and to remove it from the ductwork. The project necessitated the development of specialized tools, equipment and methods to remediate the material from continuously operating ventilation systems. Special engineered access locations were also required to provide access to the ductwork, and to ensure that safety and system operability were not degraded as a result of the remediation efforts. Operations personnel underwent significant training and development, and became an important asset to the success of the project. In total, the project succeeded in removing over 40 kilograms of plutonium-bearing material from one of the major weapons production buildings at the plant

  19. The Short-term Protective Effects of ‘Non-PPE’ Gloves Used by Greenhouse Workers

    Science.gov (United States)

    Roff, Martin

    2015-01-01

    Task-based worker exposure assessments are used in regulatory product approval for pesticides. Some agricultural workers may be exposed to pesticide residues predominantly via transfer to the hands during plant tending or crop harvesting. They may use thin ‘splash-resistant single-use’ (SRSU) gloves or cotton gloves as good industry practice, for example, to protect a delicate crop from bruising, rather than specifically for chemical protection. These ‘non-personal protective equipment (PPE)’ gloves may or may not have been tested for chemical resistance, but can nevertheless give limited protection from chemicals. This paper reports experiments to assess the protection factors (PFs) of ‘non-PPE’ gloves against chemicals, to better inform the regulatory exposure assessments. One type of lightweight cotton and three types of 0.1 mm SRSU gloves 25cm long (latex, nitrile, and vinyl) that might be used as ‘non-PPE’ gloves and one type of 0.4 mm PPE nitrile gauntlet 33cm long were worn by 36 volunteers in greenhouses at four nurseries, handling plants sprayed with transferable but non-permeating strontium acetate in four consecutive 1-h sessions, including one session in which no gloves were worn. Dislodgeable foliar residues were measured by rinsing leaves in bags. Each subject carried out their task such as weeding or trimming, for their four sessions on their set of plants. Handwashes followed each session, and the washings were sampled and analysed for strontium. Unprotected hand contamination was taken to be the within-subject ‘challenge’ in the absence of gloves. It ranged from 166 to 4091 µg equivalent of strontium acetate on the hands and increased with increasing foliar residues. Geometric mean PFs were 60 (95% CI 38–87, n = 22) for PPE gauntlets, 32 (25–41, n = 65) for SRSU gloves and 5.3 (3.5–8, n = 21) for lightweight cotton. The PFs offered by the waterproof gloves (gauntlets and SRSU) increased with challenge, but for the

  20. The Short-term Protective Effects of 'Non-PPE' Gloves Used by Greenhouse Workers.

    Science.gov (United States)

    Roff, Martin

    2015-10-01

    Task-based worker exposure assessments are used in regulatory product approval for pesticides. Some agricultural workers may be exposed to pesticide residues predominantly via transfer to the hands during plant tending or crop harvesting. They may use thin 'splash-resistant single-use' (SRSU) gloves or cotton gloves as good industry practice, for example, to protect a delicate crop from bruising, rather than specifically for chemical protection. These 'non-personal protective equipment (PPE)' gloves may or may not have been tested for chemical resistance, but can nevertheless give limited protection from chemicals. This paper reports experiments to assess the protection factors (PFs) of 'non-PPE' gloves against chemicals, to better inform the regulatory exposure assessments.One type of lightweight cotton and three types of 0.1 mm SRSU gloves 25cm long (latex, nitrile, and vinyl) that might be used as 'non-PPE' gloves and one type of 0.4 mm PPE nitrile gauntlet 33cm long were worn by 36 volunteers in greenhouses at four nurseries, handling plants sprayed with transferable but non-permeating strontium acetate in four consecutive 1-h sessions, including one session in which no gloves were worn. Dislodgeable foliar residues were measured by rinsing leaves in bags. Each subject carried out their task such as weeding or trimming, for their four sessions on their set of plants. Handwashes followed each session, and the washings were sampled and analysed for strontium. Unprotected hand contamination was taken to be the within-subject 'challenge' in the absence of gloves. It ranged from 166 to 4091 µg equivalent of strontium acetate on the hands and increased with increasing foliar residues. Geometric mean PFs were 60 (95% CI 38-87, n = 22) for PPE gauntlets, 32 (25-41, n = 65) for SRSU gloves and 5.3 (3.5-8, n = 21) for lightweight cotton. The PFs offered by the waterproof gloves (gauntlets and SRSU) increased with challenge, but for the absorbent cotton gloves it

  1. CSER 01-008 Canning of Thermally Stabilized Plutonium Oxide Powder in PFP Glovebox HC-21A

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    2001-01-01

    This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-18M and HA-20MB, and is documented in HNF-2707 Rev I a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. The plutonium stabilization program at the Plutonium Finishing Plant (PFP) uses heat to convert plutonium-bearing materials into dry powder that is chemically stable for long term storage. The stabilized plutonium is transferred into one of several gloveboxes for the canning process, Gloveboxes HC-18M in Room 228'2, HA-20MB in Room 235B, and HC-21A in Room 230B are to be used for this process. This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-I8M and HA-20MB, and is documented in HNF-2707 Rev l a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. Evaluation of this operation included normal, base cases, and contingencies. The base cases took the normal operations for each type of feed material and added the likely off-normal events. Each contingency is evaluated assuming the unlikely event happens to the conservative base case. Each contingency was shown to meet the double contingency requirement. That is, at least two unlikely, independent, and concurrent changes in process conditions are required before a criticality is possible

  2. Whole glove permeation of cyclohexanol through disposable nitrile gloves on a dextrous robot hand and comparison with the modified closed-loop ASTM F739 method 1. No fist clenching.

    Science.gov (United States)

    Mathews, Airek R; Que Hee, Shane S

    2017-04-01

    The aim was to develop a whole glove permeation method for cyclohexanol to generate permeation parameter data for a non-moving dextrous robot hand (normalized breakthrough time t b , standardized breakthrough time t s , steady state permeation rate P s , and diffusion coefficient D). Four types of disposable powderless, unsupported, and unlined nitrile gloves from the same producer were investigated: Safeskin Blue and Kimtech Science Blue, Purple, and Sterling. The whole glove method developed involved a peristaltic pump for water circulation through chemically resistant Viton tubing to continually wash the inner surface of the test glove via holes in the tubing, a dextrous robot hand operated by a microprocessor, a chemically protective nitrile glove to protect the robot hand, an incubator to maintain 35°C temperature, and a hot plate to maintain 35°C at the sampling point of the circulating water. Aliquots of 1.0 mL were sampled at regular time intervals for the first 60 min followed by removal of 0.5 mL aliquots every hour to 8 hr. Quantification was by the internal standard method after gas chromatography-selective ion electron impact mass spectrometry using a non-polar capillary column. The individual glove values of t b and t s differed for the ASTM closed loop method except for Safeskin Blue, but did not for the whole glove method. Most of the kinetic parameters agreed within an order of magnitude for the two techniques. The order of most protective to least protective glove was Blue and Safeskin, then Purple followed by Sterling for the whole gloves. The analogous order for the modified F739 ASTM closed loop method was: Safeskin, Blue, Purple, and Sterling, almost the same as for the whole glove. The Sterling glove was "not recommended" from the modified ASTM data, and was "poor" from the whole glove data.

  3. Effect of multiple alcohol-based hand rub applications on the tensile properties of thirteen brands of medical exam nitrile and latex gloves.

    Science.gov (United States)

    Gao, Pengfei; Horvatin, Matthew; Niezgoda, George; Weible, Robyn; Shaffer, Ronald

    2016-12-01

    Current CDC guidance for the disinfection of gloved hands during the doffing of personal protective equipment (PPE) following the care of a patient with Ebola recommends for multiple applications of alcohol-based hand rub (ABHR) on medical exam gloves. To evaluate possible effects of ABHR applications on glove integrity, thirteen brands of nitrile and latex medical exam gloves from five manufacturers and two different ABHRs were included in this study. A pair of gloves were worn by a test operator and the outside surfaces of the gloves were separately treated with an ABHR for 1-6 applications. Tensile strength and ultimate elongation of the gloves without any ABHR treatments (control gloves) and gloves after 1-6 ABHR applications were measured based on the ASTM D412 standard method. In general, tensile strength decreased with each ABHR application. ABHRs had more effect on the tensile strength of the tested nitrile than latex gloves, while ethanol-based ABHR (EBHR) resulted in lesser changes in tensile strength compared to isopropanol-based ABHR (IBHR). The results show that multiple EBHR applications on the latex gloves and some of the nitrile gloves tested should be safe for Ebola PPE doffing based on the CDC guidance. Appropriate hospital staff practice using ABHR treatment and doffing gloves is recommended to become more familiar with changes in glove properties.

  4. Taking into account seismic risk on glove boxes

    Energy Technology Data Exchange (ETDEWEB)

    Ladurelle, Marie; Philipponneau, Yannick

    2005-01-01

    Built in 1981, the LEFCA is a Basic Nuclear Facility (BNF) in which experimental plutonium based fuels are produced and characterised in about a hundred Gloves Boxes (GB). Many safety rules are required, especially those concerning seismic risk. In order to prepare the December 2003 safety reconsideration, the following methodology has been proposed so that GB might resist the Safe Shutdown Earthquake. 1) The determination of a safety target: the GB static containment. 2) The realisation of an ''in situ'' assessment: the definition of several classes of GB, vibrating table tests and the modelling of the GB behaviour with seismic solicitations, 3) A strength diagnosis for equipment: filters, connecting tunnels and pipes holding. 4) A proposal for further strengthening modifications if necessary : fixing the frame, interlocking GB and the frame, taking internal or external GB missiles into account. This process has contributed to a reduction in the radiological potential seismic impact for the neighbouring populations. We shall present the implemented methodology and the strengthening works that have been approved by Safety Authorities. Reinforcement modifications will begin in 2004. (Author)

  5. Taking into account seismic risk on glove boxes

    International Nuclear Information System (INIS)

    Ladurelle, Marie; Philipponneau, Yannick

    2005-01-01

    Built in 1981, the LEFCA is a Basic Nuclear Facility (BNF) in which experimental plutonium based fuels are produced and characterised in about a hundred Gloves Boxes (GB). Many safety rules are required, especially those concerning seismic risk. In order to prepare the December 2003 safety reconsideration, the following methodology has been proposed so that GB might resist the Safe Shutdown Earthquake. 1) The determination of a safety target: the GB static containment. 2) The realisation of an ''in situ'' assessment: the definition of several classes of GB, vibrating table tests and the modelling of the GB behaviour with seismic solicitations, 3) A strength diagnosis for equipment: filters, connecting tunnels and pipes holding. 4) A proposal for further strengthening modifications if necessary : fixing the frame, interlocking GB and the frame, taking internal or external GB missiles into account. This process has contributed to a reduction in the radiological potential seismic impact for the neighbouring populations. We shall present the implemented methodology and the strengthening works that have been approved by Safety Authorities. Reinforcement modifications will begin in 2004. (Author)

  6. The effects of arthritis gloves on people with Rheumatoid Arthritis or Inflammatory Arthritis with hand pain: a study protocol for a multi-centre randomised controlled trial (the A-GLOVES trial).

    Science.gov (United States)

    Prior, Yeliz; Sutton, Chris; Cotterill, Sarah; Adams, Jo; Camacho, Elizabeth; Arafin, Nazina; Firth, Jill; O'Neill, Terence; Hough, Yvonne; Jones, Wendy; Hammond, Alison

    2017-05-30

    Arthritis gloves are regularly provided as part of the management of people with rheumatoid arthritis (RA) and undifferentiated (early) inflammatory arthritis (IA). Usually made of nylon and elastane (i.e. Lycra®), these arthritis gloves apply pressure with the aims of relieving hand pain, stiffness and improving hand function. However, a systematic review identified little evidence supporting their use. We therefore designed a trial to compare the effectiveness of the commonest type of arthritis glove provided in the United Kingdom (Isotoner gloves) (intervention) with placebo (control) gloves (i.e. larger arthritis gloves providing similar warmth to the intervention gloves but minimal pressure only) in people with these conditions. Participants aged 18 years and over with RA or IA and persistent hand pain will be recruited from National Health Service Trusts in the United Kingdom. Following consent, participants will complete a questionnaire booklet, then be randomly allocated to receive intervention or placebo arthritis gloves. Within three weeks, they will be fitted with the allocated gloves by clinical specialist rheumatology occupational therapists. Twelve weeks (i.e. the primary endpoint) after completing the baseline questionnaire, participants will complete a second questionnaire, including the same measures plus additional questions to explore adherence, benefits and problems with glove-wear. A sub-sample of participants from each group will be interviewed at the end of their participation to explore their views of the gloves received. The clinical effectiveness and cost-effectiveness of the intervention, compared to placebo gloves, will be evaluated over 12 weeks. The primary outcome measure is hand pain during activity. Qualitative interviews will be thematically analysed. This study will evaluate the commonest type of arthritis glove (Isotoner) provided in the NHS (i.e. the intervention) compared to a placebo glove. The results will help

  7. Design of a new non-sterile glove-dispensing unit to reduce touch-based contamination

    Directory of Open Access Journals (Sweden)

    Jennifer R Amos

    2014-06-01

    Full Text Available Background Despite best efforts by healthcare providers to sterilise their hands through hand washing prior to touching medical equipment and patients, bacteria are still present and can be spread through physical contact. We aimed to reduce the spread of touch-induced and airborne bacteria and virus spreading by using a touch-free glove-dispensing system that minimally exposes gloves in the box to air. Method The team met multiple times to undertake early prototyping and present ideas for the design. We experimented with folding gloves in varying patterns, similar to facial tissue-dispensing boxes, and tried several methods of opening/closing the glove box to determine the most effective way to access gloves with the least amount of physical contact. We considered the user experience and obtained user feedback after each design iteration. Results Ultimately, we decided on a vertically oriented box with optional holes for dispensing a glove on the side of the box or on the bottom by means of the pull-down drawer mechanism. This system will dispense a single glove at a time to the user with the option of using a pull-down drawer trigger to decrease the likelihood of physical contact with unused gloves. Both methods dispense a single glove. Conclusion: By reducing physical contact between the healthcare practitioner and the gloves, we are potentially reducing the spread of bacteria. This glove box design ensures that gloves are not exposed to the air in the clinic or hospital setting, thereby further reducing spread of airborne germs. This could assist in decreasing the risk of nosocomial infections in healthcare settings.

  8. Design, construction and mounting of a container for transportation and storage of a closed plutonium glove box

    International Nuclear Information System (INIS)

    Aparicio, G.; Insegna, M.A.; Mathot, S.R.; Munoz, C.; Orlando, O.S.; Salguero, D.

    1990-01-01

    With the aim of confining a closed chemistry glove box (with reference to papers: 'Closure of an analytical chemistry glove box in alpha Laboratory' and 'Disconnection and transportation of a closed plutonium glove box to a controlled zone'), it was necessary to design and construct a container to assure transportation from its location (a controlled zone) up to a definitive storage place capable of supporting its posterior confinement. (Author) [es

  9. Specific risk factors and macroeconomic factor on profitability performance an empirical evidence of Top Glove Corporation Bhd

    OpenAIRE

    Loh, Choon Zhee

    2017-01-01

    The purpose of this study to conducted the overall performance of Top Glove Corporation with specific risk factors and macroeconomic factor on profitability performance. The data acquired from annual report of Top Glove Corporation starting from the year of 2011 until 2015. The measurement of liquidity ratio and operating ratio used to see the overall performance of Top Glove in 5 years which allegedly beyond benchmark. The additional measurement is the asset size, this variable has a negativ...

  10. Occupational allergic contact dermatitis caused by sterile non-latex protective gloves: clinical investigation and chemical analyses.

    Science.gov (United States)

    Pontén, Ann; Hamnerius, Nils; Bruze, Magnus; Hansson, Christer; Persson, Christina; Svedman, Cecilia; Thörneby Andersson, Kirsten; Bergendorff, Ola

    2013-02-01

    An increased frequency of occupational contact hand dermatitis among surgical operating theatre personnel has been noticed. To evaluate patients with occupational contact dermatitis caused by their rubber gloves, and to describe a method for analysing the content of the allergens in the gloves. Patch tests were performed with the baseline series, a rubber chemical series, and the patients' own gloves. A method for analysing 1,3-diphenylguanidine (DPG) and cetylpyridinium chloride in the gloves was developed. Contact allergy to thiuram mix was found in 8 of 16 patients, whereas 12 of 16 patients reacted to DPG. In 7 of 8 patients, contact allergy to cetylpyridinium chloride was found. In the patients' gloves, cetylpyridinium chloride and DPG were detected at higher concentrations on the inside of the gloves than on the outside. Most patients had worked for decades in their present occupations, but their hand dermatitis had only been present for months. Contact allergy to DPG in gloves has been disputed, but, in this study, we were able to confirm the presence of DPG and cetylpyridinium chloride in the causative gloves by using a modified method for the analysis. The presence of these chemicals in gloves caused an increase in occupational contact dermatitis in surgical operating theatre personnel. © 2012 John Wiley & Sons A/S.

  11. Penetration of protective gloves as a route of intake for tritiated water and 125I-labelled sodium iodine solution

    International Nuclear Information System (INIS)

    Harris, S.J.; Gilmore, A.

    1980-01-01

    Measurements have been made of the rate at which tritiated water and 125 I-labelled sodium iodide solution penetrate various types of protective gloves, both isotopes being in common use in this form in universities and similar establishments. Diffusion coefficients relating to the glove materials are also determined. The health physics aspects are discussed and it is concluded that intakes by workers through intact gloves are not likely to be of major significance and can easily be minimised by the correct use and choice of glove. (author)

  12. Factors influencing the end of the service life of protective gloves used in car repair shops: a preliminary report.

    Science.gov (United States)

    Emilia, Irzmańska; Agnieszka, Stefko; Katarzyna, Dyńska-Kukulska

    2015-01-01

    The paper presents the results of an end-of-service-life study on 2 kinds of protective gloves designed for workplaces in which workers are exposed to mineral oils and mechanical factors. The authors developed their own end-of-service-life study method that takes into account factors occurring during real-life use of protective gloves. The examined gloves were subjected to mechanical, chemical, and physical factors. The objective of the study was to compare the protective in new gloves subjected to a laboratory simulation test and in gloves used at workplaces in car repair shops. A further goal was to design a glove assessment procedure that would ensure comprehensive analysis of the actual level of performance provided by gloves exposed to selected chemical and mechanical factors as well as subjected to the influence of temperature and humidity, mechanical damage, and chemical degradation of material. The results lead to the conclusion that simultaneous exposure of protective gloves to mechanical, chemical, and physical factors significantly decreases their performance levels. Furthermore, similar performance levels were obtained for gloves subjected to laboratory simulation tests and for those used in the workplace.

  13. Effect of dental tool surface texture and material on static friction with a wet gloved fingertip.

    Science.gov (United States)

    Laroche, Charles; Barr, Alan; Dong, Hui; Rempel, David

    2007-01-01

    Hand injuries are an important cause of pain and disability among dentists and dental hygienists and may be due to the high pinch forces involved in periodontal work. The pinch forces required to perform scaling may be reduced by increasing the friction between the tool and fingers. The purpose of this study was to determine whether modifying the tool material, surface texture, or glove type altered the coefficient of static friction for a wet gloved finger. Seven tools with varying surface topography were machined from 13 mm diameter stainless steel and Delrin and mounted to a 6-component force plate. The textures tested were a fine, medium and coarse diamond knurled pattern and a medium and fine annular pattern (concentric rings). Thirteen subjects pulled their gloved, wet thumb pad along the long axis of the tool while maintaining a normal force of 40 N. Latex and nitrile gloves were tested. The coefficient of static friction was calculated from the shear force history. The mean coefficients of static friction ranged from 0.20 to 0.65. The coefficient of static friction was higher for a smooth tool of Delrin than one of stainless steel. Differences in the coefficient of static friction were observed between the coarse and medium knurled patterns and the fine knurled and annular patterns. Coefficients of static friction were higher for the nitrile glove than the latex glove for tools with texture. These findings may be applied to the design of hand tools that require fine motor control with a wet, gloved hand.

  14. Use of Protective Gloves in Nail Salons in Manhattan, New York City

    Directory of Open Access Journals (Sweden)

    Corey Basch

    2016-07-01

    Full Text Available Objectives: Nail salon owners in New York City (NYC are required to provide their workers with gloves and it is their responsibility to maintain healthy, safe working spaces for their employees. The purpose of this study was to determine the frequency with which nail salon workers wear protective gloves. Methods: A Freedom of Information Law request was submitted to New York Department of State’s Division of Licensing Services for a full list of nail salons in Manhattan, NYC. A sample population of 800 nail salons was identified and a simple random sample (without replacement of 30% (n=240 was selected using a random number generator. Researchers visited each nail salon from October to December of 2015, posing as a potential customer to determine if nail salon workers were wearing gloves. Results: Among the 169 salons in which one or more workers was observed providing services, a total of 562 workers were observed. For 149 salons, in which one or more worker was observed providing services, none of the workers were wearing gloves. In contrast, in six of the salons observed, in which one or more workers was providing services, all of the workers (1 in 2 sites, 2 in 1 site, 3 in 2 sites, and 4 in 1 site were wearing gloves. Almost three-quarters of the total number of workers observed (n=415, 73.8% were not wearing gloves. Conclusions: The findings of this study indicate that, despite recent media attention and legislation, the majority of nail salon workers we observed were not wearing protective gloves when providing services.

  15. Use of Protective Gloves in Nail Salons in Manhattan, New York City.

    Science.gov (United States)

    Basch, Corey; Yarborough, Christina; Trusty, Stephanie; Basch, Charles

    2016-07-01

    Nail salon owners in New York City (NYC) are required to provide their workers with gloves and it is their responsibility to maintain healthy, safe working spaces for their employees. The purpose of this study was to determine the frequency with which nail salon workers wear protective gloves. A Freedom of Information Law request was submitted to New York Department of State's Division of Licensing Services for a full list of nail salons in Manhattan, NYC. A sample population of 800 nail salons was identified and a simple random sample (without replacement) of 30% (n=240) was selected using a random number generator. Researchers visited each nail salon from October to December of 2015, posing as a potential customer to determine if nail salon workers were wearing gloves. Among the 169 salons in which one or more workers was observed providing services, a total of 562 workers were observed. For 149 salons, in which one or more worker was observed providing services, none of the workers were wearing gloves. In contrast, in six of the salons observed, in which one or more workers was providing services, all of the workers (1 in 2 sites, 2 in 1 site, 3 in 2 sites, and 4 in 1 site) were wearing gloves. Almost three-quarters of the total number of workers observed (n=415, 73.8%) were not wearing gloves. The findings of this study indicate that, despite recent media attention and legislation, the majority of nail salon workers we observed were not wearing protective gloves when providing services.

  16. Optical Fier Based System for Multiple Thermophysical Properties for Glove Box, Hot Cell and In-Pile Application

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Heng

    2017-11-30

    Thermal diffusivity of materials is of interest in nuclear applications at temperatures in excess of 2000°C. Commercial laser flash apparatus (LFA) that heats samples with a furnace typically do not reach these elevated temperatures nor are they easily adapted to a glove-box or hot cell environment. In this research, we performed work on an experimental technique using single laser surface heating, i.e. heating the disk sample only at its front surface with the continuous wave (CW) laser, to allow measurement of thermal diffusivity at very high temperatures within a small chamber. Thermal diffusivity is measured using a separate pulsed laser on the front side and IR detector on the rear side. The new way of heating provides easy operation in comparison to other heating methods. The measurement of sample reference temperature is needed for the measured thermal diffusivity. A theoretical model was developed to describe transient heat transfer across the sample due to the laser pulse, starting from the steady state temperature of the sample heated by the CW laser. The experimental setup was established with a 500W CW laser and maximum 50 Joule pulse laser irradiated at the front surface of the sample. The induced temperature rise at the rear surface, along with the steady-state temperature at the front surface, was recorded for the determination of thermal diffusivity and the sample temperature. Three samples were tested in vacuum over a wide temperature range of 500°C to 2100°C, including graphite, Inconel 600 and tungsten. The latter two samples were coated with sprayed graphite on their front surfaces in order to achieve surface absorption/emission needs, i.e. high absorptivity of the front surface against relatively low emissivity of the rear surface. Thermal diffusivity of graphite determined by our system are within a 5% difference of the commercial LFA data at temperatures below 1300°C and agree well with its trend at higher temperatures. Good agreement

  17. Holdup measurements of plutonium in glove box exhausts

    International Nuclear Information System (INIS)

    Glick, J.B.; Haas, F.X.; McKamy, J.N.; Garrett, A.G.

    1991-01-01

    A new measurement technique has been developed to quantify plutonium in process glove box exhausts. The technique implemented at Rocky Flats Plant utiltizes a shielded, collimated 0.5in. x 0.5in. bismuth germanate (BGO) gamma-ray detector. Pairs of measurements are made at one foot intervals along the duct. One measurement is made with the detector viewing the bottom of the duct with the detector crystal approximately 2 inches from the duct surface. The second measurement is made on the top of the exhaust pipe with the detector crystal 2 inches from the top of the duct. When the detector is placed in the bottom assay position, the area of the holdup material is assumed to extend beyond the detector field of view. The concentration of plutonium in g/cm 2 is obtained from this bottom measurement. The deposit width is determined from a model developed to relate the deposit width to the ratio of the count rates measured at the two positions, above and below the duct. Once a deposit width has been calculated, it is multiplied by the concentration determined from the bottom measurement to yield a mass- per-unit-length at the duct location. Total plutonium mass is then determined by multiplying the duct length by the average of the mass- per-unit length assays performed along the duct. The applicability of the technique is presented in a comparison of field measurement data to analysis results on material removed from the ducts. 3 refs., 3 figs., 1 tab

  18. Rubber gloves biodegradation by a consortium, mixed culture and pure culture isolated from soil samples.

    Science.gov (United States)

    Nawong, Chairat; Umsakul, Kamontam; Sermwittayawong, Natthawan

    2018-02-03

    An increasing production of natural rubber (NR) products has led to major challenges in waste management. In this study, the degradation of rubber latex gloves in a mineral salt medium (MSM) using a bacterial consortium, a mixed culture of the selected bacteria and a pure culture were studied. The highest 18% weight loss of the rubber gloves were detected after incubated with the mixed culture. The increased viable cell counts over incubation time indicated that cells used rubber gloves as sole carbon source leading to the degradation of the polymer. The growth behavior of NR-degrading bacteria on the latex gloves surface was investigated using the scanning electron microscope (SEM). The occurrence of the aldehyde groups in the degradation products was observed by Fourier Transform Infrared Spectroscopy analysis. Rhodococcus pyridinivorans strain F5 gave the highest weight loss of rubber gloves among the isolated strain and posses latex clearing protein encoded by lcp gene. The mixed culture of the selected strains showed the potential in degrading rubber within 30 days and is considered to be used efficiently for rubber product degradation. This is the first report to demonstrate a strong ability to degrade rubber by Rhodococcus pyridinivorans. Copyright © 2018. Published by Elsevier Editora Ltda.

  19. Wrist ambulatory monitoring system and smart glove for real time emotional, sensorial and physiological analysis.

    Science.gov (United States)

    Axisa, F; Gehin, C; Delhomme, G; Collet, C; Robin, O; Dittmar, A

    2004-01-01

    Improvement of the quality and efficiency of the quality of health in medicine, at home and in hospital becomes more and more important Designed to be user-friendly, smart clothes and gloves fit well for such a citizen use and health monitoring. Analysis of the autonomic nervous system using non-invasive sensors provides information for the emotional, sensorial, cognitive and physiological analysis. MARSIAN (modular autonomous recorder system for the measurement of autonomic nervous system) is a wrist ambulatory monitoring and recording system with a smart glove with sensors for the detection of the activity of the autonomic nervous system. It is composed of a "smart tee shirt", a "smart glove", a wrist device and PC which records data. The smart glove is one of the key point of MARSIAN. Complex movements, complex geometry, sensation make smart glove designing a challenge. MARSIAN has a large field of applications and researches (vigilance, behaviour, sensorial analysis, thermal environment for human, cognition science, sport, etc...) in various fields like neurophysiology, affective computing and health monitoring.

  20. Penelitian jumlah penggunaan bating agent pada penyamakan kulit sarung tangan (fashion glove dari kulit kelinci

    Directory of Open Access Journals (Sweden)

    Muchtar Lutfi

    1994-04-01

    Full Text Available The objective of this research is to identify the quatity of bating agent used in tanning rabbit skins to be glove leather, to make use rabbit skins which can not be tanned to fur rabbit skin leather. The materials used in this research were of 40 pieces of lokal salt preservated rabbit skins originated from Yogyakarta having quality III and IV. They were grouped into four and the groups consisted of ten pieces each were tanned to be fashion glove leather using 4% formaline as pretanning agent and followed by chrome tanning agent as the retanning agent. Before carrying out both tanning processes bating was done on them using Pancreol Bate as bating agent. The quantity of bating agent added was varried as 0,65%, 1,2%, 1,8% and 2,4%. The process used was of usually carried - out by IRDLAI. The leather produced were tested on their sotfness, with sheepskin glove leather was used as the measuring- rod; their tensile strength resistance and flexibility with SII. 0061 – 74 (Quality and test method for goatsheep skin glove and garment leather as the standard of comparison. The test results were statistically evaluated. A conclusion can be down from this research that by using 0,6% Pancreol Bate on bating process, soft glove leathers having good tensile strength and flexibility which fulfill the requirements of SII. 0061 - 74 can be produced.

  1. Permeation of limonene through disposable nitrile gloves using a dextrous robot hand.

    Science.gov (United States)

    Banaee, Sean; S Que Hee, Shane

    2017-03-28

    The purpose of this study was to investigate the permeation of the low-volatile solvent limonene through different disposable, unlined, unsupported, nitrile exam whole gloves (blue, purple, sterling, and lavender, from Kimberly-Clark). This study utilized a moving and static dextrous robot hand as part of a novel dynamic permeation system that allowed sampling at specific times. Quantitation of limonene in samples was based on capillary gas chromatography-mass spectrometry and the internal standard method (4-bromophenol). The average post-permeation thicknesses (before reconditioning) for all gloves for both the moving and static hand were more than 10% of the pre-permeation ones (P≤0.05), although this was not so on reconditioning. The standardized breakthrough times and steady-state permeation periods were similar for the blue, purple, and sterling gloves. Both methods had similar sensitivity. The lavender glove showed a higher permeation rate (0.490±0.031 μg/cm 2 /min) for the moving robotic hand compared to the non-moving hand (P≤0.05), this being ascribed to a thickness threshold. Permeation parameters for the static and dynamic robot hand models indicate that both methods have similar sensitivity in detecting the analyte during permeation and the blue, purple, and sterling gloves behave similarly during the permeation process whether moving or non-moving.

  2. A quantification of occupational skin exposures and the use of protective gloves among hairdressers in Denmark.

    Science.gov (United States)

    Lysdal, Susan Hovmand; Johansen, Jeanne Duus; Flyvholm, Mari-Ann; Søsted, Heidi

    2012-06-01

    Occupational hand eczema is common in hairdressers, owing to excessive exposure to wet work and hairdressing chemicals. To quantify occupational skin exposure and the use of protective gloves among hairdressers in Denmark. A register-based study was conducted comprising all graduates from hairdressing vocational schools from 1985 to 2007 (n = 7840). The participants received a self-administered postal questionnaire in May 2009, including questions on hairdressing tasks performed in the past week at work and the extent of glove use. A response rate of 67.9% (n = 5324) was obtained. Of the respondents, 55.7% still worked as hairdressers, and they formed the basis of this study. Daily wet work was excessive; 86.6% had wet hands for ≥2 hr, and 54% for ≥ 4 hr. Glove use was fairly frequent for full head hair colouring and bleaching procedures (93-97.7%), but less frequent for highlighting/lowlighting procedures (49.7-60.5%) and permanent waving (28.3%). Gloves were rarely worn during hair washing (10%), although this was more frequently the case after hair colouring procedures (48.9%). Occupational skin exposure was excessive among hairdressers; the extent of wet work and chemical treatments was high, and glove use was inconsistent, especially for certain hair colouring procedures and wet work tasks. © 2012 John Wiley & Sons A/S.

  3. Perforation of dental gloves during prosthodontic treatments as assessed by the conductivity and water inflation tests.

    Science.gov (United States)

    Nikawa, H; Hamada, T; Tamamoto, M; Abekura, H; Murata, H

    1996-01-01

    The incidence of latex glove perforation during prosthodontic treatment was investigated on 122 occasions using two methods, a conductivity test and a water inflation test. Latex glove perforation was detected in 38.5% of the treatments by the conductivity test and in 27.9% by the water inflation test. The perforation went unrecognized in 74.7% of the occurrences (35/47 incidents) using the conductivity test and in 64.7% (22/34) when the water inflation test was used. Of the total 55 glove perforations, 21 perforations were detected only by conductivity test, 3 were detected only by the water inflation test, and 31 perforations were detected by both methods, which suggested that the conductivity test is more sensitive than the water inflation test for the detection of glove perforation. The results of this research suggested that even when latex gloves are worn, the risk to prosthodontists of exposure to body fluids remains in four of every six treatments, often without the awareness of the prosthodontist.

  4. Permeation of limonene through disposable nitrile gloves using a dextrous robot hand

    Science.gov (United States)

    Banaee, Sean; S Que Hee, Shane

    2017-01-01

    Objectives: The purpose of this study was to investigate the permeation of the low-volatile solvent limonene through different disposable, unlined, unsupported, nitrile exam whole gloves (blue, purple, sterling, and lavender, from Kimberly-Clark). Methods: This study utilized a moving and static dextrous robot hand as part of a novel dynamic permeation system that allowed sampling at specific times. Quantitation of limonene in samples was based on capillary gas chromatography-mass spectrometry and the internal standard method (4-bromophenol). Results: The average post-permeation thicknesses (before reconditioning) for all gloves for both the moving and static hand were more than 10% of the pre-permeation ones (P≤0.05), although this was not so on reconditioning. The standardized breakthrough times and steady-state permeation periods were similar for the blue, purple, and sterling gloves. Both methods had similar sensitivity. The lavender glove showed a higher permeation rate (0.490±0.031 μg/cm2/min) for the moving robotic hand compared to the non-moving hand (P≤0.05), this being ascribed to a thickness threshold. Conclusions: Permeation parameters for the static and dynamic robot hand models indicate that both methods have similar sensitivity in detecting the analyte during permeation and the blue, purple, and sterling gloves behave similarly during the permeation process whether moving or non-moving. PMID:28111415

  5. The Effects of Industrial Protective Gloves and Hand Skin Temperatures on Hand Grip Strength and Discomfort Rating

    Directory of Open Access Journals (Sweden)

    Mohamed Z. Ramadan

    2017-12-01

    Full Text Available Daily working activities and functions require a high contribution of hand and forearm muscles in executing grip force. To study the effects of wearing different gloves on grip strength, under a variety of hand skin temperatures, an assessment of the maximum grip strength was performed with 32 healthy male workers with a mean age (standard deviation of 30.44 (5.35 years wearing five industrial gloves at three hand skin temperatures. Their ages and anthropometric characteristics including body mass index (BMI, hand length, hand width, hand depth, hand palm, and wrist circumference were measured. The hand was exposed to different bath temperatures (5 °C, 25 °C, and 45 °C and hand grip strength was measured using a Jamar hydraulic hand dynamometer with and without wearing the gloves (chemical protection glove, rubber insulating glove, anti-vibration impact glove, cotton yarn knitted glove, and RY-WG002 working glove. The data were analyzed using the Shapiro–Wilk test, Pearson correlation coefficient, Tukey test, and analysis of variance (ANOVA of the within-subject design analysis. The results showed that wearing gloves significantly affected the maximum grip strength. Wearing the RY-WG002 working glove produced a greater reduction on the maximum grip when compared with the bare hand, while low temperatures (5 °C had a significant influence on grip when compared to medium (25 °C and high (45 °C hand skin temperatures. In addition, participants felt more discomfort in both environmental extreme conditions. Furthermore, they reported more discomfort while wearing neoprene, rubber, and RY-WG002 working gloves.

  6. The Effects of Industrial Protective Gloves and Hand Skin Temperatures on Hand Grip Strength and Discomfort Rating.

    Science.gov (United States)

    Ramadan, Mohamed Z

    2017-12-04

    Daily working activities and functions require a high contribution of hand and forearm muscles in executing grip force. To study the effects of wearing different gloves on grip strength, under a variety of hand skin temperatures, an assessment of the maximum grip strength was performed with 32 healthy male workers with a mean age (standard deviation) of 30.44 (5.35) years wearing five industrial gloves at three hand skin temperatures. Their ages and anthropometric characteristics including body mass index (BMI), hand length, hand width, hand depth, hand palm, and wrist circumference were measured. The hand was exposed to different bath temperatures (5 °C, 25 °C, and 45 °C) and hand grip strength was measured using a Jamar hydraulic hand dynamometer with and without wearing the gloves (chemical protection glove, rubber insulating glove, anti-vibration impact glove, cotton yarn knitted glove, and RY-WG002 working glove). The data were analyzed using the Shapiro-Wilk test, Pearson correlation coefficient, Tukey test, and analysis of variance (ANOVA) of the within-subject design analysis. The results showed that wearing gloves significantly affected the maximum grip strength. Wearing the RY-WG002 working glove produced a greater reduction on the maximum grip when compared with the bare hand, while low temperatures (5 °C) had a significant influence on grip when compared to medium (25 °C) and high (45 °C) hand skin temperatures. In addition, participants felt more discomfort in both environmental extreme conditions. Furthermore, they reported more discomfort while wearing neoprene, rubber, and RY-WG002 working gloves.

  7. Dismantling techniques for plutonium-contaminated gloveboxes: experience from first year of decommissioning; Zerlegungstechniken fuer Pu-kontaminierte Handschuhkaesten: Erfahrungsbericht nach einem Jahr Rueckbau

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, R.; Faber, P. [Siemens Power Generation, Decommissioning Projects, Hanau (Germany)

    2003-07-01

    At the mixed-oxide (MOX) processing facility formerly operated by ALKEM GmbH in Hanau, Germany - which was taken over to Siemens in 1988 and renamed Siemens' Hanau Fuel Fabrication Plant, MOX facility - around 8500 kg of plutonium were processed to make MOX fuel rods and fuel assemblies since production started in 1965. After shutdown of the facility by the authorities in mid-1991 for political reasons, the remaining nuclear fuel materials were processed during the subsequent ''cleanout'' phase starting in 1997 into rods and assemblies suitable for long-term storage. The last step in cleanout consisted of ''flushing'' the production equipment with depleted uranium and thoroughly cleaning the gloveboxes. During cleanout around 700 kg of plutonium were processed in the form of mixed oxides. The cleanout phase including the subsequent cleaning and flushing operations ended on schedule in September 2001 without any significant problems. Starting in mid-1999, the various glovebox dismantling techniques were tested using uncontaminated components while cleanout was still in progress and then, once these trials had been successfully completed, further qualified through use on actual components. The pilot-phase trials required four separate licenses under Section 7, Subsection (3) of the German Atomic Energy Act. Thanks to detailed advance planning and experience from the pilot trials the individual dismantling steps could be described in sufficient detail for the highly complex German licensing procedure. The first partial license for decommissioning the MOX facility under Sec. 7, Subsec. (3) of the Atomic Energy Act was issued on May 28, 2001. It mainly covers dismantling of the interior equipment inside the gloveboxes a well as the gloveboxes themselves. Actual decommissioning work inside the former production areas of the MOX facility started on a large scale in early September 2001. (orig.)

  8. ALTERATIONS IN ELECTROCARDIOGRAMS OF LABRADOR RETRIEVER DOGS DURING HANDLING WITH AND WITHOUT GLOVES

    Directory of Open Access Journals (Sweden)

    Swagat Mohapatra

    2016-12-01

    Full Text Available Healthy male Labrador Retriever dogs (n=8 aged between one to three years constituted the study material. The study was carried out to peruse the alterations in electrocardiograms, when the attendant restrained the dogs with bare hands and when the dogs were restrained by the attendant wearing gloves. The mean amplitude of P wave was higher in dogs handled with gloves. Similarly, the amplitudes of QRS complex and T wave were higher in the electrocardiograms of dogs handled with insulated hands. Meanwhile, the duration of T wave and Q-T interval were higher in the electrocardiograms recorded without gloves in hands. However, no alterations were perceived with respect to the duration of P wave, duration of T wave, the P-R interval, R-R interval and the heart rate. Except for the amplitude of P wave, no other differences were statistically significant. The study reported the alterations in the electrocardiogram while handling the animals with bare hands.

  9. Latex glove sensitivity amongst diagnostic imaging healthcare personnel: a self-reporting investigation

    International Nuclear Information System (INIS)

    Healy, Jan; Brennan, Patrick C.; Bowden, Julie Anne

    2003-01-01

    The use of latex gloves has risen dramatically among healthcare workers resulting in an increase in the number of workers experiencing reactions to gloves. Little evidence of reactions among Irish healthcare workers is available. The current, self-reporting study investigated the prevalence to latex gloves amongst four professional groups within three Diagnostic Imaging Departments. Prevalence is similar to that demonstrated elsewhere with 18.3% of individuals expressing latex associated symptoms. Symptoms included itching and redness of hands, dry cracked skin, soreness of eyes and upper respiratory tract complaints. These results indicate that latex hypersensitivity is a real problem amongst Irish healthcare workers. This preliminary work provides the basis of a much larger controlled study currently being planned

  10. Mass spectrometric analysis of EPO IEF-PAGE interfering substances in nitrile examination gloves.

    Science.gov (United States)

    Reichel, Christian

    2012-10-01

    Direct detection of doping with recombinant erythropoietins (rhEPO) is accomplished by isoelectric focusing (IEF) or sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis (PAGE). In a recent publication, Lasne et al. (Electrophoresis 2011, 32, 1444) showed that improper use of nitrile examination gloves during sample collection, sample preparation, and IEF-PAGE may lead to distorted or absent EPO IEF-profiles. In order to clarify which substances are responsible for this observation, a mass spectrometric study on water extractable compounds found in nitrile gloves was performed. Several substance classes were shown to be present, among them polyethylene glycols (PEG), anionic and nonionic surfactants, as well as alcohol ethoxylates and plasticizers. It could be demonstrated that alkylbenzenesulfonates, the main category of detectable anionic detergents, and among them sodium dodecylbenzenesulfonate (SDBS) and its homologs, are the prime reason for the interference of nitrile gloves with EPO IEF-PAGE. Copyright © 2012 John Wiley & Sons, Ltd.

  11. THE MANUFACUTE OF GLOVES USING RVNRL: PARAMETERS OF the COAGULANT DIPPING PROCESS

    Directory of Open Access Journals (Sweden)

    H.D. CHIRINOS

    1998-12-01

    Full Text Available Surgical gloves were manufactured using the RVNRL process. A fractional factorial design at two levels showed that five parameters of the coagulant dipping process which were studied independent. Coagulant concentration and dwell time in the radiovulcanized latex presented major main effects while the temperature of the former before dipping into the radiovulcanized latex and the flow time of the radiovulcanized latex on the former surface presented opposite main effects. The withdrawal rate of the former from the radiovulcanized latex did not change glove thickness. The mathematical correlation between the estimates of thickness and the significant main effects of coded variables was = 0.212 + 0.025x1 + 0.019x2. This optimized equation allowed reproduction of a surgical glove thickness in the range of 0.157 to 0.291mm, which is considered acceptable by international standard specification.

  12. Gloves against mineral oils and mechanical hazards: composites of carboxylated acrylonitrile-butadiene rubber latex.

    Science.gov (United States)

    Krzemińska, Sylwia; Rzymski, Władysław M; Malesa, Monika; Borkowska, Urszula; Oleksy, Mariusz

    2016-09-01

    Resistance to permeation of noxious chemical substances should be accompanied by resistance to mechanical factors because the glove material may be torn, cut or punctured in the workplace. This study reports on glove materials, protecting against mineral oils and mechanical hazards, made of carboxylated acrylonitrile-butadiene rubber (XNBR) latex. The obtained materials were characterized by a very high resistance of the produced materials to oil permeation (breakthrough time > 480 min). The mechanical properties, and especially tear resistance, of the studied materials were improved after the addition of modified bentonite (nanofiller) to the XNBR latex mixture. The nanocomposite meets the requirements in terms of parameters characterizing tear, abrasion, cut and puncture resistance. Therefore, the developed material may be used for the production of multifunctional protective gloves.

  13. Gloves against mineral oils and mechanical hazards: composites of carboxylated acrylonitrile–butadiene rubber latex

    Science.gov (United States)

    Krzemińska, Sylwia; Rzymski, Władysław M.; Malesa, Monika; Borkowska, Urszula; Oleksy, Mariusz

    2016-01-01

    Resistance to permeation of noxious chemical substances should be accompanied by resistance to mechanical factors because the glove material may be torn, cut or punctured in the workplace. This study reports on glove materials, protecting against mineral oils and mechanical hazards, made of carboxylated acrylonitrile–butadiene rubber (XNBR) latex. The obtained materials were characterized by a very high resistance of the produced materials to oil permeation (breakthrough time > 480 min). The mechanical properties, and especially tear resistance, of the studied materials were improved after the addition of modified bentonite (nanofiller) to the XNBR latex mixture. The nanocomposite meets the requirements in terms of parameters characterizing tear, abrasion, cut and puncture resistance. Therefore, the developed material may be used for the production of multifunctional protective gloves. PMID:26757889

  14. Bacterial contamination of surgeons' gloves during shunt insertion; a pilot study

    DEFF Research Database (Denmark)

    Sørensen, Preben; Ejlertsen, Tove; Aaen, Dorte

    2008-01-01

    Bacterial infection is a major cause of shunt dysfunction. It is well-known that the majority of pathogenic micro-organisms are low-virulent bacteria normally found on intact skin. Probably shunts become contaminated during surgery either by contact to the patient skin, or contact from contaminated...... gloves or instruments. This study was performed to find out to what extent gloves become contaminated during shunt surgery. Gloves used during shunt implantation were examined in 10 operations. Shunt implantation was done using recommended precautions to avoid infection, including prophylactic...... nurse and assistant were contaminated with micro-organisms less than 15 min after surgery has been commenced and before the shunts were handled. This study offers a feasible, simple and logical explanation of how shunts may become contaminated and infected. A simple measure would be to change the outer...

  15. Protective gloves for use in high-risk patients: how much do they affect the dexterity of the surgeon?

    Science.gov (United States)

    Phillips, A. M.; Birch, N. C.; Ribbans, W. J.

    1997-01-01

    Twenty-five orthopaedic surgeons underwent eight motor and sensory tests while using four different glove combinations and without gloves. As well as single and double latex, surgeons wore a simple Kevlar glove with latex inside and outside and then wore a Kevlar and Medak glove with latex inside and outside, as recommended by the manufacturers. The effect of learning with each sequence was neutralised by randomising the glove order. The time taken to complete each test was recorded and, where appropriate, error rates were noted. Simple sensory tests took progressively longer to perform so that using the thickest glove combination led to the completion times being doubled. Error rates increased significantly. Tests of stereognosis also took longer and use of the thickest glove combination caused these tests to take three times as long on average. Error rates again increased significantly. However, prolongation of motor tasks was less marked. We conclude that, armed with this quantitative analysis of sensitivity and dexterity impairment, surgeons can judge the relative difficulties that may be incurred as a result of wearing the gloves against the benefits that they offer in protection. PMID:9135240

  16. An Evaluation of the Effect of Various Gloves on Polymerization Inhibition of Elastomeric Impression Materials: An In vitro Study.

    Science.gov (United States)

    Hiremath, Vinuta; Vinayakumar, G; Ragher, Mallikarjuna; Rayannavar, Sounyala; Bembalagi, Mahantesh; Ashwini, B L

    2017-11-01

    Latex protective barriers such as gloves and rubber dam material have been used widely in restorative procedures for crown and bridge. However, the chemical used during latex glove fabrication is thought to inhibit the polymerization of elastomeric impression materials used for impression making which has a detrimental effect on the dimensional accuracy and surface definition of resultant casts used for restorative procedures. The objectives of the study were to examine the surface of different elastomeric impressions on contact with various gloves. This clinical study included a total of eighty specimens of two types of the putty elastomeric impression material were hand manipulated by wearing three different gloves materials and is placed on a marked area of a clean and alcohol-treated glass slab at room temperature. The specimens examined for any signs of polymerization inhibition. The specimen will be rated as being "inhibited" if any residue remains on the glass slab and absence of the above will result as "no inhibition." The results showed no interference with the polymerization inhibition of the selected elastomers followed by the nitrile glove. The latex gloves showed inhibited set of the elastomeric impression material but set after sometime confirming time-dependent inhibition of the impression material. This study shows that the use of latex and sometime nitrile gloves during crown and bridge procedures should be contraindicated and the use of vinyl gloves should be stressed when working with elastomeric impression materials.

  17. Effects of Gloves, Temperature and Their Interaction on Finger, Hand, and Arm Blood Flow and Skin Temperature: A Pilot Study

    Science.gov (United States)

    Hallbech, M. Susan

    1996-01-01

    The objective of this study is to investigate the effects of cold only, commercially available gloves only, and the combination of gloves and cold on the blood flow and surface (skin) temperature of the medial and proximal phalanxes of digit 3, the metacarpal region of the hand, and the forearm.

  18. An evaluation of the effect of various gloves on polymerization inhibition of elastomeric impression materials: An In vitro study

    Directory of Open Access Journals (Sweden)

    Vinuta Hiremath

    2017-01-01

    Full Text Available Background: Latex protective barriers such as gloves and rubber dam material have been used widely in restorative procedures for crown and bridge. However, the chemical used during latex glove fabrication is thought to inhibit the polymerization of elastomeric impression materials used for impression making which has a detrimental effect on the dimensional accuracy and surface definition of resultant casts used for restorative procedures. The objectives of the study were to examine the surface of different elastomeric impressions on contact with various gloves. Materials and Methods: This clinical study included a total of eighty specimens of two types of the putty elastomeric impression material were hand manipulated by wearing three different gloves materials and is placed on a marked area of a clean and alcohol-treated glass slab at room temperature. The specimens examined for any signs of polymerization inhibition. The specimen will be rated as being “inhibited” if any residue remains on the glass slab and absence of the above will result as “no inhibition.” Results: The results showed no interference with the polymerization inhibition of the selected elastomers followed by the nitrile glove. The latex gloves showed inhibited set of the elastomeric impression material but set after sometime confirming time-dependent inhibition of the impression material. Conclusion: This study shows that the use of latex and sometime nitrile gloves during crown and bridge procedures should be contraindicated and the use of vinyl gloves should be stressed when working with elastomeric impression materials.

  19. Interventional Angiography: Radiation Protection for the Examiner by using Lead-free Gloves.

    Science.gov (United States)

    Kamusella, Peter; Scheer, Fabian; Lüdtke, Christopher Wilhelm; Wiggermann, Philipp; Wissgott, Christian; Andresen, Reimer

    2017-07-01

    The radiation exposure to unprotected parts of the body requires special attention for the interventional radiologist. During angiographic procedures, hands are exposed to the direct X-ray beam and scattered radiation. The aim of the study was to evaluate the radiation exposure of examiners hand with the use of lead-free X-ray protective gloves in clinical practice in terms of shielding and sense of touch. The aim of the study was to evaluate the radiation exposure of examiners hand with the use of lead-free X-ray protective gloves in clinical practice in terms of shielding and sense of touch. Phantom measurements were conducted in the direct X-ray beam and the area of scattered radiation with and without shielding. Examiner measurements were determined in interventional angiographies in clinical routine of the lower limb in antegrade puncture technique through the femoral artery. In 24 out of 50 interventions, an elastic natural rubber latex glove with lead-free metal shielding against radiation was used. All measurements were performed with a direct dosimeter. After the intervention, an opinion of the examiner was requested for evaluation of the sense of touch. Phantom measurements; when using the protective glove in the direct X-ray beam, a significant increase of the Dose Area Product (DAP) (1084.2-1603.8 mGy*cm 2 ; 67.6%; pgloves were used, a significant increase of the DAP (6183.2-10462.9 mGy*cm 2 ; 59.1%; pgloves is characterized by a shielding effect against X-ray scattered radiation, without restricting the sense of touch. A significant reduction in radiation doses to the examiner can be accomplished with these gloves in the area of scattered radiation only. If the gloves were used in the direct X-ray beam, especially while the artery puncture was performed, a significant increase of the dose values was observed.

  20. Estimated exposure of hands inside the protective gloves used by non-occupational handlers of agricultural pesticides.

    Science.gov (United States)

    Beránková, Martina; Hojerová, Jarmila; Peráčková, Zuzana

    2017-11-01

    Exposure of handlers'/operators' hands is a main route of agricultural pesticides entry into their body. Non-occupational handlers still lack information about appropriate selection of protective gloves to minimize exposure and reduce adverse effects of these chemicals. According to the results of our previous survey, six commercially available, water-resistant gloves commonly used by non-professional gardeners were evaluated for permeation of Acetamiprid, Pirimicarb, and Chlorpyrifos-methyl (Chlorp-m) pesticides by means of in vitro testing. In-use conditions were mimicked as close as possible. Chlorp-m through latex was observed inside the glove from >10 to ⩽15 min; however, Acetamiprid and Pirimicarb through neoprene/latex and all the three pesticides through butyl were not observed inside gloves for the duration of the experiments (the Breakthrough time (BT)>8 h). The 1-h exposure proved the interior glove contamination with Chlorp-m through disposable latex, vinyl, and nitrile gloves (51, 33, and 41% of applied dose (AD), respectively) just as with Acetamiprid and Pirimicarb through latex glove (11 and 14%AD, respectively). However, when storing the used gloves for 4 days after the exposure, no release of the three pesticides from the butyl and Acetamiprid from neoprene/latex gloves was detected. In all other cases, pesticides were found in the interior glove (36-79, 31-63, and 51-81%AD for Acetamiprid, Pirimicarb, and Chlorp-m, respectively). If used repeatedly, gloves contaminated in this way lose their protective function but give the user a false sense of security. The results suggest that (i) water-resistant gloves are not necessarily pesticide resistant; (ii) disposable latex gloves commonly worn by non-professional gardeners provide inadequate protection even for a short-time contact with pesticides; (iii) to assess the efficiency of reusable gloves, not only BT value but also the reservoir/release effect of parent pesticide and its degradation

  1. Penelitian jumlah penggunaan bating agent pada penyamakan kulit sarung tangan (fashion glove) dari kulit kelinci

    OpenAIRE

    Muchtar Lutfi; Widhiati Widhiati; Esti Rahayu; Kasmin Nainggolan

    1994-01-01

    The objective of this research is to identify the quatity of bating agent used in tanning rabbit skins to be glove leather, to make use rabbit skins which can not be tanned to fur rabbit skin leather. The materials used in this research were of 40 pieces of lokal salt preservated rabbit skins originated from Yogyakarta having quality III and IV. They were grouped into four and the groups consisted of ten pieces each were tanned to be fashion glove leather using 4% formaline as pretanning agen...

  2. Penelitian Jumlah Penggunaan Bating Agent Pada Penyamakan Kulit Sarung Tangan (Fashion Glove) Dari Kulit Kelinci

    OpenAIRE

    Lutfi, Muchtar; Widhiati, Widhiati; Rahayu, Esti; Nainggolan, Kasmin

    1994-01-01

    The objective of this research is to identify the quatity of bating agent used in tanning rabbit skins to be glove leather, to make use rabbit skins which can not be tanned to fur rabbit skin leather. The materials used in this research were of 40 pieces of lokal salt preservated rabbit skins originated from Yogyakarta having quality III and IV. They were grouped into four and the groups consisted of ten pieces each were tanned to be fashion glove leather using 4% formaline as pretanning agen...

  3. Glove powder's carrying capacity for latex protein: analysis using the ASTM ELISA test.

    Science.gov (United States)

    Beezhold, D; Horton, K; Hickey, V; Daddona, J; Kostyal, D

    2003-01-01

    Glove donning powders carry latex proteins and disperse them into the workplace environment. We have used the ASTM D6499 ELISA to quantify the amount of latex antigen bound to and carried by glove powders. We could differentiate between a small amount of protein actually bound to the powders and a larger amount carried by the powder. Enhanced binding of a major allergen, Hev b 5, to the starch powders was demonstrated by Western blot. The D6499 ELISA is able to measure total latex antigen, soluble and powder bound, simultaneously without the need to centrifuge the samples.

  4. The Influence of Robotic Assistance on Reducing Neuromuscular Effort and Fatigue during Extravehicular Activity Glove Use

    Science.gov (United States)

    Madden, Kaci E.; Deshpande, Ashish D.; Peters, Benjamin J.; Rogers, Jonathan M.; Laske, Evan A.; McBryan, Emily R.

    2017-01-01

    The three-layered, pressurized space suit glove worn by Extravehicular Activity (EVA) crew members during missions commonly causes hand and forearm fatigue. The Spacesuit RoboGlove (SSRG), a Phase VI EVA space suit glove modified with robotic grasp-assist capabilities, has been developed to augment grip strength in order to improve endurance and reduce the risk of injury in astronauts. The overall goals of this study were to i) quantify the neuromuscular modulations that occur in response to wearing a conventional Phase VI space suit glove (SSG) during a fatiguing task, and ii) determine the efficacy of Spacesuit RoboGlove (SSRG) in reversing the adverse neuromuscular modulations and restoring altered muscular activity to barehanded levels. Six subjects performed a fatigue sequence consisting of repetitive dynamic-gripping interspersed with isometric grip-holds under three conditions: barehanded, wearing pressurized SSG, and wearing pressurized SSRG. Surface electromyography (sEMG) from six forearm muscles (flexor digitorum superficialis (FDS), flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor digitorum (ED), extensor carpi radialis longus (ECRL), and extensor carpi ulnaris (ECU)) and subjective fatigue ratings were collected during each condition. Trends in amplitude and spectral distributions of the sEMG signals were used to derive metrics quantifying neuromuscular effort and fatigue that were compared across the glove conditions. Results showed that by augmenting finger flexion, the SSRG successfully reduced the neuromuscular effort needed to close the fingers of the space suit glove in more than half of subjects during two types of tasks. However, the SSRG required more neuromuscular effort to extend the fingers compared to a conventional SSG in many subjects. Psychologically, the SSRG aided subjects in feeling less fatigued during short periods of intense work compared to the SSG. The results of this study reveal the promise of the SSRG as a

  5. Surgical gloves fabrication using natural rubber latex vulcanized with gamma radiation

    International Nuclear Information System (INIS)

    Collantes, Hugo David Chirinos.

    1995-01-01

    Surgical gloves were manufactured by immersion coagulant method from vulcanized natural rubber latex by gamma rays at dose of 10 kGy in the air, at room temperature, using the following sensitizer vulcanization An-B 3 phr/KOH 0.2 phr. The influence of the parameter in the thickness of the surgical gloves manufacture, studied through fractional factorial designs technic, can be resumed by empirical linear correlation: y = 0.213 + 0.025 [Ca Cl 2 ] + 0.019 t. (author). 49 refs., 13 figs., 31 tabs

  6. 3D Graphical User Interface on Personal Computer using P5 Data Glove

    OpenAIRE

    Ms Khyati r. Nirmal

    2011-01-01

    This paper presents Essential Reality works on 3D HCI for changing 2D visual to 3D visual. The mouse is the critical interface to handle 3D graphical objects. Using data glove its possible to put it on like a normal glove and it then acts as an input device that senses finger movements and hand position and orientation (3 coordinates) in real time. The limitation of surface do not allow large no of windows and icons to be positioned on the screen. If more no of windows are forcibly open some ...

  7. Respiratory Failure

    Science.gov (United States)

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can' ...

  8. Is hand hygiene before putting on nonsterile gloves in the intensive care unit a waste of health care worker time?--a randomized controlled trial.

    Science.gov (United States)

    Rock, Clare; Harris, Anthony D; Reich, Nicholas G; Johnson, J Kristie; Thom, Kerri A

    2013-11-01

    Hand hygiene (HH) is recognized as a basic effective measure in prevention of nosocomial infections. However, the importance of HH before donning nonsterile gloves is unknown, and few published studies address this issue. Despite the lack of evidence, the World Health Organization and other leading bodies recommend this practice. The aim of this study was to assess the utility of HH before donning nonsterile gloves prior to patient contact. A prospective, randomized, controlled trial of health care workers entering Contact Isolation rooms in intensive care units was performed. Baseline finger and palm prints were made from dominant hands onto agar plates. Health care workers were then randomized to directly don nonsterile gloves or perform HH and then don nonsterile gloves. Postgloving finger and palm prints were then made from the gloved hands. Plates were incubated and colony-forming units (CFU) of bacteria were counted. Total bacterial colony counts of gloved hands did not differ between the 2 groups (6.9 vs 8.1 CFU, respectively, P = .52). Staphylococcus aureus was identified from gloves (once in "hand hygiene prior to gloving" group, twice in "direct gloving" group). All other organisms were expected commensal flora. HH before donning nonsterile gloves does not decrease already low bacterial counts on gloves. The utility of HH before donning nonsterile gloves may be unnecessary. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  9. Heart Failure

    Science.gov (United States)

    Heart failure is a condition in which the heart can't pump enough blood to meet the body's needs. Heart failure does not mean that your heart has stopped ... and shortness of breath Common causes of heart failure are coronary artery disease, high blood pressure and ...

  10. Unwrapping a First Aid Tourniquet From Its Plastic Wrapper With and Without Gloves Worn: A Preliminary Study.

    Science.gov (United States)

    Kragh, John F; Aden, James K; Lambert, Connor D; Moore, Virgil K; Dubick, Michael A

    The purpose of this study was to gather data about unwrapping a packaged limb tourniquet from its plastic wrapper while wearing different types of gloves. Because already unwrapped tourniquets require no time to unwrap, unwrapping data may provide insights into the issue of having tourniquets unwrapped when stowed in a first aid kit of a Serviceperson at war. In a laboratory setting, 36 tests of nine glove groups were performed in which four people, gloved and ungloved, unwrapped tourniquets. Other tourniquets were environmentally exposed for 3 months. All the users successfully unwrapped each tourniquet. Mean times to unwrap by glove group were not significantly different (p = .0961). When mean values of eight experimental groups were compared with that of one control group (i.e., bare hands), results showed no significant difference (p > .07). Mean time was least for bare hands (12 seconds) and most for cold gloves layered under mittens (22 seconds). Among the 36 pairwise comparisons of difference between glove group means, after adjustment for multiple comparisons, no comparison was noted to be statistically significant (p > .052, all 36 pairs). Glove thickness ranged from 0 mm for bare hands to 2.5 mm for cold gloves layered under mittens. By glove group, the thickness-time association was moderate, as tested by linear regression (R2 = 0.6096). The tourniquets exposed to the environment had evidence of rapid photodegradation due to direct exposure to sunlight. Such exposure also destroyed the wrappers. In a preliminary study, different gloves performed similarly when wearers unwrapped a tourniquet from its wrapper. The tourniquet wrappers gave no visible protection from sunlight, and environmental exposure destroyed the wrappers. 2017.

  11. Inactivation of Escherichia coli O157:H7 and Salmonella deposited on gloves in a liquid state and subjected to drying conditions.

    Science.gov (United States)

    Erickson, Marilyn C; Liao, Jye-Yin; Webb, Cathy C; Habteselassie, Mussie Y; Cannon, Jennifer L

    2018-02-02

    Gloves are worn by workers harvesting ready-to-eat produce as a deterrent for contaminating the produce with enteric pathogens that may reside on their hands. As fields are not sterile environments, the probability for gloves to become contaminated still exists and therefore it is critical to understand the conditions that affect the survival of pathogens on gloves. Both Escherichia coli O157:H7 and Salmonella deposited on glove surfaces in a liquid state survived longer when the pathogen had been suspended in lettuce sap than when suspended in water. Despite this protection, pathogens deposited on clean single-use gloves were more likely to survive during drying than pathogens deposited on dirty gloves (a film of lettuce sap had been applied to the surface prior to pathogen application and soil had been ground into the gloves). Survival of both E. coli O157:H7 and Salmonella was biphasic with the greatest losses occurring during the first hour of drying followed by much slower losses in the ensuing hours. Pathogens grown in rich media (tryptic soy broth) versus minimal media (M9) as well as those cultured on solid agar versus liquid broth were also more likely to be resistant to desiccation when deposited onto gloves. Although survival of E. coli O157:H7 on nitrile gloves was in general greater than it was on latex gloves, the relative survival of Salmonella on the two glove types was inconsistent. Due to these inconsistencies, no one glove type is considered better than another in reducing the risk for contamination with enteric pathogens. In addition, the extended survival of what are generally referred to as stress-resistant pathogens suggests that gloves either be changed frequently during the day or washed in a disinfectant to reduce the risk of glove contamination that could otherwise contaminate product handled with the contaminated gloves. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of pressure, cold and gloves on hand skin temperature and manual performance of divers.

    Science.gov (United States)

    Zander, Joanna; Morrison, James

    2008-09-01

    Cold water immersion and protective gloves are associated with decreased manual performance. Although neoprene gloves slow hand cooling, there is little information on whether they provide sufficient protection when diving in cold water. Nine divers wearing three-fingered neoprene gloves and dry suits were immersed in water at 25 and 4 degrees C, at depths of 0.4 msw (101 kPa altitude adjusted) and 40 msw (497 kPa) in a hyperbaric chamber. Skin temperatures were measured at the fingers, hand, forearm, chest and head. Grip strength, tactile sensitivity and manual dexterity were measured at three time intervals. There was an exponential decay in finger and back of hand skin temperatures with exposure time in 4 degrees C water. Finger and back of hand skin temperatures were lower at 40 msw than at 0.4 msw (P effect of pressure or temperature on grip strength. Tactile sensitivity decreased linearly with finger skin temperature at both pressures. Manual dexterity was not affected by finger skin temperature at 0.4 msw, but decreased with fall in finger skin temperature at 40 msw. Results show that neoprene gloves do not provide adequate thermal protection in 4 degrees C water and that impairment of manual performance is dependent on the type of task, depth and exposure time.

  13. Design, fabrication, operation and modification of a glove box adaptable microwave heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G K; Gautam, V K; Shivashankaran, G; Behere, P G; Mohan, Anand; Bhargava, V K; Kamath, H S [Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur (India)

    1999-01-01

    The microwave heating techniques have enormous potential to improve the processing conditions for many radiochemical and radio-metallurgical processes. An update review on the various aspects of development and fabrication of an indigenous microwave heating system and its adaptation to the glove box has been reported in this paper. (author) 3 refs.

  14. A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation.

    Science.gov (United States)

    Delph, Michael A; Fischer, Sarah A; Gauthier, Phillip W; Luna, Carlos H Martinez; Clancy, Edward A; Fischer, Gregory S

    2013-06-01

    Stroke affects 750,000 people annually, and 80% of stroke survivors are left with weakened limbs and hands. Repetitive hand movement is often used as a rehabilitation technique in order to regain hand movement and strength. In order to facilitate this rehabilitation, a robotic glove was designed to aid in the movement and coordination of gripping exercises. This glove utilizes a cable system to open and close a patients hand. The cables are actuated by servomotors, mounted in a backpack weighing 13.2 lbs including battery power sources. The glove can be controlled in terms of finger position and grip force through switch interface, software program, or surface myoelectric (sEMG) signal. The primary control modes of the system provide: active assistance, active resistance and a preprogrammed mode. This project developed a working prototype of the rehabilitative robotic glove which actuates the fingers over a full range of motion across one degree-of-freedom, and is capable of generating a maximum 15N grip force.

  15. 76 FR 6683 - Information Related to Risks and Benefits of Powdered Gloves; Request for Comments

    Science.gov (United States)

    2011-02-07

    .... 360f). In their submissions to FDA, the petitioners highlight the adverse health effects that can...) that contain or use donning or dusting powder. FDA is interested in the potential health effects from... resulting in inflammation, granulomas, and adhesions of peritoneal tissue after surgery, as well as glove...

  16. Comparison of mechanical properties of silicone and PVC (polyvinylchloride) cosmetic gloves for articulating hand prostheses

    NARCIS (Netherlands)

    Smit, G.; Plettenburg, D.H.

    2013-01-01

    Current articulating electric and body-powered hands have a lower pinch force (15–34 N) than electric hands with stiff fingers (55–100 N). The cosmetic glove, which covers a hand prosthesis, negatively affects the mechanical efficiency of a prosthesis. The goal of this study is to mechanically

  17. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    Science.gov (United States)

    Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar

    2010-01-01

    The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.

  18. Effectiveness of interim stage filter in the exhaust system of glove boxes

    International Nuclear Information System (INIS)

    Patre, D.K.; Vangara, H.; Thanamani, S.; Gopalakrishnan, R.K.; Mhatre, Amol M.

    2018-01-01

    All operations in radiochemical laboratories are carried out in containment systems like Glove boxes and Fume hoods. For controlling air contamination two separate air cleaning systems are incorporated. Laboratory has general ventilation system and glove boxes are provided with a negative pressure system (NPS). Glove box exhaust air is passed through three stage filtration systems: in situ, interim and final before discharging to the atmosphere. In addition to the individual HEPA filters of each glove box, there is an interim HEPA filter bank introduced at the laboratory end. This was introduced to reduce a load on main exhaust filter system. Finally the exhaust air is discharged through the final stage HEPA filter located in the filter house through the Stack. The interim HEPA filter bank provides additional protection for the release of particulate activity and reduces load on the final stage filters. In the present work efforts have been put to validate the interim stage filter, which has been introduced, to limit the environmental release

  19. Using the skin protective lotion IB1 as a substitute for chemical protective gloves.

    Science.gov (United States)

    Ophir, Nimrod; Milk, Nadav; Mayer, Talia; Ravfogel, Shaul; Yavnai, Nirit; Eisenkraft, Arik; Kadar, Tamar; Kassirer, Michael; Rosman, Yossi

    2016-10-01

    We aimed to evaluate the performance of medical personnel in using the IB1 topical protective lotion on their hands and wrists together with standard disposable medical gloves, compared to standard-issued medical chemical protective gloves. This randomized cross-over study included 144 medical personnel. Primary endpoints were time-to-completion of autoinjection; success rate, number of attempts, and time-to-achieve successful endotracheal intubation; time-to-achieve satisfactory tube fixation; time-to-draw and inject the content of an ampoule; and the total time-to-perform all medical procedures. Secondary endpoints included the subjective assessment of convenience to perform these four procedures with each protective measure. Mean time was significantly shorter using IB1 compared to chemical protective gloves for tube fixation, ampoule drawing, and the total time-to-perform all procedures (58.6±22.7 seconds vs. 71.7±29.7; 31.5±21.8 vs. 38.2±19.4; 137.4±56.1 vs. 162.5±63.6, respectively; Pgloves (Pgloves significantly shorten the time-to-perform medical procedures requiring fine motor dexterities and is subjectively more convenient than chemical protective gloves. IB1 should be considered as an appropriate alternative for medical teams in a chemical event. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The use of aldehyde indicators to determine glutaraldehyde and alkaline glutaraldehyde contamination in chemical protective gloves.

    Science.gov (United States)

    Vo, Evanly; Zhuang, Zhenzhen

    2009-07-01

    The aim of this study was to assess the use of aldehyde indicator pads for detection of glutaraldehyde and alkaline glutaraldehyde permeation through chemical protective gloves under simulated in-use conditions. The quantitative analysis of glutaraldehyde permeation through a glove material was determined for Metricide, Wavicide, and 50% glutaraldehyde following a solvent-desorption process and gas chromatographic analysis. All glutaraldehyde solutions exhibited >99% adsorption (including both the glutaraldehyde oligomers of the reaction product and the excess glutaraldehyde) on the pads over the spiking range 0.05-5.0 microL. Breakthrough times for protective gloves were determined using the Thermo-Hand test method, and found to range from 76 to 150, from 170 to 230, and from 232 to 300 min for Metricide, Wavicide, and 50% glutaraldehyde, respectively. Glutaraldehyde recovery was calculated and ranged from 61 to 80% for all glutaraldehyde solutions. The mass of glutaraldehyde in these solutions at the time of breakthrough detection ranged from 17 to 18, from 18 to 19, and from 19 to 20 microg/cm(2) for Wavicide, 50% glutaraldehyde solution, and Metricide, respectively. Aldehyde indicator pads and the Thermo-Hand test method together should find utility in detecting, collecting, and quantitatively analyzing glutaraldehyde permeation samples through chemical protective gloves under simulated in-use conditions.

  1. Re-use and life span of gloves | van Palenstein Helderman ...

    African Journals Online (AJOL)

    Re-use and life span of gloves. WH van Palenstein Helderman. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about ...

  2. Design of a cosmetic glove stiffness compensation mechanism for toddler-sized hand prostheses

    NARCIS (Netherlands)

    Bos, R.A.; Plettenburg, D.H.

    2017-01-01

    The addition of a cosmetic glove to an upper limb prosthesis has a distinct effect on the cosmetic value, but its viscoelastic behaviour adds a substantial amount of stiffness and hysteresis to the system. As a result, the overall usability of the prosthesis is degraded. A novel negative

  3. Skin protection in nursing work : promoting the use of gloves and hand alcohol

    NARCIS (Netherlands)

    Jungbauer, FHW; van der Harst, J.J.; Groothoff, J.W.; Coenraads, PJ

    Nursing has been identified as a wet-work occupation, with a high prevalence of occupational irritant contact dermatitis. Reduction of exposure to skin irritants contributes to the prevention of occupational skin disease in nurses. The role of the use of soap and water, hand alcohol and gloves in

  4. Single-incision laparoscopic appendectomy using homemade glove port at low cost

    Directory of Open Access Journals (Sweden)

    Sang Myoung Lee

    2016-01-01

    Full Text Available Purpose: The aim of this study was to report homemade glove port technique for single-incision laparoscopic appendectomy (SILA. Materials and Methods: Our homemade glove port was composed of a size 6 latex sterile surgical glove, a sterilized plastic bangle, and three pieces of silicon tube (5 cm in length that were used as the suction tube. Clinical data were retrospectively collected from those patients who underwent SILA at Bucheon St. Mary's Hospital, Bucheon, Gyeonggi-do, South Korea between February 2014 and June 2014, including patient demographics, and operative and postoperative outcomes. To compare the outcomes, a retrospective review was performed for those patients who underwent conventional laparoscopic appendectomy (CLA between October 2013 and January 2014. Both SILA and CLA were performed by the same surgical team. Results: The SILA and CLA groups included 37 and 57 patients, respectively. The mean age, weight, body mass index (BMI, operation time, and pathologic diagnosis of gangrenous appendicitis were not significantly different between the two groups. However, the mean hospital stay in the CLA group was significantly (P = 0.018 longer than that in the SILA group (4.2 days vs 3.5 days. There was no conversion to open surgery in both the groups. Of the cases who underwent SILA, 10 (27.0% needed insertion of additional port and drain. There was one (3.2% complication of umbilical surgical site infection. Conclusion: In this study, SILA, with homemade glove port, was technically feasible and safe at low cost.

  5. Prevalence of manufacturing defects in latex examination gloves used in selected dental practices in central Saudi Arabia.

    Science.gov (United States)

    Al-Swuailem, Abdullah S

    2014-07-01

    To assess the defect rates in latex examination gloves used in selected dental practices in Riyadh, Saudi Arabia. In this cross-sectional study, a total of 796 latex examination gloves were collected from 5 governmental hospitals and 5 private dental practices between April 2012 and May 2012. The gloves were assessed for presence of defects visually (VT) and using water inflation test (WIT). One and 2 sample t-tests were used to assess significant differences in defect rates among each latex brand, and between governmental hospitals and private dental practices. Defects in latex gloves were more likely to be identified using WIT compared with VT (20.2% versus 4.3%, p=0.000). Using WIT, examined latex gloves had a defect rate approximately 8 times the acceptable quality level of 2.5% (20.2%, p=0.000). Using WIT, gloves used in private dental practices had significantly higher defect rates compared with governmental dental clinics (25.6% versus 14.6%, p=0.006). Most latex examination gloves used in the sampled governmental dental clinics and private dental practices in Riyadh had significantly higher preexisting defect rates than acceptable standard levels.

  6. Preliminary Study on Effect of Chemical Composition Alteration on Elastic Recovery and Stress Recovery of Nitrile Gloves

    Directory of Open Access Journals (Sweden)

    Tan Kai Yang

    2018-01-01

    Full Text Available Nitrile gloves are widely used in the medical and automobile field due to its superiority in hypo-allergic component and chemical resistance over natural latex gloves. However, poor elastic recovery of nitrile glove to compressive force also creates an aesthetic issue for customers with high levels of wrinkling after removing from glove box. This paper demonstrates the preliminary study on the varies chemical composition such as crosslinking agents, sulphur and zinc oxide, the accelerator agent added during curing process, and the rubber filler Titanium Dioxide, on the elastic recovery and stress relaxation in nitrile gloves manufacturing. These chemical were studied at different concentration level comparing the high and low level versus the normal production range. Due to the inconsistency in the analysis technique on the surface imaging, the elastic recovery result was unable to be quantified and was not conclusive at this point. The cross linking agents, sulphur and zinc oxide, and the accelerator agent, played a significant role in the mechanical strength of the gloves. Increment of these chemicals result in higher tensile strength, but a reduction in the elasticity of the materials in which causes a lesser elongation at break percentage for the gloves. Both cross-linkers demonstrate different behaviour where higher sulphur content, provide higher stress relaxation (SR% yet zinc oxide shows otherwise.

  7. Monitoring Human Performance During Suited Operations: A Technology Feasibility Study Using EMU Gloves

    Science.gov (United States)

    Bekdash, Omar; Norcross, Jason; McFarland, Shane

    2015-01-01

    Mobility tracking of human subjects while conducting suited operations still remains focused on the external movement of the suit and little is known about the human movement within it. For this study, accelerometers and bend sensitive resistors were integrated into a custom carrier glove to quantify range of motion and dexterity from within the pressurized glove environment as a first stage feasibility study of sensor hardware, integration, and reporting capabilities. Sensors were also placed on the exterior of the pressurized glove to determine if it was possible to compare a glove joint angle to the anatomical joint angle of the subject during tasks. Quantifying human movement within the suit was feasible, with accelerometers clearly detecting movements in the wrist and reporting expected joint angles at maximum flexion or extension postures with repeatability of plus or minus 5 degrees between trials. Bend sensors placed on the proximal interphalangeal and distal interphalangeal joints performed less well. It was not possible to accurately determine the actual joint angle using these bend sensors, but these sensors could be used to determine when the joint was flexed to its maximum and provide a general range of mobility needed to complete a task. Further work includes additional testing with accelerometers and the possible inclusion of hardware such as magnetometers or gyroscopes to more precisely locate the joint in 3D space. We hope to eventually expand beyond the hand and glove and develop a more comprehensive suit sensor suite to characterize motion across more joints (knee, elbow, shoulder, etc.) and fully monitor the human body operating within the suit environment.

  8. Contraceptive failure

    DEFF Research Database (Denmark)

    Rasch, Vibeke

    2002-01-01

    Most studies focusing on contraceptive failure in relation to pregnancy have focused on contraceptive failure among women having induced abortions, thereby neglecting those women who, despite contraceptive failure, accept the pregnancy and intend to carry the fetus to term. To get a more complete...... picture of the problem of contraceptive failure, this study focuses on contraceptive failure among women with diverse pregnancy outcomes. In all, 3520 pregnant women attending Odense University Hospital were included: 373 had induced abortions, 435 had spontaneous abortions, 97 had ectopic pregnancies......, and 2614 received antenatal care. The variables studied comprise age, partner relationship, number of births, occupational and economical situation, and contraceptive use.Contraceptive failure, defined as contraceptive use (condom, diaphragm, IUD, oral contraception, or another modern method...

  9. Perfuração de Luvas durante Cirurgias Ginecológicas Glove Perforation during Gynecologic Surgeries

    Directory of Open Access Journals (Sweden)

    Eddie Fernando Candido Murta

    2000-05-01

    Full Text Available Objetivo: analisar a incidência de perfuração de luvas cirúrgicas durante atos operatórios ginecológicos. Métodos: estudo prospectivo de 454 luvas usadas em 65 procedimentos utilizando-se o método de pressão de água. Resultados: do total de 454 luvas examinadas, foram verificadas perfurações em 54 (11,9%, sendo estatisticamente significativo o maior número de perfurações em comparação ao grupo controle, uma (1,7% em 60 analisadas (pPurpose: to analyze the frequency of glove perforation during gynecologic surgeries. Methods: a prospective study of 454 gloves used in 65 surgeries by the water pressure method. Results: of a total of 454 gloves, 54 (11.9% had perforations. Comparison with the control group showed p<0.05 (chi² test, 1 (1.7% perforation in 60 gloves tested. Of the total of gloves used in 65 surgeries, 29 (44.6% had perforations, 44 (81% had one perforation and 10 (19% had more than one perforation. The two most common sites of perforations were the index finger, 20 (29.5% and the thumb, 14 (25.9%. Perforation was predominant in the left hand (72.1%. The surgeons were the members of the team with the greatest number of glove perforations. Total hysterectomy was the most frequent surgery in which glove perforations occurred (50% of the cases. Conclusion: the glove perforations occurred with relatively high frequency during gynecologic surgeries. The index finger of the left hand proved to be the most affected region. Among the members of the team, the highest percentage of glove perforations occurred in those of the surgeons. Total hysterectomy had the highest perforation rate.

  10. Heart Failure

    OpenAIRE

    McMurray, John; Ponikowski, Piotr

    2011-01-01

    Heart failure occurs in 3% to 4% of adults aged over 65 years, usually as a consequence of coronary artery disease or hypertension, and causes breathlessness, effort intolerance, fluid retention, and increased mortality. The 5-year mortality in people with systolic heart failure ranges from 25% to 75%, often owing to sudden death following ventricular arrhythmia. Risks of cardiovascular events are increased in people with left ventricular systolic dysfunction (LVSD) or heart failure.

  11. CSER 90-006, addendum 1: Criticality safety control for source term reduction project in the scrubber glovebox of Building 232-Z. Revision 1

    International Nuclear Information System (INIS)

    Hess, A.L.

    1995-01-01

    This Criticality Safety Evaluation Report addendum extends the coverage of the original CSER (90-006) about dismantling the ductwork in 232-Z to include cleanout of the Scrubber Glovebox, with an estimated residual Pu holdup of less than 200 grams. For conservatism and containment considerations, the provisions about waste packaging and water exclusion from the original work are retained, even though it is not credible for the Scrubber Pu content to be made critical with water added (NDA gives about 1/3 a minimum critical mass)

  12. Frequent Multidrug-Resistant Acinetobacter baumannii Contamination of Gloves, Gowns, and Hands of Healthcare Workers

    Science.gov (United States)

    Morgan, Daniel J.; Liang, Stephen Y.; Smith, Catherine L.; Johnson, J. Kristie; Harris, Anthony D.; Furuno, Jon P.; Thom, Kerri A.; Snyder, Graham M.; Day, Hannah R.; Perencevich, Eli N.

    2010-01-01

    BACKGROUND Multidrug-resistant (MDR) gram-negative bacilli are important nosocomial pathogens. OBJECTIVE To determine the incidence of transmission of MDR Acinetobacter baumannii and Pseudomonas aeruginosa from patients to healthcare workers (HCWs) during routine patient care. DESIGN Prospective cohort study. SETTING Medical and surgical intensive care units. METHODS We observed HCWs who entered the rooms of patients colonized with MDR A. baumannii or colonized with both MDR A. baumannii and MDR P. aeruginosa. We examined their hands before room entry, their disposable gloves and/or gowns upon completion of patient care, and their hands after removal of gloves and/or gowns and before hand hygiene. RESULTS Sixty-five interactions occurred with patients colonized with MDR A. baumannii and 134 with patients colonized with both MDR A. baumannii and MDR P. aeruginosa. Of 199 interactions between HCWs and patients colonized with MDR A. baumannii, 77 (38.7% [95% confidence interval {CI}, 31.9%–45.5%]) resulted in HCW contamination of gloves and/or gowns, and 9 (4.5% [95% CI, 1.6%–7.4%]) resulted in contamination of HCW hands after glove removal before hand hygiene. Of 134 interactions with patients colonized with MDR P. aeruginosa, 11 (8.2% [95% CI, 3.6%–12.9%]) resulted in HCW contamination of gloves and/or gowns, and 1 resulted in HCW contamination of hands. Independent risk factors for contamination with MDR A. baumannii were manipulation of wound dressing (adjusted odds ratio [aOR], 25.9 [95% CI, 3.1–208.8]), manipulation of artificial airway (aOR, 2.1 [95% CI, 1.1–4.0]), time in room longer than 5 minutes (aOR, 4.3 [95% CI, 2.0–9.1]), being a physician or nurse practitioner (aOR, 7.4 [95% CI, 1.6–35.2]), and being a nurse (aOR, 2.3 [95% CI, 1.1–4.8]). CONCLUSIONS Gowns, gloves, and unwashed hands of HCWs were frequently contaminated with MDR A. baumannii. MDR A. baumannii appears to be more easily transmitted than MDR P. aeruginosa and perhaps more

  13. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 8. Gloves as barriers to prevent contamination of food by workers.

    Science.gov (United States)

    Todd, Ewen C D; Michaels, Barry S; Greig, Judy D; Smith, Debra; Bartleson, Charles A

    2010-09-01

    The role played by food workers and other individuals in the contamination of food has been identified as an important contributing factor leading to foodborne outbreaks. To prevent direct bare hand contact with food and food surfaces, many jurisdictions have made glove use compulsory for food production and preparation. When properly used, gloves can substantially reduce opportunities for food contamination. However, gloves have limitations and may become a source of contamination if they are punctured or improperly used. Experiments conducted in clinical and dental settings have revealed pinhole leaks in gloves. Although such loss of glove integrity can lead to contamination of foods and surfaces, in the food industry improper use of gloves is more likely than leakage to lead to food contamination and outbreaks. Wearing jewelry (e.g., rings) and artificial nails is discouraged because these items can puncture gloves and allow accumulation of microbial populations under them. Occlusion of the skin during long-term glove use in food operations creates the warm, moist conditions necessary for microbial proliferation and can increase pathogen transfer onto foods through leaks or exposed skin or during glove removal. The most important issue is that glove use can create a false sense of security, resulting in more high-risk behaviors that can lead to cross-contamination when employees are not adequately trained.

  14. Sensing Performance of a Vibrotactile Glove for Deaf-Blind People

    Directory of Open Access Journals (Sweden)

    Albano Carrera

    2017-03-01

    Full Text Available This paper presents a glove designed to assess the viability of communication between a deaf-blind user and his/her interlocutor through a vibrotactile device. This glove is part of the TactileCom system, where communication is bidirectional through a wireless link, so no contact is required between the interlocutors. Responsiveness is higher than with letter by letter wording. The learning of a small set of concepts is simpler and the amount learned can be increased at the user’s convenience. The number of stimulated fingers, the keying frequencies and finger response were studied. Message identification rate was 97% for deaf-blind individuals and 81% for control subjects. Identification by single-finger stimulation was better than by multiple-finger stimulation. The interface proved suitable for communication with deaf-blind individuals and can also be used in other conditions, such as multilingual or noisy environments.

  15. F-16XL Ship #2 in hangar for Laminar Flow Glove mounting

    Science.gov (United States)

    1995-01-01

    NASA's two-seat F-16XL research aircraft is shown in the modification hangar at the Dryden Flight Research Center, Edwards, California, during installation of a titanium 'glove' on the upper surface of its modified left wing. The aircraft subsequently concluded a 13 month-long, 45-flight research program which investigated drawing off a small portion of the boundary-layer air in order to provide laminar -- or smooth -- flow over a major portion of a wing flying at supersonic speeds. A turbo-compressor in the aircraft's fuselage provided suction to draw air through more than 10 million tiny laser-drilled holes in the glove via a manifold system employing 20 valves. Data obtained during the program could assist designers of future high-speed aircraft in developing a more efficient civil transport.

  16. A knitted glove sensing system with compression strain for finger movements

    Science.gov (United States)

    Ryu, Hochung; Park, Sangki; Park, Jong-Jin; Bae, Jihyun

    2018-05-01

    Development of a fabric structure strain sensor has received considerable attention due to its broad application in healthcare monitoring and human–machine interfaces. In the knitted textile structure, it is critical to understand the surface structural deformation from a different body motion, inducing the electrical signal characteristics. Here, we report the electromechanical properties of the knitted glove sensing system focusing on the compressive strain behavior. Compared with the electrical response of the tensile strain, the compressive strain shows much higher sensitivity, stability, and linearity via different finger motions. Additionally, the sensor exhibits constant electrical properties after repeated cyclic tests and washing processes. The proposed knitted glove sensing system can be readily extended to a scalable and cost-effective production due to the use of a commercialized manufacturing system.

  17. Smart Kote Glove for Assessment of Scoring Parameters of Dan and Kyu Grade Kendokas

    Directory of Open Access Journals (Sweden)

    Kwangyul Jeong

    2018-02-01

    Full Text Available Kendo is one of the most ancient swordsmanship arts in Japan. The aims of this study are to develop and test an innovative smart Kote glove for assisting the Kendoka to distinguish scoring from non-scoring Kote (wrist strikes. An in-house developed pressure sensing platform was utilized to develop the smart Kote glove. Ten kendo practitioners, comprising of five Dan (black belts equivalent and five Kyu (lower level/ungraded of both genders, participated in this study. The results showed significant differences between Dan and Kyu participants in both accuracy and sharpness of the strikes. Dan grade participants showed higher percentage of hitting the target comparing to Kyu grade (92% and 75% respectively. The percentage of scoring was also significantly higher in Dan (78% than in Kyu (37% grades. The average impact force of scoring by Dan grade (1159 ± 379 N was higher than by Kyu grade (852 ± 429 N.

  18. Development and performance assessment of electrically heating gloves with smart temperature control function.

    Science.gov (United States)

    Ma, Nini; Lu, Yehu; Xu, Fanfei; Dai, Hongqin

    2018-03-27

    A pair of lightweight electrically heating gloves (EHG) with smart temperature control function was developed. To evaluate thermoregulation properties of EHG, human trials were conducted in a climate chamber (2.5 °C, 60% RH). The changes in skin temperature of all fingers and opisthenar and the subjective thermal sensation were recorded in 60 min. The effects of two air velocities (i.e., 0.17 m/s and 0.50 m/s) on the cold protective performance of EHG in scenarios of heating and control were also investigated. For heating scenarios, skin temperature and thermal sensation at all fingers and opisthenar were found significantly higher than those in control conditions. Moreover, the air velocity at 0.50 m/s greatly reduced cold protective performance of the gloves. The research findings can be applied to improve thermal comfort and extend working time for persons in cold environments.

  19. Influence on grip of knife handle surface characteristics and wearing protective gloves.

    Science.gov (United States)

    Claudon, Laurent

    2006-11-01

    Ten subjects were asked to apply maximum torques on knife handles with either their bare hand or their hand wearing a Kevlar fibre protective glove. Four knife handles (2 roughnesses, 2 hardnesses) were tested. Surface electromyograms of 6 upper limb and shoulder muscles were recorded and subject opinions on both knife handle hardness and friction in the hand were also assessed. The results revealed the significant influence of wearing gloves (pgloves greatly increased the torque independently of the other two parameters. Under the bare hand condition, a 90 degrees ShA slightly rough handle provided the greatest torque. Subject opinion agreed with the observed effects on recorded torque values except for the hardness factor, for which a preference for the 70 degrees ShA value over the 90 degrees ShA value emerged.

  20. Hand hygiene compliance before and after wearing gloves among intensive care unit nurses in Iran.

    Science.gov (United States)

    Ghorbani, Azam; Sadeghi, Leila; Shahrokhi, Akram; Mohammadpour, Asghar; Addo, Mary; Khodadadi, Esmail

    2016-11-01

    Nosocomial infections are considered a major risk factor in hospital wards, and hand hygiene is the first step in their control. An observational study was conducted in 2015 with 200 nurses working in intensive care units in teaching hospitals of Tabriz, Iran. Data were collected by using the Hand Hygiene Observation Tool questionnaire. The researchers monitored nurses' opportunities for hand hygiene during the 8-week period from February 3-April 4, 2015. A total of 1,067 opportunities occurred for hand hygiene before and after wearing gloves. The results show that hand hygiene compliance before wearing gloves is poor among nurses who work in intensive care units (14.8%). Therefore it is necessary to conduct effective interventions through continuing education programs to improve hand hygiene compliance. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.