WorldWideScience

Sample records for global yeast quantitative

  1. Global analysis of the yeast osmotic stress response by quantitative proteomics

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kelstrup, C.D.; Stoehr, G.

    2009-01-01

    a comprehensive, quantitative, and time-resolved analysis using high-resolution mass spectrometry of phospho-proteome and proteome changes in response to osmotic stress in yeast. We identified 5534 unique phosphopeptide variants and 3383 yeast proteins. More than 15% of the detected phosphorylation site status...... changed more than two-fold within 5 minutes of treatment. Many of the corresponding phosphoproteins are involved in the early response to environmental stress. Surprisingly, we find that 158 regulated phosphorylation sites are potential substrates of basophilic kinases as opposed to the classical proline......-directed MAP kinase network implicated in stress response mechanisms such as p38 and HOG pathways. Proteome changes reveal an increase in abundance of more than one hundred proteins after 20 min of salt stress. Many of these are involved in the cellular response to increased osmolarity, which include proteins...

  2. Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression Saccharomyces cerevisiae strains: The comparison of two quantitative methods

    DEFF Research Database (Denmark)

    Usaite, Renata; Wohlschlegel, James; Venable, John D.

    2008-01-01

    The quantitative proteomic analysis of complex protein mixtures is emerging as a technically challenging but viable systems-level approach for studying cellular function. This study presents a large-scale comparative analysis of protein abundances from yeast protein lysates derived from both wild......-type yeast and yeast strains lacking key components of the Snf1 kinase complex. Four different strains were grown under well-controlled chemostat conditions. Multidimensional protein identification technology followed by quantitation using either spectral counting or stable isotope labeling approaches...... labeling strategy. The stable isotope labeling based quantitative approach was found to be highly reproducible among biological replicates when complex protein mixtures containing small expression changes were analyzed. Where poor correlation between stable isotope labeling and spectral counting was found...

  3. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry

    DEFF Research Database (Denmark)

    Ejsing, Christer S.; Sampaio, Julio L; Surendranath, Vineeth

    2009-01-01

    95% coverage of the yeast lipidome achieved with 125-fold improvement in sensitivity compared with previous approaches. Comparative lipidomics demonstrated that growth temperature and defects in lipid biosynthesis induce ripple effects throughout the molecular composition of the yeast lipidome....... This work serves as a resource for molecular characterization of eukaryotic lipidomes, and establishes shotgun lipidomics as a powerful platform for complementing biochemical studies and other systems-level approaches....

  4. A quantitative characterization of the yeast heterotrimeric G protein cycle

    Science.gov (United States)

    Yi, Tau-Mu; Kitano, Hiroaki; Simon, Melvin I.

    2003-01-01

    The yeast mating response is one of the best understood heterotrimeric G protein signaling pathways. Yet, most descriptions of this system have been qualitative. We have quantitatively characterized the heterotrimeric G protein cycle in yeast based on direct in vivo measurements. We used fluorescence resonance energy transfer to monitor the association state of cyan fluorescent protein (CFP)-Gα and Gβγ-yellow fluorescent protein (YFP), and we found that receptor-mediated G protein activation produced a loss of fluorescence resonance energy transfer. Quantitative time course and dose–response data were obtained for both wild-type and mutant cells possessing an altered pheromone response. These results paint a quantitative portrait of how regulators such as Sst2p and the C-terminal tail of α-factor receptor modulate the kinetics and sensitivity of G protein signaling. We have explored critical features of the dynamics including the rapid rise and subsequent decline of active G proteins during the early response, and the relationship between the G protein activation dose–response curve and the downstream dose–response curves for cell-cycle arrest and transcriptional induction. Fitting the data to a mathematical model produced estimates of the in vivo rates of heterotrimeric G protein activation and deactivation in yeast. PMID:12960402

  5. Optimized protein extraction for quantitative proteomics of yeasts.

    Directory of Open Access Journals (Sweden)

    Tobias von der Haar

    2007-10-01

    Full Text Available The absolute quantification of intracellular protein levels is technically demanding, but has recently become more prominent because novel approaches like systems biology and metabolic control analysis require knowledge of these parameters. Current protocols for the extraction of proteins from yeast cells are likely to introduce artifacts into quantification procedures because of incomplete or selective extraction.We have developed a novel procedure for protein extraction from S. cerevisiae based on chemical lysis and simultaneous solubilization in SDS and urea, which can extract the great majority of proteins to apparent completeness. The procedure can be used for different Saccharomyces yeast species and varying growth conditions, is suitable for high-throughput extraction in a 96-well format, and the resulting extracts can easily be post-processed for use in non-SDS compatible procedures like 2D gel electrophoresis.An improved method for quantitative protein extraction has been developed that removes some of the sources of artefacts in quantitative proteomics experiments, while at the same time allowing novel types of applications.

  6. Analysis of ribosomal RNA stability in dead cells of wine yeast by quantitative PCR.

    Science.gov (United States)

    Sunyer-Figueres, Merce; Wang, Chunxiao; Mas, Albert

    2018-04-02

    During wine production, some yeasts enter a Viable But Not Culturable (VBNC) state, which may influence the quality and stability of the final wine through remnant metabolic activity or by resuscitation. Culture-independent techniques are used for obtaining an accurate estimation of the number of live cells, and quantitative PCR could be the most accurate technique. As a marker of cell viability, rRNA was evaluated by analyzing its stability in dead cells. The species-specific stability of rRNA was tested in Saccharomyces cerevisiae, as well as in three species of non-Saccharomyces yeast (Hanseniaspora uvarum, Torulaspora delbrueckii and Starmerella bacillaris). High temperature and antimicrobial dimethyl dicarbonate (DMDC) treatments were efficient in lysing the yeast cells. rRNA gene and rRNA (as cDNA) were analyzed over 48 h after cell lysis by quantitative PCR. The results confirmed the stability of rRNA for 48 h after the cell lysis treatments. To sum up, rRNA may not be a good marker of cell viability in the wine yeasts that were tested. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Yeast expression proteomics by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Walther, Tobias C; Olsen, Jesper Velgaard; Mann, Matthias

    2010-01-01

    -translational controls contribute majorly to regulation of protein abundance, for example in heat shock stress response. The development of new sample preparation methods, high-resolution mass spectrometry and novel bioinfomatic tools close this gap and allow the global quantitation of the yeast proteome under different...

  8. Dominant Epistasis Between Two Quantitative Trait Loci Governing Sporulation Efficiency in Yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Bergman, Juraj; Mitrikeski, Petar T.

    2015-01-01

    Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371

  9. Prediction of quantitative phenotypes based on genetic networks: a case study in yeast sporulation

    Directory of Open Access Journals (Sweden)

    Shen Li

    2010-09-01

    Full Text Available Abstract Background An exciting application of genetic network is to predict phenotypic consequences for environmental cues or genetic perturbations. However, de novo prediction for quantitative phenotypes based on network topology is always a challenging task. Results Using yeast sporulation as a model system, we have assembled a genetic network from literature and exploited Boolean network to predict sporulation efficiency change upon deleting individual genes. We observe that predictions based on the curated network correlate well with the experimentally measured values. In addition, computational analysis reveals the robustness and hysteresis of the yeast sporulation network and uncovers several patterns of sporulation efficiency change caused by double gene deletion. These discoveries may guide future investigation of underlying mechanisms. We have also shown that a hybridized genetic network reconstructed from both temporal microarray data and literature is able to achieve a satisfactory prediction accuracy of the same quantitative phenotypes. Conclusions This case study illustrates the value of predicting quantitative phenotypes based on genetic network and provides a generic approach.

  10. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator

    Science.gov (United States)

    Usaite, Renata; Jewett, Michael C; Oliveira, Ana Paula; Yates, John R; Olsson, Lisbeth; Nielsen, Jens

    2009-01-01

    Highly conserved among eukaryotic cells, the AMP-activated kinase (AMPK) is a central regulator of carbon metabolism. To map the complete network of interactions around AMPK in yeast (Snf1) and to evaluate the role of its regulatory subunit Snf4, we measured global mRNA, protein and metabolite levels in wild type, Δsnf1, Δsnf4, and Δsnf1Δsnf4 knockout strains. Using four newly developed computational tools, including novel DOGMA sub-network analysis, we showed the benefits of three-level ome-data integration to uncover the global Snf1 kinase role in yeast. We for the first time identified Snf1's global regulation on gene and protein expression levels, and showed that yeast Snf1 has a far more extensive function in controlling energy metabolism than reported earlier. Additionally, we identified complementary roles of Snf1 and Snf4. Similar to the function of AMPK in humans, our findings showed that Snf1 is a low-energy checkpoint and that yeast can be used more extensively as a model system for studying the molecular mechanisms underlying the global regulation of AMPK in mammals, failure of which leads to metabolic diseases. PMID:19888214

  11. DNA barcoding analysis of more than 9 000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation

    NARCIS (Netherlands)

    Vu, D; Groenewald, M; Szöke, S; Cardinali, G; Eberhardt, U; Stielow, B; de Vries, M; Verkleij, G J M; Crous, P W; Boekhout, T; Robert, V

    DNA barcoding is a global initiative for species identification through sequencing of short DNA sequence markers. Sequences of two loci, ITS and LSU, were generated as barcode data for all (ca. 9k) yeast strains included in the CBS collection, originally assigned to ca. 2 000 species. Taxonomic

  12. Quantitative Estimation of Yeast on Maxillary Denture in Patients with Denture Stomatitis and the Effect of Chlorhexidine Gluconate in Reduction of Yeast

    Directory of Open Access Journals (Sweden)

    Jaykumar R Gade

    2011-01-01

    Full Text Available Denture stomatitis is a condition associated with wearing of a denture. The predisposing factor leading to denture stomatitis could be poor oral hygiene, ill-fitting denture and relief areas. Around 30 patients with denture stomatitis were advised to rinse with chlorhexidine gluconate mouthwash for 14 days and were directed to immerse the upper denture in the chlorhexidine solution for 8 hours. The samples were collected by scraping maxillary denture in saline at three intervals, prior to, at the end of 24 hours and after 14 days of treatment, then were inoculated and quantitative estimation of the yeast growth on Sabouraud′s dextrose agar plate was done. It was observed that after a period of 14 days, there was a reduction in the growth of yeast and also improvement in the clinical picture of the oral mucosa

  13. The global transcriptional response of fission yeast to hydrogen sulfide.

    Directory of Open Access Journals (Sweden)

    Xu Jia

    Full Text Available BACKGROUND: Hydrogen sulfide (H(2S is a newly identified member of the small family of gasotransmitters that are endogenous gaseous signaling molecules that have a fundamental role in human biology and disease. Although it is a relatively recent discovery and the mechanism of H(2S activity is not completely understood, it is known to be involved in a number of cellular processes; H(2S can affect ion channels, transcription factors and protein kinases in mammals. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we have used fission yeast as a model organism to study the global gene expression profile in response to H(2S by microarray. We initially measured the genome-wide transcriptional response of fission yeast to H(2S. Through the functional classification of genes whose expression profile changed in response to H(2S, we found that H(2S mainly influences genes that encode putative or known stress proteins, membrane transporters, cell cycle/meiotic proteins, transcription factors and respiration protein in the mitochondrion. Our analysis showed that there was a significant overlap between the genes affected by H(2S and the stress response. We identified that the target genes of the MAPK pathway respond to H(2S; we also identified that a number of transporters respond to H(2S, these include sugar/carbohydrate transporters, ion transporters, and amino acid transporters. We found many mitochondrial genes to be down regulated upon H(2S treatment and that H(2S can reduce mitochondrial oxygen consumption. CONCLUSION/SIGNIFICANCE: This study identifies potential molecular targets of the signaling molecule H(2S in fission yeast and provides clues about the identity of homologues human proteins and will further the understanding of the cellular role of H(2S in human diseases.

  14. Yeast ecology of Kombucha fermentation.

    Science.gov (United States)

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  15. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator

    DEFF Research Database (Denmark)

    Usaite, Renata; Jewett, Michael Christopher; Soberano de Oliveira, Ana Paula

    2009-01-01

    Highly conserved among eukaryotic cells, the AMP-activated kinase (AMPK) is a central regulator of carbon metabolism. To map the complete network of interactions around AMPK in yeast (Snf1) and to evaluate the role of its regulatory subunit Snf4, we measured global mRNA, protein and metabolite...

  16. Quantitative monitoring of yeast fermentation using Raman spectroscopy

    DEFF Research Database (Denmark)

    Iversen, Jens A.; Berg, Rolf W.; Ahring, Birgitte K.

    2014-01-01

    of a Saccharomyces cerevisiae fermentation process using a Raman spectroscopy instrument equipped with a robust sapphire ball probe.A method was developed to correct the Raman signal for the attenuation caused by light scattering cell particulate, hence enabling quantification of reaction components and possibly...... measurement of yeast cell concentrations. Extinction of Raman intensities to more than 50 % during fermentation was normalized with approximated extinction expressions using Raman signal of water around 1,627 cm−1 as internal standard to correct for the effect of scattering. Complicated standard multi...... was followed by linear regression. In situ quantification measurements of the fermentation resulted in root mean square errors of prediction (RMSEP) of 2.357, 1.611, and 0.633 g/L for glucose, ethanol, and yeast concentrations, respectively....

  17. Qualitative and quantitative multiplexed proteomic analysis of complex yeast protein fractions that modulate the assembly of the yeast prion Sup35p.

    Directory of Open Access Journals (Sweden)

    Virginie Redeker

    Full Text Available BACKGROUND: The aggregation of the baker's yeast prion Sup35p is at the origin of the transmissible [PSI(+] trait. We and others have shown that molecular chaperones modulate Sup35p aggregation. However, other protein classes might be involved in [PSI(+] formation. RESULTS: We designed a functional proteomic study that combines two techniques to identify modulators of Sup35p aggregation and describe the changes associated to [PSI(+] formation. The first allows measuring the effect of fractionated Saccharomyces cerevisiae cytosolic extracts from [PSI(+] and [psi(-] yeast cells on Sup35p assembly. The second is a multiplex qualitative and quantitative comparison of protein composition of active and inactive fractions using a gel-free and label-free LC-MS approach. We identify changes in proteins involved in translation, folding, degradation, oxido-reduction and metabolic processes. CONCLUSION: Our functional proteomic study provides the first inventory list of over 300 proteins that directly or indirectly affect Sup35p aggregation and [PSI(+] formation. Our results highlight the complexity of the cellular changes accompanying [PSI(+] formation and pave the way for in vitro studies aimed to document the effect of individual and/or combinations of proteins identified here, susceptible of affecting Sup35p assembly.

  18. TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network.

    Science.gov (United States)

    Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2017-05-05

    Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. Copyright © 2017 Usaj et al.

  19. Analytical model for macromolecular partitioning during yeast cell division

    International Nuclear Information System (INIS)

    Kinkhabwala, Ali; Khmelinskii, Anton; Knop, Michael

    2014-01-01

    Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning

  20. Quantitative 3D imaging of yeast by hard X-ray tomography.

    Science.gov (United States)

    Zheng, Ting; Li, Wenjie; Guan, Yong; Song, Xiangxia; Xiong, Ying; Liu, Gang; Tian, Yangchao

    2012-05-01

    Full-field hard X-ray tomography could be used to obtain three-dimensional (3D) nanoscale structures of biological samples. The image of the fission yeast, Schizosaccharomyces pombe, was clearly visualized based on Zernike phase contrast imaging technique and heavy metal staining method at a spatial resolution better than 50 nm at the energy of 8 keV. The distributions and shapes of the organelles during the cell cycle were clearly visualized and two types of organelle were distinguished. The results for cells during various phases were compared and the ratios of organelle volume to cell volume can be analyzed quantitatively. It showed that the ratios remained constant between growth and division phase and increased strongly in stationary phase, following the shape and size of two types of organelles changes. Our results demonstrated that hard X-ray microscopy was a complementary method for imaging and revealing structural information for biological samples. Copyright © 2011 Wiley Periodicals, Inc.

  1. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii.

    Science.gov (United States)

    Datta, Suprama; Timson, David J; Annapure, Uday S

    2017-07-01

    Saccharomyces cerevisiae var. boulardii is the only yeast species with probiotic properties. It is considered to have therapeutic significance in gastrointestinal disorders. In the present study, a comparative physiological study between this yeast and Saccharomyces cerevisiae (BY4742) was performed by evaluating two prominent traits of probiotic species, responses to different stress conditions and antioxidant capacity. A global metabolite profile was also developed aiming to identify which therapeutically important secondary metabolites are produced. Saccharomyces cerevisiae var. boulardii showed no significant difference in growth patterns but greater stress tolerance compared to S. cerevisiae. It also demonstrated a six- to 10-fold greater antioxidant potential (judged by the 1,1-diphenyl-2-picrylhydrazyl assay), with a 70-fold higher total phenolic content and a 20-fold higher total flavonoid content in the extracellular fraction. These features were clearly differentiated by principal component analysis and further indicated by metabolite profiling. The extracellular fraction of the S. cerevisiae var. boulardii cultures was found to be rich in polyphenolic metabolites: vanillic acid, cinnamic acid, phenyl ethyl alcohol (rose oil), erythromycin, amphetamine and vitamin B 6 , which results in the antioxidant capacity of this strain. The present study presents a new perspective for differentiating the two genetically related strains of yeast, S. cerevisiae and S. cerevisiae var. boulardii by assessing their metabolome fingerprints. In addition to the correlation of the phenotypic properties with the secretory metabolites of these two yeasts, the present study also emphasizes the potential to exploit S. cerevisiae var. boulardii in the industrial production of these metabolites. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. A Predictive Model for Yeast Cell Polarization in Pheromone Gradients.

    Science.gov (United States)

    Muller, Nicolas; Piel, Matthieu; Calvez, Vincent; Voituriez, Raphaël; Gonçalves-Sá, Joana; Guo, Chin-Lin; Jiang, Xingyu; Murray, Andrew; Meunier, Nicolas

    2016-04-01

    Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to communicate with each other during mating. Mating depends on the ability of cells to polarize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone by polarizing along a single axis. We used quantitative measurements of the response of a cells to α-factor to produce a predictive model of yeast polarization towards a pheromone gradient. We found that cells make a sharp transition between budding cycles and mating induced polarization and that they detect pheromone gradients accurately only over a narrow range of pheromone concentrations corresponding to this transition. We fit all the parameters of the mathematical model by using quantitative data on spontaneous polarization in uniform pheromone concentration. Once these parameters have been computed, and without any further fit, our model quantitatively predicts the yeast cell response to pheromone gradient providing an important step toward understanding how cells communicate with each other.

  3. Reconstructing the regulatory circuit of cell fate determination in yeast mating response.

    Science.gov (United States)

    Shao, Bin; Yuan, Haiyu; Zhang, Rongfei; Wang, Xuan; Zhang, Shuwen; Ouyang, Qi; Hao, Nan; Luo, Chunxiong

    2017-07-01

    Massive technological advances enabled high-throughput measurements of proteomic changes in biological processes. However, retrieving biological insights from large-scale protein dynamics data remains a challenging task. Here we used the mating differentiation in yeast Saccharomyces cerevisiae as a model and developed integrated experimental and computational approaches to analyze the proteomic dynamics during the process of cell fate determination. When exposed to a high dose of mating pheromone, the yeast cell undergoes growth arrest and forms a shmoo-like morphology; however, at intermediate doses, chemotropic elongated growth is initialized. To understand the gene regulatory networks that control this differentiation switch, we employed a high-throughput microfluidic imaging system that allows real-time and simultaneous measurements of cell growth and protein expression. Using kinetic modeling of protein dynamics, we classified the stimulus-dependent changes in protein abundance into two sources: global changes due to physiological alterations and gene-specific changes. A quantitative framework was proposed to decouple gene-specific regulatory modes from the growth-dependent global modulation of protein abundance. Based on the temporal patterns of gene-specific regulation, we established the network architectures underlying distinct cell fates using a reverse engineering method and uncovered the dose-dependent rewiring of gene regulatory network during mating differentiation. Furthermore, our results suggested a potential crosstalk between the pheromone response pathway and the target of rapamycin (TOR)-regulated ribosomal biogenesis pathway, which might underlie a cell differentiation switch in yeast mating response. In summary, our modeling approach addresses the distinct impacts of the global and gene-specific regulation on the control of protein dynamics and provides new insights into the mechanisms of cell fate determination. We anticipate that our

  4. Global Gene Expression Analysis of Yeast Cells during Sake Brewing▿ †

    Science.gov (United States)

    Wu, Hong; Zheng, Xiaohong; Araki, Yoshio; Sahara, Hiroshi; Takagi, Hiroshi; Shimoi, Hitoshi

    2006-01-01

    During the brewing of Japanese sake, Saccharomyces cerevisiae cells produce a high concentration of ethanol compared with other ethanol fermentation methods. We analyzed the gene expression profiles of yeast cells during sake brewing using DNA microarray analysis. This analysis revealed some characteristics of yeast gene expression during sake brewing and provided a scaffold for a molecular level understanding of the sake brewing process. PMID:16997994

  5. Probiotic properties of yeasts occurring in fermented food and beverages

    DEFF Research Database (Denmark)

    Jespersen, Lene

    Besides being able to improve the quality and safety of many fermented food and beverages some yeasts offer a number of probiotic traits. Especially a group of yeast referred to as "Saccharomyces boulardii", though taxonomically belonging to Saccharomyces cerevisiae, has been claimed to have...... probiotic properties. Besides, yeasts naturally occurring globally in food and beverages will have traits that might have a positive impact on human health....

  6. Detection and quantitative determination by PIXE of the mutagen Sn2+ in yeast cells

    International Nuclear Information System (INIS)

    Viau, C.M.; Yoneama, M.-L.; Dias, J.F.; Pungartnik, C.; Brendel, M.; Henriques, J.A.P.

    2006-01-01

    The main goal of this work was to determine the concentration of Sn 2+ ions in cells of the yeast Saccharomyces cerevisiae and to correlate their quantity with the genotoxicity of intracellularly accumulated metal ions. The intracellular metal content of yeast cells was determined by PIXE (particle-induced X-ray emission) after cell exposure to SnCl 2 . To that end, a thick target protocol was developed for PIXE analysis. The samples were irradiated with a 2 MeV proton beam, while the induced X-rays were detected with a high-purity germanium detector. The results of the toxicity of SnCl 2 and the PIXE analysis performed with two different yeast strains (haploid and diploid) suggest that the exposure of haploid and diploid yeast to Sn 2+ induces DNA lesions and that the absorption depends on the genetic background of each strain

  7. Modeling diauxic glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Sørensen, Preben Graae

    2010-01-01

    for investigations of central metabolism dynamics of yeast cells. We have previously proposed a model for the open system comprised of the primary fermentative reactions in yeast that quantitatively describes the oscillatory dynamics. However, this model fails to describe the transient behavior of metabolic......Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can....... Experimental and computational results strongly suggest that regulation of acetaldehyde explains the observed behavior. We have extended the original model with regulation of pyruvate decarboxylase, a reversible alcohol dehydrogenase, and drainage of pyruvate. Using the method of time rescaling in the extended...

  8. Measurement of the volume growth rate of single budding yeast with the MOSFET-based microfluidic Coulter counter.

    Science.gov (United States)

    Sun, Jiashu; Stowers, Chris C; Boczko, Erik M; Li, Deyu

    2010-11-07

    We report on measurements of the volume growth rate of ten individual budding yeast cells using a recently developed MOSFET-based microfluidic Coulter counter. The MOSFET-based microfluidic Coulter counter is very sensitive, provides signals that are immune from the baseline drift, and can work with cell culture media of complex composition. These desirable features allow us to directly measure the volume growth rate of single cells of Saccharomyces cerevisiae LYH3865 strain budding yeast in YNB culture media over a whole cell cycle. Results indicate that all budding yeast follow a sigmoid volume growth profile with reduced growth rates at the initial stage before the bud emerges and the final stage after the daughter gets mature. Analysis of the data indicates that even though all piecewise linear, Gomperitz, and Hill's function models can fit the global growth profile equally well, the data strongly support local exponential growth phenomenon. Accurate volume growth measurements are important for applications in systems biology where quantitative parameters are required for modeling and simulation.

  9. New Protocol Based on UHPLC-MS/MS for Quantitation of Metabolites in Xylose-Fermenting Yeasts

    Science.gov (United States)

    Campos, Christiane Gonçalves; Veras, Henrique César Teixeira; de Aquino Ribeiro, José Antônio; Costa, Patrícia Pinto Kalil Gonçalves; Araújo, Katiúscia Pereira; Rodrigues, Clenilson Martins; de Almeida, João Ricardo Moreira; Abdelnur, Patrícia Verardi

    2017-12-01

    Xylose fermentation is a bottleneck in second-generation ethanol production. As such, a comprehensive understanding of xylose metabolism in naturally xylose-fermenting yeasts is essential for prospection and construction of recombinant yeast strains. The objective of the current study was to establish a reliable metabolomics protocol for quantification of key metabolites of xylose catabolism pathways in yeast, and to apply this protocol to Spathaspora arborariae. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to quantify metabolites, and afterwards, sample preparation was optimized to examine yeast intracellular metabolites. S. arborariae was cultivated using xylose as a carbon source under aerobic and oxygen-limited conditions. Ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) were shown to efficiently quantify 14 and 5 metabolites, respectively, in a more rapid chromatographic protocol than previously described. Thirteen and eleven metabolites were quantified in S. arborariae under aerobic and oxygen-limited conditions, respectively. This targeted metabolomics protocol is shown here to quantify a total of 19 metabolites, including sugars, phosphates, coenzymes, monosaccharides, and alcohols, from xylose catabolism pathways (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle) in yeast. Furthermore, to our knowledge, this is the first time that intracellular metabolites have been quantified in S. arborariae after xylose consumption. The results indicated that fine control of oxygen levels during fermentation is necessary to optimize ethanol production by S. arborariae. The protocol presented here may be applied to other yeast species and could support yeast genetic engineering to improve second generation ethanol production. [Figure not available: see fulltext.

  10. Quantitation & Case-Study-Driven Inquiry to Enhance Yeast Fermentation Studies

    Science.gov (United States)

    Grammer, Robert T.

    2012-01-01

    We propose a procedure for the assay of fermentation in yeast in microcentrifuge tubes that is simple and rapid, permitting assay replicates, descriptive statistics, and the preparation of line graphs that indicate reproducibility. Using regression and simple derivatives to determine initial velocities, we suggest methods to compare the effects of…

  11. Improving industrial yeast strains: exploiting natural and artificial diversity

    Science.gov (United States)

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  12. Novel brewing yeast hybrids: creation and application.

    Science.gov (United States)

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2017-01-01

    The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

  13. A high-throughput method for quantifying metabolically active yeast cells

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Knudsen, Peter Boldsen; Rosenkjær, Alexander

    2015-01-01

    By redesigning the established methylene blue reduction test for bacteria and yeast, we present a cheap and efficient methodology for quantitative physiology of eukaryotic cells applicable for high-throughput systems. Validation of themethod in fermenters and highthroughput systems proved....... The drop in metabolic activity associated with the diauxic shift in yeast proved more pronounced for the MBRT-derived curve compared with OD curves, consistent with a dramatic shift in the ratio between live and dead cells at this metabolic event. This method provides a tool with numerous applications, e.......g. characterizing the death phase of stationary phase cultures, or in drug screens with pathogenic yeasts....

  14. Improving industrial yeast strains: exploiting natural and artificial diversity.

    Science.gov (United States)

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Picca Nicolino, Martina; Voordeckers, Karin; Verstrepen, Kevin J

    2014-09-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. © 2014 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  15. Biodiversity of Yeasts During Plum Wegierka Zwykla Spontaneous Fermentation

    Directory of Open Access Journals (Sweden)

    Tadeusz Tuszynski

    2005-01-01

    Full Text Available The study comprises an analysis of the yeast microbiota that participated in the spontaneous fermentation of crushed Wegierka Zwykla plum fruit, which is the raw material for slivovitz production in the mountain region in the south of Poland. Saccharomyces cerevisiae yeast strains were differentiated by means of the killer sensitivity analysis related to a killer reference panel of 9 well-known killer yeast strains. The first phase of the fermentation was dominated by the representatives of Kloeckera apiculata and Candida pulcherrima species, which reached their maximum concentration (1.4·106 CFU/mL after 48 h of the process. Almost all yeasts isolated during the following days were classified as S. cerevisiae and the killer sensitivity analysis revealed a high population diversity of this species and the presence of 14 different strains that changed quantitatively and qualitatively throughout the fermentation period.

  16. Aggregation of polyQ proteins is increased upon yeast aging and affected by Sir2 and Hsf1: novel quantitative biochemical and microscopic assays.

    Directory of Open Access Journals (Sweden)

    Aviv Cohen

    Full Text Available Aging-related neurodegenerative disorders, such as Parkinson's, Alzheimer's and Huntington's diseases, are characterized by accumulation of protein aggregates in distinct neuronal cells that eventually die. In Huntington's disease, the protein huntingtin forms aggregates, and the age of disease onset is inversely correlated to the length of the protein's poly-glutamine tract. Using quantitative assays to estimate microscopically and capture biochemically protein aggregates, here we study in Saccharomyces cerevisiae aging-related aggregation of GFP-tagged, huntingtin-derived proteins with different polyQ lengths. We find that the short 25Q protein never aggregates whereas the long 103Q version always aggregates. However, the mid-size 47Q protein is soluble in young logarithmically growing yeast but aggregates as the yeast cells enter the stationary phase and age, allowing us to plot an "aggregation timeline". This aging-dependent aggregation was associated with increased cytotoxicity. We also show that two aging-related genes, SIR2 and HSF1, affect aggregation of the polyQ proteins. In Δsir2 strain the aging-dependent aggregation of the 47Q protein is aggravated, while overexpression of the transcription factor Hsf1 attenuates aggregation. Thus, the mid-size 47Q protein and our quantitative aggregation assays provide valuable tools to unravel the roles of genes and environmental conditions that affect aging-related aggregation.

  17. Barriers to global health development: An international quantitative survey.

    Directory of Open Access Journals (Sweden)

    Bahr Weiss

    Full Text Available Global health's goal of reducing low-and-middle-income country versus high-income country health disparities faces complex challenges. Although there have been discussions of barriers, there has not been a broad-based, quantitative survey of such barriers.432 global health professionals were invited via email to participate in an online survey, with 268 (62% participating. The survey assessed participants' (A demographic and global health background, (B perceptions regarding 66 barriers' seriousness, (C detailed ratings of barriers designated most serious, (D potential solutions.Thirty-four (of 66 barriers were seen as moderately or more serious, highlighting the widespread, significant challenges global health development faces. Perceived barrier seriousness differed significantly across domains: Resource Limitations mean = 2.47 (0-4 Likert scale, Priority Selection mean = 2.20, Corruption, Lack of Competence mean = 1.87, Social and Cultural Barriers mean = 1.68. Some system-level predictors showed significant but relatively limited relations. For instance, for Global Health Domain, HIV and Mental Health had higher levels of perceived Social and Cultural Barriers than other GH Domains. Individual-level global health experience predictors had small but significant effects, with seriousness of (a Corruption, Lack of Competence, and (b Priority Selection barriers positively correlated with respondents' level of LMIC-oriented (e.g., weeks/year spent in LMIC but Academic Global Health Achievement (e.g., number of global health publications negatively correlated with overall barrier seriousness.That comparatively few system-level predictors (e.g., Organization Type were significant suggests these barriers may be relatively fundamental at the system-level. Individual-level and system-level effects do have policy implications; e.g., Priority Selection barriers were among the most serious, yet effects on seriousness of how LMIC-oriented a professional

  18. Determination of Proteinaceous Selenocysteine in Selenized Yeast

    Directory of Open Access Journals (Sweden)

    Katarzyna Bierla

    2018-02-01

    Full Text Available A method for the quantitation of proteinaceous selenocysteine (SeCys in Se-rich yeast was developed. The method is based on the reduction of the Se-Se and S-Se bridges with dithiotretiol, derivatization with iodoacetamide (carbamidomethylation, followed by HPLC-ICP MS. The chromatographic conditions were optimized for the total recovery of the proteinaceous selenocysteine, the minimum number of peaks in the chromatogram (reduction of derivatization products of other Se-species present and the baseline separation. A typical chromatogram of a proteolytic digest of selenized yeast protein consisted of up to five peaks (including SeMet, carbamidomethylated (CAM-SeCys, and Se(CAM2 identified by retention time matching with available standards and electrospray MS. Inorganic selenium non-specifically attached to proteins and selenomethionine could be quantified (in the form of Se(CAM2 along with SeCys. Selenocysteine, selenomethionine, inorganic selenium, and the water soluble-metabolite fraction accounted for the totality of selenium species in Se-rich yeast.

  19. Downsides and benefits of unicellularity in budding yeast

    Science.gov (United States)

    Balazsi, Gabor; Chen, Lin; Kuzdzal-Fick, Jennie

    Yeast cells that do not separate after cell division form clumps. Clumping was shown to aid utilization of certain sugars, but its effects in stressful conditions are unknown. Generally speaking, what are the costs and benefits of unicellularity versus clumping multicellularity in normal and stressful conditions? To address this question, we evolved clumping yeast towards unicellularity by continuously propagating only those cells that remain suspended in liquid culture after settling. Whole-genome sequencing indicated that mutations in the AMN1 (antagonist of mitotic exit network) gene underlie the changes from clumping to unicellular phenotypes in these evolved yeast cells. Simple models predict that clumping should hinder growth in normal conditions while being protective in stress. Accordingly, we find experimentally that yeast clumps are more resistant to freeze/thaw, hydrogen peroxide, and ethanol stressors than their unicellular counterparts. On the other hand, unicellularity seems to be advantageous in normal conditions. Overall, these results reveal the downsides and benefits of unicellularity in different environmental conditions and uncover its genetic bases in yeast. This research was supported by the NIH Director's New Innovator Award Program (1DP2 OD006481-01), by NSF/IOS 1021675 and the Laufer Center for Physical & Quantitative Biology.

  20. Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O. “Vinos de Madrid” Using Real-Time Quantitative PCR

    Science.gov (United States)

    García, Margarita; Esteve-Zarzoso, Braulio; Crespo, Julia; Cabellos, Juan M.; Arroyo, Teresa

    2017-01-01

    There is an increasing trend toward understanding the impact of non-Saccharomyces yeasts on the winemaking process. Although Saccharomyces cerevisiae is the predominant species at the end of fermentation, it has been recognized that the presence of non-Saccharomyces species during alcoholic fermentation can produce an improvement in the quality and complexity of the final wines. A previous work was developed for selecting the best combinations between S. cerevisiae and five non-Saccharomyces (Torulaspora delbrueckii, Schizosaccharomyces pombe, Candida stellata, Metschnikowia pulcherrima, and Lachancea thermotolorans) native yeast strains from D.O. “Vinos de Madrid” at the laboratory scale. The best inoculation strategies between S. cerevisiae and non-Saccharomyces strains were chosen to analyze, by real-time quantitative PCR (qPCR) combined with the use of specific primers, the dynamics of inoculated populations throughout the fermentation process at the pilot scale using the Malvar white grape variety. The efficiency of the qPCR system was verified independently of the samples matrix, founding the inoculated yeast species throughout alcoholic fermentation. Finally, we can validate the positive effect of selected co-cultures in the Malvar wine quality, highlighting the sequential cultures of T. delbrueckii CLI 918/S. cerevisiae CLI 889 and C. stellata CLI 920/S. cerevisiae CLI 889 and, mixed and sequential cultures of L. thermotolerans 9-6C combined with S. cerevisiae CLI 889. PMID:29326669

  1. Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O. “Vinos de Madrid” Using Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Margarita García

    2017-12-01

    Full Text Available There is an increasing trend toward understanding the impact of non-Saccharomyces yeasts on the winemaking process. Although Saccharomyces cerevisiae is the predominant species at the end of fermentation, it has been recognized that the presence of non-Saccharomyces species during alcoholic fermentation can produce an improvement in the quality and complexity of the final wines. A previous work was developed for selecting the best combinations between S. cerevisiae and five non-Saccharomyces (Torulaspora delbrueckii, Schizosaccharomyces pombe, Candida stellata, Metschnikowia pulcherrima, and Lachancea thermotolorans native yeast strains from D.O. “Vinos de Madrid” at the laboratory scale. The best inoculation strategies between S. cerevisiae and non-Saccharomyces strains were chosen to analyze, by real-time quantitative PCR (qPCR combined with the use of specific primers, the dynamics of inoculated populations throughout the fermentation process at the pilot scale using the Malvar white grape variety. The efficiency of the qPCR system was verified independently of the samples matrix, founding the inoculated yeast species throughout alcoholic fermentation. Finally, we can validate the positive effect of selected co-cultures in the Malvar wine quality, highlighting the sequential cultures of T. delbrueckii CLI 918/S. cerevisiae CLI 889 and C. stellata CLI 920/S. cerevisiae CLI 889 and, mixed and sequential cultures of L. thermotolerans 9-6C combined with S. cerevisiae CLI 889.

  2. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Hansen, Esben H; Møller, Birger Lindberg; Kock, Gertrud R; Bünner, Camilla M; Kristensen, Charlotte; Jensen, Ole R; Okkels, Finn T; Olsen, Carl E; Motawia, Mohammed S; Hansen, Jørgen

    2009-05-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.

  3. Benchmarking sample preparation/digestion protocols reveals tube-gel being a fast and repeatable method for quantitative proteomics.

    Science.gov (United States)

    Muller, Leslie; Fornecker, Luc; Van Dorsselaer, Alain; Cianférani, Sarah; Carapito, Christine

    2016-12-01

    Sample preparation, typically by in-solution or in-gel approaches, has a strong influence on the accuracy and robustness of quantitative proteomics workflows. The major benefit of in-gel procedures is their compatibility with detergents (such as SDS) for protein solubilization. However, SDS-PAGE is a time-consuming approach. Tube-gel (TG) preparation circumvents this drawback as it involves directly trapping the sample in a polyacrylamide gel matrix without electrophoresis. We report here the first global label-free quantitative comparison between TG, stacking gel (SG), and basic liquid digestion (LD). A series of UPS1 standard mixtures (at 0.5, 1, 2.5, 5, 10, and 25 fmol) were spiked in a complex yeast lysate background. TG preparation allowed more yeast proteins to be identified than did the SG and LD approaches, with mean numbers of 1979, 1788, and 1323 proteins identified, respectively. Furthermore, the TG method proved equivalent to SG and superior to LD in terms of the repeatability of the subsequent experiments, with mean CV for yeast protein label-free quantifications of 7, 9, and 10%. Finally, known variant UPS1 proteins were successfully detected in the TG-prepared sample within a complex background with high sensitivity. All the data from this study are accessible on ProteomeXchange (PXD003841). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall......Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective...... with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain...

  5. Quantitative Genome-Wide Analysis of Yeast Deletion Strain Sensitivities to Oxidative and Chemical Stress

    Directory of Open Access Journals (Sweden)

    Stanley Fields

    2006-03-01

    Full Text Available Understanding the actions of drugs and toxins in a cell is of critical importance to medicine, yet many of the molecular events involved in chemical resistance are relatively uncharacterized. In order to identify the cellular processes and pathways targeted by chemicals, we took advantage of the haploid Saccharomyces cerevisiae deletion strains (Winzeler et al., 1999. Although ~4800 of the strains are viable, the loss of a gene in a pathway affected by a drug can lead to a synthetic lethal effect in which the combination of a deletion and a normally sublethal dose of a chemical results in loss of viability. WE carried out genome-wide screens to determine quantitative sensitivities of the deletion set to four chemicals: hydrogen peroxide, menadione, ibuprofen and mefloquine. Hydrogen peroxide and menadione induce oxidative stress in the cell, whereas ibuprofen and mefloquine are toxic to yeast by unknown mechanisms. Here we report the sensitivities of 659 deletion strains that are sensitive to one or more of these four compounds, including 163 multichemicalsensitive strains, 394 strains specific to hydrogen peroxide and/or menadione, 47 specific to ibuprofen and 55 specific to mefloquine.We correlate these results with data from other large-scale studies to yield novel insights into cellular function.

  6. The protein expression landscape of mitosis and meiosis in diploid budding yeast.

    Science.gov (United States)

    Becker, Emmanuelle; Com, Emmanuelle; Lavigne, Régis; Guilleux, Marie-Hélène; Evrard, Bertrand; Pineau, Charles; Primig, Michael

    2017-03-06

    Saccharomyces cerevisiae is an established model organism for the molecular analysis of fundamental biological processes. The genomes of numerous strains have been sequenced, and the transcriptome and proteome ofmajor phases during the haploid and diploid yeast life cycle have been determined. However, much less is known about dynamic changes of the proteome when cells switch from mitotic growth to meiotic development. We report a quantitative protein profiling analysis of yeast cell division and differentiation based on mass spectrometry. Information about protein levels was integrated with strand-specific tiling array expression data. We identified a total of 2366 proteins in at least one condition, including 175 proteins showing a statistically significant>5-fold change across the sample set, and 136 proteins detectable in sporulating but not respiring cells. We correlate protein expression patterns with biological processes and molecular function by Gene Ontology term enrichment, chemoprofiling, transcription interference and the formation of double stranded RNAs by overlapping sense/antisense transcripts. Our work provides initial quantitative insight into protein expression in diploid respiring and differentiating yeast cells. Critically, it associates developmentally regulated induction of antisense long noncoding RNAs and double stranded RNAs with fluctuating protein concentrations during growth and development. This integrated genomics analysis helps better understand how the transcriptome and the proteome correlate in diploid yeast cells undergoing mitotic growth in the presence of acetate (respiration) versus meiotic differentiation (Meiosis I and II). The study (i) provides quantitative expression data for 2366 proteins and their cognate mRNAs in at least one sample, (ii) shows strongly fluctuating protein levels during growth and differentiation for 175 cases, and (iii) identifies 136 proteins absent in mitotic but present in meiotic yeast cells. We

  7. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ▿

    Science.gov (United States)

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity. PMID:19286778

  8. Strategy for the extraction of yeast DNA from artisan agave must for quantitative PCR analysis.

    Science.gov (United States)

    Kirchmayr, Manuel Reinhart; Segura-Garcia, Luis Eduardo; Flores-Berrios, Ericka Patricia; Gschaedler, Anne

    2011-11-01

    An efficient method for the direct extraction of yeast genomic DNA from agave must was developed. The optimized protocol, which was based on silica-adsorption of DNA on microcolumns, included an enzymatic cell wall degradation step followed by prolonged lysis with hot detergent. The resulting extracts were suitable templates for subsequent qPCR assays that quantified mixed yeast populations in artisan Mexican mezcal fermentations. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Delineating Rearrangements in Single Yeast Artificial Chromosomes by Quantitative DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich G.; Greulich-Bode, Karin M.; Wu, Jenny; Duell, Thomas

    2009-09-18

    Cloning of large chunks of human genomic DNA in recombinant systems such as yeast or bacterial artificial chromosomes has greatly facilitated the construction of physical maps, the positional cloning of disease genes or the preparation of patient-specific DNA probes for diagnostic purposes. For this process to work efficiently, the DNA cloning process and subsequent clone propagation need to maintain stable inserts that are neither deleted nor otherwise rearranged. Some regions of the human genome; however, appear to have a higher propensity than others to rearrange in any host system. Thus, techniques to detect and accurately characterize such rearrangements need to be developed. We developed a technique termed 'Quantitative DNA Fiber Mapping (QDFM)' that allows accurate tagging of sequence elements of interest with near kilobase accuracy and optimized it for delineation of rearrangements in recombinant DNA clones. This paper demonstrates the power of this microscopic approach by investigating YAC rearrangements. In our examples, high-resolution physical maps for regions within the immunoglobulin lambda variant gene cluster were constructed for three different YAC clones carrying deletions of 95 kb and more. Rearrangements within YACs could be demonstrated unambiguously by pairwise mapping of cosmids along YAC DNA molecules. When coverage by YAC clones was not available, distances between cosmid clones were estimated by hybridization of cosmids onto DNA fibers prepared from human genomic DNA. In addition, the QDFM technology provides essential information about clone stability facilitating closure of the maps of the human genome as well as those of model organisms.

  10. Fluorescent foci quantitation for high-throughput analysis

    Directory of Open Access Journals (Sweden)

    Elena Ledesma-Fernández

    2015-06-01

    Full Text Available A number of cellular proteins localize to discrete foci within cells, for example DNA repair proteins, microtubule organizing centers, P bodies or kinetochores. It is often possible to measure the fluorescence emission from tagged proteins within these foci as a surrogate for the concentration of that specific protein. We wished to develop tools that would allow quantitation of fluorescence foci intensities in high-throughput studies. As proof of principle we have examined the kinetochore, a large multi-subunit complex that is critical for the accurate segregation of chromosomes during cell division. Kinetochore perturbations lead to aneuploidy, which is a hallmark of cancer cells. Hence, understanding kinetochore homeostasis and regulation are important for a global understanding of cell division and genome integrity. The 16 budding yeast kinetochores colocalize within the nucleus to form a single focus. Here we have created a set of freely-available tools to allow high-throughput quantitation of kinetochore foci fluorescence. We use this ‘FociQuant’ tool to compare methods of kinetochore quantitation and we show proof of principle that FociQuant can be used to identify changes in kinetochore protein levels in a mutant that affects kinetochore function. This analysis can be applied to any protein that forms discrete foci in cells.

  11. QTL mapping of sake brewing characteristics of yeast.

    Science.gov (United States)

    Katou, Taku; Namise, Masahiro; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi

    2009-04-01

    A haploid sake yeast strain derived from the commercial diploid sake yeast strain Kyokai no. 7 showed better characteristics for sake brewing compared to the haploid laboratory yeast strain X2180-1B, including higher production of ethanol and aromatic components. A hybrid of these two strains showed intermediate characteristics in most cases. After sporulation of the hybrid strain, we obtained 100 haploid segregants of the hybrid. Small-scale sake brewing tests of these segregants showed a smooth continuous distribution of the sake brewing characteristics, suggesting that these traits are determined by multiple quantitative trait loci (QTLs). To examine these sake brewing characteristics at the genomic level, we performed QTL analysis of sake brewing characteristics using 142 DNA markers that showed heterogeneity between the two parental strains. As a result, we identified 25 significant QTLs involved in the specification of sake brewing characteristics such as ethanol fermentation and the production of aromatic components.

  12. Yeast cell wall chitin reduces wine haze formation.

    Science.gov (United States)

    Ndlovu, Thulile; Divol, Benoit; Bauer, Florian F

    2018-04-27

    Protein haze formation in bottled wines is a significant concern for the global wine industry and wine clarification before bottling is therefore a common but expensive practice. Previous studies have shown that wine yeast strains can reduce haze formation through the secretion of certain mannoproteins, but it has been suggested that other yeast-dependent haze protective mechanisms exist. On the other hand, addition of chitin has been shown to reduce haze formation, likely because grape chitinases have been shown to be the major contributors to haze. In this study, Chardonnay grape must fermented by various yeast strains resulted in wines with different protein haze levels indicating differences in haze protective capacities of the strains. The cell wall chitin levels of these strains were determined, and a strong correlation between cell wall chitin levels and haze protection capability was observed. To further evaluate the mechanism of haze protection, Escherichia coli -produced GFP-tagged grape chitinase was shown to bind efficiently to yeast cell walls in a cell wall chitin concentration-dependent manner, while commercial chitinase was removed from synthetic wine in quantities also correlated with the cell wall chitin levels of the strains. Our findings suggest a new mechanism of reducing wine haze, and propose a strategy for optimizing wine yeast strains to improve wine clarification. Importance In this study, we establish a new mechanism by which wine yeast strains can impact on the protein haze formation of wines, and demonstrate that yeast cell wall chitin binds grape chitinase in a chitin-concentration dependent manner. We also show that yeast can remove this haze-forming protein from wine. Chitin has in the past been shown to efficiently reduce wine haze formation when added to the wine in high concentration as a clarifying agent. Our data suggest that the selection of yeast strains with high levels of cell wall chitin can reduce protein haze. We also

  13. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production.

    Science.gov (United States)

    Zhao, X Q; Bai, F W

    2009-10-12

    Yeast strains of Saccharomyces cerevisiae have been extensively studied in recent years for fuel ethanol production, in which yeast cells are exposed to various stresses such as high temperature, ethanol inhibition, and osmotic pressure from product and substrate sugars as well as the inhibitory substances released from the pretreatment of lignocellulosic biomass. An in-depth understanding of the mechanism of yeast stress tolerance contributes to breeding more robust strains for ethanol production, especially under very high gravity conditions. Taking advantage of the "omics" technology, the stress response and defense mechanism of yeast cells during ethanol fermentation were further explored, and the newly emerged tools such as genome shuffling and global transcription machinery engineering have been applied to breed stress resistant yeast strains for ethanol production. In this review, the latest development of stress tolerance mechanisms was focused, and improvement of yeast stress tolerance by both random and rational tools was presented.

  14. A Gondwanan Imprint on Global Diversity and Domestication of Wine and Cider Yeast Saccharomyces uvarum

    Science.gov (United States)

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David; Marullo, Philippe; Hittinger, Chris Todd; Gonçalves, Paula; Sampaio, José Paulo

    2016-01-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum. PMID:24887054

  15. Spent brewer's yeast extract as an ingredient in cooked hams.

    Science.gov (United States)

    Pancrazio, Gaston; Cunha, Sara C; de Pinho, Paula Guedes; Loureiro, Mónica; Meireles, Sónia; Ferreira, Isabel M P L V O; Pinho, Olívia

    2016-11-01

    This work describes the effect of the incorporation of 1% spent yeast extract into cooked hams. Physical/chemical/sensorial characteristics and changes during 12 and 90days storage were evaluated on control and treated cooked hams processed for 1.5, 2.0, 2.5 or 3h. Spent yeast extract addition increased hardness, chewiness, ash, protein and free amino acid content. Similar volatile profiles were obtained, although there were some quantitative differences. No advantages were observed for increased cooking time. No significant differences were observed for physical and sensorial parameters of cooked hams with spent yeast extract at 12 and 90days post production, but His, aldehydes and esters increased at the end of storage. This behaviour was similar to that observed for control hams. The higher hardness of cooked ham with 1% yeast extract was due to the stronger gel formed during cooking and was maintained during storage. This additive acts as gel stabilizer for cooked ham production and could potentially improve other processing characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Reconstruction and validation of RefRec: a global model for the yeast molecular interaction network.

    Directory of Open Access Journals (Sweden)

    Tommi Aho

    2010-05-01

    Full Text Available Molecular interaction networks establish all cell biological processes. The networks are under intensive research that is facilitated by new high-throughput measurement techniques for the detection, quantification, and characterization of molecules and their physical interactions. For the common model organism yeast Saccharomyces cerevisiae, public databases store a significant part of the accumulated information and, on the way to better understanding of the cellular processes, there is a need to integrate this information into a consistent reconstruction of the molecular interaction network. This work presents and validates RefRec, the most comprehensive molecular interaction network reconstruction currently available for yeast. The reconstruction integrates protein synthesis pathways, a metabolic network, and a protein-protein interaction network from major biological databases. The core of the reconstruction is based on a reference object approach in which genes, transcripts, and proteins are identified using their primary sequences. This enables their unambiguous identification and non-redundant integration. The obtained total number of different molecular species and their connecting interactions is approximately 67,000. In order to demonstrate the capacity of RefRec for functional predictions, it was used for simulating the gene knockout damage propagation in the molecular interaction network in approximately 590,000 experimentally validated mutant strains. Based on the simulation results, a statistical classifier was subsequently able to correctly predict the viability of most of the strains. The results also showed that the usage of different types of molecular species in the reconstruction is important for accurate phenotype prediction. In general, the findings demonstrate the benefits of global reconstructions of molecular interaction networks. With all the molecular species and their physical interactions explicitly modeled, our

  17. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells.

    Science.gov (United States)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  18. Cell wall staining with Trypan Blue enables quantitative analysis of morphological changes in yeast cells

    Directory of Open Access Journals (Sweden)

    Johannes eLiesche

    2015-02-01

    Full Text Available Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  19. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    Science.gov (United States)

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Prions in yeast

    OpenAIRE

    Bezdíčka, Martin

    2013-01-01

    The thesis describes yeast prions and their biological effects on yeast in general. It defines the basic characteristics of yeast prions, that distinguish prions from other proteins. The thesis introduces various possibilities of prion formation, and propagation as well as specific types of yeast prions, including various functions of most studied types of prions. The thesis also focuses on chaperones that affect the state of yeast prions in cells. Lastly, the thesis indicates similarities be...

  1. Colony size measurement of the yeast gene deletion strains for functional genomics

    Directory of Open Access Journals (Sweden)

    Mir-Rashed Nadereh

    2007-04-01

    Full Text Available Abstract Background Numerous functional genomics approaches have been developed to study the model organism yeast, Saccharomyces cerevisiae, with the aim of systematically understanding the biology of the cell. Some of these techniques are based on yeast growth differences under different conditions, such as those generated by gene mutations, chemicals or both. Manual inspection of the yeast colonies that are grown under different conditions is often used as a method to detect such growth differences. Results Here, we developed a computerized image analysis system called Growth Detector (GD, to automatically acquire quantitative and comparative information for yeast colony growth. GD offers great convenience and accuracy over the currently used manual growth measurement method. It distinguishes true yeast colonies in a digital image and provides an accurate coordinate oriented map of the colony areas. Some post-processing calculations are also conducted. Using GD, we successfully detected a genetic linkage between the molecular activity of the plant-derived antifungal compound berberine and gene expression components, among other cellular processes. A novel association for the yeast mek1 gene with DNA damage repair was also identified by GD and confirmed by a plasmid repair assay. The results demonstrate the usefulness of GD for yeast functional genomics research. Conclusion GD offers significant improvement over the manual inspection method to detect relative yeast colony size differences. The speed and accuracy associated with GD makes it an ideal choice for large-scale functional genomics investigations.

  2. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Science.gov (United States)

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  3. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Directory of Open Access Journals (Sweden)

    Debashis Barik

    2016-12-01

    Full Text Available The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  4. Some Practical Aspects of Sugar Fermentation by Baker's Yeast (Saccharomyces cerevisiae)

    Science.gov (United States)

    Freeland, P. W.

    1973-01-01

    Describes simple quantitative determinations for ethanol and carbon dioxide, together with techniques for examining the effects of a number of environmental factors on their production. The experimental work centers around the growth of a cell population of yeast, and is suitable for senior high school students. (JR)

  5. DNA micro array analysis of yeast global genome expression in response to ELF-MF exposure

    International Nuclear Information System (INIS)

    Shimizu, K.; Yamamoto, T.; Ishibashi, T.; Kyoh, B.

    2002-01-01

    There is wide spread public concern over the possible health risk of ELF-MF. Electromagnetic fields may produce a variety of effects in several biological systems, including the elevation of cancer risk and reduction of cell growth. Epidemiological studies have shown weak correlations between the exposure to ELF and the incidence of several cancers, but negative studies have also been reported. Moreover, there are some reports that basic biological events such as the cell cycle and DNA replication were affected by exposure to MF. However, to date the molecular mechanism of the MF effect on living organism is not clear. In this study, we used yeast DNA micro array to examine the transcriptional profile of all genes in response to ELF-MF. A few years ago it was difficult to carry out a global gene expression study to identify important genes regarding ELF-MF, however, today DNA micro arrays allow gene regulation in response to high density ELF-MF exposure. Thus we used micro array to analyze changes in mRNA abundance during ELF-MF exposure

  6. Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Wilkinson, Derek; Ramsdale, Mark

    2011-10-01

    A variety of proteases have been implicated in yeast PCD (programmed cell death) including the metacaspase Mca1 and the separase Esp1, the HtrA-like serine protease Nma111, the cathepsin-like serine carboxypeptideases and a range of vacuolar proteases. Proteasomal activity is also shown to have an important role in determining cell fate, with both pro- and anti-apoptotic roles. Caspase 3-, 6- and 8-like activities are detected upon stimulation of yeast PCD, but not all of this activity is associated with Mca1, implicating other proteases with caspase-like activity in the yeast cell death response. Global proteolytic events that accompany PCD are discussed alongside a consideration of the conservation of the death-related degradome (both at the level of substrate choice and cleavage site). The importance of both gain-of-function changes in the degradome as well as loss-of-function changes are highlighted. Better understanding of both death-related proteases and their substrates may facilitate the design of future antifungal drugs or the manipulation of industrial yeasts for commercial exploitation.

  7. Radiation stimulation of yeast crops for increasing output of alcohol and baker yeasts

    International Nuclear Information System (INIS)

    Vlad, E.; Marsheu, P.

    1974-01-01

    The purpose of this study was to stimulate by gamma radiation the existing commercial types of yeast so as to obtain yeasts that would better reflect the substrate and have improved reproductive capacity. The experiments were conducted under ordinary conditions using commercial yeasts received from one factory producing alcohol and bakery yeasts and isolated as pure cultures. Irradiating yeast cultures with small doses (up to 10 krad) was found to stimulate the reproduction and fermenting activity of yeast cells as manifested in increased accumulation of yeast biomass and greater yield of ethyl alcohol. (E.T.)

  8. Global study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Suzuki, Godai; Wang, Yang; Kubo, Karen; Hirata, Eri; Ohnuki, Shinsuke; Ohya, Yoshikazu

    2018-02-20

    The size of the phenotypic effect of a gene has been thoroughly investigated in terms of fitness and specific morphological traits in the budding yeast Saccharomyces cerevisiae, but little is known about gross morphological abnormalities. We identified 1126 holistic morphological effectors that cause severe gross morphological abnormality when deleted, and 2241 specific morphological effectors with weak holistic effects but distinctive effects on yeast morphology. Holistic effectors fell into many gene function categories and acted as network hubs, affecting a large number of morphological traits, interacting with a large number of genes, and facilitating high protein expression. Holistic morphological abnormality was useful for estimating the importance of a gene to morphology. The contribution of gene importance to fitness and morphology could be used to efficiently classify genes into functional groups. Holistic morphological abnormality can be used as a reproducible and reliable gene feature for high-dimensional morphological phenotyping. It can be used in many functional genomic applications.

  9. Experimental evolution in budding yeast

    Science.gov (United States)

    Murray, Andrew

    2012-02-01

    I will discuss our progress in analyzing evolution in the budding yeast, Saccharomyces cerevisiae. We take two basic approaches. The first is to try and examine quantitative aspects of evolution, for example by determining how the rate of evolution depends on the mutation rate and the population size or asking whether the rate of mutation is uniform throughout the genome. The second is to try to evolve qualitatively novel, cell biologically interesting phenotypes and track the mutations that are responsible for the phenotype. Our efforts include trying to alter cell morphology, evolve multicellularity, and produce a biological oscillator.

  10. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway

    DEFF Research Database (Denmark)

    Gruhler, Albrecht; Olsen, Jesper Velgaard; Mohammed, Shabaz

    2005-01-01

    of a detailed molecular view of complex biological processes. We present a quantitative modification-specific proteomic approach that combines stable isotope labeling by amino acids in cell culture (SILAC) for quantitation with IMAC for phosphopeptide enrichment and three stages of mass spectrometry (MS....... Phosphopeptide fractions were analyzed by LC-MS using a linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer. MS/MS and neutral loss-directed MS/MS/MS analysis allowed detection and sequencing of phosphopeptides with exceptional accuracy and specificity. Of more than 700 identified...

  11. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p

    DEFF Research Database (Denmark)

    Moxley, Joel F.; Jewett, Michael Christopher; Antoniewicz, Maciek R.

    2009-01-01

    . However, the potential of systems biology approaches is limited by difficulties in integrating metabolic measurements across the functional levels of the cell despite their being most closely linked to cellular phenotype. To address this limitation, we developed a model-based approach to correlate m......RNA and metabolic flux data that combines information from both interaction network models and flux determination models. We started by quantifying 5,764 mRNAs, 54 metabolites, and 83 experimental C-13-based reaction fluxes in continuous cultures of yeast under stress in the absence or presence of global regulator...... of metabolic flux (i.e., use of different reaction pathways) by transcriptional regulation and metabolite interaction density (i.e., level of pairwise metabolite-protein interactions) as a key biosynthetic control determinant. Furthermore, this model predicted flux rewiring in studies of follow...

  12. A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair.

    Science.gov (United States)

    Wong, J M; Ingles, C J

    2001-02-01

    Nucleotide excision repair is the major pathway responsible for removing UV-induced DNA damage, and is therefore essential for cell survival following exposure to UV radiation. In this report, we have assessed the contributions of some components of the RNA polymerase II (Pol II) transcription machinery to UV resistance in Saccharomyces cerevisiae. Deletion of the gene encoding the Pol II elongation factor TFIIS (SII) resulted in enhanced UV sensitivity, but only in the absence of global genome repair dependent on the RAD7 and RAD16 genes, a result seen previously with deletions of RAD26 and RAD28, yeast homologs of the human Cockayne syndrome genes CSB and CSA, respectively. A RAD7/16-dependent reduction in survival after UV irradiation was also seen in the presence of mutations in RNA Pol II that confer a defect in its response to SII, as well as with other mutations which reside in regions of the largest subunit of Pol II not involved in SII interactions. Indeed, an increase in UV sensitivity was achieved by simply decreasing the steadystate level of RNA Pol II. Truncation of the C-terminal domain and other RNA Pol II mutations conferred sensitivity to the ribonucleotide reductase inhibitor hydroxyurea and induction of RNR1 and RNR2 mRNAs after UV irradiation was attenuated in these mutant cells. That UV sensitivity can be a consequence of mutations in the RNA Pol II machinery in yeast cells suggests that alterations in transcriptional programs could underlie some of the pathophysiological defects seen in the human disease Cockayne syndrome.

  13. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications.

    Science.gov (United States)

    Xue, Si-Jia; Chi, Zhe; Zhang, Yu; Li, Yan-Feng; Liu, Guang-Lei; Jiang, Hong; Hu, Zhong; Chi, Zhen-Ming

    2018-02-01

    Oleaginous yeasts, fatty acids biosynthesis and regulation in the oleaginous yeasts and the fatty acids from the oleaginous yeasts and their applications are reviewed in this article. Oleaginous yeasts such as Rhodosporidium toruloides, Yarrowia lipolytica, Rhodotorula mucilaginosa, and Aureobasidium melanogenum, which can accumulate over 50% lipid of their cell dry weight, have many advantages over other oleaginous microorganisms. The fatty acids from the oleaginous yeasts have many potential applications. Many oleaginous yeasts have now been genetically modified to over-produce fatty acids and their derivatives. The most important features of the oleaginous yeasts are that they have special enzymatic systems for enhanced biosynthesis and regulation of fatty acids in their lipid particles. Recently, some oleaginous yeasts such as R. toruloides have been found to have a unique fatty acids synthetase and other oleaginous yeasts such as A. melanogenum have a unique highly reducing polyketide synthase (HR-PKS) involved in the biosynthesis of hydroxyl fatty acids. It is necessary to further enhance lipid biosynthesis using metabolic engineering and explore new applications of fatty acids in biotechnology.

  14. Yeast systems biology to unravel the network of life

    DEFF Research Database (Denmark)

    Mustacchi, Roberta; Hohmann, S; Nielsen, Jens

    2006-01-01

    Systems biology focuses on obtaining a quantitative description of complete biological systems, even complete cellular function. In this way, it will be possible to perform computer-guided design of novel drugs, advanced therapies for treatment of complex diseases, and to perform in silico design....... Furthermore, it serves as an industrial workhorse for production of a wide range of chemicals and pharmaceuticals. Systems biology involves the combination of novel experimental techniques from different disciplines as well as functional genomics, bioinformatics and mathematical modelling, and hence no single...... laboratory has access to all the necessary competences. For this reason the Yeast Systems Biology Network (YSBN) has been established. YSBN will coordinate research efforts, in yeast systems biology and, through the recently obtained EU funding for a Coordination Action, it will be possible to set...

  15. Yeast for virus research

    Science.gov (United States)

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  16. How-to-Do-It: Apparatus & Experimental Design for Measuring Fermentation Rates in Yeast.

    Science.gov (United States)

    Tatina, Robert

    1989-01-01

    Describes an apparatus that facilitates the quantitative study of fermentation in yeast by allowing simultaneous measurements of fermentation rates in several treatments and a control. Explains a laboratory procedure in which the apparatus is used. Several suggestions for further investigations are included. (Author/RT)

  17. Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis

    Directory of Open Access Journals (Sweden)

    Kanehisa Minoru

    2006-04-01

    Full Text Available Abstract Background Elementary mode analysis of metabolic pathways has proven to be a valuable tool for assessing the properties and functions of biochemical systems. However, little comprehension of how individual elementary modes are used in real cellular states has been achieved so far. A quantitative measure of fluxes carried by individual elementary modes is of great help to identify dominant metabolic processes, and to understand how these processes are redistributed in biological cells in response to changes in environmental conditions, enzyme kinetics, or chemical concentrations. Results Selecting a valid decomposition of a flux distribution onto a set of elementary modes is not straightforward, since there is usually an infinite number of possible such decompositions. We first show that two recently introduced decompositions are very closely related and assign the same fluxes to reversible elementary modes. Then, we show how such decompositions can be used in combination with kinetic modelling to assess the effects of changes in enzyme kinetics on the usage of individual metabolic routes, and to analyse the range of attainable states in a metabolic system. This approach is illustrated by the example of yeast glycolysis. Our results indicate that only a small subset of the space of stoichiometrically feasible steady states is actually reached by the glycolysis system, even when large variation intervals are allowed for all kinetic parameters of the model. Among eight possible elementary modes, the standard glycolytic route remains dominant in all cases, and only one other elementary mode is able to gain significant flux values in steady state. Conclusion These results indicate that a combination of structural and kinetic modelling significantly constrains the range of possible behaviours of a metabolic system. All elementary modes are not equal contributors to physiological cellular states, and this approach may open a direction toward a

  18. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  19. A quantitative analysis of the causes of the global climate change research distribution

    DEFF Research Database (Denmark)

    Pasgaard, Maya; Strange, Niels

    2013-01-01

    investigates whether the need for knowledge on climate changes in the most vulnerable regions of the world is met by the supply of knowledge measured by scientific research publications from the last decade. A quantitative analysis of more than 15,000 scientific publications from 197 countries investigates...... the poorer, fragile and more vulnerable regions of the world. A quantitative keywords analysis of all publications shows that different knowledge domains and research themes dominate across regions, reflecting the divergent global concerns in relation to climate change. In general, research on climate change...... the distribution of climate change research and the potential causes of this distribution. More than 13 explanatory variables representing vulnerability, geographical, demographical, economical and institutional indicators are included in the analysis. The results show that the supply of climate change knowledge...

  20. An Algorithm to Automate Yeast Segmentation and Tracking

    Science.gov (United States)

    Doncic, Andreas; Eser, Umut; Atay, Oguzhan; Skotheim, Jan M.

    2013-01-01

    Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation. PMID:23520484

  1. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.

    Science.gov (United States)

    Kitagaki, Hiroshi; Kitamoto, Katsuhiko

    2013-01-01

    Sake is an alcoholic beverage of Japan, with a tradition lasting more than 1,300 years; it is produced from rice and water by fermenting with the koji mold Aspergillus oryzae and sake yeast Saccharomyces cerevisiae. Breeding research on sake yeasts was originally developed in Japan by incorporating microbiological and genetic research methodologies adopted in other scientific areas. Since the advent of a genetic paradigm, isolation of yeast mutants has been a dominant approach for the breeding of favorable sake yeasts. These sake yeasts include (a) those that do not form foams (produced by isolating a mutant that does not stick to foams, thus decreasing the cost of sake production); (b) those that do not produce urea, which leads to the formation of ethyl carbamate, a possible carcinogen (isolated by positive selection in a canavanine-, arginine-, and ornithine-containing medium); (c) those that produce an increased amount of ethyl caproate, an apple-like flavor (produced by isolating a mutant resistant to cerulenin, an inhibitor of fatty-acid synthesis); and (d) those that produce a decreased amount of pyruvate (produced by isolating a mutant resistant to an inhibitor of mitochondrial transport, thus decreasing the amount of diacetyl). Given that sake yeasts perform sexual reproduction, sporulation and mating are potent approaches for their breeding. Recently, the genome sequences of sake yeasts have been determined and made publicly accessible. By utilizing this information, the quantitative trait loci (QTLs) for the brewing characteristics of sake yeasts have been identified, which paves a way to DNA marker-assisted selection of the mated strains. Genetic engineering technologies for experimental yeast strains have recently been established by academic groups, and these technologies have also been applied to the breeding of sake yeasts. Sake yeasts whose genomes have been modified with these technologies correspond to genetically modified organisms (GMOs

  2. Direct concentration and viability measurement of yeast in corn mash using a novel imaging cytometry method.

    Science.gov (United States)

    Chan, Leo L; Lyettefi, Emily J; Pirani, Alnoor; Smith, Tim; Qiu, Jean; Lin, Bo

    2011-08-01

    Worldwide awareness of fossil-fuel depletion and global warming has been increasing over the last 30 years. Numerous countries, including the USA and Brazil, have introduced large-scale industrial fermentation facilities for bioethanol, biobutanol, or biodiesel production. Most of these biofuel facilities perform fermentation using standard baker's yeasts that ferment sugar present in corn mash, sugar cane, or other glucose media. In research and development in the biofuel industry, selection of yeast strains (for higher ethanol tolerance) and fermentation conditions (yeast concentration, temperature, pH, nutrients, etc.) can be studied to optimize fermentation performance. Yeast viability measurement is needed to identify higher ethanol-tolerant yeast strains, which may prolong the fermentation cycle and increase biofuel output. In addition, yeast concentration may be optimized to improve fermentation performance. Therefore, it is important to develop a simple method for concentration and viability measurement of fermenting yeast. In this work, we demonstrate an imaging cytometry method for concentration and viability measurements of yeast in corn mash directly from operating fermenters. It employs an automated cell counter, a dilution buffer, and staining solution from Nexcelom Bioscience to perform enumeration. The proposed method enables specific fluorescence detection of viable and nonviable yeasts, which can generate precise results for concentration and viability of yeast in corn mash. This method can provide an essential tool for research and development in the biofuel industry and may be incorporated into manufacturing to monitor yeast concentration and viability efficiently during the fermentation process.

  3. GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris.

    Science.gov (United States)

    Liachko, Ivan; Youngblood, Rachel A; Tsui, Kyle; Bubb, Kerry L; Queitsch, Christine; Raghuraman, M K; Nislow, Corey; Brewer, Bonita J; Dunham, Maitreya J

    2014-03-01

    The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins--a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation.

  4. Yeast CUP1 protects HeLa cells against copper-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X.X. [Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai (China); College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou (China); Ma, Y.F.; Wang, Q.S.; Chen, Z.L.; Liao, R.R.; Pan, Y.C. [Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai (China)

    2015-06-12

    As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. YeastCUP1 is a member of the MT gene family. The aim of this study was to determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study,CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P<0.05) and decreased ROS production (P<0.05). It was also observed that overexpression of yeast CUP1 reduced the percentage of G1 cells and increased the percentage of S cells, which suggested that it contributed to cell viability. We found that overexpression of yeast CUP1 protected HeLa cells against copper stress. These results offer useful data to elucidate the mechanism of the MT gene on copper metabolism in mammalian cells.

  5. Yeast Flocculation—Sedimentation and Flotation

    Directory of Open Access Journals (Sweden)

    Graham G. Stewart

    2018-04-01

    Full Text Available Unlike most fermentation alcohol beverage production processes, brewers recycle their yeast. This is achieved by employing a yeast culture’s: flocculation, adhesion, sedimentation, flotation, and cropping characteristics. As a consequence of yeast recycling, the quality of the cropped yeast culture’s characteristics is critical. However, the other major function of brewer’s yeast is to metabolise wort into ethanol, carbon dioxide, glycerol, and other fermentation products, many of which contribute to beer’s overall flavour characteristics. This review will only focus on brewer’s yeast flocculation characteristics.

  6. Permeation of iodide from iodine-enriched yeast through porcine intestine.

    Science.gov (United States)

    Ryszka, Florian; Dolińska, Barbara; Zieliński, Michał; Chyra, Dagmara; Dobrzański, Zbigniew

    2013-01-01

    Iodine deficiency is a common phenomenon, threatening the whole global human population. Recommended daily intake of iodine is 150 μg for adults and 250 μg for pregnant and breastfeeding women. About 50% of human population can be at risk of moderate iodine deficiency. Due to this fact, increased iodine supplementation is recommended, through intake of iodized mineral water and salt iodization. The aim of this study was to investigate permeation and absorption of iodide from iodine bioplex (experimental group) in comparison with potassium iodide (controls). Permeation and absorption processes were investigated in vitro using a porcine intestine. The experimental model was based on a standard Franz diffusion cell (FD-Cell). The iodine bioplex was produced using Saccharomyces cerevisiae yeast and whey powder: iodine content - 388 μg/g, total protein - 28.5%, total fat - 0.9%., glutamic acid - 41.2%, asparaginic acid - 29.4%, lysine - 24.8%; purchased from: F.Z.N.P. Biochefa, Sosnowiec, Poland. Potassium iodide was used as controls, at 388 μg iodine concentration, which was the same as in iodine-enriched yeast bioplex. A statistically significant increase in iodide permeation was observed for iodine-enriched yeast bioplex in comparison with controls - potassium iodide. After 5h the total amount of permeated iodide from iodine-enriched yeast bioplex was 85%, which is ~ 2-fold higher than controls - 37%. Iodide absorption was by contrast statistically significantly higher in controls - 7.3%, in comparison with 4.5% in experimental group with iodine-enriched yeast bioplex. Presented results show that iodide permeation process dominates over absorption in case of iodine-enriched yeast bioplex.

  7. Development of scalable high throughput fermentation approaches for physiological characterisation of yeast and filamentous fungi

    DEFF Research Database (Denmark)

    Knudsen, Peter Boldsen

    producing the heterologous model polyketide, 6-methylsalicylic acid (6-MSA). An automated methodology for high throughput screening focusing on growth rates, together with a fully automated method for quantitative physiological characterisation in microtiter plates, was established for yeast. Full...

  8. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    Science.gov (United States)

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. An algorithm to automate yeast segmentation and tracking.

    Directory of Open Access Journals (Sweden)

    Andreas Doncic

    Full Text Available Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation.

  10. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  11. Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30ºC

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Nielsen, Jens

    2016-01-01

    to grow at increased temperature, activated a constitutive heat stress response when grown at the optimal ancestral temperature, and that this is associated with a reduced growth rate. This preventive response was perfected by additional transcriptional changes activated when the cultivation temperature...... is increased. Remarkably, the sum of global transcriptional changes activated in the thermotolerant strains when transferred from the optimal to the high temperature, corresponded, in magnitude and direction, to the global changes observed in the ancestral strain exposed to the same transition....... This demonstrates robustness of the yeast transcriptional program when exposed to heat, and that the thermotolerant strains streamlined their path to rapidly and optimally reach post-stress transcriptional and metabolic levels. Thus, long-term adaptation to heat improved yeasts ability to rapidly adapt to increased...

  12. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture.

    Science.gov (United States)

    Øverland, Margareth; Skrede, Anders

    2017-02-01

    The global expansion in aquaculture production implies an emerging need of suitable and sustainable protein sources. Currently, the fish feed industry is dependent on high-quality protein sources of marine and plant origin. Yeast derived from processing of low-value and non-food lignocellulosic biomass is a potential sustainable source of protein in fish diets. Following enzymatic hydrolysis, the hexose and pentose sugars of lignocellulosic substrates and supplementary nutrients can be converted into protein-rich yeast biomass by fermentation. Studies have shown that yeasts such as Saccharomyces cerevisiae, Candida utilis and Kluyveromyces marxianus have favourable amino acid composition and excellent properties as protein sources in diets for fish, including carnivorous species such as Atlantic salmon and rainbow trout. Suitable downstream processing of the biomass to disrupt cell walls is required to secure high nutrient digestibility. A number of studies have shown various immunological and health benefits from feeding fish low levels of yeast and yeast-derived cell wall fractions. This review summarises current literature on the potential of yeast from lignocellulosic biomass as an alternative protein source for the aquaculture industry. It is concluded that further research and development within yeast production can be important to secure the future sustainability and economic viability of intensive aquaculture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  14. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.

    Science.gov (United States)

    Kaplan, Tommy; Liu, Chih Long; Erkmann, Judith A; Holik, John; Grunstein, Michael; Kaufman, Paul D; Friedman, Nir; Rando, Oliver J

    2008-11-01

    Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.

  15. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.

    Directory of Open Access Journals (Sweden)

    Tommy Kaplan

    2008-11-01

    Full Text Available Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.

  16. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    OpenAIRE

    Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.

    2012-01-01

    Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast densit...

  17. Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies.

    Science.gov (United States)

    Bidlingmaier, Scott; Su, Yang; Liu, Bin

    2015-01-01

    Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.

  18. Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains

    DEFF Research Database (Denmark)

    Canelas, Andre B.; Harrison, Nicola; Fazio, Alessandro

    2010-01-01

    The field of systems biology is often held back by difficulties in obtaining comprehensive, high-quality, quantitative data sets. In this paper, we undertook an interlaboratory effort to generate such a data set for a very large number of cellular components in the yeast Saccharomyces cerevisiae,...

  19. Comparison of visual scoring and quantitative planimetry methods for estimation of global infarct size on delayed enhanced cardiac MRI and validation with myocardial enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Mewton, Nathan, E-mail: nmewton@gmail.com [Hopital Cardiovasculaire Louis Pradel, 28, Avenue Doyen Lepine, 69677 Bron cedex, Hospices Civils de Lyon (France); CREATIS-LRMN (Centre de Recherche et d' Applications en Traitement de l' Image et du Signal), Universite Claude Bernard Lyon 1, UMR CNRS 5220, U 630 INSERM (France); Revel, Didier [Hopital Cardiovasculaire Louis Pradel, 28, Avenue Doyen Lepine, 69677 Bron cedex, Hospices Civils de Lyon (France); CREATIS-LRMN (Centre de Recherche et d' Applications en Traitement de l' Image et du Signal), Universite Claude Bernard Lyon 1, UMR CNRS 5220, U 630 INSERM (France); Bonnefoy, Eric [Hopital Cardiovasculaire Louis Pradel, 28, Avenue Doyen Lepine, 69677 Bron cedex, Hospices Civils de Lyon (France); Ovize, Michel [Hopital Cardiovasculaire Louis Pradel, 28, Avenue Doyen Lepine, 69677 Bron cedex, Hospices Civils de Lyon (France); INSERM Unite 886 (France); Croisille, Pierre [Hopital Cardiovasculaire Louis Pradel, 28, Avenue Doyen Lepine, 69677 Bron cedex, Hospices Civils de Lyon (France); CREATIS-LRMN (Centre de Recherche et d' Applications en Traitement de l' Image et du Signal), Universite Claude Bernard Lyon 1, UMR CNRS 5220, U 630 INSERM (France)

    2011-04-15

    Purpose: Although delayed enhanced CMR has become a reference method for infarct size quantification, there is no ideal method to quantify total infarct size in a routine clinical practice. In a prospective study we compared the performance and post-processing time of a global visual scoring method to standard quantitative planimetry and we compared both methods to the peak values of myocardial biomarkers. Materials and methods: This study had local ethics committee approval; all patients gave written informed consent. One hundred and three patients admitted with reperfused AMI to our intensive care unit had a complete CMR study with gadolinium-contrast injection 4 {+-} 2 days after admission. A global visual score was defined on a 17-segment model and compared with the quantitative planimetric evaluation of hyperenhancement. The peak values of serum Troponin I (TnI) and creatine kinase (CK) release were measured in each patient. Results: The mean percentage of total left ventricular myocardium with hyperenhancement determined by the quantitative planimetry method was (20.1 {+-} 14.6) with a range of 1-68%. There was an excellent correlation between quantitative planimetry and visual global scoring for the hyperenhancement extent's measurement (r = 0.94; y = 1.093x + 0.87; SEE = 1.2; P < 0.001) The Bland-Altman plot showed a good concordance between the two approaches (mean of the differences = 1.9% with a standard deviation of 4.7). Mean post-processing time for quantitative planimetry was significantly longer than visual scoring post-processing time (23.7 {+-} 5.7 min vs 5.0 {+-} 1.1 min respectively, P < 0.001). Correlation between peak CK and quantitative planimetry was r = 0.82 (P < 0.001) and r = 0.83 (P < 0.001) with visual global scoring. Correlation between peak Troponin I and quantitative planimetry was r = 0.86 (P < 0.001) and r = 0.85 (P < 0.001) with visual global scoring. Conclusion: A visual approach based on a 17-segment model allows a rapid

  20. Comparison of visual scoring and quantitative planimetry methods for estimation of global infarct size on delayed enhanced cardiac MRI and validation with myocardial enzymes

    International Nuclear Information System (INIS)

    Mewton, Nathan; Revel, Didier; Bonnefoy, Eric; Ovize, Michel; Croisille, Pierre

    2011-01-01

    Purpose: Although delayed enhanced CMR has become a reference method for infarct size quantification, there is no ideal method to quantify total infarct size in a routine clinical practice. In a prospective study we compared the performance and post-processing time of a global visual scoring method to standard quantitative planimetry and we compared both methods to the peak values of myocardial biomarkers. Materials and methods: This study had local ethics committee approval; all patients gave written informed consent. One hundred and three patients admitted with reperfused AMI to our intensive care unit had a complete CMR study with gadolinium-contrast injection 4 ± 2 days after admission. A global visual score was defined on a 17-segment model and compared with the quantitative planimetric evaluation of hyperenhancement. The peak values of serum Troponin I (TnI) and creatine kinase (CK) release were measured in each patient. Results: The mean percentage of total left ventricular myocardium with hyperenhancement determined by the quantitative planimetry method was (20.1 ± 14.6) with a range of 1-68%. There was an excellent correlation between quantitative planimetry and visual global scoring for the hyperenhancement extent's measurement (r = 0.94; y = 1.093x + 0.87; SEE = 1.2; P < 0.001) The Bland-Altman plot showed a good concordance between the two approaches (mean of the differences = 1.9% with a standard deviation of 4.7). Mean post-processing time for quantitative planimetry was significantly longer than visual scoring post-processing time (23.7 ± 5.7 min vs 5.0 ± 1.1 min respectively, P < 0.001). Correlation between peak CK and quantitative planimetry was r = 0.82 (P < 0.001) and r = 0.83 (P < 0.001) with visual global scoring. Correlation between peak Troponin I and quantitative planimetry was r = 0.86 (P < 0.001) and r = 0.85 (P < 0.001) with visual global scoring. Conclusion: A visual approach based on a 17-segment model allows a rapid and accurate

  1. GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Ivan Liachko

    2014-03-01

    Full Text Available The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins--a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation.

  2. Efficient protein production by yeast requires global tuning of metabolism

    DEFF Research Database (Denmark)

    Huang, Mingtao; Bao, Jichen; Hallstrom, Bjorn M.

    2017-01-01

    The biotech industry relies on cell factories for production of pharmaceutical proteins, of which several are among the top-selling medicines. There is, therefore, considerable interest in improving the efficiency of protein production by cell factories. Protein secretion involves numerous...... intracellular processes with many underlying mechanisms still remaining unclear. Here, we use RNA-seq to study the genome-wide transcriptional response to protein secretion in mutant yeast strains. We find that many cellular processes have to be attuned to support efficient protein secretion. In particular...... that by tuning metabolism cells are able to efficiently secrete recombinant proteins. Our findings provide increased understanding of which cellular regulations and pathways are associated with efficient protein secretion....

  3. New yeasts-new brews: modern approaches to brewing yeast design and development.

    Science.gov (United States)

    Gibson, B; Geertman, J-M A; Hittinger, C T; Krogerus, K; Libkind, D; Louis, E J; Magalhães, F; Sampaio, J P

    2017-06-01

    The brewing industry is experiencing a period of change and experimentation largely driven by customer demand for product diversity. This has coincided with a greater appreciation of the role of yeast in determining the character of beer and the widespread availability of powerful tools for yeast research. Genome analysis in particular has helped clarify the processes leading to domestication of brewing yeast and has identified domestication signatures that may be exploited for further yeast development. The functional properties of non-conventional yeast (both Saccharomyces and non-Saccharomyces) are being assessed with a view to creating beers with new flavours as well as producing flavoursome non-alcoholic beers. The discovery of the psychrotolerant S. eubayanus has stimulated research on de novo S. cerevisiae × S. eubayanus hybrids for low-temperature lager brewing and has led to renewed interest in the functional importance of hybrid organisms and the mechanisms that determine hybrid genome function and stability. The greater diversity of yeast that can be applied in brewing, along with an improved understanding of yeasts' evolutionary history and biology, is expected to have a significant and direct impact on the brewing industry, with potential for improved brewing efficiency, product diversity and, above all, customer satisfaction. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Vaginal yeast infection

    Science.gov (United States)

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts ...

  5. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    Science.gov (United States)

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast. © 2013 The Author. Yeast Published by John Wiley & Sons Ltd.

  6. Modeling Cancer Metastasis using Global, Quantitative and Integrative Network Biology

    DEFF Research Database (Denmark)

    Schoof, Erwin; Erler, Janine

    understanding of molecular processes which are fundamental to tumorigenesis. In Article 1, we propose a novel framework for how cancer mutations can be studied by taking into account their effect at the protein network level. In Article 2, we demonstrate how global, quantitative data on phosphorylation dynamics...... can be generated using MS, and how this can be modeled using a computational framework for deciphering kinase-substrate dynamics. This framework is described in depth in Article 3, and covers the design of KinomeXplorer, which allows the prediction of kinases responsible for modulating observed...... phosphorylation dynamics in a given biological sample. In Chapter III, we move into Integrative Network Biology, where, by combining two fundamental technologies (MS & NGS), we can obtain more in-depth insights into the links between cellular phenotype and genotype. Article 4 describes the proof...

  7. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    Science.gov (United States)

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  8. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy.

    Science.gov (United States)

    Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J; Marquet, Pierre

    2009-01-01

    Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

  9. Herbicide glufosinate inhibits yeast growth and extends longevity during wine fermentation.

    Science.gov (United States)

    Vallejo, Beatriz; Picazo, Cecilia; Orozco, Helena; Matallana, Emilia; Aranda, Agustín

    2017-09-29

    Glufosinate ammonium (GA) is a widely used herbicide that inhibits glutamine synthetase. This inhibition leads to internal amino acid starvation which, in turn, causes the activation of different nutrient sensing pathways. GA also inhibits the enzyme of the yeast Saccharomyces cerevisiae in such a way that, although it is not used as a fungicide, it may alter yeast performance in industrial processes like winemaking. We describe herein how GA indeed inhibits the yeast growth of a wine strain during the fermentation of grape juice. In turn, GA extends longevity in a variety of growth media. The biochemical analysis indicates that GA partially inhibits the nutrient sensing TORC1 pathway, which may explain these phenotypes. The GCN2 kinase mutant is hypersensitive to GA. Hence the control of translation and amino acid biosynthesis is required to also deal with the damaging effects of this pesticide. A global metabolomics analysis under winemaking conditions indicated that an increase in amino acid and in polyamines occurred. In conclusion, GA affects many different biochemical processes during winemaking, which provides us with some insights into both the effect of this herbicide on yeast physiology and into the relevance of the metabolic step for connecting nitrogen and carbon metabolism.

  10. Regularities of radiorace formation in yeasts. Comm.8. The role played by heterozygosis of diploid yeasts in radiorace formation

    International Nuclear Information System (INIS)

    Korogodin, V.I.; Bliznik, K.M.; Kapul'tsevich, Yu.G.; Kondrat'eva, V.I.

    1976-01-01

    Tow strains of diploid yeasts, namely, high-homozygous 5x3B Saccharomyces cerevisiae and natural heterozygous Mergi 139-B Saccharomyces ellipsoideus, have been used to study the regularities of formation of new races under the action of ionizing radiation. It has been shown that the degree of heterozygosis of both strains does not substantially affect either the quantitative regularities of radiorace formation or the qualitative variations in the new-formed races. The differences between the strains in yielding new races after γ-irradiation with doses similar in biological effectiveness may be explained by different extrapolation numbers of their survival curves

  11. Comparison of the yeast microbiota of different varieties of cool-climate grapes by PCR-RAPD

    Directory of Open Access Journals (Sweden)

    Iwona Drożdż

    2015-08-01

    Full Text Available The yeast microbiota occurring on different varieties of grapes grown in cool-climate is not completely researched. Therefore, its identification is important to research. On the other hand, yeasts occurring in these fruits can be potentially used as starter cultures to obtain particularly demanded features in the production of wine. In addition, rapid methods for yeast identification allow to eliminate the contamination with pathogenic yeasts, which could cause the loss of wine production. The aim of the study was to isolate and identify the yeasts occurring on the surface of the different varieties of white and red grapes, grown in cool-climate of Poland. Also, the aim was to compare the qualitative and quantitative composition of yeasts on the tested grapes. The 84 cultures of yeasts were isolated, that were initially macroscopic and microscopic analyzed and the purity of cultures was rated on the WL medium. Identification of yeasts by PCR-RAPD was carried using the M13 primer. In the PCR-RFLP method ITS1 and ITS4 primers, as well as restriction enzymes HhaI, HinfI, HaeIII, were used. Preliminary identification of yeasts by standard methods produced results very different from the results obtained by molecular methods. Among the isolated microorganisms yeasts were dominating, but bacteria and molds were also present. Using the PCR-RAPD method most strains of yeasts were identified. Yeast microflora of different varieties of white and red grapes was very similar as the same species of yeasts were identified. Yeasts of the genus Saccharomyces were present in all varieties of grapes. The Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Metschnikowia pulcherrima, Rhodotorula minuta, Pichia kluyveri, Hanseniaspora uvarum and Rhodotorula mucilaginosa were identified by PCR-RAPD. 4 of the 33 tested strains of yeasts were identified by PCR-RFLP. By PCR-RAPD only Hanseniaspora uvarum was identified. The quantity and quality of microorganisms living

  12. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  13. A generalized quantitative antibody homeostasis model: maintenance of global antibody equilibrium by effector functions.

    Science.gov (United States)

    Prechl, József

    2017-11-01

    The homeostasis of antibodies can be characterized as a balanced production, target-binding and receptor-mediated elimination regulated by an interaction network, which controls B-cell development and selection. Recently, we proposed a quantitative model to describe how the concentration and affinity of interacting partners generates a network. Here we argue that this physical, quantitative approach can be extended for the interpretation of effector functions of antibodies. We define global antibody equilibrium as the zone of molar equivalence of free antibody, free antigen and immune complex concentrations and of dissociation constant of apparent affinity: [Ab]=[Ag]=[AbAg]= K D . This zone corresponds to the biologically relevant K D range of reversible interactions. We show that thermodynamic and kinetic properties of antibody-antigen interactions correlate with immunological functions. The formation of stable, long-lived immune complexes correspond to a decrease of entropy and is a prerequisite for the generation of higher-order complexes. As the energy of formation of complexes increases, we observe a gradual shift from silent clearance to inflammatory reactions. These rules can also be applied to complement activation-related immune effector processes, linking the physicochemical principles of innate and adaptive humoral responses. Affinity of the receptors mediating effector functions shows a wide range of affinities, allowing the continuous sampling of antibody-bound antigen over the complete range of concentrations. The generation of multivalent, multicomponent complexes triggers effector functions by crosslinking these receptors on effector cells with increasing enzymatic degradation potential. Thus, antibody homeostasis is a thermodynamic system with complex network properties, nested into the host organism by proper immunoregulatory and effector pathways. Maintenance of global antibody equilibrium is achieved by innate qualitative signals modulating a

  14. Spring and Its Global Echo: Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    A. V. Korotayev

    2017-01-01

    Full Text Available It is shown that the Arab Spring acted as a trigger for a global wave of socio-political destabilization, which signifi cantly exceeded the scale of the Arab Spring itself and affected absolutely all world-system zones. Only in 2011 the growth of the global number of largescale anti-government demonstrations, riots and political strikes was to a high degree (although not entirely due to their growth in the Arab world. In the ensuing years, the Arab countries rather made a negative contribution to a very noticeable further increase in the global number of large-scale anti-government demonstrations, riots and general strikes (the global intensity of all these three important types of socio-political destabilization continued to grow despite the decline in the Arab world. Thus, for all these three important indicators of sociopolitical destabilization, the scale of the global echo of the Arab Spring has overshadowed the scale of the Arab Spring itself. Only as regards the fourth considered indicator (major terrorist attacks / guerrilla warfare the scale of the global echo for the entire period considered did not overshadow the scale of the Arab Spring (and, incidentally, «Winter» - and in 2014-2015 Arab countries continued to make a disproportionate contribution to the historically record global values of this sad indicator – global number of major terrorist attacks/ guerilla warfare. To conclude, triggered by the Arab Spring, the global wave of socio-political destabilization led after 2010 to a very signifi cant growth of socio-political instability in absolutely all World System zones. However, this global destabilization wave manifested itself in different World System zones in different ways and not completely synchronously.

  15. NetPhosYeast: prediction of protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Ingrell, C.R.; Miller, Martin Lee; Jensen, O.N.

    2007-01-01

    sites compared to those in humans, suggesting the need for an yeast-specific phosphorylation site predictor. NetPhosYeast achieves a correlation coefficient close to 0.75 with a sensitivity of 0.84 and specificity of 0.90 and outperforms existing predictors in the identification of phosphorylation sites...

  16. Soft x-ray-controlled dose deposition in yeast cells: techniques, model, and biological assessment

    Science.gov (United States)

    Milani, Marziale; Batani, Dimitri; Conti, Aldo; Masini, Alessandra; Costato, Michele; Pozzi, Achille; Turcu, I. C. Edmond

    1996-12-01

    A procedure is presented to release soft x-rays onto yeast cell membrane allegedly damaging the resident enzymatic processes connected with fermentation. The damage is expected to be restricted to regulating fermentation processes without interference with respiration. By this technique fermentation is followed leading to CO2 production, and respiration resulting in global pressure measurements. A solid state pressure sensor system has been developed linked to a data acquisition system. Yeast cells cultures have been investigated at different concentrations and with different nutrients. A non-monotone response in CO2 production as a function of the delivered x-ray dose is observed.

  17. Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling during ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Lili Li

    2017-03-01

    Full Text Available Objectives: To improve ethanolic fermentation performance of self-flocculating yeast, difference between a flocculating yeast strain and a regular industrial yeast strain was analyzed by transcriptional and metabolic approaches. Results: The number of down-regulated (industrial yeast YIC10 vs. flocculating yeast GIM2.71 and up-regulated genes were 4503 and 228, respectively. It is the economic regulation for YIC10 that non-essential genes were down-regulated, and cells put more “energy” into growth and ethanol production. Hexose transport and phosphorylation were not the limiting-steps in ethanol fermentation for GIM2.71 compared to YIC10, whereas the reaction of 1,3-disphosphoglycerate to 3-phosphoglycerate, the decarboxylation of pyruvate to acetaldehyde and its subsequent reduction to ethanol were the most limiting steps. GIM2.71 had stronger stress response than non-flocculating yeast and much more carbohydrate was distributed to other bypass, such as glycerol, acetate and trehalose synthesis. Conclusions: Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling will provide clues for improving the fermentation performance of GIM2.71.

  18. Electron beam radiation of dried fruits and nuts to reduce yeast and mold bioburden.

    Science.gov (United States)

    Ic, Erhan; Kottapalli, Bala; Maxim, Joseph; Pillai, Suresh D

    2007-04-01

    Dried fruits and nuts make up a significant portion of the commodities traded globally, and the presence of yeasts and molds on dried fruits and nuts can be a public health risk because of the potential for exposure to toxigenic fungi. Since current postharvest treatment technologies are rather limited for dried fruits and nuts, electron beam (E-beam) radiation experiments were performed to determine the doses required to reduce the yeast and mold bioburden of raisins, walnuts, and dates. The indigenous yeast and mold bioburden on a select number of commodities sold at retail ranged from 10(2) to 10(3) CFU/g. E-beam inactivation kinetics based on the linear model suggest that the decimal reduction dose required to eliminate 90% of the microbial population (D10-value) of these indigenous fungal populations ranges from 1.09 to 1.59 kGy. Some samples, however, exhibited inactivation kinetics that were better modeled by a quadratic model. The results indicate that different commodities can contain molds and yeasts of varying resistance to ionizing radiation. It is thus essential for the dried fruit and nut industry to determine empirically the minimum E-beam dose that is capable of reducing or eliminating the bioburden of yeasts and molds in their specific commodities.

  19. Identifying pathogenicity of human variants via paralog-based yeast complementation.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2017-05-01

    Full Text Available To better understand the health implications of personal genomes, we now face a largely unmet challenge to identify functional variants within disease-associated genes. Functional variants can be identified by trans-species complementation, e.g., by failure to rescue a yeast strain bearing a mutation in an orthologous human gene. Although orthologous complementation assays are powerful predictors of pathogenic variation, they are available for only a few percent of human disease genes. Here we systematically examine the question of whether complementation assays based on paralogy relationships can expand the number of human disease genes with functional variant detection assays. We tested over 1,000 paralogous human-yeast gene pairs for complementation, yielding 34 complementation relationships, of which 33 (97% were novel. We found that paralog-based assays identified disease variants with success on par with that of orthology-based assays. Combining all homology-based assay results, we found that complementation can often identify pathogenic variants outside the homologous sequence region, presumably because of global effects on protein folding or stability. Within our search space, paralogy-based complementation more than doubled the number of human disease genes with a yeast-based complementation assay for disease variation.

  20. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    Science.gov (United States)

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities.

  1. Independent Origins of Yeast Associated with Coffee and Cacao Fermentation.

    Science.gov (United States)

    Ludlow, Catherine L; Cromie, Gareth A; Garmendia-Torres, Cecilia; Sirr, Amy; Hays, Michelle; Field, Colburn; Jeffery, Eric W; Fay, Justin C; Dudley, Aimée M

    2016-04-04

    Modern transportation networks have facilitated the migration and mingling of previously isolated populations of plants, animals, and insects. Human activities can also influence the global distribution of microorganisms. The best-understood example is yeasts associated with winemaking. Humans began making wine in the Middle East over 9,000 years ago [1, 2]. Selecting favorable fermentation products created specialized strains of Saccharomyces cerevisiae [3, 4] that were transported along with grapevines. Today, S. cerevisiae strains residing in vineyards around the world are genetically similar, and their population structure suggests a common origin that followed the path of human migration [3-7]. Like wine, coffee and cacao depend on microbial fermentation [8, 9] and have been globally dispersed by humans. Theobroma cacao originated in the Amazon and Orinoco basins of Colombia and Venezuela [10], was cultivated in Central America by Mesoamerican peoples, and was introduced to Europeans by Hernán Cortés in 1530 [11]. Coffea, native to Ethiopia, was disseminated by Arab traders throughout the Middle East and North Africa in the 6(th) century and was introduced to European consumers in the 17(th) century [12]. Here, we tested whether the yeasts associated with coffee and cacao are genetically similar, crop-specific populations or genetically diverse, geography-specific populations. Our results uncovered populations that, while defined by niche and geography, also bear signatures of admixture between major populations in events independent of the transport of the plants. Thus, human-associated fermentation and migration may have affected the distribution of yeast involved in the production of coffee and chocolate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  3. Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Khaled A. Selim

    2018-03-01

    Full Text Available Scarcity of the non-renewable energy sources, global warming, environmental pollution, and raising the cost of petroleum are the motive for the development of renewable, eco-friendly fuels production with low costs. Bioethanol production is one of the promising materials that can subrogate the petroleum oil, and it is considered recently as a clean liquid fuel or a neutral carbon. Diverse microorganisms such as yeasts and bacteria are able to produce bioethanol on a large scale, which can satisfy our daily needs with cheap and applicable methods. Saccharomyces cerevisiae and Pichia stipitis are two of the pioneer yeasts in ethanol production due to their abilities to produce a high amount of ethanol. The recent focus is directed towards lignocellulosic biomass that contains 30–50% cellulose and 20–40% hemicellulose, and can be transformed into glucose and fundamentally xylose after enzymatic hydrolysis. For this purpose, a number of various approaches have been used to engineer different pathways for improving the bioethanol production with simultaneous fermentation of pentose and hexoses sugars in the yeasts. These approaches include metabolic and flux analysis, modeling and expression analysis, followed by targeted deletions or the overexpression of key genes. In this review, we highlight and discuss the current status of yeasts genetic engineering for enhancing bioethanol production, and the conditions that influence bioethanol production.

  4. Influence of different yeast/lactic acid bacteria combinations on the aromatic profile of red Bordeaux wine.

    Science.gov (United States)

    Gammacurta, Marine; Marchand, Stéphanie; Moine, Virginie; de Revel, Gilles

    2017-09-01

    The typical fruity aroma of red Bordeaux wines depends on the grape variety but also on microbiological processes, such as alcoholic and malolactic fermentations. These transformations involve respectively the yeast Saccharomyces cerevisiae and the lactic acid bacterium Oenococcus oeni. Both species play a central role in red winemaking but their quantitative and qualitative contribution to the revelation of the organoleptic qualities of wine has not yet been fully described. The aim of this study was to elucidate the influence of sequential inoculation of different yeast and bacteria strains on the aromatic profile of red Bordeaux wine. All microorganisms completed fermentations and no significant difference was observed between tanks regarding the main oenological parameters until 3 months' aging. Regardless of the yeast strain, B28 bacteria required the shortest period to completely degrade the malic acid, compared to the other strain. Quantification of 73 major components highlighted a specific volatile profile corresponding to each microorganism combination. However, the yeast strain appeared to have a predominant effect on aromatic compound levels, as well as on fruity aroma perception. Yeasts had a greater impact on wine quality and have more influence on the aromatic style of red wine than bacteria. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Entropy analysis in yeast DNA

    International Nuclear Information System (INIS)

    Kim, Jongkwang; Kim, Sowun; Lee, Kunsang; Kwon, Younghun

    2009-01-01

    In this article, we investigate the language structure in yeast 16 chromosomes. In order to find it, we use the entropy analysis for codons (or amino acids) of yeast 16 chromosomes, developed in analysis of natural language by Montemurro et al. From the analysis, we can see that there exists a language structure in codons (or amino acids) of yeast 16 chromosomes. Also we find that the grammar structure of amino acids of yeast 16 chromosomes has a deep relationship with secondary structure of protein.

  6. How does yeast respond to pressure?

    Directory of Open Access Journals (Sweden)

    Fernandes P.M.B.

    2005-01-01

    Full Text Available The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.

  7. Yeast flocculation: New story in fuel ethanol production.

    Science.gov (United States)

    Zhao, X Q; Bai, F W

    2009-01-01

    Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.

  8. Brewing characteristics of piezosensitive sake yeasts

    Science.gov (United States)

    Nomura, Kazuki; Hoshino, Hirofumi; Igoshi, Kazuaki; Onozuka, Haruka; Tanaka, Erika; Hayashi, Mayumi; Yamazaki, Harutake; Takaku, Hiroaki; Iguchi, Akinori; Shigematsu, Toru

    2018-04-01

    Application of high hydrostatic pressure (HHP) treatment to food processing is expected as a non-thermal fermentation regulation technology that supresses over fermentation. However, the yeast Saccharomyces cerevisiae used for Japanese rice wine (sake) brewing shows high tolerance to HHP. Therefore, we aimed to generate pressure-sensitive (piezosensitive) sake yeast strains by mating sake with piezosensitive yeast strains to establish an HHP fermentation regulation technology and extend the shelf life of fermented foods. The results of phenotypic analyses showed that the generated yeast strains were piezosensitive and exhibited similar fermentation ability compared with the original sake yeast strain. In addition, primary properties of sake brewed using these strains, such as ethanol concentration, sake meter value and sake flavor compounds, were almost equivalent to those obtained using the sake yeast strain. These results suggest that the piezosensitive strains exhibit brewing characteristics essentially equivalent to those of the sake yeast strain.

  9. A central role for TOR signalling in a yeast model for juvenile CLN3 disease

    Directory of Open Access Journals (Sweden)

    Michael E. Bond

    2015-11-01

    Full Text Available Yeasts provide an excellent genetically tractable eukaryotic system for investigating the function of genes in their biological context, and are especially relevant for those conserved genes that cause disease. We study the role of btn1, the orthologue of a human gene that underlies an early onset neurodegenerative disease (juvenile CLN3 disease, neuronal ceroid lipofuscinosis (NCLs or Batten disease in the fission yeast Schizosaccharomyces pombe. A global screen for genetic interactions with btn1 highlighted a conserved key signalling hub in which multiple components functionally relate to this conserved disease gene. This signalling hub includes two major mitogen-activated protein kinase (MAPK cascades, and centers on the Tor kinase complexes TORC1 and TORC2. We confirmed that yeast cells modelling CLN3 disease exhibit features consistent with dysfunction in the TORC pathways, and showed that modulating TORC function leads to a comprehensive rescue of defects in this yeast disease model. The same pathways may be novel targets in the development of therapies for the NCLs and related diseases.

  10. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  11. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

    Science.gov (United States)

    Jolly, Neil P; Varela, Cristian; Pretorius, Isak S

    2014-03-01

    Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Effect of yeast storage temperature and flour composition on fermentative activities of baker's yeast

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2009-01-01

    Full Text Available Baker's yeast is a set of living cells of Saccharomyces cerevisiae. It contains around 70-72% of water, 42-45% of proteins, around 40% of carbohydrates, around 7.5% of lipids (based on dry matter, and vitamin B-complex. On the basis of yeast cell analysis it can be concluded that yeast is a complex biological system which changes in time. The intensity of the changes depends on temperature. Yeast sample was stored at 4°C i 24°C for 12 days. During storage at 4°C, the content of total carbohydrates decreased from 48.81% to 37.50% (dry matter, whereas carbohydrate loss ranged from 40.81% to 29.28% at 24°C. The content of trehalose was 12.33% in the yeast sample stored at 4°C and 0.24% at 24°C. Loss of fermentative activity was 81.76% in the sample stored at 24°C for 12 days. The composition of five samples of 1st category flour was investigated. It was found that flours containing more reducing sugars and maltose enable higher fermentation activities. The flours with higher ash content (in the range 0.5-0.94% had higher contents of phytic acid. Higher ash and phytic contents in flour increased the yeast fermentative efficiency. In bakery industry, a range of ingredients has been applied to improve the product's quality such as surface active substances (emulsifiers, enzymes, sugars and fats. In the paper, the effect of some ingredients added to dough (margarine, saccharose, sodium chloride and malted barley on the yeast fermentative activity was studied. The mentioned ingredients were added to dough at different doses: 0.5, 1.0, 1.5 and 2.0%, flour basis. It was found that the investigated ingredients affected the fermentative activity of yeast and improved the bread quality.

  13. Lager Yeast Comes of Age

    Science.gov (United States)

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  14. Next-generation biofuels: a new challenge for yeast.

    Science.gov (United States)

    Petrovič, Uroš

    2015-09-01

    Economic growth depends strongly on the availability and price of fuels. There are various reasons in different parts of the world for efforts to decrease the consumption of fossil fuels, but biofuels are one of the main solutions considered towards achieving this aim globally. As the major bioethanol producer, the yeast Saccharomyces cerevisiae has a central position among biofuel-producing organisms. However, unprecedented challenges for yeast biotechnology lie ahead, as future biofuels will have to be produced on a large scale from sustainable feedstocks that do not interfere with food production, and which are generally not the traditional carbon source for S. cerevisiae. Additionally, the current trend in the development of biofuels is to synthesize molecules that can be used as drop-in fuels for existing engines. Their properties should therefore be more similar to those of oil-derived fuels than those of ethanol. Recent developments and challenges lying ahead for cost-effective production of such designed biofuels, using S. cerevisiae-based cell factories, are presented in this review. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Yeast strains and methods of use thereof

    OpenAIRE

    Goddard, Matthew Robert; Gardner, Richard Clague; Anfang, Nicole

    2013-01-01

    The present invention relates to yeast strains and, in particular, to yeast stains for use in fermentation processes. The invention also relates to methods of fermentation using the yeast strains of the invention either alone or in combination with other yeast strains. The invention thither relates to methods for the selection of yeast strains suitable for fermentation cultures by screening for various metabolic products and the use of specific nutrient sources.

  16. Genes Required for Survival in Microgravity Revealed by Genome-Wide Yeast Deletion Collections Cultured during Spaceflight

    Directory of Open Access Journals (Sweden)

    Corey Nislow

    2015-01-01

    Full Text Available Spaceflight is a unique environment with profound effects on biological systems including tissue redistribution and musculoskeletal stresses. However, the more subtle biological effects of spaceflight on cells and organisms are difficult to measure in a systematic, unbiased manner. Here we test the utility of the molecularly barcoded yeast deletion collection to provide a quantitative assessment of the effects of microgravity on a model organism. We developed robust hardware to screen, in parallel, the complete collection of ~4800 homozygous and ~5900 heterozygous (including ~1100 single-copy deletions of essential genes yeast deletion strains, each carrying unique DNA that acts as strain identifiers. We compared strain fitness for the homozygous and heterozygous yeast deletion collections grown in spaceflight and ground, as well as plus and minus hyperosmolar sodium chloride, providing a second additive stressor. The genome-wide sensitivity profiles obtained from these treatments were then queried for their similarity to a compendium of drugs whose effects on the yeast collection have been previously reported. We found that the effects of spaceflight have high concordance with the effects of DNA-damaging agents and changes in redox state, suggesting mechanisms by which spaceflight may negatively affect cell fitness.

  17. Immobilization of yeast cells by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Fujimura, T.; Kaetsu, I.

    1982-01-01

    Radiation-induced polymerization method was applied to the immobilization of yeast cells. The effects of irradiation, cooling and monomer, which are neccessary for polymerization, were recovered completely by subsequent aerobical incubation of yeast cells. The ethanol productive in immobilized yeast cells increased with the increase of aerobical incubation period. The growth of yeast cells in immobilized yeast cells was indicated. The maximum ethanol productivity in immobilized yeast cell system was around three times as much as that in free yeast cell system. (orig.)

  18. Evolutionary History of Ascomyceteous Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf; Goker, Markus; Klenk, Hans-Peter; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor; Jeffries, Thomas W.

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.

  19. The Genome of the Basidiomycetous Yeast and Human Pathogen Cryptococcus neoformans

    OpenAIRE

    Loftus, Brendan J.; Fung, Eula; Roncaglia, Paola; Rowley, Don; Amedeo, Paolo; Bruno, Dan; Vamathevan, Jessica; Miranda, Molly; Anderson, Iain J.; Fraser, James A.; Allen, Jonathan E.; Bosdet, Ian E.; Brent, Michael R.; Chiu, Readman; Doering, Tamara L.

    2005-01-01

    Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its ~20-megabase genome, which contains ~6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype i...

  20. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation) a......) and receptor/signal processing. A few basic similarities are common to both fission and budding yeasts. The wiring of the regulatory circuitry, however, varies considerably between these divergent yeast groups....

  1. Occurrence of Killer Yeast Strains in Fruit and Berry Wine Yeast Populations

    Directory of Open Access Journals (Sweden)

    Gintare Gulbiniene

    2004-01-01

    Full Text Available Apple, cranberry, chokeberry and Lithuanian red grape wine yeast populations were used for the determination of killer yeast occurrence. According to the tests of the killer characteristics and immunity the isolated strains were divided into seven groups. In this work the activity of killer toxins purified from some typical strains was evaluated. The analysed strains produced different amounts of active killer toxin and some of them possessed new industrially significant killer properties. Total dsRNA extractions in 11 killer strains of yeast isolated from spontaneous fermentations revealed that the molecular basis of the killer phenomenon was not only dsRNAs, but also unidentified genetic determinants.

  2. Quantitative global sensitivity analysis of a biologically based dose-response pregnancy model for the thyroid endocrine system.

    Science.gov (United States)

    Lumen, Annie; McNally, Kevin; George, Nysia; Fisher, Jeffrey W; Loizou, George D

    2015-01-01

    A deterministic biologically based dose-response model for the thyroidal system in a near-term pregnant woman and the fetus was recently developed to evaluate quantitatively thyroid hormone perturbations. The current work focuses on conducting a quantitative global sensitivity analysis on this complex model to identify and characterize the sources and contributions of uncertainties in the predicted model output. The workflow and methodologies suitable for computationally expensive models, such as the Morris screening method and Gaussian Emulation processes, were used for the implementation of the global sensitivity analysis. Sensitivity indices, such as main, total and interaction effects, were computed for a screened set of the total thyroidal system descriptive model input parameters. Furthermore, a narrower sub-set of the most influential parameters affecting the model output of maternal thyroid hormone levels were identified in addition to the characterization of their overall and pair-wise parameter interaction quotients. The characteristic trends of influence in model output for each of these individual model input parameters over their plausible ranges were elucidated using Gaussian Emulation processes. Through global sensitivity analysis we have gained a better understanding of the model behavior and performance beyond the domains of observation by the simultaneous variation in model inputs over their range of plausible uncertainties. The sensitivity analysis helped identify parameters that determine the driving mechanisms of the maternal and fetal iodide kinetics, thyroid function and their interactions, and contributed to an improved understanding of the system modeled. We have thus demonstrated the use and application of global sensitivity analysis for a biologically based dose-response model for sensitive life-stages such as pregnancy that provides richer information on the model and the thyroidal system modeled compared to local sensitivity analysis.

  3. Quantitative global sensitivity analysis of a biologically based dose-response pregnancy model for the thyroid endocrine system

    Directory of Open Access Journals (Sweden)

    Annie eLumen

    2015-05-01

    Full Text Available A deterministic biologically based dose-response model for the thyroidal system in a near-term pregnant woman and the fetus was recently developed to evaluate quantitatively thyroid hormone perturbations. The current work focuses on conducting a quantitative global sensitivity analysis on this complex model to identify and characterize the sources and contributions of uncertainties in the predicted model output. The workflow and methodologies suitable for computationally expensive models, such as the Morris screening method and Gaussian Emulation processes, were used for the implementation of the global sensitivity analysis. Sensitivity indices, such as main, total and interaction effects, were computed for a screened set of the total thyroidal system descriptive model input parameters. Furthermore, a narrower sub-set of the most influential parameters affecting the model output of maternal thyroid hormone levels were identified in addition to the characterization of their overall and pair-wise parameter interaction quotients. The characteristic trends of influence in model output for each of these individual model input parameters over their plausible ranges were elucidated using Gaussian Emulation processes. Through global sensitivity analysis we have gained a better understanding of the model behavior and performance beyond the domains of observation by the simultaneous variation in model inputs over their range of plausible uncertainties. The sensitivity analysis helped identify parameters that determine the driving mechanisms of the maternal and fetal iodide kinetics, thyroid function and their interactions, and contributed to an improved understanding of the system modeled. We have thus demonstrated the use and application of global sensitivity analysis for a biologically based dose-response model for sensitive life-stages such as pregnancy that provides richer information on the model and the thyroidal system modeled compared to local

  4. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines.

    Science.gov (United States)

    Roohvand, Farzin; Shokri, Mehdi; Abdollahpour-Alitappeh, Meghdad; Ehsani, Parastoo

    2017-08-01

    Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.

  5. Virgin olive oil yeasts: A review.

    Science.gov (United States)

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Induction of mutation for increased sulfur content in the CFI strain of yeast by gamma-irradiation

    International Nuclear Information System (INIS)

    Faustino, C.C.

    1977-08-01

    From all current source of protein concentration the food yeast offers the greatest potential for development. Yeast protein is a good source of lysine and has adeqouate acounts of other essential amino acids such as trytophan and threonine, however, it was found to be relatively poor in the sulfur-containing amino acids which limits its nutrient value. A lasting remedy is genetic modification of the microorganisms to produce protein with a better amino acid balance. Gamma radiation from Co-60 was tried in these experiments being reported to induce mutations in the new CFI strain. A way of screening for increased sulfur content was devised. These are; 1) Incorporation of (NH 4 ) 2 35 S0 4 into the yeast cells; 2) Autoradiography; and 3) Quantitative determination of S-incorporation in submerse cultures of yeasts by use of a liquid scintillation counter. About seven hundred individual colonies were carefully and meticulously autQradiographically screened for high-S0 4 incorporation. Based on the results of autoradiography, 7.8% (50 strains) of the whole population were considered high in 35 S0 4 incorporation. The 50 yeast strains selected by autoradiography to be high in S0 4 incorporation were analyzed with the use of a liquid scintillation counter. From the data gathered, 29 mutants were se--lected. The data from these 29 mutants are presented in tabulated form. Only yeast strains no. 1, 42, 44, 47, 4, 3, 49, 50, 2 and 39 appear to show any promise as putative high-S mutants

  7. Terroir of yeasts? – Application of FTIR spectroscopy and molecular methods for strain typing of yeasts

    Directory of Open Access Journals (Sweden)

    Gerhards Daniel

    2015-01-01

    Full Text Available The site specific influence on wine (Terroir is an often by wine producers, consumers and scientists discussed topic in the world of wine. A study on grapes and (spontaneous fermentations from six different vineyards was done to investigate the biodiversity of yeasts and to answer the question if there is a terroir of yeast and how it could be influenced. Randomly isolated yeasts were identified by FTIR-spectroscopy and molecular methods on species and strain level. Vineyard specific yeast floras would be observed but they are not such important as expected. Only a few overlapping strain patterns would be identified during both vintages. The yeast flora of the winery had a huge impact on the spontaneous fermentations, but is not really constant and influenced by different factors from outside.

  8. 21 CFR 184.1983 - Bakers yeast extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  9. Endoplasmic reticulum involvement in yeast cell death

    International Nuclear Information System (INIS)

    Nicanor Austriaco, O.

    2012-01-01

    Yeast cells undergo programed cell death (PCD) with characteristic markers associated with apoptosis in mammalian cells including chromatin breakage, nuclear fragmentation, reactive oxygen species generation, and metacaspase activation. Though significant research has focused on mitochondrial involvement in this phenomenon, more recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has also implicated the endoplasmic reticulum (ER) in yeast PCD. This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast. It begins with a description of ER structure and function in yeast before moving to a discussion of ER-SAD in both mammalian and yeast cells. Three examples of yeast cell death associated with the ER will be highlighted here including inositol starvation, lipid toxicity, and the inhibition of N-glycosylation. It closes by suggesting ways to further examine the involvement of the ER in yeast cell death.

  10. Global translational impacts of the loss of the tRNA modification t6A in yeast

    Directory of Open Access Journals (Sweden)

    Patrick C. Thiaville

    2015-12-01

    Full Text Available The universal tRNA modification t6A is found at position 37 of nearly all tRNAs decoding ANN codons. The absence of t6A37 leads to severe growth defects in baker’s yeast, phenotypes similar to those caused by defects in mcm5s2U34 synthesis. Mutants in mcm5s2U34 can be suppressed by overexpression of tRNALysUUU, but we show t6A phenotypes could not be suppressed by expressing any individual ANN decoding tRNA, and t6A and mcm5s2U are not determinants for each other’s formation. Our results suggest that t6A deficiency, like mcm5s2U deficiency, leads to protein folding defects, and show that the absence of t6A led to stress sensitivities (heat, ethanol, salt and sensitivity to TOR pathway inhibitors. Additionally, L-homoserine suppressed the slow growth phenotype seen in t6A-deficient strains, and proteins aggregates and Advanced Glycation End-products (AGEs were increased in the mutants. The global consequences on translation caused by t6A absence were examined by ribosome profiling. Interestingly, the absence of t6A did not lead to global translation defects, but did increase translation initiation at upstream non-AUG codons and increased frame-shifting in specific genes. Analysis of codon occupancy rates suggests that one of the major roles of t6A is to homogenize the process of elongation by slowing the elongation rate at codons decoded by high abundance tRNAs and I34:C3 pairs while increasing the elongation rate of rare tRNAs and G34:U3 pairs. This work reveals that the consequences of t6A absence are complex and multilayered and has set the stage to elucidate the molecular basis of the observed phenotypes.

  11. Bio-prospecting of distillery yeasts as bio-control and bio-remediation agents.

    Science.gov (United States)

    Ubeda, Juan F; Maldonado, María; Briones, Ana I; Francisco, J Fernández; González, Francisco J

    2014-05-01

    This work constitutes a preliminary study in which the capacity of non-Saccharomyces yeasts isolated from ancient distilleries as bio-control agents against moulds and in the treatment of waste waters contaminated by heavy metals-i.e. bio-remediation-is shown. In the first control assays, antagonist effect between non-Saccharomyces yeasts, their extracts and supernatants against some moulds, analysing the plausible (not exhaustive) involved factors were qualitatively verified. In addition, two enzymatic degrading properties of cell wall plant polymers, quitinolitic and pectinolitic, were screened. Finally, their use as agents of bio-remediation of three heavy metals (cadmium, chromium and lead) was analysed semi-quantitatively. The results showed that all isolates belonging to Pichia species effectively inhibited all moulds assayed. Moreover, P. kudriavzevii is a good candidate for both bio-control and bio-remediation because it inhibited moulds and accumulated the major proportion of the three tested metals.

  12. History of genome editing in yeast.

    Science.gov (United States)

    Fraczek, Marcin G; Naseeb, Samina; Delneri, Daniela

    2018-05-01

    For thousands of years humans have used the budding yeast Saccharomyces cerevisiae for the production of bread and alcohol; however, in the last 30-40 years our understanding of the yeast biology has dramatically increased, enabling us to modify its genome. Although S. cerevisiae has been the main focus of many research groups, other non-conventional yeasts have also been studied and exploited for biotechnological purposes. Our experiments and knowledge have evolved from recombination to high-throughput PCR-based transformations to highly accurate CRISPR methods in order to alter yeast traits for either research or industrial purposes. Since the release of the genome sequence of S. cerevisiae in 1996, the precise and targeted genome editing has increased significantly. In this 'Budding topic' we discuss the significant developments of genome editing in yeast, mainly focusing on Cre-loxP mediated recombination, delitto perfetto and CRISPR/Cas. © 2018 The Authors. Yeast published by John Wiley & Sons, Ltd.

  13. 21 CFR 172.898 - Bakers yeast glycan.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized, and...

  14. The wine and beer yeast Dekkera bruxellensis.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  15. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  16. Quantitative phenotyping via deep barcode sequencing.

    Science.gov (United States)

    Smith, Andrew M; Heisler, Lawrence E; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J; Chee, Mark; Roth, Frederick P; Giaever, Guri; Nislow, Corey

    2009-10-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale.

  17. Between science and industry-applied yeast research.

    Science.gov (United States)

    Korhola, Matti

    2018-03-01

    I was fortunate to enter yeast research at the Alko Research Laboratories with a strong tradition in yeast biochemistry and physiology studies. At the same time in the 1980s there was a fundamental or paradigm change in molecular biology research with discoveries in DNA sequencing and other analytical and physical techniques for studying macromolecules and cells. Since that time biotechnological research has expanded the traditional fermentation industries to efficient production of industrial and other enzymes and specialty chemicals. Our efforts were directed towards improving the industrial production organisms: minerals enriched yeasts (Se, Cr, Zn) and high glutathione content yeast, baker´s, distiller´s, sour dough and wine yeasts, and the fungal Trichoderma reesei platform for enzyme production. I am grateful for the trust of my colleagues in several leadership positions at the Alko Research Laboratories, Yeast Industry Platform and at the international yeast community.

  18. Diagnosis of Acute Global Myocarditis Using Cardiac MRI with Quantitative T1 and T2 Mapping: Case Report and Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul Hwan [Department of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul 135-720 (Korea, Republic of); Choi, Eui-Young [Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720 (Korea, Republic of); Greiser, Andreas [Healthcare Sector, Siemens AG, Erlangen D-91052 (Germany); Paek, Mun Young [Siemens Ltd., Seoul 120-837 (Korea, Republic of); Hwang, Sung Ho; Kim, Tae Hoon [Department of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul 135-720 (Korea, Republic of)

    2013-07-01

    The diagnosis of myocarditis can be challenging given that symptoms, clinical exam findings, electrocardiogram results, biomarkers, and echocardiogram results are often non-specific. Endocardial biopsy is an established method for diagnosing myocarditis, but carries the risk of complications and false negative results. Cardiac magnetic resonance imaging (MRI) has become the primary non-invasive imaging tool in patients with suspected myocarditis. Myocarditis can be diagnosed by using three tissue markers including edema, hyperemia/capillary leak, and necrosis/fibrosis. The interpretation of cardiac MR findings can be confusing, especially when the myocardium is diffusely involved. Using T1 and T2 maps, the diagnosis of myocarditis can be made even in cases of global myocarditis with the help of quantitative analysis. We herein describe a case of acute global myocarditis which was diagnosed by using quantitative T1 and T2 mapping.

  19. Yeast-based biosensors: design and applications.

    Science.gov (United States)

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  20. Prevalence of candida and non-candida yeasts isolated from patients with yeast fungal infections in Tehran labs

    Directory of Open Access Journals (Sweden)

    Hashemi SJ

    2011-04-01

    Full Text Available "n 800x600 Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Background: Infections caused by opportunistic yeasts such as Candida species, Trichosporon, Rhodotorula and Saccharomyces have increased in immunocompromis-ed patients and their identification is crucial as intrinsic and acquired resistance of some yeast species to antifungal agents are on the rise. The aim of this study was to identify the organisms to the species level in order to suggest accurate and effective antifungal therapies."n"nMethods: In this study that carried out in Tehran, Iran in 2009, 200 patients with yeast infection were medically examined and clinical specimens were prepared for direct examination and culture on Sabouraud dextrose agar. Subsequently, the isolated yeast colonies were identified using various tests including culture on Corn Meal agar with Tween 80, CHROMagar Candida and casein agar. For the definite identification of organisms some biochemical tests were done based on carbohydrate assimilation by RapID Yeast Plus System kit, and, finally, a molecular method, PCR-RFLP, using Hpa II enzyme, was performed for the remaining unknown yeast species."n"nResults: A total of 211 yeast isolates were identified in 200 patients with yeast infections. The most frequent isolated yeasts were Candida albicans, 124 (58.77%, followed by Candida parapsilosis, 36 (17.06%, Candida tropicalis, 17 (8.06%, Candida glabrata, 13 (6.16%, Candida krusei, 8 (3.79%, Candida guilliermondii, 2 (0.96%, Trichosporon, 3 (1.14%, Rhodotorula, 1 (0.47%, Saccaromyces cerevisiae, 1 (0.47% and other

  1. Oral yeast colonization throughout pregnancy.

    Science.gov (United States)

    Rio, R; Simões-Silva, L; Garro, S; Silva, M-J; Azevedo, Á; Sampaio-Maia, B

    2017-03-01

    Recent studies suggest that placenta may harbour a unique microbiome that may have origin in maternal oral microbiome. Although the major physiological and hormonal adjustments observed in pregnant women lead to biochemical and microbiological modifications of the oral environment, very few studies evaluated the changes suffered by the oral microbiota throughout pregnancy. So, the aim of our study was to evaluate oral yeast colonization throughout pregnancy and to compare it with non-pregnant women. The oral yeast colonization was assessed in saliva of 30 pregnant and non-pregnant women longitudinally over a 6-months period. Demographic information was collected, a non-invasive intra-oral examination was performed and saliva flow and pH were determined. Pregnant and non-pregnant groups were similar regarding age and level of education. Saliva flow rate did not differ, but saliva pH was lower in pregnant than in non-pregnant women. Oral yeast prevalence was higher in pregnant than in non-pregnant women, either in the first or in the third trimester, but did not attain statistical significance. In individuals colonized with yeast, the total yeast quantification (Log10CFU/mL) increase from the 1st to the 3rd trimester in pregnant women, but not in non-pregnant women. Pregnancy may favour oral yeast growth that may be associated with an acidic oral environment.

  2. Biotechnological Applications of Dimorphic Yeasts

    Science.gov (United States)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  3. A critical and Integrated View of the Yeast Interactome

    Directory of Open Access Journals (Sweden)

    Stephen G. Oliver

    2006-04-01

    Full Text Available Global studies of protein–protein interactions are crucial to both elucidating gene function and producing an integrated view of the workings of living cells. High-throughput studies of the yeast interactome have been performed using both genetic and biochemical screens. Despite their size, the overlap between these experimental datasets is very limited. This could be due to each approach sampling only a small fraction of the total interactome. Alternatively, a large proportion of the data from these screens may represent false-positive interactions. We have used the Genome Information Management System (GIMS to integrate interactome datasets with transcriptome and protein annotation data and have found significant evidence that the proportion of false-positive results is high. Not all high-throughput datasets are similarly contaminated, and the tandem affinity purification (TAP approach appears to yield a high proportion of reliable interactions for which corroborating evidence is available. From our integrative analyses, we have generated a set of verified interactome data for yeast.

  4. Electron transport chain in a thermotolerant yeast.

    Science.gov (United States)

    Mejía-Barajas, Jorge A; Martínez-Mora, José A; Salgado-Garciglia, Rafael; Noriega-Cisneros, Ruth; Ortiz-Avila, Omar; Cortés-Rojo, Christian; Saavedra-Molina, Alfredo

    2017-04-01

    Yeasts capable of growing and surviving at high temperatures are regarded as thermotolerant. For appropriate functioning of cellular processes and cell survival, the maintenance of an optimal redox state is critical of reducing and oxidizing species. We studied mitochondrial functions of the thermotolerant Kluyveromyces marxianus SLP1 and the mesophilic OFF1 yeasts, through the evaluation of its mitochondrial membrane potential (ΔΨ m ), ATPase activity, electron transport chain (ETC) activities, alternative oxidase activity, lipid peroxidation. Mitochondrial membrane potential and the cytoplasmic free Ca 2+ ions (Ca 2+ cyt) increased in the SLP1 yeast when exposed to high temperature, compared with the mesophilic yeast OFF1. ATPase activity in the mesophilic yeast diminished 80% when exposed to 40° while the thermotolerant SLP1 showed no change, despite an increase in the mitochondrial lipid peroxidation. The SLP1 thermotolerant yeast exposed to high temperature showed a diminution of 33% of the oxygen consumption in state 4. The uncoupled state 3 of oxygen consumption did not change in the mesophilic yeast when it had an increase of temperature, whereas in the thermotolerant SLP1 yeast resulted in an increase of 2.5 times when yeast were grown at 30 o , while a decrease of 51% was observed when it was exposed to high temperature. The activities of the ETC complexes were diminished in the SLP1 when exposed to high temperature, but also it was distinguished an alternative oxidase activity. Our results suggest that the mitochondria state, particularly ETC state, is an important characteristic of the thermotolerance of the SLP1 yeast strain.

  5. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    Science.gov (United States)

    Hoang, Don; Kopp, Artyom; Chandler, James Angus

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker's yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host-microbe interactions can have profound effects on host biology, the results from D. melanogaster-S. cerevisiae laboratory experiments may not be fully representative of host-microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  6. Genomics and the making of yeast biodiversity.

    Science.gov (United States)

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-12-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Accelerating Yeast Prion Biology using Droplet Microfluidics

    Science.gov (United States)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  8. Full Data of Yeast Interacting Proteins Database (Original Version) - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Yeast Interacting Proteins Database Full Data of Yeast Interacting Proteins Database (Origin...al Version) Data detail Data name Full Data of Yeast Interacting Proteins Database (Original Version) DOI 10....18908/lsdba.nbdc00742-004 Description of data contents The entire data in the Yeast Interacting Proteins Database...eir interactions are required. Several sources including YPD (Yeast Proteome Database, Costanzo, M. C., Hoga...ematic name in the SGD (Saccharomyces Genome Database; http://www.yeastgenome.org /). Bait gene name The gen

  9. Genomics and the making of yeast biodiversity

    NARCIS (Netherlands)

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-01-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces

  10. Yeasts preservation: alternatives for lyophilisation

    OpenAIRE

    Nyanga, Loveness K.; Nout, Martinus J. R.; Smid, Eddy J.; Boekhout, Teun; Zwietering, Marcel H.

    2012-01-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts during 6 months storage at 4 and 25 °C. None of the yeast cultures showed a significant loss in viable cell count during 6 months of storage at 4 °C upon lyophilisation and preservation in dry rice cak...

  11. Use of the KlADH3 promoter for the quantitative production of the murine PDE5A isoforms in the yeast Kluyveromyces lactis.

    Science.gov (United States)

    Cardarelli, Silvia; Giorgi, Mauro; Naro, Fabio; Malatesta, Francesco; Biagioni, Stefano; Saliola, Michele

    2017-09-22

    Phosphodiesterases (PDE) are a superfamily of enzymes that hydrolyse cyclic nucleotides (cAMP/cGMP), signal molecules in transduction pathways regulating crucial aspects of cell life. PDEs regulate the intensity and duration of the cyclic nucleotides signal modulating the downstream biological effect. Due to this critical role associated with the extensive distribution and multiplicity of isozymes, the 11 mammalian families (PDE1 to PDE11) constitute key therapeutic targets. PDE5, one of these cGMP-specific hydrolysing families, is the molecular target of several well known drugs used to treat erectile dysfunction and pulmonary hypertension. Kluyveromyces lactis, one of the few yeasts capable of utilizing lactose, is an attractive host alternative to Saccharomyces cerevisiae for heterologous protein production. Here we established K. lactis as a powerful host for the quantitative production of the murine PDE5 isoforms. Using the promoter of the highly expressed KlADH3 gene, multicopy plasmids were engineered to produce the native and recombinant Mus musculus PDE5 in K. lactis. Yeast cells produced large amounts of the purified A1, A2 and A3 isoforms displaying K m , V max and Sildenafil inhibition values similar to those of the native murine enzymes. PDE5 whose yield was nearly 1 mg/g wet weight biomass for all three isozymes (30 mg/L culture), is well tolerated by K. lactis cells without major growth deficiencies and interferences with the endogenous cAMP/cGMP signal transduction pathways. To our knowledge, this is the first time that the entire PDE5 isozymes family containing both regulatory and catalytic domains has been produced at high levels in a heterologous eukaryotic organism. K. lactis has been shown to be a very promising host platform for large scale production of mammalian PDEs for biochemical and structural studies and for the development of new specific PDE inhibitors for therapeutic applications in many pathologies.

  12. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  13. Genetics of Yeasts

    Science.gov (United States)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  14. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  15. 21 CFR 172.590 - Yeast-malt sprout extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...

  16. Yeasts in sustainable bioethanol production: A review.

    Science.gov (United States)

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  17. Yeasts in sustainable bioethanol production: A review

    Directory of Open Access Journals (Sweden)

    Siti Hajar Mohd Azhar

    2017-07-01

    Full Text Available Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  18. Identification of candidate new cancer susceptibility genes using yeast genomics

    International Nuclear Information System (INIS)

    Brown, M.; Brown, J.A.; Game, J.C.

    2003-01-01

    A large proportion of cancer susceptibility syndromes are the result of mutations in genes in DNA repair or in cell-cycle checkpoints in response to DNA damage, such as ataxia telangiectasia (AT), Fanconi's anemia (FA), Bloom's syndrome (BS), Nijmegen breakage syndrome (NBS), and xeroderma pigmentosum (XP). Mutations in these genes often cause gross chromosomal instability leading to an increased mutation rate of all genes including those directly responsible for cancer. We have proposed that because the orthologs of these genes in budding yeast, S. cerevisiae, confer protection against killing by DNA damaging agents it should be possible to identify new cancer susceptibility genes by identifying yeast genes whose deletion causes sensitivity to DNA damage. We therefore screened the recently completed collection of individual gene deletion mutants to identify genes that affect sensitivity to DNA-damaging agents. Screening for sensitivity in this obtained up to now with the F98 glioma model othe fact that each deleted gene is replaced by a cassette containing two molecular 'barcodes', or 20-mers, that uniquely identify the strain when DNA from a pool of strains is hybridized to an oligonucleotide array containing the complementary sequences of the barcodes. We performed the screen with UV, IR, H 2 0 2 and other DNA damaging agents. In addition to identifying genes already known to confer resistance to DNA damaging agents we have identified, and individually confirmed, several genes not previously associated with resistance. Several of these are of unknown function. We have also examined the chromosomal stability of selected strains and found that IR sensitive strains often but not always exhibit genomic instability. We are presently constructing a yeast artificial chromosome to globally interrogate all the genes in the deletion pool for their involvement in genomic stability. This work shows that budding yeast is a valuable eukaryotic model organism to identify

  19. Comet assay on tetraploid yeast cells

    DEFF Research Database (Denmark)

    Rank, Jette; Syberg, Kristian; Jensen, Klara

    2009-01-01

    Tetraploid yeast cells (Saccharomyces cerevisiae) were used in the comet assay with the intention of developing a new, fast and easy assay for detecting environmental genotoxic agents without using higher organisms. Two DNA-damaging chemicals, H2O2 and acrylamide, together with wastewater from...... three municipal treatment plants were tested for their effect on the yeast-cell DNA. The main problem with using yeast in the comet assay is the necessity to degrade the cell wall. This was achieved by using Zymolase 100 T twice during the procedure, since Zymolase 20 T did not open the cell wall....... Analytical problems that arose due to the small amount of DNA in the yeast nuclei in haploid and diploid cells, which contain 13 Mbp and 26 Mbp DNA per cell, respectively, were solved by using tetraploid yeast cells (52 Mbp) instead. DNA damage was shown after exposure to H2O2 and acrylamide. The lowest dose...

  20. Revaluation of Waste Yeast from Beer Production

    Directory of Open Access Journals (Sweden)

    Nicoleta Suruceanu

    2013-11-01

    Full Text Available Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, identification and quantification of xanthohumol by HPLC method. Waste yeast from brewery pilot plant of USAMV Cluj Napoca it was dried by atomization and the powder was analyzed on xanthohumol content by HPLC method. For quantification a calibration curve it was used. The process of drying by atomisation lead to a powder product. It was used malt dextrin powder for stabilisation. The final product it was encapsulated. The xanthohumol content of powdered yeast it was 1.94 µg/ml. In conclusion the slurry yeast from beer production it is an important source of prenylflavonoids compounds.

  1. Aboveground Deadwood Deposition Supports Development of Soil Yeasts

    Directory of Open Access Journals (Sweden)

    Thorsten Wehde

    2012-12-01

    Full Text Available Unicellular saprobic fungi (yeasts inhabit soils worldwide. Although yeast species typically occupy defined areas on the biome scale, their distribution patterns within a single type of vegetation, such as forests, are more complex. In order to understand factors that shape soil yeast communities, soils collected underneath decaying wood logs and under forest litter were analyzed. We isolated and identified molecularly a total of 25 yeast species, including three new species. Occurrence and distribution of yeasts isolated from these soils provide new insights into ecology and niche specialization of several soil-borne species. Although abundance of typical soil yeast species varied among experimental plots, the analysis of species abundance and community composition revealed a strong influence of wood log deposition and leakage of organic carbon. Unlike soils underneath logs, yeast communities in adjacent areas harbored a considerable number of transient (phylloplane-related yeasts reaching 30% of the total yeast quantity. We showed that distinguishing autochthonous community members and species transient in soils is essential to estimate appropriate effects of environmental factors on soil fungi. Furthermore, a better understanding of species niches is crucial for analyses of culture-independent data, and may hint to the discovery of unifying patterns of microbial species distribution.

  2. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  3. Made for Each Other: Ascomycete Yeasts and Insects.

    Science.gov (United States)

    Blackwell, Meredith

    2017-06-01

    Fungi and insects live together in the same habitats, and many species of both groups rely on each other for success. Insects, the most successful animals on Earth, cannot produce sterols, essential vitamins, and many enzymes; fungi, often yeast-like in growth form, make up for these deficits. Fungi, however, require constantly replenished substrates because they consume the previous ones, and insects, sometimes lured by volatile fungal compounds, carry fungi directly to a similar, but fresh, habitat. Yeasts associated with insects include Ascomycota (Saccharomycotina, Pezizomycotina) and a few Basidiomycota. Beetles, homopterans, and flies are important associates of fungi, and in turn the insects carry yeasts in pits, specialized external pouches, and modified gut pockets. Some yeasts undergo sexual reproduction within the insect gut, where the genetic diversity of the population is increased, while others, well suited to their stable environment, may never mate. The range of interactions extends from dispersal of yeasts on the surface of insects (e.g., cactus- Drosophila -yeast and ephemeral flower communities, ambrosia beetles, yeasts with holdfasts) to extremely specialized associations of organisms that can no longer exist independently, as in the case of yeast-like symbionts of planthoppers. In a few cases yeast-like fungus-insect associations threaten butterflies and other species with extinction. Technical advances improve discovery and identification of the fungi but also inform our understanding of the evolution of yeast-insect symbioses, although there is much more to learn.

  4. The growth of solar radiated yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, T.

    1995-09-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  5. The growth of solar radiated yeast

    Science.gov (United States)

    Kraft, Tyrone

    1995-01-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  6. Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade.

    Science.gov (United States)

    Urbina, Hector; Frank, Robert; Blackwell, Meredith

    2013-01-01

    The gut of wood-feeding insects is a microhabitat for a specialized community of microbes, including bacteria and several groups of eukaryotes such as nematodes, parabasalids and fungi. The characterization of gut yeast communities from a variety of insects has shown that certain yeasts often are associated with the insects. The gut of wood-feeding insects is rich in ascomycete yeasts and in particular xylose-fermenting (X-F) and assimilating yeasts have been consistently present in the gut of lignicolous insects. The objective of this study was the characterization of the yeast flora from the gut of the wood roach Cryptocercus sp. (Blattodea: Cryptocercidae). Five wood roaches were collected along the Appalachian Trail near the border between Tennessee and North Carolina, USA. We isolated 18 yeast strains from the wood roaches identified as Sugiyamaella paludigena and Sugiyamaella lignohabitans, xylose-assimilating yeasts, and Scheffersomyces cryptocercus (NRRL Y-48824(T) = CBS 12658) a new species of X-F yeast. The presence of X-F and certain non X-F yeasts in the gut of the subsocial wood roach Cryptocercus sp. extends the previous findings of associations between certain ascomycete yeasts and lignicolous insects. New combinations were made for 13 asexual members of the Sugiyamaella clade.

  7. Effect of increasing growth temperature on yeast fermentation ...

    African Journals Online (AJOL)

    The effect of increasing growth temperature on yeast fermentation was studied at approximately 5 oC intervals over a range of 18 – 37 oC, using one strain each of ale, lager and wine yeast. The ale and wine yeasts grew at all the temperatures tested, but lager yeast failed to grow at 37 oC. All these strains gave lower ...

  8. Yeasts preservation: alternatives for lyophilisation

    NARCIS (Netherlands)

    Nyanga, L.K.; Nout, M.J.R.; Smid, E.J.; Boekhout, T.; Zwietering, M.H.

    2012-01-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts

  9. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  10. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis.

    Directory of Open Access Journals (Sweden)

    Débora L Oliveira

    2010-06-01

    Full Text Available Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown.We characterized extracellular vesicle production in wild type (WT and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex or MVB functionality (vps23, late endosomal trafficking revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells.Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the

  11. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    Science.gov (United States)

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  12. Vascular homeostasis regulators, Edn1 and Agpt2, are upregulated as a protective effect of heat-treated zinc yeast in irradiated murine bone marrow

    International Nuclear Information System (INIS)

    Ueno, Megumi; Imadome, Kaori; Iwakawa, Mayumi; Anzai, Kazunori; Ikota, Nobuo; Imai, Takashi

    2010-01-01

    The purpose of this study was to elucidate the mechanism underlying the in vivo radioprotection activity by Zn-containing, heat-treated Saccharomyces cerevisiae yeast (Zn-yeast). Zn-yeast suspension was administered into C3H/He mice immediately after whole body irradiation (WBI) at 7.5 Gy. Bone marrow was extracted from the mice 6 hours after irradiation and analyzed on a microarray. Expression changes in the candidate responsive genes differentially expressed in treated mice were re-examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The bone marrow was also examined pathologically at 6 h, 3, 7, and 14 days postirradiation. Thirty-six genes, including Edn1 and Agpt2, were identified as candidate responsive genes in irradiated mouse bone marrow treated with Zn-yeast by showing a greater than three-fold change compared with control (no irradiation and no Zn-yeast) mice. The expressions of Cdkn1a, Bax, and Ccng, which are well known as radioresponsive genes, were upregulated in WBI mice and Zn-yeast treated WBI mice. Pathological examination showed the newly formed microvessels lined with endothelial cells, and small round hematopoietic cells around vessels in bone marrow matrix of mice administered with Zn-yeast after WBI, while whole-body irradiated mice developed fatty bone marrow within 2 weeks after irradiation. This study identified a possible mechanism for the postirradiation protection conferred by Zn-yeast. The protective effect of Zn-yeast against WBI is related to maintaining the bone marrow microenvironment, including targeting endothelial cells and cytokine release. (author)

  13. Estimating the Per-Base-Pair Mutation Rate in the Yeast Saccharomyces cerevisiae

    OpenAIRE

    Lang, Gregory I.; Murray, Andrew W.

    2008-01-01

    Although mutation rates are a key determinant of the rate of evolution they are difficult to measure precisely and global mutations rates (mutations per genome per generation) are often extrapolated from the per-base-pair mutation rate assuming that mutation rate is uniform across the genome. Using budding yeast, we describe an improved method for the accurate calculation of mutation rates based on the fluctuation assay. Our analysis suggests that the per-base-pair mutation rates at two genes...

  14. Different commercial yeast strains affecting the volatile and sensory profile of cava base wine.

    Science.gov (United States)

    Torrens, Jordi; Urpí, Pilar; Riu-Aumatell, Montserrat; Vichi, Stefania; López-Tamames, Elvira; Buxaderas, Susana

    2008-05-10

    36 semi-industrial fermentations were carried out with 6 different yeast strains in order to assess differences in the wines' chemical and volatile profile. Two of the tested strains (Y3 and Y6) showed the fastest fermentation rates throughout 3 harvests and on 2 grape varieties. The wines fermented by three of the tested strains (Y5, Y3 and Y4) stand out for their high amounts of esters and possessed the highest fruity character. Wines from strains producing low amounts of esters and high concentrations of medium chain fatty acids, higher alcohols and six-carbon alcohols were the least appreciated at the sensory analysis. The data obtained in the present study show how the yeast strain quantitatively affects the final chemical and volatile composition of cava base wines and have repercussions on their sensory profile, independently of must variety and harvest year.

  15. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Science.gov (United States)

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  16. Exploration for the Salinity Tolerance-Related Genes from Xero-Halophyte Atriplex canescens Exploiting Yeast Functional Screening System

    Directory of Open Access Journals (Sweden)

    Gang Yu

    2017-11-01

    Full Text Available Plant productivity is limited by salinity stress, both in natural and agricultural systems. Identification of salt stress-related genes from halophyte can provide insights into mechanisms of salt stress tolerance in plants. Atriplex canescens is a xero-halophyte that exhibits optimum growth in the presence of 400 mM NaCl. A cDNA library derived from highly salt-treated A. canescens plants was constructed based on a yeast expression system. A total of 53 transgenic yeast clones expressing enhanced salt tolerance were selected from 105 transformants. Their plasmids were sequenced and the gene characteristics were annotated using a BLASTX search. Retransformation of yeast cells with the selected plasmids conferred salt tolerance to the resulting transformants. The expression patterns of 28 of these stress-related genes were further investigated in A. canescens leaves by quantitative reverse transcription-PCR. In this study, we provided a rapid and robust assay system for large-scale screening of genes for varied abiotic stress tolerance with high efficiency in A. canescens.

  17. Yeast Interacting Proteins Database: YFR015C, YFR015C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...ression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary ...tion, nitrogen starvation, environmental stress, and entry into stationary phase Rows with this bait as bait..., the more highly expressed yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental

  18. Radiodiagnosis of yeast alveolits (a clinicoexperimental study)

    International Nuclear Information System (INIS)

    Amosov, I.S.; Smirnov, V.A.

    1984-01-01

    A clinicoroetgenological study was made of 115 workers engaged in the yeast production for different periods of time. Disorders of the respiration biomechanics were revealed depending on the period of service. These data were obtained as a result of the use of roentgenopneumopolygraphy. An experimental study was conducted to establish the nature of lesions in the bronchopulmonary system in allergic alveolitis. The effect of finely divided yeast dust on the bronchopulmonary system was studied on 132 guinea-pigs usinq microbronchography and morphological examination. As a result of the study it has been established that during the inhalation of yeast dust, notnceable dystrophy of the bronchi develops, the sizes of alveoli enlarge and part of them undergo emphysematous distension with the rupture of the interalveolar septa. In the course of the study, it has been shown that yeast dust is little agreessive, yeast alveolitis develops after many years of work. The clinical symptoms are non-specific and insignificant. X-ray and morphological changes are followed by the physical manifestations of yeast alveolitis

  19. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi.

    Science.gov (United States)

    Quintilla, Raquel; Kolecka, Anna; Casaregola, Serge; Daniel, Heide M; Houbraken, Jos; Kostrzewa, Markus; Boekhout, Teun; Groenewald, Marizeth

    2018-02-02

    Since food spoilage by yeasts causes high economic losses, fast and accurate identifications of yeasts associated with food and food-related products are important for the food industry. In this study the efficiency of the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify food related yeasts was evaluated. A CBS in-house MALDI-TOF MS database was created and later challenged with a blinded test set of 146 yeast strains obtained from food and food related products. Ninety eight percent of the strains were correctly identified with log score values>1.7. One strain, Mrakia frigida, gained a correct identification with a score value1.7. Ambiguous identifications were observed due to two incorrect reference mass spectra's found in the commercial database BDAL v.4.0, namely Candida sake DSM 70763 which was re-identified as Candida oleophila, and Candida inconspicua DSM 70631 which was re-identified as Pichia membranifaciens. MALDI-TOF MS can distinguish between most of the species, but for some species complexes, such as the Kazachstania telluris and Mrakia frigida complexes, MALDI-TOF MS showed limited resolution and identification of sibling species was sometimes problematic. Despite this, we showed that the MALDI-TOF MS is applicable for routine identification and validation of foodborne yeasts, but a further update of the commercial reference databases is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Comparison of Yeast Cell Protein Solubilization Procedures for Two-dimensional Electrophoresis

    DEFF Research Database (Denmark)

    Harder, A; Wildgruber, R; Nawrocki, A

    1999-01-01

    Three different procedures for the solubilization of yeast (S. cerevisiae) cell proteins were compared on the basis of the obtained two-dimensional (2-D) polypeptide patterns. Major emphasis was laid on minimizing handling steps, protein modification or degradation, and quantitative loss of high...... with sodium dodecyl sulfate (SDS) buffer, consisting of 1% SDS and 100 mM tris(hydroxymethyl)aminomethane (Tris)-HCl, pH 7.0, followed by dilution with "standard" lysis buffer, and (iii) boiling the sample with SDS during cell lysis, followed by dilution with thiourea/urea lysis buffer (2 M thiourea/ 7 M urea...

  1. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome

    Directory of Open Access Journals (Sweden)

    Madan Bhawna

    2011-11-01

    Full Text Available Abstract Background The recalcitrant nature of cellulosic materials and the high cost of enzymes required for efficient hydrolysis are the major impeding steps to their practical usage for ethanol production. Ideally, a recombinant microorganism, possessing the capability to utilize cellulose for simultaneous growth and ethanol production, is of great interest. We have reported recently the use of a yeast consortium for the functional presentation of a mini-cellulosome structure onto the yeast surface by exploiting the specific interaction of different cohesin-dockerin pairs. In this study, we engineered a yeast consortium capable of displaying a functional mini-cellulosome for the simultaneous growth and ethanol production on phosphoric acid swollen cellulose (PASC. Results A yeast consortium composed of four different populations was engineered to display a functional mini-cellulosome containing an endoglucanase, an exoglucanase and a β-glucosidase. The resulting consortium was demonstrated to utilize PASC for growth and ethanol production. The final ethanol production of 1.25 g/L corresponded to 87% of the theoretical value and was 3-fold higher than a similar yeast consortium secreting only the three cellulases. Quantitative PCR was used to enumerate the dynamics of each individual yeast population for the two consortia. Results indicated that the slight difference in cell growth cannot explain the 3-fold increase in PASC hydrolysis and ethanol production. Instead, the substantial increase in ethanol production is consistent with the reported synergistic effect on cellulose hydrolysis using the displayed mini-cellulosome. Conclusions This report represents a significant step towards the goal of cellulosic ethanol production. This engineered yeast consortium displaying a functional mini-cellulosome demonstrated not only the ability to grow on the released sugars from PASC but also a 3-fold higher ethanol production than a similar yeast

  2. Yeasts are essential for cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  3. Genomic Evolution of the Ascomycete Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  4. Specialist nectar-yeasts decline with urbanization in Berlin

    Science.gov (United States)

    Wehner, Jeannine; Mittelbach, Moritz; Rillig, Matthias C.; Verbruggen, Erik

    2017-03-01

    Nectar yeasts are common inhabitants of insect-pollinated flowers but factors determining their distribution are not well understood. We studied the influence of host identity, environmental factors related to pollution/urbanization, and the distance to a target beehive on local distribution of nectar yeasts within Robinia pseudoacacia L. and Tilia tomentosa Moench in Berlin, Germany. Nectar samples of six individuals per species were collected at seven sites in a 2 km radius from each target beehive and plated on YM-Agar to visualise the different morphotypes, which were then identified by sequencing a section of the 26S rDNA gene. Multivariate linear models were used to analyze the effects of all investigated factors on yeast occurrence per tree. Yeast distribution was mainly driven by host identity. The influence of the environmental factors (NO2, height of construction, soil sealing) strongly depended on the radius around the tree, similar to the distance of the sampled beehive. Incidence of specialist nectar-borne yeast species decreased with increasing pollution/urbanization index. Given that specialist yeast species gave way to generalist yeasts that have a reduced dependency on pollinators for between-flower dispersal, our results indicate that increased urbanization may restrict the movement of nectar-specialized yeasts, via limitations of pollinator foraging behavior.

  5. Black yeast-like fungi in skin and nail

    DEFF Research Database (Denmark)

    Saunte, D M; Tarazooie, B; Arendrup, M C

    2011-01-01

    Black yeast-like fungi are rarely reported from superficial infections. We noticed a consistent prevalence of these organisms as single isolations from mycological routine specimens. To investigate the prevalence of black yeast-like fungi in skin, hair and nail specimens and to discuss...... the probability of these species to be involved in disease. Slow-growing black yeast-like fungi in routine specimens were prospectively collected and identified. A questionnaire regarding patient information was sent to physicians regarding black yeast-like fungus positive patients. A total of 20 746...... dermatological specimens were examined by culture. Black yeast-like fungi accounted for 2.2% (n = 108) of the positive cultures. Only 31.0% of the samples, culture positive for black yeast-like fungi were direct microscopy positive when compared with overall 68.8% of the culture positive specimens. The most...

  6. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Directory of Open Access Journals (Sweden)

    Jennifer R Bellon

    Full Text Available Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade, has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  7. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    Science.gov (United States)

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  8. Chemical signaling and insect attraction is a conserved trait in yeasts.

    Science.gov (United States)

    Becher, Paul G; Hagman, Arne; Verschut, Vasiliki; Chakraborty, Amrita; Rozpędowska, Elżbieta; Lebreton, Sébastien; Bengtsson, Marie; Flick, Gerhard; Witzgall, Peter; Piškur, Jure

    2018-03-01

    Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae , the insect-associated species Candida californica , Pichia kluyveri and Metschnikowia andauensis , wine yeast Dekkera bruxellensis , milk yeast Kluyveromyces lactis , the vertebrate pathogens Candida albicans and Candida glabrata , and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila , we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts

  9. Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode

    Energy Technology Data Exchange (ETDEWEB)

    Verduyn, C.; Zomerdijk, T.P.L.; Dijken, J.P. van; Scheffers, W.A.

    1984-03-01

    An alcohol electrode was constructed which consisted of an oxygen probe onto which alcohol oxidase was immobilized. This enzyme electrode was used, in combination with a reference oxygen electrode, to study the short-term kinetics of alcoholic fermentation by aerobic yeast suspensions after pulsing with glucose. The results demonstrate that this device is an excellent tool in obtaining quantitative data on the short-term expression of the Crabtree effect in yeasts. Samples from aerobic glucose-limited chemostat cultures of Saccharomyces cerevisiae not producing ethanol, immediately (within 2 min) exhibited aerobic alcohol fermentation after being pulsed with excess glucose. With chemostat-grown Candida utilis, however, ethanol production was not detactable even at high sugar concentrations. The Crabtree effect in S. cerevisiae was studied in more detail with commercial baker's yeast. Ethanol formation occurred only at initial glucose concentrations exceeding 150 mgx1/sup -1/, and the rate of alcoholic fermentation increased with increasing glucose concentrations up to 1,000 mgx1/sup -1/ glucose. Similar experiments with batch cultures of certain ''non-fermentative'' yeasts revealed that these organisms are capable of alcoholic fermentation. Thus, even under fully aerobic conditions, Hansenula nonfermentans and Candida buffonii produced ethanol after being pulsed with glucose. In C. buffonii ethanol formation was already apparent at very low glucose concentrations (10 mgx1/sup -1/) and alcoholic fermentation even proceeded at a higher rate than in S. cerevisiae. With Rhodotorula rubra, however, the rate of ethanol formation was below the detection limit, i.e., less than 0.1 mmolxg cells/sup -1/xh/sup -1/.

  10. Effect of fungicides on epiphytic yeasts associated with strawberry

    Science.gov (United States)

    Debode, Jane; Van Hemelrijck, Wendy; Creemers, Piet; Maes, Martine

    2013-01-01

    We studied the effect of two commonly used fungicides on the epiphytic yeast community of strawberry. Greenhouse and field experiments were conducted applying Switch (cyprodinil plus fludioxonil) or Signum (boscalid plus pyraclostrobin) to strawberry plants. Yeasts on leaves and fruits were assessed on treated and untreated plants at several time points via plating and denaturing gradient gel electrophoresis (DGGE) analysis. The yeast counts on plates of the treated plants were similar to the control plants. Unripe fruits had 10 times larger yeast concentrations than ripe fruits or leaves. Some dominant yeast types were isolated and in vitro tests showed that they were at least 10 times less sensitive to Switch and Signum as compared with two important fungal strawberry pathogens Botrytis cinerea and Colletotrichum acutatum, which are the targets for the fungicide control. DGGE analysis showed that the applied fungicides had no effect on the composition of the yeast communities, while the growing system, strawberry tissue, and sampling time did affect the yeast communities. The yeast species most commonly identified were Cryptococcus, Rhodotorula, and Sporobolomyces. These results point toward the potential applicability of natural occurring yeast antagonists into an integrated disease control strategy for strawberry diseases.

  11. Ethanol production by immobilized yeast and its CO2 gas effects on a packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, G M; Choi, C Y; Choi, Y D; Han, M H

    1982-10-01

    Immobilised yeast trapped in an alginate matrix demonstrated maximum activity at 30 degrees C and showed no pH effect between 3 and 7. Substrate inhibition was observed at glucose concentrations above 8% but the immobilised cells retained 70% of their maximum activity at 20% glucose concentration. The operation stability of immobilised cells was lower in simple glucose solution than in the activation medium in which only 20% of the activity was lost after 10 days operation. Inactivated immobilised yeast beads were reactivated by incubation in activation medium without a significant increase in cell numbers in a bead. During the operation of the immobilised yeast in a packed bed reactor, CO/sub 2/ gas accumulation adversely affected the reactor performance. An ideal plus flow reactor, not taking into account the formation of CO/sub 2/ gas bubbles and the presence of mass trasnfer resistance, was simulated using a kinetic model for the production of ethanol and the simulation results were compared with the actual reactor performance to determine the CO/sub 2/ gas effect, quantitatively. Up to 45% of the substrate conversion was lost due to the accumulation of CO/sub 2/ gas bubbles in all cases. (Refs. 21).

  12. Selection of yeasts with multifunctional features for application as starters in natural black table olive processing.

    Science.gov (United States)

    Bonatsou, S; Benítez, A; Rodríguez-Gómez, F; Panagou, E Z; Arroyo-López, F N

    2015-04-01

    Yeasts are unicellular eukaryotic microorganisms with a great importance in the elaboration on many foods and beverages. In the last years, researches have focused their attention to determine the favourable effects that these microorganisms could provide to table olive processing. In this context, the present study assesses, at laboratory scale, the potential technological (resistance to salt, lipase, esterase and β-glucosidase activities) and probiotic (phytase activity, survival to gastric and pancreatic digestions) features of 12 yeast strains originally isolated from Greek natural black table olive fermentations. The multivariate classification analysis carried out with all information obtained (a total of 336 quantitative input data), revealed that the most promising strains (clearly discriminated from the rest of isolates) were Pichia guilliermondii Y16 (which showed overall the highest resistance to salt and simulated digestions) and Wickerhamomyces anomalus Y18 (with the overall highest technological enzymatic activities), while the rest of strains were grouped together in two clearly differentiated clusters. Thus, this work opens the possibility for the evaluation of these two selected yeasts as multifunctional starters, alone or in combination with lactic acid bacteria, in real table olive fermentations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Flor Yeast: New Perspectives Beyond Wine Aging

    Science.gov (United States)

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C.; Mannazzu, Ilaria; Coi, Anna L.; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  14. Construction of gateway-compatible yeast two-hybrid vectors for ...

    African Journals Online (AJOL)

    Yeast two-hybrid system combined with the gateway technology will greatly facilitate the cloning of interested DNA fragment into yeast two-hybrid vectors and therefore increase the efficiency of yeast two-hybrid analysis. In this study, we constructed a pair of Gateway-compatible yeast two-hybrid vectors pBTM116GW and ...

  15. Antimicrobial activity of yeasts against some pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Gamal Younis

    2017-08-01

    Full Text Available Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR for detection of khs (kievitone hydratase and pelA (pectate degrading enzyme genes. Results: The recovery rate of yeasts from sausage was 20% (2/10 followed by kareish cheese, processed cheese, and butter 10% (1/10 each as well as raw milk 9% (9/100, and fruit yoghurt 30% (6/20. Different yeast species were recovered, namely, Candida kefyr (5 isolates, Saccharomyces cerevisiae (4 isolates, Candida intermedia (3 isolates, Candida tropicalis (2 isolates, Candida lusitaniae (2 isolates, and Candida krusei (1 isolate. khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food.

  16. Yeast species associated with wine grapes in China.

    Science.gov (United States)

    Li, Shuang-Shi; Cheng, Chao; Li, Zheng; Chen, Jing-Yu; Yan, Bin; Han, Bei-Zhong; Reeves, Malcolm

    2010-03-31

    Having more information on the yeast ecology of grapes is important for wine-makers to produce wine with high quality and typical attributes. China is a significant wine-consuming country and is becoming a serious wine-producer, but little has been reported about the yeast ecology of local ecosystems. This study provides the first step towards the exploitation of the yeast wealth in China's vine-growing regions. The aim of this study was to investigate the yeast population density and diversity on three grape varieties cultivated in four representative vine-growing regions of China. Yeast species diversity was evaluated by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequence analysis of the 5.8S internal transcribed spacer (ITS) ribosomal DNA (rDNA) region of cultivable yeasts. The grapes harbored yeast populations at 10(2)-10(6)CFU/mL, consisting mostly of non-Saccharomyces species. Seventeen different yeast species belonging to eight genera were detected on the grape samples tested, including Hanseniaspora uvarum, Cryptococcus flavescens, Pichia fermentans, Candida zemplinina, Cryptococcus carnescens, Candida inconpicua, Zygosaccharomyces fermentati, Issatchenkia terricola, Candida quercitrusa, Hanseniaspora guilliermondii, Candida bombi, Zygosaccharomyces bailii, Sporidiobolus pararoseus, Cryptococcus magnus, Metschnikowia pulcherrima, Issatchenkia orientalis and Pichia guilliermondii. H. uvarum and C. flavescens were the dominant species present on the grapes. For the first time Sporidiobolus pararoseus was discovered as an inhabitant of the grape ecosystem. The yeast community on grape berries was influenced by the grape chemical composition, vine-variety and vine-growing region. This study is the first to identify the yeast communities associated with grapes in China using molecular methods. The results enrich our knowledge of wine-related microorganisms, and can be used to promote the development of the local wine

  17. Fine structure of Tibetan kefir grains and their yeast distribution, diversity, and shift.

    Directory of Open Access Journals (Sweden)

    Man Lu

    Full Text Available Tibetan kefir grains (TKGs, a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii the diversity of yeasts is relatively low on genus level with three dominant species--Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic

  18. Fine Structure of Tibetan Kefir Grains and Their Yeast Distribution, Diversity, and Shift

    Science.gov (United States)

    Lu, Man; Wang, Xingxing; Sun, Guowei; Qin, Bing; Xiao, Jinzhou; Yan, Shuling; Pan, Yingjie; Wang, Yongjie

    2014-01-01

    Tibetan kefir grains (TKGs), a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i) yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii) the diversity of yeasts is relatively low on genus level with three dominant species – Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii) S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic associations between S

  19. Considerations for creating and annotating the budding yeast Genome Map at SGD: a progress report.

    Science.gov (United States)

    Chan, Esther T; Cherry, J Michael

    2012-01-01

    The Saccharomyces Genome Database (SGD) is compiling and annotating a comprehensive catalogue of functional sequence elements identified in the budding yeast genome. Recent advances in deep sequencing technologies have enabled for example, global analyses of transcription profiling and assembly of maps of transcription factor occupancy and higher order chromatin organization, at nucleotide level resolution. With this growing influx of published genome-scale data, come new challenges for their storage, display, analysis and integration. Here, we describe SGD's progress in the creation of a consolidated resource for genome sequence elements in the budding yeast, the considerations taken in its design and the lessons learned thus far. The data within this collection can be accessed at http://browse.yeastgenome.org and downloaded from http://downloads.yeastgenome.org. DATABASE URL: http://www.yeastgenome.org.

  20. Utilization of spent brewer’s yeast Saccharomyces cerevisiae for the production of yeast enzymatic hydrolysate

    Directory of Open Access Journals (Sweden)

    M Bayarjargal

    2014-09-01

    Full Text Available Spent brewer’s yeast (Saccharomyces cerevisiae is a rich source of protein, vitamins and widely used as a raw material for production of food supplements. The autolysis and enzymatic treatment of spent brewer’s yeast using Pancreatin (2.5% and Flavourzyme (2.5% were performed at 45 °C and 50 °C, respectively. The autolysis and hydrolysis processes were evaluated by determining a soluble solids, soluble protein concentration and α-amino nitrogen content in a reaction mixture. The yield of pancreatic digest and α-amino nitrogen content was high in comparison with autolysis and Flavourzyme treatment. The total solids recovery in dry Yeast hydrolysate was about 50%, a protein and α-amino nitrogen content was 55.9 and 4.8%, respectively. These results show the possibility of utilizing the spent brewer’s yeast as hydrolysate using hydrolytic enzymes and use it as a food supplement after biological experiments.DOI: http://dx.doi.org/10.5564/mjc.v12i0.179 Mongolian Journal of Chemistry Vol.12 2011: 88-91

  1. Yeast cell factories on the horizon

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2015-01-01

    For thousands of years, yeast has been used for making beer, bread, and wine. In modern times, it has become a commercial workhorse for producing fuels, chemicals, and pharmaceuticals such as insulin, human serum albumin, and vaccines against hepatitis virus and human papillomavirus. Yeast has also...... been engineered to make chemicals at industrial scale (e.g., succinic acid, lactic acid, resveratrol) and advanced biofuels (e.g., isobutanol) (1). On page 1095 of this issue, Galanie et al. (2) demonstrate that yeast can now be engineered to produce opioids (2), a major class of compounds used...

  2. Selection of oleaginous yeasts for fatty acid production

    NARCIS (Netherlands)

    Lamers, Dennis; Biezen, van Nick; Martens, Dirk; Peters, Linda; Zilver, van de Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H.; Lokman, Christien

    2016-01-01

    Background: Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts

  3. Genetic Diversity of Globally Dispersed Lacustrine Group I Haptophytes: Implications for Quantitative Temperature Reconstructions

    Science.gov (United States)

    Richter, N.; Longo, W. M.; Amaral-Zettler, L. A.; Huang, Y.

    2017-12-01

    There are significant uncertainties surrounding the forcings that drive terrestrial temperature changes on local and regional scales. Quantitative temperature reconstructions from terrestrial sites, such as lakes, help to unravel the fundamental processes that drive changes in temperature on different temporal and spatial scales. Recent studies at Brown University show that distinct alkenones, long chain ketones produced by haptophytes, are found in many freshwater, alkaline lakes in the Northern Hemisphere, highlighting these systems as targets for quantitative continental temperature reconstructions. These freshwater alkenones are produced by the Group I haptophyte phylotype and are characterized by a distinct signature: the presence of isomeric tri-unsaturated ketones and absence of alkenoates. There are currently no cultured representatives of the "Group I" haptophytes, hence they are only known based on their rRNA gene signatures. Here we present robust evidence that Northern Hemispheric freshwater, alkaline lakes with the characteristic "Group I" alkenone signature all host the same clade of Isochrysidales haptophytes. We employed next generation DNA amplicon sequencing to target haptophyte specific hypervariable regions of the large and small-subunit ribosomal RNA gene from 13 different lakes from three continents (i.e., North America, Europe, and Asia). Combined with previously published sequences, our genetic data show that the Group I haptophyte is genetically diverse on a regional and global scale, and even within the same lake. We present two case studies from a suite of five lakes in Alaska and three in Iceland to assess the impact of various environmental factors affecting Group I diversity and alkenone production. Despite the genetic diversity in this group, the overall ketone signature is conserved. Based on global surface sediment samples and in situ Alaskan lake calibrations, alkenones produced by different operational taxonomic units of the Group

  4. Genetically engineered yeast

    DEFF Research Database (Denmark)

    2014-01-01

    A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate semialde......A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate...... semialdehyde. The yeast may also express a 3-hydroxyisobutyrate dehydrogenase (HIBADH) and a 3-hydroxypropanoate dehydrogenase (3-HPDH) and aspartate 1-decarboxylase. Additionally the yeast may express pyruvate carboxylase and aspartate aminotransferase....

  5. Yeast flora of the mouth and skin during and after irradiation for oral and laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.V.; Al-Tikriti, U.; Bramley, P.A. (Sheffield Univ. (UK))

    1981-11-01

    The quantitative and qualitative changes occurring in the fungal flora of 22 patients with oral and 9 with laryngeal carcinoma were studied during and after radiation therapy. Each patient received 6000 rad of externally applied radiation in divided doses for 5 weeks. The fungal flora was isolated from the patients' oral cavity and irradiated skin sites during irradiation and 2 weeks and 4-6 months afterwards. The number and types of fungi increased in both groups of patients after the start of irradiation and persisted at high levels for at least 4-6 months after treatment. Candida albicans and C. tropicalis were the principal yeasts isolated throughout the period studied but seven other species were also identified. All the yeast isolates were sensitive in vitro to miconazole, ketoconazole, amphotericin B and nystatin. Any of these antifungal agents should be appropriate for therapy.

  6. Yeast flora of the mouth and skin during and after irradiation for oral and laryngeal cancer

    International Nuclear Information System (INIS)

    Martin, M.V.; Al-Tikriti, U.; Bramley, P.A.

    1981-01-01

    The quantitative and qualitative changes occurring in the fungal flora of 22 patients with oral and 9 with laryngeal carcinoma were studied during and after radiation therapy. Each patient received 6000 rad of externally applied radiation in divided doses for 5 weeks. The fungal flora was isolated from the patients' oral cavity and irradiated skin sites during irradiation and 2 weeks and 4-6 months afterwards. The number and types of fungi increased in both groups of patients after the start of irradiation and persisted at high levels for at least 4-6 months after treatment. Candida albicans and C. tropicalis were the principal yeasts isolated throughout the period studied but seven other species were also identified. All the yeast isolates were sensitive in vitro to miconazole, ketoconazole, amphotericin B and nystatin. Any of these antifungal agents should be appropriate for therapy. (author)

  7. The Use Of Local Product Yeast For Substitution Torula Yeast In The Formulation Of Artificial Diet Fruit Fly Larvae Bactrocera Carambolae Drew and Hancock

    International Nuclear Information System (INIS)

    Sikumbang, I.; Nasution, A.I.; Indarwatmi, M.; Kuswandi, A.N.

    2000-01-01

    The use of local product yeast I.e brewer yeast, yeast of tapai (fermented cassava), yeast of tempe (fermented soy beam), and brem(intoxicating beverage made of fermented rice) after cooked and uncooked were used to substitute torula yeast to reduce cost production for mass-rearing of fruit fly had been carried out. Artificial diet formulation consisted of torula yeast, wheat bran, nipagin, sodium benzoate, cane sugar, water and HCI ti make pH of 4. One kilogram of diet was inoculated with 1 ml of fruit fly eggs. Parameters of the experiment were, the number of pupae, weight of pupae, percentage of pupae and the percentage of viable fly. The results showed that the number of pupae were 6356 for brewers yeast with cooked and 0.942 gram/100 pupae for brem. Percentage viable emergence fly were 70%, 18.25% and 15.25% for brewers yeast with cooked and uncooked respectively. Cost production for 1.000.000 using cooked brewer yeast was reduced about Rp.179,200 or cost efficiency were 55.56%

  8. Guidelines and recommendations on yeast cell death nomenclature

    OpenAIRE

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andres; Austriaco, Nicanor; Sigrist, Stephan J.

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of mor...

  9. Guidelines and recommendations on yeast cell death nomenclature

    NARCIS (Netherlands)

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J; Breitenbach, Michael; Burhans, William C; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W; Grant, Chris M; Greenwood, Michael T; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D; Outeiro, Tiago F; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F; Sharon, Amir; Sigrist, Stephan J; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B; Tuite, Mick; Vögtle, F-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J; Zhao, Richard Y; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely

  10. Understanding bistability in yeast glycolysis using general properties of metabolic pathways.

    Science.gov (United States)

    Planqué, Robert; Bruggeman, Frank J; Teusink, Bas; Hulshof, Josephus

    2014-09-01

    Glycolysis is the central pathway in energy metabolism in the majority of organisms. In a recent paper, van Heerden et al. showed experimentally and computationally that glycolysis can exist in two states, a global steady state and a so-called imbalanced state. In the imbalanced state, intermediary metabolites accumulate at low levels of ATP and inorganic phosphate. It was shown that Baker's yeast uses a peculiar regulatory mechanism--via trehalose metabolism--to ensure that most yeast cells reach the steady state and not the imbalanced state. Here we explore the apparent bistable behaviour in a core model of glycolysis that is based on a well-established detailed model, and study in great detail the bifurcation behaviour of solutions, without using any numerical information on parameter values. We uncover a rich suite of solutions, including so-called imbalanced states, bistability, and oscillatory behaviour. The techniques employed are generic, directly suitable for a wide class of biochemical pathways, and could lead to better analytical treatments of more detailed models. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The use of lactic acid-producing, malic acid-producing, or malic acid-degrading yeast strains for acidity adjustment in the wine industry.

    Science.gov (United States)

    Su, Jing; Wang, Tao; Wang, Yun; Li, Ying-Ying; Li, Hua

    2014-03-01

    In an era of economic globalization, the competition among wine businesses is likely to get tougher. Biotechnological innovation permeates the entire world and intensifies the severity of the competition of the wine industry. Moreover, modern consumers preferred individualized, tailored, and healthy and top quality wine products. Consequently, these two facts induce large gaps between wine production and wine consumption. Market-orientated yeast strains are presently being selected or developed for enhancing the core competitiveness of wine enterprises. Reasonable biological acidity is critical to warrant a high-quality wine. Many wild-type acidity adjustment yeast strains have been selected all over the world. Moreover, mutation breeding, metabolic engineering, genetic engineering, and protoplast fusion methods are used to construct new acidity adjustment yeast strains to meet the demands of the market. In this paper, strategies and concepts for strain selection or improvement methods were discussed, and many examples based upon selected studies involving acidity adjustment yeast strains were reviewed. Furthermore, the development of acidity adjustment yeast strains with minimized resource inputs, improved fermentation, and enological capabilities for an environmentally friendly production of healthy, top quality wine is presented.

  12. Development of an Agrobacterium-Mediated Transformation Method and Evaluation of Two Exogenous Constitutive Promoters in Oleaginous Yeast Lipomyces starkeyi.

    Science.gov (United States)

    Lin, Xinping; Liu, Sasa; Bao, Ruiqi; Gao, Ning; Zhang, Sufang; Zhu, Rongqian; Zhao, Zongbao Kent

    2017-11-01

    Oleaginous yeast Lipomyces starkeyi, a promising strain of great biotechnical importance, is able to accumulate over 60% of its cell biomass as triacylglycerols (TAGs). It is promising to directly produce the derivatives of TAGs, such as long-chain fatty acid methyl esters and alkanes, in L. starkeyi. However, techniques for genetic modification of this oleaginous yeast are lacking, thus, further research is needed to develop genetic tools and functional elements. Here, we used two exogenous promoters (pGPD and pPGK) from oleaginous yeast Rhodosporidium toruloides to establish a simpler Agrobacterium-mediated transformation (AMT) method for L. starkeyi. Hygromycin-resistant transformants were obtained on antibiotic-contained plate. Mitotic stability test, genotype verification by PCR, and protein expression confirmation all demonstrated the success of this method. Furthermore, the strength of these two promoters was evaluated at the phenotypic level on a hygromycin-gradient plate and at the transcriptional level by real-time quantitative PCR. The PGK promoter strength was 2.2-fold as that of GPD promoter to initiate the expression of the hygromycin-resistance gene. This study provided an easy and efficient genetic manipulation method and elements of the oleaginous yeast L. starkeyi for constructing superior strains to produce advanced biofuels.

  13. Heat-treated mineral-yeast as a potent post-irradiation radioprotector

    International Nuclear Information System (INIS)

    Anzai, Kazunori; Ueno, Megumi; Nyui, Minako; Ikota, Nobuo; Kagiya, Tsutomu V.

    2008-01-01

    In vivo radioprotection of C3H mice by i.p. administration of Zn-, Mn-, Cu-, or Se-containing heat-treated Saccharomyces serevisiae yeast sample was examined. The 30-day survival of the group treated 30 min before 7.5 Gy whole-body X-irradiation with mineral-containing yeast powders suspended in 0.5% methylcellulose was significantly higher than that of control group. When mineral-yeast was administered immediately after irradiation, the survival rate was even higher and Zn- or Cu-yeast showed the highest rate (more than 90%). Although treatment with simple yeast showed a high survival rate (73%), it was significantly lower than that obtained by the Zn-yeast treatment. The effects of Zn-yeast were studied further. When the interval between irradiation and administration was varied, the protective activity of Zn-yeast decreased gradually by increasing the interval but was still significantly high for the administration at 10 h post-irradiation. The dose reduction factor of Zn-yeast (100 mg/kg, i.p. administration immediately after irradiation) was about 1.2. When the suspension of Zn-yeast was fractionated by centrifugation, the insoluble fraction showed a potent effect, while the soluble fraction had only a moderate effect. In conclusion, mineral-yeast, especially Zn-yeast, provides remarkable post-irradiation protection against lethal whole body X-irradiation. The activity is mainly attributable to the insoluble fraction, whereas some soluble components might contribute to the additional protective activity. (author)

  14. Yeast diversity and native vigor for flavor phenotypes.

    Science.gov (United States)

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Oral yeast carriage in patients with advanced cancer.

    Science.gov (United States)

    Davies, A N; Brailsford, S; Broadley, K; Beighton, D

    2002-04-01

    The aim of this study was to investigate oral yeast carriage amongst patients with advanced cancer. Oral rinse samples were obtained from 120 subjects. Yeasts were isolated using Sabouraud's dextrose agar and CHROMagar Candida, and were identified using a combination of the API 20 C AUX yeast identification system, species-specific PCR and 26S rDNA gene sequencing. Oral yeast carriage was present in 66% of subjects. The frequency of isolation of individual species was: Candida albicans, 46%; Candida glabrata, 18%; Candida dubliniensis, 5%; others, yeast carriage was associated with denture wearing (P = 0.006), and low stimulated whole salivary flow rate (P = 0.009). Identification of these risk factors offers new strategies for the prevention of oral candidosis in this group of patients.

  16. Global earthquake casualties due to secondary effects: A quantitative analysis for improving rapid loss analyses

    Science.gov (United States)

    Marano, K.D.; Wald, D.J.; Allen, T.I.

    2010-01-01

    This study presents a quantitative and geospatial description of global losses due to earthquake-induced secondary effects, including landslide, liquefaction, tsunami, and fire for events during the past 40 years. These processes are of great importance to the US Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, which is currently being developed to deliver rapid earthquake impact and loss assessments following large/significant global earthquakes. An important question is how dominant are losses due to secondary effects (and under what conditions, and in which regions)? Thus, which of these effects should receive higher priority research efforts in order to enhance PAGER's overall assessment of earthquakes losses and alerting for the likelihood of secondary impacts? We find that while 21.5% of fatal earthquakes have deaths due to secondary (non-shaking) causes, only rarely are secondary effects the main cause of fatalities. The recent 2004 Great Sumatra-Andaman Islands earthquake is a notable exception, with extraordinary losses due to tsunami. The potential for secondary hazards varies greatly, and systematically, due to regional geologic and geomorphic conditions. Based on our findings, we have built country-specific disclaimers for PAGER that address potential for each hazard (Earle et al., Proceedings of the 14th World Conference of the Earthquake Engineering, Beijing, China, 2008). We will now focus on ways to model casualties from secondary effects based on their relative importance as well as their general predictability. ?? Springer Science+Business Media B.V. 2009.

  17. Quantitative interpretation of heavy ion effects: Comparison of different systems and endpoints

    Science.gov (United States)

    Kiefer, J.

    For a quantitative interpretation of biological heavy ion action the following parameters have to be taken into account: variations of energy depositions in microscopical sites, the dependence of primary lesion formation on local energy density and changes in repairability. They can be studied in objects of different size and with different sensitivities. Results on survival and mutation induction in yeast and in mammalian cells will be compared with theoretical predictions. It is shown that shouldered survival curves of diploid yeast can be adequately described if the final slope is adjusted according to the varying production of primary lesions. This is not the case for mammalian cells where the experiments show a rapid loss of the shoulder with LET, contrary to theoretical expectations. This behaviour is interpreted to mean that the repairability of heavy ion lesions is different in the two systems. Mutation induction is theoretically expected to decrease with higher LET. This is found in yeast but not in mammalian cells where it actually increases. These results suggest a higher rate of misrepair in mammalian cells.

  18. The Fab1/PIKfyve Phosphoinositide Phosphate Kinase Is Not Necessary to Maintain the pH of Lysosomes and of the Yeast Vacuole*

    Science.gov (United States)

    Ho, Cheuk Y.; Choy, Christopher H.; Wattson, Christina A.; Johnson, Danielle E.; Botelho, Roberto J.

    2015-01-01

    Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH lysosomes. PMID:25713145

  19. Making Sense of the Yeast Sphingolipid Pathway.

    Science.gov (United States)

    Megyeri, Márton; Riezman, Howard; Schuldiner, Maya; Futerman, Anthony H

    2016-12-04

    Sphingolipids (SL) and their metabolites play key roles both as structural components of membranes and as signaling molecules. Many of the key enzymes and regulators of SL metabolism were discovered using the yeast Saccharomyces cerevisiae, and based on the high degree of conservation, a number of mammalian homologs were identified. Although yeast continues to be an important tool for SL research, the complexity of SL structure and nomenclature often hampers the ability of new researchers to grasp the subtleties of yeast SL biology and discover new modulators of this intricate pathway. Moreover, the emergence of lipidomics by mass spectrometry has enabled the rapid identification of SL species in yeast and rendered the analysis of SL composition under various physiological and pathophysiological conditions readily amenable. However, the complex nomenclature of the identified species renders much of the data inaccessible to non-specialists. In this review, we focus on parsing both the classical SL nomenclature and the nomenclature normally used during mass spectrometry analysis, which should facilitate the understanding of yeast SL data and might shed light on biological processes in which SLs are involved. Finally, we discuss a number of putative roles of various yeast SL species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Protein patterns of yeast during sporulation

    International Nuclear Information System (INIS)

    Litske Petersen, J.G.; Kielland-Brandt, M.C.; Nilsson-Tillgren, T.

    1979-01-01

    High resolution two-dimensional gel electrophoresis was used to study protein synthesis during synchronous meiosis and ascospore formation of Saccharomyces cerevisiae. The stained protein patterns of samples harvested at any stage between meiotic prophase and the four-spore stage in two sporulating strains showed the same approximately 250 polypeptides. Of these only a few seemed to increase or decrease in concentration during sporulation. The characteristic pattern of sporulating yeast was identical to the pattern of glucose-grown staitonary yeast cells adapted to respiration. The latter type of cells readily initiates meiosis when transferred to sporulation medium. This pattern differed from the protein patterns of exponentially growing cells in glucose or acetate presporulation medium. Five major proteins in stationary and sporulating yeast cells were not detected in either type of exponential culture. Two-dimensional autoradiograms of [ 35 S]methionine-labelled yeast proteins revealed that some proteins were preferentially labelled during sporulation, while other proteins were labelled at later stages. These patterns differed from the auroradiograms of exponentially growing yeast cells in glucose presporulation medium in a number of spots. No differences were observed when stained gels or autoradiograms of sporulating cultures and non-sporulating strains in sporulation medium were compared. (author)

  1. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity.

    Science.gov (United States)

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A; Bradford, William D; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S; Li, Rong

    2015-03-30

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. Copyright © 2015 Zhu et al.

  2. Isolation and identification of radiation resistant yeasts from sea water

    International Nuclear Information System (INIS)

    Park, Jong Cheon; Jeong, Yong Uk; Kim, Du Hong; Jo, Eun A

    2011-12-01

    This study was conducted to isolate radiation-resistant yeasts from sea water for development of application technology of radiation-resistant microorganism. · Isolation of 656 yeasts from sea water and selection of 2 radiation-resistant yeasts (D 10 value >3) · Identification of isolated yeasts as Filobasidium elegans sharing 99% sequence similarity · Characterization of isolated yeast with ability to repair of the DNA damage and membrane integrity to irradiation

  3. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions.

    Science.gov (United States)

    Aceituno, Felipe F; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W; Melo, Francisco; Agosin, Eduardo

    2012-12-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.

  4. The yeast spectrum of the 'tea fungus Kombucha'.

    Science.gov (United States)

    Mayser, P; Fromme, S; Leitzmann, C; Gründer, K

    1995-01-01

    The tea fungus 'Kombucha' is a symbiosis of Acetobacter, including Acetobacter xylinum as a characteristic species, and various yeasts. A characteristic yeast species or genus has not yet been identified. Kombucha is mainly cultivated in sugared black tea to produce a slightly acidulous effervescent beverage that is said to have several curative effects. In addition to sugar, the beverage contains small amounts of alcohol and various acids, including acetic acid, gluconic acid and lactic acid, as well as some antibiotic substances. To characterize the yeast spectrum with special consideration given to facultatively pathogenic yeasts, two commercially available specimens of tea fungus and 32 from private households in Germany were analysed by micromorphological and biochemical methods. Yeasts of the genera Brettanomyces, Zygosaccharomyces and Saccharomyces were identified in 56%, 29% and 26% respectively. The species Saccharomycodes ludwigii and Candida kefyr were only demonstrated in isolated cases. Furthermore, the tests revealed pellicle-forming yeasts such as Candida krusei or Issatchenkia orientalis/occidentalis as well as species of the apiculatus yeasts (Kloeckera, Hanseniaspora). Thus, the genus Brettanomyces may be a typical group of yeasts that are especially adapted to the environment of the tea fungus. However, to investigate further the beneficial effects of tea fungus, a spectrum of the other typical genera must be defined. Only three specimens showed definite contaminations. In one case, no yeasts could be isolated because of massive contamination with Penicillium spp. In the remaining two samples (from one household), Candida albicans was demonstrated. The low rate of contamination might be explained by protective mechanisms, such as formation of organic acids and antibiotic substances. Thus, subjects with a healthy metabolism do not need to be advised against cultivating Kombucha. However, those suffering from immunosuppression should preferably

  5. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not to...

  6. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  7. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  8. [Yeast species in vulvovaginitis candidosa].

    Science.gov (United States)

    Nemes-Nikodém, Éva; Tamási, Béla; Mihalik, Noémi; Ostorházi, Eszter

    2015-01-04

    Vulvovaginal candidiasis is the most common mycosis, however, the available information about antifungal susceptibilities of these yeasts is limited. To compare the gold standard fungal culture with a new molecular identification method and report the incidence of yeast species in vulvovaginitis candidosa. The authors studied 370 yeasts isolated from vulvovaginal candidiasis and identified them by phenotypic and molecular methods. The most common species was Candida albicans (85%), followed by Candida glabrata, and other Candida species. At present there are no recommendations for the evaluation of antifungal susceptibility of pathogenic fungal species occurring in vulvovaginal candidiasis and the natural antifungal resistance of the different species is known only. Matrix Assisted Laser Desorption Ionization Time of Flight identification can be used to differentiate the fluconazole resistant Candida dubliniensis and the sensitive Candida albicans strains.

  9. Four linked genes participate in controlling sporulation efficiency in budding yeast.

    Directory of Open Access Journals (Sweden)

    Giora Ben-Ari

    2006-11-01

    Full Text Available Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation efficiency in Saccharomyces cerevisiae. Following the identification of single nucleotide polymorphisms by comparing the sequences of 145 genes between the parental strains SK1 and S288c, we analyzed the segregating progeny of the cross between them. Through reciprocal hemizygosity analysis, four genes, RAS2, PMS1, SWS2, and FKH2, located in a region of 60 kilobases on Chromosome 14, were found to be associated with sporulation efficiency. Three of the four "high" sporulation alleles are derived from the "low" sporulating strain. Two of these sporulation-related genes were verified through allele replacements. For RAS2, the causative variation was suggested to be a single nucleotide difference in the upstream region of the gene. This quantitative trait nucleotide accounts for sporulation variability among a set of ten closely related winery yeast strains. Our results provide a detailed view of genetic complexity in one "QTL region" that controls a quantitative trait and reports a single nucleotide polymorphism-trait association in wild strains. Moreover, these findings have implications on QTL identification in higher eukaryotes.

  10. Differentiating pneumocystis cysts from Candida Sp. yeasts in pulmonary specimens using methenamine silver

    International Nuclear Information System (INIS)

    Chantiziantoniou, N.

    1996-01-01

    Pneumocystis carinii (PC) pneumonia in the immunocompromised patient requires therapeutic intervention; therefore, rapid identification of PC organisms in cytopathologic specimens is essential. Conclusive diagnoses of PC are achievable using Grocott's methenamine silver (GMS), the gold standard stain for PC cyst visualization. However, non-budding Candida sp. yeasts can stimulate PC cysts with GMS and thus pose significant diagnostic challenges. After qualitative and semi-quantitative analysis of 49 cytopulmonary cases, this study aimed to establish morphologic criteria that differentiate these organisms using GMS. The results showed that spherical/demilune PC cysts (4 to 7 microns in diameter) are monomorphic and mainly transparent, with intracyst densities being commonly evident. Demilune cysts typically display wall wrinkling with longitudinal clefts. Relative to cysts, Candida sp. yeasts reveal increased argyrophilia, range 4 to 10 microns in diameter, are mainly oval and budding, polymorphic and exhibit wall deformation with variable internal structure. Differentiating criteria are (a) budding; (b) cyst transparency, demilune shape; (c) longitudinal cyst clefts; (d) paired common-alike intracyst densities; (e) cyst monomprphism; (f) alveolar cast formations; (g) overall cystomorphologic presentation; and (h)relative argyrophilia. (author)

  11. Multiplex engineering of industrial yeast genomes using CRISPRm.

    Science.gov (United States)

    Ryan, Owen W; Cate, Jamie H D

    2014-01-01

    Global demand has driven the use of industrial strains of the yeast Saccharomyces cerevisiae for large-scale production of biofuels and renewable chemicals. However, the genetic basis of desired domestication traits is poorly understood because robust genetic tools do not exist for industrial hosts. We present an efficient, marker-free, high-throughput, and multiplexed genome editing platform for industrial strains of S. cerevisiae that uses plasmid-based expression of the CRISPR/Cas9 endonuclease and multiple ribozyme-protected single guide RNAs. With this multiplex CRISPR (CRISPRm) system, it is possible to integrate DNA libraries into the chromosome for evolution experiments, and to engineer multiple loci simultaneously. The CRISPRm tools should therefore find use in many higher-order synthetic biology applications to accelerate improvements in industrial microorganisms.

  12. Kinetics of growth and sugar consumption in yeasts.

    Science.gov (United States)

    van Dijken, J P; Weusthuis, R A; Pronk, J T

    1993-01-01

    An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts. Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called 'Crabtree effect' probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect in S. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast. S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions. 'Non-Saccharomyces' yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeast Candida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.

  13. Performance of non-conventional yeasts in co-culture with brewers’ yeast for steering ethanol and aroma production

    NARCIS (Netherlands)

    Rijswijck, van Irma M.H.; Wolkers - Rooijackers, Judith C.M.; Abee, Tjakko; Smid, Eddy J.

    2017-01-01

    Increasing interest in new beer types has stimulated the search for approaches to extend the metabolic variation of brewers’ yeast. Therefore, we tested two approaches using non-conventional yeast to create a beer with lower ethanol content and a complex aroma bouquet. First, the mono-culture

  14. Lipid raft involvement in yeast cell growth and death

    Energy Technology Data Exchange (ETDEWEB)

    Mollinedo, Faustino, E-mail: fmollin@usal.es [Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca, Salamanca (Spain)

    2012-10-10

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na{sup +}, K{sup +}, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  15. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  16. The ecology of the Drosophila-yeast mutualism in wineries

    Science.gov (United States)

    2018-01-01

    The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila. PMID:29768432

  17. Structural investigations of yeast mannans

    International Nuclear Information System (INIS)

    Rademacher, K.H.

    1983-01-01

    Cell wall mannans were isolated from 8 different Candida species and separated in oligosaccharides by partial acetolysis. After gel chromatography specific acetolysis patterns were obtained. The 13 C NMR spectra of mannans and oligosaccharides were recorded. Signals at delta = 93.1 - 105.4 were assigned to certain chemical structures. Both the spectral patterns and the acetolysis patterns of the yeast mannans can be used for the discrimination of related yeasts. (author)

  18. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    OpenAIRE

    Popov Stevan D.; Dodić Siniša N.; Mastilović Jasna S.; Dodić Jelena M.; Popov-Raljić Jovanka V.

    2005-01-01

    The waste brewer's yeast S. cerevisiae (activated and non-activated) was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positive...

  19. PMAA-stabilized ferrofluid/chitosan/yeast composite for bioapplications

    International Nuclear Information System (INIS)

    Baldikova, Eva; Prochazkova, Jitka; Stepanek, Miroslav; Hajduova, Jana; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2017-01-01

    A simple, one-pot process for the preparation of magnetically responsive yeast-based biocatalysts was developed. Saccharomyces cerevisiae, Candida utilis and Kluyveromyces lactis cells were successfully incorporated into chitosan gel magnetically modified with poly(methacrylic acid)-stabilized magnetic fluid (PMAA-FF) during its formation. Magnetic PMAA-FF/chitosan/yeast composites were efficiently employed for invert sugar production. The dependence of invertase activity on used yeast, amount of magnetic biocatalyst, agitation time and after reuse was studied in detail. The tested magnetic biocatalysts retained at least 69% of their initial activity after 8 reuse cycles. - Highlights: • New types of magnetically responsive yeast biocomposites were prepared. • Recently developed PMAA-stabilized magnetic fluid was used. • Three yeast species were entrapped into magnetic chitosan gel during its formation. • All biocatalysts were efficiently employed for invert sugar formation.

  20. PMAA-stabilized ferrofluid/chitosan/yeast composite for bioapplications

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva, E-mail: baldie@email.cz [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Applied Chemistry, Faculty of Agriculture, University of South Bohemia, Branisovska 1457, 370 05 Ceske Budejovice (Czech Republic); Prochazkova, Jitka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Stepanek, Miroslav; Hajduova, Jana [Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2 (Czech Republic); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Safarikova, Mirka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Nanobiotechnology, Biology Centre, CAS, ISB, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, CAS, ISB, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2017-04-01

    A simple, one-pot process for the preparation of magnetically responsive yeast-based biocatalysts was developed. Saccharomyces cerevisiae, Candida utilis and Kluyveromyces lactis cells were successfully incorporated into chitosan gel magnetically modified with poly(methacrylic acid)-stabilized magnetic fluid (PMAA-FF) during its formation. Magnetic PMAA-FF/chitosan/yeast composites were efficiently employed for invert sugar production. The dependence of invertase activity on used yeast, amount of magnetic biocatalyst, agitation time and after reuse was studied in detail. The tested magnetic biocatalysts retained at least 69% of their initial activity after 8 reuse cycles. - Highlights: • New types of magnetically responsive yeast biocomposites were prepared. • Recently developed PMAA-stabilized magnetic fluid was used. • Three yeast species were entrapped into magnetic chitosan gel during its formation. • All biocatalysts were efficiently employed for invert sugar formation.

  1. Determination of the autolysis of champagne yeast by using 14C-labelled yeast

    International Nuclear Information System (INIS)

    Molnar, I.; Oura, E.; Suomalainen, H.

    1980-01-01

    The degree of autolysis of 14 C-labelled Champagne Hautvillers yeast was studied in the function of different temperatures of storage. A linear relationship was found between the length of the storage and the degree of autolysis. The rate of autolysis increased with raising the temperature of storage. The raising of the temperature by 10 deg C was followed by a 6-7% increase in the rate of autolysis. Shaking up the yeast sediment at 20-day intervals raised the rate of autolysis by 1.5-4.2%. (author)

  2. 21 CFR 73.355 - Phaffia yeast.

    Science.gov (United States)

    2010-04-01

    ... stabilized color additive mixture. Color additive mixtures for fish feed use made with phaffia yeast may... additive mixtures for coloring foods. (b) Specifications. Phaffia yeast shall conform to the following... § 501.4 of this chapter. (3) The presence of the color additive in salmonid fish that have been fed...

  3. Conventional and Non-Conventional Yeasts in Beer Production

    Directory of Open Access Journals (Sweden)

    Angela Capece

    2018-06-01

    Full Text Available The quality of beer relies on the activity of fermenting yeasts, not only for their good fermentation yield-efficiency, but also for their influence on beer aroma, since most of the aromatic compounds are intermediate metabolites and by-products of yeast metabolism. Beer production is a traditional process, in which Saccharomyces is the sole microbial component, and any deviation is considered a flaw. However, nowadays the brewing sector is faced with an increasing demand for innovative products, and it is diffusing the use of uncharacterized autochthonous starter cultures, spontaneous fermentation, or non-Saccharomyces starters, which leads to the production of distinctive and unusual products. Attempts to obtain products with more complex sensory characteristics have led one to prospect for non-conventional yeasts, i.e., non-Saccharomyces yeasts. These generally are characterized by low fermentation yields and are more sensitive to ethanol stress, but they provide a distinctive aroma and flavor. Furthermore, non-conventional yeasts can be used for the production of low-alcohol/non-alcoholic and light beers. This review aims to present the main findings about the role of traditional and non-conventional yeasts in brewing, demonstrating the wide choice of available yeasts, which represents a new biotechnological approach with which to target the characteristics of beer and to produce different or even totally new beer styles.

  4. The Fab1/PIKfyve phosphoinositide phosphate kinase is not necessary to maintain the pH of lysosomes and of the yeast vacuole.

    Science.gov (United States)

    Ho, Cheuk Y; Choy, Christopher H; Wattson, Christina A; Johnson, Danielle E; Botelho, Roberto J

    2015-04-10

    Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH lysosomes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.

    Science.gov (United States)

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi; Kitagaki, Hiroshi

    2017-12-15

    The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast ( Saccharomyces cerevisiae ) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile. IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of

  6. Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast.

    Directory of Open Access Journals (Sweden)

    Thiago M Pais

    2013-06-01

    Full Text Available The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance.

  7. Mammalian amyloidogenic proteins promote prion nucleation in yeast.

    Science.gov (United States)

    Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O

    2018-03-02

    Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Guidelines and recommendations on yeast cell death nomenclature

    Directory of Open Access Journals (Sweden)

    Didac Carmona-Gutierrez

    2018-01-01

    Full Text Available Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research.

  9. Guidelines and recommendations on yeast cell death nomenclature

    Science.gov (United States)

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J.; Breitenbach, Michael; Burhans, William C.; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F.; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B.; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W.; Grant, Chris M.; Greenwood, Michael T.; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M.; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P.; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A.; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D.; Outeiro, Tiago F.; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F.; Sharon, Amir; Sigrist, Stephan J.; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M.; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B.; Tuite, Mick; Vögtle, F.-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J.; Zhao, Richard Y.; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research. PMID:29354647

  10. Overexpression of O‐methyltransferase leads to improved vanillin production in baker's yeast only when complemented with model‐guided network engineering

    DEFF Research Database (Denmark)

    Brochado, Ana Rita; Patil, Kiran R.

    2013-01-01

    limited in eukaryotic systems. In this study, we compared the effects of overexpressing a key gene in de novo vanillin biosynthesis (coding for O‐methyltransferase, hsOMT) in two yeast strains, with and without model‐guided global network modifications. Overexpression of hsOMT resulted in increased...... vanillin production only in the strain with model‐guided modifications, exemplifying advantage of using a global strategy prior to local pathway manipulation. Biotechnol. Bioeng. 2013; 110: 656–659. © 2012 Wiley Periodicals, Inc....

  11. Effect of salt hyperosmotic stress on yeast cell viability

    Directory of Open Access Journals (Sweden)

    Logothetis Stelios

    2007-01-01

    Full Text Available During fermentation for ethanol production, yeasts are subjected to different kinds of physico-chemical stresses such as: initially high sugar concentration and low temperature; and later, increased ethanol concentrations. Such conditions trigger a series of biological responses in an effort to maintain cell cycle progress and yeast cell viability. Regarding osmostress, many studies have been focused on transcriptional activation and gene expression in laboratory strains of Saccharomyces cerevisiae. The overall aim of this present work was to further our understanding of wine yeast performance during fermentations under osmotic stress conditions. Specifically, the research work focused on the evaluation of NaCl-induced stress responses of an industrial wine yeast strain S. cerevisiae (VIN 13, particularly with regard to yeast cell growth and viability. The hypothesis was that osmostress conditions energized specific genes to enable yeast cells to survive under stressful conditions. Experiments were designed by pretreating cells with different sodium chloride concentrations (NaCl: 4%, 6% and 10% w/v growing in defined media containing D-glucose and evaluating the impact of this on yeast growth and viability. Subsequent fermentation cycles took place with increasing concentrations of D-glucose (20%, 30%, 40% w/v using salt-adapted cells as inocula. We present evidence that osmostress induced by mild salt pre-treatments resulted in beneficial influences on both cell viability and fermentation performance of an industrial wine yeast strain.

  12. The primary structures of two yeast enolase genes. Homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes.

    Science.gov (United States)

    Holland, M J; Holland, J P; Thill, G P; Jackson, K A

    1981-02-10

    Segments of yeast genomic DNA containing two enolase structural genes have been isolated by subculture cloning procedures using a cDNA hybridization probe synthesized from purified yeast enolase mRNA. Based on restriction endonuclease and transcriptional maps of these two segments of yeast DNA, each hybrid plasmid contains a region of extensive nucleotide sequence homology which forms hybrids with the cDNA probe. The DNA sequences which flank this homologous region in the two hybrid plasmids are nonhomologous indicating that these sequences are nontandemly repeated in the yeast genome. The complete nucleotide sequence of the coding as well as the flanking noncoding regions of these genes has been determined. The amino acid sequence predicted from one reading frame of both structural genes is extremely similar to that determined for yeast enolase (Chin, C. C. Q., Brewer, J. M., Eckard, E., and Wold, F. (1981) J. Biol. Chem. 256, 1370-1376), confirming that these isolated structural genes encode yeast enolase. The nucleotide sequences of the coding regions of the genes are approximately 95% homologous, and neither gene contains an intervening sequence. Codon utilization in the enolase genes follows the same biased pattern previously described for two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes (Holland, J. P., and Holland, M. J. (1980) J. Biol. Chem. 255, 2596-2605). DNA blotting analysis confirmed that the isolated segments of yeast DNA are colinear with yeast genomic DNA and that there are two nontandemly repeated enolase genes per haploid yeast genome. The noncoding portions of the two enolase genes adjacent to the initiation and termination codons are approximately 70% homologous and contain sequences thought to be involved in the synthesis and processing messenger RNA. Finally there are regions of extensive homology between the two enolase structural genes and two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes within the 5

  13. Baker's yeast: production of D- and L-3-hydroxy esters

    DEFF Research Database (Denmark)

    Dahl, Allan Carsten; Madsen, Jørgen Øgaard

    1998-01-01

    harvested while growing. In contrast, the stereoselectivity was shifted towards L-hydroxy esters when the oxo esters were added slowly to ordinary baker's yeast supplied with gluconolactone as co-substrate. The reduction rate with gluconolactone was increased by active aeration. Ethyl L-(S)-3......Baker's yeast grown under oxygen limited conditions and used in the reduction of 3-oxo esters results in a shift of the stereoselectivity of the yeast towards D-hydroxy esters as compared with ordinary baker's yeast. The highest degree of stereoselectivity was obtained with growing yeast or yeast......-hydroxybutanoate was afforded in >99% ee. Both enantiomers of ethyl 3-hydroxypentanoate, D-(R) in 96% ee and L-(S) in 93% ee, and of ethyl 4-chloro-3-hydroxybutanoate, D-(S) in 98% ee and L-(R) in 94% ee, were obtained. The results demonstrate that the stereoselectivity of baker's yeast can be controlled...

  14. Yeast Metabolites of Glycated Amino Acids in Beer.

    Science.gov (United States)

    Hellwig, Michael; Beer, Falco; Witte, Sophia; Henle, Thomas

    2018-06-01

    Glycation reactions (Maillard reactions) during the malting and brewing processes are important for the development of the characteristic color and flavor of beer. Recently, free and protein-bound Maillard reaction products (MRPs) such as pyrraline, formyline, and maltosine were found in beer. Furthermore, these amino acid derivatives are metabolized by Saccharomyces cerevisiae via the Ehrlich pathway. In this study, a method was developed for quantitation of individual Ehrlich intermediates derived from pyrraline, formyline, and maltosine. Following synthesis of the corresponding reference material, the MRP-derived new Ehrlich alcohols pyrralinol (up to 207 μg/L), formylinol (up to 50 μg/L), and maltosinol (up to 6.9 μg/L) were quantitated for the first time in commercial beer samples by reverse phase high performance liquid chromatography tandem mass spectrometry in the multiple reaction monitoring mode. This is equivalent to ca. 20-40% of the concentrations of the parent glycated amino acids. The metabolites were almost absent from alcohol-free beers and malt-based beverages. Two previously unknown valine-derived pyrrole derivatives were characterized and qualitatively identified in beer. The metabolites investigated represent new process-induced alkaloids that may influence brewing yeast performance due to structural similarities to quorum sensing and metal-binding molecules.

  15. Increasing the yeast yield in alcohol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Pelc, A; Vamos, E; Varga, L; Gavalya, S; Dolanszky, F

    1964-02-01

    The yeast and ethanol yields (the latter being based on the substrate) are enhanced by adding the substrate (molasses) gradually to the suspension of inoculating yeast during the main fermentation period, passing air through the mash, ceasing both substrate addition and aeration at the end of the main period, and allowing the process to come to an end. This way 12 to 14 kg yeast (dry weight)/100 l ethanol could be obtained within 16 to 24 hours and the yeast obtained could be used as the inoculum for the next charge. For example: 11 to 16 kg yeast (or 18 to 25 l yeast suspension from the preceding charge, containing 18 to 20% dry matter) is kept in 30 to 35 l H/sub 2/SO/sub 4/ (0.74 g/100 ml) for 1 hour, diluted with H/sub 2/O and 30 kg sterile molasses to 300 l, kept at 30 to 32/sup 0/ with mild aeration for 2 hours, 1900 l 30/sup 0/ H/sub 2/O added, then 1 m/sup 3/ air/m/sup 2//hour is passed through the mixture, with the addition of 270 kg sterile molasses, and a solution of 8 kg superphosphate and 5 kg (NH/sub 4/)/sub 2/SO/sub 4/ in 100 l H/sub 2/O, the latter being added in 5 portions over 2 hours. Molasses (600 kg) is added during the main period, maintaining the pH at 5 (H/sub 2/SO/sub 4/), and the temperature at 30/sup 0/, then aeration is ceased and the mixture kept until fermentation proceeds. The 3000 l medium contains 9.6% ethanol and 1.38% yeast, respectively.

  16. Ethanol fermentation with a flocculating yeast

    Energy Technology Data Exchange (ETDEWEB)

    Admassu, W; Korus, R A; Heimsch, R C

    1985-08-01

    A 100 cm x 5.7 cm internal diameter tower fermentor was fabricated and operated continuously for 11 months using the floc-forming yeast, Saccharomyces cerevisiae (American Type Culture Collection 4097). Steady state operation of the system was characterized at 32/sup 0/C and pH 4.0 for glucose concentrations ranging from 105 to 215 g l/sup -1/. The height of the yeast bed in the tower was maintained at 80 cm. The high yeast density, ethanol concentration and low pH prevented bacterial contamination in the reactor. The concentration profiles of glucose and ethanol within the bed were described by a dispersion model. Modeling parameters were determined for the yeast by batch kinetics and tracer experiments. The kinetic model included ethanol inhibition and substrate limitation. A tracer study with step input of D-xylose (a non-metabolizable sugar for S. cerevisiae) determined the dispersion number (D/uL=0.16) and liquid voidage (epsilonsub(L)=0.25). Measurements taken after 6 months of continuous operation indicated that there was no significant change in fermentor performance.

  17. Actin and Endocytosis in Budding Yeast

    Science.gov (United States)

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  18. The Yeast Deletion Collection: A Decade of Functional Genomics

    Science.gov (United States)

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  19. Yeast Genomics for Bread, Beer, Biology, Bucks and Breath

    Science.gov (United States)

    Sakharkar, Kishore R.; Sakharkar, Meena K.

    The rapid advances and scale up of projects in DNA sequencing dur ing the past two decades have produced complete genome sequences of several eukaryotic species. The versatile genetic malleability of the yeast, and the high degree of conservation between its cellular processes and those of human cells have made it a model of choice for pioneering research in molecular and cell biology. The complete sequence of yeast genome has proven to be extremely useful as a reference towards the sequences of human and for providing systems to explore key gene functions. Yeast has been a ‘legendary model’ for new technologies and gaining new biological insights into basic biological sciences and biotechnology. This chapter describes the awesome power of yeast genetics, genomics and proteomics in understanding of biological function. The applications of yeast as a screening tool to the field of drug discovery and development are highlighted and the traditional importance of yeast for bakers and brewers is discussed.

  20. Global quantitative indices reflecting provider process-of-care: data-base derivation.

    Science.gov (United States)

    Moran, John L; Solomon, Patricia J

    2010-04-19

    Controversy has attended the relationship between risk-adjusted mortality and process-of-care. There would be advantage in the establishment, at the data-base level, of global quantitative indices subsuming the diversity of process-of-care. A retrospective, cohort study of patients identified in the Australian and New Zealand Intensive Care Society Adult Patient Database, 1993-2003, at the level of geographic and ICU-level descriptors (n = 35), for both hospital survivors and non-survivors. Process-of-care indices were established by analysis of: (i) the smoothed time-hazard curve of individual patient discharge and determined by pharmaco-kinetic methods as area under the hazard-curve (AUC), reflecting the integrated experience of the discharge process, and time-to-peak-hazard (TMAX, in days), reflecting the time to maximum rate of hospital discharge; and (ii) individual patient ability to optimize output (as length-of-stay) for recorded data-base physiological inputs; estimated as a technical production-efficiency (TE, scaled [0,(maximum)1]), via the econometric technique of stochastic frontier analysis. For each descriptor, multivariate correlation-relationships between indices and summed mortality probability were determined. The data-set consisted of 223129 patients from 99 ICUs with mean (SD) age and APACHE III score of 59.2(18.9) years and 52.7(30.6) respectively; 41.7% were female and 45.7% were mechanically ventilated within the first 24 hours post-admission. For survivors, AUC was maximal in rural and for-profit ICUs, whereas TMAX (>or= 7.8 days) and TE (>or= 0.74) were maximal in tertiary-ICUs. For non-survivors, AUC was maximal in tertiary-ICUs, but TMAX (>or= 4.2 days) and TE (>or= 0.69) were maximal in for-profit ICUs. Across descriptors, significant differences in indices were demonstrated (analysis-of-variance, P variance, for survivors (0.89) and non-survivors (0.89), was maximized by combinations of indices demonstrating a low correlation with

  1. Liquid holding recovery kinetics in yeast cells with regard to radiation quality

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Byoung Hun; Petin, Vladislav G.

    2004-01-01

    It is widely accepted that the RBE of ionizing radiation with a high linear energy transfer (LET) is dependent both on the increased probability of primary damage production (physical events) and the reduced ability of a cell for post-irradiation recovery (biological events). A relatively unexpected role of the specific repair pathways in the RBE of high-LET radiation was demonstrated for bacterial, yeast and mammalian cells. It seems to exist a common agreement that high-LET radiations produce more portion of damage that are considered to be irreversible compared with low-LET radiation such as photons. Cellular recovery and repair of radiation-induced DNA double-strand breaks (DSB) could be also dependent upon radiation quality. Studies concerning the rate of the recovery and repair from radiation damage produced with low- and high-LET radiations in cells of various origins on the survival and macromolecular level have also revealed that in general at a high ionization density, these processes may be reduced or even absent. When irradiated yeast cells are held in a liquid non-nutrient media at 30 .deg. C before planting on to a growth medium, their survival increases. This phenomena is known as liquid holding recovery (LHR). A quantitative approach describing the LHR kinetics of the yeast cells was described, which enables the estimation of the probability of the recovery per unit time and the fraction of the irreversible damage. The main goals of this study were (i) to answer the question whether or not high-LET radiation affects the recovery process itself or if it only produces a higher level of severe irreversible damage that cannot be repaired at all; (ii) to elucidate the role of irreversible damage and the probability of recovery in some rad mutants of the yeast Saccharomyces cerevisiae. In this study, the liquid-holing recovery will serve as an indicator of the cellular repair activity

  2. Yeast hulls: effect on spontaneous fermentation in different vinification conditions

    Directory of Open Access Journals (Sweden)

    Rosa López

    2000-09-01

    Full Text Available The effect of the addition of yeast hulls in vinification was investigated during three consecutive years. The study was carried out in the experimental winery of C.I.D.A in La Rioja (Spain with free running white grape juice of the Viura variety. Four different vinifications were studied. In two of these vinifications, stuck fermentations were detected. In all the studies, the addition of yeast hulls (yeast ghosts improved the fermentation kinetics, increasing the number of viable yeasts at the end of the exponential stage and decreasing the final content of reducing sugars. This work revealed a new effect of yeast hull addition which had not been identified previously; their selection effect on the wild yeast strain in spontaneous fermentation.

  3. Differentiation of enzymatic activity of yeasts and yeast-like microorganisms isolated from various environments

    Directory of Open Access Journals (Sweden)

    Elżbieta Bogusławska-Wąs

    2014-08-01

    Full Text Available The aim of study was to determinate enzymatic activity of yeast-like organisms - Candida lipolytica, Rhodotorula rubra, Trichosporon beigelii, Zygosaccharomyces sp. - isolated from the Szczecin Lagoon and herring salads. We have shown that lipolytic activity was higher than protcolytic for every strain tested. The lowest activity level was found out for amylolytic hydrolases. The results also demonstrated that yeast-like organisms isolated from the Szczecin Lagoon revealed much higher average enzymatic activity compared to tbe same species isolated from herring salads, excepting C. lipolytica.

  4. Performance of baker's yeast produced using date syrup substrate ...

    African Journals Online (AJOL)

    Baker's yeast was produced from three selected baker's yeast strains using date syrup as a substrate at low and high flow rate compared to those produced using molasses substrates. Performance of the produced baker's yeasts on Arabic bread quality was investigated. Baking tests showed a positive relationship between ...

  5. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    Science.gov (United States)

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  6. The yeast replicative aging model.

    Science.gov (United States)

    He, Chong; Zhou, Chuankai; Kennedy, Brian K

    2018-03-08

    It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast. Copyright © 2018. Published by Elsevier B.V.

  7. New lager yeast strains generated by interspecific hybridization.

    Science.gov (United States)

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2015-05-01

    The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and α-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast.

  8. Yeast cells proliferation on various strong static magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Otabe, E S; Kuroki, S; Nikawa, J; Matsumoto, Y; Ooba, T; Kiso, K; Hayashi, H

    2009-01-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 10 6 /ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  9. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.

    Science.gov (United States)

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2006-05-31

    In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.

  10. Measuring mitotic spindle dynamics in budding yeast

    Science.gov (United States)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  11. Oxidative Stress and Programmed Cell Death in Yeast

    International Nuclear Information System (INIS)

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.

  12. Characterization of the Respiration-Induced Yeast Mitochondrial Permeability Transition Pore

    OpenAIRE

    Bradshaw, Patrick C.; Pfeiffer, Douglas R.

    2013-01-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable throug...

  13. [Yeast microbiota in artisanal cheeses from Corrientes, Argentina].

    Science.gov (United States)

    Cardozo, Marina C; Fusco, Ángel J V; Carrasco, Marta S

    The artisanal cheese from Corrientes (from the Spanish acronym QAC-Queso Artesanal de Corrientes/Artisanal Cheese from Corrientes) is a soft cheese elaborated with raw cow milk and an artisanal coagulant agent. Lactic bacteria contitute the main flora of this cheese although yeasts are also present in high quantities as secondary microbiota and might play a relevant role in cheese ripening. The aim of this work was to evaluate yeast occurrence during QAC elaboration and ripening, and the effect of seasonal variation. Yeasts were isolated and purified from raw materials and cheese at different ripening stagesl elaborated during the different seasons. Yeast sample counts were in the order of 10 3 - 10 7 UFC/ml o UFC/g. Ninety yeast strains were classified: 9 from milk, 28 from the coagulant agent, 10 from curd and 43 from cheese. Candida predominated in milk samples while other yeast genera had low incidence. Candida also predominated in the coagulant agent samples, followed by genera Myxozyma and Debaryomyces. The isolates obtained from cheese belonged to the same genera predominating in the coagulant agent, and showed the same order of prevalence. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Oxygen Response of the Wine Yeast Saccharomyces cerevisiae EC1118 Grown under Carbon-Sufficient, Nitrogen-Limited Enological Conditions

    Science.gov (United States)

    Aceituno, Felipe F.; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W.; Melo, Francisco

    2012-01-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations. PMID:23001663

  15. Regulatory aspects of methanol metabolism in yeasts

    International Nuclear Information System (INIS)

    Trotsenko, Y.A.; Bystrykh, L.V.; Ubiyvovk, V.M.

    1984-01-01

    Formaldehyde is the first and key intermediate in the metabolism of methylotrophic yeasts since it stands at a branch point of pathways for methanol oxidation and assimilation. Methanol and, formaldehyde are toxic compounds which severely affect the growth rate, yield coefficient, etc., of yeasts. Two questions arise when considering regulation of methanol metabolism in yeasts how a nontoxic level of formaldehyde is maintained in the cell and how the formaldehyde flow is distributed into oxidation and assimilation. To answer these questions we studied the role of GSH, which spontaneously binds formaldehyde, yielding S-hydroxymethylglutathione; in vivo rates of formaldehyde dissimilation and assimilation by using [ 14 C]methanol; profiles of enzymes responsible for production and utilization of formaldehyde; and levels of metabolites affecting dissimilation and assimilation of formaldehyde. All of the experiments were carried out with the methylotrophic yeast Candida boidinii KD1. 19 refs., 4 figs., 1 tab

  16. The impact of yeast fermentation on dough matrix properties.

    Science.gov (United States)

    Rezaei, Mohammad N; Jayaram, Vinay B; Verstrepen, Kevin J; Courtin, Christophe M

    2016-08-01

    Most studies on dough properties are performed on yeastless dough to exclude the complicating, time-dependent effect of yeast. Baker's yeast, however, impacts dough matrix properties during fermentation, probably through the production of primary (CO2 and ethanol) and secondary (glycerol, acetic acid and succinic acid) metabolites. The aim of this study is to obtain a better understanding of the changes in yeasted dough behavior introduced by fermentation, by investigating the impact of yeast fermentation on Farinograph dough consistency, dough spread, Kieffer rig dough extensibility and gluten agglomeration behavior in a fermented dough-batter gluten starch separation system. Results show that fermentation leads to a dough with less flow and lower extensibility that breaks more easily under stress and strain. The dough showed less elastic and more plastic deformation behavior. Gluten agglomerates were smaller for yeasted dough than for the unyeasted control. These changes probably have to be attributed to metabolites generated during fermentation. Indeed, organic acids and also ethanol in concentrations produced by yeast were previously shown to have similar effects in yeastless dough. These findings imply the high importance of yeast fermentation metabolites on dough matrix properties in industrial bread production. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Determination of the autolysis of champagne yeast by using /sup 14/C-labelled yeast

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, I [Orszagos Szoeleszeti es Boraszati Kutatointezet, Budapest (Hungary); Oura, E; Suomalainen, H [Research Laboratories of the State Alcohol Monopoly, Helsinki (Finland)

    1980-01-01

    The degree of autolysis of /sup 14/C-labelled Champagne Hautvillers yeast was studied in the function of different temperatures of storage. A linear relationship was found between the length of the storage and the degree of autolysis. The rate of autolysis increased with raising the temperature of storage. The raising of the temperature by 10 deg C was followed by a 6-7% increase in the rate of autolysis. Shaking up the yeast sediment at 20-day intervals raised the rate of autolysis by 1.5-4.2%.

  18. Metabolic profiling of yeast culture using gas chromatography coupled with orthogonal acceleration accurate mass time-of-flight mass spectrometry: application to biomarker discovery.

    Science.gov (United States)

    Kondo, Elsuida; Marriott, Philip J; Parker, Rhiannon M; Kouremenos, Konstantinos A; Morrison, Paul; Adams, Mike

    2014-01-07

    Yeast and yeast cultures are frequently used as additives in diets of dairy cows. Beneficial effects from the inclusion of yeast culture in diets for dairy mammals have been reported, and the aim of this study was to develop a comprehensive analytical method for the accurate mass identification of the 'global' metabolites in order to differentiate a variety of yeasts at varying growth stages (Diamond V XP, Yea-Sacc and Levucell). Microwave-assisted derivatization for metabolic profiling is demonstrated through the analysis of differing yeast samples developed for cattle feed, which include a wide range of metabolites of interest covering a large range of compound classes. Accurate identification of the components was undertaken using GC-oa-ToFMS (gas chromatography-orthogonal acceleration-time-of-flight mass spectrometry), followed by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) for data reduction and biomarker discovery. Semi-quantification (fold changes in relative peak areas) was reported for metabolites identified as possible discriminative biomarkers (p-value 2), including D-ribose (four fold decrease), myo-inositol (five fold increase), L-phenylalanine (three fold increase), glucopyranoside (two fold increase), fructose (three fold increase) and threitol (three fold increase) respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process

    Directory of Open Access Journals (Sweden)

    Nevoigt Elke

    2010-05-01

    Full Text Available Abstract Background Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH. Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP fed-batch process. Results The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g

  20. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    Science.gov (United States)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  1. Diversity and killer activity of yeasts in Malaysian fermented food samples.

    Science.gov (United States)

    Lim, S L; Tay, S T

    2011-08-01

    The biodiversity and the killer activity of yeasts isolated from various types of fermented food in Malaysia were investigated in this study. Of 252 yeasts isolated from 48 fermented food samples in this study, 19 yeast species were identified based on sequence analysis of the ITS1-5.8S-ITS2 partial fragments of the yeasts. A total of 29 (11.5%) of the yeast isolates demonstrated killer activity to at least one Candida species tested in this study; including 22 isolates of Trichosporon asahii, 4 isolates of Pichia anomala, and one isolate each of Pichia norvegensis, Pichia fermentans and Issatchenkia orientalis, respectively. The presence of killer yeasts reflects antagonism that occurs during microbial interaction in the fermented food, whereby certain yeasts produce killer toxins and possibly other toxic substances in competition for limited nutrients and space. The anti-Candida activity demonstrated by killer yeasts in this study should be further explored for development of alternative therapy against candidiasis.

  2. A Three-Dimensional Model of the Yeast Genome

    Science.gov (United States)

    Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony

    Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.

  3. 21 CFR 172.325 - Bakers yeast protein.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be...

  4. The Influence of Heating Mains on Yeast Communities in Urban Soils

    Science.gov (United States)

    Tepeeva, A. N.; Glushakova, A. M.; Kachalkin, A. V.

    2018-04-01

    The number and species diversity of yeasts in urban soils (urbanozems) affected by heating mains and in epiphytic yeast complexes of grasses growing above them were studied. The number of yeasts in the soil reached 103-104 CFU/g; on the plants, 107 CFU/g. Significant (by an order of magnitude) increase in the total number of soil yeasts in the zone of heating mains in comparison with the surrounding soil was found in winter period. Overall, 25 species of yeasts were isolated in our study. Yeast community of studied urbanozems was dominated by the Candida sake, an eurybiont of the temperate zone and other natural ecotopes with relatively low temperatures, but its share was minimal in the zone of heating mains. In general, the structure of soil and epiphytic yeast complexes in the zones of heating mains differed from that in the surrounding area by higher species diversity and a lower share of pigmented species among the epiphytic yeasts. The study demonstrated that the number and species structure of soil yeast communities in urban soils change significantly under the influence of the temperature factor and acquire a mosaic distribution pattern.

  5. Distribution of yeast complexes in the profiles of different soil types

    Science.gov (United States)

    Glushakova, A. M.; Kachalkin, A. V.; Tiunov, A. V.; Chernov, I. Yu.

    2017-07-01

    The number and taxonomic structure of the yeast complexes were investigated in the full profiles of the soddy-podzolic soil (Central Forest State Nature Biosphere Reserve), dark gray forest soil (Kaluzhskie Zaseki Reserve), and chernozem (Privolzhskaya Forest-Steppe Reserve). In all these soils, the number of yeasts was maximal (104 CFU/g) directly under the litter; it drastically decreased with the depth. However, at the depth of 120-160 cm, the number of yeasts significantly increased in all the soils; their maximum was found in the illuvial horizon of the soddy-podzolic soil. Such a statistically significant increase in the number of yeasts at a considerable depth was found for the first time. Different groups of yeasts were present in the yeast communities of different soils. The species structure of yeast communities changed little in each soil: the same species were isolated both from the soil surface and from the depth of more than 2 m. The results showed that yeasts could be used for soil bioindication on the basis of specific yeast complexes in the profiles of different soil types rather than individual indicative species.

  6. Dielectric modelling of cell division for budding and fission yeast

    International Nuclear Information System (INIS)

    Asami, Koji; Sekine, Katsuhisa

    2007-01-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast

  7. Some Metabolites Act as Second Messengers in Yeast Chronological Aging

    Directory of Open Access Journals (Sweden)

    Karamat Mohammad

    2018-03-01

    Full Text Available The concentrations of some key metabolic intermediates play essential roles in regulating the longevity of the chronologically aging yeast Saccharomyces cerevisiae. These key metabolites are detected by certain ligand-specific protein sensors that respond to concentration changes of the key metabolites by altering the efficiencies of longevity-defining cellular processes. The concentrations of the key metabolites that affect yeast chronological aging are controlled spatially and temporally. Here, we analyze mechanisms through which the spatiotemporal dynamics of changes in the concentrations of the key metabolites influence yeast chronological lifespan. Our analysis indicates that a distinct set of metabolites can act as second messengers that define the pace of yeast chronological aging. Molecules that can operate both as intermediates of yeast metabolism and as second messengers of yeast chronological aging include reduced nicotinamide adenine dinucleotide phosphate (NADPH, glycerol, trehalose, hydrogen peroxide, amino acids, sphingolipids, spermidine, hydrogen sulfide, acetic acid, ethanol, free fatty acids, and diacylglycerol. We discuss several properties that these second messengers of yeast chronological aging have in common with second messengers of signal transduction. We outline how these second messengers of yeast chronological aging elicit changes in cell functionality and viability in response to changes in the nutrient, energy, stress, and proliferation status of the cell.

  8. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast

    Directory of Open Access Journals (Sweden)

    Jannatul Ferdouse

    2018-05-01

    Full Text Available In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae. During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae, and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast.

  9. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast.

    Science.gov (United States)

    Ferdouse, Jannatul; Yamamoto, Yuki; Taguchi, Seiga; Yoshizaki, Yumiko; Takamine, Kazunori; Kitagaki, Hiroshi

    2018-01-01

    In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae . During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae , and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA) cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast.

  10. A new methodology to obtain wine yeast strains overproducing mannoproteins.

    Science.gov (United States)

    Quirós, Manuel; Gonzalez-Ramos, Daniel; Tabera, Laura; Gonzalez, Ramon

    2010-04-30

    Yeast mannoproteins are highly glycosylated proteins that are covalently bound to the beta-1,3-glucan present in the yeast cell wall. Among their outstanding enological properties, yeast mannoproteins contribute to several aspects of wine quality by protecting against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The development of a non-recombinant method to obtain enological yeast strains overproducing mannoproteins would therefore be very useful. Our previous experience on the genetic determinants of the release of these molecules by Saccharomyces cerevisiae has allowed us to propose a new methodology to isolate and characterize wine yeast that overproduce mannoproteins. The described methodology is based on the resistance of the killer 9 toxin produced by Williopsis saturnus, a feature linked to an altered biogenesis of the yeast cell wall. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. ... Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. C Dai, J Tao, F Xie, Y Dai, M Zhao. Abstract. This study explored a strategy to convert agricultural and forestry residues into ...

  12. Ergosterol is mainly located in the cytoplasmic leaflet of the yeast plasma membrane.

    Science.gov (United States)

    Solanko, Lukasz M; Sullivan, David P; Sere, Yves Y; Szomek, Maria; Lunding, Anita; Solanko, Katarzyna A; Pizovic, Azra; Stanchev, Lyubomir D; Pomorski, Thomas Günther; Menon, Anant K; Wüstner, Daniel

    2018-03-01

    Transbilayer lipid asymmetry is a fundamental characteristic of the eukaryotic cell plasma membrane (PM). While PM phospholipid asymmetry is well documented, the transbilayer distribution of PM sterols such as mammalian cholesterol and yeast ergosterol is not reliably known. We now report that sterols are asymmetrically distributed across the yeast PM, with the majority (~80%) located in the cytoplasmic leaflet. By exploiting the sterol-auxotrophic hem1Δ yeast strain we obtained cells in which endogenous ergosterol was quantitatively replaced with dehydroergosterol (DHE), a closely related fluorescent sterol that functionally and accurately substitutes for ergosterol in vivo. Using fluorescence spectrophotometry and microscopy we found that membrane-impermeant collisional quenchers (spin-labeled phosphatidylcholine and trinitrobenzene sulfonic acid). Efficient quenching was seen only after the cells were disrupted by glass-bead lysis or repeated freeze-thaw to allow quenchers access to the cell interior. The extent of quenching was unaffected by treatments that deplete cellular ATP levels, collapse the PM electrochemical gradient or affect the actin cytoskeleton. However, alterations in PM phospholipid asymmetry in cells lacking phospholipid flippases resulted in a more symmetric transbilayer distribution of sterol. Similarly, an increase in the quenchable pool of DHE was observed when PM sphingolipid levels were reduced by treating cells with myriocin. We deduce that sterols comprise up to ~45% of all inner leaflet lipids in the PM, a result that necessitates revision of current models of the architecture of the PM lipid bilayer. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Use of INAA to study the determination of Se, Th, Zn, Co and Fe levels of yeast cells

    International Nuclear Information System (INIS)

    Czauderna, M.; Turska, M.; Sitowska, B.

    1996-01-01

    Differences in the effects of seleno-cystine (CySe) 2 , glutathione (GSH), Se(IV) [as SeO 2 ] and Se(VI) [as (NH 4 ) 2 SeO 4 ] on Th(IV) [as Th(CO 3 ) 2 ] uptake by the cells, Saccharomyces cerevisiae, have been studied. The Th, Se, Zn, Co and Fe levels of the yeast cells were measured by instrumental neutron activation analysis. Results obtained show that the addition of Th alone to the culture medium resulting in the Th content of the cells and the Th level of the yeast slightly decreased during the incubation. The addition of Th in combination with GSH produced a higher decrease of the Th content in comparison with the single Th dosage. During the initial 48 h of the incubation the presence of Th and Se(VI) in the medium produced a decrease of the Th level of the cells in comparison with the addition of Th alone. (CySe) 2 or SeO 2 does not produce a regular change of the Th level of the cells. Th uptake by the yeast influenced the retention of Se in the cells. In fact, the Se levels of the cells were always significantly higher when the yeast was incubated in the medium containing Th and SeO 2 or Se(VI). The enhance in the Se level of the cells rises increasing concentrations of SeO 2 in the culture medium. Th decreased the Se content of the yeast when the cells were incubated in the medium containing (CySe) 2 and Th. GSH supply in combination with Th and SeO 2 produced a very significant enhancement of the Se abundance in the cells in comparison with the single addition of SeO 2 . Se-compounds and/or Th dosages affected the Zn, Co and Fe contents of the cells. The Fe level of the yeast is below the quantitative detection limit of Fe when the cells were incubated in the medium containing Th. (Author)

  14. Global scaling for semi-quantitative analysis in FP-CIT SPECT.

    Science.gov (United States)

    Kupitz, D; Apostolova, I; Lange, C; Ulrich, G; Amthauer, H; Brenner, W; Buchert, R

    2014-01-01

    Semi-quantitative characterization of dopamine transporter availability from single photon emission computed tomography (SPECT) with 123I-ioflupane (FP-CIT) is based on uptake ratios relative to a reference region. The aim of this study was to evaluate the whole brain as reference region for semi-quantitative analysis of FP-CIT SPECT. The rationale was that this might reduce statistical noise associated with the estimation of non-displaceable FP-CIT uptake. 150 FP-CIT SPECTs were categorized as neurodegenerative or non-neurodegenerative by an expert. Semi-quantitative analysis of specific binding ratios (SBR) was performed with a custom-made tool based on the Statistical Parametric Mapping software package using predefined regions of interest (ROIs) in the anatomical space of the Montreal Neurological Institute. The following reference regions were compared: predefined ROIs for frontal and occipital lobe and whole brain (without striata, thalamus and brainstem). Tracer uptake in the reference region was characterized by the mean, median or 75th percentile of its voxel intensities. The area (AUC) under the receiver operating characteristic curve was used as performance measure. The highest AUC of 0.973 was achieved by the SBR of the putamen with the 75th percentile in the whole brain as reference. The lowest AUC for the putamen SBR of 0.937 was obtained with the mean in the frontal lobe as reference. We recommend the 75th percentile in the whole brain as reference for semi-quantitative analysis in FP-CIT SPECT. This combination provided the best agreement of the semi-quantitative analysis with visual evaluation of the SPECT images by an expert and, therefore, is appropriate to support less experienced physicians.

  15. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    Science.gov (United States)

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  16. Yeast glycolipid biosurfactants.

    Science.gov (United States)

    Jezierska, Sylwia; Claus, Silke; Van Bogaert, Inge

    2017-10-25

    Various yeasts, both conventional and exotic ones, are known to produce compounds useful to mankind. Ethanol is the most known of these compounds, but more complex molecules such as amphiphilic biosurfactants can also be derived from eukaryotic microorganisms at an industrially and commercially relevant scale. Among them, glycolipids are the most promising, due to their attractive properties and high product titers. Many of these compounds can be considered as secondary metabolites with a specific function for the host. Hence, a dedicated biosynthetic process enables regulation and combines pathways delivering the lipidic moiety and the hydrophilic carbohydrate part of the glycolipid. In this Review, we will discuss the biosynthetic and regulatory aspects of the yeast-derived sophorolipids, mannosylerythritol lipids, and cellobiose lipids, with special emphasis on the relation between glycolipid synthesis and the general lipid metabolism. © 2017 Federation of European Biochemical Societies.

  17. Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die

    Directory of Open Access Journals (Sweden)

    Karamat Mohammad

    2018-01-01

    Full Text Available A disturbed homeostasis of cellular lipids and the resulting lipotoxicity are considered to be key contributors to many human pathologies, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer. The yeast Saccharomyces cerevisiae has been successfully used for uncovering molecular mechanisms through which impaired lipid metabolism causes lipotoxicity and elicits different forms of regulated cell death. Here, we discuss mechanisms of the “liponecrotic” mode of regulated cell death in S. cerevisiae. This mode of regulated cell death can be initiated in response to a brief treatment of yeast with exogenous palmitoleic acid. Such treatment prompts the incorporation of exogenously added palmitoleic acid into phospholipids and neutral lipids. This orchestrates a global remodeling of lipid metabolism and transfer in the endoplasmic reticulum, mitochondria, lipid droplets, and the plasma membrane. Certain features of such remodeling play essential roles either in committing yeast to liponecrosis or in executing this mode of regulated cell death. We also outline four processes through which yeast cells actively resist liponecrosis by adapting to the cellular stress imposed by palmitoleic acid and maintaining viability. These prosurvival cellular processes are confined in the endoplasmic reticulum, lipid droplets, peroxisomes, autophagosomes, vacuoles, and the cytosol.

  18. The influence of sucrose and maltose on Saccharomyces cerevisiae yeast multiplication

    Directory of Open Access Journals (Sweden)

    O. I. Ponomareva

    2016-01-01

    Full Text Available The data on the influence of fermentable carbohydrates concentration on yeast multiplication are widely represented in the literature. This study presents the results of experiments showing an influence of sucrose and maltose concentration on Saccharomyces cerevisiae yeast multiplication. The objects of this research are bakery, beer, wine and alcohol yeast that are widely used in fermentation industry. Beet molasses and malt wort were chosen as nutrient medium for yeast breeding. Their basic sugars are mainly represented by sucrose and maltose. The concentration of sugars was 9, 12, 16 and 20%. The intensity of yeast multiplication was evaluated based on yeast cells concentration during their cultivation and the specific growth rate. Sugar concentrations causing an intensive accumulation of examined yeast strains were determined. This paper presents the experimental data that were received describing the influence of sucrose and maltose concentration on the duration of a lag phase period for different yeast strains. Specific growth rates of researched strains were determined for nutrient mediums with different glucose and maltose concentrations. It was found that the Crabtree effect, that is caused by high carbohydrates concentration in culture medium, is most pronounced when yeast cells grow on a sucrose medium. Brewer’s and baker's yeast are more adapted to high concentrations of carbohydrates. The obtained experimental data could be utilized to develop flow charts of growing a pure culture of Saccharomyces cerevisiae yeast to use at fermentation plants, including low power ones.

  19. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation

    Directory of Open Access Journals (Sweden)

    Edward D. Kerr

    2016-08-01

    Full Text Available Vegemite is an iconic Australian food spread made from spent brewers’ yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers’ yeast. No fermentation occurred in any condition without addition of extra brewer’s yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers’ yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers’ yeast had been added. We estimate that the real-world cost of home brewed “Vegemite Beer” would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  20. Comparative proteome and transcriptome analysis of lager brewer's yeast in the autolysis process.

    Science.gov (United States)

    Xu, Weina; Wang, Jinjing; Li, Qi

    2014-12-01

    The autolysis of brewer's yeast during beer production has a significant effect on the quality of the final product. In this work, we performed proteome and transcriptome studies on brewer's yeast to examine changes in protein and mRNA levels in the process of autolysis. Protein and RNA samples of the strain Qing2 at two different autolysis stages were obtained for further study. In all, 49 kinds of proteins were considered to be involved in the autolysis response, eight of which were up-regulated and 41 down-regulated. Seven new kinds of proteins emerged during autolysis. Results of comparative analyses showed that important changes had taken place as an adaptive response to autolysis. Functional analysis showed that carbohydrate and energy metabolism, cellular amino acid metabolic processes, cell response to various stresses (such as oxidative stress, salt stress, and osmotic stress), translation and transcription were repressed by the down-regulation of the corresponding proteins, and starvation and DNA damage responses could be induced. The comparison of data on transcriptomes with proteomes demonstrated that most autolysis-response proteins as well as new proteins showed a general correlation between mRNA and protein levels. Thus these proteins were thought to be transcriptionally regulated. These findings provide important information about how brewer's yeast acts to cope with autolysis at molecular levels, which might enhance global understanding of the autolysis process. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Xylitol from rice husks by acid hydrolysis and Candida yeast fermentation

    Directory of Open Access Journals (Sweden)

    Magale K. D. Rambo

    2013-01-01

    Full Text Available An investigation was conducted into the production of xylose by acid hydrolysis of rice husks and its subsequent bioconversion to xylitol. The parameters were optimised using the response surface methodology. The fermentation stage took place with the aid of the yeast species Candida guilliermondii and Candida tropicalis. An evaluation of the influence of several biomass pre-treatments was also performed. The effects of the acid concentration and hydrolysate pH on xylitol global yield were also assessed, and the highest yield of xylitol was 64.0% (w/w. The main products, xylose and xylitol, were identified and quantified by means of liquid chromatography.

  2. The Genome of the Basidiomycetous Yeast and Human Pathogen Cryptococcus neoformans

    Science.gov (United States)

    Loftus, Brendan J.; Fung, Eula; Roncaglia, Paola; Rowley, Don; Amedeo, Paolo; Bruno, Dan; Vamathevan, Jessica; Miranda, Molly; Anderson, Iain J.; Fraser, James A.; Allen, Jonathan E.; Bosdet, Ian E.; Brent, Michael R.; Chiu, Readman; Doering, Tamara L.; Donlin, Maureen J.; D’Souza, Cletus A.; Fox, Deborah S.; Grinberg, Viktoriya; Fu, Jianmin; Fukushima, Marilyn; Haas, Brian J.; Huang, James C.; Janbon, Guilhem; Jones, Steven J. M.; Koo, Hean L.; Krzywinski, Martin I.; Kwon-Chung, June K.; Lengeler, Klaus B.; Maiti, Rama; Marra, Marco A.; Marra, Robert E.; Mathewson, Carrie A.; Mitchell, Thomas G.; Pertea, Mihaela; Riggs, Florenta R.; Salzberg, Steven L.; Schein, Jacqueline E.; Shvartsbeyn, Alla; Shin, Heesun; Shumway, Martin; Specht, Charles A.; Suh, Bernard B.; Tenney, Aaron; Utterback, Terry R.; Wickes, Brian L.; Wortman, Jennifer R.; Wye, Natasja H.; Kronstad, James W.; Lodge, Jennifer K.; Heitman, Joseph; Davis, Ronald W.; Fraser, Claire M.; Hyman, Richard W.

    2012-01-01

    Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its ~20-megabase genome, which contains ~6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype instability and phenotypic variation. C. neoformans encodes unique genes that may contribute to its unusual virulence properties, and comparison of two phenotypically distinct strains reveals variation in gene content in addition to sequence polymorphisms between the genomes. PMID:15653466

  3. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  4. Biosynthesis of polyhydroxyalkanotes in wildtype yeasts | Desuoky ...

    African Journals Online (AJOL)

    Biosynthesis of the biodegradable polymers polyhydroxyalkanotes (PHAs) are studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHA in wild type yeasts are not well documented. The purpose of this study was to screen forty yeast isolates collected from different ...

  5. Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling

    Directory of Open Access Journals (Sweden)

    Kang Kang

    2012-02-01

    Full Text Available Abstract MicroRNAs (miRNAs are small noncoding RNAs (18-25 nucleotides that regulate gene expression at the post-transcriptional level. Recent studies have demonstrated the presence of miRNAs in the blood circulation. Deregulation of miRNAs in serum or plasma has been associated with many diseases including cancers and cardiovascular diseases, suggesting the possible use of miRNAs as diagnostic biomarkers. However, the detection of the small amount of miRNAs found in serum or plasma requires a method with high sensitivity and accuracy. Therefore, the current study describes polymerase chain reaction (PCR-based methods for measuring circulating miRNAs. Briefly, the procedure involves four major steps: (1 sample collection and preparation; (2 global miRNAs profiling using quantitative real-time PCR (qRT-PCR; (3 data normalization and analysis; and (4 selection and validation of miRNA biomarkers. In conclusion, qRT-PCR is a promising method for profiling of circulating miRNAs as biomarkers.

  6. Yeast genetics. A manual of methods

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.F.T.; Spencer, D.M.; Bruce, I.J.

    1989-01-01

    This is a bench-top manual of methods needed both for classical genetics as related to yeasts, such as mating, sporulation, isolation of hybrids, microdissection of asci for the isolation of single-spore clones, as well as for mapping of genes and the construction of new strains by protoplast fusion. Special emphasis is on mutations in general, and on methods of isolating a number of important classes of mutants in particular. Basic techniques for the separation of chromosomes by electrophoresis, such as OFAGE, FIGE, and CHEF, are discussed, with detailed protocols for the first two. Furthermore, new methods, e.g. for the isolation of high molecular weight DNA from yeast, isolation of RNA, and techniques for transformation of yeasts, are also described in detail. (orig.) With 10 figs.

  7. Probiotic Properties of Non-Saccharomyces Yeasts

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech

    to harmless luminal substances is a key feature of the intestinal immune system. In this context, dendritic cells (DCs) present in the tissues lining the human gut are central players involved in microbial sensing and shaping of appropriate adaptive immune responses. Probiotics are live microorganisms which...... when administered in adequate amounts confer a health benefit on the host. While the majority of probiotic microorganisms studied to date are lactic acid bacteria, research in yeasts with potentially beneficial influences on human health has mainly revolved around Saccharomyces boulardii. This yeast...... has shown a positive impact on disease outcome in clinical studies of inflammatory bowel disease, indicating an ability of S. boulardii to influence human immune responses underlying intestinal inflammation. Consequent to this focus on S. boulardii as the fundamental probiotic yeast, very little...

  8. Using Microsatellites to Identify Yeast Strains in Beer

    OpenAIRE

    Bruke, Alexandria; Van Brocklin, Jennifer; Rivest, Jason; Prenni, Jessica E.; Ibrahim, Hend

    2012-01-01

    Yeast is an integral part of the brewing process and is responsible for much of the taste and characteristics of beer. During the brewing process, yeast is subject to ageing and stress factors that can result in growth inhibition, decreased genetic stability, and changes in cell membrane stability. Characterization of yeast species used in industrial fermentation (e.g. S. cerevisiae) is of great importance to the brewing industry. The objective of this study was to develop an assay to identif...

  9. Sequential fermentation using non-Saccharomyces yeasts for the reduction of alcohol content in wine

    Directory of Open Access Journals (Sweden)

    Ciani Maurizio

    2014-01-01

    Full Text Available Over the last few decades there has been a progressive increase in wine ethanol content due to global climate change and modified wine styles that involved viticulture and oenology practices. Among the different approaches and strategies to reduce alcohol content in wine we propose a sequential fermentation using immobilized non-Saccharomyces wine yeasts. Preliminary results showed that sequential fermentations with Hanseniaspora osmophila, Hanseniaspora uvarum, Metschnikowia pulcherrima, Starmerella bombicola and Saccharomyces cerevisiae strains showed an ethanol reduction when compared with pure S. cerevisiae fermentation trials.

  10. Low level genome mistranslations deregulate the transcriptome and translatome and generate proteotoxic stress in yeast

    Directory of Open Access Journals (Sweden)

    Paredes João A

    2012-06-01

    Full Text Available Abstract Background Organisms use highly accurate molecular processes to transcribe their genes and a variety of mRNA quality control and ribosome proofreading mechanisms to maintain intact the fidelity of genetic information flow. Despite this, low level gene translational errors induced by mutations and environmental factors cause neurodegeneration and premature death in mice and mitochondrial disorders in humans. Paradoxically, such errors can generate advantageous phenotypic diversity in fungi and bacteria through poorly understood molecular processes. Results In order to clarify the biological relevance of gene translational errors we have engineered codon misreading in yeast and used profiling of total and polysome-associated mRNAs, molecular and biochemical tools to characterize the recombinant cells. We demonstrate here that gene translational errors, which have negligible impact on yeast growth rate down-regulate protein synthesis, activate the unfolded protein response and environmental stress response pathways, and down-regulate chaperones linked to ribosomes. Conclusions We provide the first global view of transcriptional and post-transcriptional responses to global gene translational errors and we postulate that they cause gradual cell degeneration through synergistic effects of overloading protein quality control systems and deregulation of protein synthesis, but generate adaptive phenotypes in unicellular organisms through activation of stress cross-protection. We conclude that these genome wide gene translational infidelities can be degenerative or adaptive depending on cellular context and physiological condition.

  11. Yeasts associated with fresh and frozen pulps of Brazilian tropical fruits.

    Science.gov (United States)

    Trindade, Rita C; Resende, Maria Aparecida; Silva, Claudia M; Rosa, Carlos A

    2002-08-01

    The occurrence of yeasts on ripe fruits and frozen pulps of pitanga (Eugenia uniflora L), mangaba (Hancornia speciosa Gom.), umbu (Spondias tuberosa Avr. Cam.), and acerola (Malpighia glaba L) was verified. The incidence of proteolytic, pectinolytic, and mycocinogenic yeasts on these communities was also determined. A total of 480 colonies was isolated and grouped in 405 different strains. These corresponded to 42 ascomycetous and 28 basidiomycetous species. Candida sorbosivorans, Pseudozyma antarctica, C. spandovensis-like, C. spandovensis, Kloeckera apis, C. parapsilosis, Rhodotorula graminis, Kluyveromyces marxianus, Cryptococcus laurentii, Metchnikowia sp (isolated only from pitanga ripe fruits), Issatchenkia occidentalis and C. krusei (isolated only from mangaba frozen pulps), were the most frequent species. The yeast communities from pitanga ripe fruits exhibited the highest frequency of species, followed by communities from acerola ripe fruits and mangaba frozen pulps. Yeast communities from frozen pulp and ripe fruits of umbu had the lowest number of species. Except the yeasts from pitanga, yeast communities from frozen pulp exhibited higher number of yeasts than ripe fruit communities. Mycocinogenic yeasts were found in all of the substrates studied except in communities from umbu ripe fruits and pitanga frozen pulps. Most of the yeasts found to produce mycocins were basidiomycetes and included P. antarctica, Cryptococcus albidus, C. bhutanensis-like, R. graminis and R. mucilaginosa-like from pitanga ripe fruits as well as black yeasts from pitanga and acerola ripe fruits. The umbu frozen pulps community had the highest frequency of proteolytic species. Yeasts able to hydrolyse casein at pH 5.0 represented 38.5% of the species isolated. Thirty-seven percent of yeast isolates were able to hydrolyse casein at pH 7.0. Pectinolytic yeasts were found in all of the communities studied, excepted for those of umbu frozen pulps. The highest frequency of

  12. Animal vaccines based on orally presented yeast recombinants.

    Science.gov (United States)

    Shin, Min-Kyoung; Yoo, Han Sang

    2013-09-13

    In veterinary vaccinology, the oral route of administration is an attractive alternative compared to the commonly used parenteral route. Yeasts have a number of properties that make them potential live delivery systems for oral vaccination purposes such as their high expression levels, their GRAS status, adjuvant properties, and post-translational modification possibilities. Consequently, yeasts have been employed for the expression of heterologous genes and for the production of therapeutic proteins. Yeast-based vaccines are reviewed with regard to their ability to express and produce antigens from pathogens for veterinary use. Many of these vaccines have been shown to elicit protective immune responses following oral immunization in animals. Ultimately, yeast-based oral vaccines may offer a potential opportunity for the development of novel ideal vaccines in veterinary medicine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Combining Multidisciplinary Science, Quantitative Reasoning and Social Context to Teach Global Sustainability and Prepare Students for 21st Grand Challenges

    Science.gov (United States)

    Myers, J. D.

    2011-12-01

    The Earth's seven billion humans are consuming a growing proportion of the world's ecosystem products and services. Human activity has also wrought changes that rival the scale of many natural geologic processes, e.g. erosion, transport and deposition, leading to recognition of a new geological epoch, the Anthropocene. Because of these impacts, several natural systems have been pushed beyond the planetary boundaries that made the Holocene favorable for the expansion of humanity. Given these human-induced stresses on natural systems, global citizens will face an increasing number of grand challenges. Unfortunately, traditional discipline-based introductory science courses do little to prepare students for these complex, scientifically-based and technologically-centered challenges. With NSF funding, an introductory, integrated science course stressing quantitative reasoning and social context has been created at UW. The course (GEOL1600: Global Sustainability: Managing the Earth's Resources) is a lower division course designed around the energy-water-climate (EWC) nexus and integrating biology, chemistry, Earth science and physics. It melds lectures, lecture activities, reading questionnaires and labs to create a learning environment that examines the EWT nexus from a global through regional context. The focus on the EWC nexus, while important socially and intended to motivate students, also provides a coherent framework for identifying which disciplinary scientific principles and concepts to include in the course: photosynthesis and deep time (fossil fuels), biogeochemical cycles (climate), chemical reactions (combustion), electromagnetic radiation (solar power), nuclear physics (nuclear power), phase changes and diagrams (water and climate), etc. Lecture activities are used to give students the practice they need to make quantitative skills routine and automatic. Laboratory exercises on energy (coal, petroleum, nuclear power), water (in Bangladesh), energy

  14. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... This study explored a strategy to convert agricultural and forestry residues into microbial lipid, which could be further transformed into biodiesel. Among the 250 yeast strains screened for xylose assimilating capacity, eight oleaginous yeasts were selected by Sudan Black B test. The lipid content of these 8 ...

  15. Yeast modulation of human dendritic cell cytokine secretion: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Ida M Smith

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications

  16. Yeast Modulation of Human Dendritic Cell Cytokine Secretion: An In Vitro Study

    Science.gov (United States)

    Smith, Ida M.; Christensen, Jeffrey E.; Arneborg, Nils; Jespersen, Lene

    2014-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs) appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications beyond the current

  17. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts.

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Guo

    Full Text Available Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya. However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage.

  18. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  19. Whole-Genome Analysis of Three Yeast Strains Used for Production of Sherry-Like Wines Revealed Genetic Traits Specific to Flor Yeasts

    Science.gov (United States)

    Eldarov, Mikhail A.; Beletsky, Alexey V.; Tanashchuk, Tatiana N.; Kishkovskaya, Svetlana A.; Ravin, Nikolai V.; Mardanov, Andrey V.

    2018-01-01

    Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for biological wine aging. We have sequenced the genomes of three flor strains originated from different geographic regions and used for production of sherry-like wines in Russia. According to the obtained phylogeny of 118 yeast strains, flor strains form very tight cluster adjacent to the main wine clade. SNP analysis versus available genomes of wine and flor strains revealed 2,270 genetic variants in 1,337 loci specific to flor strains. Gene ontology analysis in combination with gene content evaluation revealed a complex landscape of possibly adaptive genetic changes in flor yeast, related to genes associated with cell morphology, mitotic cell cycle, ion homeostasis, DNA repair, carbohydrate metabolism, lipid metabolism, and cell wall biogenesis. Pangenomic analysis discovered the presence of several well-known “non-reference” loci of potential industrial importance. Events of gene loss included deletions of asparaginase genes, maltose utilization locus, and FRE-FIT locus involved in iron transport. The latter in combination with a flor-yeast-specific mutation in the Aft1 transcription factor gene is likely to be responsible for the discovered phenotype of increased iron sensitivity and improved iron uptake of analyzed strains. Expansion of the coding region of the FLO11 flocullin gene and alteration of the balance between members of the FLO gene family are likely to positively affect the well-known propensity of flor strains for velum formation. Our study provides new insights in the nature of genetic variation in flor yeast strains and demonstrates that different adaptive properties of flor yeast strains could have evolved through different mechanisms of genetic variation. PMID:29867869

  20. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Pack, Chan-Gi [Cellular Informatics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Terajima, Hideki [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Yajima, Junichiro; Nishizaka, Takayuki [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Kinjo, Masataka [Laboratory of Molecular Cell Dynamics, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021 (Japan); Taguchi, Hideki, E-mail: taguchi@bio.titech.ac.jp [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  1. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    International Nuclear Information System (INIS)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi; Terajima, Hideki; Yajima, Junichiro; Nishizaka, Takayuki; Kinjo, Masataka; Taguchi, Hideki

    2011-01-01

    Research highlights: → We develop a method to track a quantum dot-conjugated protein in yeast cells. → We incorporate the conjugated quantum dot proteins into yeast spheroplasts. → We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  2. Comparison of Enzymatic Method Rapid Yeast Plus System with RFLP-PCR for Identification of Isolated Yeast from Vulvovaginal Candidiasis.

    Science.gov (United States)

    Hossein, Moallaei; Mirhendi, Seied Hossein; Brandão, João; Mirdashti, Reza; Rosado, Laura

    2011-09-01

    To compare two identification methods, i.e., restriction fragment length polymorphism (RFLP)-PCR analysis and enzymatic method Rapid TM Yeast Plus System to identify different species causing vulvovaginal candidiasis (VVC). Vaginal discharges of women who had attended the gynecology outpatient clinic of Mobini Hospital in Sabzevar, Iran were collected using cotton swabs and were cultured on Sabouraud dextrose agar. Isolated yeasts were identified by germ-tube testing and Rapid TM Yeast Plus System (Remel USA). For molecular identification, the isolated DNA was amplified with ITS1 and ITS4 universal primers and PCR products digested with the enzyme HpaІІ followed by agarose gel electrophoresis. Epidemiological and clinical features of women with respect to identified species were also evaluated. Out of 231 subjects enrolled, 62 VVC cases were detected. The isolated species were identified as follows: Candida albicans, 24 (38.7%), C. glabrata, 15 (24.2%), C. kefyr, 13 (21.0%) C. krusei, 9 (14.5%), and Saccharomyces cerevisiae, 1 (1.6%) by RFLP-PCR method; whereas findings by Rapid TM Yeast Plus System were C. albicans, 24 (38.7%), C. glabrata, 5 (8%), C. kefyr, 11 (17.7%) C. krusei, 2 (3.2%), S. cerevisiae, 9 (14.5%), and C. tropicalis, 6 (9.6%) as well as other nonpathogenic yeasts, 4 (6.9%). Statistical comparison showed that there is no significant difference in identification of C. albicans by the two methods; although, in this study, it was not true about other species of yeasts. A correlation between clinical and laboratory findings is important as it enables us to administer an appropriate treatment on time.

  3. In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast.

    Science.gov (United States)

    Bermejo, Clara; Ewald, Jennifer C; Lanquar, Viviane; Jones, Alexander M; Frommer, Wolf B

    2011-08-15

    Over the past decade, we have learned that cellular processes, including signalling and metabolism, are highly compartmentalized, and that relevant changes in metabolic state can occur at sub-second timescales. Moreover, we have learned that individual cells in populations, or as part of a tissue, exist in different states. If we want to understand metabolic processes and signalling better, it will be necessary to measure biochemical and biophysical responses of individual cells with high temporal and spatial resolution. Fluorescence imaging has revolutionized all aspects of biology since it has the potential to provide information on the cellular and subcellular distribution of ions and metabolites with sub-second time resolution. In the present review we summarize recent progress in quantifying ions and metabolites in populations of yeast cells as well as in individual yeast cells with the help of quantitative fluorescent indicators, namely FRET metabolite sensors. We discuss the opportunities and potential pitfalls and the controls that help preclude misinterpretation. © The Authors Journal compilation © 2011 Biochemical Society

  4. Biochemical composition of the biomass of some yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Filippova, T.V.; Tyurina, Z.P.

    1981-01-01

    The biochemical composition of Rhodotorula gracilis was dependent on the culture medium. Cultivation of the yeast on molasses, starch, and plant hydrolyzates gave a high biomass yield with high protein and carbohydrate contents and relatively low nucleic acid contents. Similar results were obtained with fodder yeasts: Candida tropicalis, C. scotti, and Sporobolomyces pararoseus. There were 17 amino acids in yeast biomass. The amino acid content of R. gracilis and C. scotti was 29-30 percent and 39 percent respectively. Both species were deficient in methionine.

  5. Yeasts: providing questions and answers for modern biology.

    Science.gov (United States)

    Dickinson, J R

    2000-01-01

    Yeasts are to be found in virtually every conceivable niche on this planet and are amazingly varied in their shapes ('morphologies'), life cycles, metabolic capabilities, potentials for use in industrial processes, abilities to spoil food and drink or to act as dangerous human pathogens. This review describes four very different species of yeast to illustrate some of the diversity which exists and, in the case of one of them, Saccharomyces cerevisiae (the familiar baker's or brewer's yeast), the extent of both our knowledge and ignorance.

  6. Sister kinetochores are mechanically fused during meiosis I in yeast.

    Science.gov (United States)

    Sarangapani, Krishna K; Duro, Eris; Deng, Yi; Alves, Flavia de Lima; Ye, Qiaozhen; Opoku, Kwaku N; Ceto, Steven; Rappsilber, Juri; Corbett, Kevin D; Biggins, Sue; Marston, Adèle L; Asbury, Charles L

    2014-10-10

    Production of healthy gametes requires a reductional meiosis I division in which replicated sister chromatids comigrate, rather than separate as in mitosis or meiosis II. Fusion of sister kinetochores during meiosis I may underlie sister chromatid comigration in diverse organisms, but direct evidence for such fusion has been lacking. We used laser trapping and quantitative fluorescence microscopy to study native kinetochore particles isolated from yeast. Meiosis I kinetochores formed stronger attachments and carried more microtubule-binding elements than kinetochores isolated from cells in mitosis or meiosis II. The meiosis I-specific monopolin complex was both necessary and sufficient to drive these modifications. Thus, kinetochore fusion directs sister chromatid comigration, a conserved feature of meiosis that is fundamental to Mendelian inheritance. Copyright © 2014, American Association for the Advancement of Science.

  7. Study on ionizing radiosensitivity of respiratory deficiency yeast mutants

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei

    2006-01-01

    The radiosensitivity of respiratory deficiency yeast mutants has been studied in this work. The mutants which were screened from the yeasts after ionizing irradiation were irradiated with 12 C 6+ at different doses. Because of the great change in its mitochondria and mitochondrial DNA, the respiratory deficiency yeast mutants show radio-sensitivity at dose less than 1 Gy and radioresistance at doses higher than 1 Gy. (authors)

  8. The relationship between salivary histatin levels and oral yeast carriage.

    Science.gov (United States)

    Jainkittivong, A; Johnson, D A; Yeh, C K

    1998-06-01

    Candida species are common commensal inhabitants of the oral cavity. Human saliva contains antifungal proteins called histatins. We tested the hypothesis that oral yeast status is related to salivary histatin levels. Thirty subjects were divided into two groups based on the presence (n = 15) or absence (n = 15) of yeast on oral mucosa surfaces. Unstimulated and stimulated submandibular and sublingual and parotid saliva was collected from each subject. Salivary flow rates were measured and histatin concentrations were determined in the stimulated saliva samples. The yeast colony positive group showed lower median unstimulated parotid saliva flow rates as well as lower median concentrations of total histatins in submandibular and sublingual saliva. There was a negative correlation between yeast colony-forming units and unstimulated parotid saliva flow rates and between yeast colony-forming units and submandibular and sublingual saliva histatin concentration and secretion. The results suggest that oral yeast status may be influenced by unstimulated parotid saliva flow rates and by submandibular and sublingual histatin concentration and secretion.

  9. Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay.

    Science.gov (United States)

    Patankar, Himanshu V; Al-Harrasi, Ibtisam; Al-Yahyai, Rashid; Yaish, Mahmoud W

    2018-06-01

    Although date palm is a relatively salt-tolerant plant, the molecular basis of this tolerance is complex and poorly understood. Therefore, this study aimed to identify the genes involved in salinity tolerance using a basic yeast functional bioassay. To achieve this, a date palm cDNA library was overexpressed in Saccharomyces cerevisiae cells. The expression levels of selected genes that make yeast cells tolerant to salt were subsequently validated in the leaf and root tissues of date palm seedlings using a quantitative PCR method. About 6000 yeast transformant cells were replica printed and screened on a synthetic minimal medium containing 1.0 M of NaCl. The screening results showed the presence of 62 salt-tolerant transformant colonies. Sequence analysis of the recombinant yeast plasmids revealed the presence of a group of genes with potential salt-tolerance functions, such as aquaporins (PIP), serine/threonine protein kinases (STKs), ethylene-responsive transcription factor 1 (ERF1), and peroxidases (PRX). The expression pattern of the selected genes endorsed the hypothesis that these genes may be involved in salinity tolerance, as they showed a significant (p < 0.05) overexpression trend in both the leaf and root tissues in response to salinity. The genes identified in this project are suitable candidates for the further functional characterization of date palms.

  10. Independent and additive effects of glutamic acid and methionine on yeast longevity.

    Science.gov (United States)

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2013-01-01

    It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan.

  11. The ecology of insect-yeast relationships and its relevance to human industry.

    Science.gov (United States)

    Madden, Anne A; Epps, Mary Jane; Fukami, Tadashi; Irwin, Rebecca E; Sheppard, John; Sorger, D Magdalena; Dunn, Robert R

    2018-03-28

    Many species of yeast are integral to human society. They produce many of our foods, beverages and industrial chemicals, challenge us as pathogens, and provide models for the study of our own biology. However, few species are regularly studied and much of their ecology remains unclear, hindering the development of knowledge that is needed to improve the relationships between humans and yeasts. There is increasing evidence that insects are an essential component of ascomycetous yeast ecology. We propose a 'dispersal-encounter hypothesis' whereby yeasts are dispersed by insects between ephemeral, spatially disparate sugar resources, and insects, in turn, obtain the benefits of an honest signal from yeasts for the sugar resources. We review the relationship between yeasts and insects through three main examples: social wasps, social bees and beetles, with some additional examples from fruit flies. Ultimately, we suggest that over the next decades, consideration of these ecological and evolutionary relationships between insects and yeasts will allow prediction of where new yeast diversity is most likely to be discovered, particularly yeasts with traits of interest to human industry. © 2018 The Author(s).

  12. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains.

    Science.gov (United States)

    Carrau, Francisco M; Medina, Karina; Farina, Laura; Boido, Eduardo; Henschke, Paul A; Dellacassa, Eduardo

    2008-11-01

    The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, gamma-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.

  13. A yeast expression system for functional and pharmacological studies of the malaria parasite Ca2+/H+ antiporter

    Directory of Open Access Journals (Sweden)

    Salcedo-Sora J

    2012-08-01

    cation/H+ antiporter susceptible to the effects of cation/H+ inhibitors such as KB-R7943. This type of gene expression systems should advance the efforts for the screening of potential inhibitors of this type of divalent cation transporters as part of the malaria drug discovery initiatives and for functional studies in general. Conclusion The expression and activity of the PfCHA detected in yeast by a bioluminescence assay that follows the levels of cytoplasmic Ca2+ as well as Mg2+ and Mn2+ lend itself to high-throughput and quantitative settings for pharmacological screening and functional studies.

  14. Yeast and yeast-like fungi associated with dry indehiscent fruits of Nothofagus nervosa in Patagonia, Argentina.

    Science.gov (United States)

    Fernández, Natalia V; Mestre, M Cecilia; Marchelli, Paula; Fontenla, Sonia B

    2012-04-01

    Nothofagus nervosa (Raulí) is a native tree species that yields valuable timber. It was overexploited in the past and is currently included in domestication and conservation programs. Several research programs have focused on the characterization of epiphytic microorganisms because it has been demonstrated that they can affect plant-pathogen interactions and/or promote plant growth. Although the microbial ecology of leaves has been well studied, less is known about microorganisms occurring on seeds and noncommercial fruits. In this work, we analyzed the yeast and yeast-like fungi present on N. nervosa fruits destined for the propagation of this species, as well as the effects of fruit preservation and seed dormancy-breaking processes on fungal diversity. Morphological and molecular methods were used, and differences between fungal communities were analyzed using a similarity index. A total of 171 isolates corresponding to 17 species were recovered, most of which belong to the phylum Ascomycota. The majority of the species develop mycelia, produce pigments and mycosporines, and these adaptation strategies are discussed. It was observed that the preservation process considerably reduced yeast and yeast-like fungal diversity. This is the first study concerning microbial communities associated with this ecologically and economically important species, and the information presented is relevant to domestication programs. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Yeast Infection Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... cheese-like discharge Painful urination Redness in the vagina Yeast infection of the penis may cause: Redness Scaling Rash ... on the location of your symptoms: If a vaginal yeast infection is suspected , your health care provider will perform ...

  16. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios

    2012-01-01

    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  17. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    Science.gov (United States)

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Lamoolphak, Wiwat [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Goto, Motonobu [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Sasaki, Mitsuru [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Suphantharika, Manop [Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Muangnapoh, Chirakarn [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Prommuag, Chattip [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Shotipruk, Artiwan [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand)]. E-mail: artiwan.s@chula.ac.th

    2006-10-11

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products.

  19. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    International Nuclear Information System (INIS)

    Lamoolphak, Wiwat; Goto, Motonobu; Sasaki, Mitsuru; Suphantharika, Manop; Muangnapoh, Chirakarn; Prommuag, Chattip; Shotipruk, Artiwan

    2006-01-01

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products

  20. Yeast biotechnology: teaching the old dog new tricks.

    Science.gov (United States)

    Mattanovich, Diethard; Sauer, Michael; Gasser, Brigitte

    2014-03-06

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature.

  1. Overexpression of O-methyltransferase leads to improved vanillin production in baker's yeast only when complemented with model-guided network engineering.

    Science.gov (United States)

    Brochado, Ana Rita; Patil, Kiran R

    2013-02-01

    Overproduction of a desired metabolite is often achieved via manipulation of the pathway directly leading to the product or through engineering of distant nodes within the metabolic network. Empirical examples illustrating the combined effect of these local and global strategies have been so far limited in eukaryotic systems. In this study, we compared the effects of overexpressing a key gene in de novo vanillin biosynthesis (coding for O-methyltransferase, hsOMT) in two yeast strains, with and without model-guided global network modifications. Overexpression of hsOMT resulted in increased vanillin production only in the strain with model-guided modifications, exemplifying advantage of using a global strategy prior to local pathway manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  2. Global quantitative indices reflecting provider process-of-care: data-base derivation

    Directory of Open Access Journals (Sweden)

    Solomon Patricia J

    2010-04-01

    Full Text Available Abstract Background Controversy has attended the relationship between risk-adjusted mortality and process-of-care. There would be advantage in the establishment, at the data-base level, of global quantitative indices subsuming the diversity of process-of-care. Methods A retrospective, cohort study of patients identified in the Australian and New Zealand Intensive Care Society Adult Patient Database, 1993-2003, at the level of geographic and ICU-level descriptors (n = 35, for both hospital survivors and non-survivors. Process-of-care indices were established by analysis of: (i the smoothed time-hazard curve of individual patient discharge and determined by pharmaco-kinetic methods as area under the hazard-curve (AUC, reflecting the integrated experience of the discharge process, and time-to-peak-hazard (TMAX, in days, reflecting the time to maximum rate of hospital discharge; and (ii individual patient ability to optimize output (as length-of-stay for recorded data-base physiological inputs; estimated as a technical production-efficiency (TE, scaled [0,(maximum1], via the econometric technique of stochastic frontier analysis. For each descriptor, multivariate correlation-relationships between indices and summed mortality probability were determined. Results The data-set consisted of 223129 patients from 99 ICUs with mean (SD age and APACHE III score of 59.2(18.9 years and 52.7(30.6 respectively; 41.7% were female and 45.7% were mechanically ventilated within the first 24 hours post-admission. For survivors, AUC was maximal in rural and for-profit ICUs, whereas TMAX (≥ 7.8 days and TE (≥ 0.74 were maximal in tertiary-ICUs. For non-survivors, AUC was maximal in tertiary-ICUs, but TMAX (≥ 4.2 days and TE (≥ 0.69 were maximal in for-profit ICUs. Across descriptors, significant differences in indices were demonstrated (analysis-of-variance, P ≤ 0.0001. Total explained variance, for survivors (0.89 and non-survivors (0.89, was maximized by

  3. Assessment of pheromone production and response in fission yeast by a halo test of induced sporulation

    DEFF Research Database (Denmark)

    Egel, R; Willer, M; Kjaerulff, S

    1994-01-01

    We describe a rapid, sensitive and semi-quantitative plate assay for monitoring pheromone activity in the fission yeast Schizosaccharomyces pombe. It is based on the observation that meiosis requires stimulation by pheromone and exploits diploid strains that will only sporulate after addition...... of exogenous pheromone. The tester strains are heterozygous for mating type, are non-switching, and are mutated in one of the early subfunctions (either mat1-Mc or mat1-Pc), so that meiosis is only induced after exposure to exogenous pheromone (M-factor or P-factor, respectively). Pheromone activity...

  4. Yeasts in foods and beverages: impact on product quality and safety.

    Science.gov (United States)

    Fleet, Graham H

    2007-04-01

    The role of yeasts in food and beverage production extends beyond the well-known bread, beer and wine fermentations. Molecular analytical technologies have led to a major revision of yeast taxonomy, and have facilitated the ecological study of yeasts in many other products. The mechanisms by which yeasts grow in these ecosystems and impact on product quality can now be studied at the level of gene expression. Their growth and metabolic activities are moderated by a network of strain and species interactions, including interactions with bacteria and other fungi. Some yeasts have been developed as agents for the biocontrol of food spoilage fungi, and others are being considered as novel probiotic organisms. The association of yeasts with opportunistic infections and other adverse responses in humans raises new issues in the field of food safety.

  5. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Shuobo Shi

    2017-11-01

    Full Text Available Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  6. Checkpoint independence of most DNA replication origins in fission yeast.

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-12-19

    In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (approximately 3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint

  7. Checkpoint independence of most DNA replication origins in fission yeast

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in

  8. Checkpoint independence of most DNA replication origins in fission yeast

    Directory of Open Access Journals (Sweden)

    Scott Donna

    2007-12-01

    Full Text Available Abstract Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU, which limits the pool of deoxyribonucleoside triphosphates (dNTPs and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR or cds1 (which encodes the fission yeast homologue of Chk2. Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3% behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild

  9. Determination of tritium in wine and wine yeast samples

    International Nuclear Information System (INIS)

    Cotarlea, Monica-Ionela; Paunescu, Niculina; Galeriu, D.; Mocanu, N.; Margineanu, R.; Marin, G.

    1997-01-01

    A sensitive method for evaluating the tritium content in wine and wine yeast was applied to estimate tritium impact on the environment in the surrounding area of nuclear power plant Cernavoda, where the vineyards are part of representative agricultural ecosystem. Analytical procedures were developed to determine HTO in wine and wine yeast samples. The content of organic compounds affecting the LSC measurement is reduced by fractionating distillation for wine samples and azeotropic distillation followed by fractional distillation for wine yeast samples. Finally, the water samples obtained after fractional distillation were normally distilled with KMO 4 . The established procedures were successfully applied for wine and wine yeast samples from Mulfatlar harvests of the years 1995 and 1996. (authors)

  10. Sporulation genes associated with sporulation efficiency in natural isolates of yeast.

    Science.gov (United States)

    Tomar, Parul; Bhatia, Aatish; Ramdas, Shweta; Diao, Liyang; Bhanot, Gyan; Sinha, Himanshu

    2013-01-01

    Yeast sporulation efficiency is a quantitative trait and is known to vary among experimental populations and natural isolates. Some studies have uncovered the genetic basis of this variation and have identified the role of sporulation genes (IME1, RME1) and sporulation-associated genes (FKH2, PMS1, RAS2, RSF1, SWS2), as well as non-sporulation pathway genes (MKT1, TAO3) in maintaining this variation. However, these studies have been done mostly in experimental populations. Sporulation is a response to nutrient deprivation. Unlike laboratory strains, natural isolates have likely undergone multiple selections for quick adaptation to varying nutrient conditions. As a result, sporulation efficiency in natural isolates may have different genetic factors contributing to phenotypic variation. Using Saccharomyces cerevisiae strains in the genetically and environmentally diverse SGRP collection, we have identified genetic loci associated with sporulation efficiency variation in a set of sporulation and sporulation-associated genes. Using two independent methods for association mapping and correcting for population structure biases, our analysis identified two linked clusters containing 4 non-synonymous mutations in genes - HOS4, MCK1, SET3, and SPO74. Five regulatory polymorphisms in five genes such as MLS1 and CDC10 were also identified as putative candidates. Our results provide candidate genes contributing to phenotypic variation in the sporulation efficiency of natural isolates of yeast.

  11. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ma Menggen

    2010-06-01

    Full Text Available Abstract Background Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain. Results A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p. Conclusion Enriched background of transcription abundance

  12. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees.

    Science.gov (United States)

    Rowe, Jeffrey D; Harbertson, James F; Osborne, James P; Freitag, Michael; Lim, Juyun; Bakalinsky, Alan T

    2010-02-24

    Total protein and protein-associated mannan concentrations were measured, and individual proteins were identified during extraction into model wines over 9 months of aging on the yeast lees following completion of fermentations by seven wine strains of Saccharomyces cerevisiae. In aged wines, protein-associated mannan increased about 6-fold (+/-66%), while total protein only increased 2-fold (+/-20%), which resulted in a significantly greater protein-associated mannan/total protein ratio for three strains. A total of 219 proteins were identified among all wine samples taken over the entire time course. Of the 17 "long-lived" proteins detected in all 9 month samples, 13 were cell wall mannoproteins, and four were glycolytic enzymes. Most cytosolic proteins were not detected after 6 months. Native mannosylated yeast invertase was assayed for binding to wine tannin and was found to have a 10-fold lower affinity than nonglycosylated bovine serum albumin. Enrichment of mannoproteins in the aged model wines implies greater solution stability than other yeast proteins and the possibility that their contributions to wine quality may persist long after bottling.

  13. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread

    Science.gov (United States)

    Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M.; Verstrepen, Kevin J.

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today’s diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria. PMID:27776154

  14. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread.

    Science.gov (United States)

    Aslankoohi, Elham; Herrera-Malaver, Beatriz; Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M; Verstrepen, Kevin J

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today's diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria.

  15. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread.

    Directory of Open Access Journals (Sweden)

    Elham Aslankoohi

    Full Text Available Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today's diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria.

  16. Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Livestock: A Review †,‡

    Directory of Open Access Journals (Sweden)

    Paul R. Broadway

    2015-08-01

    Full Text Available More livestock producers are seeking natural alternatives to antibiotics and antimicrobials, and searching for supplements to enhance growth performance, and general animal health and well-being. Some of the compounds currently being utilized and studied are live yeast and yeast-based products derived from the strain Saccharomyces cerevisiae. These products have been reported to have positive effects both directly and indirectly on the immune system and its subsequent biomarkers, thereby mitigating negative effects associated with stress and disease. These yeast-based products have also been reported to simultaneously enhance growth and performance by enhancing dry matter intake (DMI and average daily gain (ADG perhaps through the establishment of a healthy gastrointestinal tract. These products may be especially useful in times of potential stress such as during birth, weaning, early lactation, and during the receiving period at the feedlot. Overall, yeast supplements appear to possess the ability to improve animal health and metabolism while decreasing morbidity, thereby enhancing profitability of these animals.

  17. Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9.

    Science.gov (United States)

    Jackman, Jane E; Montange, Rebecca K; Malik, Harmit S; Phizicky, Eric M

    2003-05-01

    Methylation of tRNA at the N-1 position of guanosine to form m(1)G occurs widely in nature. It occurs at position 37 in tRNAs from all three kingdoms, and the methyltransferase that catalyzes this reaction is known from previous work of others to be critically important for cell growth in Escherichia coli and the yeast Saccharomyces cerevisiae. m(1)G is also widely found at position 9 in eukaryotic tRNAs, but the corresponding methyltransferase was unknown. We have used a biochemical genomics approach with a collection of purified yeast GST-ORF fusion proteins to show that m(1)G(9) formation of yeast tRNA(Gly) is associated with ORF YOL093w, named TRM10. Extracts lacking Trm10p have undetectable levels of m(1)G(9) methyltransferase activity but retain normal m(1)G(37) methyltransferase activity. Yeast Trm10p purified from E. coli quantitatively modifies the G(9) position of tRNA(Gly) in an S-adenosylmethionine-dependent fashion. Trm10p is responsible in vivo for most if not all m(1)G(9) modification of tRNAs, based on two results: tRNA(Gly) purified from a trm10-Delta/trm10-Delta strain is lacking detectable m(1)G; and a primer extension block occurring at m(1)G(9) is removed in trm10-Delta/trm10-Delta-derived tRNAs for all 9 m(1)G(9)-containing species that were testable by this method. There is no obvious growth defect of trm10-Delta/trm10-Delta strains. Trm10p bears no detectable resemblance to the yeast m(1)G(37) methyltransferase, Trm5p, or its orthologs. Trm10p homologs are found widely in eukaryotes and many archaea, with multiple homologs in several metazoans, including at least three in humans.

  18. Quantitative Image Restoration in Bright Field Optical Microscopy.

    Science.gov (United States)

    Gutiérrez-Medina, Braulio; Sánchez Miranda, Manuel de Jesús

    2017-11-07

    Bright field (BF) optical microscopy is regarded as a poor method to observe unstained biological samples due to intrinsic low image contrast. We introduce quantitative image restoration in bright field (QRBF), a digital image processing method that restores out-of-focus BF images of unstained cells. Our procedure is based on deconvolution, using a point spread function modeled from theory. By comparing with reference images of bacteria observed in fluorescence, we show that QRBF faithfully recovers shape and enables quantify size of individual cells, even from a single input image. We applied QRBF in a high-throughput image cytometer to assess shape changes in Escherichia coli during hyperosmotic shock, finding size heterogeneity. We demonstrate that QRBF is also applicable to eukaryotic cells (yeast). Altogether, digital restoration emerges as a straightforward alternative to methods designed to generate contrast in BF imaging for quantitative analysis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Development of Yeast Populations during Processing and Ripening of Blue Veined Cheese

    Directory of Open Access Journals (Sweden)

    Alison M. Knox

    2003-01-01

    Full Text Available Varieties of blue veined cheese were analyzed regularly during different stages of manufacturing and ripening to determine the origin of contaminating the yeasts present in them, their population diversity and development until the end of the storage. Yeast diversity and development in the inner and outer core of the cheeses during ripening were also compared. Air samples revealed few if any yeasts whereas the samples in contact with the equipment and the surroundings revealed high number of yeasts, implicating it as the possible main source of post-pasteurization contamination, as very few yeasts were isolated from the milk and cheese making process itself. Samples from the inner and outer core of the maturing cheeses had typical survival curves. The number of yeasts on the outer core was about a 100-fold more than of those in the inner core. The most abundant yeasts isolated from the environment and ripening cheeses were identified as Debaryomyces hansenii, Saccharomyces cerevisiae, Torulaspora delbrueckii, Trichosporon beigelii, Candida versatilis and Cryptococcus albidus, while the yeasts Candida zeylanoides and Dekkera anomala were additionally isolated from the environment. Yeasts were present in high number, making their occurrence in blue-veined cheeses meaningful.

  20. The yeast stands alone: the future of protein biologic production.

    Science.gov (United States)

    Love, Kerry R; Dalvie, Neil C; Love, J Christopher

    2017-12-22

    Yeasts are promising alternative hosts for the manufacturing of recombinant protein therapeutics because they simply and efficiently meet needs for both platform and small-market drugs. Fast accumulation of biomass and low-cost media reduce the cost-of-goods when using yeast, which in turn can enable agile, small-volume manufacturing facilities. Small, tractable yeast genomes are amenable to rapid process development, facilitating strain and product quality by design. Specifically, Pichia pastoris is becoming a widely accepted yeast for biopharmaceutical manufacturing in much of the world owing to a clean secreted product and the rapidly expanding understanding of its cell biology as a host organism. We advocate for a near term partnership spanning industry and academia to promote open source, timely development of yeast hosts. Copyright © 2017. Published by Elsevier Ltd.

  1. Interactions between yeasts, fungicides and apple fruit russeting

    NARCIS (Netherlands)

    Gildemacher, P.R.; Heijne, B.; Silvestri, M.; Houbraken, J.; Hoekstra, E.; Theelen, B.; Boekhout, T.

    2006-01-01

    The effect of inoculations with yeasts occurring on apple surfaces and fungicide treatments on the russeting of Elstar apples was studied. Captan, dithianon and a water treatment were implemented to study the interaction between the fungicides, the inoculated yeast species and Aureobasidium

  2. Effect of heat treatment on brewer's yeast fermentation activity

    OpenAIRE

    Kharandiuk, Tetiana; Kosiv, Ruslana; Palianytsia, Liubov; Berezovska, Natalia

    2015-01-01

    The influence of temperature treatment of brewer's yeast strain Saflager W-34/70 at temperatures of -17, 20, 25, 30, 35, 40 °C on their fermentative activity was studied. It was established that the freezing of yeast leads to a decrease of fermentation activity in directly proportional to the duration way. Fermentative activity of yeast samples can be increased by 20-24% by heat treatment at 35 °C during 15-30 minutes.

  3. Yeast species associated with the spontaneous fermentation of cider.

    OpenAIRE

    Suárez, Belén; Pando, Rosa; Fernández, Norman; Querol, Amparo; Rodríguez, Roberto

    2018-01-01

    This paper reports the influence of cider-making technology (pneumatic and traditional pressing) on the dynamics of wild yeast populations. Yeast colonies isolated from apple juice before and throughout fermentation at a cider cellar of Asturias (Spain), during two consecutive years were studied. The yeast strains were identified by restriction fragment length polymorphism analysis of the 5.8S rRNA gene and the two flanking internal transcribed sequences (ITS). The musts obtained by ...

  4. Pollutant removal-oriented yeast biomass production from high-organic-strength industrial wastewater: A review

    International Nuclear Information System (INIS)

    Yang, Min; Zheng, Shaokui

    2014-01-01

    Microbial single-cell-protein (SCP) production from high-organic-strength industrial wastewaters is considered an attractive method for both wastewater purification and resource utilization. In the last two decades, pollutant removal-oriented yeast SCP production processes, i.e., yeast treatment processes, have attracted a great deal of attention from a variety of research groups worldwide. Different from conventional SCP production processes, yeast treatment processes are characterized by higher pollutant removal rates, lower production costs, highly adaptive yeast isolates from nature, no excess nutrient supplements, and are performed under non-sterile conditions. Furthermore, yeast treatment processes are similar to bacteria-dominated conventional activated sludge processes, which offer more choices for yeast SCP production and industrial wastewater treatment. This review discusses why highly adaptive yeast species isolated from nature are used in the yeast treatment process rather than commercial SCP producers. It also describes the application of yeast treatment processes for treating high-carboxyhydrate, oil-rich and high-salinity industrial wastewater, focusing primarily on high-strength biodegradable organic substances, which usually account for the major fraction of biochemical oxygen demand. Also discussed is the biodegradation of xenobiotics, such as color (including dye and pigment) and toxic substances (including phenols, chlorophenols, polycyclic aromatic hydrocarbons, etc.), present in industrial wastewater. Based on molecular information of yeast community structures and their regulation in yeast treatment systems, we also discuss how to maintain efficient yeast species in yeast biomass and how to control bacterial and mold proliferation in yeast treatment systems. - Highlights: • Pollutant removal-oriented yeast SCP production processes offer more choices. • Highly adaptive yeast isolates replace commercial SCP producers. • Yeasts degrade

  5. Microarray studies on lager brewer's yeasts reveal cell status in the process of autolysis.

    Science.gov (United States)

    Xu, Weina; Wang, Jinjing; Li, Qi

    2014-08-01

    In this work, we performed DNA microarray studies on lager brewer's yeast Saccharomyces pastorianus to investigate changes in gene expression in the process of autolysis. The two strains we used were Qing2 and 5-2. Strain 5-2 is a mutant of Qing2 and autolyzes much more slowly than its parent strain. Four samples of these two strains during different autolysis stages (0% and 15%) were tested using DNA microarray containing > 10,000 yeast's genes. Analysis of genes with the same transcription pattern (up- or down-regulated in both strains) showed that the same 99 genes were up-regulated (transcription levels were increased), and the same 97 genes were down-regulated (transcription levels were decreased) by fivefold or more during autolysis. Genes involved in energy production/utilization, protein anabolism, and stress response were down-regulated. Genes related to cell wall organization and biogenesis, starvation response and DNA damage response were up-regulated. Analysis of genes with opposite transcription patterns (up-regulated in one strain and down-regulated in the other one) showed that 246 genes were up-regulated in 5-2 (autolyzes slowly) and down-regulated in Qing2 (autolyzes rapidly). Another 18 genes had opposite transcription levels, indicating that the strain which autolyzes slowly had better cell vitality despite the same autolysis stage. These findings might further promote the global understanding of autolysis in yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    Science.gov (United States)

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  7. Ecological structuring of yeasts associated with trees around Hamilton, Ontario, Canada.

    Science.gov (United States)

    Maganti, Harinad; Bartfai, David; Xu, Jianping

    2012-02-01

    This study seeks to determine the distribution and diversity of yeasts in and around the Hamilton area in Canada. In light of the increasing number of fungal infections along with rising morbidity and mortality rates, especially among the immunocompromised, understanding the diversity and distribution of yeasts in natural environments close to human habitations has become an increasingly relevant topic. In this study, we analyzed 1110 samples obtained from the hollows of trees, shrubs and avian droppings at 8 geographical sites in and around Hamilton, Ontario, Canada. A total of 88 positive yeast strains were isolated and identified belonging to 20 yeast species. Despite the relative proximity of the sampling sites, our DNA fingerprinting results showed that the yeast populations were highly heterogenous. Among the 14 tree species sampled, cedar, cottonwood and basswood hollows had relatively high yeast colonization rates. Interestingly, Candida parapsilosis was isolated almost exclusively from Pine trees only. Our results are consistent with microgeographic and ecological differentiation of yeast species in and around an urban environment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Genetic basis of metabolome variation in yeast.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Breunig

    2014-03-01

    Full Text Available Metabolism, the conversion of nutrients into usable energy and biochemical building blocks, is an essential feature of all cells. The genetic factors responsible for inter-individual metabolic variability remain poorly understood. To investigate genetic causes of metabolome variation, we measured the concentrations of 74 metabolites across ~ 100 segregants from a Saccharomyces cerevisiae cross by liquid chromatography-tandem mass spectrometry. We found 52 quantitative trait loci for 34 metabolites. These included linkages due to overt changes in metabolic genes, e.g., linking pyrimidine intermediates to the deletion of ura3. They also included linkages not directly related to metabolic enzymes, such as those for five central carbon metabolites to ira2, a Ras/PKA pathway regulator, and for the metabolites, S-adenosyl-methionine and S-adenosyl-homocysteine to slt2, a MAP kinase involved in cell wall integrity. The variant of ira2 that elevates metabolite levels also increases glucose uptake and ethanol secretion. These results highlight specific examples of genetic variability, including in genes without prior known metabolic regulatory function, that impact yeast metabolism.

  9. Tapping into yeast diversity.

    Science.gov (United States)

    Fay, Justin C

    2012-11-01

    Domesticated organisms demonstrate our capacity to influence wild species but also provide us with the opportunity to understand rapid evolution in the context of substantially altered environments and novel selective pressures. Recent advances in genetics and genomics have brought unprecedented insights into the domestication of many organisms and have opened new avenues for further improvements to be made. Yet, our ability to engineer biological systems is not without limits; genetic manipulation is often quite difficult. The budding yeast, Saccharomyces cerevisiae, is not only one of the most powerful model organisms, but is also the premier producer of fermented foods and beverages around the globe. As a model system, it entertains a hefty workforce dedicated to deciphering its genome and the function it encodes at a rich mechanistic level. As a producer, it is used to make leavened bread, and dozens of different alcoholic beverages, such as beer and wine. Yet, applying the awesome power of yeast genetics to understanding its origins and evolution requires some knowledge of its wild ancestors and the environments from which they were derived. A number of surprisingly diverse lineages of S. cerevisiae from both primeval and secondary forests in China have been discovered by Wang and his colleagues. These lineages substantially expand our knowledge of wild yeast diversity and will be a boon to elucidating the ecology, evolution and domestication of this academic and industrial workhorse.

  10. 5'-end sequences of budding yeast full-length cDNA clones and quality scores - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available east_seq_qual.zip File URL: ftp://ftp.biosciencedbc.jp/archive/yeast_cdna/LATEST/...yeast_seq_qual.zip File size: 59.9MB Simple search URL http://togodb.biosciencedbc.jp/togodb/view/budding_yeast_cdna

  11. The complexity and implications of yeast prion domains

    Science.gov (United States)

    2011-01-01

    Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are generally intricate and divergent in their compositional characteristics, which potentially implicates their prion phenotypes, such as prion-mediated transcriptional regulations. PMID:22156731

  12. Yeast biotechnology: teaching the old dog new tricks

    Science.gov (United States)

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  13. Brettanomyces bruxellensis yeasts: impact on wine and winemaking.

    Science.gov (United States)

    Agnolucci, Monica; Tirelli, Antonio; Cocolin, Luca; Toffanin, Annita

    2017-09-21

    Yeasts belonging to the Brettanomyces/Dekkera genus are non-conventional yeasts, which affect winemaking by causing wine spoilage all over the world. This mini-review focuses on recent results concerning the presence of Brettanomyces bruxellensis throughout the wine processing chain. Here, culture-dependent and independent methods to detect this yeast on grapes and at the very early stage of wine production are encompassed. Chemical, physical and biological tools, devised for the prevention and control of such a detrimental species during winemaking are also presented. Finally, the mini-review identifies future research areas relevant to the improvement of wine safety and sensory profiles.

  14. [Overexpression of FKS1 to improve yeast autolysis-stress].

    Science.gov (United States)

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing.

  15. Flux control through protein phosphorylation in yeast

    DEFF Research Database (Denmark)

    Chen, Yu; Nielsen, Jens

    2016-01-01

    Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast...... as well as identify mechanisms underlying human metabolic diseases. Here we collect functional phosphorylation events of 41 enzymes involved in yeast metabolism and demonstrate functional mechanisms and the application of this information in metabolic engineering. From a systems biology perspective, we...... describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies...

  16. Yeast selection for fuel ethanol production in Brazil.

    Science.gov (United States)

    Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Lopes, Mario L

    2008-11-01

    Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation.

  17. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts

    Czech Academy of Sciences Publication Activity Database

    Pálková, Z.; Váchová, Libuše

    2016-01-01

    Roč. 57, SEP (2016), s. 110-119 ISSN 1084-9521 R&D Projects: GA ČR GA13-08605S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Pathogenic yeasts * Biofilms and colonies * Cell differentiation Subject RIV: EE - Microbiology, Virology Impact factor: 6.614, year: 2016

  18. Genetic and phenotypic characteristics of baker's yeast: relevance to baking.

    Science.gov (United States)

    Randez-Gil, Francisca; Córcoles-Sáez, Isaac; Prieto, José A

    2013-01-01

    Yeasts rarely encounter ideal physiological conditions during their industrial life span; therefore, their ability to adapt to changing conditions determines their usefulness and applicability. This is especially true for baking strains of Saccharomyces cerevisiae. The success of this yeast in the ancient art of bread making is based on its capacity to rapidly transform carbohydrates into CO2 rather than its unusual resistance to environmental stresses. Moreover, baker's yeast must exhibit efficient respiratory metabolism during yeast manufacturing, which determines biomass yield. However, optimal growth conditions often have negative consequences in other commercially important aspects, such as fermentative power or stress tolerance. This article reviews the genetic and physiological characteristics of baking yeast strains, emphasizing the activation of regulatory mechanisms in response to carbon source and stress signaling and their importance in defining targets for strain selection and improvement.

  19. Dietary glucose regulates yeast consumption in adult Drosophila males.

    Science.gov (United States)

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  20. A Method of Visualizing Three-Dimensional Distribution of Yeast in Bread Dough

    Science.gov (United States)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Shiraga, Seizaburou; Ueda, Mitsuyoshi; Takeya, Koji; Endo, Shigeru

    A novel technique was developed to monitor the change in three-dimensional (3D) distribution of yeast in frozen bread dough samples in accordance with the progress of mixing process. Application of a surface engineering technology allowed the identification of yeast in bread dough by bonding EGFP (Enhanced Green Fluorescent Protein) to the surface of yeast cells. The fluorescent yeast (a biomarker) was recognized as bright spots at the wavelength of 520 nm. A Micro-Slicer Image Processing System (MSIPS) with a fluorescence microscope was utilized to acquire cross-sectional images of frozen dough samples sliced at intervals of 1 μm. A set of successive two-dimensional images was reconstructed to analyze 3D distribution of yeast. Samples were taken from each of four normal mixing stages (i.e., pick up, clean up, development, and final stages) and also from over mixing stage. In the pick up stage yeast distribution was uneven with local areas of dense yeast. As the mixing progressed from clean up to final stages, the yeast became more evenly distributed throughout the dough sample. However, the uniformity in yeast distribution was lost in the over mixing stage possibly due to the breakdown of gluten structure within the dough sample.

  1. The making of biodiversity across the yeast subphyllum

    Science.gov (United States)

    Goals for this research project are to determine how the functional diversity of the yeast subphylum is encoded, and to reconstruct the history of yeasts to elucidate the tempo and mode of functional diversification. The impact of this work will be to integrate discoveries within broadly disseminate...

  2. Yeast identification in routine clinical microbiology laboratory and its clinical relevance

    Directory of Open Access Journals (Sweden)

    S Agarwal

    2011-01-01

    Full Text Available Rapid identification of yeast infections is helpful in prompt appropriate antifungal therapy. In the present study, the usefulness of chromogenic medium, slide culture technique and Vitek2 Compact (V2C has been analysed. A total of 173 clinical isolates of yeast species were included in the study. An algorithm to identify such isolates in routine clinical microbiology laboratory was prepared and followed. Chromogenic medium was able to identify Candida albicans, C. tropicalis, C. krusei, C. parapsilosis and Trichosporon asahii. Chromogenic medium was also helpful in identifying "multi-species" yeast infections. The medium was unable to provide presumptive identification of C. pelliculosa, C. utilis, C. rugosa, C. glabrata and C. hemulonii. Vitek 2 compact (V2C differentiated all pseudohypae non-producing yeast species. The algorithm followed was helpful in timely presumptive identification and final diagnosis of yeast infections, including multi-species yeast infections.

  3. Distribution of dimorphic yeast species in commercial extra virgin olive oil.

    Science.gov (United States)

    Zullo, B A; Cioccia, G; Ciafardini, G

    2010-12-01

    Recent microbiological research has demonstrated the presence of a rich microflora mainly composed of yeasts in the suspended fraction of freshly produced olive oil. Some of the yeasts are considered useful as they improve the organoleptic characteristics of the oil during preservation, whereas others are considered harmful as they can damage the quality of the oil through the hydrolysis of the triglycerides. However, some dimorphic species can also be found among the unwanted yeasts present in the oil, considered to be opportunistic pathogens to man as they have often been isolated from immunocompromised hospital patients. Present research demonstrates the presence of dimorphic yeast forms in 26% of the commercial extra virgin olive oil originating from different geographical areas, where the dimorphic yeasts are represented by 3-99.5% of the total yeasts. The classified isolates belonged to the opportunistic pathogen species Candida parapsilosis and Candida guilliermondii, while among the dimorphic yeasts considered not pathogenic to man, the Candida diddensiae species was highlighted for the first time in olive oil. The majority of the studied yeast strains resulted lipase positive, and can consequently negatively influence the oil quality through the hydrolysis of the triglycerides. Furthermore, all the strains showed a high level of affinity with some organic solvents and a differing production of biofilm in "vitro" corresponded to a greater or lesser hydrophobia of their cells. Laboratory trials indicated that the dimorphic yeasts studied are sensitive towards some components of the oil among which oleic acid, linoleic acid and triolein, whereas a less inhibiting effect was observed with tricaprilin or when the total polyphenols extracted from the oil were used. The observations carried out on a scanning electron microscope (SEM), demonstrated the production of long un-branched pseudohyphae in all the tested dimorphic yeasts when cultivated on nutrient

  4. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32 P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  5. Selection of oleaginous yeasts for fatty acid production.

    Science.gov (United States)

    Lamers, Dennis; van Biezen, Nick; Martens, Dirk; Peters, Linda; van de Zilver, Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H; Lokman, Christien

    2016-05-27

    Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts can be used as the so-called second generation biofuels, which are based on non-food competing "waste carbon sources". In this study the selection of potentially new interesting oleaginous yeast strains is described. Important selection criteria were: a broad maximum temperature and pH range for growth (robustness of the strain), a broad spectrum of carbon sources that can be metabolized (preferably including C-5 sugars), a high total fatty acid content in combination with a low glycogen content and genetic accessibility. Based on these selection criteria, among 24 screened species, Schwanniomyces occidentalis (Debaromyces occidentalis) CBS2864 was selected as a promising strain for the production of high amounts of lipids.

  6. Metabolic engineering of yeast for lignocellulosic biofuel production.

    Science.gov (United States)

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production

    Directory of Open Access Journals (Sweden)

    Esther Gamero-Sandemetrio

    2018-01-01

    Full Text Available Several yeast species, belonging to Saccharomyces and non-Saccharomyces genera, play fundamental roles during spontaneous must grape fermentation, and recent studies have shown that mixed fermentations, co-inoculated with S. cerevisiae and non-Saccharomyces strains, can improve wine organoleptic properties. During active dry yeast (ADY production, antioxidant systems play an essential role in yeast survival and vitality as both biomass propagation and dehydration cause cellular oxidative stress and negatively affect technological performance. Mechanisms for adaptation and resistance to desiccation have been described for S. cerevisiae, but no data are available on the physiology and oxidative stress response of non-Saccharomyces wine yeasts and their potential impact on ADY production. In this study we analyzed the oxidative stress response in several non-Saccharomyces yeast species by measuring the activity of reactive oxygen species (ROS scavenging enzymes, e.g., catalase and glutathione reductase, accumulation of protective metabolites, e.g., trehalose and reduced glutathione (GSH, and lipid and protein oxidation levels. Our data suggest that non-canonical regulation of glutathione and trehalose biosynthesis could cause poor fermentative performance after ADY production, as it corroborates the corrective effect of antioxidant treatments, during biomass propagation, with both pure chemicals and food-grade argan oil.

  8. Immobilisation increases yeast cells' resistance to dehydration-rehydration treatment.

    Science.gov (United States)

    Borovikova, Diana; Rozenfelde, Linda; Pavlovska, Ilona; Rapoport, Alexander

    2014-08-20

    This study was performed with the goal of revealing if the dehydration procedure used in our new immobilisation method noticeably decreases the viability of yeast cells in immobilised preparations. Various yeasts were used in this research: Saccharomyces cerevisiae cells that were rather sensitive to dehydration and had been aerobically grown in an ethanol-containing medium, a recombinant strain of S. cerevisiae grown in aerobic conditions which were completely non-resistant to dehydration and an anaerobically grown bakers' yeast strain S. cerevisiae, as well as a fairly resistant Pichia pastoris strain. Experiments performed showed that immobilisation of all these strains essentially increased their resistance to a dehydration-rehydration treatment. The increase of cells' viability (compared with control cells dehydrated in similar conditions) was from 30 to 60%. It is concluded that a new immobilisation method, which includes a dehydration stage, does not lead to an essential loss of yeast cell viability. Correspondingly, there is no risk of losing the biotechnological activities of immobilised preparations. The possibility of producing dry, active yeast preparations is shown, for those strains that are very sensitive to dehydration and which can be used in biotechnology in an immobilised form. Finally, the immobilisation approach can be used for the development of efficient methods for the storage of recombinant yeast strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Spent yeast as natural source of functional food additives

    Science.gov (United States)

    Rakowska, Rita; Sadowska, Anna; Dybkowska, Ewa; Świderski, Franciszek

    Spent yeasts are by-products arising from beer and wine production which over many years have been chiefly used as feed additives for livestock. They contain many valuable and bioactive substances which has thereby generated much interest in their exploitation. Up till now, the main products obtained from beer-brewing yeasts are β-glucans and yeast extracts. Other like foodstuffs include dried brewer’s yeast, where this is dried and the bitterness removed to be fit for human consumption as well as mannan-oligosaccharides hitherto used in the feed industry. β-glucans constitute the building blocks of yeast cell walls and can thus be used in human nutrition as dietary supplements or serving as food additives in functional foods. β-glucans products obtained via post-fermentation of beer also exhibit a high and multi-faceted biological activity where they improve the blood’s lipid profile, enhance immunological status and have both prebiotic and anti-oxidant properties. Yeast extracts are currently being used more and more to enhance flavour in foodstuffs, particularly for meat and its products. Depending on how autolysis is carried out, it is possible to design extracts of various meat flavours characteristic of specific meats. Many different flavour profiles can be created which may be additionally increased in combination with vegetable extracts. Within the food market, yeast extracts can appear in various guises such as liquids, pastes or powders. They all contain significant amounts of glutamic acid, 5’-GMP and 5’-IMP nucleotides together with various amino acids and peptides that act synergistically for enhancing the flavour of foodstuff products. Recent studies have demonstrated additional benefits of yeast extracts as valuable sources of amino acids and peptides which can be used in functional foods and dietary supplements. These products possess GRAS status (Generally Recognised As Safe) which thereby also adds further as to why they should be used

  10. Globalization vs. localization: global food challenges and local sollutions

    NARCIS (Netherlands)

    Quaye, W.; Jongerden, J.P.; Essegbey, G.; Ruivenkamp, G.T.P.

    2010-01-01

    The objective of this study was to examine the effect of global-local interactions on food production and consumption in Ghana, and identify possible local solutions. Primary data were collected using a combination of quantitative-qualitative methods, which included focus group discussions and

  11. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Ke; Tong, Mengmeng; Gao, Kehui; Di, Yanan; Wang, Pinmei; Zhang, Chunfang; Wu, Xuechang; Zheng, Daoqiong

    2015-02-01

    Baker's yeast (Saccharomyces cerevisiae) is the common yeast used in the fields of bread making, brewing, and bioethanol production. Growth rate, stress tolerance, ethanol titer, and byproducts yields are some of the most important agronomic traits of S. cerevisiae for industrial applications. Here, we developed a novel method of constructing S. cerevisiae strains for co-producing bioethanol and ergosterol. The genome of an industrial S. cerevisiae strain, ZTW1, was first reconstructed through treatment with an antimitotic drug followed by sporulation and hybridization. A total of 140 mutants were selected for ethanol fermentation testing, and a significant positive correlation between ergosterol content and ethanol production was observed. The highest performing mutant, ZG27, produced 7.9 % more ethanol and 43.2 % more ergosterol than ZTW1 at the end of fermentation. Chromosomal karyotyping and proteome analysis of ZG27 and ZTW1 suggested that this breeding strategy caused large-scale genome structural variations and global gene expression diversities in the mutants. Genetic manipulation further demonstrated that the altered expression activity of some genes (such as ERG1, ERG9, and ERG11) involved in ergosterol synthesis partly explained the trait improvement in ZG27.

  12. A global central banker competency model

    Directory of Open Access Journals (Sweden)

    David W. Brits

    2014-07-01

    Full Text Available Orientation: No comprehensive, integrated competency model exists for central bankers. Due to the importance of central banks in the context of the ongoing global financial crisis, it was deemed necessary to design and validate such a model. Research purpose: To craft and validate a comprehensive, integrated global central banker competency model (GCBCM and to assess whether central banks using the GCBCM for training have a higher global influence. Motivation for the study: Limited consensus exists globally about what constitutes a ‘competent’ central banker. A quantitatively validated GCBCM would make a significant contribution to enhancing central banker effectiveness, and also provide a solid foundation for effective people management. Research approach, design and method: A blended quantitative and qualitative research approach was taken. Two sets of hypotheses were tested regarding the relationships between the GCBCM and the training offered, using the model on the one hand, and a central bank’s global influence on the other. Main findings: The GCBCM was generally accepted across all participating central banks globally, although some differences were found between central banks with higher and lower global influence. The actual training offered by central banks in terms of the model, however, is generally limited to technical-functional skills. The GCBCM is therefore at present predominantly aspirational. Significant differences were found regarding the training offered. Practical/managerial implications: By adopting the GCBCM, central banks would be able to develop organisation-specific competency models in order to enhance their organisational capabilities and play their increasingly important global role more effectively. Contribution: A generic conceptual framework for the crafting of a competency model with evaluation criteria was developed. A GCBCM was quantitatively validated.

  13. Conversion of defective molasses into alcohol and yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Luchev, S.

    1966-01-01

    The addition of small quantities (0.05 to 0.75%) of dried malt roots, green malt roots, green malt, yeast hydrolyzate, corn extraction, and tomato juice improved the quality and accelerated the brewing process in defective molasses. Dried malt roots and yeast hydrolyzate were the least expensive preparations.

  14. Synergistic reduction of toluylene blue induced by acetaldehyde and menadione in yeast cell suspension: Application to determination of yeast cell activity

    Directory of Open Access Journals (Sweden)

    Shiro Yamashoji

    2017-03-01

    Full Text Available Membrane permeant acetaldehyde and menadione induced the synergistic reduction of toluylene blue (TB acting as non-membrane permeant redox indicator in yeast cell suspension. NADH and acetaldehyde also induced the synergistic TB reduction in permeabilized yeast cells and phosphate buffer, but menadione had no ability to promote TB reduction. The pre-incubation of acetaldehyde inhibited the above synergistic reduction of TB in intact and permeabilized yeast cell suspension. The pre-incubation of acetaldehyde might promote NADH oxidation by alcohol dehydrogenase, because acetaldehyde decreased the intracellular NAD(PH concentration. The above facts indicate that the synergistic reduction of TB is controlled by the order of addition of menadione and acetaldehyde. The synergistic reduction of TB by menadione and acetaldehyde was proportional to viable yeast cell number from 104 to 2×106 cells/ml, and this assay was applicable to cytotoxicity test. The time required for the above assay was only 2 min.

  15. In vitro attachment of phylloplane yeasts to Botrytis cinerea, Rhizoctonia solani, and Sclerotinia homoeocarpa.

    Science.gov (United States)

    Allen, Tom W; Burpee, Leon L; Buck, James W

    2004-12-01

    The ability of yeasts to attach to hyphae or conidia of phytopathogenic fungi has been speculated to contribute to biocontrol activity on plant surfaces. Attachment of phylloplane yeasts to Botrytis cinerea, Rhizoctonia solani, and Sclerotinia homoeocarpa was determined using in vitro attachment assays. Yeasts were incubated for 2 d on potato dextrose agar (PDA) prior to experimentation. A total of 292 yeasts cultured on PDA were screened for their ability to attach to conidia of B. cinerea; 260 isolates (89.1%) attached to conidia forming large aggregates of cells, and 22 isolates (7.5%) weakly attached to conidia with 1 or 2 yeast cells attached to a few conidia. Ten yeasts (3.4%), including 8 isolates of Cryptococcus laurentii, 1 isolate of Cryptococcus flavescens, and an unidentified species of Cryptococcus, failed to attach to conidia. All non-attaching yeasts produced copious extracellular polysaccharide (EPS) on PDA. Seventeen yeast isolates did not attach to hyphal fragments of B. cinerea, R. solani, and S. homoeocarpa after a 1 h incubation, but attachment was observed after 24 h. Culture medium, but not culture age, significantly affected the attachment of yeast cells to conidia of B. cinerea. The 10 yeast isolates that did not attach to conidia when grown on agar did attach to conidia (20%-57% of conidia with attached yeast cells) when cultured in liquid medium. Attachment of the biocontrol yeast Rhodotorula glutinis PM4 to conidia of B. cinerea was significantly greater at 1 x 10(7) yeast cells x mL(-1) than at lower concentrations of yeast cells. The ability of yeast cells to attach to fungal conidia or hyphae appears to be a common phenotype among phylloplane yeasts.

  16. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.

    Science.gov (United States)

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  17. Yeast Communities of Chestnut Soils under Vineyards in Dagestan

    Science.gov (United States)

    Abdullabekova, D. A.; Magomedova, E. S.; Magomedov, G. G.; Aliverdieva, D. A.; Kachalkin, A. V.

    2017-12-01

    The study of yeast communities in chestnut soils (Kastanozems) under vineyards in the Republic of Dagestan made it possible to isolate 20 yeast species. Most of the yeasts under vineyards belonged to ascomycetes, among which species of the Saccharomycetaceae family (in particular, Saccharomyces cerevisiae) comprised a significant part. The obtained results indicate that the soils under vineyards keep the pool of microbial diversity and ensure preservation of many species typical for grapes. The method of enrichment culture on grape juice medium proved to be more efficient than other methods of analysis with respect to the number of isolated species and the rate of their detection. However, implementation of different techniques to study yeasts' diversity can give somewhat different results; a set of methods should be used for an integrated analysis.

  18. The Fermentative and Aromatic Ability of Kloeckera and Hanseniaspora Yeasts

    Science.gov (United States)

    Díaz-Montaño, Dulce M.; de Jesús Ramírez Córdova, J.

    Spontaneous alcoholic fermentation from grape, agave and others musts into an alcoholic beverage is usually characterized by the presence of several non-Saccharomyces yeasts. These genera yeasts are dominant in the early stages of the alcoholic fermentation. However the genera Hanseniaspora and Kloeckera may survive at a significant level during fermentation and can influence the chemical composition of the beverage. Several strains belonging to the species Kloeckera api-culata and Hanseniaspora guilliermondii have been extensively studied in relation to the formation of some metabolic compounds affecting the bouquet of the final product. Indeed some apiculate yeast showed positive oenological properties and their use in the alcoholic fermentations has been suggested to enhance the aroma and flavor profiles. The non- Saccharomyces yeasts have the capability to produce and secrete enzymes in the medium, such as β -glucosidases, which release monoterpenes derived from their glycosylated form. These compounds contribute to the higher fruit-like characteristic of final product. This chapter reviews metabolic activity of Kloeckera and Hanseniaspora yeasts in several aspects: fermentative capability, aromatic compounds production and transformation of aromatic precursor present in the must, also covers the molecular methods for identifying of the yeast

  19. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  20. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    Directory of Open Access Journals (Sweden)

    Popov Stevan D.

    2005-01-01

    Full Text Available The waste brewer's yeast S. cerevisiae (activated and non-activated was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positively the quality of produced bread regarding bread volume. The volume of developed gas in dough prepared with the use of non-activated BY was not sufficient, therefore, it should not be used as fermentation agent, but only as an additive in bread production process for bread freshness preservation. Intense mixing of dough results in more compressible crumb 48 hrs after baking compared to high-speed mixing.

  1. Occurrence and identification of yeast species in fermented liquid feed for piglets

    DEFF Research Database (Denmark)

    Gori, Klaus; Bjørklund, Marina Kryger; Canibe, Nuria

    2011-01-01

    The major objective of the present study was to investigate the occurrence and identity of yeast species in fermented liquid feed (FLF) used for feeding piglets. In total, 40 different Danish farms were included in the analysis. The preparation and composition of FLF was found to be very...... heterogeneous with high variations in both yeast counts and yeast species composition. The yeast population varied between 6.0 × 10(3) and 4.2 × 10(7) cfug(-1) with an average yeast count of 8.7 × 10(6) ± 1.1 × 10(7) cfug(-1). A total of 766 yeasts were isolated and identified by conventional and/or molecular...... typing techniques. The predominant yeast species in the FLF samples were found to be Candida milleri (58.4%), Kazachstania exigua (17.5%), Candida pararugosa (6.40%) and Kazachstania bulderi (5.09%). No clear separation between isolates of C. milleri and Candida humilis could be obtained based...

  2. Hydrogen bond indices and tertiary structure of yeast tRNA sup(Phe)

    International Nuclear Information System (INIS)

    Giambiagi, M.S. de; Giambiagi, M.; Esquivel, D.M.S.

    1982-01-01

    The rigidity and stability of the tertiary structure of yeast tRNA sup(Phe) is related to a bond index employed in an IEHT calculation. The index permits a quantitative estimate of the electronic cloud along the hydrogen bond, having thus an appealing physical meaning. The results indicate that Hoogsteen-type bonds have, as expected, greater electronic population than Watson-Crick type ones. Other non-Watson-Crick pairings, the wobble pair and G 15 -C 48 , exhibit high values of the index for the NH...O bond. In the triples, the electronic density of the hydrogen bridges does not weaken, comparing it with the one of the pairs involved. Contour density maps are shown and dipolar moments of pairs and triples are qualitatively discussed. (Author) [pt

  3. Biofuels. Altered sterol composition renders yeast thermotolerant

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam

    2014-01-01

    adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol......Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used...... desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype....

  4. Conditions of activation of yeast plasma membrane ATPase.

    Science.gov (United States)

    Sychrová, H; Kotyk, A

    1985-04-08

    The in vivo activation of the H+-ATPase of baker's yeast plasma membrane found by Serrano in 1983 was demonstrated with D-glucose aerobically and anaerobically (as well as in a respiration-deficient mutant) and, after suitable induction, with maltose, trehalose, and galactose. The activated but not the control ATPase was sensitive to oligomycin. No activation was possible in a cell-free extract with added glucose. The ATPase was not activated in yeast protoplasts which may account for the absence of glucose-stimulated secondary active transports in these wall-less cells and provide support for a microscopic coupling between ATPase activity and these transports in yeast cells.

  5. Co-fermentation of glucose, xylose and/or cellobiose by yeast

    Science.gov (United States)

    Jeffries, Thomas W.; Willis, Laura B.; Long, Tanya M.; Su, Yi-Kai

    2013-09-10

    Provided herein are methods of using yeast cells to produce ethanol by contacting a mixture comprising xylose with a Spathaspora yeast cell under conditions suitable to allow the yeast to ferment at least a portion of the xylose to ethanol. The methods allow for efficient ethanol production from hydrolysates derived from lignocellulosic material and sugar mixtures including at least xylose and glucose or xylose, glucose and cellobiose.

  6. Yeast: An Overlooked Component of Bactrocera tryoni (Diptera: Tephritidae) Larval Gut Microbiota.

    Science.gov (United States)

    Deutscher, Ania T; Reynolds, Olivia L; Chapman, Toni A

    2017-02-01

    Yeasts, often in hydrolyzed form, are key ingredients in the larval and adult diets of tephritid fruit fly colonies. However, very little is known about the presence or role of yeasts in the diets of tephritid fruit flies in nature. Previous studies have identified bacteria but not detected yeasts in the gut of Queensland fruit fly, Bactrocera tryoni (Froggatt), one of Australia's most economically damaging insect pests of horticultural crops and of significant biosecurity concern domestically and internationally. Here we demonstrate that cultivable yeasts are commonly found in the gut of B. tryoni larvae from fruit hosts. Analysis of the ITS1, 5.8S rRNA gene, and ITS2 sequences of randomly selected isolates identified yeasts and yeast-like fungi of the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Pichia, and Starmerella. The prevalence of these yeasts in fruits suggests that larvae consume the yeasts as part of their diet. This work highlights that yeasts should be considered in future tephritid larval gut microbiota studies. Understanding tephritid-microbial symbiont interactions will lead to improvements in artificial diets and the quality of mass-reared tephritids for the sterile insect technique. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Quantitative global and gene-specific promoter methylation in relation to biological properties of neuroblastomas

    Directory of Open Access Journals (Sweden)

    Kiss Nimrod B

    2012-09-01

    Full Text Available Abstract Background In this study we aimed to quantify tumor suppressor gene (TSG promoter methylation densities levels in primary neuroblastoma tumors and cell lines. A subset of these TSGs is associated with a CpG island methylator phenotype (CIMP in other tumor types. Methods The study panel consisted of 38 primary tumors, 7 established cell lines and 4 healthy references. Promoter methylation was determined by bisulphate Pyrosequencing for 14 TSGs; and LINE-1 repeat element methylation was used as an indicator of global methylation levels. Results Overall mean TSG Z-scores were significantly increased in cases with adverse outcome, but were unrelated to global LINE-1 methylation. CIMP with hypermethylation of three or more gene promoters was observed in 6/38 tumors and 7/7 cell lines. Hypermethylation of one or more TSG (comprising TSGs BLU, CASP8, DCR2, CDH1, RASSF1A and RASSF2 was evident in 30/38 tumors. By contrast only very low levels of promoter methylation were recorded for APC, DAPK1, NORE1A, P14, P16, TP73, PTEN and RARB. Similar involvements of methylation instability were revealed between cell line models and neuroblastoma tumors. Separate analysis of two proposed CASP8 regulatory regions revealed frequent and significant involvement of CpG sites between exon 4 and 5, but modest involvement of the exon 1 region. Conclusions/significance The results highlight the involvement of TSG methylation instability in neuroblastoma tumors and cell lines using quantitative methods, support the use of DNA methylation analyses as a prognostic tool for this tumor type, and underscore the relevance of developing demethylating therapies for its treatment.

  8. Polysome Profile Analysis - Yeast

    Czech Academy of Sciences Publication Activity Database

    Pospíšek, M.; Valášek, Leoš Shivaya

    2013-01-01

    Roč. 530, č. 2013 (2013), s. 173-181 ISSN 0076-6879 Institutional support: RVO:61388971 Keywords : grow yeast cultures * polysome profile analysis * sucrose density gradient centrifugation Subject RIV: CE - Biochemistry Impact factor: 2.194, year: 2013

  9. Yeast prions: structure, biology, and prion-handling systems.

    Science.gov (United States)

    Wickner, Reed B; Shewmaker, Frank P; Bateman, David A; Edskes, Herman K; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E

    2015-03-01

    A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Microbial terroir in Chilean valleys: Diversity of non-conventional yeast

    Directory of Open Access Journals (Sweden)

    Carla eJara

    2016-05-01

    Full Text Available In this study, the presence of non-conventional yeast associated with vineyards located between latitudes 30ºS and 36ºS was examined, including the valleys of Limarí, Casablanca, Maipo, Colchagua, Maule and Itata. The microbial fingerprinting in each valley was examined based on the specific quantification of yeast of enological interest. Grape berries were sampled to evaluate the presence and load of non-conventional yeast with enological potential, such as Metschnikowia, Hanseniaspora, Torulaspora, Debaryomyces, Meyerozyma and Rhodotorula. These yeasts were present in all vineyards studied but with varying loads depending on the valley sampled. No identical fingerprints were observed; however, similarities and differences could be observed among the microbial profiles of each valley. A co-variation in the loads of Metschnikowia and Hanseniaspora with latitude was observed, showing high loads in the Casablanca and Itata valleys, which was coincident with the higher relative humidity or rainfall of those areas. Non-conventional yeasts were also isolated and identified after sequencing molecular markers. Potentially good aromatic properties were also screened among the isolates, resulting in the selection of mostly Metschnikowia and Hanseniaspora isolates. Finally, our results suggest that microbial terroir might be affected by climatic conditions such as relative humidity and rainfall, especially impacting the load of non-conventional yeast. In this study, the microbial fingerprint for yeast in Chilean vineyards is reported for the first time revealing an opportunity to study the contribution of this assembly of microorganisms to the final product.

  11. Yeast Interacting Proteins Database: YFR015C, YJL137C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...pression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary

  12. Global identification of new substrates for the yeast endoribonuclease, RNase mitochondrial RNA processing (MRP).

    Science.gov (United States)

    Aulds, Jason; Wierzbicki, Sara; McNairn, Adrian; Schmitt, Mark E

    2012-10-26

    RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27(Kip1), SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease.

  13. Global Identification of New Substrates for the Yeast Endoribonuclease, RNase Mitochondrial RNA Processing (MRP)*

    Science.gov (United States)

    Aulds, Jason; Wierzbicki, Sara; McNairn, Adrian; Schmitt, Mark E.

    2012-01-01

    RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27Kip1, SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease. PMID:22977255

  14. Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network

    Directory of Open Access Journals (Sweden)

    Heavner Benjamin D

    2012-06-01

    Full Text Available Abstract Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Additional file 1 Function testYeastModel.m.m. Click here for file Additional file 2 Function model

  15. Determination of tritium in wine yeast samples

    International Nuclear Information System (INIS)

    Cotarlea, Monica-Ionela; Paunescu Niculina; Galeriu, D; Mocanu, N.; Margineanu, R.; Marin, G.

    1998-01-01

    Analytical procedures were developed to determine tritium in wine and wine yeast samples. The content of organic compounds affecting the LSC measurement is reduced by fractioning distillation for wine samples and azeotropic distillation/fractional distillation for wine yeast samples. Finally, the water samples were normally distilled with K MO 4 . The established procedures were successfully applied for wine and wine samples from Murfatlar harvests of the years 1995 and 1996. (authors)

  16. Solving ethanol production problems with genetically modified yeast strains

    Directory of Open Access Journals (Sweden)

    A. Abreu-Cavalheiro

    2013-09-01

    Full Text Available The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  17. Solving ethanol production problems with genetically modified yeast strains.

    Science.gov (United States)

    Abreu-Cavalheiro, A; Monteiro, G

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  18. Characterization of the interaction of yeast enolase with polynucleotides.

    Science.gov (United States)

    al-Giery, A G; Brewer, J M

    1992-09-23

    Yeast enolase is inhibited under certain conditions by DNA. The enzyme binds to single-stranded DNA-cellulose. Inhibition was used for routine characterization of the interaction. The presence of the substrate 2-phospho-D-glycerate reduces inhibition and binding. Both yeast enolase isozymes behave similarly. Impure yeast enolase was purified by adsorption onto a single-stranded DNA-cellulose column followed by elution with substrate. Interaction with RNA, double-stranded DNA, or degraded DNA results in less inhibition, suggesting that yeast enolase preferentially binds single-stranded DNA. However, yeast enolase is not a DNA-unwinding protein. The enzyme is inhibited by the short synthetic oligodeoxynucleotides G6, G8 and G10 but not T8 or T6, suggesting some base specificity in the interaction. The interaction is stronger at more acid pH values, with an apparent pK of 5.6. The interaction is prevented by 0.3 M KCl, suggesting that electrostatic factors are important. Histidine or lysine reverse the inhibition at lower concentrations, while phosphate is still more effective. Binding of single-stranded DNA to enolase reduces the reaction of protein histidyl residues with diethylpyrocarbonate. The inhibition of yeast enolase by single-stranded DNA is not total, and suggests the active site is not directly involved in the interaction. Binding of substrate may induce a conformational change in the enzyme that interferes with DNA binding and vice versa.

  19. Dietary glucose regulates yeast consumption in adult Drosophila males

    Directory of Open Access Journals (Sweden)

    Sebastien eLebreton

    2014-12-01

    Full Text Available The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  20. Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae.

    Science.gov (United States)

    Yofe, Ido; Schuldiner, Maya

    2014-02-01

    The budding yeast Saccharomyces cerevisiae is a key model organism of functional genomics, due to its ease and speed of genetic manipulations. In fact, in this yeast, the requirement for homologous sequences for recombination purposes is so small that 40 base pairs (bp) are sufficient. Hence, an enormous variety of genetic manipulations can be performed by simply planning primers with the correct homology, using a defined set of transformation plasmids. Although designing primers for yeast transformations and for the verification of their correct insertion is a common task in all yeast laboratories, primer planning is usually done manually and a tool that would enable easy, automated primer planning for the yeast research community is still lacking. Here we introduce Primers-4-Yeast, a web tool that allows primers to be designed in batches for S. cerevisiae gene-targeting transformations, and for the validation of correct insertions. This novel tool enables fast, automated, accurate primer planning for large sets of genes, introduces consistency in primer planning and is therefore suggested to serve as a standard in yeast research. Primers-4-Yeast is available at: http://www.weizmann.ac.il/Primers-4-Yeast Copyright © 2013 John Wiley & Sons, Ltd.

  1. Recent advances in the genome-wide study of DNA replication origins in yeast

    Science.gov (United States)

    Peng, Chong; Luo, Hao; Zhang, Xi; Gao, Feng

    2015-01-01

    DNA replication, one of the central events in the cell cycle, is the basis of biological inheritance. In order to be duplicated, a DNA double helix must be opened at defined sites, which are called DNA replication origins (ORIs). Unlike in bacteria, where replication initiates from a single replication origin, multiple origins are utilized in the eukaryotic genomes. Among them, the ORIs in budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe have been best characterized. In recent years, advances in DNA microarray and next-generation sequencing technologies have increased the number of yeast species involved in ORIs research dramatically. The ORIs in some non-conventional yeast species such as Kluyveromyces lactis and Pichia pastoris have also been genome-widely identified. Relevant databases of replication origins in yeast were constructed, then the comparative genomic analysis can be carried out. Here, we review several experimental approaches that have been used to map replication origins in yeast and some of the available web resources related to yeast ORIs. We also discuss the sequence characteristics and chromosome structures of ORIs in the four yeast species, which can be utilized to improve yeast replication origins prediction. PMID:25745419

  2. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Energy Technology Data Exchange (ETDEWEB)

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  3. Production of yeast extract from whey using Kluyveromyces marxianus

    Directory of Open Access Journals (Sweden)

    Revillion Jean P. de Palma

    2003-01-01

    Full Text Available The yeast Kluyveromyces marxianus CBS 6556 was grown on whey to produce nucleotide-rich yeast extracts. Thermal treatments of cells at 35 or 50ºC for 15-30h resulted in yeast extracts containing about 20 g/L protein, with only the second treatment resulting in the presence of small amounts of RNA. In contrast, autolysis in buffered solution was the unique treatment that resulted in release of high amounts of intracellular RNA, being, therefore, the better procedure to produce 5'-nucletide rich extract with K. marxianus.

  4. [Antivirus effect of polysaccharides of brewer yeast in vitro].

    Science.gov (United States)

    Li, F; Shi, Y; Guan, X; Zhang, S; Tian, T

    1998-03-01

    The antivirus effect of polysaccharides of brewer yeast from yeast mud on 13 kinds of viruses including DNA and RNA virus along with their mechanisms were studied. The result showed that this effect was remarkable on the infections with poliovirus III, adenovirus III, ECHO6 virus, enterovirus 71, vesicular stomatitis virus, herpesvirus I, II, coxsackie A16 virus and coxsackie B3 virus. The polysaccharides of brewer yeast could also inhibit the development of cytopathic effect(CPE) and protect cultural cells from being infected with the above viruses.

  5. Systematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth

    Directory of Open Access Journals (Sweden)

    Charalampos Rallis

    2014-01-01

    Target of rapamycin complex 1 (TORC1, which controls growth in response to nutrients, promotes ageing in multiple organisms. The fission yeast Schizosaccharomyces pombe emerges as a valuable genetic model system to study TORC1 function and cellular ageing. Here we exploited the combinatorial action of rapamycin and caffeine, which inhibit fission yeast growth in a TORC1-dependent manner. We screened a deletion library, comprising ∼84% of all non-essential fission yeast genes, for drug-resistant mutants. This screen identified 33 genes encoding functions such as transcription, kinases, mitochondrial respiration, biosynthesis, intra-cellular trafficking, and stress response. Among the corresponding mutants, 5 showed shortened and 21 showed increased maximal chronological lifespans; 15 of the latter mutants showed no further lifespan increase with rapamycin and might thus represent key targets downstream of TORC1. We pursued the long-lived sck2 mutant with additional functional analyses, revealing that the Sck2p kinase functions within the TORC1 network and is required for normal cell growth, global protein translation, and ribosomal S6 protein phosphorylation in a nutrient-dependent manner. Notably, slow cell growth was associated with all long-lived mutants while oxidative-stress resistance was not.

  6. Cadmium, ATPase-P, yeast. From transport to toxicity

    International Nuclear Information System (INIS)

    Gardarin, Aurelie

    2007-01-01

    Two projects has been developed during my PhD. One consisting in the functional study of CadA, the Cd 2+ -ATPase from Listeria monocytogenes, the other one was focused on the toxicity of cadmium and the associated response of the yeast Saccharomyces cerevisiae. This two studies used a a phenotype of sensitivity to cadmium induced by CadA expression in yeast. This phenotype was used as a screening tool to identify essential amino acids of Cd transport by CadA and to study cadmium toxicity and the corresponding yeast cellular response. CadA actively transports Cd using ATP hydrolysis as energy source. Directed mutagenesis of the membranous polar, sulphur and charged amino-acids revealed that Cd transport pathway implied four transmembrane segments (Tm) and more precisely the cysteine C 354 , C 356 and proline P 355 of the CPC motif located in Tm6, aspartate D 692 in Tm8, glutamate E 164 in Tm4 and methionine M 149 in Tm5. From our studies, 2 Cd ions would be translocated for each hydrolysis ATP. Expression of CadA in the yeast Saccharomyces cerevisiae induces an hypersensitivity to Cd. A wild type cell can grow up to 100 μm cadmium whereas CadA expressing yeast cannot grow with 1 μm cadmium in the culture medium. This cadmium sensitivity was due to the localisation of CadA in the endoplasmic reticulum membrane. Transport of cadmium in this compartment produces an accumulation of mis-folded proteins that induces the Unfolded Protein Response (UPR). As UPR also occurs in a wild type yeast exposed to low Cd concentration, one can point out endoplasmic reticulum as a extremely sensitive cellular compartment. UPR also appears as an early response to Cd as it happens far before any visible signs of toxicity. (author) [fr

  7. Core Data of Yeast Interacting Proteins Database (Original Version) - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available y are in the reverse direction. *1 A comprehensive two-hybrid analysis to explore the yeast protein interact...s. 2000 Jan 1;28(1):73-6. *2 The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive...000 Jan 1;28(1):73-6. *3 A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisia

  8. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    Science.gov (United States)

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Adding Flavor to Beverages with Non-Conventional Yeasts

    Directory of Open Access Journals (Sweden)

    Davide Ravasio

    2018-02-01

    Full Text Available Fungi produce a variety of volatile organic compounds (VOCs during their primary and secondary metabolism. In the beverage industry, these volatiles contribute to the the flavor and aroma profile of the final products. We evaluated the fermentation ability and aroma profiles of non-conventional yeasts that have been associated with various food sources. A total of 60 strains were analyzed with regard to their fermentation and flavor profile. Species belonging to the genera Candida, Pichia and Wickerhamomyces separated best from lager yeast strains according to a principal component analysis taking alcohol and ester production into account. The speed of fermentation and sugar utilization were analysed for these strains. Volatile aroma-compound formation was assayed via gas chromatography. Several strains produced substantially higher amounts of aroma alcohols and esters compared to the lager yeast strain Weihenstephan 34/70. Consequently, co-fermentation of this lager yeast strain with a Wickerhamomyces anomalus strain generated an increased fruity-flavour profile. This demonstrates that mixed fermentations utilizing non-Saccharomyces cerevisiae biodiversity can enhance the flavour profiles of fermented beverages.

  10. Studies of Saccharomyces cerevisiae and Non-Saccharomyces Yeasts during Alcoholic Fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri

    The early death of non-Saccharomyces yeasts during mixed culture spontaneous wine fermentation has traditionally been attributed to the lower capacity of these yeast species to withstand high levels of ethanol, low pH, and other media properties that are a part of progressing fermentation. However......, other yeast-yeast interactions, such as cell-cell contact mediated growth arrest and/or toxininduced death may also be a significant factor in the relative fragility of these non-Saccharomyces yeasts in mixed culture fermentation. In the present work we evaluate the combined roles of cell-cell contact...... and/or antimicrobial peptides on the early death of Lachancea thermotolerans during mixed culture fermentations with Saccharomyces cerevisiae. Using a specially designed double compartment fermentation system, we established that both cell-to-cell contact and antimicrobial peptides contribute...

  11. Fission yeast mating-type switching: programmed damage and repair

    DEFF Research Database (Denmark)

    Egel, Richard

    2005-01-01

    Mating-type switching in fission yeast follows similar rules as in budding yeast, but the underlying mechanisms are entirely different. Whilst the initiating double-strand cut in Saccharomyces cerevisiae requires recombinational repair for survival, the initial damage in Schizosaccharomyces pombe...

  12. The Slime Production by Yeasts Isolated from Subclinical Mastitic Cows

    Directory of Open Access Journals (Sweden)

    Süheyla Türkyılmaz

    2010-01-01

    Full Text Available The aim of this study was to isolate yeasts from subclinical mastitic cows and to investigate the slime production by the isolated yeasts. The material used in this study included 339 milk samples from 152 dairy cattle with subclinical mastitis. Milk was plated onto blood agar, MacConkey agar and Sabouraud dextrose agar. Forty-one samples (12.1% of total milk samples were found positive for the yeast by API 20 C AUX identification system. The isolated yeasts were classified into four genera of Candida, Trichosporon, Cryptococcus and Saccharomyces. The Candida species were following: C. krusei, C. kefyr, C. guilliermondii, C. famata, C. rugosa and C. utulis. Other yeasts were identified as Trichosporon mucoides, T. asahii, Cryptococcus laurentii, C.  neoformans and Saccharomyces cerevisiae. Slime production was tested on Congo red brain heart infusion agar and evaluated according to Congo red phenomenon. Fifteen (36.6% strains were slime factor positive: seven were C. krusei, four C. kefyr, one C. guilliermondii, one C. famata, one T. asahii, and one C. laurentii. The results of the present study indicate that yeast mastitis is significant for causing economic losses and slime production is mostly found in non-albicans Candida species. Therefore, non-albicans Candida species should be examined for slime production.

  13. Synthetic genome engineering forging new frontiers for wine yeast.

    Science.gov (United States)

    Pretorius, Isak S

    2017-02-01

    Over the past 15 years, the seismic shifts caused by the convergence of biomolecular, chemical, physical, mathematical, and computational sciences alongside cutting-edge developments in information technology and engineering have erupted into a new field of scientific endeavor dubbed Synthetic Biology. Recent rapid advances in high-throughput DNA sequencing and DNA synthesis techniques are enabling the design and construction of new biological parts (genes), devices (gene networks) and modules (biosynthetic pathways), and the redesign of biological systems (cells and organisms) for useful purposes. In 2014, the budding yeast Saccharomyces cerevisiae became the first eukaryotic cell to be equipped with a fully functional synthetic chromosome. This was achieved following the synthesis of the first viral (poliovirus in 2002 and bacteriophage Phi-X174 in 2003) and bacterial (Mycoplasma genitalium in 2008 and Mycoplasma mycoides in 2010) genomes, and less than two decades after revealing the full genome sequence of a laboratory (S288c in 1996) and wine (AWRI1631 in 2008) yeast strain. A large international project - the Synthetic Yeast Genome (Sc2.0) Project - is now underway to synthesize all 16 chromosomes (∼12 Mb carrying ∼6000 genes) of the sequenced S288c laboratory strain by 2018. If successful, S. cerevisiae will become the first eukaryote to cross the horizon of in silico design of complex cells through de novo synthesis, reshuffling, and editing of genomes. In the meantime, yeasts are being used as cell factories for the semi-synthetic production of high-value compounds, such as the potent antimalarial artemisinin, and food ingredients, such as resveratrol, vanillin, stevia, nootkatone, and saffron. As a continuum of previously genetically engineered industrially important yeast strains, precision genome engineering is bound to also impact the study and development of wine yeast strains supercharged with synthetic DNA. The first taste of what the future

  14. Transcriptional Waves in the Yeast Cell Cycle

    OpenAIRE

    Oliva, Anna; Rosebrock, Adam; Ferrezuelo, Francisco; Pyne, Saumyadipta; Chen, Haiying; Skiena, Steve; Futcher, Bruce; Leatherwood, Janet

    2005-01-01

    Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillat...

  15. Performance of CHROMAGAR candida and BIGGY agar for identification of yeast species

    OpenAIRE

    Marol Serhat; Yücesoy Mine

    2003-01-01

    Abstract Background The importance of identifying the pathogenic fungi rapidly has encouraged the development of differential media for the presumptive identification of yeasts. In this study two differential media, CHROMagar Candida and bismuth sulphite glucose glycine yeast agar, were evaluated for the presumptive identification of yeast species. Methods A total number of 270 yeast strains including 169 Candida albicans, 33 C. tropicalis, 24 C. glabrata, 18 C. parapsilosis, 12 C. krusei, 5 ...

  16. Yeast replicative aging: a paradigm for defining conserved longevity interventions

    OpenAIRE

    Wasko, Brian M.; Kaeberlein, Matt

    2013-01-01

    The finite replicative life span of budding yeast mother cells was demonstrated as early as 1959, but the idea that budding yeast could be used to model aging of multicellular eukaryotes did not enter the scientific mainstream until relatively recently. Despite continued skepticism by some, there are now abundant data that several interventions capable of extending yeast replicative life span have a similar effect in multicellular eukaryotes including nematode worms, fruit flies, and rodents....

  17. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Energy Technology Data Exchange (ETDEWEB)

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  18. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Energy Technology Data Exchange (ETDEWEB)

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  19. Genetically modified yeast species and fermentation processes using genetically modified yeast

    Energy Technology Data Exchange (ETDEWEB)

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  20. Genetically modified yeast species and fermentation processes using genetically modified yeast

    Science.gov (United States)

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  1. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Science.gov (United States)

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  2. Yeast biofilm colony as an orchestrated multicellular organism

    Czech Academy of Sciences Publication Activity Database

    Šťovíček, V.; Váchová, Libuše; Palková, Zdena

    2012-01-01

    Roč. 5, č. 2 (2012), s. 203-205 ISSN 1942-0889 R&D Projects: GA ČR GA204/08/0718; GA MŠk(CZ) LC531 Grant - others:GA MŠk(CZ) LC06063 Program:LC Institutional research plan: CEZ:AV0Z50200510 Keywords : yeast biofilm * yeast cell Subject RIV: EE - Microbiology, Virology

  3. Non-conventional yeast species for lowering ethanol content of wines

    Directory of Open Access Journals (Sweden)

    Maurizio eCiani

    2016-05-01

    Full Text Available Rising sugar content in grape must, and the concomitant increase in alcohol levels in wine, are some of the main challenges affecting the winemaking industry nowadays. Among the several alternative solutions currently under study, the use of non-conventional yeasts during fermentation holds good promise for contributing to relieve this problem. Non-Saccharomyces wine yeast species comprise a high number or species, so encompassing a wider physiological diversity than Saccharomyces cerevisiae. Indeed, the current oenological interest of these microorganisms was initially triggered by their potential positive contribution to the sensorial complexity of quality wines, through the production of aroma and other sensory-active compounds. This diversity also involves ethanol yield on sugar, one of the most invariant metabolic traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces yeasts, aiming to produce wines with lower alcohol content than those from pure Saccharomyces starters. Critical aspects discussed include the selection of suitable yeast strains (considering there is a noticeable intra-species diversity for ethanol yield, as shown for other fermentation traits, identification of key environmental parameters influencing ethanol yields (including the use of controlled oxygenation conditions, and managing mixed fermentations, by either the sequential or simultaneous inoculation of S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require an improved understanding of the metabolism of these alternative yeast species, as well as of the interactions between different yeast starters during the fermentation of grape must.

  4. Non-conventional Yeast Species for Lowering Ethanol Content of Wines

    Science.gov (United States)

    Ciani, Maurizio; Morales, Pilar; Comitini, Francesca; Tronchoni, Jordi; Canonico, Laura; Curiel, José A.; Oro, Lucia; Rodrigues, Alda J.; Gonzalez, Ramon

    2016-01-01

    Rising sugar content in grape must, and the concomitant increase in alcohol levels in wine, are some of the main challenges affecting the winemaking industry nowadays. Among the several alternative solutions currently under study, the use of non-conventional yeasts during fermentation holds good promise for contributing to relieve this problem. Non-Saccharomyces wine yeast species comprise a high number or species, so encompassing a wider physiological diversity than Saccharomyces cerevisiae. Indeed, the current oenological interest of these microorganisms was initially triggered by their potential positive contribution to the sensorial complexity of quality wines, through the production of aroma and other sensory-active compounds. This diversity also involves ethanol yield on sugar, one of the most invariant metabolic traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces yeasts, aiming to produce wines with lower alcohol content than those from pure Saccharomyces starters. Critical aspects discussed include the selection of suitable yeast strains (considering there is a noticeable intra-species diversity for ethanol yield, as shown for other fermentation traits), identification of key environmental parameters influencing ethanol yields (including the use of controlled oxygenation conditions), and managing mixed fermentations, by either the sequential or simultaneous inoculation of S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require an improved understanding of the metabolism of these alternative yeast species, as well as of the interactions between different yeast starters during the fermentation of grape must. PMID:27199967

  5. Evaluation of Gene Modification Strategies for the Development of Low-Alcohol-Wine Yeasts

    Science.gov (United States)

    Kutyna, D. R.; Solomon, M. R.; Black, C. A.; Borneman, A.; Henschke, P. A.; Pretorius, I. S.; Chambers, P. J.

    2012-01-01

    Saccharomyces cerevisiae has evolved a highly efficient strategy for energy generation which maximizes ATP energy production from sugar. This adaptation enables efficient energy generation under anaerobic conditions and limits competition from other microorganisms by producing toxic metabolites, such as ethanol and CO2. Yeast fermentative and flavor capacity forms the biotechnological basis of a wide range of alcohol-containing beverages. Largely as a result of consumer demand for improved flavor, the alcohol content of some beverages like wine has increased. However, a global trend has recently emerged toward lowering the ethanol content of alcoholic beverages. One option for decreasing ethanol concentration is to use yeast strains able to divert some carbon away from ethanol production. In the case of wine, we have generated and evaluated a large number of gene modifications that were predicted, or known, to impact ethanol formation. Using the same yeast genetic background, 41 modifications were assessed. Enhancing glycerol production by increasing expression of the glyceraldehyde-3-phosphate dehydrogenase gene, GPD1, was the most efficient strategy to lower ethanol concentration. However, additional modifications were needed to avoid negatively affecting wine quality. Two strains carrying several stable, chromosomally integrated modifications showed significantly lower ethanol production in fermenting grape juice. Strain AWRI2531 was able to decrease ethanol concentrations from 15.6% (vol/vol) to 13.2% (vol/vol), whereas AWRI2532 lowered ethanol content from 15.6% (vol/vol) to 12% (vol/vol) in both Chardonnay and Cabernet Sauvignon juices. Both strains, however, produced high concentrations of acetaldehyde and acetoin, which negatively affect wine flavor. Further modifications of these strains allowed reduction of these metabolites. PMID:22729542

  6. Metabolic engineering of yeast for fermentative production of flavonoids

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Strucko, Tomas; Stahlhut, Steen Gustav

    2017-01-01

    Yeast Saccharomyces cerevisiae was engineered for de novo production of six different flavonoids (naringenin, liquiritigenin, kaempferol, resokaempferol, quercetin, and fisetin) directly from glucose, without supplementation of expensive intermediates. This required reconstruction of long...... demonstrates the potential of flavonoid-producing yeast cell factories....

  7. Performance of baker's yeast produced using date syrup substrate ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... evaluate the effect of using Baker's yeast produced using date syrup as .... Gas production power (ml/20g dough) for baker's yeasts (LSD Test*). Incubation ... Brain (2005) indicated that a falling number value of 350 s or longer ...

  8. Divergence of iron metabolism in wild Malaysian yeast.

    Science.gov (United States)

    Lee, Hana N; Mostovoy, Yulia; Hsu, Tiffany Y; Chang, Amanda H; Brem, Rachel B

    2013-12-09

    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics.

  9. Cold Spring Harbor symposia on quantitative biology: Volume 49, Recombination at the DNA level

    International Nuclear Information System (INIS)

    1984-01-01

    This volume contains full papers prepared by the participants to the 1984 Cold Springs Harbor Symposia on Quantitative Biology. This year's theme is entitled Recombination at the DNA level. The volume consists of 93 articles grouped into subject areas entitled chromosome mechanics, yeast systems, mammalian homologous recombination, transposons, mu, plant transposons/T4 recombination, topoisomerase, resolvase and gyrase, Escherichia coli general recombination, RecA, repair, leukaryotic enzymes, integration and excision of bacteriophage, site-specific recombination, and recombination in vitro

  10. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts.

    Science.gov (United States)

    Barbosa, Catarina; Lage, Patrícia; Vilela, Alice; Mendes-Faia, Arlete; Mendes-Ferreira, Ana

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase.

  11. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.

    Science.gov (United States)

    Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander

    2016-08-01

    The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. An engineered yeast efficiently secreting penicillin.

    Directory of Open Access Journals (Sweden)

    Loknath Gidijala

    Full Text Available This study aimed at developing an alternative host for the production of penicillin (PEN. As yet, the industrial production of this beta-lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceuticals, represents an attractive alternative. Introduction of the P. chrysogenum gene encoding the non-ribosomal peptide synthetase (NRPS delta-(L-alpha-aminoadipyl-L-cysteinyl-D-valine synthetase (ACVS in H. polymorpha, resulted in the production of active ACVS enzyme, when co-expressed with the Bacillus subtilis sfp gene encoding a phosphopantetheinyl transferase that activated ACVS. This represents the first example of the functional expression of a non-ribosomal peptide synthetase in yeast. Co-expression with the P. chrysogenum genes encoding the cytosolic enzyme isopenicillin N synthase as well as the two peroxisomal enzymes isopenicillin N acyl transferase (IAT and phenylacetyl CoA ligase (PCL resulted in production of biologically active PEN, which was efficiently secreted. The amount of secreted PEN was similar to that produced by the original P. chrysogenum NRRL1951 strain (approx. 1 mg/L. PEN production was decreased over two-fold in a yeast strain lacking peroxisomes, indicating that the peroxisomal localization of IAT and PCL is important for efficient PEN production. The breakthroughs of this work enable exploration of new yeast-based cell factories for the production of (novel beta-lactam antibiotics as well as other natural and semi-synthetic peptides (e.g. immunosuppressive and cytostatic agents, whose production involves NRPS's.

  13. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast

    International Nuclear Information System (INIS)

    Choi, Joon-Seok; Lee, Cheol-Koo

    2013-01-01

    Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA

  14. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joon-Seok; Lee, Cheol-Koo, E-mail: cklee2005@korea.ac.kr

    2013-09-13

    Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.

  15. An original method for producing acetaldehyde and diacetyl by yeast fermentation

    Directory of Open Access Journals (Sweden)

    Irina Rosca

    Full Text Available Abstract In this study a natural culture medium that mimics the synthetic yeast peptone glucose medium used for yeast fermentations was designed to screen and select yeasts capable of producing high levels of diacetyl and acetaldehyde. The presence of whey powder and sodium citrate in the medium along with manganese and magnesium sulfate enhanced both biomass and aroma development. A total of 52 yeasts strains were cultivated in two different culture media, namely, yeast peptone glucose medium and yeast acetaldehyde-diacetyl medium. The initial screening of the strains was based on the qualitative reaction of the acetaldehyde with Schiff's reagent (violet color and diacetyl with Brady's reagent (yellow precipitate. The fermented culture media of 10 yeast strains were subsequently analyzed by gas chromatography to quantify the concentration of acetaldehyde and diacetyl synthesized. Total titratable acidity values indicated that a total titratable acidity of 5.5 °SH, implying culture medium at basic pH, was more favorable for the acetaldehyde biosynthesis using strain D15 (Candida lipolytica; 96.05 mg L-1 acetaldehyde while a total titratable acidity value of 7 °SH facilitated diacetyl flavor synthesis by strain D38 (Candida globosa; 3.58 mg L-1 diacetyl. Importantly, the results presented here suggest that this can be potentially used in the baking industry.

  16. Synthetic biology stretching the realms of possibility in wine yeast research.

    Science.gov (United States)

    Jagtap, Umesh B; Jadhav, Jyoti P; Bapat, Vishwas A; Pretorius, Isak S

    2017-07-03

    It took several millennia to fully understand the scientific intricacies of the process through which grape juice is turned into wine. This yeast-driven fermentation process is still being perfected and advanced today. Motivated by ever-changing consumer preferences and the belief that the 'best' wine is yet to be made, numerous approaches are being pursued to improve the process of yeast fermentation and the quality of wine. Central to recent enhancements in winemaking processes and wine quality is the development of Saccharomyces cerevisiae yeast strains with improved robustness, fermentation efficiencies and sensory properties. The emerging science of Synthetic Biology - including genome engineering and DNA editing technologies - is taking yeast strain development into a totally new realm of possibility. The first example of how future wine strain development might be impacted by these new 'history-making' Synthetic Biology technologies, is the de novo production of the raspberry ketone aroma compound, 4-[4-hydroxyphenyl]butan-2-one, in a wine yeast containing a synthetic DNA cassette. This article explores how this breakthrough and the imminent outcome of the international Yeast 2.0 (or Sc2.0) project, aimed at the synthesis of the entire genome of a laboratory strain of S. cerevisiae, might accelerate the design of improved wine yeasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    Science.gov (United States)

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mitochondrial fission proteins regulate programmed cell death in yeast.

    Science.gov (United States)

    Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie

    2004-11-15

    The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.

  19. Influence of sodium chloride on wine yeast fermentation performance

    Directory of Open Access Journals (Sweden)

    Stilianos Logothetis

    2010-06-01

    Full Text Available Stilianos Logothetis1, Elias T Nerantzis2, Anna Gioulioti3, Tasos Kanelis2, Tataridis Panagiotis2, Graeme Walker11University of Abertay Dundee, School of Contemporary Sciences, Dundee, Scotland; 2TEI of Athens Department of Oenology and Spirit Technology, Biotechnology and Industrial Fermentations Lab Agiou Spiridonos, Athens, Greece; 3Ampeloiniki SA Industrial Park Thermi, Thessaloniki, GreeceAbstract: This paper concerns research into the influence of salt (sodium chloride on growth, viability and fermentation performance in a winemaking strain of the yeast, Saccharomyces cerevisiae. Experimental fermentations were conducted in both laboratory-scale and industrial-scale experiments. Preculturing yeasts in elevated levels of sodium chloride, or salt “preconditioning” led to improved fermentation performance. This was manifest by preconditioned yeasts having an improved capability to ferment high-sugar containing media with increased cell viability and with elevated levels of produced ethanol. Salt-preconditioning most likely influenced the stress-tolerance of yeasts by inducing the synthesis of key metabolites such as trehalose and glycerol. These compounds may act to improve cells’ ability to withstand osmostress and ethanol toxicity during fermentations of grape must. Industrial-scale trials using salt-preconditioned yeasts verified the benefit of this novel physiological cell engineering approach to practical winemaking fermentations.Keywords: salt, preconditioning, fermentation performance, Saccharomyces cerevisiae, wine

  20. Yeast vitality during cider fermentation: assessment by energy metabolism.

    Science.gov (United States)

    Dinsdale, M G; Lloyd, D; McIntyre, P; Jarvis, B

    1999-03-15

    In an apple juice-based medium, an ethanol-tolerant Australian wine-yeast used for cider manufacture produced more than 10% ethanol over a 5 week period. Growth of the inoculum (10(6) organisms ml(-1)) occurred to a population of 3.1 x 10(7) ml(-1) during the first few days; at the end of the fermentation only 5 x 10(5) yeasts ml(-1) could be recovered as colony-forming units on plates. Respiratory and fermentative activities were measured by mass spectrometric measurements (O2 consumption and CO2 and ethanol production) of washed yeast suspensions taken from the cider fermentation at intervals. Both endogenous and glucose-supported energy-yielding metabolism declined, especially during the first 20 days. Levels of adenine nucleotides also showed decreases after day 1, as did adenylate energy charge, although in a prolonged (16.5 week) fermentation the lowest value calculated was 0.55. AMP was released into the medium. 31P-NMR spectra showed that by comparison with aerobically grown yeast, that from the later stages of the cider fermentation showed little polyphosphate. However, as previously concluded from studies of 'acidification power' and fluorescent oxonol dye exclusion (Dinsdale et al., 1995), repitching of yeast indicated little loss of viability despite considerable loss of vitality.

  1. Yarrowia lipolytica: a model yeast for citric acid production.

    Science.gov (United States)

    Cavallo, Ema; Charreau, Hernán; Cerrutti, Patricia; Foresti, María Laura

    2017-12-01

    Every year more than 2 million tons of citric acid (CA) are produced around the world for industrial uses. Although initially extracted from citrus, the low profitability of the process and the increasing demand soon stimulated the search for more efficient methods to produce CA. Currently, most world CA demand (99%) is satisfied by fermentations with microorganisms, especially filamentous fungi and yeasts. CA production with yeasts has certain advantages over molds (e.g. higher productivity and easier cultivation), which in the last two decades have triggered a clear increase in publications and patents devoted to the use of yeasts in this field. Yarrowia lipolytica has become a model yeast that proved to be successful in different production systems. Considering the current interest evidenced in the literature, the most significant information on CA production using Y. lipolytica is summarized. The relevance on CA yields of key factors such as strains, media formulation, environmental conditions and production regimes is thoroughly discussed, with particular focus on increasing CA productivity. Besides, the possibility of tuning the mentioned variables to reduce concomitant isocitric acid production-the biggest disadvantage of using yeasts-is analyzed. Available methods for CA purification/quantification are also discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The yeast Saccharomyces cerevisiae- the main character in beer brewing.

    Science.gov (United States)

    Lodolo, Elizabeth J; Kock, Johan L F; Axcell, Barry C; Brooks, Martin

    2008-11-01

    Historically, mankind and yeast developed a relationship that led to the discovery of fermented beverages. Numerous inventions have led to improved technologies and capabilities to optimize fermentation technology on an industrial scale. The role of brewing yeast in the beer-making process is reviewed and its importance as the main character is highlighted. On considering the various outcomes of functions in a brewery, it has been found that these functions are focused on supporting the supply of yeast requirements for fermentation and ultimately to maintain the integrity of the product. The functions/processes include: nutrient supply to the yeast (raw material supply for brewhouse wort production); utilities (supply of water, heat and cooling); quality assurance practices (hygiene practices, microbiological integrity measures and other specifications); plant automation (vessels, pipes, pumps, valves, sensors, stirrers and centrifuges); filtration and packaging (product preservation until consumption); distribution (consumer supply); and marketing (consumer awareness). Considering this value chain of beer production and the 'bottle neck' during production, the spotlight falls on fermentation, the age-old process where yeast transforms wort into beer.

  3. Yeast lipids can phase separate into micrometer-scale membrane domains

    DEFF Research Database (Denmark)

    Klose, Christian; Ejsing, Christer S; Garcia-Saez, Ana J

    2010-01-01

    The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although there is bioc......The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although...... there is biochemical evidence for lipid raft-dependent protein and lipid sorting in the yeast Saccharomyces cerevisiae, direct evidence for an interaction between yeast sphingolipids and the yeast sterol ergosterol, resulting in membrane domain formation, is lacking. Here we show that model membranes formed from yeast...... total lipid extracts possess an inherent self-organization potential resulting in Ld-Lo phase coexistence at physiologically relevant temperature. Analyses of lipid extracts from mutants defective in sphingolipid metabolism as well as reconstitution of purified yeast lipids in model membranes of defined...

  4. [Susceptibility of yeasts to antifungal agents in Kaunas University of Medicine Hospital].

    Science.gov (United States)

    Skrodeniene, Erika; Dambrauskiene, Asta; Vitkauskiene, Astra

    2006-01-01

    The aim of this study was to determine the species of yeast and their susceptibility to antifungal agents isolated from clinical specimens of patients treated in Kaunas University of Medicine Hospital. A total of 142 yeasts isolated from various clinical specimens of patients hospitalized in Kaunas University of Medicine Hospital were included in this study. All yeasts were cultivated on Sabouraud dextrose agar and identified using either CHROM agar or API 20C AUX system. The minimum inhibitory concentrations of fluconazole, itraconazole, and amphotericin B were determined by the ATB FUNGUS 2 agar microdilution test. In all clinical specimens except blood, Candida albicans was the most frequently isolated yeast (65.5%, pyeast strains showed resistance to fluconazole. Nearly one-fourth of Candida albicans strains (24.7%) and 23.2% of all isolated yeast strains showed resistance to itraconazole. Almost all of fluconazole-resistant (93.3%) and 12.6% of fluconazole-susceptible yeast were found to be resistant to itraconazole (pyeast strains were susceptible to amphotericin B. Candida albicans strains were significantly frequently resistant to fluconazole than non-albicans Candida species (15.1% and 4.1%, respectively, pyeast isolated in Kaunas University of Medicine Hospital. There was determined that yeasts resistant to fluconazole were commonly resistant to itraconazole too. All isolated yeast strains were susceptible to amphotericin B.

  5. Dynamical analysis of yeast protein interaction network during the sake brewing process.

    Science.gov (United States)

    Mirzarezaee, Mitra; Sadeghi, Mehdi; Araabi, Babak N

    2011-12-01

    Proteins interact with each other for performing essential functions of an organism. They change partners to get involved in various processes at different times or locations. Studying variations of protein interactions within a specific process would help better understand the dynamic features of the protein interactions and their functions. We studied the protein interaction network of Saccharomyces cerevisiae (yeast) during the brewing of Japanese sake. In this process, yeast cells are exposed to several stresses. Analysis of protein interaction networks of yeast during this process helps to understand how protein interactions of yeast change during the sake brewing process. We used gene expression profiles of yeast cells for this purpose. Results of our experiments revealed some characteristics and behaviors of yeast hubs and non-hubs and their dynamical changes during the brewing process. We found that just a small portion of the proteins (12.8 to 21.6%) is responsible for the functional changes of the proteins in the sake brewing process. The changes in the number of edges and hubs of the yeast protein interaction networks increase in the first stages of the process and it then decreases at the final stages.

  6. Yeast biodiversity from Vitis vinifera L., subsp. sylvestris (Gmelin Hegi to face up the oenological consequences of climate change

    Directory of Open Access Journals (Sweden)

    Puig-Pujol Anna

    2016-01-01

    Full Text Available The impact of climate change in the viticulture is affecting the quality of grapes and their wines. As consequence, climatic variations are producing a mismatch between technological and phenolic maturity and are affecting the microbiota's ecology, biodiversity and their metabolism in vineyard, grape, must and wine. However, there are natural resources that can help to mitigate the effects of global warming. It has been noticed that grapes from female plants of wild vines (Vitis vinifera subsp. sylvestris have very appropriate characteristics to face up this problem: later maturing, high acidity, high polyphenol content,…A molecular study of 819 strains isolated at the end of spontaneous fermentations of grapes of Vitis vinifera subsp. sylvestris grapevines from 30 locations in northern of Spain revealed 8 different genera and 18 different species. 71,5% of the yeasts were classified as non-Saccharomycesand 28,5% were identified as Saccharomyces cerevisiae. This latter specie was characterized at strain level, classifying 30 different groups, 6 of which as the majority from 2 up to 4 different locations. These findings demonstrate a wide diversity of yeast microbiota in wild grapes that will allow a yeast selection for the wine industry in a scenario of climate change.

  7. Study of the role of the covalently linked cell wall protein (Ccw14p) and yeast glycoprotein (Ygp1p) within biofilm formation in a flor yeast strain.

    Science.gov (United States)

    Moreno-García, J; Coi, A L; Zara, G; García-Martínez, T; Mauricio, J C; Budroni, M

    2018-03-01

    Flor yeasts are Saccharomyces cerevisiae strains noted by their ability to create a type of biofilm in the air-liquid interface of some wines, known as 'flor' or 'velum', for which certain proteins play an essential role. Following a proteomic study of a flor yeast strain, we deleted the CCW14 (covalently linked cell wall protein) and YGP1 (yeast glycoprotein) genes-codifying for two cell surface glycoproteins-in a haploid flor yeast strain and we reported that both influence the weight of the biofilm as well as cell adherence (CCW14).

  8. Functional genomics of beer-related physiological processes in yeast

    NARCIS (Netherlands)

    Hazelwood, L.A.

    2009-01-01

    Since the release of the entire genome sequence of the S. cerevisiae laboratory strain S288C in 1996, many functional genomics tools have been introduced in fundamental and application-oriented yeast research. In this thesis, the applicability of functional genomics for the improvement of yeast in

  9. Yeast Infection during Pregnancy

    Science.gov (United States)

    ... disrupt the pH balance of the vagina. Common yeast infection symptoms include vaginal itching and a white, thick discharge that looks ... and Prevention. http://www.cdc.gov/std/tg2015/candidiasis.htm. Accessed Aug. 27, ... Vagina, Cervix, Toxic Shock Syndrome, Endometritis, and Salpingitis. In: ...

  10. Screening studies of yeasts capable of utilizing petroleum fractions

    Energy Technology Data Exchange (ETDEWEB)

    El-Masry, H.G.; Foda, M.S.

    1979-01-01

    In these studies 23 yeasts cultures belonging to 10 genera of ascosporogenous, ballistosporogenous, and asporogenous yeasts, were screened with respect to their abilities of hydrocarbon utilization in synthetic media. Thus, kerosene, n-hexadecane, and wax distillate were compared as sole carbon sources in 2% final concentration. Kerosene exhibited marked inhibition on the growth of the majority of the strains, whereas active growth was observed with Debaryomyces vanrijii and many species of the genus Candida in media with n-hexadecane or wax distillate as sole source of carbon. In addition, some cultures belonging to the genera Sporobolomyces, Hansenula, Cryptococcus, and Trigonopsis could utilize some of these substrates, but to a lesser extent. Highest yield of cells and protein was obtained with Candida lipolytica NRRL 1094 in n-hexadecane medium, supplied with 0.03% yeast extract and trace element solutions. The results are discussed with respect to the possibilities of using new yeast genera, with special reference to the genus Debaryomyces, in microbial protein production.

  11. The role of mitochondria in yeast programmed cell death

    International Nuclear Information System (INIS)

    Guaragnella, Nicoletta; Ždralević, Maša; Antonacci, Lucia; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2012-01-01

    Mammalian apoptosis and yeast programmed cell death (PCD) share a variety of features including reactive oxygen species production, protease activity and a major role played by mitochondria. In view of this, and of the distinctive characteristics differentiating yeast and multicellular organism PCD, the mitochondrial contribution to cell death in the genetically tractable yeast Saccharomyces cerevisiae has been intensively investigated. In this mini-review we report whether and how yeast mitochondrial function and proteins belonging to oxidative phosphorylation, protein trafficking into and out of mitochondria, and mitochondrial dynamics, play a role in PCD. Since in PCD many processes take place over time, emphasis will be placed on an experimental model based on acetic acid-induced PCD (AA-PCD) which has the unique feature of having been investigated as a function of time. As will be described there are at least two AA-PCD pathways each with a multifaceted role played by mitochondrial components, in particular by cytochrome c.

  12. Recent advances in the genome-wide study of DNA replication origins in yeast

    Directory of Open Access Journals (Sweden)

    Chong ePeng

    2015-02-01

    Full Text Available DNA replication, one of the central events in the cell cycle, is the basis of biological inheritance. In order to be duplicated, a DNA double helix must be opened at defined sites, which are called DNA replication origins (ORIs. Unlike in bacteria, where replication initiates from a single replication origin, multiple origins are utilized in the eukaryotic genome. Among them, the ORIs in budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe have been best characterized. In recent years, advances in DNA microarray and next-generation sequencing technologies have increased the number of yeast species involved in ORIs research dramatically. The ORIs in some nonconventional yeast species such as Kluyveromyces lactis and Pichia pastoris have also been genome-widely identified. Relevant databases of replication origins in yeast were constructed, then the comparative genomic analysis can be carried out. Here, we review several experimental approaches that have been used to map replication origins in yeast and some of the available web resources related to yeast ORIs. We also discuss the sequence characteristics and chromosome structures of ORIs in the four yeast species, which can be utilized to improve the replication origins prediction.

  13. Comparative evolutionary analysis of protein complexes in E. coli and yeast

    Directory of Open Access Journals (Sweden)

    Ranea Juan AG

    2010-02-01

    Full Text Available Abstract Background Proteins do not act in isolation; they frequently act together in protein complexes to carry out concerted cellular functions. The evolution of complexes is poorly understood, especially in organisms other than yeast, where little experimental data has been available. Results We generated accurate, high coverage datasets of protein complexes for E. coli and yeast in order to study differences in the evolution of complexes between these two species. We show that substantial differences exist in how complexes have evolved between these organisms. A previously proposed model of complex evolution identified complexes with cores of interacting homologues. We support findings of the relative importance of this mode of evolution in yeast, but find that it is much less common in E. coli. Additionally it is shown that those homologues which do cluster in complexes are involved in eukaryote-specific functions. Furthermore we identify correlated pairs of non-homologous domains which occur in multiple protein complexes. These were identified in both yeast and E. coli and we present evidence that these too may represent complex cores in yeast but not those of E. coli. Conclusions Our results suggest that there are differences in the way protein complexes have evolved in E. coli and yeast. Whereas some yeast complexes have evolved by recruiting paralogues, this is not apparent in E. coli. Furthermore, such complexes are involved in eukaryotic-specific functions. This implies that the increase in gene family sizes seen in eukaryotes in part reflects multiple family members being used within complexes. However, in general, in both E. coli and yeast, homologous domains are used in different complexes.

  14. Use of a flor velum yeast for modulating colour, ethanol and major aroma compound contents in red wine.

    Science.gov (United States)

    Moreno, Juan; Moreno-García, Jaime; López-Muñoz, Beatriz; Mauricio, Juan Carlos; García-Martínez, Teresa

    2016-12-15

    The most important and negative effect of the global warming for winemakers in warm and sunny regions is the observed lag between industrial and phenolic grape ripeness, so only it is possible to obtain an acceptable colour when the ethanol content of wine is high. By contrast, the actual market trends are to low ethanol content wines. Flor yeast growing a short time under velum conditions, decreases the ethanol and volatile acidity contents, has a favorable effect on the colour and astringency and significantly changes the wine content in 1-propanol, isobutanol, acetaldehyde, 1,1-diethoxiethane and ethyl lactate. The Principal Component Analysis of six enological parameters or five aroma compounds allows to classify the wines subjected to different velum formation conditions. The obtained results in two tasting sessions suggest that the flor yeast helps to modulate the ethanol, astringency and colour and supports a new biotechnological perspective for red winemakers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Yeast prions and human prion-like proteins: sequence features and prediction methods.

    Science.gov (United States)

    Cascarina, Sean M; Ross, Eric D

    2014-06-01

    Prions are self-propagating infectious protein isoforms. A growing number of prions have been identified in yeast, each resulting from the conversion of soluble proteins into an insoluble amyloid form. These yeast prions have served as a powerful model system for studying the causes and consequences of prion aggregation. Remarkably, a number of human proteins containing prion-like domains, defined as domains with compositional similarity to yeast prion domains, have recently been linked to various human degenerative diseases, including amyotrophic lateral sclerosis. This suggests that the lessons learned from yeast prions may help in understanding these human diseases. In this review, we examine what has been learned about the amino acid sequence basis for prion aggregation in yeast, and how this information has been used to develop methods to predict aggregation propensity. We then discuss how this information is being applied to understand human disease, and the challenges involved in applying yeast prediction methods to higher organisms.

  16. Attenuation of yeast form of Paracoccidioides Brasiliensis by gamma irradiation

    International Nuclear Information System (INIS)

    Demicheli, Marina Cortez

    2006-01-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America, and currently there is no effective vaccine. The aim of this work was to attenuate the yeast form of P. brasiliensis by gamma irradiation for further studies on vaccine research. P. brasiliensis (strain Pb-18) cultures were irradiated at doses between 0.5 and 8.0 kGy. After each dose the fungal cells were plated and after 10 days the colony forming units (CFU) counted. The viability of the irradiated cells was measured using the dyes Janus green and methylene blue, and protein synthesis by incorporation of L 35 S methionine. The comparison between the antigenic profile of irradiated and control yeast was made by Western blot and the virulence evaluated by the inoculation in C 57 Bl/J6 and Balb/c mice. Morphological changes in irradiated yeast were evaluated by electronic microscopy and DNA integrity by electrophoresis in agarose gel. At 6.5 kGy the yeast lost the reproductive capacity. The viability and the incorporation of L- 35 S methionine were the same in control and up to 6.5 kGy irradiated cells, but 6.5 kGy irradiated yeast secreted 40% less proteins. The Western blot profile was clearly similar in control and 6.5 kGy irradiated yeast. No CFU could be recovered from the tissues of the mice infected with the radio attenuated yeast. At the dose of 6.5 kGy the DNA was degraded and this damage was not repaired. The transmission electronic microscopy showed significant alterations in the nucleus of the irradiated cells. The scanning electronic microscopy showed that two hours after the irradiation the cells were collapsed or presented deep folds in the surface, however these injury were reversible. We concluded that for P. brasiliensis yeast cells it was possible to find a dose in which the pathogen loses its reproductive ability and virulence, while retaining its viability, metabolic activity and the antigenic profile. (author)

  17. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.

    Science.gov (United States)

    Bottoms, Scott; Dickinson, Quinn; McGee, Mick; Hinchman, Li; Higbee, Alan; Hebert, Alex; Serate, Jose; Xie, Dan; Zhang, Yaoping; Coon, Joshua J; Myers, Chad L; Landick, Robert; Piotrowski, Jeff S

    2018-01-12

    Gamma valerolactone (GVL) treatment of lignocellulosic bomass is a promising technology for degradation of biomass for biofuel production; however, GVL is toxic to fermentative microbes. Using a combination of chemical genomics with the yeast (Saccharomyces cerevisiae) deletion collection to identify sensitive and resistant mutants, and chemical proteomics to monitor protein abundance in the presence of GVL, we sought to understand the mechanism toxicity and resistance to GVL with the goal of engineering a GVL-tolerant, xylose-fermenting yeast. Chemical genomic profiling of GVL predicted that this chemical affects membranes and membrane-bound processes. We show that GVL causes rapid, dose-dependent cell permeability, and is synergistic with ethanol. Chemical genomic profiling of GVL revealed that deletion of the functionally related enzymes Pad1p and Fdc1p, which act together to decarboxylate cinnamic acid and its derivatives to vinyl forms, increases yeast tolerance to GVL. Further, overexpression of Pad1p sensitizes cells to GVL toxicity. To improve GVL tolerance, we deleted PAD1 and FDC1 in a xylose-fermenting yeast strain. The modified strain exhibited increased anaerobic growth, sugar utilization, and ethanol production in synthetic hydrolysate with 1.5% GVL, and under other conditions. Chemical proteomic profiling of the engineered strain revealed that enzymes involved in ergosterol biosynthesis were more abundant in the presence of GVL compared to the background strain. The engineered GVL strain contained greater amounts of ergosterol than the background strain. We found that GVL exerts toxicity to yeast by compromising cellular membranes, and that this toxicity is synergistic with ethanol. Deletion of PAD1 and FDC1 conferred GVL resistance to a xylose-fermenting yeast strain by increasing ergosterol accumulation in aerobically grown cells. The GVL-tolerant strain fermented sugars in the presence of GVL levels that were inhibitory to the unmodified strain

  18. Mechanisms of uv mutagenesis in yeast and E. coli

    International Nuclear Information System (INIS)

    Lawrence, C.; Christensen, R.; Christensen, J.R.; O'Brien, T.

    1983-01-01

    Experiments investigating ultraviolet light mutagenesis in either bakers' yeast, Saccharomyces cerevisiae, or E. coli have led to the following conclusions. First, cyclobutane pyrimidine dimers cause most mutations in both organisms; pyrimidine adducts, such as PyC, can account at best for only a small proportion. 86 percent of forward mutations induced at the E. coli lacI locus can be abolished by photoreactivation under conditions which do not alter the level of recA induction. About 75 percent of the forward mutations induced at the CAN1 locus of yeast could be removed by photoreactivation, a value that lies within the range observed previously for the reversion of CYC1 alleles (60 percent - 97 percent). Second, about 10 percent of the lacI forward mutations are untargeted, a smaller fraction than found previously for cycl-91 reversion in yeast. It is not yet clear whether the two species are really different in this respect, of whether the cycl-91 reversion site is a typical of the yeast genome at large. Third, analysis of reversion frequencies of 20 mutant alleles suggests that about 10 to 25 percent of all replication errors produced by mutagenic mechanisms in uv-irradiated yeast involve additions or deletions of base-pairs, indicating that error-prone repair does not just produce substitutions. Last, the REV1 locus in yeast is concerned with the induction of frameshift mutations at some, but not all, genetic sites, just as found previously for substitution mutations. The function of the REV3 gene is more widely, though not universally, required while the function of the RAD6 gene, like that of the recA locus in E. coli, appears to be necessary for all kinds of uv mutagenesis. E coli genes comparable to REV1 and REV3 have not yet been described; conversely, there does not yet appear to be a yeast equivalent of umuC

  19. Mechanisms of uv mutagenesis in yeast and E. coli

    International Nuclear Information System (INIS)

    Lawrence, C.; Christensen, R.; Christensen, J.R.; O'Brien, T.

    1983-01-01

    Experiments investigating ultraviolet light mutagenesis in either bakers' yeast, Saccharomyces cerevisiae, or E. coli have led to the following conclusions. First, cyclobutane pyrimidine dimers cause most mutations in both organisms; pyrimidine adducts, such as PyC, can account at best for only a small proportion. Eighty-six percent of forward mutations induced at the E. coli lacI locus can be abolished by photoreactivation under conditions which do not alter the level of recA induction. About 75 percent of the forward mutations induced at the CAN1 locus of yeast could be removed by photoreactivation, a value that lies within the range observed previously for the reversion of CYC1 alleles (60 percent - 97 percent). Second, about 10 percent of the lacI forward mutations are untargeted, a smaller fraction than found previously for cycl1-91 reversion in yeast. It is not yet clear whether the two species are really different in this respect, or whether the cyc1-91 reversion site is atypical of the yeast genome at large. Third, analysis of reversion frequencies of 20 mutant alleles suggests that about 10 - 25 percent of all replication errors produced by mutagenic mechanisms in UV-irradiated yeast involve additions or deletions of base-pairs, indicating that error-prone repair does not just produce substitutions. Last, the REV1 locus in yeast is concerned with the induction of frameshift mutations at some, but not all, genetic sites, just as found previously for substitution mutations. The function of the REV3 gene is more widely, though not universally, required while the function of the RAD6 gene, like that of the recA locus in E. coli, appears to be necessary for all kinds of UV mutagenesis. E. coli genes comparable to REV1 and REV3 have not yet been described, conversely, there does not yet appear to be a yeast equivalent of umuC. 13 references, 4 tables

  20. Optimization of culture medium for heavy-ion irradiation bread yeast design

    International Nuclear Information System (INIS)

    Ma Liang; Wang Jufang; Lu Dong; Li Wenjian; Xiao Guoqing

    2013-01-01

    A mutant bread yeast strain with high protein content of 55% was gained by use of "1"2C"6"+ ions. The MINITAB 16.0 software, Plackett-Burman experimental design and response surface methodology were applied to optimize the culture medium for the irradiated yeast. The most important three factors which influenced the culture results were identified as glucose, magnesium sulphate and yeast extract. The path of the steepest ascent was undertaken to approach the optimal region of the three significant factors. Box-Behnken design and response surface methodology were used for the regression analysis. Finally, the optimal fermentation conditions were identified as glucose 11.03 g/L, yeast extract 6.53 g/L and magnesium sulphate 5.59 g/L by the regression analysis. It was found that the biomass of the bread yeasts reached 4.84 g/L and increased by 15% compared to original conditions. (authors)